diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp | 5706 |
1 files changed, 5706 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp b/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp new file mode 100644 index 000000000000..c70906dcc629 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Analysis/ValueTracking.cpp @@ -0,0 +1,5706 @@ +//===- ValueTracking.cpp - Walk computations to compute properties --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains routines that help analyze properties that chains of +// computations have. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/GuardUtils.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <array> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <utility> + +using namespace llvm; +using namespace llvm::PatternMatch; + +const unsigned MaxDepth = 6; + +// Controls the number of uses of the value searched for possible +// dominating comparisons. +static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", + cl::Hidden, cl::init(20)); + +/// Returns the bitwidth of the given scalar or pointer type. For vector types, +/// returns the element type's bitwidth. +static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { + if (unsigned BitWidth = Ty->getScalarSizeInBits()) + return BitWidth; + + return DL.getIndexTypeSizeInBits(Ty); +} + +namespace { + +// Simplifying using an assume can only be done in a particular control-flow +// context (the context instruction provides that context). If an assume and +// the context instruction are not in the same block then the DT helps in +// figuring out if we can use it. +struct Query { + const DataLayout &DL; + AssumptionCache *AC; + const Instruction *CxtI; + const DominatorTree *DT; + + // Unlike the other analyses, this may be a nullptr because not all clients + // provide it currently. + OptimizationRemarkEmitter *ORE; + + /// Set of assumptions that should be excluded from further queries. + /// This is because of the potential for mutual recursion to cause + /// computeKnownBits to repeatedly visit the same assume intrinsic. The + /// classic case of this is assume(x = y), which will attempt to determine + /// bits in x from bits in y, which will attempt to determine bits in y from + /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call + /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo + /// (all of which can call computeKnownBits), and so on. + std::array<const Value *, MaxDepth> Excluded; + + /// If true, it is safe to use metadata during simplification. + InstrInfoQuery IIQ; + + unsigned NumExcluded = 0; + + Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo, + OptimizationRemarkEmitter *ORE = nullptr) + : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} + + Query(const Query &Q, const Value *NewExcl) + : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), + NumExcluded(Q.NumExcluded) { + Excluded = Q.Excluded; + Excluded[NumExcluded++] = NewExcl; + assert(NumExcluded <= Excluded.size()); + } + + bool isExcluded(const Value *Value) const { + if (NumExcluded == 0) + return false; + auto End = Excluded.begin() + NumExcluded; + return std::find(Excluded.begin(), End, Value) != End; + } +}; + +} // end anonymous namespace + +// Given the provided Value and, potentially, a context instruction, return +// the preferred context instruction (if any). +static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { + // If we've been provided with a context instruction, then use that (provided + // it has been inserted). + if (CxtI && CxtI->getParent()) + return CxtI; + + // If the value is really an already-inserted instruction, then use that. + CxtI = dyn_cast<Instruction>(V); + if (CxtI && CxtI->getParent()) + return CxtI; + + return nullptr; +} + +static void computeKnownBits(const Value *V, KnownBits &Known, + unsigned Depth, const Query &Q); + +void llvm::computeKnownBits(const Value *V, KnownBits &Known, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, + OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { + ::computeKnownBits(V, Known, Depth, + Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); +} + +static KnownBits computeKnownBits(const Value *V, unsigned Depth, + const Query &Q); + +KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT, + OptimizationRemarkEmitter *ORE, + bool UseInstrInfo) { + return ::computeKnownBits( + V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); +} + +bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, + const DataLayout &DL, AssumptionCache *AC, + const Instruction *CxtI, const DominatorTree *DT, + bool UseInstrInfo) { + assert(LHS->getType() == RHS->getType() && + "LHS and RHS should have the same type"); + assert(LHS->getType()->isIntOrIntVectorTy() && + "LHS and RHS should be integers"); + // Look for an inverted mask: (X & ~M) op (Y & M). + Value *M; + if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && + match(RHS, m_c_And(m_Specific(M), m_Value()))) + return true; + if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && + match(LHS, m_c_And(m_Specific(M), m_Value()))) + return true; + IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); + KnownBits LHSKnown(IT->getBitWidth()); + KnownBits RHSKnown(IT->getBitWidth()); + computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); + computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); + return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); +} + +bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { + for (const User *U : CxtI->users()) { + if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) + if (IC->isEquality()) + if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) + if (C->isNullValue()) + continue; + return false; + } + return true; +} + +static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, + const Query &Q); + +bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, + bool OrZero, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + return ::isKnownToBeAPowerOfTwo( + V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); +} + +static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); + +bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + return ::isKnownNonZero(V, Depth, + Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); +} + +bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, const DominatorTree *DT, + bool UseInstrInfo) { + KnownBits Known = + computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); + return Known.isNonNegative(); +} + +bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + if (auto *CI = dyn_cast<ConstantInt>(V)) + return CI->getValue().isStrictlyPositive(); + + // TODO: We'd doing two recursive queries here. We should factor this such + // that only a single query is needed. + return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && + isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); +} + +bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + KnownBits Known = + computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); + return Known.isNegative(); +} + +static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); + +bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, + const DataLayout &DL, AssumptionCache *AC, + const Instruction *CxtI, const DominatorTree *DT, + bool UseInstrInfo) { + return ::isKnownNonEqual(V1, V2, + Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, + UseInstrInfo, /*ORE=*/nullptr)); +} + +static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, + const Query &Q); + +bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, + const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + return ::MaskedValueIsZero( + V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); +} + +static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, + const Query &Q); + +unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, + unsigned Depth, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + return ::ComputeNumSignBits( + V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); +} + +static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, + bool NSW, + KnownBits &KnownOut, KnownBits &Known2, + unsigned Depth, const Query &Q) { + unsigned BitWidth = KnownOut.getBitWidth(); + + // If an initial sequence of bits in the result is not needed, the + // corresponding bits in the operands are not needed. + KnownBits LHSKnown(BitWidth); + computeKnownBits(Op0, LHSKnown, Depth + 1, Q); + computeKnownBits(Op1, Known2, Depth + 1, Q); + + KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); +} + +static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, + KnownBits &Known, KnownBits &Known2, + unsigned Depth, const Query &Q) { + unsigned BitWidth = Known.getBitWidth(); + computeKnownBits(Op1, Known, Depth + 1, Q); + computeKnownBits(Op0, Known2, Depth + 1, Q); + + bool isKnownNegative = false; + bool isKnownNonNegative = false; + // If the multiplication is known not to overflow, compute the sign bit. + if (NSW) { + if (Op0 == Op1) { + // The product of a number with itself is non-negative. + isKnownNonNegative = true; + } else { + bool isKnownNonNegativeOp1 = Known.isNonNegative(); + bool isKnownNonNegativeOp0 = Known2.isNonNegative(); + bool isKnownNegativeOp1 = Known.isNegative(); + bool isKnownNegativeOp0 = Known2.isNegative(); + // The product of two numbers with the same sign is non-negative. + isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || + (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); + // The product of a negative number and a non-negative number is either + // negative or zero. + if (!isKnownNonNegative) + isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && + isKnownNonZero(Op0, Depth, Q)) || + (isKnownNegativeOp0 && isKnownNonNegativeOp1 && + isKnownNonZero(Op1, Depth, Q)); + } + } + + assert(!Known.hasConflict() && !Known2.hasConflict()); + // Compute a conservative estimate for high known-0 bits. + unsigned LeadZ = std::max(Known.countMinLeadingZeros() + + Known2.countMinLeadingZeros(), + BitWidth) - BitWidth; + LeadZ = std::min(LeadZ, BitWidth); + + // The result of the bottom bits of an integer multiply can be + // inferred by looking at the bottom bits of both operands and + // multiplying them together. + // We can infer at least the minimum number of known trailing bits + // of both operands. Depending on number of trailing zeros, we can + // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming + // a and b are divisible by m and n respectively. + // We then calculate how many of those bits are inferrable and set + // the output. For example, the i8 mul: + // a = XXXX1100 (12) + // b = XXXX1110 (14) + // We know the bottom 3 bits are zero since the