aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2020-01-22 20:31:01 +0000
committerDimitry Andric <dim@FreeBSD.org>2020-01-22 20:31:01 +0000
commit8bcb0991864975618c09697b1aca10683346d9f0 (patch)
tree0afab28faa50e5f27698f8dd6c1921fff8d25e39 /contrib/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp
parentb14637d118e110006a149a79b649c5695e7f419a (diff)
parent1d5ae1026e831016fc29fd927877c86af904481f (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp625
1 files changed, 625 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp b/contrib/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp
new file mode 100644
index 000000000000..10d2fe07884a
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Analysis/LoopCacheAnalysis.cpp
@@ -0,0 +1,625 @@
+//===- LoopCacheAnalysis.cpp - Loop Cache Analysis -------------------------==//
+//
+// The LLVM Compiler Infrastructure
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file defines the implementation for the loop cache analysis.
+/// The implementation is largely based on the following paper:
+///
+/// Compiler Optimizations for Improving Data Locality
+/// By: Steve Carr, Katherine S. McKinley, Chau-Wen Tseng
+/// http://www.cs.utexas.edu/users/mckinley/papers/asplos-1994.pdf
+///
+/// The general approach taken to estimate the number of cache lines used by the
+/// memory references in an inner loop is:
+/// 1. Partition memory references that exhibit temporal or spacial reuse
+/// into reference groups.
+/// 2. For each loop L in the a loop nest LN:
+/// a. Compute the cost of the reference group
+/// b. Compute the loop cost by summing up the reference groups costs
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoopCacheAnalysis.h"
+#include "llvm/ADT/BreadthFirstIterator.h"
+#include "llvm/ADT/Sequence.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Support/Debug.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-cache-cost"
+
+static cl::opt<unsigned> DefaultTripCount(
+ "default-trip-count", cl::init(100), cl::Hidden,
+ cl::desc("Use this to specify the default trip count of a loop"));
+
+// In this analysis two array references are considered to exhibit temporal
+// reuse if they access either the same memory location, or a memory location
+// with distance smaller than a configurable threshold.
+static cl::opt<unsigned> TemporalReuseThreshold(
+ "temporal-reuse-threshold", cl::init(2), cl::Hidden,
+ cl::desc("Use this to specify the max. distance between array elements "
+ "accessed in a loop so that the elements are classified to have "
+ "temporal reuse"));
+
+/// Retrieve the innermost loop in the given loop nest \p Loops. It returns a
+/// nullptr if any loops in the loop vector supplied has more than one sibling.
+/// The loop vector is expected to contain loops collected in breadth-first
+/// order.
+static Loop *getInnerMostLoop(const LoopVectorTy &Loops) {
+ assert(!Loops.empty() && "Expecting a non-empy loop vector");
+
+ Loop *LastLoop = Loops.back();
+ Loop *ParentLoop = LastLoop->getParentLoop();
+
+ if (ParentLoop == nullptr) {
+ assert(Loops.size() == 1 && "Expecting a single loop");
+ return LastLoop;
+ }
+
+ return (std::is_sorted(Loops.begin(), Loops.end(),
+ [](const Loop *L1, const Loop *L2) {
+ return L1->getLoopDepth() < L2->getLoopDepth();
+ }))
+ ? LastLoop
+ : nullptr;
+}
+
+static bool isOneDimensionalArray(const SCEV &AccessFn, const SCEV &ElemSize,
+ const Loop &L, ScalarEvolution &SE) {
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&AccessFn);
+ if (!AR || !AR->isAffine())
+ return false;
+
+ assert(AR->getLoop() && "AR should have a loop");
+
+ // Check that start and increment are not add recurrences.
+ const SCEV *Start = AR->getStart();
+ const SCEV *Step = AR->getStepRecurrence(SE);
+ if (isa<SCEVAddRecExpr>(Start) || isa<SCEVAddRecExpr>(Step))
+ return false;
+
+ // Check that start and increment are both invariant in the loop.
+ if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
+ return false;
+
+ return AR->getStepRecurrence(SE) == &ElemSize;
+}
+
+/// Compute the trip count for the given loop \p L. Return the SCEV expression
+/// for the trip count or nullptr if it cannot be computed.
