aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp5706
1 files changed, 5706 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp b/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp
new file mode 100644
index 000000000000..c70906dcc629
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp
@@ -0,0 +1,5706 @@
+//===- ValueTracking.cpp - Walk computations to compute properties --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains routines that help analyze properties that chains of
+// computations have.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/GuardUtils.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GetElementPtrTypeIterator.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <array>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <utility>
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+const unsigned MaxDepth = 6;
+
+// Controls the number of uses of the value searched for possible
+// dominating comparisons.
+static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
+ cl::Hidden, cl::init(20));
+
+/// Returns the bitwidth of the given scalar or pointer type. For vector types,
+/// returns the element type's bitwidth.
+static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
+ if (unsigned BitWidth = Ty->getScalarSizeInBits())
+ return BitWidth;
+
+ return DL.getIndexTypeSizeInBits(Ty);
+}
+
+namespace {
+
+// Simplifying using an assume can only be done in a particular control-flow
+// context (the context instruction provides that context). If an assume and
+// the context instruction are not in the same block then the DT helps in
+// figuring out if we can use it.
+struct Query {
+ const DataLayout &DL;
+ AssumptionCache *AC;
+ const Instruction *CxtI;
+ const DominatorTree *DT;
+
+ // Unlike the other analyses, this may be a nullptr because not all clients
+ // provide it currently.
+ OptimizationRemarkEmitter *ORE;
+
+ /// Set of assumptions that should be excluded from further queries.
+ /// This is because of the potential for mutual recursion to cause
+ /// computeKnownBits to repeatedly visit the same assume intrinsic. The
+ /// classic case of this is assume(x = y), which will attempt to determine
+ /// bits in x from bits in y, which will attempt to determine bits in y from
+ /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
+ /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
+ /// (all of which can call computeKnownBits), and so on.
+ std::array<const Value *, MaxDepth> Excluded;
+
+ /// If true, it is safe to use metadata during simplification.
+ InstrInfoQuery IIQ;
+
+ unsigned NumExcluded = 0;
+
+ Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo,
+ OptimizationRemarkEmitter *ORE = nullptr)
+ : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
+
+ Query(const Query &Q, const Value *NewExcl)
+ : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
+ NumExcluded(Q.NumExcluded) {
+ Excluded = Q.Excluded;
+ Excluded[NumExcluded++] = NewExcl;
+ assert(NumExcluded <= Excluded.size());
+ }
+
+ bool isExcluded(const Value *Value) const {
+ if (NumExcluded == 0)
+ return false;
+ auto End = Excluded.begin() + NumExcluded;
+ return std::find(Excluded.begin(), End, Value) != End;
+ }
+};
+
+} // end anonymous namespace
+
+// Given the provided Value and, potentially, a context instruction, return
+// the preferred context instruction (if any).
+static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
+ // If we've been provided with a context instruction, then use that (provided
+ // it has been inserted).
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ // If the value is really an already-inserted instruction, then use that.
+ CxtI = dyn_cast<Instruction>(V);
+ if (CxtI && CxtI->getParent())
+ return CxtI;
+
+ return nullptr;
+}
+
+static void computeKnownBits(const Value *V, KnownBits &Known,
+ unsigned Depth, const Query &Q);
+
+void llvm::computeKnownBits(const Value *V, KnownBits &Known,
+ const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT,
+ OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
+ ::computeKnownBits(V, Known, Depth,
+ Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
+}
+
+static KnownBits computeKnownBits(const Value *V, unsigned Depth,
+ const Query &Q);
+
+KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT,
+ OptimizationRemarkEmitter *ORE,
+ bool UseInstrInfo) {
+ return ::computeKnownBits(
+ V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
+}
+
+bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
+ const DataLayout &DL, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT,
+ bool UseInstrInfo) {
+ assert(LHS->getType() == RHS->getType() &&
+ "LHS and RHS should have the same type");
+ assert(LHS->getType()->isIntOrIntVectorTy() &&
+ "LHS and RHS should be integers");
+ // Look for an inverted mask: (X & ~M) op (Y & M).
+ Value *M;
+ if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
+ match(RHS, m_c_And(m_Specific(M), m_Value())))
+ return true;
+ if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
+ match(LHS, m_c_And(m_Specific(M), m_Value())))
+ return true;
+ IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
+ KnownBits LHSKnown(IT->getBitWidth());
+ KnownBits RHSKnown(IT->getBitWidth());
+ computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
+ computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
+ return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
+}
+
+bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
+ for (const User *U : CxtI->users()) {
+ if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
+ if (IC->isEquality())
+ if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
+ if (C->isNullValue())
+ continue;
+ return false;
+ }
+ return true;
+}
+
+static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
+ const Query &Q);
+
+bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
+ bool OrZero, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ return ::isKnownToBeAPowerOfTwo(
+ V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
+}
+
+static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
+
+bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ return ::isKnownNonZero(V, Depth,
+ Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
+}
+
+bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT,
+ bool UseInstrInfo) {
+ KnownBits Known =
+ computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
+ return Known.isNonNegative();
+}
+
+bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ if (auto *CI = dyn_cast<ConstantInt>(V))
+ return CI->getValue().isStrictlyPositive();
+
+ // TODO: We'd doing two recursive queries here. We should factor this such
+ // that only a single query is needed.
+ return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
+ isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
+}
+
+bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ KnownBits Known =
+ computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
+ return Known.isNegative();
+}
+
+static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
+
+bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
+ const DataLayout &DL, AssumptionCache *AC,
+ const Instruction *CxtI, const DominatorTree *DT,
+ bool UseInstrInfo) {
+ return ::isKnownNonEqual(V1, V2,
+ Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
+ UseInstrInfo, /*ORE=*/nullptr));
+}
+
+static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
+ const Query &Q);
+
+bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
+ const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ return ::MaskedValueIsZero(
+ V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
+}
+
+static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
+ const Query &Q);
+
+unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
+ unsigned Depth, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ return ::ComputeNumSignBits(
+ V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
+}
+
+static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
+ bool NSW,
+ KnownBits &KnownOut, KnownBits &Known2,
+ unsigned Depth, const Query &Q) {
+ unsigned BitWidth = KnownOut.getBitWidth();
+
+ // If an initial sequence of bits in the result is not needed, the
+ // corresponding bits in the operands are not needed.
+ KnownBits LHSKnown(BitWidth);
+ computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
+ computeKnownBits(Op1, Known2, Depth + 1, Q);
+
+ KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
+}
+
+static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
+ KnownBits &Known, KnownBits &Known2,
+ unsigned Depth, const Query &Q) {
+ unsigned BitWidth = Known.getBitWidth();
+ computeKnownBits(Op1, Known, Depth + 1, Q);
+ computeKnownBits(Op0, Known2, Depth + 1, Q);
+
+ bool isKnownNegative = false;
+ bool isKnownNonNegative = false;
+ // If the multiplication is known not to overflow, compute the sign bit.
+ if (NSW) {
+ if (Op0 == Op1) {
+ // The product of a number with itself is non-negative.
+ isKnownNonNegative = true;
+ } else {
+ bool isKnownNonNegativeOp1 = Known.isNonNegative();
+ bool isKnownNonNegativeOp0 = Known2.isNonNegative();
+ bool isKnownNegativeOp1 = Known.isNegative();
+ bool isKnownNegativeOp0 = Known2.isNegative();
+ // The product of two numbers with the same sign is non-negative.
+ isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
+ (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
+ // The product of a negative number and a non-negative number is either
+ // negative or zero.
+ if (!isKnownNonNegative)
+ isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
+ isKnownNonZero(Op0, Depth, Q)) ||
+ (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
+ isKnownNonZero(Op1, Depth, Q));
+ }
+ }
+
+ assert(!Known.hasConflict() && !Known2.hasConflict());
+ // Compute a conservative estimate for high known-0 bits.
+ unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
+ Known2.countMinLeadingZeros(),
+ BitWidth) - BitWidth;
+ LeadZ = std::min(LeadZ, BitWidth);
+
+ // The result of the bottom bits of an integer multiply can be
+ // inferred by looking at the bottom bits of both operands and
+ // multiplying them together.
+ // We can infer at least the minimum number of known trailing bits
+ // of both operands. Depending on number of trailing zeros, we can
+ // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
+ // a and b are divisible by m and n respectively.
+ // We then calculate how many of those bits are inferrable and set
+ // the output. For example, the i8 mul:
+ // a = XXXX1100 (12)
+ // b = XXXX1110 (14)
+ // We know the bottom 3 bits are zero since the first can be divided by
+ // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
+ // Applying the multiplication to the trimmed arguments gets:
+ // XX11 (3)
+ // X111 (7)
+ // -------
+ // XX11
+ // XX11
+ // XX11
+ // XX11
+ // -------
+ // XXXXX01
+ // Which allows us to infer the 2 LSBs. Since we're multiplying the result
+ // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
+ // The proof for this can be described as:
+ // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
+ // (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
+ // umin(countTrailingZeros(C2), C6) +
+ // umin(C5 - umin(countTrailingZeros(C1), C5),
+ // C6 - umin(countTrailingZeros(C2), C6)))) - 1)
+ // %aa = shl i8 %a, C5
+ // %bb = shl i8 %b, C6
+ // %aaa = or i8 %aa, C1
+ // %bbb = or i8 %bb, C2
+ // %mul = mul i8 %aaa, %bbb
+ // %mask = and i8 %mul, C7
+ // =>
+ // %mask = i8 ((C1*C2)&C7)
+ // Where C5, C6 describe the known bits of %a, %b
+ // C1, C2 describe the known bottom bits of %a, %b.
+ // C7 describes the mask of the known bits of the result.
+ APInt Bottom0 = Known.One;
+ APInt Bottom1 = Known2.One;
+
+ // How many times we'd be able to divide each argument by 2 (shr by 1).
+ // This gives us the number of trailing zeros on the multiplication result.
+ unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
+ unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
+ unsigned TrailZero0 = Known.countMinTrailingZeros();
+ unsigned TrailZero1 = Known2.countMinTrailingZeros();
+ unsigned TrailZ = TrailZero0 + TrailZero1;
+
+ // Figure out the fewest known-bits operand.
+ unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
+ TrailBitsKnown1 - TrailZero1);
+ unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
+
+ APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
+ Bottom1.getLoBits(TrailBitsKnown1);
+
+ Known.resetAll();
+ Known.Zero.setHighBits(LeadZ);
+ Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
+ Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
+
+ // Only make use of no-wrap flags if we failed to compute the sign bit
+ // directly. This matters if the multiplication always overflows, in
+ // which case we prefer to follow the result of the direct computation,
+ // though as the program is invoking undefined behaviour we can choose
+ // whatever we like here.
+ if (isKnownNonNegative && !Known.isNegative())
+ Known.makeNonNegative();
+ else if (isKnownNegative && !Known.isNonNegative())
+ Known.makeNegative();
+}
+
+void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
+ KnownBits &Known) {
+ unsigned BitWidth = Known.getBitWidth();
+ unsigned NumRanges = Ranges.getNumOperands() / 2;
+ assert(NumRanges >= 1);
+
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+
+ // The first CommonPrefixBits of all values in Range are equal.
+ unsigned CommonPrefixBits =
+ (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
+
+ APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
+ Known.One &= Range.getUnsignedMax() & Mask;
+ Known.Zero &= ~Range.getUnsignedMax() & Mask;
+ }
+}
+
+static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
+ SmallVector<const Value *, 16> WorkSet(1, I);
+ SmallPtrSet<const Value *, 32> Visited;
+ SmallPtrSet<const Value *, 16> EphValues;
+
+ // The instruction defining an assumption's condition itself is always
+ // considered ephemeral to that assumption (even if it has other
+ // non-ephemeral users). See r246696's test case for an example.
+ if (is_contained(I->operands(), E))
+ return true;
+
+ while (!WorkSet.empty()) {
+ const Value *V = WorkSet.pop_back_val();
+ if (!Visited.insert(V).second)
+ continue;
+
+ // If all uses of this value are ephemeral, then so is this value.
+ if (llvm::all_of(V->users(), [&](const User *U) {
+ return EphValues.count(U);
+ })) {
+ if (V == E)
+ return true;
+
+ if (V == I || isSafeToSpeculativelyExecute(V)) {
+ EphValues.insert(V);
+ if (const User *U = dyn_cast<User>(V))
+ for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
+ J != JE; ++J)
+ WorkSet.push_back(*J);
+ }
+ }
+ }
+
+ return false;
+}
+
+// Is this an intrinsic that cannot be speculated but also cannot trap?
+bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (Function *F = CI->getCalledFunction())
+ switch (F->getIntrinsicID()) {
+ default: break;
+ // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
+ case Intrinsic::assume:
+ case Intrinsic::sideeffect:
+ case Intrinsic::dbg_declare:
+ case Intrinsic::dbg_value:
+ case Intrinsic::dbg_label:
+ case Intrinsic::invariant_start:
+ case Intrinsic::invariant_end:
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::objectsize:
+ case Intrinsic::ptr_annotation:
+ case Intrinsic::var_annotation:
+ return true;
+ }
+
+ return false;
+}
+
+bool llvm::isValidAssumeForContext(const Instruction *Inv,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ // There are two restrictions on the use of an assume:
+ // 1. The assume must dominate the context (or the control flow must
+ // reach the assume whenever it reaches the context).
+ // 2. The context must not be in the assume's set of ephemeral values
+ // (otherwise we will use the assume to prove that the condition
+ // feeding the assume is trivially true, thus causing the removal of
+ // the assume).
+
+ if (DT) {
+ if (DT->dominates(Inv, CxtI))
+ return true;
+ } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
+ // We don't have a DT, but this trivially dominates.
+ return true;
+ }
+
+ // With or without a DT, the only remaining case we will check is if the
+ // instructions are in the same BB. Give up if that is not the case.
+ if (Inv->getParent() != CxtI->getParent())
+ return false;
+
+ // If we have a dom tree, then we now know that the assume doesn't dominate
+ // the other instruction. If we don't have a dom tree then we can check if
+ // the assume is first in the BB.
+ if (!DT) {
+ // Search forward from the assume until we reach the context (or the end
+ // of the block); the common case is that the assume will come first.
+ for (auto I = std::next(BasicBlock::const_iterator(Inv)),
+ IE = Inv->getParent()->end(); I != IE; ++I)
+ if (&*I == CxtI)
+ return true;
+ }
+
+ // The context comes first, but they're both in the same block. Make sure
+ // there is nothing in between that might interrupt the control flow.
+ for (BasicBlock::const_iterator I =
+ std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
+ I != IE; ++I)
+ if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
+ return false;
+
+ return !isEphemeralValueOf(Inv, CxtI);
+}
+
+static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
+ unsigned Depth, const Query &Q) {
+ // Use of assumptions is context-sensitive. If we don't have a context, we
+ // cannot use them!
+ if (!Q.AC || !Q.CxtI)
+ return;
+
+ unsigned BitWidth = Known.getBitWidth();
+
+ // Note that the patterns below need to be kept in sync with the code
+ // in AssumptionCache::updateAffectedValues.
+
+ for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
+ if (!AssumeVH)
+ continue;
+ CallInst *I = cast<CallInst>(AssumeVH);
+ assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
+ "Got assumption for the wrong function!");
+ if (Q.isExcluded(I))
+ continue;
+
+ // Warning: This loop can end up being somewhat performance sensitive.
+ // We're running this loop for once for each value queried resulting in a
+ // runtime of ~O(#assumes * #values).
+
+ assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
+ "must be an assume intrinsic");
+
+ Value *Arg = I->getArgOperand(0);
+
+ if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ assert(BitWidth == 1 && "assume operand is not i1?");
+ Known.setAllOnes();
+ return;
+ }
+ if (match(Arg, m_Not(m_Specific(V))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ assert(BitWidth == 1 && "assume operand is not i1?");
+ Known.setAllZero();
+ return;
+ }
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth == MaxDepth)
+ continue;
+
+ ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
+ if (!Cmp)
+ continue;
+
+ Value *A, *B;
+ auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
+
+ CmpInst::Predicate Pred;
+ uint64_t C;
+ switch (Cmp->getPredicate()) {
+ default:
+ break;
+ case ICmpInst::ICMP_EQ:
+ // assume(v = a)
+ if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ Known.Zero |= RHSKnown.Zero;
+ Known.One |= RHSKnown.One;
+ // assume(v & b = a)
+ } else if (match(Cmp,
+ m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ KnownBits MaskKnown(BitWidth);
+ computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
+
+ // For those bits in the mask that are known to be one, we can propagate
+ // known bits from the RHS to V.
+ Known.Zero |= RHSKnown.Zero & MaskKnown.One;
+ Known.One |= RHSKnown.One & MaskKnown.One;
+ // assume(~(v & b) = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ KnownBits MaskKnown(BitWidth);
+ computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
+
+ // For those bits in the mask that are known to be one, we can propagate
+ // inverted known bits from the RHS to V.
+ Known.Zero |= RHSKnown.One & MaskKnown.One;
+ Known.One |= RHSKnown.Zero & MaskKnown.One;
+ // assume(v | b = a)
+ } else if (match(Cmp,
+ m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ KnownBits BKnown(BitWidth);
+ computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate known
+ // bits from the RHS to V.
+ Known.Zero |= RHSKnown.Zero & BKnown.Zero;
+ Known.One |= RHSKnown.One & BKnown.Zero;
+ // assume(~(v | b) = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ KnownBits BKnown(BitWidth);
+ computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate
+ // inverted known bits from the RHS to V.
+ Known.Zero |= RHSKnown.One & BKnown.Zero;
+ Known.One |= RHSKnown.Zero & BKnown.Zero;
+ // assume(v ^ b = a)
+ } else if (match(Cmp,
+ m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ KnownBits BKnown(BitWidth);
+ computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate known
+ // bits from the RHS to V. For those bits in B that are known to be one,
+ // we can propagate inverted known bits from the RHS to V.
+ Known.Zero |= RHSKnown.Zero & BKnown.Zero;
+ Known.One |= RHSKnown.One & BKnown.Zero;
+ Known.Zero |= RHSKnown.One & BKnown.One;
+ Known.One |= RHSKnown.Zero & BKnown.One;
+ // assume(~(v ^ b) = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ KnownBits BKnown(BitWidth);
+ computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
+
+ // For those bits in B that are known to be zero, we can propagate
+ // inverted known bits from the RHS to V. For those bits in B that are
+ // known to be one, we can propagate known bits from the RHS to V.
+ Known.Zero |= RHSKnown.One & BKnown.Zero;
+ Known.One |= RHSKnown.Zero & BKnown.Zero;
+ Known.Zero |= RHSKnown.Zero & BKnown.One;
+ Known.One |= RHSKnown.One & BKnown.One;
+ // assume(v << c = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them to known
+ // bits in V shifted to the right by C.
+ RHSKnown.Zero.lshrInPlace(C);
+ Known.Zero |= RHSKnown.Zero;
+ RHSKnown.One.lshrInPlace(C);
+ Known.One |= RHSKnown.One;
+ // assume(~(v << c) = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them inverted
+ // to known bits in V shifted to the right by C.
+ RHSKnown.One.lshrInPlace(C);
+ Known.Zero |= RHSKnown.One;
+ RHSKnown.Zero.lshrInPlace(C);
+ Known.One |= RHSKnown.Zero;
+ // assume(v >> c = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them to known
+ // bits in V shifted to the right by C.
+ Known.Zero |= RHSKnown.Zero << C;
+ Known.One |= RHSKnown.One << C;
+ // assume(~(v >> c) = a)
+ } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
+ m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+ // For those bits in RHS that are known, we can propagate them inverted
+ // to known bits in V shifted to the right by C.
+ Known.Zero |= RHSKnown.One << C;
+ Known.One |= RHSKnown.Zero << C;
+ }
+ break;
+ case ICmpInst::ICMP_SGE:
+ // assume(v >=_s c) where c is non-negative
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
+
+ if (RHSKnown.isNonNegative()) {
+ // We know that the sign bit is zero.
+ Known.makeNonNegative();
+ }
+ }
+ break;
+ case ICmpInst::ICMP_SGT:
+ // assume(v >_s c) where c is at least -1.
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
+
+ if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
+ // We know that the sign bit is zero.
+ Known.makeNonNegative();
+ }
+ }
+ break;
+ case ICmpInst::ICMP_SLE:
+ // assume(v <=_s c) where c is negative
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I));
+
+ if (RHSKnown.isNegative()) {
+ // We know that the sign bit is one.
+ Known.makeNegative();
+ }
+ }
+ break;
+ case ICmpInst::ICMP_SLT:
+ // assume(v <_s c) where c is non-positive
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+
+ if (RHSKnown.isZero() || RHSKnown.isNegative()) {
+ // We know that the sign bit is one.