first can be divided by + // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). + // Applying the multiplication to the trimmed arguments gets: + // XX11 (3) + // X111 (7) + // ------- + // XX11 + // XX11 + // XX11 + // XX11 + // ------- + // XXXXX01 + // Which allows us to infer the 2 LSBs. Since we're multiplying the result + // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. + // The proof for this can be described as: + // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && + // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + + // umin(countTrailingZeros(C2), C6) + + // umin(C5 - umin(countTrailingZeros(C1), C5), + // C6 - umin(countTrailingZeros(C2), C6)))) - 1) + // %aa = shl i8 %a, C5 + // %bb = shl i8 %b, C6 + // %aaa = or i8 %aa, C1 + // %bbb = or i8 %bb, C2 + // %mul = mul i8 %aaa, %bbb + // %mask = and i8 %mul, C7 + // => + // %mask = i8 ((C1*C2)&C7) + // Where C5, C6 describe the known bits of %a, %b + // C1, C2 describe the known bottom bits of %a, %b. + // C7 describes the mask of the known bits of the result. + APInt Bottom0 = Known.One; + APInt Bottom1 = Known2.One; + + // How many times we'd be able to divide each argument by 2 (shr by 1). + // This gives us the number of trailing zeros on the multiplication result. + unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); + unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); + unsigned TrailZero0 = Known.countMinTrailingZeros(); + unsigned TrailZero1 = Known2.countMinTrailingZeros(); + unsigned TrailZ = TrailZero0 + TrailZero1; + + // Figure out the fewest known-bits operand. + unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, + TrailBitsKnown1 - TrailZero1); + unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); + + APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * + Bottom1.getLoBits(TrailBitsKnown1); + + Known.resetAll(); + Known.Zero.setHighBits(LeadZ); + Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); + Known.One |= BottomKnown.getLoBits(ResultBitsKnown); + + // Only make use of no-wrap flags if we failed to compute the sign bit + // directly. This matters if the multiplication always overflows, in + // which case we prefer to follow the result of the direct computation, + // though as the program is invoking undefined behaviour we can choose + // whatever we like here. + if (isKnownNonNegative && !Known.isNegative()) + Known.makeNonNegative(); + else if (isKnownNegative && !Known.isNonNegative()) + Known.makeNegative(); +} + +void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, + KnownBits &Known) { + unsigned BitWidth = Known.getBitWidth(); + unsigned NumRanges = Ranges.getNumOperands() / 2; + assert(NumRanges >= 1); + + Known.Zero.setAllBits(); + Known.One.setAllBits(); + + for (unsigned i = 0; i < NumRanges; ++i) { + ConstantInt *Lower = + mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); + ConstantInt *Upper = + mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); + ConstantRange Range(Lower->getValue(), Upper->getValue()); + + // The first CommonPrefixBits of all values in Range are equal. + unsigned CommonPrefixBits = + (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); + + APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); + Known.One &= Range.getUnsignedMax() & Mask; + Known.Zero &= ~Range.getUnsignedMax() & Mask; + } +} + +static bool isEphemeralValueOf(const Instruction *I, const Value *E) { + SmallVector<const Value *, 16> WorkSet(1, I); + SmallPtrSet<const Value *, 32> Visited; + SmallPtrSet<const Value *, 16> EphValues; + + // The instruction defining an assumption's condition itself is always + // considered ephemeral to that assumption (even if it has other + // non-ephemeral users). See r246696's test case for an example. + if (is_contained(I->operands(), E)) + return true; + + while (!WorkSet.empty()) { + const Value *V = WorkSet.pop_back_val(); + if (!Visited.insert(V).second) + continue; + + // If all uses of this value are ephemeral, then so is this value. + if (llvm::all_of(V->users(), [&](const User *U) { + return EphValues.count(U); + })) { + if (V == E) + return true; + + if (V == I || isSafeToSpeculativelyExecute(V)) { + EphValues.insert(V); + if (const User *U = dyn_cast<User>(V)) + for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); + J != JE; ++J) + WorkSet.push_back(*J); + } + } + } + + return false; +} + +// Is this an intrinsic that cannot be speculated but also cannot trap? +bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { + if (const CallInst *CI = dyn_cast<CallInst>(I)) + if (Function *F = CI->getCalledFunction()) + switch (F->getIntrinsicID()) { + default: break; + // FIXME: This list is repeated from NoTTI::getIntrinsicCost. + case Intrinsic::assume: + case Intrinsic::sideeffect: + case Intrinsic::dbg_declare: + case Intrinsic::dbg_value: + case Intrinsic::dbg_label: + case Intrinsic::invariant_start: + case Intrinsic::invariant_end: + case Intrinsic::lifetime_start: + case Intrinsic::lifetime_end: + case Intrinsic::objectsize: + case Intrinsic::ptr_annotation: + case Intrinsic::var_annotation: + return true; + } + + return false; +} + +bool llvm::isValidAssumeForContext(const Instruction *Inv, + const Instruction *CxtI, + const DominatorTree *DT) { + // There are two restrictions on the use of an assume: + // 1. The assume must dominate the context (or the control flow must + // reach the assume whenever it reaches the context). + // 2. The context must not be in the assume's set of ephemeral values + // (otherwise we will use the assume to prove that the condition + // feeding the assume is trivially true, thus causing the removal of + // the assume). + + if (DT) { + if (DT->dominates(Inv, CxtI)) + return true; + } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { + // We don't have a DT, but this trivially dominates. + return true; + } + + // With or without a DT, the only remaining case we will check is if the + // instructions are in the same BB. Give up if that is not the case. + if (Inv->getParent() != CxtI->getParent()) + return false; + + // If we have a dom tree, then we now know that the assume doesn't dominate + // the other instruction. If we don't have a dom tree then we can check if + // the assume is first in the BB. + if (!DT) { + // Search forward from the assume until we reach the context (or the end + // of the block); the common case is that the assume will come first. + for (auto I = std::next(BasicBlock::const_iterator(Inv)), + IE = Inv->getParent()->end(); I != IE; ++I) + if (&*I == CxtI) + return true; + } + + // The context comes first, but they're both in the same block. Make sure + // there is nothing in between that might interrupt the control flow. + for (BasicBlock::const_iterator I = + std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); + I != IE; ++I) + if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) + return false; + + return !isEphemeralValueOf(Inv, CxtI); +} + +static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, + unsigned Depth, const Query &Q) { + // Use of assumptions is context-sensitive. If we don't have a context, we + // cannot use them! + if (!Q.AC || !Q.CxtI) + return; + + unsigned BitWidth = Known.getBitWidth(); + + // Note that the patterns below need to be kept in sync with the code + // in AssumptionCache::updateAffectedValues. + + for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { + if (!AssumeVH) + continue; + CallInst *I = cast<CallInst>(AssumeVH); + assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && + "Got assumption for the wrong function!"); + if (Q.isExcluded(I)) + continue; + + // Warning: This loop can end up being somewhat performance sensitive. + // We're running this loop for once for each value queried resulting in a + // runtime of ~O(#assumes * #values). + + assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && + "must be an assume intrinsic"); + + Value *Arg = I->getArgOperand(0); + + if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + assert(BitWidth == 1 && "assume operand is not i1?"); + Known.setAllOnes(); + return; + } + if (match(Arg, m_Not(m_Specific(V))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + assert(BitWidth == 1 && "assume operand is not i1?"); + Known.setAllZero(); + return; + } + + // The remaining tests are all recursive, so bail out if we hit the limit. + if (Depth == MaxDepth) + continue; + + ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); + if (!Cmp) + continue; + + Value *A, *B; + auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); + + CmpInst::Predicate Pred; + uint64_t C; + switch (Cmp->getPredicate()) { + default: + break; + case ICmpInst::ICMP_EQ: + // assume(v = a) + if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + Known.Zero |= RHSKnown.Zero; + Known.One |= RHSKnown.One; + // assume(v & b = a) + } else if (match(Cmp, + m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + KnownBits MaskKnown(BitWidth); + computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); + + // For those bits in the mask that are known to be one, we can propagate + // known bits from the RHS to V. + Known.Zero |= RHSKnown.Zero & MaskKnown.One; + Known.One |= RHSKnown.One & MaskKnown.One; + // assume(~(v & b) = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + KnownBits MaskKnown(BitWidth); + computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); + + // For those bits in the mask that are known to be one, we can propagate + // inverted known bits from the RHS to V. + Known.Zero |= RHSKnown.One & MaskKnown.One; + Known.One |= RHSKnown.Zero & MaskKnown.One; + // assume(v | b = a) + } else if (match(Cmp, + m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + KnownBits BKnown(BitWidth); + computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate known + // bits from the RHS to V. + Known.Zero |= RHSKnown.Zero & BKnown.Zero; + Known.One |= RHSKnown.One & BKnown.Zero; + // assume(~(v | b) = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + KnownBits BKnown(BitWidth); + computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate + // inverted known bits from the RHS to V. + Known.Zero |= RHSKnown.One & BKnown.Zero; + Known.One |= RHSKnown.Zero & BKnown.Zero; + // assume(v ^ b = a) + } else if (match(Cmp, + m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + KnownBits BKnown(BitWidth); + computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate known + // bits from the RHS to V. For those bits in B that are known to be one, + // we can propagate inverted known bits from the RHS to V. + Known.Zero |= RHSKnown.Zero & BKnown.Zero; + Known.One |= RHSKnown.One & BKnown.Zero; + Known.Zero |= RHSKnown.One & BKnown.One; + Known.One |= RHSKnown.Zero & BKnown.One; + // assume(~(v ^ b) = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + KnownBits BKnown(BitWidth); + computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); + + // For those bits in B that are known to be zero, we can propagate + // inverted known bits from the RHS to V. For those bits in B that are + // known to be one, we can propagate known bits from the RHS to V. + Known.Zero |= RHSKnown.One & BKnown.Zero; + Known.One |= RHSKnown.Zero & BKnown.Zero; + Known.Zero |= RHSKnown.Zero & BKnown.One; + Known.One |= RHSKnown.One & BKnown.One; + // assume(v << c = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them to known + // bits in V shifted to the right by C. + RHSKnown.Zero.lshrInPlace(C); + Known.Zero |= RHSKnown.Zero; + RHSKnown.One.lshrInPlace(C); + Known.One |= RHSKnown.One; + // assume(~(v << c) = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them inverted + // to known bits in V shifted to the right by C. + RHSKnown.One.lshrInPlace(C); + Known.Zero |= RHSKnown.One; + RHSKnown.Zero.lshrInPlace(C); + Known.One |= RHSKnown.Zero; + // assume(v >> c = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them to known + // bits in V shifted to the right by C. + Known.Zero |= RHSKnown.Zero << C; + Known.One |= RHSKnown.One << C; + // assume(~(v >> c) = a) + } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), + m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + // For those bits in RHS that are known, we can propagate them inverted + // to known bits in V shifted to the right by C. + Known.Zero |= RHSKnown.One << C; + Known.One |= RHSKnown.Zero << C; + } + break; + case ICmpInst::ICMP_SGE: + // assume(v >=_s c) where c is non-negative + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); + + if (RHSKnown.isNonNegative()) { + // We know that the sign bit is zero. + Known.makeNonNegative(); + } + } + break; + case ICmpInst::ICMP_SGT: + // assume(v >_s c) where c is at least -1. + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); + + if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { + // We know that the sign bit is zero. + Known.makeNonNegative(); + } + } + break; + case ICmpInst::ICMP_SLE: + // assume(v <=_s c) where c is negative + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); + + if (RHSKnown.isNegative()) { + // We know that the sign bit is one. + Known.makeNegative(); + } + } + break; + case ICmpInst::ICMP_SLT: + // assume(v <_s c) where c is non-positive + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + + if (RHSKnown.isZero() || RHSKnown.isNegative()) { + // We know that the sign bit is one. + Known.makeNegative(); + } + } + break; + case ICmpInst::ICMP_ULE: + // assume(v <=_u c) + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + + // Whatever high bits in c are zero are known to be zero. + Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); + } + break; + case ICmpInst::ICMP_ULT: + // assume(v <_u c) + if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && + isValidAssumeForContext(I, Q.CxtI, Q.DT)) { + KnownBits RHSKnown(BitWidth); + computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); + + // If the RHS is known zero, then this assumption must be wrong (nothing + // is unsigned less than zero). Signal a conflict and get out of here. + if (RHSKnown.isZero()) { + Known.Zero.setAllBits(); + Known.One.setAllBits(); + break; + } + + // Whatever high bits in c are zero are known to be zero (if c is a power + // of 2, then one more). + if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) + Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); + else + Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); + } + break; + } + } + + // If assumptions conflict with each other or previous known bits, then we + // have a logical fallacy. It's possible that the assumption is not reachable, + // so this isn't a real bug. On the other hand, the program may have undefined + // behavior, or we might have a bug in the compiler. We can't assert/crash, so + // clear out the known bits, try to warn the user, and hope for the best. + if (Known.Zero.intersects(Known.One)) { + Known.resetAll(); + + if (Q.ORE) + Q.ORE->emit([&]() { + auto *CxtI = const_cast<Instruction *>(Q.CxtI); + return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", + CxtI) + << "Detected conflicting code assumptions. Program may " + "have undefined behavior, or compiler may have " + "internal error."; + }); + } +} + +/// Compute known bits from a shift operator, including those with a +/// non-constant shift amount. Known is the output of this function. Known2 is a +/// pre-allocated temporary with the same bit width as Known. KZF and KOF are +/// operator-specific functions that, given the known-zero or known-one bits +/// respectively, and a shift amount, compute the implied known-zero or +/// known-one bits of the shift operator's result respectively for that shift +/// amount. The results from calling KZF and KOF are conservatively combined for +/// all permitted shift amounts. +static void computeKnownBitsFromShiftOperator( + const Operator *I, KnownBits &Known, KnownBits &Known2, + unsigned Depth, const Query &Q, + function_ref<APInt(const APInt &, unsigned)> KZF, + function_ref<APInt(const APInt &, unsigned)> KOF) { + unsigned BitWidth = Known.getBitWidth(); + + if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { + unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); + + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + Known.Zero = KZF(Known.Zero, ShiftAmt); + Known.One = KOF(Known.One, ShiftAmt); + // If the known bits conflict, this must be an overflowing left shift, so + // the shift result is poison. We can return anything we want. Choose 0 for + // the best folding opportunity. + if (Known.hasConflict()) + Known.setAllZero(); + + return; + } + + computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); + + // If the shift amount could be greater than or equal to the bit-width of the + // LHS, the value could be poison, but bail out because the check below is + // expensive. TODO: Should we just carry on? + if ((~Known.Zero).uge(BitWidth)) { + Known.resetAll(); + return; + } + + // Note: We cannot use Known.Zero.getLimitedValue() here, because if + // BitWidth > 64 and any upper bits are known, we'll end up returning the + // limit value (which implies all bits are known). + uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); + uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); + + // It would be more-clearly correct to use the two temporaries for this + // calculation. Reusing the APInts here to prevent unnecessary allocations. + Known.resetAll(); + + // If we know the shifter operand is nonzero, we can sometimes infer more + // known bits. However this is expensive to compute, so be lazy about it and + // only compute it when absolutely necessary. + Optional<bool> ShifterOperandIsNonZero; + + // Early exit if we can't constrain any well-defined shift amount. + if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && + !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { + ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); + if (!*ShifterOperandIsNonZero) + return; + } + + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + + Known.Zero.setAllBits(); + Known.One.setAllBits(); + for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { + // Combine the shifted known input bits only for those shift amounts + // compatible with its known constraints. + if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) + continue; + if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) + continue; + // If we know the shifter is nonzero, we may be able to infer more known + // bits. This check is sunk down as far as possible to avoid the expensive + // call to isKnownNonZero if the cheaper checks above fail. + if (ShiftAmt == 0) { + if (!ShifterOperandIsNonZero.hasValue()) + ShifterOperandIsNonZero = + isKnownNonZero(I->getOperand(1), Depth + 1, Q); + if (*ShifterOperandIsNonZero) + continue; + } + + Known.Zero &= KZF(Known2.Zero, ShiftAmt); + Known.One &= KOF(Known2.One, ShiftAmt); + } + + // If the known bits conflict, the result is poison. Return a 0 and hope the + // caller can further optimize that. + if (Known.hasConflict()) + Known.setAllZero(); +} + +static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, + unsigned Depth, const Query &Q) { + unsigned BitWidth = Known.getBitWidth(); + + KnownBits Known2(Known); + switch (I->getOpcode()) { + default: break; + case Instruction::Load: + if (MDNode *MD = + Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) + computeKnownBitsFromRangeMetadata(*MD, Known); + break; + case Instruction::And: { + // If either the LHS or the RHS are Zero, the result is zero. + computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + + // Output known-1 bits are only known if set in both the LHS & RHS. + Known.One &= Known2.One; + // Output known-0 are known to be clear if zero in either the LHS | RHS. + Known.Zero |= Known2.Zero; + + // and(x, add (x, -1)) is a common idiom that always clears the low bit; + // here we handle the more general case of adding any odd number by + // matching the form add(x, add(x, y)) where y is odd. + // TODO: This could be generalized to clearing any bit set in y where the + // following bit is known to be unset in y. + Value *X = nullptr, *Y = nullptr; + if (!Known.Zero[0] && !Known.One[0] && + match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { + Known2.resetAll(); + computeKnownBits(Y, Known2, Depth + 1, Q); + if (Known2.countMinTrailingOnes() > 0) + Known.Zero.setBit(0); + } + break; + } + case Instruction::Or: + computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + + // Output known-0 bits are only known if clear in both the LHS & RHS. + Known.Zero &= Known2.Zero; + // Output known-1 are known to be set if set in either the LHS | RHS. + Known.One |= Known2.One; + break; + case Instruction::Xor: { + computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + + // Output known-0 bits are known if clear or set in both the LHS & RHS. + APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); + // Output known-1 are known to be set if set in only one of the LHS, RHS. + Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); + Known.Zero = std::move(KnownZeroOut); + break; + } + case Instruction::Mul: { + bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); + computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, + Known2, Depth, Q); + break; + } + case Instruction::UDiv: { + // For the purposes of computing leading zeros we can conservatively + // treat a udiv as a