+static const SCEV *computeTripCount(const Loop &L, ScalarEvolution &SE) {
+ const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(&L);
+ if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
+ !isa<SCEVConstant>(BackedgeTakenCount))
+ return nullptr;
+
+ return SE.getAddExpr(BackedgeTakenCount,
+ SE.getOne(BackedgeTakenCount->getType()));
+}
+
+//===----------------------------------------------------------------------===//
+// IndexedReference implementation
+//
+raw_ostream &llvm::operator<<(raw_ostream &OS, const IndexedReference &R) {
+ if (!R.IsValid) {
+ OS << R.StoreOrLoadInst;
+ OS << ", IsValid=false.";
+ return OS;
+ }
+
+ OS << *R.BasePointer;
+ for (const SCEV *Subscript : R.Subscripts)
+ OS << "[" << *Subscript << "]";
+
+ OS << ", Sizes: ";
+ for (const SCEV *Size : R.Sizes)
+ OS << "[" << *Size << "]";
+
+ return OS;
+}
+
+IndexedReference::IndexedReference(Instruction &StoreOrLoadInst,
+ const LoopInfo &LI, ScalarEvolution &SE)
+ : StoreOrLoadInst(StoreOrLoadInst), SE(SE) {
+ assert((isa<StoreInst>(StoreOrLoadInst) || isa<LoadInst>(StoreOrLoadInst)) &&
+ "Expecting a load or store instruction");
+
+ IsValid = delinearize(LI);
+ if (IsValid)
+ LLVM_DEBUG(dbgs().indent(2) << "Succesfully delinearized: " << *this
+ << "\n");
+}
+
+Optional<bool> IndexedReference::hasSpacialReuse(const IndexedReference &Other,
+ unsigned CLS,
+ AliasAnalysis &AA) const {
+ assert(IsValid && "Expecting a valid reference");
+
+ if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
+ LLVM_DEBUG(dbgs().indent(2)
+ << "No spacial reuse: different base pointers\n");
+ return false;
+ }
+
+ unsigned NumSubscripts = getNumSubscripts();
+ if (NumSubscripts != Other.getNumSubscripts()) {
+ LLVM_DEBUG(dbgs().indent(2)
+ << "No spacial reuse: different number of subscripts\n");
+ return false;
+ }
+
+ // all subscripts must be equal, except the leftmost one (the last one).
+ for (auto SubNum : seq<unsigned>(0, NumSubscripts - 1)) {
+ if (getSubscript(SubNum) != Other.getSubscript(SubNum)) {
+ LLVM_DEBUG(dbgs().indent(2) << "No spacial reuse, different subscripts: "
+ << "\n\t" << *getSubscript(SubNum) << "\n\t"
+ << *Other.getSubscript(SubNum) << "\n");
+ return false;
+ }
+ }
+
+ // the difference between the last subscripts must be less than the cache line
+ // size.
+ const SCEV *LastSubscript = getLastSubscript();
+ const SCEV *OtherLastSubscript = Other.getLastSubscript();
+ const SCEVConstant *Diff = dyn_cast<SCEVConstant>(
+ SE.getMinusSCEV(LastSubscript, OtherLastSubscript));
+
+ if (Diff == nullptr) {
+ LLVM_DEBUG(dbgs().indent(2)
+ << "No spacial reuse, difference between subscript:\n\t"
+ << *LastSubscript << "\n\t" << OtherLastSubscript
+ << "\nis not constant.\n");
+ return None;
+ }
+
+ bool InSameCacheLine = (Diff->getValue()->getSExtValue() < CLS);
+
+ LLVM_DEBUG({
+ if (InSameCacheLine)
+ dbgs().indent(2) << "Found spacial reuse.\n";
+ else
+ dbgs().indent(2) << "No spacial reuse.\n";
+ });
+
+ return InSameCacheLine;
+}
+
+Optional<bool> IndexedReference::hasTemporalReuse(const IndexedReference &Other,
+ unsigned MaxDistance,
+ const Loop &L,
+ DependenceInfo &DI,
+ AliasAnalysis &AA) const {
+ assert(IsValid && "Expecting a valid reference");
+
+ if (BasePointer != Other.getBasePointer() && !isAliased(Other, AA)) {
+ LLVM_DEBUG(dbgs().indent(2)
+ << "No temporal reuse: different base pointer\n");
+ return false;
+ }
+
+ std::unique_ptr<Dependence> D =
+ DI.depends(&StoreOrLoadInst, &Other.StoreOrLoadInst, true);
+
+ if (D == nullptr) {
+ LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: no dependence\n");
+ return false;
+ }
+
+ if (D->isLoopIndependent()) {
+ LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
+ return true;
+ }
+
+ // Check the dependence distance at every loop level. There is temporal reuse
+ // if the distance at the given loop's depth is small (|d| <= MaxDistance) and
+ // it is zero at every other loop level.