+ Known.makeNegative();
+ }
+ }
+ break;
+ case ICmpInst::ICMP_ULE:
+ // assume(v <=_u c)
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+
+ // Whatever high bits in c are zero are known to be zero.
+ Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
+ }
+ break;
+ case ICmpInst::ICMP_ULT:
+ // assume(v <_u c)
+ if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
+ isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
+ KnownBits RHSKnown(BitWidth);
+ computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
+
+ // If the RHS is known zero, then this assumption must be wrong (nothing
+ // is unsigned less than zero). Signal a conflict and get out of here.
+ if (RHSKnown.isZero()) {
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ break;
+ }
+
+ // Whatever high bits in c are zero are known to be zero (if c is a power
+ // of 2, then one more).
+ if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
+ Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
+ else
+ Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
+ }
+ break;
+ }
+ }
+
+ // If assumptions conflict with each other or previous known bits, then we
+ // have a logical fallacy. It's possible that the assumption is not reachable,
+ // so this isn't a real bug. On the other hand, the program may have undefined
+ // behavior, or we might have a bug in the compiler. We can't assert/crash, so
+ // clear out the known bits, try to warn the user, and hope for the best.
+ if (Known.Zero.intersects(Known.One)) {
+ Known.resetAll();
+
+ if (Q.ORE)
+ Q.ORE->emit([&]() {
+ auto *CxtI = const_cast<Instruction *>(Q.CxtI);
+ return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
+ CxtI)
+ << "Detected conflicting code assumptions. Program may "
+ "have undefined behavior, or compiler may have "
+ "internal error.";
+ });
+ }
+}
+
+/// Compute known bits from a shift operator, including those with a
+/// non-constant shift amount. Known is the output of this function. Known2 is a
+/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
+/// operator-specific functions that, given the known-zero or known-one bits
+/// respectively, and a shift amount, compute the implied known-zero or
+/// known-one bits of the shift operator's result respectively for that shift
+/// amount. The results from calling KZF and KOF are conservatively combined for
+/// all permitted shift amounts.
+static void computeKnownBitsFromShiftOperator(
+ const Operator *I, KnownBits &Known, KnownBits &Known2,
+ unsigned Depth, const Query &Q,
+ function_ref<APInt(const APInt &, unsigned)> KZF,
+ function_ref<APInt(const APInt &, unsigned)> KOF) {
+ unsigned BitWidth = Known.getBitWidth();
+
+ if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
+
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ Known.Zero = KZF(Known.Zero, ShiftAmt);
+ Known.One = KOF(Known.One, ShiftAmt);
+ // If the known bits conflict, this must be an overflowing left shift, so
+ // the shift result is poison. We can return anything we want. Choose 0 for
+ // the best folding opportunity.
+ if (Known.hasConflict())
+ Known.setAllZero();
+
+ return;
+ }
+
+ computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
+
+ // If the shift amount could be greater than or equal to the bit-width of the
+ // LHS, the value could be poison, but bail out because the check below is
+ // expensive. TODO: Should we just carry on?
+ if ((~Known.Zero).uge(BitWidth)) {
+ Known.resetAll();
+ return;
+ }
+
+ // Note: We cannot use Known.Zero.getLimitedValue() here, because if
+ // BitWidth > 64 and any upper bits are known, we'll end up returning the
+ // limit value (which implies all bits are known).
+ uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
+ uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
+
+ // It would be more-clearly correct to use the two temporaries for this
+ // calculation. Reusing the APInts here to prevent unnecessary allocations.
+ Known.resetAll();
+
+ // If we know the shifter operand is nonzero, we can sometimes infer more
+ // known bits. However this is expensive to compute, so be lazy about it and
+ // only compute it when absolutely necessary.
+ Optional<bool> ShifterOperandIsNonZero;
+
+ // Early exit if we can't constrain any well-defined shift amount.
+ if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
+ !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
+ ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
+ if (!*ShifterOperandIsNonZero)
+ return;
+ }
+
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
+ // Combine the shifted known input bits only for those shift amounts
+ // compatible with its known constraints.
+ if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
+ continue;
+ if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
+ continue;
+ // If we know the shifter is nonzero, we may be able to infer more known
+ // bits. This check is sunk down as far as possible to avoid the expensive
+ // call to isKnownNonZero if the cheaper checks above fail.
+ if (ShiftAmt == 0) {
+ if (!ShifterOperandIsNonZero.hasValue())
+ ShifterOperandIsNonZero =
+ isKnownNonZero(I->getOperand(1), Depth + 1, Q);
+ if (*ShifterOperandIsNonZero)
+ continue;
+ }
+
+ Known.Zero &= KZF(Known2.Zero, ShiftAmt);
+ Known.One &= KOF(Known2.One, ShiftAmt);
+ }
+
+ // If the known bits conflict, the result is poison. Return a 0 and hope the
+ // caller can further optimize that.
+ if (Known.hasConflict())
+ Known.setAllZero();
+}
+
+static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
+ unsigned Depth, const Query &Q) {
+ unsigned BitWidth = Known.getBitWidth();
+
+ KnownBits Known2(Known);
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::Load:
+ if (MDNode *MD =
+ Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
+ computeKnownBitsFromRangeMetadata(*MD, Known);
+ break;
+ case Instruction::And: {
+ // If either the LHS or the RHS are Zero, the result is zero.
+ computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ Known.One &= Known2.One;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ Known.Zero |= Known2.Zero;
+
+ // and(x, add (x, -1)) is a common idiom that always clears the low bit;
+ // here we handle the more general case of adding any odd number by
+ // matching the form add(x, add(x, y)) where y is odd.
+ // TODO: This could be generalized to clearing any bit set in y where the
+ // following bit is known to be unset in y.
+ Value *X = nullptr, *Y = nullptr;
+ if (!Known.Zero[0] && !Known.One[0] &&
+ match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
+ Known2.resetAll();
+ computeKnownBits(Y, Known2, Depth + 1, Q);
+ if (Known2.countMinTrailingOnes() > 0)
+ Known.Zero.setBit(0);
+ }
+ break;
+ }
+ case Instruction::Or:
+ computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ Known.Zero &= Known2.Zero;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ Known.One |= Known2.One;
+ break;
+ case Instruction::Xor: {
+ computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
+ Known.Zero = std::move(KnownZeroOut);
+ break;
+ }
+ case Instruction::Mul: {
+ bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
+ computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
+ Known2, Depth, Q);
+ break;
+ }
+ case Instruction::UDiv: {
+ // For the purposes of computing leading zeros we can conservatively
+ // treat a udiv as a logical right shift by the power of 2 known to
+ // be less than the denominator.
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ unsigned LeadZ = Known2.countMinLeadingZeros();
+
+ Known2.resetAll();
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+ unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
+ if (RHSMaxLeadingZeros != BitWidth)
+ LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
+
+ Known.Zero.setHighBits(LeadZ);
+ break;
+ }
+ case Instruction::Select: {
+ const Value *LHS, *RHS;
+ SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
+ if (SelectPatternResult::isMinOrMax(SPF)) {
+ computeKnownBits(RHS, Known, Depth + 1, Q);
+ computeKnownBits(LHS, Known2, Depth + 1, Q);
+ } else {
+ computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+ }
+
+ unsigned MaxHighOnes = 0;
+ unsigned MaxHighZeros = 0;
+ if (SPF == SPF_SMAX) {
+ // If both sides are negative, the result is negative.
+ if (Known.isNegative() && Known2.isNegative())
+ // We can derive a lower bound on the result by taking the max of the
+ // leading one bits.
+ MaxHighOnes =
+ std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
+ // If either side is non-negative, the result is non-negative.
+ else if (Known.isNonNegative() || Known2.isNonNegative())
+ MaxHighZeros = 1;
+ } else if (SPF == SPF_SMIN) {
+ // If both sides are non-negative, the result is non-negative.
+ if (Known.isNonNegative() && Known2.isNonNegative())
+ // We can derive an upper bound on the result by taking the max of the
+ // leading zero bits.
+ MaxHighZeros = std::max(Known.countMinLeadingZeros(),
+ Known2.countMinLeadingZeros());
+ // If either side is negative, the result is negative.
+ else if (Known.isNegative() || Known2.isNegative())
+ MaxHighOnes = 1;
+ } else if (SPF == SPF_UMAX) {
+ // We can derive a lower bound on the result by taking the max of the
+ // leading one bits.
+ MaxHighOnes =
+ std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
+ } else if (SPF == SPF_UMIN) {
+ // We can derive an upper bound on the result by taking the max of the
+ // leading zero bits.
+ MaxHighZeros =
+ std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
+ } else if (SPF == SPF_ABS) {
+ // RHS from matchSelectPattern returns the negation part of abs pattern.
+ // If the negate has an NSW flag we can assume the sign bit of the result
+ // will be 0 because that makes abs(INT_MIN) undefined.
+ if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
+ MaxHighZeros = 1;
+ }
+
+ // Only known if known in both the LHS and RHS.
+ Known.One &= Known2.One;
+ Known.Zero &= Known2.Zero;
+ if (MaxHighOnes > 0)
+ Known.One.setHighBits(MaxHighOnes);
+ if (MaxHighZeros > 0)
+ Known.Zero.setHighBits(MaxHighZeros);
+ break;
+ }
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ break; // Can't work with floating point.
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ // Fall through and handle them the same as zext/trunc.
+ LLVM_FALLTHROUGH;
+ case Instruction::ZExt:
+ case Instruction::Trunc: {
+ Type *SrcTy = I->getOperand(0)->getType();
+
+ unsigned SrcBitWidth;
+ // Note that we handle pointer operands here because of inttoptr/ptrtoint
+ // which fall through here.
+ Type *ScalarTy = SrcTy->getScalarType();
+ SrcBitWidth = ScalarTy->isPointerTy() ?
+ Q.DL.getIndexTypeSizeInBits(ScalarTy) :
+ Q.DL.getTypeSizeInBits(ScalarTy);
+
+ assert(SrcBitWidth && "SrcBitWidth can't be zero");
+ Known = Known.zextOrTrunc(SrcBitWidth, false);
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */);
+ break;
+ }
+ case Instruction::BitCast: {
+ Type *SrcTy = I->getOperand(0)->getType();
+ if (SrcTy->isIntOrPtrTy() &&
+ // TODO: For now, not handling conversions like:
+ // (bitcast i64 %x to <2 x i32>)
+ !I->getType()->isVectorTy()) {
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ break;
+ }
+ break;
+ }
+ case Instruction::SExt: {
+ // Compute the bits in the result that are not present in the input.
+ unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
+
+ Known = Known.trunc(SrcBitWidth);
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+ Known = Known.sext(BitWidth);
+ break;
+ }
+ case Instruction::Shl: {
+ // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
+ bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
+ auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
+ APInt KZResult = KnownZero << ShiftAmt;
+ KZResult.setLowBits(ShiftAmt); // Low bits known 0.
+ // If this shift has "nsw" keyword, then the result is either a poison
+ // value or has the same sign bit as the first operand.
+ if (NSW && KnownZero.isSignBitSet())
+ KZResult.setSignBit();
+ return KZResult;
+ };
+
+ auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
+ APInt KOResult = KnownOne << ShiftAmt;
+ if (NSW && KnownOne.isSignBitSet())
+ KOResult.setSignBit();
+ return KOResult;
+ };
+
+ computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
+ break;
+ }
+ case Instruction::LShr: {
+ // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
+ auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
+ APInt KZResult = KnownZero.lshr(ShiftAmt);
+ // High bits known zero.
+ KZResult.setHighBits(ShiftAmt);
+ return KZResult;
+ };
+
+ auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
+ return KnownOne.lshr(ShiftAmt);
+ };
+
+ computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
+ break;
+ }
+ case Instruction::AShr: {
+ // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
+ auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
+ return KnownZero.ashr(ShiftAmt);
+ };
+
+ auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
+ return KnownOne.ashr(ShiftAmt);
+ };
+
+ computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
+ break;
+ }
+ case Instruction::Sub: {
+ bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
+ computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
+ Known, Known2, Depth, Q);
+ break;
+ }
+ case Instruction::Add: {
+ bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
+ computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
+ Known, Known2, Depth, Q);
+ break;
+ }
+ case Instruction::SRem:
+ if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ APInt RA = Rem->getValue().abs();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = RA - 1;
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+
+ // The low bits of the first operand are unchanged by the srem.
+ Known.Zero = Known2.Zero & LowBits;
+ Known.One = Known2.One & LowBits;
+
+ // If the first operand is non-negative or has all low bits zero, then
+ // the upper bits are all zero.
+ if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
+ Known.Zero |= ~LowBits;
+
+ // If the first operand is negative and not all low bits are zero, then
+ // the upper bits are all one.
+ if (Known2.isNegative() && LowBits.intersects(Known2.One))
+ Known.One |= ~LowBits;
+
+ assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
+ break;
+ }
+ }
+
+ // The sign bit is the LHS's sign bit, except when the result of the
+ // remainder is zero.
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ // If it's known zero, our sign bit is also zero.
+ if (Known2.isNonNegative())
+ Known.makeNonNegative();
+
+ break;
+ case Instruction::URem: {
+ if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ const APInt &RA = Rem->getValue();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = (RA - 1);
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ Known.Zero |= ~LowBits;
+ Known.One &= LowBits;
+ break;
+ }
+ }
+
+ // Since the result is less than or equal to either operand, any leading
+ // zero bits in either operand must also exist in the result.
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+
+ unsigned Leaders =
+ std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
+ Known.resetAll();
+ Known.Zero.setHighBits(Leaders);
+ break;
+ }
+
+ case Instruction::Alloca: {
+ const AllocaInst *AI = cast<AllocaInst>(I);
+ unsigned Align = AI->getAlignment();
+ if (Align == 0)
+ Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
+
+ if (Align > 0)
+ Known.Zero.setLowBits(countTrailingZeros(Align));
+ break;
+ }
+ case Instruction::GetElementPtr: {
+ // Analyze all of the subscripts of this getelementptr instruction
+ // to determine if we can prove known low zero bits.
+ KnownBits LocalKnown(BitWidth);
+ computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
+ unsigned TrailZ = LocalKnown.countMinTrailingZeros();
+
+ gep_type_iterator GTI = gep_type_begin(I);
+ for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
+ Value *Index = I->getOperand(i);
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ // Handle struct member offset arithmetic.
+
+ // Handle case when index is vector zeroinitializer
+ Constant *CIndex = cast<Constant>(Index);
+ if (CIndex->isZeroValue())
+ continue;
+
+ if (CIndex->getType()->isVectorTy())
+ Index = CIndex->getSplatValue();
+
+ unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
+ const StructLayout *SL = Q.DL.getStructLayout(STy);
+ uint64_t Offset = SL->getElementOffset(Idx);
+ TrailZ = std::min<unsigned>(TrailZ,
+ countTrailingZeros(Offset));
+ } else {
+ // Handle array index arithmetic.
+ Type *IndexedTy = GTI.getIndexedType();
+ if (!IndexedTy->isSized()) {
+ TrailZ = 0;
+ break;
+ }
+ unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
+ uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
+ LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
+ computeKnownBits(Index, LocalKnown, Depth + 1, Q);
+ TrailZ = std::min(TrailZ,
+ unsigned(countTrailingZeros(TypeSize) +
+ LocalKnown.countMinTrailingZeros()));
+ }
+ }
+
+ Known.Zero.setLowBits(TrailZ);
+ break;
+ }
+ case Instruction::PHI: {
+ const PHINode *P = cast<PHINode>(I);
+ // Handle the case of a simple two-predecessor recurrence PHI.
+ // There's a lot more that could theoretically be done here, but
+ // this is sufficient to catch some interesting cases.
+ if (P->getNumIncomingValues() == 2) {
+ for (unsigned i = 0; i != 2; ++i) {
+ Value *L = P->getIncomingValue(i);
+ Value *R = P->getIncomingValue(!i);
+ Operator *LU = dyn_cast<Operator>(L);
+ if (!LU)
+ continue;
+ unsigned Opcode = LU->getOpcode();
+ // Check for operations that have the property that if
+ // both their operands have low zero bits, the result
+ // will have low zero bits.
+ if (Opcode == Instruction::Add ||
+ Opcode == Instruction::Sub ||
+ Opcode == Instruction::And ||
+ Opcode == Instruction::Or ||
+ Opcode == Instruction::Mul) {
+ Value *LL = LU->getOperand(0);
+ Value *LR = LU->getOperand(1);
+ // Find a recurrence.
+ if (LL == I)
+ L = LR;
+ else if (LR == I)
+ L = LL;
+ else
+ break;
+ // Ok, we have a PHI of the form L op= R. Check for low
+ // zero bits.
+ computeKnownBits(R, Known2, Depth + 1, Q);
+
+ // We need to take the minimum number of known bits
+ KnownBits Known3(Known);
+ computeKnownBits(L, Known3, Depth + 1, Q);
+
+ Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
+ Known3.countMinTrailingZeros()));
+
+ auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
+ if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
+ // If initial value of recurrence is nonnegative, and we are adding
+ // a nonnegative number with nsw, the result can only be nonnegative
+ // or poison value regardless of the number of times we execute the
+ // add in phi recurrence. If initial value is negative and we are
+ // adding a negative number with nsw, the result can only be
+ // negative or poison value. Similar arguments apply to sub and mul.
+ //
+ // (add non-negative, non-negative) --> non-negative
+ // (add negative, negative) --> negative
+ if (Opcode == Instruction::Add) {
+ if (Known2.isNonNegative() && Known3.isNonNegative())
+ Known.makeNonNegative();
+ else if (Known2.isNegative() && Known3.isNegative())
+ Known.makeNegative();
+ }
+
+ // (sub nsw non-negative, negative) --> non-negative
+ // (sub nsw negative, non-negative) --> negative
+ else if (Opcode == Instruction::Sub && LL == I) {
+ if (Known2.isNonNegative() && Known3.isNegative())
+ Known.makeNonNegative();
+ else if (Known2.isNegative() && Known3.isNonNegative())
+ Known.makeNegative();
+ }
+
+ // (mul nsw non-negative, non-negative) --> non-negative
+ else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
+ Known3.isNonNegative())
+ Known.makeNonNegative();
+ }
+
+ break;
+ }
+ }
+ }
+
+ // Unreachable blocks may have zero-operand PHI nodes.
+ if (P->getNumIncomingValues() == 0)
+ break;
+
+ // Otherwise take the unions of the known bit sets of the operands,
+ // taking conservative care to avoid excessive recursion.
+ if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
+ // Skip if every incoming value references to ourself.
+ if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
+ break;
+
+ Known.Zero.setAllBits();
+ Known.One.setAllBits();
+ for (Value *IncValue : P->incoming_values()) {
+ // Skip direct self references.
+ if (IncValue == P) continue;
+
+ Known2 = KnownBits(BitWidth);
+ // Recurse, but cap the recursion to one level, because we don't
+ // want to waste time spinning around in loops.
+ computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
+ Known.Zero &= Known2.Zero;
+ Known.One &= Known2.One;
+ // If all bits have been ruled out, there's no need to check
+ // more operands.
+ if (!Known.Zero && !Known.One)
+ break;
+ }
+ }
+ break;
+ }
+ case Instruction::Call:
+ case Instruction::Invoke:
+ // If range metadata is attached to this call, set known bits from that,
+ // and then intersect with known bits based on other properties of the
+ // function.
+ if (MDNode *MD =
+ Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
+ computeKnownBitsFromRangeMetadata(*MD, Known);
+ if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
+ computeKnownBits(RV, Known2, Depth + 1, Q);
+ Known.Zero |= Known2.Zero;
+ Known.One |= Known2.One;
+ }
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::bitreverse:
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ Known.Zero |= Known2.Zero.reverseBits();
+ Known.One |= Known2.One.reverseBits();
+ break;
+ case Intrinsic::bswap:
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ Known.Zero |= Known2.Zero.byteSwap();
+ Known.One |= Known2.One.byteSwap();
+ break;
+ case Intrinsic::ctlz: {
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ // If we have a known 1, its position is our upper bound.
+ unsigned PossibleLZ = Known2.One.countLeadingZeros();
+ // If this call is undefined for 0, the result will be less than 2^n.
+ if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
+ PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
+ unsigned LowBits = Log2_32(PossibleLZ)+1;
+ Known.Zero.setBitsFrom(LowBits);
+ break;
+ }
+ case Intrinsic::cttz: {
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ // If we have a known 1, its position is our upper bound.
+ unsigned PossibleTZ = Known2.One.countTrailingZeros();
+ // If this call is undefined for 0, the result will be less than 2^n.