logical right shift by the power of 2 known to + // be less than the denominator. + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + unsigned LeadZ = Known2.countMinLeadingZeros(); + + Known2.resetAll(); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); + if (RHSMaxLeadingZeros != BitWidth) + LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); + + Known.Zero.setHighBits(LeadZ); + break; + } + case Instruction::Select: { + const Value *LHS, *RHS; + SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; + if (SelectPatternResult::isMinOrMax(SPF)) { + computeKnownBits(RHS, Known, Depth + 1, Q); + computeKnownBits(LHS, Known2, Depth + 1, Q); + } else { + computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + } + + unsigned MaxHighOnes = 0; + unsigned MaxHighZeros = 0; + if (SPF == SPF_SMAX) { + // If both sides are negative, the result is negative. + if (Known.isNegative() && Known2.isNegative()) + // We can derive a lower bound on the result by taking the max of the + // leading one bits. + MaxHighOnes = + std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); + // If either side is non-negative, the result is non-negative. + else if (Known.isNonNegative() || Known2.isNonNegative()) + MaxHighZeros = 1; + } else if (SPF == SPF_SMIN) { + // If both sides are non-negative, the result is non-negative. + if (Known.isNonNegative() && Known2.isNonNegative()) + // We can derive an upper bound on the result by taking the max of the + // leading zero bits. + MaxHighZeros = std::max(Known.countMinLeadingZeros(), + Known2.countMinLeadingZeros()); + // If either side is negative, the result is negative. + else if (Known.isNegative() || Known2.isNegative()) + MaxHighOnes = 1; + } else if (SPF == SPF_UMAX) { + // We can derive a lower bound on the result by taking the max of the + // leading one bits. + MaxHighOnes = + std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); + } else if (SPF == SPF_UMIN) { + // We can derive an upper bound on the result by taking the max of the + // leading zero bits. + MaxHighZeros = + std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); + } else if (SPF == SPF_ABS) { + // RHS from matchSelectPattern returns the negation part of abs pattern. + // If the negate has an NSW flag we can assume the sign bit of the result + // will be 0 because that makes abs(INT_MIN) undefined. + if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) + MaxHighZeros = 1; + } + + // Only known if known in both the LHS and RHS. + Known.One &= Known2.One; + Known.Zero &= Known2.Zero; + if (MaxHighOnes > 0) + Known.One.setHighBits(MaxHighOnes); + if (MaxHighZeros > 0) + Known.Zero.setHighBits(MaxHighZeros); + break; + } + case Instruction::FPTrunc: + case Instruction::FPExt: + case Instruction::FPToUI: + case Instruction::FPToSI: + case Instruction::SIToFP: + case Instruction::UIToFP: + break; // Can't work with floating point. + case Instruction::PtrToInt: + case Instruction::IntToPtr: + // Fall through and handle them the same as zext/trunc. + LLVM_FALLTHROUGH; + case Instruction::ZExt: + case Instruction::Trunc: { + Type *SrcTy = I->getOperand(0)->getType(); + + unsigned SrcBitWidth; + // Note that we handle pointer operands here because of inttoptr/ptrtoint + // which fall through here. + Type *ScalarTy = SrcTy->getScalarType(); + SrcBitWidth = ScalarTy->isPointerTy() ? + Q.DL.getIndexTypeSizeInBits(ScalarTy) : + Q.DL.getTypeSizeInBits(ScalarTy); + + assert(SrcBitWidth && "SrcBitWidth can't be zero"); + Known = Known.zextOrTrunc(SrcBitWidth, false); + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */); + break; + } + case Instruction::BitCast: { + Type *SrcTy = I->getOperand(0)->getType(); + if (SrcTy->isIntOrPtrTy() && + // TODO: For now, not handling conversions like: + // (bitcast i64 %x to <2 x i32>) + !I->getType()->isVectorTy()) { + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + break; + } + break; + } + case Instruction::SExt: { + // Compute the bits in the result that are not present in the input. + unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); + + Known = Known.trunc(SrcBitWidth); + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + // If the sign bit of the input is known set or clear, then we know the + // top bits of the result. + Known = Known.sext(BitWidth); + break; + } + case Instruction::Shl: { + // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 + bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); + auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { + APInt KZResult = KnownZero << ShiftAmt; + KZResult.setLowBits(ShiftAmt); // Low bits known 0. + // If this shift has "nsw" keyword, then the result is either a poison + // value or has the same sign bit as the first operand. + if (NSW && KnownZero.isSignBitSet()) + KZResult.setSignBit(); + return KZResult; + }; + + auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { + APInt KOResult = KnownOne << ShiftAmt; + if (NSW && KnownOne.isSignBitSet()) + KOResult.setSignBit(); + return KOResult; + }; + + computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); + break; + } + case Instruction::LShr: { + // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 + auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { + APInt KZResult = KnownZero.lshr(ShiftAmt); + // High bits known zero. + KZResult.setHighBits(ShiftAmt); + return KZResult; + }; + + auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { + return KnownOne.lshr(ShiftAmt); + }; + + computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); + break; + } + case Instruction::AShr: { + // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 + auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { + return KnownZero.ashr(ShiftAmt); + }; + + auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { + return KnownOne.ashr(ShiftAmt); + }; + + computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); + break; + } + case Instruction::Sub: { + bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); + computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, + Known, Known2, Depth, Q); + break; + } + case Instruction::Add: { + bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); + computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, + Known, Known2, Depth, Q); + break; + } + case Instruction::SRem: + if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { + APInt RA = Rem->getValue().abs(); + if (RA.isPowerOf2()) { + APInt LowBits = RA - 1; + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + + // The low bits of the first operand are unchanged by the srem. + Known.Zero = Known2.Zero & LowBits; + Known.One = Known2.One & LowBits; + + // If the first operand is non-negative or has all low bits zero, then + // the upper bits are all zero. + if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) + Known.Zero |= ~LowBits; + + // If the first operand is negative and not all low bits are zero, then + // the upper bits are all one. + if (Known2.isNegative() && LowBits.intersects(Known2.One)) + Known.One |= ~LowBits; + + assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); + break; + } + } + + // The sign bit is the LHS's sign bit, except when the result of the + // remainder is zero. + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + // If it's known zero, our sign bit is also zero. + if (Known2.isNonNegative()) + Known.makeNonNegative(); + + break; + case Instruction::URem: { + if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { + const APInt &RA = Rem->getValue(); + if (RA.isPowerOf2()) { + APInt LowBits = (RA - 1); + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + Known.Zero |= ~LowBits; + Known.One &= LowBits; + break; + } + } + + // Since the result is less than or equal to either operand, any leading + // zero bits in either operand must also exist in the result. + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + + unsigned Leaders = + std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); + Known.resetAll(); + Known.Zero.setHighBits(Leaders); + break; + } + + case Instruction::Alloca: { + const AllocaInst *AI = cast<AllocaInst>(I); + unsigned Align = AI->getAlignment(); + if (Align == 0) + Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); + + if (Align > 0) + Known.Zero.setLowBits(countTrailingZeros(Align)); + break; + } + case Instruction::GetElementPtr: { + // Analyze all of the subscripts of this getelementptr instruction + // to determine if we can prove known low zero bits. + KnownBits LocalKnown(BitWidth); + computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); + unsigned TrailZ = LocalKnown.countMinTrailingZeros(); + + gep_type_iterator GTI = gep_type_begin(I); + for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { + Value *Index = I->getOperand(i); + if (StructType *STy = GTI.getStructTypeOrNull()) { + // Handle struct member offset arithmetic. + + // Handle case when index is vector zeroinitializer + Constant *CIndex = cast<Constant>(Index); + if (CIndex->isZeroValue()) + continue; + + if (CIndex->getType()->isVectorTy()) + Index = CIndex->getSplatValue(); + + unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); + const StructLayout *SL = Q.DL.getStructLayout(STy); + uint64_t Offset = SL->getElementOffset(Idx); + TrailZ = std::min<unsigned>(TrailZ, + countTrailingZeros(Offset)); + } else { + // Handle array index arithmetic. + Type *IndexedTy = GTI.getIndexedType(); + if (!IndexedTy->isSized()) { + TrailZ = 0; + break; + } + unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); + uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); + LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); + computeKnownBits(Index, LocalKnown, Depth + 1, Q); + TrailZ = std::min(TrailZ, + unsigned(countTrailingZeros(TypeSize) + + LocalKnown.countMinTrailingZeros())); + } + } + + Known.Zero.setLowBits(TrailZ); + break; + } + case Instruction::PHI: { + const PHINode *P = cast<PHINode>(I); + // Handle the case of a simple two-predecessor recurrence PHI. + // There's a lot more that could theoretically be done here, but + // this is sufficient to catch some interesting cases. + if (P->getNumIncomingValues() == 2) { + for (unsigned i = 0; i != 2; ++i) { + Value *L = P->getIncomingValue(i); + Value *R = P->getIncomingValue(!i); + Operator *LU = dyn_cast<Operator>(L); + if (!LU) + continue; + unsigned Opcode = LU->getOpcode(); + // Check for operations that have the property that if + // both their operands have low zero bits, the result + // will have low zero bits. + if (Opcode == Instruction::Add || + Opcode == Instruction::Sub || + Opcode == Instruction::And || + Opcode == Instruction::Or || + Opcode == Instruction::Mul) { + Value *LL = LU->getOperand(0); + Value *LR = LU->getOperand(1); + // Find a recurrence. + if (LL == I) + L = LR; + else if (LR == I) + L = LL; + else + break; + // Ok, we have a PHI of the form L op= R. Check for low + // zero bits. + computeKnownBits(R, Known2, Depth + 1, Q); + + // We need to take the minimum number of known bits + KnownBits Known3(Known); + computeKnownBits(L, Known3, Depth + 1, Q); + + Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), + Known3.countMinTrailingZeros())); + + auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); + if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { + // If initial value of recurrence is nonnegative, and we are adding + // a nonnegative number with nsw, the result can only be nonnegative + // or poison value regardless of the number of times we execute the + // add in phi recurrence. If initial value is negative and we are + // adding a negative number with nsw, the result can only be + // negative or poison value. Similar arguments apply to sub and mul. + // + // (add non-negative, non-negative) --> non-negative + // (add negative, negative) --> negative + if (Opcode == Instruction::Add) { + if (Known2.isNonNegative() && Known3.isNonNegative()) + Known.makeNonNegative(); + else if (Known2.isNegative() && Known3.isNegative()) + Known.makeNegative(); + } + + // (sub nsw non-negative, negative) --> non-negative + // (sub nsw negative, non-negative) --> negative + else if (Opcode == Instruction::Sub && LL == I) { + if (Known2.isNonNegative() && Known3.isNegative()) + Known.makeNonNegative(); + else if (Known2.isNegative() && Known3.isNonNegative()) + Known.makeNegative(); + } + + // (mul nsw non-negative, non-negative) --> non-negative + else if (Opcode == Instruction::Mul && Known2.isNonNegative() && + Known3.isNonNegative()) + Known.makeNonNegative(); + } + + break; + } + } + } + + // Unreachable blocks may have zero-operand PHI nodes. + if (P->getNumIncomingValues() == 0) + break; + + // Otherwise take the unions of the known bit sets of the operands, + // taking conservative care to avoid excessive recursion. + if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { + // Skip if every incoming value references to ourself. + if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) + break; + + Known.Zero.setAllBits(); + Known.One.setAllBits(); + for (Value *IncValue : P->incoming_values()) { + // Skip direct self references. + if (IncValue == P) continue; + + Known2 = KnownBits(BitWidth); + // Recurse, but cap the recursion to one level, because we don't + // want to waste time spinning around in loops. + computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); + Known.Zero &= Known2.Zero; + Known.One &= Known2.One; + // If all bits have been ruled out, there's no need to check + // more operands. + if (!Known.Zero && !Known.One) + break; + } + } + break; + } + case Instruction::Call: + case Instruction::Invoke: + // If range metadata is attached to this call, set known bits from that, + // and then intersect with known bits based on other properties of the + // function. + if (MDNode *MD = + Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) + computeKnownBitsFromRangeMetadata(*MD, Known); + if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { + computeKnownBits(RV, Known2, Depth + 1, Q); + Known.Zero |= Known2.Zero; + Known.One |= Known2.One; + } + if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::bitreverse: + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + Known.Zero |= Known2.Zero.reverseBits(); + Known.One |= Known2.One.reverseBits(); + break; + case Intrinsic::bswap: + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + Known.Zero |= Known2.Zero.byteSwap(); + Known.One |= Known2.One.byteSwap(); + break; + case Intrinsic::ctlz: { + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + // If we have a known 1, its position is our upper bound. + unsigned PossibleLZ = Known2.One.countLeadingZeros(); + // If this call is undefined for 0, the result will be less than 2^n. + if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) + PossibleLZ = std::min(PossibleLZ, BitWidth - 1); + unsigned LowBits = Log2_32(PossibleLZ)+1; + Known.Zero.setBitsFrom(LowBits); + break; + } + case Intrinsic::cttz: { + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + // If we have a known 1, its position is our upper bound. + unsigned PossibleTZ = Known2.One.countTrailingZeros(); + // If this call is undefined for 0, the result will be less than 2^n. + if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) + PossibleTZ = std::min(PossibleTZ, BitWidth - 1); + unsigned LowBits = Log2_32(PossibleTZ)+1; + Known.Zero.setBitsFrom(LowBits); + break; + } + case Intrinsic::ctpop: { + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + // We can bound the space the count needs. Also, bits known to be zero + // can't contribute to the population. + unsigned BitsPossiblySet = Known2.countMaxPopulation(); + unsigned LowBits = Log2_32(BitsPossiblySet)+1; + Known.Zero.setBitsFrom(LowBits); + // TODO: we could bound KnownOne using the lower bound on the number + // of bits which might be set provided by popcnt KnownOne2. + break; + } + case Intrinsic::fshr: + case Intrinsic::fshl: { + const APInt *SA; + if (!match(I->getOperand(2), m_APInt(SA))) + break; + + // Normalize to funnel shift left. + uint64_t ShiftAmt = SA->urem(BitWidth); + if (II->getIntrinsicID() == Intrinsic::fshr) + ShiftAmt = BitWidth - ShiftAmt; + + KnownBits Known3(Known); + computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); + + Known.Zero = + Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); + Known.One = + Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); + break; + } + case Intrinsic::uadd_sat: + case Intrinsic::usub_sat: { + bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); + + // Add: Leading ones of either operand are preserved. + // Sub: Leading zeros of LHS and leading ones of RHS are preserved + // as leading zeros in the result. + unsigned LeadingKnown; + if (IsAdd) + LeadingKnown = std::max(Known.countMinLeadingOnes(), + Known2.countMinLeadingOnes()); + else + LeadingKnown = std::max(Known.countMinLeadingZeros(), + Known2.countMinLeadingOnes()); + + Known = KnownBits::computeForAddSub( + IsAdd, /* NSW */ false, Known, Known2); + + // We select between the operation result and all-ones/zero + // respectively, so we can preserve known ones/zeros. + if (IsAdd) { + Known.One.setHighBits(LeadingKnown); + Known.Zero.clearAllBits(); + } else { + Known.Zero.setHighBits(LeadingKnown); + Known.One.clearAllBits(); + } + break; + } + case Intrinsic::x86_sse42_crc32_64_64: + Known.Zero.setBitsFrom(32); + break; + } + } + break; + case Instruction::ExtractElement: + // Look through extract element. At the moment we keep this simple and skip + // tracking the specific element. But at least we might find information + // valid for all elements of the vector (for example if vector is sign + // extended, shifted, etc). + computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); + break; + case Instruction::ExtractValue: + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { + const ExtractValueInst *EVI = cast<ExtractValueInst>(I); + if (EVI->getNumIndices() != 1) break; + if (EVI->getIndices()[0] == 0) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::uadd_with_overflow: + case Intrinsic::sadd_with_overflow: + computeKnownBitsAddSub(true, II->getArgOperand(0), + II->getArgOperand(1), false, Known, Known2, + Depth, Q); + break; + case Intrinsic::usub_with_overflow: + case Intrinsic::ssub_with_overflow: + computeKnownBitsAddSub(false, II->getArgOperand(0), + II->getArgOperand(1), false, Known, Known2, + Depth, Q); + break; + case Intrinsic::umul_with_overflow: + case Intrinsic::smul_with_overflow: + computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, + Known, Known2, Depth, Q); + break; + } + } + } + } +} + +/// Determine which bits of V are known to be either zero or one and return +/// them. +KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { + KnownBits Known(getBitWidth(V->getType(), Q.DL)); + computeKnownBits(V, Known, Depth, Q); + return Known; +} + +/// Determine which bits of V are known to be either zero or one and return +/// them in the Known bit set. +/// +/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that +/// we cannot optimize based on the assumption that it is zero without changing +/// it to be an explicit zero. If we don't change it to zero, other code could +/// optimized based on the contradictory assumption that it is non-zero. +/// Because instcombine aggressively folds operations with undef args anyway, +/// this won't lose us code quality. +/// +/// This function is defined on values with integer type, values with pointer +/// type, and vectors of integers. In the case +/// where V is a vector, known zero, and known one values are the +/// same width as the vector element, and the bit is set only if it is true +/// for all of the elements in the vector. +void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, + const Query &Q) { + assert(V && "No Value?"); + assert(Depth <= MaxDepth && "Limit Search Depth"); + unsigned BitWidth = Known.getBitWidth(); + + assert((V->getType()->isIntOrIntVectorTy(BitWidth) || + V->getType()->isPtrOrPtrVectorTy()) && + "Not integer or pointer type!"); + + Type *ScalarTy = V->getType()->getScalarType(); + unsigned ExpectedWidth = ScalarTy->isPointerTy() ? + Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); + assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); + (void)BitWidth; + (void)ExpectedWidth; + + const APInt *C; + if (match(V, m_APInt(C))) { + // We know all of the bits for a scalar constant or a splat vector constant! + Known.One = *C; + Known.Zero = ~Known.One; + return; + } + // Null and aggregate-zero are all-zeros. + if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { + Known.setAllZero(); + return; + } + // Handle a constant vector by taking the intersection of the known bits of + // each element. + if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { + // We know that CDS must be a vector of integers. Take the intersection of + // each element. + Known.Zero.setAllBits(); Known.One.setAllBits(); + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + APInt Elt = CDS->getElementAsAPInt(i); + Known.Zero &= ~Elt; + Known.One &= Elt; + } + return; + } + + if (const auto *CV = dyn_cast<ConstantVector>(V)) { + // We know that CV must be a vector of integers. Take the intersection of + // each element. + Known.Zero.setAllBits(); Known.One.setAllBits(); + for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { + Constant *Element = CV->getAggregateElement(i); + auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); + if (!ElementCI) { + Known.resetAll(); + return; + } + const APInt &Elt = ElementCI->getValue(); + Known.Zero &= ~Elt; + Known.One &= Elt; + } + return; + } + + // Start out not knowing anything. + Known.resetAll(); + + // We can't imply anything about undefs. + if (isa<UndefValue>(V)) + return; + + // There's no point in looking through other users of ConstantData for + // assumptions. Confirm that we've handled them all. + assert(!isa<ConstantData>(V) && "Unhandled constant data!"); + + // Limit search depth. + // All recursive calls that increase depth must come after this. + if (Depth == MaxDepth) + return; + + // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has + // the bits of its aliasee. + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (!GA->isInterposable()) + computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); + return; + } + + if (const Operator *I = dyn_cast<Operator>(V)) + computeKnownBitsFromOperator(I, Known, Depth, Q); + + // Aligned pointers have trailing zeros - refine Known.Zero set + if (V->getType()->isPointerTy()) { + unsigned Align = V->getPointerAlignment(Q.DL); + if (Align) + Known.Zero.setLowBits(countTrailingZeros(Align)); + } + + // computeKnownBitsFromAssume strictly refines Known. + // Therefore, we run them after computeKnownBitsFromOperator. + + // Check whether a nearby assume intrinsic can determine some known bits. + computeKnownBitsFromAssume(V, Known, Depth, Q); + + assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); +} + +/// Return true if the given value is known to have exactly one +/// bit set when defined. For vectors return true if every element is known to +/// be a power of two when defined. Supports values with integer or pointer +/// types and vectors of integers. +bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, + const Query &Q) { + assert(Depth <= MaxDepth && "Limit Search Depth"); + + // Attempt to match against constants. + if (OrZero && match(V, m_Power2OrZero())) + return true; + if (match(V, m_Power2())) + return true; + + // 1 << X is clearly a power of two if the one is not shifted off the end. If + // it is shifted off the end then the result is undefined. + if (match(V, m_Shl(m_One(), m_Value()))) + return true; + + // (signmask) >>l X is clearly a power of two if the one is not shifted off + // the bottom. If it is shifted off the bottom then the result is undefined. + if (match(V, m_LShr(m_SignMask(), m_Value()))) + return true; + + // The remaining tests are all recursive, so bail out if we hit the limit. + if (Depth++ == MaxDepth) + return false; + + Value *X = nullptr, *Y = nullptr; + // A shift left or a logical shift right of a power of two is a power of two + // or zero. + if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || + match(V, m_LShr(m_Value(X), m_Value())))) + return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); + + if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) + return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); + + if (const SelectInst *SI = dyn_cast<SelectInst>(V)) + return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && + isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); + + if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { + // A power of two and'd with anything is a power of two or zero. + if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || + isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) + return true; + // X & (-X) is always a power of two or zero. + if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) + return true; + return false; + } + + // Adding a power-of-two or zero to the same power-of-two or zero yields + // either the original power-of-two, a larger power-of-two or zero. + if (match(V, m_Add(m_Value(X), m_Value(Y)))) { + const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); + if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || + Q.IIQ.hasNoSignedWrap(VOBO)) { + if (match(X, m_And(m_Specific(Y), m_Value())) || + match(X, m_And(m_Value(), m_Specific(Y)))) + if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) + return true; + if (match(Y, m_And(m_Specific(X), m_Value())) || + match(Y, m_And(m_Value(), m_Specific(X)))) + if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) + return true; + + unsigned BitWidth = V->getType()->getScalarSizeInBits(); + KnownBits LHSBits(BitWidth); + computeKnownBits(X, LHSBits, Depth, Q); + + KnownBits RHSBits(BitWidth); + computeKnownBits(Y, RHSBits, Depth, Q); + // If i8 V is a power of two or zero: + // ZeroBits: 1 1 1 0 1 1 1 1 + // ~ZeroBits: 0 0 0 1 0 0 0 0 + if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) + // If OrZero isn't set, we cannot give back a zero result. + // Make sure either the LHS or RHS has a bit set. + if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) + return true; + } + } + + // An exact divide or right shift can only shift off zero bits, so the result + // is a power of two only if the first operand is a power of two and not + // copying a sign bit (sdiv int_min, 2). + if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || + match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { + return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, + Depth, Q); + } + + return false; +} + +/// Test whether a GEP's result is known to be non-null. +/// +/// Uses properties inherent in a GEP to try to determine whether it is known +/// to be non-null. +/// +/// Currently this routine does not support vector GEPs. +static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, + const Query &Q) { + const Function *F = nullptr; + if (const Instruction *I = dyn_cast<Instruction>(GEP)) + F = I->getFunction(); + + if (!GEP->isInBounds() || + NullPointerIsDefined(F, GEP->getPointerAddressSpace())) + return false; + + // FIXME: Support vector-GEPs. + assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); + + // If the base pointer is non-null, we cannot walk to a null address with an + // inbounds GEP in address space zero. + if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) + return true; + + // Walk the GEP operands and see if any operand introduces a non-zero offset. + // If so, then the GEP cannot produce a null pointer, as doing so would + // inherently violate the inbounds contract within address space zero. + for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); + GTI != GTE; ++GTI) { + // Struct types are easy -- they must always be indexed by a constant. + if (StructType *STy = GTI.getStructTypeOrNull()) { + ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); + unsigned ElementIdx = OpC->getZExtValue(); + const StructLayout *SL = Q.DL.getStructLayout(STy); + uint64_t ElementOffset = SL->getElementOffset(ElementIdx); + if (ElementOffset > 0) + return true; + continue; + } + + // If we have a zero-sized type, the index doesn't matter. Keep looping. + if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) + continue; + + // Fast path the constant operand case both for efficiency and so we don't + // increment Depth when just zipping down an all-constant GEP. + if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { + if (!OpC->isZero()) + return true; + continue; + } + + // We post-increment Depth here because while isKnownNonZero increments it + // as well, when we pop back up that increment won't persist. We don't want + // to recurse 10k times just because we have 10k GEP operands. We don't + // bail completely out because we want to handle constant GEPs regardless + // of depth. + if (Depth++ >= MaxDepth) + continue; + + if (isKnownNonZero(GTI.getOperand(), Depth, Q)) + return true; + } + + return false; +} + +static bool isKnownNonNullFromDominatingCondition(const Value *V, + const Instruction *CtxI, + const DominatorTree *DT) { + assert(V->getType()->isPointerTy() && "V must be pointer type"); + assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); + + if (!CtxI || !DT) + return false; + + unsigned NumUsesExplored = 0; + for (auto *U : V->users()) { + // Avoid massive lists + if (NumUsesExplored >= DomConditionsMaxUses) + break; + NumUsesExplored++; + + // If the value is used as an argument to a call or invoke, then argument + // attributes may provide an answer about null-ness. + if (auto CS = ImmutableCallSite(U)) + if (auto *CalledFunc = CS.getCalledFunction()) + for (const Argument &Arg : CalledFunc->args()) + if (CS.getArgOperand(Arg.getArgNo()) == V && + Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) + return true; + + // Consider only compare instructions uniquely controlling a branch + CmpInst::Predicate Pred; + if (!match(const_cast<User *>(U), + m_c_ICmp(Pred, m_Specific(V), m_Zero())) || + (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) + continue; + + SmallVector<const User *, 4> WorkList; + SmallPtrSet<const User *, 4> Visited; + for (auto *CmpU : U->users()) { + assert(WorkList.empty() && "Should be!"); + if (Visited.insert(CmpU).second) + WorkList.push_back(CmpU); + + while (!WorkList.empty()) { + auto *Curr = WorkList.pop_back_val(); + + // If a user is an AND, add all its users to the work list. We only + // propagate "pred != null" condition through AND because it is only + // correct to assume that all conditions of AND are met in true branch. + // TODO: Support similar logic of OR and EQ predicate? + if (Pred == ICmpInst::ICMP_NE) + if (auto *BO = dyn_cast<BinaryOperator>(Curr)) + if (BO->getOpcode() == Instruction::And) { + for (auto *BOU : BO->users()) + if (Visited.insert(BOU).second) + WorkList.push_back(BOU); + continue; + } + + if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { + assert(BI->isConditional() && "uses a comparison!"); + + BasicBlock *NonNullSuccessor = + BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); + BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); + if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) + return true; + } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && + DT->dominates(cast<Instruction>(Curr), CtxI)) { + return true; + } + } + } + } + + return false; +} + +/// Does the 'Range' metadata (which must be a valid MD_range operand list) +/// ensure that the value it's attached to is never Value? 