aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/DemandedBits.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Analysis/DemandedBits.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/DemandedBits.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Analysis/DemandedBits.cpp488
1 files changed, 488 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/DemandedBits.cpp b/contrib/llvm-project/llvm/lib/Analysis/DemandedBits.cpp
new file mode 100644
index 000000000000..01b8ff10d355
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Analysis/DemandedBits.cpp
@@ -0,0 +1,488 @@
+//===- DemandedBits.cpp - Determine demanded bits -------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a demanded bits analysis. A demanded bit is one that
+// contributes to a result; bits that are not demanded can be either zero or
+// one without affecting control or data flow. For example in this sequence:
+//
+// %1 = add i32 %x, %y
+// %2 = trunc i32 %1 to i16
+//
+// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
+// trunc.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/DemandedBits.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstdint>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "demanded-bits"
+
+char DemandedBitsWrapperPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
+ "Demanded bits analysis", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
+ "Demanded bits analysis", false, false)
+
+DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
+ initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
+}
+
+void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.setPreservesAll();
+}
+
+void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
+ DB->print(OS);
+}
+
+static bool isAlwaysLive(Instruction *I) {
+ return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
+ I->mayHaveSideEffects();
+}
+
+void DemandedBits::determineLiveOperandBits(
+ const Instruction *UserI, const Value *Val, unsigned OperandNo,
+ const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2,
+ bool &KnownBitsComputed) {
+ unsigned BitWidth = AB.getBitWidth();
+
+ // We're called once per operand, but for some instructions, we need to
+ // compute known bits of both operands in order to determine the live bits of
+ // either (when both operands are instructions themselves). We don't,
+ // however, want to do this twice, so we cache the result in APInts that live
+ // in the caller. For the two-relevant-operands case, both operand values are
+ // provided here.
+ auto ComputeKnownBits =
+ [&](unsigned BitWidth, const Value *V1, const Value *V2) {
+ if (KnownBitsComputed)
+ return;
+ KnownBitsComputed = true;
+
+ const DataLayout &DL = UserI->getModule()->getDataLayout();
+ Known = KnownBits(BitWidth);
+ computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
+
+ if (V2) {
+ Known2 = KnownBits(BitWidth);
+ computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
+ }
+ };
+
+ switch (UserI->getOpcode()) {
+ default: break;
+ case Instruction::Call:
+ case Instruction::Invoke:
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::bswap:
+ // The alive bits of the input are the swapped alive bits of
+ // the output.
+ AB = AOut.byteSwap();
+ break;
+ case Intrinsic::bitreverse:
+ // The alive bits of the input are the reversed alive bits of
+ // the output.
+ AB = AOut.reverseBits();
+ break;
+ case Intrinsic::ctlz:
+ if (OperandNo == 0) {
+ // We need some output bits, so we need all bits of the
+ // input to the left of, and including, the leftmost bit
+ // known to be one.
+ ComputeKnownBits(BitWidth, Val, nullptr);
+ AB = APInt::getHighBitsSet(BitWidth,
+ std::min(BitWidth, Known.countMaxLeadingZeros()+1));
+ }
+ break;
+ case Intrinsic::cttz:
+ if (OperandNo == 0) {
+ // We need some output bits, so we need all bits of the
+ // input to the right of, and including, the rightmost bit
+ // known to be one.
+ ComputeKnownBits(BitWidth, Val, nullptr);
+ AB = APInt::getLowBitsSet(BitWidth,
+ std::min(BitWidth, Known.countMaxTrailingZeros()+1));
+ }
+ break;
+ case Intrinsic::fshl:
+ case Intrinsic::fshr: {
+ const APInt *SA;
+ if (OperandNo == 2) {
+ // Shift amount is modulo the bitwidth. For powers of two we have
+ // SA % BW == SA & (BW - 1).
+ if (isPowerOf2_32(BitWidth))
+ AB = BitWidth - 1;
+ } else if (match(II->getOperand(2), m_APInt(SA))) {
+ // Normalize to funnel shift left. APInt shifts of BitWidth are well-
+ // defined, so no need to special-case zero shifts here.
+ uint64_t ShiftAmt = SA->urem(BitWidth);
+ if (II->getIntrinsicID() == Intrinsic::fshr)
+ ShiftAmt = BitWidth - ShiftAmt;
+
+ if (OperandNo == 0)
+ AB = AOut.lshr(ShiftAmt);
+ else if (OperandNo == 1)
+ AB = AOut.shl(BitWidth - ShiftAmt);
+ }
+ break;
+ }
+ }
+ break;
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Mul:
+ // Find the highest live output bit. We don't need any more input
+ // bits than that (adds, and thus subtracts, ripple only to the
+ // left).
+ AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
+ break;
+ case Instruction::Shl:
+ if (OperandNo == 0) {
+ const APInt *ShiftAmtC;
+ if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
+ uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
+ AB = AOut.lshr(ShiftAmt);
+
+ // If the shift is nuw/nsw, then the high bits are not dead
+ // (because we've promised that they *must* be zero).
+ const ShlOperator *S = cast<ShlOperator>(UserI);
+ if (S->hasNoSignedWrap())
+ AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
+ else if (S->hasNoUnsignedWrap())
+ AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
+ }
+ }
+ break;
+ case Instruction::LShr:
+ if (OperandNo == 0) {
+ const APInt *ShiftAmtC;
+ if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
+ uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
+ AB = AOut.shl(ShiftAmt);
+
+ // If the shift is exact, then the low bits are not dead
+ // (they must be zero).
+ if (cast<LShrOperator>(UserI)->isExact())
+ AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+ }
+ }
+ break;
+ case Instruction::AShr:
+ if (OperandNo == 0) {
+ const APInt *ShiftAmtC;
+ if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
+ uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
+ AB = AOut.shl(ShiftAmt);
+ // Because the high input bit is replicated into the
+ // high-order bits of the result, if we need any of those
+ // bits, then we must keep the highest input bit.
+ if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
+ .getBoolValue())
+ AB.setSignBit();
+
+ // If the shift is exact, then the low bits are not dead
+ // (they must be zero).
+ if (cast<AShrOperator>(UserI)->isExact())
+ AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
+ }
+ }
+ break;
+ case Instruction::And:
+ AB = AOut;
+
+ // For bits that are known zero, the corresponding bits in the
+ // other operand are dead (unless they're both zero, in which
+ // case they can't both be dead, so just mark the LHS bits as
+ // dead).
+ ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
+ if (OperandNo == 0)
+ AB &= ~Known2.Zero;
+ else
+ AB &= ~(Known.Zero & ~Known2.Zero);
+ break;
+ case Instruction::Or:
+ AB = AOut;
+
+ // For bits that are known one, the corresponding bits in the
+ // other operand are dead (unless they're both one, in which
+ // case they can't both be dead, so just mark the LHS bits as
+ // dead).
+ ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
+ if (OperandNo == 0)
+ AB &= ~Known2.One;
+ else
+ AB &= ~(Known.One & ~Known2.One);
+ break;
+ case Instruction::Xor:
+ case Instruction::PHI:
+ AB = AOut;
+ break;
+ case Instruction::Trunc:
+ AB = AOut.zext(BitWidth);
+ break;
+ case Instruction::ZExt:
+ AB = AOut.trunc(BitWidth);
+ break;
+ case Instruction::SExt:
+ AB = AOut.trunc(BitWidth);
+ // Because the high input bit is replicated into the
+ // high-order bits of the result, if we need any of those
+ // bits, then we must keep the highest input bit.
+ if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
+ AOut.getBitWidth() - BitWidth))
+ .getBoolValue())
+ AB.setSignBit();
+ break;
+ case Instruction::Select:
+ if (OperandNo != 0)
+ AB = AOut;
+ break;
+ case Instruction::ExtractElement:
+ if (OperandNo == 0)
+ AB = AOut;
+ break;
+ case Instruction::InsertElement:
+ case Instruction::ShuffleVector:
+ if (OperandNo == 0 || OperandNo == 1)
+ AB = AOut;
+ break;
+ }
+}
+
+bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ DB.emplace(F, AC, DT);
+ return false;
+}
+
+void DemandedBitsWrapperPass::releaseMemory() {
+ DB.reset();
+}
+
+void DemandedBits::performAnalysis() {
+ if (Analyzed)
+ // Analysis already completed for this function.
+ return;
+ Analyzed = true;
+
+ Visited.clear();
+ AliveBits.clear();
+ DeadUses.clear();
+
+ SmallSetVector<Instruction*, 16> Worklist;
+
+ // Collect the set of "root" instructions that are known live.
+ for (Instruction &I : instructions(F)) {
+ if (!isAlwaysLive(&I))
+ continue;
+
+ LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
+ // For integer-valued instructions, set up an initial empty set of alive
+ // bits and add the instruction to the work list. For other instructions
+ // add their operands to the work list (for integer values operands, mark
+ // all bits as live).
+ Type *T = I.getType();
+ if (T->isIntOrIntVectorTy()) {
+ if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
+ Worklist.insert(&I);
+
+ continue;
+ }
+
+ // Non-integer-typed instructions...
+ for (Use &OI : I.operands()) {
+ if (Instruction *J = dyn_cast<Instruction>(OI)) {
+ Type *T = J->getType();
+ if (T->isIntOrIntVectorTy())
+ AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits());
+ else
+ Visited.insert(J);
+ Worklist.insert(J);
+ }
+ }
+ // To save memory, we don't add I to the Visited set here. Instead, we
+ // check isAlwaysLive on every instruction when searching for dead
+ // instructions later (we need to check isAlwaysLive for the
+ // integer-typed instructions anyway).