+ int LoopDepth = L.getLoopDepth();
+ int Levels = D->getLevels();
+ for (int Level = 1; Level <= Levels; ++Level) {
+ const SCEV *Distance = D->getDistance(Level);
+ const SCEVConstant *SCEVConst = dyn_cast_or_null<SCEVConstant>(Distance);
+
+ if (SCEVConst == nullptr) {
+ LLVM_DEBUG(dbgs().indent(2) << "No temporal reuse: distance unknown\n");
+ return None;
+ }
+
+ const ConstantInt &CI = *SCEVConst->getValue();
+ if (Level != LoopDepth && !CI.isZero()) {
+ LLVM_DEBUG(dbgs().indent(2)
+ << "No temporal reuse: distance is not zero at depth=" << Level
+ << "\n");
+ return false;
+ } else if (Level == LoopDepth && CI.getSExtValue() > MaxDistance) {
+ LLVM_DEBUG(
+ dbgs().indent(2)
+ << "No temporal reuse: distance is greater than MaxDistance at depth="
+ << Level << "\n");
+ return false;
+ }
+ }
+
+ LLVM_DEBUG(dbgs().indent(2) << "Found temporal reuse\n");
+ return true;
+}
+
+CacheCostTy IndexedReference::computeRefCost(const Loop &L,
+ unsigned CLS) const {
+ assert(IsValid && "Expecting a valid reference");
+ LLVM_DEBUG({
+ dbgs().indent(2) << "Computing cache cost for:\n";
+ dbgs().indent(4) << *this << "\n";
+ });
+
+ // If the indexed reference is loop invariant the cost is one.
+ if (isLoopInvariant(L)) {
+ LLVM_DEBUG(dbgs().indent(4) << "Reference is loop invariant: RefCost=1\n");
+ return 1;
+ }
+
+ const SCEV *TripCount = computeTripCount(L, SE);
+ if (!TripCount) {
+ LLVM_DEBUG(dbgs() << "Trip count of loop " << L.getName()
+ << " could not be computed, using DefaultTripCount\n");
+ const SCEV *ElemSize = Sizes.back();
+ TripCount = SE.getConstant(ElemSize->getType(), DefaultTripCount);
+ }
+ LLVM_DEBUG(dbgs() << "TripCount=" << *TripCount << "\n");
+
+ // If the indexed reference is 'consecutive' the cost is
+ // (TripCount*Stride)/CLS, otherwise the cost is TripCount.
+ const SCEV *RefCost = TripCount;
+
+ if (isConsecutive(L, CLS)) {
+ const SCEV *Coeff = getLastCoefficient();
+ const SCEV *ElemSize = Sizes.back();
+ const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
+ const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
+ const SCEV *Numerator = SE.getMulExpr(Stride, TripCount);
+ RefCost = SE.getUDivExpr(Numerator, CacheLineSize);
+ LLVM_DEBUG(dbgs().indent(4)
+ << "Access is consecutive: RefCost=(TripCount*Stride)/CLS="
+ << *RefCost << "\n");
+ } else
+ LLVM_DEBUG(dbgs().indent(4)
+ << "Access is not consecutive: RefCost=TripCount=" << *RefCost
+ << "\n");
+
+ // Attempt to fold RefCost into a constant.