+ if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
+ PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
+ unsigned LowBits = Log2_32(PossibleTZ)+1;
+ Known.Zero.setBitsFrom(LowBits);
+ break;
+ }
+ case Intrinsic::ctpop: {
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ // We can bound the space the count needs. Also, bits known to be zero
+ // can't contribute to the population.
+ unsigned BitsPossiblySet = Known2.countMaxPopulation();
+ unsigned LowBits = Log2_32(BitsPossiblySet)+1;
+ Known.Zero.setBitsFrom(LowBits);
+ // TODO: we could bound KnownOne using the lower bound on the number
+ // of bits which might be set provided by popcnt KnownOne2.
+ break;
+ }
+ case Intrinsic::fshr:
+ case Intrinsic::fshl: {
+ const APInt *SA;
+ if (!match(I->getOperand(2), m_APInt(SA)))
+ break;
+
+ // Normalize to funnel shift left.
+ uint64_t ShiftAmt = SA->urem(BitWidth);
+ if (II->getIntrinsicID() == Intrinsic::fshr)
+ ShiftAmt = BitWidth - ShiftAmt;
+
+ KnownBits Known3(Known);
+ computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
+
+ Known.Zero =
+ Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
+ Known.One =
+ Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
+ break;
+ }
+ case Intrinsic::uadd_sat:
+ case Intrinsic::usub_sat: {
+ bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
+
+ // Add: Leading ones of either operand are preserved.
+ // Sub: Leading zeros of LHS and leading ones of RHS are preserved
+ // as leading zeros in the result.
+ unsigned LeadingKnown;
+ if (IsAdd)
+ LeadingKnown = std::max(Known.countMinLeadingOnes(),
+ Known2.countMinLeadingOnes());
+ else
+ LeadingKnown = std::max(Known.countMinLeadingZeros(),
+ Known2.countMinLeadingOnes());
+
+ Known = KnownBits::computeForAddSub(
+ IsAdd, /* NSW */ false, Known, Known2);
+
+ // We select between the operation result and all-ones/zero
+ // respectively, so we can preserve known ones/zeros.
+ if (IsAdd) {
+ Known.One.setHighBits(LeadingKnown);
+ Known.Zero.clearAllBits();
+ } else {
+ Known.Zero.setHighBits(LeadingKnown);
+ Known.One.clearAllBits();
+ }
+ break;
+ }
+ case Intrinsic::x86_sse42_crc32_64_64:
+ Known.Zero.setBitsFrom(32);
+ break;
+ }
+ }
+ break;
+ case Instruction::ExtractElement:
+ // Look through extract element. At the moment we keep this simple and skip
+ // tracking the specific element. But at least we might find information
+ // valid for all elements of the vector (for example if vector is sign
+ // extended, shifted, etc).
+ computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
+ break;
+ case Instruction::ExtractValue:
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
+ const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
+ if (EVI->getNumIndices() != 1) break;
+ if (EVI->getIndices()[0] == 0) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::sadd_with_overflow:
+ computeKnownBitsAddSub(true, II->getArgOperand(0),
+ II->getArgOperand(1), false, Known, Known2,
+ Depth, Q);
+ break;
+ case Intrinsic::usub_with_overflow:
+ case Intrinsic::ssub_with_overflow:
+ computeKnownBitsAddSub(false, II->getArgOperand(0),
+ II->getArgOperand(1), false, Known, Known2,
+ Depth, Q);
+ break;
+ case Intrinsic::umul_with_overflow:
+ case Intrinsic::smul_with_overflow:
+ computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
+ Known, Known2, Depth, Q);
+ break;
+ }
+ }
+ }
+ }
+}
+
+/// Determine which bits of V are known to be either zero or one and return
+/// them.
+KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
+ KnownBits Known(getBitWidth(V->getType(), Q.DL));
+ computeKnownBits(V, Known, Depth, Q);
+ return Known;
+}
+
+/// Determine which bits of V are known to be either zero or one and return
+/// them in the Known bit set.
+///
+/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
+/// we cannot optimize based on the assumption that it is zero without changing
+/// it to be an explicit zero. If we don't change it to zero, other code could
+/// optimized based on the contradictory assumption that it is non-zero.
+/// Because instcombine aggressively folds operations with undef args anyway,
+/// this won't lose us code quality.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type, and vectors of integers. In the case
+/// where V is a vector, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
+ const Query &Q) {
+ assert(V && "No Value?");
+ assert(Depth <= MaxDepth && "Limit Search Depth");
+ unsigned BitWidth = Known.getBitWidth();
+
+ assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
+ V->getType()->isPtrOrPtrVectorTy()) &&
+ "Not integer or pointer type!");
+
+ Type *ScalarTy = V->getType()->getScalarType();
+ unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
+ Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
+ assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
+ (void)BitWidth;
+ (void)ExpectedWidth;
+
+ const APInt *C;
+ if (match(V, m_APInt(C))) {
+ // We know all of the bits for a scalar constant or a splat vector constant!
+ Known.One = *C;
+ Known.Zero = ~Known.One;
+ return;
+ }
+ // Null and aggregate-zero are all-zeros.
+ if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
+ Known.setAllZero();
+ return;
+ }
+ // Handle a constant vector by taking the intersection of the known bits of
+ // each element.
+ if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
+ // We know that CDS must be a vector of integers. Take the intersection of
+ // each element.
+ Known.Zero.setAllBits(); Known.One.setAllBits();
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ APInt Elt = CDS->getElementAsAPInt(i);
+ Known.Zero &= ~Elt;
+ Known.One &= Elt;
+ }
+ return;
+ }
+
+ if (const auto *CV = dyn_cast<ConstantVector>(V)) {
+ // We know that CV must be a vector of integers. Take the intersection of
+ // each element.
+ Known.Zero.setAllBits(); Known.One.setAllBits();
+ for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
+ Constant *Element = CV->getAggregateElement(i);
+ auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
+ if (!ElementCI) {
+ Known.resetAll();
+ return;
+ }
+ const APInt &Elt = ElementCI->getValue();
+ Known.Zero &= ~Elt;
+ Known.One &= Elt;
+ }
+ return;
+ }
+
+ // Start out not knowing anything.
+ Known.resetAll();
+
+ // We can't imply anything about undefs.
+ if (isa<UndefValue>(V))
+ return;
+
+ // There's no point in looking through other users of ConstantData for
+ // assumptions. Confirm that we've handled them all.
+ assert(!isa<ConstantData>(V) && "Unhandled constant data!");
+
+ // Limit search depth.
+ // All recursive calls that increase depth must come after this.
+ if (Depth == MaxDepth)
+ return;
+
+ // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
+ // the bits of its aliasee.
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (!GA->isInterposable())
+ computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
+ return;
+ }
+
+ if (const Operator *I = dyn_cast<Operator>(V))
+ computeKnownBitsFromOperator(I, Known, Depth, Q);
+
+ // Aligned pointers have trailing zeros - refine Known.Zero set
+ if (V->getType()->isPointerTy()) {
+ unsigned Align = V->getPointerAlignment(Q.DL);
+ if (Align)
+ Known.Zero.setLowBits(countTrailingZeros(Align));
+ }
+
+ // computeKnownBitsFromAssume strictly refines Known.
+ // Therefore, we run them after computeKnownBitsFromOperator.
+
+ // Check whether a nearby assume intrinsic can determine some known bits.
+ computeKnownBitsFromAssume(V, Known, Depth, Q);
+
+ assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
+}
+
+/// Return true if the given value is known to have exactly one
+/// bit set when defined. For vectors return true if every element is known to
+/// be a power of two when defined. Supports values with integer or pointer
+/// types and vectors of integers.
+bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
+ const Query &Q) {
+ assert(Depth <= MaxDepth && "Limit Search Depth");
+
+ // Attempt to match against constants.
+ if (OrZero && match(V, m_Power2OrZero()))
+ return true;
+ if (match(V, m_Power2()))
+ return true;
+
+ // 1 << X is clearly a power of two if the one is not shifted off the end. If
+ // it is shifted off the end then the result is undefined.
+ if (match(V, m_Shl(m_One(), m_Value())))
+ return true;
+
+ // (signmask) >>l X is clearly a power of two if the one is not shifted off
+ // the bottom. If it is shifted off the bottom then the result is undefined.
+ if (match(V, m_LShr(m_SignMask(), m_Value())))
+ return true;
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth++ == MaxDepth)
+ return false;
+
+ Value *X = nullptr, *Y = nullptr;
+ // A shift left or a logical shift right of a power of two is a power of two
+ // or zero.
+ if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
+ match(V, m_LShr(m_Value(X), m_Value()))))
+ return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
+
+ if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
+ return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
+
+ if (const SelectInst *SI = dyn_cast<SelectInst>(V))
+ return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
+ isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
+
+ if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
+ // A power of two and'd with anything is a power of two or zero.
+ if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
+ return true;
+ // X & (-X) is always a power of two or zero.
+ if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
+ return true;
+ return false;
+ }
+
+ // Adding a power-of-two or zero to the same power-of-two or zero yields
+ // either the original power-of-two, a larger power-of-two or zero.
+ if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
+ const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
+ if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
+ Q.IIQ.hasNoSignedWrap(VOBO)) {
+ if (match(X, m_And(m_Specific(Y), m_Value())) ||
+ match(X, m_And(m_Value(), m_Specific(Y))))
+ if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
+ return true;
+ if (match(Y, m_And(m_Specific(X), m_Value())) ||
+ match(Y, m_And(m_Value(), m_Specific(X))))
+ if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
+ return true;
+
+ unsigned BitWidth = V->getType()->getScalarSizeInBits();
+ KnownBits LHSBits(BitWidth);
+ computeKnownBits(X, LHSBits, Depth, Q);
+
+ KnownBits RHSBits(BitWidth);
+ computeKnownBits(Y, RHSBits, Depth, Q);
+ // If i8 V is a power of two or zero:
+ // ZeroBits: 1 1 1 0 1 1 1 1
+ // ~ZeroBits: 0 0 0 1 0 0 0 0
+ if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
+ // If OrZero isn't set, we cannot give back a zero result.
+ // Make sure either the LHS or RHS has a bit set.
+ if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
+ return true;
+ }
+ }
+
+ // An exact divide or right shift can only shift off zero bits, so the result
+ // is a power of two only if the first operand is a power of two and not
+ // copying a sign bit (sdiv int_min, 2).
+ if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
+ match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
+ return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
+ Depth, Q);
+ }
+
+ return false;
+}
+
+/// Test whether a GEP's result is known to be non-null.
+///
+/// Uses properties inherent in a GEP to try to determine whether it is known
+/// to be non-null.
+///
+/// Currently this routine does not support vector GEPs.
+static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
+ const Query &Q) {
+ const Function *F = nullptr;
+ if (const Instruction *I = dyn_cast<Instruction>(GEP))
+ F = I->getFunction();
+
+ if (!GEP->isInBounds() ||
+ NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
+ return false;
+
+ // FIXME: Support vector-GEPs.
+ assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
+
+ // If the base pointer is non-null, we cannot walk to a null address with an
+ // inbounds GEP in address space zero.
+ if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
+ return true;
+
+ // Walk the GEP operands and see if any operand introduces a non-zero offset.
+ // If so, then the GEP cannot produce a null pointer, as doing so would
+ // inherently violate the inbounds contract within address space zero.
+ for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
+ GTI != GTE; ++GTI) {
+ // Struct types are easy -- they must always be indexed by a constant.
+ if (StructType *STy = GTI.getStructTypeOrNull()) {
+ ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
+ unsigned ElementIdx = OpC->getZExtValue();
+ const StructLayout *SL = Q.DL.getStructLayout(STy);
+ uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
+ if (ElementOffset > 0)
+ return true;
+ continue;
+ }
+
+ // If we have a zero-sized type, the index doesn't matter. Keep looping.
+ if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
+ continue;
+
+ // Fast path the constant operand case both for efficiency and so we don't
+ // increment Depth when just zipping down an all-constant GEP.
+ if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
+ if (!OpC->isZero())
+ return true;
+ continue;
+ }
+
+ // We post-increment Depth here because while isKnownNonZero increments it
+ // as well, when we pop back up that increment won't persist. We don't want
+ // to recurse 10k times just because we have 10k GEP operands. We don't
+ // bail completely out because we want to handle constant GEPs regardless
+ // of depth.
+ if (Depth++ >= MaxDepth)
+ continue;
+
+ if (isKnownNonZero(GTI.getOperand(), Depth, Q))
+ return true;
+ }
+
+ return false;
+}
+
+static bool isKnownNonNullFromDominatingCondition(const Value *V,
+ const Instruction *CtxI,
+ const DominatorTree *DT) {
+ assert(V->getType()->isPointerTy() && "V must be pointer type");
+ assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
+
+ if (!CtxI || !DT)
+ return false;
+
+ unsigned NumUsesExplored = 0;
+ for (auto *U : V->users()) {
+ // Avoid massive lists
+ if (NumUsesExplored >= DomConditionsMaxUses)
+ break;
+ NumUsesExplored++;
+
+ // If the value is used as an argument to a call or invoke, then argument
+ // attributes may provide an answer about null-ness.
+ if (auto CS = ImmutableCallSite(U))
+ if (auto *CalledFunc = CS.getCalledFunction())
+ for (const Argument &Arg : CalledFunc->args())
+ if (CS.getArgOperand(Arg.getArgNo()) == V &&
+ Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
+ return true;
+
+ // Consider only compare instructions uniquely controlling a branch
+ CmpInst::Predicate Pred;
+ if (!match(const_cast<User *>(U),
+ m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
+ (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
+ continue;
+
+ SmallVector<const User *, 4> WorkList;
+ SmallPtrSet<const User *, 4> Visited;
+ for (auto *CmpU : U->users()) {
+ assert(WorkList.empty() && "Should be!");
+ if (Visited.insert(CmpU).second)
+ WorkList.push_back(CmpU);
+
+ while (!WorkList.empty()) {
+ auto *Curr = WorkList.pop_back_val();
+
+ // If a user is an AND, add all its users to the work list. We only
+ // propagate "pred != null" condition through AND because it is only
+ // correct to assume that all conditions of AND are met in true branch.
+ // TODO: Support similar logic of OR and EQ predicate?
+ if (Pred == ICmpInst::ICMP_NE)
+ if (auto *BO = dyn_cast<BinaryOperator>(Curr))
+ if (BO->getOpcode() == Instruction::And) {
+ for (auto *BOU : BO->users())
+ if (Visited.insert(BOU).second)
+ WorkList.push_back(BOU);
+ continue;
+ }
+
+ if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
+ assert(BI->isConditional() && "uses a comparison!");
+
+ BasicBlock *NonNullSuccessor =
+ BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
+ BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
+ if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
+ return true;
+ } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
+ DT->dominates(cast<Instruction>(Curr), CtxI)) {
+ return true;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+/// Does the 'Range' metadata (which must be a valid MD_range operand list)
+/// ensure that the value it's attached to is never Value? 'RangeType' is
+/// is the type of the value described by the range.
+static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
+ const unsigned NumRanges = Ranges->getNumOperands() / 2;
+ assert(NumRanges >= 1);
+ for (unsigned i = 0; i < NumRanges; ++i) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
+ ConstantInt *Upper =
+ mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
+ ConstantRange Range(Lower->getValue(), Upper->getValue());
+ if (Range.contains(Value))
+ return false;
+ }
+ return true;
+}
+
+/// Return true if the given value is known to be non-zero when defined. For
+/// vectors, return true if every element is known to be non-zero when
+/// defined. For pointers, if the context instruction and dominator tree are
+/// specified, perform context-sensitive analysis and return true if the
+/// pointer couldn't possibly be null at the specified instruction.
+/// Supports values with integer or pointer type and vectors of integers.
+bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
+ if (auto *C = dyn_cast<Constant>(V)) {
+ if (C->isNullValue())
+ return false;
+ if (isa<ConstantInt>(C))
+ // Must be non-zero due to null test above.
+ return true;
+
+ if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+ // See the comment for IntToPtr/PtrToInt instructions below.
+ if (CE->getOpcode() == Instruction::IntToPtr ||
+ CE->getOpcode() == Instruction::PtrToInt)
+ if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
+ Q.DL.getTypeSizeInBits(CE->getType()))
+ return isKnownNonZero(CE->getOperand(0), Depth, Q);
+ }
+
+ // For constant vectors, check that all elements are undefined or known
+ // non-zero to determine that the whole vector is known non-zero.
+ if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
+ for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
+ Constant *Elt = C->getAggregateElement(i);
+ if (!Elt || Elt->isNullValue())
+ return false;
+ if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
+ return false;
+ }
+ return true;
+ }
+
+ // A global variable in address space 0 is non null unless extern weak
+ // or an absolute symbol reference. Other address spaces may have null as a
+ // valid address for a global, so we can't assume anything.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
+ GV->getType()->getAddressSpace() == 0)
+ return true;
+ } else
+ return false;
+ }
+
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
+ // If the possible ranges don't contain zero, then the value is
+ // definitely non-zero.
+ if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
+ const APInt ZeroValue(Ty->getBitWidth(), 0);
+ if (rangeMetadataExcludesValue(Ranges, ZeroValue))
+ return true;
+ }
+ }
+ }
+
+ // Some of the tests below are recursive, so bail out if we hit the limit.
+ if (Depth++ >= MaxDepth)
+ return false;
+
+ // Check for pointer simplifications.
+ if (V->getType()->isPointerTy()) {
+ // Alloca never returns null, malloc might.
+ if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
+ return true;
+
+ // A byval, inalloca, or nonnull argument is never null.
+ if (const Argument *A = dyn_cast<Argument>(V))
+ if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
+ return true;
+
+ // A Load tagged with nonnull metadata is never null.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(V))
+ if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
+ return true;
+
+ if (const auto *Call = dyn_cast<CallBase>(V)) {
+ if (Call->isReturnNonNull())
+ return true;
+ if (const auto *RP = getArgumentAliasingToReturnedPointer(Call))
+ return isKnownNonZero(RP, Depth, Q);
+ }
+ }
+
+
+ // Check for recursive pointer simplifications.
+ if (V->getType()->isPointerTy()) {
+ if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
+ return true;
+
+ // Look through bitcast operations, GEPs, and int2ptr instructions as they
+ // do not alter the value, or at least not the nullness property of the
+ // value, e.g., int2ptr is allowed to zero/sign extend the value.
+ //
+ // Note that we have to take special care to avoid looking through
+ // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
+ // as casts that can alter the value, e.g., AddrSpaceCasts.
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
+ if (isGEPKnownNonNull(GEP, Depth, Q))
+ return true;
+
+ if (auto *BCO = dyn_cast<BitCastOperator>(V))
+ return isKnownNonZero(BCO->getOperand(0), Depth, Q);
+
+ if (auto *I2P = dyn_cast<IntToPtrInst>(V))
+ if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
+ Q.DL.getTypeSizeInBits(I2P->getDestTy()))
+ return isKnownNonZero(I2P->getOperand(0), Depth, Q);
+ }
+
+ // Similar to int2ptr above, we can look through ptr2int here if the cast
+ // is a no-op or an extend and not a truncate.
+ if (auto *P2I = dyn_cast<PtrToIntInst>(V))
+ if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
+ Q.DL.getTypeSizeInBits(P2I->getDestTy()))
+ return isKnownNonZero(P2I->getOperand(0), Depth, Q);
+
+ unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
+
+ // X | Y != 0 if X != 0 or Y != 0.
+ Value *X = nullptr, *Y = nullptr;
+ if (match(V, m_Or(m_Value(X), m_Value(Y))))
+ return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
+
+ // ext X != 0 if X != 0.
+ if (isa<SExtInst>(V) || isa<ZExtInst>(V))
+ return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
+
+ // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
+ // if the lowest bit is shifted off the end.
+ if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
+ // shl nuw can't remove any non-zero bits.
+ const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
+ if (Q.IIQ.hasNoUnsignedWrap(BO))
+ return isKnownNonZero(X, Depth, Q);
+
+ KnownBits Known(BitWidth);
+ computeKnownBits(X, Known, Depth, Q);
+ if (Known.One[0])
+ return true;
+ }
+ // shr X, Y != 0 if X is negative. Note that the value of the shift is not
+ // defined if the sign bit is shifted off the end.
+ else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
+ // shr exact can only shift out zero bits.
+ const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
+ if (BO->isExact())
+ return isKnownNonZero(X, Depth, Q);
+
+ KnownBits Known = computeKnownBits(X, Depth, Q);
+ if (Known.isNegative())
+ return true;
+
+ // If the shifter operand is a constant, and all of the bits shifted
+ // out are known to be zero, and X is known non-zero then at least one
+ // non-zero bit must remain.
+ if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
+ auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
+ // Is there a known one in the portion not shifted out?
+ if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
+ return true;
+ // Are all the bits to be shifted out known zero?