+ }
+
+ // Propagate liveness backwards to operands.
+ while (!Worklist.empty()) {
+ Instruction *UserI = Worklist.pop_back_val();
+
+ LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
+ APInt AOut;
+ bool InputIsKnownDead = false;
+ if (UserI->getType()->isIntOrIntVectorTy()) {
+ AOut = AliveBits[UserI];
+ LLVM_DEBUG(dbgs() << " Alive Out: 0x"
+ << Twine::utohexstr(AOut.getLimitedValue()));
+
+ // If all bits of the output are dead, then all bits of the input
+ // are also dead.
+ InputIsKnownDead = !AOut && !isAlwaysLive(UserI);
+ }
+ LLVM_DEBUG(dbgs() << "\n");
+
+ KnownBits Known, Known2;
+ bool KnownBitsComputed = false;
+ // Compute the set of alive bits for each operand. These are anded into the
+ // existing set, if any, and if that changes the set of alive bits, the
+ // operand is added to the work-list.
+ for (Use &OI : UserI->operands()) {
+ // We also want to detect dead uses of arguments, but will only store
+ // demanded bits for instructions.
+ Instruction *I = dyn_cast<Instruction>(OI);
+ if (!I && !isa<Argument>(OI))
+ continue;
+
+ Type *T = OI->getType();
+ if (T->isIntOrIntVectorTy()) {
+ unsigned BitWidth = T->getScalarSizeInBits();
+ APInt AB = APInt::getAllOnesValue(BitWidth);
+ if (InputIsKnownDead) {
+ AB = APInt(BitWidth, 0);
+ } else {
+ // Bits of each operand that are used to compute alive bits of the
+ // output are alive, all others are dead.
+ determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB,
+ Known, Known2, KnownBitsComputed);
+
+ // Keep track of uses which have no demanded bits.
+ if (AB.isNullValue())
+ DeadUses.insert(&OI);
+ else
+ DeadUses.erase(&OI);
+ }
+
+ if (I) {
+ // If we've added to the set of alive bits (or the operand has not
+ // been previously visited), then re-queue the operand to be visited
+ // again.
+ auto Res = AliveBits.try_emplace(I);
+ if (Res.second || (AB |= Res.first->second) != Res.first->second) {
+ Res.first->second = std::move(AB);
+ Worklist.insert(I);
+ }
+ }
+ } else if (I && Visited.insert(I).second) {
+ Worklist.insert(I);
+ }
+ }
+ }
+}
+
+APInt DemandedBits::getDemandedBits(Instruction *I) {
+ performAnalysis();
+
+ auto Found = AliveBits.find(I);
+ if (Found != AliveBits.end())
+ return Found->second;
+
+ const DataLayout &DL = I->getModule()->getDataLayout();
+ return APInt::getAllOnesValue(
+ DL.getTypeSizeInBits(I->getType()->getScalarType()));
+}
+
+bool DemandedBits::isInstructionDead(Instruction *I) {
+ performAnalysis();
+
+ return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
+ !isAlwaysLive(I);
+}
+
+bool DemandedBits::isUseDead(Use *U) {
+ // We only track integer uses, everything else is assumed live.
+ if (!(*U)->getType()->isIntOrIntVectorTy())
+ return false;
+
+ // Uses by always-live instructions are never dead.
+ Instruction *UserI = cast<Instruction>(U->getUser());
+ if (isAlwaysLive(UserI))
+ return false;
+
+ performAnalysis();
+ if (DeadUses.count(U))
+ return true;
+
+ // If no output bits are demanded, no input bits are demanded and the use
+ // is dead. These uses might not be explicitly present in the DeadUses map.
+ if (UserI->getType()->isIntOrIntVectorTy()) {
+ auto Found = AliveBits.find(UserI);
+ if (Found != AliveBits.end() && Found->second.isNullValue())
+ return true;
+ }
+
+ return false;
+}
+
+void DemandedBits::print(raw_ostream &OS) {
+ performAnalysis();
+ for (auto &KV : AliveBits) {
+ OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue())
+ << " for " << *KV.first << '\n';
+ }
+}
+
+FunctionPass *llvm::createDemandedBitsWrapperPass() {
+ return new DemandedBitsWrapperPass();
+}
+
+AnalysisKey DemandedBitsAnalysis::Key;
+
+DemandedBits DemandedBitsAnalysis::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ return DemandedBits(F, AC, DT);
+}
+
+PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ AM.getResult<DemandedBitsAnalysis>(F).print(OS);
+ return PreservedAnalyses::all();
+}