+ if (auto ConstantCost = dyn_cast<SCEVConstant>(RefCost))
+ return ConstantCost->getValue()->getSExtValue();
+
+ LLVM_DEBUG(dbgs().indent(4)
+ << "RefCost is not a constant! Setting to RefCost=InvalidCost "
+ "(invalid value).\n");
+
+ return CacheCost::InvalidCost;
+}
+
+bool IndexedReference::delinearize(const LoopInfo &LI) {
+ assert(Subscripts.empty() && "Subscripts should be empty");
+ assert(Sizes.empty() && "Sizes should be empty");
+ assert(!IsValid && "Should be called once from the constructor");
+ LLVM_DEBUG(dbgs() << "Delinearizing: " << StoreOrLoadInst << "\n");
+
+ const SCEV *ElemSize = SE.getElementSize(&StoreOrLoadInst);
+ const BasicBlock *BB = StoreOrLoadInst.getParent();
+
+ for (Loop *L = LI.getLoopFor(BB); L != nullptr; L = L->getParentLoop()) {
+ const SCEV *AccessFn =
+ SE.getSCEVAtScope(getPointerOperand(&StoreOrLoadInst), L);
+
+ BasePointer = dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFn));
+ if (BasePointer == nullptr) {
+ LLVM_DEBUG(
+ dbgs().indent(2)
+ << "ERROR: failed to delinearize, can't identify base pointer\n");
+ return false;
+ }
+
+ AccessFn = SE.getMinusSCEV(AccessFn, BasePointer);
+
+ LLVM_DEBUG(dbgs().indent(2) << "In Loop '" << L->getName()
+ << "', AccessFn: " << *AccessFn << "\n");
+
+ SE.delinearize(AccessFn, Subscripts, Sizes,
+ SE.getElementSize(&StoreOrLoadInst));
+
+ if (Subscripts.empty() || Sizes.empty() ||
+ Subscripts.size() != Sizes.size()) {
+ // Attempt to determine whether we have a single dimensional array access.
+ // before giving up.
+ if (!isOneDimensionalArray(*AccessFn, *ElemSize, *L, SE)) {
+ LLVM_DEBUG(dbgs().indent(2)
+ << "ERROR: failed to delinearize reference\n");
+ Subscripts.clear();
+ Sizes.clear();
+ break;
+ }
+
+ const SCEV *Div = SE.getUDivExactExpr(AccessFn, ElemSize);
+ Subscripts.push_back(Div);
+ Sizes.push_back(ElemSize);
+ }
+
+ return all_of(Subscripts, [&](const SCEV *Subscript) {
+ return isSimpleAddRecurrence(*Subscript, *L);
+ });
+ }
+
+ return false;
+}
+
+bool IndexedReference::isLoopInvariant(const Loop &L) const {
+ Value *Addr = getPointerOperand(&StoreOrLoadInst);
+ assert(Addr != nullptr && "Expecting either a load or a store instruction");
+ assert(SE.isSCEVable(Addr->getType()) && "Addr should be SCEVable");
+
+ if (SE.isLoopInvariant(SE.getSCEV(Addr), &L))
+ return true;
+
+ // The indexed reference is loop invariant if none of the coefficients use
+ // the loop induction variable.
+ bool allCoeffForLoopAreZero = all_of(Subscripts, [&](const SCEV *Subscript) {
+ return isCoeffForLoopZeroOrInvariant(*Subscript, L);
+ });
+
+ return allCoeffForLoopAreZero;
+}
+
+bool IndexedReference::isConsecutive(const Loop &L, unsigned CLS) const {
+ // The indexed reference is 'consecutive' if the only coefficient that uses
+ // the loop induction variable is the last one...
+ const SCEV *LastSubscript = Subscripts.back();
+ for (const SCEV *Subscript : Subscripts) {
+ if (Subscript == LastSubscript)
+ continue;
+ if (!isCoeffForLoopZeroOrInvariant(*Subscript, L))
+ return false;
+ }
+
+ // ...and the access stride is less than the cache line size.