+ if (Known.countMinTrailingZeros() >= ShiftVal)
+ return isKnownNonZero(X, Depth, Q);
+ }
+ }
+ // div exact can only produce a zero if the dividend is zero.
+ else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
+ return isKnownNonZero(X, Depth, Q);
+ }
+ // X + Y.
+ else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
+ KnownBits XKnown = computeKnownBits(X, Depth, Q);
+ KnownBits YKnown = computeKnownBits(Y, Depth, Q);
+
+ // If X and Y are both non-negative (as signed values) then their sum is not
+ // zero unless both X and Y are zero.
+ if (XKnown.isNonNegative() && YKnown.isNonNegative())
+ if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
+ return true;
+
+ // If X and Y are both negative (as signed values) then their sum is not
+ // zero unless both X and Y equal INT_MIN.
+ if (XKnown.isNegative() && YKnown.isNegative()) {
+ APInt Mask = APInt::getSignedMaxValue(BitWidth);
+ // The sign bit of X is set. If some other bit is set then X is not equal
+ // to INT_MIN.
+ if (XKnown.One.intersects(Mask))
+ return true;
+ // The sign bit of Y is set. If some other bit is set then Y is not equal
+ // to INT_MIN.
+ if (YKnown.One.intersects(Mask))
+ return true;
+ }
+
+ // The sum of a non-negative number and a power of two is not zero.
+ if (XKnown.isNonNegative() &&
+ isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
+ return true;
+ if (YKnown.isNonNegative() &&
+ isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
+ return true;
+ }
+ // X * Y.
+ else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
+ const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
+ // If X and Y are non-zero then so is X * Y as long as the multiplication
+ // does not overflow.
+ if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
+ isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
+ return true;
+ }
+ // (C ? X : Y) != 0 if X != 0 and Y != 0.
+ else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
+ if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
+ isKnownNonZero(SI->getFalseValue(), Depth, Q))
+ return true;
+ }
+ // PHI
+ else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
+ // Try and detect a recurrence that monotonically increases from a
+ // starting value, as these are common as induction variables.
+ if (PN->getNumIncomingValues() == 2) {
+ Value *Start = PN->getIncomingValue(0);
+ Value *Induction = PN->getIncomingValue(1);
+ if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
+ std::swap(Start, Induction);
+ if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
+ if (!C->isZero() && !C->isNegative()) {
+ ConstantInt *X;
+ if (Q.IIQ.UseInstrInfo &&
+ (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
+ match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
+ !X->isNegative())
+ return true;
+ }
+ }
+ }
+ // Check if all incoming values are non-zero constant.
+ bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
+ return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
+ });
+ if (AllNonZeroConstants)
+ return true;
+ }
+
+ KnownBits Known(BitWidth);
+ computeKnownBits(V, Known, Depth, Q);
+ return Known.One != 0;
+}
+
+/// Return true if V2 == V1 + X, where X is known non-zero.
+static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
+ const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
+ if (!BO || BO->getOpcode() != Instruction::Add)
+ return false;
+ Value *Op = nullptr;
+ if (V2 == BO->getOperand(0))
+ Op = BO->getOperand(1);
+ else if (V2 == BO->getOperand(1))
+ Op = BO->getOperand(0);
+ else
+ return false;
+ return isKnownNonZero(Op, 0, Q);
+}
+
+/// Return true if it is known that V1 != V2.
+static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
+ if (V1 == V2)
+ return false;
+ if (V1->getType() != V2->getType())
+ // We can't look through casts yet.
+ return false;
+ if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
+ return true;
+
+ if (V1->getType()->isIntOrIntVectorTy()) {
+ // Are any known bits in V1 contradictory to known bits in V2? If V1
+ // has a known zero where V2 has a known one, they must not be equal.
+ KnownBits Known1 = computeKnownBits(V1, 0, Q);
+ KnownBits Known2 = computeKnownBits(V2, 0, Q);
+
+ if (Known1.Zero.intersects(Known2.One) ||
+ Known2.Zero.intersects(Known1.One))
+ return true;
+ }
+ return false;
+}
+
+/// Return true if 'V & Mask' is known to be zero. We use this predicate to
+/// simplify operations downstream. Mask is known to be zero for bits that V
+/// cannot have.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type, and vectors of integers. In the case
+/// where V is a vector, the mask, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
+ const Query &Q) {
+ KnownBits Known(Mask.getBitWidth());
+ computeKnownBits(V, Known, Depth, Q);
+ return Mask.isSubsetOf(Known.Zero);
+}
+
+// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
+// Returns the input and lower/upper bounds.
+static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
+ const APInt *&CLow, const APInt *&CHigh) {
+ assert(isa<Operator>(Select) &&
+ cast<Operator>(Select)->getOpcode() == Instruction::Select &&
+ "Input should be a Select!");
+
+ const Value *LHS, *RHS, *LHS2, *RHS2;
+ SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
+ if (SPF != SPF_SMAX && SPF != SPF_SMIN)
+ return false;
+
+ if (!match(RHS, m_APInt(CLow)))
+ return false;
+
+ SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
+ if (getInverseMinMaxFlavor(SPF) != SPF2)
+ return false;
+
+ if (!match(RHS2, m_APInt(CHigh)))
+ return false;
+
+ if (SPF == SPF_SMIN)
+ std::swap(CLow, CHigh);
+
+ In = LHS2;
+ return CLow->sle(*CHigh);
+}
+
+/// For vector constants, loop over the elements and find the constant with the
+/// minimum number of sign bits. Return 0 if the value is not a vector constant
+/// or if any element was not analyzed; otherwise, return the count for the
+/// element with the minimum number of sign bits.
+static unsigned computeNumSignBitsVectorConstant(const Value *V,
+ unsigned TyBits) {
+ const auto *CV = dyn_cast<Constant>(V);
+ if (!CV || !CV->getType()->isVectorTy())
+ return 0;
+
+ unsigned MinSignBits = TyBits;
+ unsigned NumElts = CV->getType()->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ // If we find a non-ConstantInt, bail out.
+ auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
+ if (!Elt)
+ return 0;
+
+ MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
+ }
+
+ return MinSignBits;
+}
+
+static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
+ const Query &Q);
+
+static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
+ const Query &Q) {
+ unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
+ assert(Result > 0 && "At least one sign bit needs to be present!");
+ return Result;
+}
+
+/// Return the number of times the sign bit of the register is replicated into
+/// the other bits. We know that at least 1 bit is always equal to the sign bit
+/// (itself), but other cases can give us information. For example, immediately
+/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
+/// other, so we return 3. For vectors, return the number of sign bits for the
+/// vector element with the minimum number of known sign bits.
+static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
+ const Query &Q) {
+ assert(Depth <= MaxDepth && "Limit Search Depth");
+
+ // We return the minimum number of sign bits that are guaranteed to be present
+ // in V, so for undef we have to conservatively return 1. We don't have the
+ // same behavior for poison though -- that's a FIXME today.
+
+ Type *ScalarTy = V->getType()->getScalarType();
+ unsigned TyBits = ScalarTy->isPointerTy() ?
+ Q.DL.getIndexTypeSizeInBits(ScalarTy) :
+ Q.DL.getTypeSizeInBits(ScalarTy);
+
+ unsigned Tmp, Tmp2;
+ unsigned FirstAnswer = 1;
+
+ // Note that ConstantInt is handled by the general computeKnownBits case
+ // below.
+
+ if (Depth == MaxDepth)
+ return 1; // Limit search depth.
+
+ const Operator *U = dyn_cast<Operator>(V);
+ switch (Operator::getOpcode(V)) {
+ default: break;
+ case Instruction::SExt:
+ Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
+ return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
+
+ case Instruction::SDiv: {
+ const APInt *Denominator;
+ // sdiv X, C -> adds log(C) sign bits.
+ if (match(U->getOperand(1), m_APInt(Denominator))) {
+
+ // Ignore non-positive denominator.
+ if (!Denominator->isStrictlyPositive())
+ break;
+
+ // Calculate the incoming numerator bits.
+ unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+
+ // Add floor(log(C)) bits to the numerator bits.
+ return std::min(TyBits, NumBits + Denominator->logBase2());
+ }
+ break;
+ }
+
+ case Instruction::SRem: {
+ const APInt *Denominator;
+ // srem X, C -> we know that the result is within [-C+1,C) when C is a
+ // positive constant. This let us put a lower bound on the number of sign
+ // bits.
+ if (match(U->getOperand(1), m_APInt(Denominator))) {
+
+ // Ignore non-positive denominator.
+ if (!Denominator->isStrictlyPositive())
+ break;
+
+ // Calculate the incoming numerator bits. SRem by a positive constant
+ // can't lower the number of sign bits.
+ unsigned NumrBits =
+ ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+
+ // Calculate the leading sign bit constraints by examining the
+ // denominator. Given that the denominator is positive, there are two
+ // cases:
+ //
+ // 1. the numerator is positive. The result range is [0,C) and [0,C) u<
+ // (1 << ceilLogBase2(C)).
+ //
+ // 2. the numerator is negative. Then the result range is (-C,0] and
+ // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
+ //
+ // Thus a lower bound on the number of sign bits is `TyBits -
+ // ceilLogBase2(C)`.
+
+ unsigned ResBits = TyBits - Denominator->ceilLogBase2();
+ return std::max(NumrBits, ResBits);
+ }
+ break;
+ }
+
+ case Instruction::AShr: {
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ // ashr X, C -> adds C sign bits. Vectors too.
+ const APInt *ShAmt;
+ if (match(U->getOperand(1), m_APInt(ShAmt))) {
+ if (ShAmt->uge(TyBits))
+ break; // Bad shift.
+ unsigned ShAmtLimited = ShAmt->getZExtValue();
+ Tmp += ShAmtLimited;
+ if (Tmp > TyBits) Tmp = TyBits;
+ }
+ return Tmp;
+ }
+ case Instruction::Shl: {
+ const APInt *ShAmt;
+ if (match(U->getOperand(1), m_APInt(ShAmt))) {
+ // shl destroys sign bits.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (ShAmt->uge(TyBits) || // Bad shift.
+ ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
+ Tmp2 = ShAmt->getZExtValue();
+ return Tmp - Tmp2;
+ }
+ break;
+ }
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: // NOT is handled here.
+ // Logical binary ops preserve the number of sign bits at the worst.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (Tmp != 1) {
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
+ FirstAnswer = std::min(Tmp, Tmp2);
+ // We computed what we know about the sign bits as our first
+ // answer. Now proceed to the generic code that uses
+ // computeKnownBits, and pick whichever answer is better.
+ }
+ break;
+
+ case Instruction::Select: {
+ // If we have a clamp pattern, we know that the number of sign bits will be
+ // the minimum of the clamp min/max range.
+ const Value *X;
+ const APInt *CLow, *CHigh;
+ if (isSignedMinMaxClamp(U, X, CLow, CHigh))
+ return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
+
+ Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
+ if (Tmp == 1) break;
+ Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
+ return std::min(Tmp, Tmp2);
+ }
+
+ case Instruction::Add:
+ // Add can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (Tmp == 1) break;
+
+ // Special case decrementing a value (ADD X, -1):
+ if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
+ if (CRHS->isAllOnesValue()) {
+ KnownBits Known(TyBits);
+ computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
+
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((Known.Zero | 1).isAllOnesValue())
+ return TyBits;
+
+ // If we are subtracting one from a positive number, there is no carry
+ // out of the result.
+ if (Known.isNonNegative())
+ return Tmp;
+ }
+
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
+ if (Tmp2 == 1) break;
+ return std::min(Tmp, Tmp2)-1;
+
+ case Instruction::Sub:
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
+ if (Tmp2 == 1) break;
+
+ // Handle NEG.
+ if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
+ if (CLHS->isNullValue()) {
+ KnownBits Known(TyBits);
+ computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((Known.Zero | 1).isAllOnesValue())
+ return TyBits;
+
+ // If the input is known to be positive (the sign bit is known clear),
+ // the output of the NEG has the same number of sign bits as the input.
+ if (Known.isNonNegative())
+ return Tmp2;
+
+ // Otherwise, we treat this like a SUB.
+ }
+
+ // Sub can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (Tmp == 1) break;
+ return std::min(Tmp, Tmp2)-1;
+
+ case Instruction::Mul: {
+ // The output of the Mul can be at most twice the valid bits in the inputs.
+ unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+ if (SignBitsOp0 == 1) break;
+ unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
+ if (SignBitsOp1 == 1) break;
+ unsigned OutValidBits =
+ (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
+ return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
+ }
+
+ case Instruction::PHI: {
+ const PHINode *PN = cast<PHINode>(U);
+ unsigned NumIncomingValues = PN->getNumIncomingValues();
+ // Don't analyze large in-degree PHIs.
+ if (NumIncomingValues > 4) break;
+ // Unreachable blocks may have zero-operand PHI nodes.
+ if (NumIncomingValues == 0) break;
+
+ // Take the minimum of all incoming values. This can't infinitely loop
+ // because of our depth threshold.
+ Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
+ for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
+ if (Tmp == 1) return Tmp;
+ Tmp = std::min(
+ Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
+ }
+ return Tmp;
+ }
+
+ case Instruction::Trunc:
+ // FIXME: it's tricky to do anything useful for this, but it is an important
+ // case for targets like X86.
+ break;
+
+ case Instruction::ExtractElement:
+ // Look through extract element. At the moment we keep this simple and skip
+ // tracking the specific element. But at least we might find information
+ // valid for all elements of the vector (for example if vector is sign
+ // extended, shifted, etc).
+ return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
+
+ case Instruction::ShuffleVector: {
+ // TODO: This is copied almost directly from the SelectionDAG version of
+ // ComputeNumSignBits. It would be better if we could share common
+ // code. If not, make sure that changes are translated to the DAG.
+
+ // Collect the minimum number of sign bits that are shared by every vector
+ // element referenced by the shuffle.
+ auto *Shuf = cast<ShuffleVectorInst>(U);
+ int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
+ int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
+ APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
+ for (int i = 0; i != NumMaskElts; ++i) {
+ int M = Shuf->getMaskValue(i);
+ assert(M < NumElts * 2 && "Invalid shuffle mask constant");
+ // For undef elements, we don't know anything about the common state of
+ // the shuffle result.
+ if (M == -1)
+ return 1;
+ if (M < NumElts)
+ DemandedLHS.setBit(M % NumElts);
+ else
+ DemandedRHS.setBit(M % NumElts);
+ }
+ Tmp = std::numeric_limits<unsigned>::max();
+ if (!!DemandedLHS)
+ Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
+ if (!!DemandedRHS) {
+ Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
+ Tmp = std::min(Tmp, Tmp2);
+ }
+ // If we don't know anything, early out and try computeKnownBits fall-back.
+ if (Tmp == 1)
+ break;
+ assert(Tmp <= V->getType()->getScalarSizeInBits() &&
+ "Failed to determine minimum sign bits");
+ return Tmp;
+ }
+ }
+
+ // Finally, if we can prove that the top bits of the result are 0's or 1's,
+ // use this information.
+
+ // If we can examine all elements of a vector constant successfully, we're
+ // done (we can't do any better than that). If not, keep trying.
+ if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
+ return VecSignBits;
+
+ KnownBits Known(TyBits);
+ computeKnownBits(V, Known, Depth, Q);
+
+ // If we know that the sign bit is either zero or one, determine the number of
+ // identical bits in the top of the input value.
+ return std::max(FirstAnswer, Known.countMinSignBits());
+}
+
+/// This function computes the integer multiple of Base that equals V.
+/// If successful, it returns true and returns the multiple in
+/// Multiple. If unsuccessful, it returns false. It looks
+/// through SExt instructions only if LookThroughSExt is true.
+bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
+ bool LookThroughSExt, unsigned Depth) {
+ const unsigned MaxDepth = 6;
+
+ assert(V && "No Value?");
+ assert(Depth <= MaxDepth && "Limit Search Depth");
+ assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
+
+ Type *T = V->getType();
+
+ ConstantInt *CI = dyn_cast<ConstantInt>(V);
+
+ if (Base == 0)
+ return false;
+
+ if (Base == 1) {
+ Multiple = V;
+ return true;
+ }
+
+ ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
+ Constant *BaseVal = ConstantInt::get(T, Base);
+ if (CO && CO == BaseVal) {
+ // Multiple is 1.
+ Multiple = ConstantInt::get(T, 1);
+ return true;
+ }
+
+ if (CI && CI->getZExtValue() % Base == 0) {
+ Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
+ return true;
+ }
+
+ if (Depth == MaxDepth) return false; // Limit search depth.
+
+ Operator *I = dyn_cast<Operator>(V);
+ if (!I) return false;
+
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::SExt:
+ if (!LookThroughSExt) return false;
+ // otherwise fall through to ZExt
+ LLVM_FALLTHROUGH;
+ case Instruction::ZExt:
+ return ComputeMultiple(I->getOperand(0), Base, Multiple,
+ LookThroughSExt, Depth+1);
+ case Instruction::Shl:
+ case Instruction::Mul: {
+ Value *Op0 = I->getOperand(0);
+ Value *Op1 = I->getOperand(1);
+
+ if (I->getOpcode() == Instruction::Shl) {
+ ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
+ if (!Op1CI) return false;
+ // Turn Op0 << Op1 into Op0 * 2^Op1
+ APInt Op1Int = Op1CI->getValue();
+ uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
+ APInt API(Op1Int.getBitWidth(), 0);
+ API.setBit(BitToSet);
+ Op1 = ConstantInt::get(V->getContext(), API);
+ }
+
+ Value *Mul0 = nullptr;
+ if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
+ if (Constant *Op1C = dyn_cast<Constant>(Op1))
+ if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
+ if (Op1C->getType()->getPrimitiveSizeInBits() <
+ MulC->getType()->getPrimitiveSizeInBits())
+ Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
+ if (Op1C->getType()->getPrimitiveSizeInBits() >
+ MulC->getType()->getPrimitiveSizeInBits())
+ MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
+
+ // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
+ Multiple = ConstantExpr::getMul(MulC, Op1C);
+ return true;
+ }
+
+ if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
+ if (Mul0CI->getValue() == 1) {
+ // V == Base * Op1, so return Op1
+ Multiple = Op1;
+ return true;
+ }
+ }
+
+ Value *Mul1 = nullptr;
+ if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
+ if (Constant *Op0C = dyn_cast<Constant>(Op0))
+ if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
+ if (Op0C->getType()->getPrimitiveSizeInBits() <
+ MulC->getType()->getPrimitiveSizeInBits())
+ Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
+ if (Op0C->getType()->getPrimitiveSizeInBits() >
+ MulC->getType()->getPrimitiveSizeInBits())
+ MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
+
+ // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
+ Multiple = ConstantExpr::getMul(MulC, Op0C);
+ return true;
+ }
+
+ if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
+ if (Mul1CI->getValue() == 1) {
+ // V == Base * Op0, so return Op0
+ Multiple = Op0;
+ return true;
+ }
+ }
+ }
+ }
+
+ // We could not determine if V is a multiple of Base.
+ return false;
+}
+
+Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
+ const TargetLibraryInfo *TLI) {
+ const Function *F = ICS.getCalledFunction();
+ if (!F)
+ return Intrinsic::not_intrinsic;
+
+ if (F->isIntrinsic())
+ return F->getIntrinsicID();
+
+ if (!TLI)
+ return Intrinsic::not_intrinsic;
+
+ LibFunc Func;
+ // We're going to make assumptions on the semantics of the functions, check
+ // that the target knows that it's available in this environment and it does
+ // not have local linkage.
+ if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
+ return Intrinsic::not_intrinsic;
+
+ if (!ICS.onlyReadsMemory())
+ return Intrinsic::not_intrinsic;
+
+ // Otherwise check if we have a call to a function that can be turned into a
+ // vector intrinsic.