'RangeType' is +/// is the type of the value described by the range. +static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { + const unsigned NumRanges = Ranges->getNumOperands() / 2; + assert(NumRanges >= 1); + for (unsigned i = 0; i < NumRanges; ++i) { + ConstantInt *Lower = + mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); + ConstantInt *Upper = + mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); + ConstantRange Range(Lower->getValue(), Upper->getValue()); + if (Range.contains(Value)) + return false; + } + return true; +} + +/// Return true if the given value is known to be non-zero when defined. For +/// vectors, return true if every element is known to be non-zero when +/// defined. For pointers, if the context instruction and dominator tree are +/// specified, perform context-sensitive analysis and return true if the +/// pointer couldn't possibly be null at the specified instruction. +/// Supports values with integer or pointer type and vectors of integers. +bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { + if (auto *C = dyn_cast<Constant>(V)) { + if (C->isNullValue()) + return false; + if (isa<ConstantInt>(C)) + // Must be non-zero due to null test above. + return true; + + if (auto *CE = dyn_cast<ConstantExpr>(C)) { + // See the comment for IntToPtr/PtrToInt instructions below. + if (CE->getOpcode() == Instruction::IntToPtr || + CE->getOpcode() == Instruction::PtrToInt) + if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= + Q.DL.getTypeSizeInBits(CE->getType())) + return isKnownNonZero(CE->getOperand(0), Depth, Q); + } + + // For constant vectors, check that all elements are undefined or known + // non-zero to determine that the whole vector is known non-zero. + if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { + for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { + Constant *Elt = C->getAggregateElement(i); + if (!Elt || Elt->isNullValue()) + return false; + if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) + return false; + } + return true; + } + + // A global variable in address space 0 is non null unless extern weak + // or an absolute symbol reference. Other address spaces may have null as a + // valid address for a global, so we can't assume anything. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && + GV->getType()->getAddressSpace() == 0) + return true; + } else + return false; + } + + if (auto *I = dyn_cast<Instruction>(V)) { + if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { + // If the possible ranges don't contain zero, then the value is + // definitely non-zero. + if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { + const APInt ZeroValue(Ty->getBitWidth(), 0); + if (rangeMetadataExcludesValue(Ranges, ZeroValue)) + return true; + } + } + } + + // Some of the tests below are recursive, so bail out if we hit the limit. + if (Depth++ >= MaxDepth) + return false; + + // Check for pointer simplifications. + if (V->getType()->isPointerTy()) { + // Alloca never returns null, malloc might. + if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) + return true; + + // A byval, inalloca, or nonnull argument is never null. + if (const Argument *A = dyn_cast<Argument>(V)) + if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) + return true; + + // A Load tagged with nonnull metadata is never null. + if (const LoadInst *LI = dyn_cast<LoadInst>(V)) + if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) + return true; + + if (const auto *Call = dyn_cast<CallBase>(V)) { + if (Call->isReturnNonNull()) + return true; + if (const auto *RP = getArgumentAliasingToReturnedPointer(Call)) + return isKnownNonZero(RP, Depth, Q); + } + } + + + // Check for recursive pointer simplifications. + if (V->getType()->isPointerTy()) { + if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) + return true; + + // Look through bitcast operations, GEPs, and int2ptr instructions as they + // do not alter the value, or at least not the nullness property of the + // value, e.g., int2ptr is allowed to zero/sign extend the value. + // + // Note that we have to take special care to avoid looking through + // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well + // as casts that can alter the value, e.g., AddrSpaceCasts. + if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) + if (isGEPKnownNonNull(GEP, Depth, Q)) + return true; + + if (auto *BCO = dyn_cast<BitCastOperator>(V)) + return isKnownNonZero(BCO->getOperand(0), Depth, Q); + + if (auto *I2P = dyn_cast<IntToPtrInst>(V)) + if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= + Q.DL.getTypeSizeInBits(I2P->getDestTy())) + return isKnownNonZero(I2P->getOperand(0), Depth, Q); + } + + // Similar to int2ptr above, we can look through ptr2int here if the cast + // is a no-op or an extend and not a truncate. + if (auto *P2I = dyn_cast<PtrToIntInst>(V)) + if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= + Q.DL.getTypeSizeInBits(P2I->getDestTy())) + return isKnownNonZero(P2I->getOperand(0), Depth, Q); + + unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); + + // X | Y != 0 if X != 0 or Y != 0. + Value *X = nullptr, *Y = nullptr; + if (match(V, m_Or(m_Value(X), m_Value(Y)))) + return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); + + // ext X != 0 if X != 0. + if (isa<SExtInst>(V) || isa<ZExtInst>(V)) + return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); + + // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined + // if the lowest bit is shifted off the end. + if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { + // shl nuw can't remove any non-zero bits. + const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); + if (Q.IIQ.hasNoUnsignedWrap(BO)) + return isKnownNonZero(X, Depth, Q); + + KnownBits Known(BitWidth); + computeKnownBits(X, Known, Depth, Q); + if (Known.One[0]) + return true; + } + // shr X, Y != 0 if X is negative. Note that the value of the shift is not + // defined if the sign bit is shifted off the end. + else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { + // shr exact can only shift out zero bits. + const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); + if (BO->isExact()) + return isKnownNonZero(X, Depth, Q); + + KnownBits Known = computeKnownBits(X, Depth, Q); + if (Known.isNegative()) + return true; + + // If the shifter operand is a constant, and all of the bits shifted + // out are known to be zero, and X is known non-zero then at least one + // non-zero bit must remain. + if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { + auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); + // Is there a known one in the portion not shifted out? + if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) + return true; + // Are all the bits to be shifted out known zero? + if (Known.countMinTrailingZeros() >= ShiftVal) + return isKnownNonZero(X, Depth, Q); + } + } + // div exact can only produce a zero if the dividend is zero. + else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { + return isKnownNonZero(X, Depth, Q); + } + // X + Y. + else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { + KnownBits XKnown = computeKnownBits(X, Depth, Q); + KnownBits YKnown = computeKnownBits(Y, Depth, Q); + + // If X and Y are both non-negative (as signed values) then their sum is not + // zero unless both X and Y are zero. + if (XKnown.isNonNegative() && YKnown.isNonNegative()) + if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) + return true; + + // If X and Y are both negative (as signed values) then their sum is not + // zero unless both X and Y equal INT_MIN. + if (XKnown.isNegative() && YKnown.isNegative()) { + APInt Mask = APInt::getSignedMaxValue(BitWidth); + // The sign bit of X is set. If some other bit is set then X is not equal + // to INT_MIN. + if (XKnown.One.intersects(Mask)) + return true; + // The sign bit of Y is set. If some other bit is set then Y is not equal + // to INT_MIN. + if (YKnown.One.intersects(Mask)) + return true; + } + + // The sum of a non-negative number and a power of two is not zero. + if (XKnown.isNonNegative() && + isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) + return true; + if (YKnown.isNonNegative() && + isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) + return true; + } + // X * Y. + else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { + const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); + // If X and Y are non-zero then so is X * Y as long as the multiplication + // does not overflow. + if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && + isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) + return true; + } + // (C ? X : Y) != 0 if X != 0 and Y != 0. + else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { + if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && + isKnownNonZero(SI->getFalseValue(), Depth, Q)) + return true; + } + // PHI + else if (const PHINode *PN = dyn_cast<PHINode>(V)) { + // Try and detect a recurrence that monotonically increases from a + // starting value, as these are common as induction variables. + if (PN->getNumIncomingValues() == 2) { + Value *Start = PN->getIncomingValue(0); + Value *Induction = PN->getIncomingValue(1); + if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) + std::swap(Start, Induction); + if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { + if (!C->isZero() && !C->isNegative()) { + ConstantInt *X; + if (Q.IIQ.UseInstrInfo && + (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || + match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && + !X->isNegative()) + return true; + } + } + } + // Check if all incoming values are non-zero constant. + bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { + return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); + }); + if (AllNonZeroConstants) + return true; + } + + KnownBits Known(BitWidth); + computeKnownBits(V, Known, Depth, Q); + return Known.One != 0; +} + +/// Return true if V2 == V1 + X, where X is known non-zero. +static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { + const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); + if (!BO || BO->getOpcode() != Instruction::Add) + return false; + Value *Op = nullptr; + if (V2 == BO->getOperand(0)) + Op = BO->getOperand(1); + else if (V2 == BO->getOperand(1)) + Op = BO->getOperand(0); + else + return false; + return isKnownNonZero(Op, 0, Q); +} + +/// Return true if it is known that V1 != V2. +static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { + if (V1 == V2) + return false; + if (V1->getType() != V2->getType()) + // We can't look through casts yet. + return false; + if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) + return true; + + if (V1->getType()->isIntOrIntVectorTy()) { + // Are any known bits in V1 contradictory to known bits in V2? If V1 + // has a known zero where V2 has a known one, they must not be equal. + KnownBits Known1 = computeKnownBits(V1, 0, Q); + KnownBits Known2 = computeKnownBits(V2, 0, Q); + + if (Known1.Zero.intersects(Known2.One) || + Known2.Zero.intersects(Known1.One)) + return