+ const SCEV *Coeff = getLastCoefficient();
+ const SCEV *ElemSize = Sizes.back();
+ const SCEV *Stride = SE.getMulExpr(Coeff, ElemSize);
+ const SCEV *CacheLineSize = SE.getConstant(Stride->getType(), CLS);
+
+ return SE.isKnownPredicate(ICmpInst::ICMP_ULT, Stride, CacheLineSize);
+}
+
+const SCEV *IndexedReference::getLastCoefficient() const {
+ const SCEV *LastSubscript = getLastSubscript();
+ assert(isa<SCEVAddRecExpr>(LastSubscript) &&
+ "Expecting a SCEV add recurrence expression");
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LastSubscript);
+ return AR->getStepRecurrence(SE);
+}
+
+bool IndexedReference::isCoeffForLoopZeroOrInvariant(const SCEV &Subscript,
+ const Loop &L) const {
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(&Subscript);
+ return (AR != nullptr) ? AR->getLoop() != &L
+ : SE.isLoopInvariant(&Subscript, &L);
+}
+
+bool IndexedReference::isSimpleAddRecurrence(const SCEV &Subscript,
+ const Loop &L) const {
+ if (!isa<SCEVAddRecExpr>(Subscript))
+ return false;
+
+ const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(&Subscript);
+ assert(AR->getLoop() && "AR should have a loop");
+
+ if (!AR->isAffine())
+ return false;
+
+ const SCEV *Start = AR->getStart();
+ const SCEV *Step = AR->getStepRecurrence(SE);
+
+ if (!SE.isLoopInvariant(Start, &L) || !SE.isLoopInvariant(Step, &L))
+ return false;
+
+ return true;
+}
+
+bool IndexedReference::isAliased(const IndexedReference &Other,
+ AliasAnalysis &AA) const {
+ const auto &Loc1 = MemoryLocation::get(&StoreOrLoadInst);
+ const auto &Loc2 = MemoryLocation::get(&Other.StoreOrLoadInst);
+ return AA.isMustAlias(Loc1, Loc2);
+}
+
+//===----------------------------------------------------------------------===//
+// CacheCost implementation
+//
+raw_ostream &llvm::operator<<(raw_ostream &OS, const CacheCost &CC) {
+ for (const auto &LC : CC.LoopCosts) {
+ const Loop *L = LC.first;
+ OS << "Loop '" << L->getName() << "' has cost = " << LC.second << "\n";
+ }
+ return OS;
+}
+
+CacheCost::CacheCost(const LoopVectorTy &Loops, const LoopInfo &LI,
+ ScalarEvolution &SE, TargetTransformInfo &TTI,
+ AliasAnalysis &AA, DependenceInfo &DI,
+ Optional<unsigned> TRT)
+ : Loops(Loops), TripCounts(), LoopCosts(),
+ TRT(TRT == None ? Optional<unsigned>(TemporalReuseThreshold) : TRT),
+ LI(LI), SE(SE), TTI(TTI), AA(AA), DI(DI) {
+ assert(!Loops.empty() && "Expecting a non-empty loop vector.");
+
+ for (const Loop *L : Loops) {
+ unsigned TripCount = SE.getSmallConstantTripCount(L);
+ TripCount = (TripCount == 0) ? DefaultTripCount : TripCount;
+ TripCounts.push_back({L, TripCount});
+ }
+
+ calculateCacheFootprint();
+}
+
+std::unique_ptr<CacheCost>
+CacheCost::getCacheCost(Loop &Root, LoopStandardAnalysisResults &AR,
+ DependenceInfo &DI, Optional<unsigned> TRT) {
+ if (Root.getParentLoop()) {
+ LLVM_DEBUG(dbgs() << "Expecting the outermost loop in a loop nest\n");
+ return nullptr;
+ }
+
+ LoopVectorTy Loops;
+ for (Loop *L : breadth_first(&Root))
+ Loops.push_back(L);
+
+ if (!getInnerMostLoop(Loops)) {
+ LLVM_DEBUG(dbgs() << "Cannot compute cache cost of loop nest with more "
+ "than one innermost loop\n");
+ return nullptr;
+ }
+
+ return std::make_unique<CacheCost>(Loops, AR.LI, AR.SE, AR.TTI, AR.AA, DI, TRT);
+}
+
+void CacheCost::calculateCacheFootprint() {
+ LLVM_DEBUG(dbgs() << "POPULATING REFERENCE GROUPS\n");
+ ReferenceGroupsTy RefGroups;
+ if (!populateReferenceGroups(RefGroups))
+ return;
+
+ LLVM_DEBUG(dbgs() << "COMPUTING LOOP CACHE COSTS\n");
+ for (const Loop *L : Loops) {