+ switch (Func) {
+ default:
+ break;
+ case LibFunc_sin:
+ case LibFunc_sinf:
+ case LibFunc_sinl:
+ return Intrinsic::sin;
+ case LibFunc_cos:
+ case LibFunc_cosf:
+ case LibFunc_cosl:
+ return Intrinsic::cos;
+ case LibFunc_exp:
+ case LibFunc_expf:
+ case LibFunc_expl:
+ return Intrinsic::exp;
+ case LibFunc_exp2:
+ case LibFunc_exp2f:
+ case LibFunc_exp2l:
+ return Intrinsic::exp2;
+ case LibFunc_log:
+ case LibFunc_logf:
+ case LibFunc_logl:
+ return Intrinsic::log;
+ case LibFunc_log10:
+ case LibFunc_log10f:
+ case LibFunc_log10l:
+ return Intrinsic::log10;
+ case LibFunc_log2:
+ case LibFunc_log2f:
+ case LibFunc_log2l:
+ return Intrinsic::log2;
+ case LibFunc_fabs:
+ case LibFunc_fabsf:
+ case LibFunc_fabsl:
+ return Intrinsic::fabs;
+ case LibFunc_fmin:
+ case LibFunc_fminf:
+ case LibFunc_fminl:
+ return Intrinsic::minnum;
+ case LibFunc_fmax:
+ case LibFunc_fmaxf:
+ case LibFunc_fmaxl:
+ return Intrinsic::maxnum;
+ case LibFunc_copysign:
+ case LibFunc_copysignf:
+ case LibFunc_copysignl:
+ return Intrinsic::copysign;
+ case LibFunc_floor:
+ case LibFunc_floorf:
+ case LibFunc_floorl:
+ return Intrinsic::floor;
+ case LibFunc_ceil:
+ case LibFunc_ceilf:
+ case LibFunc_ceill:
+ return Intrinsic::ceil;
+ case LibFunc_trunc:
+ case LibFunc_truncf:
+ case LibFunc_truncl:
+ return Intrinsic::trunc;
+ case LibFunc_rint:
+ case LibFunc_rintf:
+ case LibFunc_rintl:
+ return Intrinsic::rint;
+ case LibFunc_nearbyint:
+ case LibFunc_nearbyintf:
+ case LibFunc_nearbyintl:
+ return Intrinsic::nearbyint;
+ case LibFunc_round:
+ case LibFunc_roundf:
+ case LibFunc_roundl:
+ return Intrinsic::round;
+ case LibFunc_pow:
+ case LibFunc_powf:
+ case LibFunc_powl:
+ return Intrinsic::pow;
+ case LibFunc_sqrt:
+ case LibFunc_sqrtf:
+ case LibFunc_sqrtl:
+ return Intrinsic::sqrt;
+ }
+
+ return Intrinsic::not_intrinsic;
+}
+
+/// Return true if we can prove that the specified FP value is never equal to
+/// -0.0.
+///
+/// NOTE: this function will need to be revisited when we support non-default
+/// rounding modes!
+bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
+ unsigned Depth) {
+ if (auto *CFP = dyn_cast<ConstantFP>(V))
+ return !CFP->getValueAPF().isNegZero();
+
+ // Limit search depth.
+ if (Depth == MaxDepth)
+ return false;
+
+ auto *Op = dyn_cast<Operator>(V);
+ if (!Op)
+ return false;
+
+ // Check if the nsz fast-math flag is set.
+ if (auto *FPO = dyn_cast<FPMathOperator>(Op))
+ if (FPO->hasNoSignedZeros())
+ return true;
+
+ // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
+ if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
+ return true;
+
+ // sitofp and uitofp turn into +0.0 for zero.
+ if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
+ return true;
+
+ if (auto *Call = dyn_cast<CallInst>(Op)) {
+ Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
+ switch (IID) {
+ default:
+ break;
+ // sqrt(-0.0) = -0.0, no other negative results are possible.
+ case Intrinsic::sqrt:
+ case Intrinsic::canonicalize:
+ return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
+ // fabs(x) != -0.0
+ case Intrinsic::fabs:
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
+/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
+/// bit despite comparing equal.
+static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
+ const TargetLibraryInfo *TLI,
+ bool SignBitOnly,
+ unsigned Depth) {
+ // TODO: This function does not do the right thing when SignBitOnly is true
+ // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
+ // which flips the sign bits of NaNs. See
+ // https://llvm.org/bugs/show_bug.cgi?id=31702.
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
+ return !CFP->getValueAPF().isNegative() ||
+ (!SignBitOnly && CFP->getValueAPF().isZero());
+ }
+
+ // Handle vector of constants.
+ if (auto *CV = dyn_cast<Constant>(V)) {
+ if (CV->getType()->isVectorTy()) {
+ unsigned NumElts = CV->getType()->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
+ if (!CFP)
+ return false;
+ if (CFP->getValueAPF().isNegative() &&
+ (SignBitOnly || !CFP->getValueAPF().isZero()))
+ return false;
+ }
+
+ // All non-negative ConstantFPs.
+ return true;
+ }
+ }
+
+ if (Depth == MaxDepth)
+ return false; // Limit search depth.
+
+ const Operator *I = dyn_cast<Operator>(V);
+ if (!I)
+ return false;
+
+ switch (I->getOpcode()) {
+ default:
+ break;
+ // Unsigned integers are always nonnegative.
+ case Instruction::UIToFP:
+ return true;
+ case Instruction::FMul:
+ // x*x is always non-negative or a NaN.
+ if (I->getOperand(0) == I->getOperand(1) &&
+ (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
+ return true;
+
+ LLVM_FALLTHROUGH;
+ case Instruction::FAdd:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
+ Depth + 1);
+ case Instruction::Select:
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
+ Depth + 1) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
+ Depth + 1);
+ case Instruction::FPExt:
+ case Instruction::FPTrunc:
+ // Widening/narrowing never change sign.
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1);
+ case Instruction::ExtractElement:
+ // Look through extract element. At the moment we keep this simple and skip
+ // tracking the specific element. But at least we might find information
+ // valid for all elements of the vector.
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1);
+ case Instruction::Call:
+ const auto *CI = cast<CallInst>(I);
+ Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
+ switch (IID) {
+ default:
+ break;
+ case Intrinsic::maxnum:
+ return (isKnownNeverNaN(I->getOperand(0), TLI) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
+ SignBitOnly, Depth + 1)) ||
+ (isKnownNeverNaN(I->getOperand(1), TLI) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
+ SignBitOnly, Depth + 1));
+
+ case Intrinsic::maximum:
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1) ||
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
+ Depth + 1);
+ case Intrinsic::minnum:
+ case Intrinsic::minimum:
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
+ Depth + 1);
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::fabs:
+ return true;
+
+ case Intrinsic::sqrt:
+ // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
+ if (!SignBitOnly)
+ return true;
+ return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
+ CannotBeNegativeZero(CI->getOperand(0), TLI));
+
+ case Intrinsic::powi:
+ if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // powi(x,n) is non-negative if n is even.
+ if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
+ return true;
+ }
+ // TODO: This is not correct. Given that exp is an integer, here are the
+ // ways that pow can return a negative value:
+ //
+ // pow(x, exp) --> negative if exp is odd and x is negative.
+ // pow(-0, exp) --> -inf if exp is negative odd.
+ // pow(-0, exp) --> -0 if exp is positive odd.
+ // pow(-inf, exp) --> -0 if exp is negative odd.
+ // pow(-inf, exp) --> -inf if exp is positive odd.
+ //
+ // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
+ // but we must return false if x == -0. Unfortunately we do not currently
+ // have a way of expressing this constraint. See details in
+ // https://llvm.org/bugs/show_bug.cgi?id=31702.
+ return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
+ Depth + 1);
+
+ case Intrinsic::fma:
+ case Intrinsic::fmuladd:
+ // x*x+y is non-negative if y is non-negative.
+ return I->getOperand(0) == I->getOperand(1) &&
+ (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
+ cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
+ Depth + 1);
+ }
+ break;
+ }
+ return false;
+}
+
+bool llvm::CannotBeOrderedLessThanZero(const Value *V,
+ const TargetLibraryInfo *TLI) {
+ return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
+}
+
+bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
+ return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
+}
+
+bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
+ unsigned Depth) {
+ assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
+
+ // If we're told that NaNs won't happen, assume they won't.
+ if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
+ if (FPMathOp->hasNoNaNs())
+ return true;
+
+ // Handle scalar constants.
+ if (auto *CFP = dyn_cast<ConstantFP>(V))
+ return !CFP->isNaN();
+
+ if (Depth == MaxDepth)
+ return false;
+
+ if (auto *Inst = dyn_cast<Instruction>(V)) {
+ switch (Inst->getOpcode()) {
+ case Instruction::FAdd:
+ case Instruction::FMul:
+ case Instruction::FSub:
+ case Instruction::FDiv:
+ case Instruction::FRem: {
+ // TODO: Need isKnownNeverInfinity
+ return false;
+ }
+ case Instruction::Select: {
+ return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
+ isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
+ }
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ return true;
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
+ default:
+ break;
+ }
+ }
+
+ if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::canonicalize:
+ case Intrinsic::fabs:
+ case Intrinsic::copysign:
+ case Intrinsic::exp:
+ case Intrinsic::exp2:
+ case Intrinsic::floor:
+ case Intrinsic::ceil:
+ case Intrinsic::trunc:
+ case Intrinsic::rint:
+ case Intrinsic::nearbyint:
+ case Intrinsic::round:
+ return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
+ case Intrinsic::sqrt:
+ return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
+ CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
+ case Intrinsic::minnum:
+ case Intrinsic::maxnum:
+ // If either operand is not NaN, the result is not NaN.
+ return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
+ isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
+ default:
+ return false;
+ }
+ }
+
+ // Bail out for constant expressions, but try to handle vector constants.
+ if (!V->getType()->isVectorTy() || !isa<Constant>(V))
+ return false;
+
+ // For vectors, verify that each element is not NaN.
+ unsigned NumElts = V->getType()->getVectorNumElements();
+ for (unsigned i = 0; i != NumElts; ++i) {
+ Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
+ if (!Elt)
+ return false;
+ if (isa<UndefValue>(Elt))
+ continue;
+ auto *CElt = dyn_cast<ConstantFP>(Elt);
+ if (!CElt || CElt->isNaN())
+ return false;
+ }
+ // All elements were confirmed not-NaN or undefined.
+ return true;
+}
+
+Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
+
+ // All byte-wide stores are splatable, even of arbitrary variables.
+ if (V->getType()->isIntegerTy(8))
+ return V;
+
+ LLVMContext &Ctx = V->getContext();
+
+ // Undef don't care.
+ auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
+ if (isa<UndefValue>(V))
+ return UndefInt8;
+
+ const uint64_t Size = DL.getTypeStoreSize(V->getType());
+ if (!Size)
+ return UndefInt8;
+
+ Constant *C = dyn_cast<Constant>(V);
+ if (!C) {
+ // Conceptually, we could handle things like:
+ // %a = zext i8 %X to i16
+ // %b = shl i16 %a, 8
+ // %c = or i16 %a, %b
+ // but until there is an example that actually needs this, it doesn't seem
+ // worth worrying about.
+ return nullptr;
+ }
+
+ // Handle 'null' ConstantArrayZero etc.
+ if (C->isNullValue())
+ return Constant::getNullValue(Type::getInt8Ty(Ctx));
+
+ // Constant floating-point values can be handled as integer values if the
+ // corresponding integer value is "byteable". An important case is 0.0.
+ if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ Type *Ty = nullptr;
+ if (CFP->getType()->isHalfTy())
+ Ty = Type::getInt16Ty(Ctx);
+ else if (CFP->getType()->isFloatTy())
+ Ty = Type::getInt32Ty(Ctx);
+ else if (CFP->getType()->isDoubleTy())
+ Ty = Type::getInt64Ty(Ctx);
+ // Don't handle long double formats, which have strange constraints.
+ return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
+ : nullptr;
+ }
+
+ // We can handle constant integers that are multiple of 8 bits.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
+ if (CI->getBitWidth() % 8 == 0) {
+ assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
+ if (!CI->getValue().isSplat(8))
+ return nullptr;
+ return ConstantInt::get(Ctx, CI->getValue().trunc(8));
+ }
+ }
+
+ if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->getOpcode() == Instruction::IntToPtr) {
+ auto PS = DL.getPointerSizeInBits(
+ cast<PointerType>(CE->getType())->getAddressSpace());
+ return isBytewiseValue(
+ ConstantExpr::getIntegerCast(CE->getOperand(0),
+ Type::getIntNTy(Ctx, PS), false),
+ DL);
+ }
+ }
+
+ auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
+ if (LHS == RHS)
+ return LHS;
+ if (!LHS || !RHS)
+ return nullptr;
+ if (LHS == UndefInt8)
+ return RHS;
+ if (RHS == UndefInt8)
+ return LHS;
+ return nullptr;
+ };
+
+ if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
+ Value *Val = UndefInt8;
+ for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
+ if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
+ return nullptr;
+ return Val;
+ }
+
+ if (isa<ConstantAggregate>(C)) {
+ Value *Val = UndefInt8;
+ for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
+ if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
+ return nullptr;
+ return Val;
+ }
+
+ // Don't try to handle the handful of other constants.
+ return nullptr;
+}
+
+// This is the recursive version of BuildSubAggregate. It takes a few different
+// arguments. Idxs is the index within the nested struct From that we are
+// looking at now (which is of type IndexedType). IdxSkip is the number of
+// indices from Idxs that should be left out when inserting into the resulting
+// struct. To is the result struct built so far, new insertvalue instructions
+// build on that.
+static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
+ SmallVectorImpl<unsigned> &Idxs,
+ unsigned IdxSkip,
+ Instruction *InsertBefore) {
+ StructType *STy = dyn_cast<StructType>(IndexedType);
+ if (STy) {
+ // Save the original To argument so we can modify it
+ Value *OrigTo = To;
+ // General case, the type indexed by Idxs is a struct
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ // Process each struct element recursively
+ Idxs.push_back(i);
+ Value *PrevTo = To;
+ To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
+ InsertBefore);
+ Idxs.pop_back();
+ if (!To) {
+ // Couldn't find any inserted value for this index? Cleanup
+ while (PrevTo != OrigTo) {
+ InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
+ PrevTo = Del->getAggregateOperand();
+ Del->eraseFromParent();
+ }
+ // Stop processing elements
+ break;
+ }
+ }
+ // If we successfully found a value for each of our subaggregates
+ if (To)
+ return To;
+ }
+ // Base case, the type indexed by SourceIdxs is not a struct, or not all of
+ // the struct's elements had a value that was inserted directly. In the latter
+ // case, perhaps we can't determine each of the subelements individually, but
+ // we might be able to find the complete struct somewhere.
+
+ // Find the value that is at that particular spot
+ Value *V = FindInsertedValue(From, Idxs);
+
+ if (!V)
+ return nullptr;
+
+ // Insert the value in the new (sub) aggregate
+ return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
+ "tmp", InsertBefore);
+}
+
+// This helper takes a nested struct and extracts a part of it (which is again a
+// struct) into a new value. For example, given the struct:
+// { a, { b, { c, d }, e } }
+// and the indices "1, 1" this returns
+// { c, d }.
+//
+// It does this by inserting an insertvalue for each element in the resulting
+// struct, as opposed to just inserting a single struct. This will only work if
+// each of the elements of the substruct are known (ie, inserted into From by an
+// insertvalue instruction somewhere).
+//
+// All inserted insertvalue instructions are inserted before InsertBefore
+static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
+ Instruction *InsertBefore) {
+ assert(InsertBefore && "Must have someplace to insert!");
+ Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
+ idx_range);
+ Value *To = UndefValue::get(IndexedType);
+ SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
+ unsigned IdxSkip = Idxs.size();
+
+ return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
+}
+
+/// Given an aggregate and a sequence of indices, see if the scalar value
+/// indexed is already around as a register, for example if it was inserted
+/// directly into the aggregate.
+///
+/// If InsertBefore is not null, this function will duplicate (modified)
+/// insertvalues when a part of a nested struct is extracted.
+Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
+ Instruction *InsertBefore) {
+ // Nothing to index? Just return V then (this is useful at the end of our
+ // recursion).
+ if (idx_range.empty())
+ return V;
+ // We have indices, so V should have an indexable type.
+ assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
+ "Not looking at a struct or array?");
+ assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
+ "Invalid indices for type?");
+
+ if (Constant *C = dyn_cast<Constant>(V)) {
+ C = C->getAggregateElement(idx_range[0]);
+ if (!C) return nullptr;
+ return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
+ }
+
+ if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
+ // Loop the indices for the insertvalue instruction in parallel with the
+ // requested indices
+ const unsigned *req_idx = idx_range.begin();
+ for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
+ i != e; ++i, ++req_idx) {
+ if (req_idx == idx_range.end()) {
+ // We can't handle this without inserting insertvalues
+ if (!InsertBefore)
+ return nullptr;
+
+ // The requested index identifies a part of a nested aggregate. Handle
+ // this specially. For example,
+ // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
+ // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
+ // %C = extractvalue {i32, { i32, i32 } } %B, 1
+ // This can be changed into
+ // %A = insertvalue {i32, i32 } undef, i32 10, 0
+ // %C = insertvalue {i32, i32 } %A, i32 11, 1
+ // which allows the unused 0,0 element from the nested struct to be
+ // removed.
+ return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
+ InsertBefore);
+ }
+
+ // This insert value inserts something else than what we are looking for.
+ // See if the (aggregate) value inserted into has the value we are
+ // looking for, then.
+ if (*req_idx != *i)
+ return FindInsertedValue(I->getAggregateOperand(), idx_range,
+ InsertBefore);
+ }
+ // If we end up here, the indices of the insertvalue match with those
+ // requested (though possibly only partially). Now we recursively look at
+ // the inserted value, passing any remaining indices.
+ return FindInsertedValue(I->getInsertedValueOperand(),
+ makeArrayRef(req_idx, idx_range.end()),
+ InsertBefore);
+ }
+
+ if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
+ // If we're extracting a value from an aggregate that was extracted from
+ // something else, we can extract from that something else directly instead.
+ // However, we will need to chain I's indices with the requested indices.
+
+ // Calculate the number of indices required
+ unsigned size = I->getNumIndices() + idx_range.size();
+ // Allocate some space to put the new indices in
+ SmallVector<unsigned, 5> Idxs;
+ Idxs.reserve(size);
+ // Add indices from the extract value instruction
+ Idxs.append(I->idx_begin(), I->idx_end());
+
+ // Add requested indices
+ Idxs.append(idx_range.begin(), idx_range.end());
+
+ assert(Idxs.size() == size
+ && "Number of indices added not correct?");
+
+ return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
+ }
+ // Otherwise, we don't know (such as, extracting from a function return value
+ // or load instruction)
+ return nullptr;
+}
+
+bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
+ unsigned CharSize) {
+ // Make sure the GEP has exactly three arguments.
+ if (GEP->getNumOperands() != 3)
+ return false;
+
+ // Make sure the index-ee is a pointer to array of \p CharSize integers.
+ // CharSize.
+ ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
+ if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
+ return false;
+
+ // Check to make sure that the first operand of the GEP is an integer and
+ // has value 0 so that we are sure we're indexing into the initializer.
+ const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
+ if (!FirstIdx || !FirstIdx->isZero())
+ return false;
+
+ return true;
+}
+
+bool llvm::getConstantDataArrayInfo(const Value *V,
+ ConstantDataArraySlice &Slice,
+ unsigned ElementSize, uint64_t Offset) {
+ assert(V);
+
+ // Look through bitcast instructions and geps.
+ V = V->stripPointerCasts();
+
+ // If the value is a GEP instruction or constant expression, treat it as an
+ // offset.
+ if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ // The GEP operator should be based on a pointer to string constant, and is
+ // indexing into the string constant.
+ if (!isGEPBasedOnPointerToString(GEP, ElementSize))
+ return false;
+
+ // If the second index isn't a ConstantInt, then this is a variable index
+ // into the array. If this occurs, we can't say anything meaningful about
+ // the string.
+ uint64_t StartIdx = 0;
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
+ StartIdx = CI->getZExtValue();
+ else
+ return false;
+ return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
+ StartIdx + Offset);
+ }
+
+ // The GEP instruction, constant or instruction, must reference a global
+ // variable that is a constant and is initialized. The referenced constant
+ // initializer is the array that we'll use for optimization.
+ const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
+ return false;
+
+ const ConstantDataArray *Array;
+ ArrayType *ArrayTy;
+ if (GV->getInitializer()->isNullValue()) {
+ Type *GVTy = GV->getValueType();
+ if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
+ // A zeroinitializer for the array; there is no ConstantDataArray.
+ Array = nullptr;
+ } else {
+ const DataLayout &DL = GV->getParent()->getDataLayout();
+ uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
+ uint64_t Length = SizeInBytes / (ElementSize / 8);
+ if (Length <= Offset)
+ return false;
+
+ Slice.Array = nullptr;
+ Slice.Offset = 0;
+ Slice.Length = Length - Offset;
+ return true;
+ }
+ } else {
+ // This must be a ConstantDataArray.
+ Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
+ if (!Array)
+ return false;
+ ArrayTy = Array->getType();
+ }
+ if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
+ return false;
+
+ uint64_t NumElts = ArrayTy->getArrayNumElements();
+ if (Offset > NumElts)
+ return false;
+
+ Slice.Array = Array;
+ Slice.Offset = Offset;
+ Slice.Length = NumElts - Offset;
+ return true;
+}
+
+/// This function computes the length of a null-terminated C string pointed to
+/// by V. If successful, it returns true and returns the string in Str.
+/// If unsuccessful, it returns false.
+bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
+ uint64_t Offset, bool TrimAtNul) {
+ ConstantDataArraySlice Slice;
+ if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
+ return false;
+
+ if (Slice.Array == nullptr) {
+ if (TrimAtNul) {
+ Str = StringRef();
+ return true;
+ }
+ if (Slice.Length == 1) {
+ Str = StringRef("", 1);
+ return true;
+ }
+ // We cannot instantiate a StringRef as we do not have an appropriate string
+ // of 0s at hand.
+ return false;
+ }
+
+ // Start out with the entire array in the StringRef.
+ Str = Slice.Array->getAsString();
+ // Skip over 'offset' bytes.
+ Str = Str.substr(Slice.Offset);
+
+ if (TrimAtNul) {
+ // Trim off the \0 and anything after it. If the array is not nul
+ // terminated, we just return the whole end of string. The client may know
+ // some other way that the string is length-bound.
+ Str = Str.substr(0, Str.find('\0'));
+ }
+ return true;
+}
+
+// These next two are very similar to the above, but also look through PHI
+// nodes.
+// TODO: See if we can integrate these two together.
+
+/// If we can compute the length of the string pointed to by
+/// the specified pointer, return 'len+1'. If we can't, return 0.
+static uint64_t GetStringLengthH(const Value *V,
+ SmallPtrSetImpl<const PHINode*> &PHIs,
+ unsigned CharSize) {
+ // Look through noop bitcast instructions.
+ V = V->stripPointerCasts();
+
+ // If this is a PHI node, there are two cases: either we have already seen it
+ // or we haven't.
+ if (const PHINode *PN = dyn_cast<PHINode>(V)) {
+ if (!PHIs.insert(PN).second)
+ return ~0ULL; // already in the set.
+
+ // If it was new, see if all the input strings are the same length.
+ uint64_t LenSoFar = ~0ULL;
+ for (Value *IncValue : PN->incoming_values()) {
+ uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
+ if (Len == 0) return 0; // Unknown length -> unknown.
+
+ if (Len == ~0ULL) continue;
+
+ if (Len != LenSoFar && LenSoFar != ~0ULL)
+ return 0; // Disagree -> unknown.
+ LenSoFar = Len;
+ }
+
+ // Success, all agree.
+ return LenSoFar;
+ }
+
+ // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
+ if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
+ uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
+ if (Len1 == 0) return 0;
+ uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
+ if (Len2 == 0) return 0;
+ if (Len1 == ~0ULL) return Len2;
+ if (Len2 == ~0ULL) return Len1;
+ if (Len1 != Len2) return 0;
+ return Len1;
+ }
+
+ // Otherwise, see if we can read the string.
+ ConstantDataArraySlice Slice;
+ if (!getConstantDataArrayInfo(V, Slice, CharSize))
+ return 0;
+
+ if (Slice.Array == nullptr)
+ return 1;
+
+ // Search for nul characters
+ unsigned NullIndex = 0;
+ for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
+ if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
+ break;
+ }
+
+ return NullIndex + 1;
+}
+
+/// If we can compute the length of the string pointed to by
+/// the specified pointer, return 'len+1'. If we can't, return 0.
+uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
+ if (!V->getType()->isPointerTy())
+ return 0;
+
+ SmallPtrSet<const PHINode*, 32> PHIs;
+ uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
+ // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
+ // an empty string as a length.
+ return Len == ~0ULL ? 1 : Len;
+}
+
+const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) {
+ assert(Call &&
+ "getArgumentAliasingToReturnedPointer only works on nonnull calls");
+ if (const Value *RV = Call->getReturnedArgOperand())
+ return RV;
+ // This can be used only as a aliasing property.
+ if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call))
+ return Call->getArgOperand(0);
+ return nullptr;
+}
+
+bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
+ const CallBase *Call) {
+ return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
+ Call->getIntrinsicID() == Intrinsic::strip_invariant_group ||
+ Call->getIntrinsicID() == Intrinsic::aarch64_irg ||
+ Call->getIntrinsicID() == Intrinsic::aarch64_tagp;
+}
+
+/// \p PN defines a loop-variant pointer to an object. Check if the
+/// previous iteration of the loop was referring to the same object as \p PN.
+static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
+ const LoopInfo *LI) {
+ // Find the loop-defined value.
+ Loop *L = LI->getLoopFor(PN->getParent());
+ if (PN->getNumIncomingValues() != 2)
+ return true;
+
+ // Find the value from previous iteration.
+ auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
+ if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
+ PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
+ if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
+ return true;
+
+ // If a new pointer is loaded in the loop, the pointer references a different
+ // object in every iteration. E.g.:
+ // for (i)
+ // int *p = a[i];
+ // ...
+ if (auto *Load = dyn_cast<LoadInst>(PrevValue))
+ if (!L->isLoopInvariant(Load->getPointerOperand()))
+ return false;
+ return true;
+}
+
+Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
+ unsigned MaxLookup) {
+ if (!V->getType()->isPointerTy())
+ return V;
+ for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
+ if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
+ V = GEP->getPointerOperand();
+ } else if (Operator::getOpcode(V) == Instruction::BitCast ||
+ Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
+ V = cast<Operator>(V)->getOperand(0);
+ } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->isInterposable())
+ return V;
+ V = GA->getAliasee();
+ } else if (isa<AllocaInst>(V)) {
+ // An alloca can't be further simplified.
+ return V;
+ } else {
+ if (auto *Call = dyn_cast<CallBase>(V)) {
+ // CaptureTracking can know about special capturing properties of some
+ // intrinsics like launder.invariant.group, that can't be expressed with
+ // the attributes, but have properties like returning aliasing pointer.
+ // Because some analysis may assume that nocaptured pointer is not
+ // returned from some special intrinsic (because function would have to
+ // be marked with returns attribute), it is crucial to use this function
+ // because it should be in sync with CaptureTracking. Not using it may
+ // cause weird miscompilations where 2 aliasing pointers are assumed to
+ // noalias.
+ if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) {
+ V = RP;
+ continue;
+ }
+ }
+
+ // See if InstructionSimplify knows any relevant tricks.
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ // TODO: Acquire a DominatorTree and AssumptionCache and use them.
+ if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
+ V = Simplified;
+ continue;
+ }
+
+ return V;
+ }
+ assert(V->getType()->isPointerTy() && "Unexpected operand type!");
+ }
+ return V;
+}
+
+void llvm::GetUnderlyingObjects(const Value *V,
+ SmallVectorImpl<const Value *> &Objects,
+ const DataLayout &DL, LoopInfo *LI,
+ unsigned MaxLookup) {
+ SmallPtrSet<const Value *, 4> Visited;
+ SmallVector<const Value *, 4> Worklist;
+ Worklist.push_back(V);
+ do {
+ const Value *P = Worklist.pop_back_val();
+ P = GetUnderlyingObject(P, DL, MaxLookup);
+
+ if (!Visited.insert(P).second)
+ continue;
+
+ if (auto *SI = dyn_cast<SelectInst>(P)) {
+ Worklist.push_back(SI->getTrueValue());
+ Worklist.push_back(SI->getFalseValue());
+ continue;
+ }
+
+ if (auto *PN = dyn_cast<PHINode>(P)) {
+ // If this PHI changes the underlying object in every iteration of the
+ // loop, don't look through it. Consider:
+ // int **A;
+ // for (i) {
+ // Prev = Curr; // Prev = PHI (Prev_0, Curr)
+ // Curr = A[i];
+ // *Prev, *Curr;
+ //
+ // Prev is tracking Curr one iteration behind so they refer to different
+ // underlying objects.
+ if (!LI || !LI->isLoopHeader(PN->getParent()) ||
+ isSameUnderlyingObjectInLoop(PN, LI))
+ for (Value *IncValue : PN->incoming_values())
+ Worklist.push_back(IncValue);
+ continue;
+ }
+
+ Objects.push_back(P);
+ } while (!Worklist.empty());
+}
+
+/// This is the function that does the work of looking through basic
+/// ptrtoint+arithmetic+inttoptr sequences.
+static const Value *getUnderlyingObjectFromInt(const Value *V) {
+ do {
+ if (const Operator *U = dyn_cast<Operator>(V)) {
+ // If we find a ptrtoint, we can transfer control back to the
+ // regular getUnderlyingObjectFromInt.
+ if (U->getOpcode() == Instruction::PtrToInt)
+ return U->getOperand(0);
+ // If we find an add of a constant, a multiplied value, or a phi, it's
+ // likely that the other operand will lead us to the base
+ // object. We don't have to worry about the case where the
+ // object address is somehow being computed by the multiply,
+ // because our callers only care when the result is an
+ // identifiable object.
+ if (U->getOpcode() != Instruction::Add ||
+ (!isa<ConstantInt>(U->getOperand(1)) &&
+ Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
+ !isa<PHINode>(U->getOperand(1))))
+ return V;
+ V = U->getOperand(0);
+ } else {
+ return V;
+ }
+ assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
+ } while (true);
+}
+
+/// This is a wrapper around GetUnderlyingObjects and adds support for basic
+/// ptrtoint+arithmetic+inttoptr sequences.
+/// It returns false if unidentified object is found in GetUnderlyingObjects.
+bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
+ SmallVectorImpl<Value *> &Objects,
+ const DataLayout &DL) {
+ SmallPtrSet<const Value *, 16> Visited;
+ SmallVector<const Value *, 4> Working(1, V);
+ do {
+ V = Working.pop_back_val();
+
+ SmallVector<const Value *, 4> Objs;
+ GetUnderlyingObjects(V, Objs, DL);
+
+ for (const Value *V : Objs) {
+ if (!Visited.insert(V).second)
+ continue;
+ if (Operator::getOpcode(V) == Instruction::IntToPtr) {
+ const Value *O =
+ getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
+ if (O->getType()->isPointerTy()) {
+ Working.push_back(O);
+ continue;
+ }
+ }
+ // If GetUnderlyingObjects fails to find an identifiable object,
+ // getUnderlyingObjectsForCodeGen also fails for safety.
+ if (!isIdentifiedObject(V)) {
+ Objects.clear();
+ return false;
+ }
+ Objects.push_back(const_cast<Value *>(V));
+ }
+ } while (!Working.empty());
+ return true;
+}
+
+/// Return true if the only users of this pointer are lifetime markers.
+bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
+ for (const User *U : V->users()) {
+ const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
+ if (!II) return false;
+
+ if (!II->isLifetimeStartOrEnd())
+ return false;
+ }
+ return true;
+}
+
+bool llvm::isSafeToSpeculativelyExecute(const Value *V,
+ const Instruction *CtxI,
+ const DominatorTree *DT) {
+ const Operator *Inst = dyn_cast<Operator>(V);
+ if (!Inst)
+ return false;
+
+ for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
+ if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
+ if (C->canTrap())
+ return false;
+
+ switch (Inst->getOpcode()) {
+ default:
+ return true;
+ case Instruction::UDiv:
+ case Instruction::URem: {
+ // x / y is undefined if y == 0.
+ const APInt *V;
+ if (match(Inst->getOperand(1), m_APInt(V)))
+ return *V != 0;
+ return false;
+ }
+ case Instruction::SDiv:
+ case Instruction::SRem: {
+ // x / y is undefined if y == 0 or x == INT_MIN and y == -1
+ const APInt *Numerator, *Denominator;
+ if (!match(Inst->getOperand(1), m_APInt(Denominator)))
+ return false;
+ // We cannot hoist this division if the denominator is 0.
+ if (*Denominator == 0)
+ return false;
+ // It's safe to hoist if the denominator is not 0 or -1.
+ if (*Denominator != -1)
+ return true;
+ // At this point we know that the denominator is -1. It is safe to hoist as
+ // long we know that the numerator is not INT_MIN.
+ if (match(Inst->getOperand(0), m_APInt(Numerator)))
+ return !Numerator->isMinSignedValue();
+ // The numerator *might* be MinSignedValue.
+ return false;
+ }
+ case Instruction::Load: {
+ const LoadInst *LI = cast<LoadInst>(Inst);
+ if (!LI->isUnordered() ||
+ // Speculative load may create a race that did not exist in the source.
+ LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
+ // Speculative load may load data from dirty regions.
+ LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
+ LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
+ return false;
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
+ LI->getType(), LI->getAlignment(),
+ DL, CtxI, DT);
+ }
+ case Instruction::Call: {
+ auto *CI = cast<const CallInst>(Inst);
+ const Function *Callee = CI->getCalledFunction();
+
+ // The called function could have undefined behavior or side-effects, even
+ // if marked readnone nounwind.
+ return Callee && Callee->isSpeculatable();
+ }
+ case Instruction::VAArg:
+ case Instruction::Alloca:
+ case Instruction::Invoke:
+ case Instruction::CallBr:
+ case Instruction::PHI:
+ case Instruction::Store:
+ case Instruction::Ret:
+ case Instruction::Br:
+ case Instruction::IndirectBr:
+ case Instruction::Switch:
+ case Instruction::Unreachable:
+ case Instruction::Fence:
+ case Instruction::AtomicRMW:
+ case Instruction::AtomicCmpXchg:
+ case Instruction::LandingPad:
+ case Instruction::Resume:
+ case Instruction::CatchSwitch:
+ case Instruction::CatchPad:
+ case Instruction::CatchRet:
+ case Instruction::CleanupPad:
+ case Instruction::CleanupRet:
+ return false; // Misc instructions which have effects
+ }
+}
+
+bool llvm::mayBeMemoryDependent(const Instruction &I) {
+ return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
+}
+
+/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
+static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
+ switch (OR) {
+ case ConstantRange::OverflowResult::MayOverflow:
+ return OverflowResult::MayOverflow;
+ case ConstantRange::OverflowResult::AlwaysOverflowsLow:
+ return OverflowResult::AlwaysOverflowsLow;
+ case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
+ return OverflowResult::AlwaysOverflowsHigh;
+ case ConstantRange::OverflowResult::NeverOverflows:
+ return OverflowResult::NeverOverflows;
+ }
+ llvm_unreachable("Unknown OverflowResult");
+}
+
+/// Combine constant ranges from computeConstantRange() and computeKnownBits().
+static ConstantRange computeConstantRangeIncludingKnownBits(
+ const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
+ OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
+ KnownBits Known = computeKnownBits(
+ V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
+ ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
+ ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
+ ConstantRange::PreferredRangeType RangeType =
+ ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
+ return CR1.intersectWith(CR2, RangeType);
+}
+
+OverflowResult llvm::computeOverflowForUnsignedMul(
+ const Value *LHS, const Value *RHS, const DataLayout &DL,
+ AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
+ bool UseInstrInfo) {
+ KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
+ ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
+ return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
+}
+
+OverflowResult
+llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
+ const DataLayout &DL, AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT, bool UseInstrInfo) {
+ // Multiplying n * m significant bits yields a result of n + m significant
+ // bits. If the total number of significant bits does not exceed the
+ // result bit width (minus 1), there is no overflow.
+ // This means if we have enough leading sign bits in the operands
+ // we can guarantee that the result does not overflow.
+ // Ref: "Hacker's Delight" by Henry Warren
+ unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
+
+ // Note that underestimating the number of sign bits gives a more
+ // conservative answer.
+ unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
+ ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
+
+ // First handle the easy case: if we have enough sign bits there's
+ // definitely no overflow.
+ if (SignBits > BitWidth + 1)
+ return OverflowResult::NeverOverflows;
+
+ // There are two ambiguous cases where there can be no overflow:
+ // SignBits == BitWidth + 1 and
+ // SignBits == BitWidth
+ // The second case is difficult to check, therefore we only handle the
+ // first case.
+ if (SignBits == BitWidth + 1) {
+ // It overflows only when both arguments are negative and the true
+ // product is exactly the minimum negative number.
+ // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
+ // For simplicity we just check if at least one side is not negative.
+ KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
+ return OverflowResult::NeverOverflows;
+ }
+ return OverflowResult::MayOverflow;
+}
+
+OverflowResult llvm::computeOverflowForUnsignedAdd(
+ const Value *LHS, const Value *RHS, const DataLayout &DL,
+ AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
+ bool UseInstrInfo) {
+ ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
+ LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
+ RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
+ nullptr, UseInstrInfo);
+ return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
+}
+
+static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
+ const Value *RHS,
+ const AddOperator *Add,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ if (Add && Add->hasNoSignedWrap()) {
+ return OverflowResult::NeverOverflows;
+ }
+
+ // If LHS and RHS each have at least two sign bits, the addition will look
+ // like
+ //
+ // XX..... +
+ // YY.....
+ //
+ // If the carry into the most significant position is 0, X and Y can't both
+ // be 1 and therefore the carry out of the addition is also 0.
+ //
+ // If the carry into the most significant position is 1, X and Y can't both
+ // be 0 and therefore the carry out of the addition is also 1.
+ //
+ // Since the carry into the most significant position is always equal to
+ // the carry out of the addition, there is no signed overflow.
+ if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
+ ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
+ return OverflowResult::NeverOverflows;
+
+ ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
+ LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
+ ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
+ RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
+ OverflowResult OR =
+ mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
+ if (OR != OverflowResult::MayOverflow)
+ return OR;
+
+ // The remaining code needs Add to be available. Early returns if not so.
+ if (!Add)
+ return OverflowResult::MayOverflow;
+
+ // If the sign of Add is the same as at least one of the operands, this add
+ // CANNOT overflow. If this can be determined from the known bits of the
+ // operands the above signedAddMayOverflow() check will have already done so.
+ // The only other way to improve on the known bits is from an assumption, so
+ // call computeKnownBitsFromAssume() directly.
+ bool LHSOrRHSKnownNonNegative =
+ (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
+ bool LHSOrRHSKnownNegative =
+ (LHSRange.isAllNegative() || RHSRange.isAllNegative());
+ if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
+ KnownBits AddKnown(LHSRange.getBitWidth());
+ computeKnownBitsFromAssume(
+ Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
+ if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
+ (AddKnown.isNegative() && LHSOrRHSKnownNegative))
+ return OverflowResult::NeverOverflows;
+ }
+
+ return OverflowResult::MayOverflow;
+}
+
+OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
+ const Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
+ LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
+ ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
+ RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
+ return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
+}
+
+OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
+ const Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ // If LHS and RHS each have at least two sign bits, the subtraction
+ // cannot overflow.
+ if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
+ ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
+ return OverflowResult::NeverOverflows;
+
+ ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
+ LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
+ ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
+ RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
+ return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
+}
+
+bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
+ const DominatorTree &DT) {
+ SmallVector<const BranchInst *, 2> GuardingBranches;
+ SmallVector<const ExtractValueInst *, 2> Results;
+
+ for (const User *U : WO->users()) {
+ if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
+ assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
+
+ if (EVI->getIndices()[0] == 0)
+ Results.push_back(EVI);
+ else {
+ assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
+
+ for (const auto *U : EVI->users())
+ if (const auto *B = dyn_cast<BranchInst>(U)) {
+ assert(B->isConditional() && "How else is it using an i1?");
+ GuardingBranches.push_back(B);
+ }
+ }
+ } else {
+ // We are using the aggregate directly in a way we don't want to analyze
+ // here (storing it to a global, say).
+ return false;
+ }
+ }
+
+ auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
+ BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
+ if (!NoWrapEdge.isSingleEdge())
+ return false;
+
+ // Check if all users of the add are provably no-wrap.
+ for (const auto *Result : Results) {
+ // If the extractvalue itself is not executed on overflow, the we don't
+ // need to check each use separately, since domination is transitive.
+ if (DT.dominates(NoWrapEdge, Result->getParent()))
+ continue;
+
+ for (auto &RU : Result->uses())
+ if (!DT.dominates(NoWrapEdge, RU))
+ return false;
+ }
+
+ return true;
+ };
+
+ return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
+}
+
+
+OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
+ Add, DL, AC, CxtI, DT);
+}
+
+OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
+ const Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
+}
+
+bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
+ // A memory operation returns normally if it isn't volatile. A volatile
+ // operation is allowed to trap.
+ //
+ // An atomic operation isn't guaranteed to return in a reasonable amount of
+ // time because it's possible for another thread to interfere with it for an
+ // arbitrary length of time, but programs aren't allowed to rely on that.
+ if (const LoadInst *LI = dyn_cast<LoadInst>(I))
+ return !LI->isVolatile();
+ if (const StoreInst *SI = dyn_cast<StoreInst>(I))
+ return !SI->isVolatile();
+ if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
+ return !CXI->isVolatile();
+ if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
+ return !RMWI->isVolatile();
+ if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
+ return !MII->isVolatile();
+
+ // If there is no successor, then execution can't transfer to it.
+ if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
+ return !CRI->unwindsToCaller();
+ if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
+ return !CatchSwitch->unwindsToCaller();
+ if (isa<ResumeInst>(I))
+ return false;
+ if (isa<ReturnInst>(I))
+ return false;
+ if (isa<UnreachableInst>(I))
+ return false;
+
+ // Calls can throw, or contain an infinite loop, or kill the process.
+ if (auto CS = ImmutableCallSite(I)) {
+ // Call sites that throw have implicit non-local control flow.
+ if (!CS.doesNotThrow())
+ return false;
+
+ // A function which doens't throw and has "willreturn" attribute will
+ // always return.
+ if (CS.hasFnAttr(Attribute::WillReturn))
+ return true;
+
+ // Non-throwing call sites can loop infinitely, call exit/pthread_exit
+ // etc. and thus not return. However, LLVM already assumes that
+ //
+ // - Thread exiting actions are modeled as writes to memory invisible to
+ // the program.
+ //
+ // - Loops that don't have side effects (side effects are volatile/atomic
+ // stores and IO) always terminate (see http://llvm.org/PR965).
+ // Furthermore IO itself is also modeled as writes to memory invisible to
+ // the program.
+ //
+ // We rely on those assumptions here, and use the memory effects of the call
+ // target as a proxy for checking that it always returns.
+
+ // FIXME: This isn't aggressive enough; a call which only writes to a global
+ // is guaranteed to return.
+ return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
+ match(I, m_Intrinsic<Intrinsic::assume>()) ||
+ match(I, m_Intrinsic<Intrinsic::sideeffect>()) ||
+ match(I, m_Intrinsic<Intrinsic::experimental_widenable_condition>());
+ }
+
+ // Other instructions return normally.
+ return true;
+}
+
+bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
+ // TODO: This is slightly conservative for invoke instruction since exiting
+ // via an exception *is* normal control for them.
+ for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
+ if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
+ return false;
+ return true;
+}
+
+bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
+ const Loop *L) {
+ // The loop header is guaranteed to be executed for every iteration.
+ //
+ // FIXME: Relax this constraint to cover all basic blocks that are
+ // guaranteed to be executed at every iteration.
+ if (I->getParent() != L->getHeader()) return false;
+
+ for (const Instruction &LI : *L->getHeader()) {
+ if (&LI == I) return true;
+ if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
+ }
+ llvm_unreachable("Instruction not contained in its own parent basic block.");
+}
+
+bool llvm::propagatesFullPoison(const Instruction *I) {
+ // TODO: This should include all instructions apart from phis, selects and
+ // call-like instructions.
+ switch (I->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Xor:
+ case Instruction::Trunc:
+ case Instruction::BitCast:
+ case Instruction::AddrSpaceCast:
+ case Instruction::Mul:
+ case Instruction::Shl:
+ case Instruction::GetElementPtr:
+ // These operations all propagate poison unconditionally. Note that poison
+ // is not any particular value, so xor or subtraction of poison with
+ // itself still yields poison, not zero.
+ return true;
+
+ case Instruction::AShr:
+ case Instruction::SExt:
+ // For these operations, one bit of the input is replicated across
+ // multiple output bits. A replicated poison bit is still poison.
+ return true;
+
+ case Instruction::ICmp:
+ // Comparing poison with any value yields poison. This is why, for
+ // instance, x s< (x +nsw 1) can be folded to true.
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
+ switch (I->getOpcode()) {
+ case Instruction::Store:
+ return cast<StoreInst>(I)->getPointerOperand();
+
+ case Instruction::Load:
+ return cast<LoadInst>(I)->getPointerOperand();
+
+ case Instruction::AtomicCmpXchg:
+ return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
+
+ case Instruction::AtomicRMW:
+ return cast<AtomicRMWInst>(I)->getPointerOperand();
+
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ return I->getOperand(1);
+
+ default:
+ // Note: It's really tempting to think that a conditional branch or
+ // switch should be listed here, but that's incorrect. It's not
+ // branching off of poison which is UB, it is executing a side effecting
+ // instruction which follows the branch.
+ return nullptr;
+ }
+}
+
+bool llvm::mustTriggerUB(const Instruction *I,
+ const SmallSet<const Value *, 16>& KnownPoison) {
+ auto *NotPoison = getGuaranteedNonFullPoisonOp(I);
+ return (NotPoison && KnownPoison.count(NotPoison));
+}
+
+
+bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
+ // We currently only look for uses of poison values within the same basic
+ // block, as that makes it easier to guarantee that the uses will be
+ // executed given that PoisonI is executed.
+ //
+ // FIXME: Expand this to consider uses beyond the same basic block. To do
+ // this, look out for the distinction between post-dominance and strong
+ // post-dominance.
+ const BasicBlock *BB = PoisonI->getParent();
+
+ // Set of instructions that we have proved will yield poison if PoisonI
+ // does.
+ SmallSet<const Value *, 16> YieldsPoison;
+ SmallSet<const BasicBlock *, 4> Visited;
+ YieldsPoison.insert(PoisonI);
+ Visited.insert(PoisonI->getParent());
+
+ BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
+
+ unsigned Iter = 0;
+ while (Iter++ < MaxDepth) {
+ for (auto &I : make_range(Begin, End)) {
+ if (&I != PoisonI) {
+ if (mustTriggerUB(&I, YieldsPoison))
+ return true;
+ if (!isGuaranteedToTransferExecutionToSuccessor(&I))
+ return false;
+ }
+
+ // Mark poison that propagates from I through uses of I.
+ if (YieldsPoison.count(&I)) {
+ for (const User *User : I.users()) {
+ const Instruction *UserI = cast<Instruction>(User);
+ if (propagatesFullPoison(UserI))
+ YieldsPoison.insert(User);
+ }
+ }
+ }
+
+ if (auto *NextBB = BB->getSingleSuccessor()) {
+ if (Visited.insert(NextBB).second) {
+ BB = NextBB;
+ Begin = BB->getFirstNonPHI()->getIterator();
+ End = BB->end();
+ continue;
+ }
+ }
+
+ break;
+ }
+ return false;
+}
+
+static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
+ if (FMF.noNaNs())
+ return true;
+
+ if (auto *C = dyn_cast<ConstantFP>(V))
+ return !C->isNaN();
+
+ if (auto *C = dyn_cast<ConstantDataVector>(V)) {
+ if (!C->getElementType()->isFloatingPointTy())
+ return false;
+ for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
+ if (C->getElementAsAPFloat(I).isNaN())
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+static bool isKnownNonZero(const Value *V) {
+ if (auto *C = dyn_cast<ConstantFP>(V))
+ return !C->isZero();
+
+ if (auto *C = dyn_cast<ConstantDataVector>(V)) {
+ if (!C->getElementType()->isFloatingPointTy())
+ return false;
+ for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
+ if (C->getElementAsAPFloat(I).isZero())
+ return false;
+ }
+ return true;
+ }
+
+ return false;
+}
+
+/// Match clamp pattern for float types without care about NaNs or signed zeros.
+/// Given non-min/max outer cmp/select from the clamp pattern this
+/// function recognizes if it can be substitued by a "canonical" min/max
+/// pattern.
+static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TrueVal, Value *FalseVal,
+ Value *&LHS, Value *&RHS) {
+ // Try to match
+ // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
+ // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
+ // and return description of the outer Max/Min.
+
+ // First, check if select has inverse order:
+ if (CmpRHS == FalseVal) {
+ std::swap(TrueVal, FalseVal);
+ Pred = CmpInst::getInversePredicate(Pred);
+ }
+
+ // Assume success now. If there's no match, callers should not use these anyway.
+ LHS = TrueVal;
+ RHS = FalseVal;
+
+ const APFloat *FC1;
+ if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ const APFloat *FC2;
+ switch (Pred) {
+ case CmpInst::FCMP_OLT:
+ case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_ULT:
+ case CmpInst::FCMP_ULE:
+ if (match(FalseVal,
+ m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
+ m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
+ FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
+ return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
+ break;
+ case CmpInst::FCMP_OGT:
+ case CmpInst::FCMP_OGE:
+ case CmpInst::FCMP_UGT:
+ case CmpInst::FCMP_UGE:
+ if (match(FalseVal,
+ m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
+ m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
+ FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
+ return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
+ break;
+ default:
+ break;
+ }
+
+ return {SPF_UNKNOWN, SPNB_NA, false};
+}
+
+/// Recognize variations of:
+/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
+static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TrueVal, Value *FalseVal) {
+ // Swap the select operands and predicate to match the patterns below.
+ if (CmpRHS != TrueVal) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ std::swap(TrueVal, FalseVal);
+ }
+ const APInt *C1;
+ if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
+ const APInt *C2;
+ // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
+ if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
+ C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
+ return {SPF_SMAX, SPNB_NA, false};
+
+ // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
+ if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
+ C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
+ return {SPF_SMIN, SPNB_NA, false};
+
+ // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
+ if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
+ C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
+ return {SPF_UMAX, SPNB_NA, false};
+
+ // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
+ if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
+ C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
+ return {SPF_UMIN, SPNB_NA, false};
+ }
+ return {SPF_UNKNOWN, SPNB_NA, false};
+}
+
+/// Recognize variations of:
+/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
+static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TVal, Value *FVal,
+ unsigned Depth) {
+ // TODO: Allow FP min/max with nnan/nsz.
+ assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
+
+ Value *A, *B;
+ SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
+ if (!SelectPatternResult::isMinOrMax(L.Flavor))
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ Value *C, *D;
+ SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
+ if (L.Flavor != R.Flavor)
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ // We have something like: x Pred y ? min(a, b) : min(c, d).
+ // Try to match the compare to the min/max operations of the select operands.
+ // First, make sure we have the right compare predicate.
+ switch (L.Flavor) {
+ case SPF_SMIN:
+ if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ std::swap(CmpLHS, CmpRHS);
+ }
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
+ break;
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ case SPF_SMAX:
+ if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ std::swap(CmpLHS, CmpRHS);
+ }
+ if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
+ break;
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ case SPF_UMIN:
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ std::swap(CmpLHS, CmpRHS);
+ }
+ if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
+ break;
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ case SPF_UMAX:
+ if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
+ Pred = ICmpInst::getSwappedPredicate(Pred);
+ std::swap(CmpLHS, CmpRHS);
+ }
+ if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
+ break;
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ default:
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ }
+
+ // If there is a common operand in the already matched min/max and the other
+ // min/max operands match the compare operands (either directly or inverted),
+ // then this is min/max of the same flavor.
+
+ // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
+ // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
+ if (D == B) {
+ if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
+ match(A, m_Not(m_Specific(CmpRHS)))))
+ return {L.Flavor, SPNB_NA, false};
+ }
+ // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
+ // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
+ if (C == B) {
+ if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
+ match(A, m_Not(m_Specific(CmpRHS)))))
+ return {L.Flavor, SPNB_NA, false};
+ }
+ // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
+ // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
+ if (D == A) {
+ if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
+ match(B, m_Not(m_Specific(CmpRHS)))))
+ return {L.Flavor, SPNB_NA, false};
+ }
+ // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
+ // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
+ if (C == A) {
+ if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
+ match(B, m_Not(m_Specific(CmpRHS)))))
+ return {L.Flavor, SPNB_NA, false};
+ }
+
+ return {SPF_UNKNOWN, SPNB_NA, false};
+}
+
+/// Match non-obvious integer minimum and maximum sequences.
+static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TrueVal, Value *FalseVal,
+ Value *&LHS, Value *&RHS,
+ unsigned Depth) {
+ // Assume success. If there's no match, callers should not use these anyway.
+ LHS = TrueVal;
+ RHS = FalseVal;
+
+ SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
+ if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
+ return SPR;
+
+ SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
+ if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
+ return SPR;
+
+ if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ // Z = X -nsw Y
+ // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
+ // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
+ if (match(TrueVal, m_Zero()) &&
+ match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
+ return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
+
+ // Z = X -nsw Y
+ // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
+ // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
+ if (match(FalseVal, m_Zero()) &&
+ match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
+ return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
+
+ const APInt *C1;
+ if (!match(CmpRHS, m_APInt(C1)))
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ // An unsigned min/max can be written with a signed compare.
+ const APInt *C2;
+ if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
+ (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
+ // Is the sign bit set?
+ // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
+ // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
+ if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
+ C2->isMaxSignedValue())
+ return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
+
+ // Is the sign bit clear?
+ // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
+ // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
+ if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
+ C2->isMinSignedValue())
+ return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
+ }
+
+ // Look through 'not' ops to find disguised signed min/max.
+ // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
+ // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
+ if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
+ match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
+ return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
+
+ // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
+ // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
+ if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
+ match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
+ return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
+
+ return {SPF_UNKNOWN, SPNB_NA, false};
+}
+
+bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
+ assert(X && Y && "Invalid operand");
+
+ // X = sub (0, Y) || X = sub nsw (0, Y)
+ if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
+ (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
+ return true;
+
+ // Y = sub (0, X) || Y = sub nsw (0, X)
+ if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
+ (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
+ return true;
+
+ // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
+ Value *A, *B;
+ return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
+ match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
+ (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
+ match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
+}
+
+static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
+ FastMathFlags FMF,
+ Value *CmpLHS, Value *CmpRHS,
+ Value *TrueVal, Value *FalseVal,
+ Value *&LHS, Value *&RHS,
+ unsigned Depth) {
+ if (CmpInst::isFPPredicate(Pred)) {
+ // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
+ // 0.0 operand, set the compare's 0.0 operands to that same value for the
+ // purpose of identifying min/max. Disregard vector constants with undefined
+ // elements because those can not be back-propagated for analysis.
+ Value *OutputZeroVal = nullptr;
+ if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
+ !cast<Constant>(TrueVal)->containsUndefElement())
+ OutputZeroVal = TrueVal;
+ else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
+ !cast<Constant>(FalseVal)->containsUndefElement())
+ OutputZeroVal = FalseVal;
+
+ if (OutputZeroVal) {
+ if (match(CmpLHS, m_AnyZeroFP()))
+ CmpLHS = OutputZeroVal;
+ if (match(CmpRHS, m_AnyZeroFP()))
+ CmpRHS = OutputZeroVal;
+ }
+ }
+
+ LHS = CmpLHS;
+ RHS = CmpRHS;
+
+ // Signed zero may return inconsistent results between implementations.
+ // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
+ // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
+ // Therefore, we behave conservatively and only proceed if at least one of the
+ // operands is known to not be zero or if we don't care about signed zero.
+ switch (Pred) {
+ default: break;
+ // FIXME: Include OGT/OLT/UGT/ULT.
+ case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
+ if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
+ !isKnownNonZero(CmpRHS))
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ }
+
+ SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
+ bool Ordered = false;
+
+ // When given one NaN and one non-NaN input:
+ // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
+ // - A simple C99 (a < b ? a : b) construction will return 'b' (as the
+ // ordered comparison fails), which could be NaN or non-NaN.
+ // so here we discover exactly what NaN behavior is required/accepted.
+ if (CmpInst::isFPPredicate(Pred)) {
+ bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
+ bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
+
+ if (LHSSafe && RHSSafe) {
+ // Both operands are known non-NaN.
+ NaNBehavior = SPNB_RETURNS_ANY;
+ } else if (CmpInst::isOrdered(Pred)) {
+ // An ordered comparison will return false when given a NaN, so it
+ // returns the RHS.
+ Ordered = true;
+ if (LHSSafe)
+ // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
+ NaNBehavior = SPNB_RETURNS_NAN;
+ else if (RHSSafe)
+ NaNBehavior = SPNB_RETURNS_OTHER;
+ else
+ // Completely unsafe.
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ } else {
+ Ordered = false;
+ // An unordered comparison will return true when given a NaN, so it
+ // returns the LHS.
+ if (LHSSafe)
+ // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
+ NaNBehavior = SPNB_RETURNS_OTHER;
+ else if (RHSSafe)
+ NaNBehavior = SPNB_RETURNS_NAN;
+ else
+ // Completely unsafe.
+ return {SPF_UNKNOWN, SPNB_NA, false};
+ }
+ }
+
+ if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
+ std::swap(CmpLHS, CmpRHS);
+ Pred = CmpInst::getSwappedPredicate(Pred);
+ if (NaNBehavior == SPNB_RETURNS_NAN)
+ NaNBehavior = SPNB_RETURNS_OTHER;
+ else if (NaNBehavior == SPNB_RETURNS_OTHER)
+ NaNBehavior = SPNB_RETURNS_NAN;
+ Ordered = !Ordered;
+ }
+
+ // ([if]cmp X, Y) ? X : Y
+ if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
+ switch (Pred) {
+ default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
+ case ICmpInst::ICMP_UGT:
+ case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
+ case ICmpInst::ICMP_SGT:
+ case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
+ case ICmpInst::ICMP_ULT:
+ case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
+ case ICmpInst::ICMP_SLT:
+ case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
+ case FCmpInst::FCMP_UGT:
+ case FCmpInst::FCMP_UGE:
+ case FCmpInst::FCMP_OGT:
+ case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
+ case FCmpInst::FCMP_ULT:
+ case FCmpInst::FCMP_ULE:
+ case FCmpInst::FCMP_OLT:
+ case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
+ }
+ }
+
+ if (isKnownNegation(TrueVal, FalseVal)) {
+ // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
+ // match against either LHS or sext(LHS).
+ auto MaybeSExtCmpLHS =
+ m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
+ auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
+ auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
+ if (match(TrueVal, MaybeSExtCmpLHS)) {
+ // Set the return values. If the compare uses the negated value (-X >s 0),
+ // swap the return values because the negated value is always 'RHS'.
+ LHS = TrueVal;
+ RHS = FalseVal;
+ if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
+ std::swap(LHS, RHS);
+
+ // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
+ // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
+ if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
+ return {SPF_ABS, SPNB_NA, false};
+
+ // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
+ if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
+ return {SPF_ABS, SPNB_NA, false};
+
+ // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
+ // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
+ if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
+ return {SPF_NABS, SPNB_NA, false};
+ }
+ else if (match(FalseVal, MaybeSExtCmpLHS)) {
+ // Set the return values. If the compare uses the negated value (-X >s 0),
+ // swap the return values because the negated value is always 'RHS'.
+ LHS = FalseVal;
+ RHS = TrueVal;
+ if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
+ std::swap(LHS, RHS);
+
+ // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
+ // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
+ if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
+ return {SPF_NABS, SPNB_NA, false};
+
+ // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
+ // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
+ if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
+ return {SPF_ABS, SPNB_NA, false};
+ }
+ }
+
+ if (CmpInst::isIntPredicate(Pred))
+ return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
+
+ // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
+ // may return either -0.0 or 0.0, so fcmp/select pair has stricter
+ // semantics than minNum. Be conservative in such case.
+ if (NaNBehavior != SPNB_RETURNS_ANY ||
+ (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
+ !isKnownNonZero(CmpRHS)))
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
+}
+
+/// Helps to match a select pattern in case of a type mismatch.
+///
+/// The function processes the case when type of true and false values of a
+/// select instruction differs from type of the cmp instruction operands because
+/// of a cast instruction. The function checks if it is legal to move the cast
+/// operation after "select". If yes, it returns the new second value of
+/// "select" (with the assumption that cast is moved):
+/// 1. As operand of cast instruction when both values of "select" are same cast
+/// instructions.
+/// 2. As restored constant (by applying reverse cast operation) when the first
+/// value of the "select" is a cast operation and the second value is a
+/// constant.
+/// NOTE: We return only the new second value because the first value could be
+/// accessed as operand of cast instruction.
+static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
+ Instruction::CastOps *CastOp) {
+ auto *Cast1 = dyn_cast<CastInst>(V1);
+ if (!Cast1)
+ return nullptr;
+
+ *CastOp = Cast1->getOpcode();
+ Type *SrcTy = Cast1->getSrcTy();
+ if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
+ // If V1 and V2 are both the same cast from the same type, look through V1.
+ if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
+ return Cast2->getOperand(0);
+ return nullptr;
+ }
+
+ auto *C = dyn_cast<Constant>(V2);
+ if (!C)
+ return nullptr;
+
+ Constant *CastedTo = nullptr;
+ switch (*CastOp) {
+ case Instruction::ZExt:
+ if (CmpI->isUnsigned())
+ CastedTo = ConstantExpr::getTrunc(C, SrcTy);
+ break;
+ case Instruction::SExt:
+ if (CmpI->isSigned())
+ CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
+ break;
+ case Instruction::Trunc:
+ Constant *CmpConst;
+ if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
+ CmpConst->getType() == SrcTy) {
+ // Here we have the following case:
+ //
+ // %cond = cmp iN %x, CmpConst
+ // %tr = trunc iN %x to iK
+ // %narrowsel = select i1 %cond, iK %t, iK C
+ //
+ // We can always move trunc after select operation:
+ //
+ // %cond = cmp iN %x, CmpConst
+ // %widesel = select i1 %cond, iN %x, iN CmpConst
+ // %tr = trunc iN %widesel to iK
+ //
+ // Note that C could be extended in any way because we don't care about
+ // upper bits after truncation. It can't be abs pattern, because it would
+ // look like:
+ //
+ // select i1 %cond, x, -x.