+ assert((std::find_if(LoopCosts.begin(), LoopCosts.end(),
+ [L](const LoopCacheCostTy &LCC) {
+ return LCC.first == L;
+ }) == LoopCosts.end()) &&
+ "Should not add duplicate element");
+ CacheCostTy LoopCost = computeLoopCacheCost(*L, RefGroups);
+ LoopCosts.push_back(std::make_pair(L, LoopCost));
+ }
+
+ sortLoopCosts();
+ RefGroups.clear();
+}
+
+bool CacheCost::populateReferenceGroups(ReferenceGroupsTy &RefGroups) const {
+ assert(RefGroups.empty() && "Reference groups should be empty");
+
+ unsigned CLS = TTI.getCacheLineSize();
+ Loop *InnerMostLoop = getInnerMostLoop(Loops);
+ assert(InnerMostLoop != nullptr && "Expecting a valid innermost loop");
+
+ for (BasicBlock *BB : InnerMostLoop->getBlocks()) {
+ for (Instruction &I : *BB) {
+ if (!isa<StoreInst>(I) && !isa<LoadInst>(I))
+ continue;
+
+ std::unique_ptr<IndexedReference> R(new IndexedReference(I, LI, SE));
+ if (!R->isValid())
+ continue;
+
+ bool Added = false;
+ for (ReferenceGroupTy &RefGroup : RefGroups) {
+ const IndexedReference &Representative = *RefGroup.front().get();
+ LLVM_DEBUG({
+ dbgs() << "References:\n";
+ dbgs().indent(2) << *R << "\n";
+ dbgs().indent(2) << Representative << "\n";
+ });
+
+ Optional<bool> HasTemporalReuse =
+ R->hasTemporalReuse(Representative, *TRT, *InnerMostLoop, DI, AA);
+ Optional<bool> HasSpacialReuse =
+ R->hasSpacialReuse(Representative, CLS, AA);
+
+ if ((HasTemporalReuse.hasValue() && *HasTemporalReuse) ||
+ (HasSpacialReuse.hasValue() && *HasSpacialReuse)) {
+ RefGroup.push_back(std::move(R));
+ Added = true;
+ break;
+ }
+ }
+
+ if (!Added) {
+ ReferenceGroupTy RG;
+ RG.push_back(std::move(R));
+ RefGroups.push_back(std::move(RG));
+ }
+ }
+ }
+
+ if (RefGroups.empty())
+ return false;
+
+ LLVM_DEBUG({
+ dbgs() << "\nIDENTIFIED REFERENCE GROUPS:\n";
+ int n = 1;
+ for (const ReferenceGroupTy &RG : RefGroups) {
+ dbgs().indent(2) << "RefGroup " << n << ":\n";
+ for (const auto &IR : RG)
+ dbgs().indent(4) << *IR << "\n";
+ n++;
+ }
+ dbgs() << "\n";
+ });
+
+ return true;
+}
+
+CacheCostTy
+CacheCost::computeLoopCacheCost(const Loop &L,
+ const ReferenceGroupsTy &RefGroups) const {
+ if (!L.isLoopSimplifyForm())
+ return InvalidCost;
+
+ LLVM_DEBUG(dbgs() << "Considering loop '" << L.getName()
+ << "' as innermost loop.\n");
+
+ // Compute the product of the trip counts of each other loop in the nest.
+ CacheCostTy TripCountsProduct = 1;
+ for (const auto &TC : TripCounts) {
+ if (TC.first == &L)
+ continue;
+ TripCountsProduct *= TC.second;
+ }
+
+ CacheCostTy LoopCost = 0;
+ for (const ReferenceGroupTy &RG : RefGroups) {
+ CacheCostTy RefGroupCost = computeRefGroupCacheCost(RG, L);
+ LoopCost += RefGroupCost * TripCountsProduct;
+ }
+
+ LLVM_DEBUG(dbgs().indent(2) << "Loop '" << L.getName()
+ << "' has cost=" << LoopCost << "\n");
+
+ return LoopCost;
+}
+
+CacheCostTy CacheCost::computeRefGroupCacheCost(const ReferenceGroupTy &RG,
+ const Loop &L) const {
+ assert(!RG.empty() && "Reference group should have at least one member.");
+
+ const IndexedReference *Representative = RG.front().get();
+ return Representative->computeRefCost(L, TTI.getCacheLineSize());
+}
+
+//===----------------------------------------------------------------------===//
+// LoopCachePrinterPass implementation
+//
+PreservedAnalyses LoopCachePrinterPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR,
+ LPMUpdater &U) {
+ Function *F = L.getHeader()->getParent();
+ DependenceInfo DI(F, &AR.AA, &AR.SE, &AR.LI);
+
+ if (auto CC = CacheCost::getCacheCost(L, AR, DI))
+ OS << *CC;
+
+ return PreservedAnalyses::all();
+}