+ //
+ // So only min/max pattern could be matched. Such match requires widened C
+ // == CmpConst. That is why set widened C = CmpConst, condition trunc
+ // CmpConst == C is checked below.
+ CastedTo = CmpConst;
+ } else {
+ CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
+ }
+ break;
+ case Instruction::FPTrunc:
+ CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
+ break;
+ case Instruction::FPExt:
+ CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
+ break;
+ case Instruction::FPToUI:
+ CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
+ break;
+ case Instruction::FPToSI:
+ CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
+ break;
+ case Instruction::UIToFP:
+ CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
+ break;
+ case Instruction::SIToFP:
+ CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
+ break;
+ default:
+ break;
+ }
+
+ if (!CastedTo)
+ return nullptr;
+
+ // Make sure the cast doesn't lose any information.
+ Constant *CastedBack =
+ ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
+ if (CastedBack != C)
+ return nullptr;
+
+ return CastedTo;
+}
+
+SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
+ Instruction::CastOps *CastOp,
+ unsigned Depth) {
+ if (Depth >= MaxDepth)
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ SelectInst *SI = dyn_cast<SelectInst>(V);
+ if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
+
+ CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
+ if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
+
+ Value *TrueVal = SI->getTrueValue();
+ Value *FalseVal = SI->getFalseValue();
+
+ return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
+ CastOp, Depth);
+}
+
+SelectPatternResult llvm::matchDecomposedSelectPattern(
+ CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
+ Instruction::CastOps *CastOp, unsigned Depth) {
+ CmpInst::Predicate Pred = CmpI->getPredicate();
+ Value *CmpLHS = CmpI->getOperand(0);
+ Value *CmpRHS = CmpI->getOperand(1);
+ FastMathFlags FMF;
+ if (isa<FPMathOperator>(CmpI))
+ FMF = CmpI->getFastMathFlags();
+
+ // Bail out early.
+ if (CmpI->isEquality())
+ return {SPF_UNKNOWN, SPNB_NA, false};
+
+ // Deal with type mismatches.
+ if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
+ if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
+ // If this is a potential fmin/fmax with a cast to integer, then ignore
+ // -0.0 because there is no corresponding integer value.
+ if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
+ FMF.setNoSignedZeros();
+ return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
+ cast<CastInst>(TrueVal)->getOperand(0), C,
+ LHS, RHS, Depth);
+ }
+ if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
+ // If this is a potential fmin/fmax with a cast to integer, then ignore
+ // -0.0 because there is no corresponding integer value.
+ if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
+ FMF.setNoSignedZeros();
+ return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
+ C, cast<CastInst>(FalseVal)->getOperand(0),
+ LHS, RHS, Depth);
+ }
+ }
+ return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
+ LHS, RHS, Depth);
+}
+
+CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
+ if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
+ if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
+ if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
+ if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
+ if (SPF == SPF_FMINNUM)
+ return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
+ if (SPF == SPF_FMAXNUM)
+ return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
+ llvm_unreachable("unhandled!");
+}
+
+SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
+ if (SPF == SPF_SMIN) return SPF_SMAX;
+ if (SPF == SPF_UMIN) return SPF_UMAX;
+ if (SPF == SPF_SMAX) return SPF_SMIN;
+ if (SPF == SPF_UMAX) return SPF_UMIN;
+ llvm_unreachable("unhandled!");
+}
+
+CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
+ return getMinMaxPred(getInverseMinMaxFlavor(SPF));
+}
+
+/// Return true if "icmp Pred LHS RHS" is always true.
+static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
+ const Value *RHS, const DataLayout &DL,
+ unsigned Depth) {
+ assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
+ if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
+ return true;
+
+ switch (Pred) {
+ default:
+ return false;
+
+ case CmpInst::ICMP_SLE: {
+ const APInt *C;
+
+ // LHS s<= LHS +_{nsw} C if C >= 0
+ if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
+ return !C->isNegative();
+ return false;
+ }
+
+ case CmpInst::ICMP_ULE: {
+ const APInt *C;
+
+ // LHS u<= LHS +_{nuw} C for any C
+ if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
+ return true;
+
+ // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
+ auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
+ const Value *&X,
+ const APInt *&CA, const APInt *&CB) {
+ if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
+ match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
+ return true;
+
+ // If X & C == 0 then (X | C) == X +_{nuw} C
+ if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
+ match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
+ KnownBits Known(CA->getBitWidth());
+ computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
+ /*CxtI*/ nullptr, /*DT*/ nullptr);
+ if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
+ return true;
+ }
+
+ return false;
+ };
+
+ const Value *X;
+ const APInt *CLHS, *CRHS;
+ if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
+ return CLHS->ule(*CRHS);
+
+ return false;
+ }
+ }
+}
+
+/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
+/// ALHS ARHS" is true. Otherwise, return None.
+static Optional<bool>
+isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
+ const Value *ARHS, const Value *BLHS, const Value *BRHS,
+ const DataLayout &DL, unsigned Depth) {
+ switch (Pred) {
+ default:
+ return None;
+
+ case CmpInst::ICMP_SLT:
+ case CmpInst::ICMP_SLE:
+ if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
+ isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
+ return true;
+ return None;
+
+ case CmpInst::ICMP_ULT:
+ case CmpInst::ICMP_ULE:
+ if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
+ isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
+ return true;
+ return None;
+ }
+}
+
+/// Return true if the operands of the two compares match. IsSwappedOps is true
+/// when the operands match, but are swapped.
+static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
+ const Value *BLHS, const Value *BRHS,
+ bool &IsSwappedOps) {
+
+ bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
+ IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
+ return IsMatchingOps || IsSwappedOps;
+}
+
+/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
+/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
+/// Otherwise, return None if we can't infer anything.
+static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
+ CmpInst::Predicate BPred,
+ bool AreSwappedOps) {
+ // Canonicalize the predicate as if the operands were not commuted.
+ if (AreSwappedOps)
+ BPred = ICmpInst::getSwappedPredicate(BPred);
+
+ if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
+ return true;
+ if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
+ return false;
+
+ return None;
+}
+
+/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
+/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
+/// Otherwise, return None if we can't infer anything.
+static Optional<bool>
+isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
+ const ConstantInt *C1,
+ CmpInst::Predicate BPred,
+ const ConstantInt *C2) {
+ ConstantRange DomCR =
+ ConstantRange::makeExactICmpRegion(APred, C1->getValue());
+ ConstantRange CR =
+ ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
+ ConstantRange Intersection = DomCR.intersectWith(CR);
+ ConstantRange Difference = DomCR.difference(CR);
+ if (Intersection.isEmptySet())
+ return false;
+ if (Difference.isEmptySet())
+ return true;
+ return None;
+}
+
+/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
+/// false. Otherwise, return None if we can't infer anything.
+static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
+ const ICmpInst *RHS,
+ const DataLayout &DL, bool LHSIsTrue,
+ unsigned Depth) {
+ Value *ALHS = LHS->getOperand(0);
+ Value *ARHS = LHS->getOperand(1);
+ // The rest of the logic assumes the LHS condition is true. If that's not the
+ // case, invert the predicate to make it so.
+ ICmpInst::Predicate APred =
+ LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
+
+ Value *BLHS = RHS->getOperand(0);
+ Value *BRHS = RHS->getOperand(1);
+ ICmpInst::Predicate BPred = RHS->getPredicate();
+
+ // Can we infer anything when the two compares have matching operands?
+ bool AreSwappedOps;
+ if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
+ if (Optional<bool> Implication = isImpliedCondMatchingOperands(
+ APred, BPred, AreSwappedOps))
+ return Implication;
+ // No amount of additional analysis will infer the second condition, so
+ // early exit.
+ return None;
+ }
+
+ // Can we infer anything when the LHS operands match and the RHS operands are
+ // constants (not necessarily matching)?
+ if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
+ if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
+ APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
+ return Implication;
+ // No amount of additional analysis will infer the second condition, so
+ // early exit.
+ return None;
+ }
+
+ if (APred == BPred)
+ return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
+ return None;
+}
+
+/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
+/// false. Otherwise, return None if we can't infer anything. We expect the
+/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
+static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
+ const ICmpInst *RHS,
+ const DataLayout &DL, bool LHSIsTrue,
+ unsigned Depth) {
+ // The LHS must be an 'or' or an 'and' instruction.
+ assert((LHS->getOpcode() == Instruction::And ||
+ LHS->getOpcode() == Instruction::Or) &&
+ "Expected LHS to be 'and' or 'or'.");
+
+ assert(Depth <= MaxDepth && "Hit recursion limit");
+
+ // If the result of an 'or' is false, then we know both legs of the 'or' are
+ // false. Similarly, if the result of an 'and' is true, then we know both
+ // legs of the 'and' are true.
+ Value *ALHS, *ARHS;
+ if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
+ (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
+ // FIXME: Make this non-recursion.
+ if (Optional<bool> Implication =
+ isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
+ return Implication;
+ if (Optional<bool> Implication =
+ isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
+ return Implication;
+ return None;
+ }
+ return None;
+}
+
+Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
+ const DataLayout &DL, bool LHSIsTrue,
+ unsigned Depth) {
+ // Bail out when we hit the limit.
+ if (Depth == MaxDepth)
+ return None;
+
+ // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
+ // example.
+ if (LHS->getType() != RHS->getType())
+ return None;
+
+ Type *OpTy = LHS->getType();
+ assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
+
+ // LHS ==> RHS by definition
+ if (LHS == RHS)
+ return LHSIsTrue;
+
+ // FIXME: Extending the code below to handle vectors.
+ if (OpTy->isVectorTy())
+ return None;
+
+ assert(OpTy->isIntegerTy(1) && "implied by above");
+
+ // Both LHS and RHS are icmps.
+ const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
+ const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
+ if (LHSCmp && RHSCmp)
+ return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
+
+ // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
+ // an icmp. FIXME: Add support for and/or on the RHS.
+ const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
+ if (LHSBO && RHSCmp) {
+ if ((LHSBO->getOpcode() == Instruction::And ||
+ LHSBO->getOpcode() == Instruction::Or))
+ return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
+ }
+ return None;
+}
+
+Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
+ const Instruction *ContextI,
+ const DataLayout &DL) {
+ assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
+ if (!ContextI || !ContextI->getParent())
+ return None;
+
+ // TODO: This is a poor/cheap way to determine dominance. Should we use a
+ // dominator tree (eg, from a SimplifyQuery) instead?
+ const BasicBlock *ContextBB = ContextI->getParent();
+ const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
+ if (!PredBB)
+ return None;
+
+ // We need a conditional branch in the predecessor.
+ Value *PredCond;
+ BasicBlock *TrueBB, *FalseBB;
+ if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
+ return None;
+
+ // The branch should get simplified. Don't bother simplifying this condition.
+ if (TrueBB == FalseBB)
+ return None;
+
+ assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
+ "Predecessor block does not point to successor?");
+
+ // Is this condition implied by the predecessor condition?
+ bool CondIsTrue = TrueBB == ContextBB;
+ return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
+}
+
+static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
+ APInt &Upper, const InstrInfoQuery &IIQ) {
+ unsigned Width = Lower.getBitWidth();
+ const APInt *C;
+ switch (BO.getOpcode()) {
+ case Instruction::Add:
+ if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
+ // FIXME: If we have both nuw and nsw, we should reduce the range further.
+ if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
+ // 'add nuw x, C' produces [C, UINT_MAX].
+ Lower = *C;
+ } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
+ if (C->isNegative()) {
+ // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
+ Lower = APInt::getSignedMinValue(Width);
+ Upper = APInt::getSignedMaxValue(Width) + *C + 1;
+ } else {
+ // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
+ Lower = APInt::getSignedMinValue(Width) + *C;
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ }
+ }
+ }
+ break;
+
+ case Instruction::And:
+ if (match(BO.getOperand(1), m_APInt(C)))
+ // 'and x, C' produces [0, C].
+ Upper = *C + 1;
+ break;
+
+ case Instruction::Or:
+ if (match(BO.getOperand(1), m_APInt(C)))
+ // 'or x, C' produces [C, UINT_MAX].
+ Lower = *C;
+ break;
+
+ case Instruction::AShr:
+ if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
+ // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
+ Lower = APInt::getSignedMinValue(Width).ashr(*C);
+ Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ unsigned ShiftAmount = Width - 1;
+ if (!C->isNullValue() && IIQ.isExact(&BO))
+ ShiftAmount = C->countTrailingZeros();
+ if (C->isNegative()) {
+ // 'ashr C, x' produces [C, C >> (Width-1)]
+ Lower = *C;
+ Upper = C->ashr(ShiftAmount) + 1;
+ } else {
+ // 'ashr C, x' produces [C >> (Width-1), C]
+ Lower = C->ashr(ShiftAmount);
+ Upper = *C + 1;
+ }
+ }
+ break;
+
+ case Instruction::LShr:
+ if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
+ // 'lshr x, C' produces [0, UINT_MAX >> C].
+ Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ // 'lshr C, x' produces [C >> (Width-1), C].
+ unsigned ShiftAmount = Width - 1;
+ if (!C->isNullValue() && IIQ.isExact(&BO))
+ ShiftAmount = C->countTrailingZeros();
+ Lower = C->lshr(ShiftAmount);
+ Upper = *C + 1;
+ }
+ break;
+
+ case Instruction::Shl:
+ if (match(BO.getOperand(0), m_APInt(C))) {
+ if (IIQ.hasNoUnsignedWrap(&BO)) {
+ // 'shl nuw C, x' produces [C, C << CLZ(C)]
+ Lower = *C;
+ Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
+ } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
+ if (C->isNegative()) {
+ // 'shl nsw C, x' produces [C << CLO(C)-1, C]
+ unsigned ShiftAmount = C->countLeadingOnes() - 1;
+ Lower = C->shl(ShiftAmount);
+ Upper = *C + 1;
+ } else {
+ // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
+ unsigned ShiftAmount = C->countLeadingZeros() - 1;
+ Lower = *C;
+ Upper = C->shl(ShiftAmount) + 1;
+ }
+ }
+ }
+ break;
+
+ case Instruction::SDiv:
+ if (match(BO.getOperand(1), m_APInt(C))) {
+ APInt IntMin = APInt::getSignedMinValue(Width);
+ APInt IntMax = APInt::getSignedMaxValue(Width);
+ if (C->isAllOnesValue()) {
+ // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
+ // where C != -1 and C != 0 and C != 1
+ Lower = IntMin + 1;
+ Upper = IntMax + 1;
+ } else if (C->countLeadingZeros() < Width - 1) {
+ // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
+ // where C != -1 and C != 0 and C != 1
+ Lower = IntMin.sdiv(*C);
+ Upper = IntMax.sdiv(*C);
+ if (Lower.sgt(Upper))
+ std::swap(Lower, Upper);
+ Upper = Upper + 1;
+ assert(Upper != Lower && "Upper part of range has wrapped!");
+ }
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ if (C->isMinSignedValue()) {
+ // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
+ Lower = *C;
+ Upper = Lower.lshr(1) + 1;
+ } else {
+ // 'sdiv C, x' produces [-|C|, |C|].
+ Upper = C->abs() + 1;
+ Lower = (-Upper) + 1;
+ }
+ }
+ break;
+
+ case Instruction::UDiv:
+ if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
+ // 'udiv x, C' produces [0, UINT_MAX / C].
+ Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
+ } else if (match(BO.getOperand(0), m_APInt(C))) {
+ // 'udiv C, x' produces [0, C].
+ Upper = *C + 1;
+ }
+ break;
+
+ case Instruction::SRem:
+ if (match(BO.getOperand(1), m_APInt(C))) {
+ // 'srem x, C' produces (-|C|, |C|).
+ Upper = C->abs();
+ Lower = (-Upper) + 1;
+ }
+ break;
+
+ case Instruction::URem:
+ if (match(BO.getOperand(1), m_APInt(C)))
+ // 'urem x, C' produces [0, C).
+ Upper = *C;
+ break;
+
+ default:
+ break;
+ }
+}
+
+static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
+ APInt &Upper) {
+ unsigned Width = Lower.getBitWidth();
+ const APInt *C;
+ switch (II.getIntrinsicID()) {
+ case Intrinsic::uadd_sat:
+ // uadd.sat(x, C) produces [C, UINT_MAX].
+ if (match(II.getOperand(0), m_APInt(C)) ||
+ match(II.getOperand(1), m_APInt(C)))
+ Lower = *C;
+ break;
+ case Intrinsic::sadd_sat:
+ if (match(II.getOperand(0), m_APInt(C)) ||
+ match(II.getOperand(1), m_APInt(C))) {
+ if (C->isNegative()) {
+ // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
+ Lower = APInt::getSignedMinValue(Width);
+ Upper = APInt::getSignedMaxValue(Width) + *C + 1;
+ } else {
+ // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
+ Lower = APInt::getSignedMinValue(Width) + *C;
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ }
+ }
+ break;
+ case Intrinsic::usub_sat:
+ // usub.sat(C, x) produces [0, C].
+ if (match(II.getOperand(0), m_APInt(C)))
+ Upper = *C + 1;
+ // usub.sat(x, C) produces [0, UINT_MAX - C].
+ else if (match(II.getOperand(1), m_APInt(C)))
+ Upper = APInt::getMaxValue(Width) - *C + 1;
+ break;
+ case Intrinsic::ssub_sat:
+ if (match(II.getOperand(0), m_APInt(C))) {
+ if (C->isNegative()) {
+ // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
+ Lower = APInt::getSignedMinValue(Width);
+ Upper = *C - APInt::getSignedMinValue(Width) + 1;
+ } else {
+ // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
+ Lower = *C - APInt::getSignedMaxValue(Width);
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ }
+ } else if (match(II.getOperand(1), m_APInt(C))) {
+ if (C->isNegative()) {
+ // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
+ Lower = APInt::getSignedMinValue(Width) - *C;
+ Upper = APInt::getSignedMaxValue(Width) + 1;
+ } else {
+ // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
+ Lower = APInt::getSignedMinValue(Width);
+ Upper = APInt::getSignedMaxValue(Width) - *C + 1;
+ }
+ }
+ break;
+ default:
+ break;
+ }
+}
+
+static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
+ APInt &Upper) {
+ const Value *LHS, *RHS;
+ SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
+ if (R.Flavor == SPF_UNKNOWN)
+ return;
+
+ unsigned BitWidth = SI.getType()->getScalarSizeInBits();
+
+ if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
+ // If the negation part of the abs (in RHS) has the NSW flag,
+ // then the result of abs(X) is [0..SIGNED_MAX],
+ // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
+ Lower = APInt::getNullValue(BitWidth);
+ if (cast<Instruction>(RHS)->hasNoSignedWrap())
+ Upper = APInt::getSignedMaxValue(BitWidth) + 1;
+ else
+ Upper = APInt::getSignedMinValue(BitWidth) + 1;
+ return;
+ }
+
+ if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
+ // The result of -abs(X) is <= 0.
+ Lower = APInt::getSignedMinValue(BitWidth);
+ Upper = APInt(BitWidth, 1);
+ return;
+ }
+
+ const APInt *C;
+ if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
+ return;
+
+ switch (R.Flavor) {
+ case SPF_UMIN:
+ Upper = *C + 1;
+ break;
+ case SPF_UMAX:
+ Lower = *C;
+ break;
+ case SPF_SMIN:
+ Lower = APInt::getSignedMinValue(BitWidth);
+ Upper = *C + 1;
+ break;
+ case SPF_SMAX:
+ Lower = *C;
+ Upper = APInt::getSignedMaxValue(BitWidth) + 1;
+ break;
+ default:
+ break;
+ }
+}
+
+ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) {
+ assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
+
+ const APInt *C;
+ if (match(V, m_APInt(C)))
+ return ConstantRange(*C);
+
+ InstrInfoQuery IIQ(UseInstrInfo);
+ unsigned BitWidth = V->getType()->getScalarSizeInBits();
+ APInt Lower = APInt(BitWidth, 0);
+ APInt Upper = APInt(BitWidth, 0);
+ if (auto *BO = dyn_cast<BinaryOperator>(V))
+ setLimitsForBinOp(*BO, Lower, Upper, IIQ);
+ else if (auto *II = dyn_cast<IntrinsicInst>(V))
+ setLimitsForIntrinsic(*II, Lower, Upper);
+ else if (auto *SI = dyn_cast<SelectInst>(V))
+ setLimitsForSelectPattern(*SI, Lower, Upper);
+
+ ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
+
+ if (auto *I = dyn_cast<Instruction>(V))
+ if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
+ CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
+
+ return CR;
+}