true; + } + return false; +} + +/// Return true if 'V & Mask' is known to be zero. We use this predicate to +/// simplify operations downstream. Mask is known to be zero for bits that V +/// cannot have. +/// +/// This function is defined on values with integer type, values with pointer +/// type, and vectors of integers. In the case +/// where V is a vector, the mask, known zero, and known one values are the +/// same width as the vector element, and the bit is set only if it is true +/// for all of the elements in the vector. +bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, + const Query &Q) { + KnownBits Known(Mask.getBitWidth()); + computeKnownBits(V, Known, Depth, Q); + return Mask.isSubsetOf(Known.Zero); +} + +// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). +// Returns the input and lower/upper bounds. +static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, + const APInt *&CLow, const APInt *&CHigh) { + assert(isa<Operator>(Select) && + cast<Operator>(Select)->getOpcode() == Instruction::Select && + "Input should be a Select!"); + + const Value *LHS, *RHS, *LHS2, *RHS2; + SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; + if (SPF != SPF_SMAX && SPF != SPF_SMIN) + return false; + + if (!match(RHS, m_APInt(CLow))) + return false; + + SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; + if (getInverseMinMaxFlavor(SPF) != SPF2) + return false; + + if (!match(RHS2, m_APInt(CHigh))) + return false; + + if (SPF == SPF_SMIN) + std::swap(CLow, CHigh); + + In = LHS2; + return CLow->sle(*CHigh); +} + +/// For vector constants, loop over the elements and find the constant with the +/// minimum number of sign bits. Return 0 if the value is not a vector constant +/// or if any element was not analyzed; otherwise, return the count for the +/// element with the minimum number of sign bits. +static unsigned computeNumSignBitsVectorConstant(const Value *V, + unsigned TyBits) { + const auto *CV = dyn_cast<Constant>(V); + if (!CV || !CV->getType()->isVectorTy()) + return 0; + + unsigned MinSignBits = TyBits; + unsigned NumElts = CV->getType()->getVectorNumElements(); + for (unsigned i = 0; i != NumElts; ++i) { + // If we find a non-ConstantInt, bail out. + auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); + if (!Elt) + return 0; + + MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); + } + + return MinSignBits; +} + +static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, + const Query &Q); + +static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, + const Query &Q) { + unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); + assert(Result > 0 && "At least one sign bit needs to be present!"); + return Result; +} + +/// Return the number of times the sign bit of the register is replicated into +/// the other bits. We know that at least 1 bit is always equal to the sign bit +/// (itself), but other cases can give us information. For example, immediately +/// after an "ashr X, 2", we know that the top 3 bits are all equal to each +/// other, so we return 3. For vectors, return the number of sign bits for the +/// vector element with the minimum number of known sign bits. +static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, + const Query &Q) { + assert(Depth <= MaxDepth && "Limit Search Depth"); + + // We return the minimum number of sign bits that are guaranteed to be present + // in V, so for undef we have to conservatively return 1. We don't have the + // same behavior for poison though -- that's a FIXME today. + + Type *ScalarTy = V->getType()->getScalarType(); + unsigned TyBits = ScalarTy->isPointerTy() ? + Q.DL.getIndexTypeSizeInBits(ScalarTy) : + Q.DL.getTypeSizeInBits(ScalarTy); + + unsigned Tmp, Tmp2; + unsigned FirstAnswer = 1; + + // Note that ConstantInt is handled by the general computeKnownBits case + // below. + + if (Depth == MaxDepth) + return 1; // Limit search depth. + + const Operator *U = dyn_cast<Operator>(V); + switch (Operator::getOpcode(V)) { + default: break; + case Instruction::SExt: + Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); + return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; + + case Instruction::SDiv: { + const APInt *Denominator; + // sdiv X, C -> adds log(C) sign bits. + if (match(U->getOperand(1), m_APInt(Denominator))) { + + // Ignore non-positive denominator. + if (!Denominator->isStrictlyPositive()) + break; + + // Calculate the incoming numerator bits. + unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + + // Add floor(log(C)) bits to the numerator bits. + return std::min(TyBits, NumBits + Denominator->logBase2()); + } + break; + } + + case Instruction::SRem: { + const APInt *Denominator; + // srem X, C -> we know that the result is within [-C+1,C) when C is a + // positive constant. This let us put a lower bound on the number of sign + // bits. + if (match(U->getOperand(1), m_APInt(Denominator))) { + + // Ignore non-positive denominator. + if (!Denominator->isStrictlyPositive()) + break; + + // Calculate the incoming numerator bits. SRem by a positive constant + // can't lower the number of sign bits. + unsigned NumrBits = + ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + + // Calculate the leading sign bit constraints by examining the + // denominator. Given that the denominator is positive, there are two + // cases: + // + // 1. the numerator is positive. The result range is [0,C) and [0,C) u< + // (1 << ceilLogBase2(C)). + // + // 2. the numerator is negative. Then the result range is (-C,0] and + // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). + // + // Thus a lower bound on the number of sign bits is `TyBits - + // ceilLogBase2(C)`. + + unsigned ResBits = TyBits - Denominator->ceilLogBase2(); + return std::max(NumrBits, ResBits); + } + break; + } + + case Instruction::AShr: { + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + // ashr X, C -> adds C sign bits. Vectors too. + const APInt *ShAmt; + if (match(U->getOperand(1), m_APInt(ShAmt))) { + if (ShAmt->uge(TyBits)) + break; // Bad shift. + unsigned ShAmtLimited = ShAmt->getZExtValue(); + Tmp += ShAmtLimited; + if (Tmp > TyBits) Tmp = TyBits; + } + return Tmp; + } + case Instruction::Shl: { + const APInt *ShAmt; + if (match(U->getOperand(1), m_APInt(ShAmt))) { + // shl destroys sign bits. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (ShAmt->uge(TyBits) || // Bad shift. + ShAmt->uge(Tmp)) break; // Shifted all sign bits out. + Tmp2 = ShAmt->getZExtValue(); + return Tmp - Tmp2; + } + break; + } + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: // NOT is handled here. + // Logical binary ops preserve the number of sign bits at the worst. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (Tmp != 1) { + Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + FirstAnswer = std::min(Tmp, Tmp2); + // We computed what we know about the sign bits as our first + // answer. Now proceed to the generic code that uses + // computeKnownBits, and pick whichever answer is better. + } + break; + + case Instruction::Select: { + // If we have a clamp pattern, we know that the number of sign bits will be + // the minimum of the clamp min/max range. + const Value *X; + const APInt *CLow, *CHigh; + if (isSignedMinMaxClamp(U, X, CLow, CHigh)) + return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); + + Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (Tmp == 1) break; + Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); + return std::min(Tmp, Tmp2); + } + + case Instruction::Add: + // Add can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (Tmp == 1) break; + + // Special case decrementing a value (ADD X, -1): + if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) + if (CRHS->isAllOnesValue()) { + KnownBits Known(TyBits); + computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); + + // If the input is known to be 0 or 1, the output is 0/-1, which is all + // sign bits set. + if ((Known.Zero | 1).isAllOnesValue()) + return TyBits; + + // If we are subtracting one from a positive number, there is no carry + // out of the result. + if (Known.isNonNegative()) + return Tmp; + } + + Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (Tmp2 == 1) break; + return std::min(Tmp, Tmp2)-1; + + case Instruction::Sub: + Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (Tmp2 == 1) break; + + // Handle NEG. + if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) + if (CLHS->isNullValue()) { + KnownBits Known(TyBits); + computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); + // If the input is known to be 0 or 1, the output is 0/-1, which is all + // sign bits set. + if ((Known.Zero | 1).isAllOnesValue()) + return TyBits; + + // If the input is known to be positive (the sign bit is known clear), + // the output of the NEG has the same number of sign bits as the input. + if (Known.isNonNegative()) + return Tmp2; + + // Otherwise, we treat this like a SUB. + } + + // Sub can have at most one carry bit. Thus we know that the output + // is, at worst, one more bit than the inputs. + Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (Tmp == 1) break; + return std::min(Tmp, Tmp2)-1; + + case Instruction::Mul: { + // The output of the Mul can be at most twice the valid bits in the inputs. + unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + if (SignBitsOp0 == 1) break; + unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); + if (SignBitsOp1 == 1) break; + unsigned OutValidBits = + (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); + return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; + } + + case Instruction::PHI: { + const PHINode *PN = cast<PHINode>(U); + unsigned NumIncomingValues = PN->getNumIncomingValues(); + // Don't analyze large in-degree PHIs. + if (NumIncomingValues > 4) break; + // Unreachable blocks may have zero-operand PHI nodes. + if (NumIncomingValues == 0) break; + + // Take the minimum of all incoming values. This can't infinitely loop + // because of our depth threshold. + Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); + for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { + if (Tmp == 1) return Tmp; + Tmp = std::min( + Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); + } + return Tmp; + } + + case Instruction::Trunc: + // FIXME: it's tricky to do anything useful for this, but it is an important + // case for targets like X86. + break; + + case Instruction::ExtractElement: + // Look through extract element. At the moment we keep this simple and skip + // tracking the specific element. But at least we might find information + // valid for all elements of the vector (for example if vector is sign + // extended, shifted, etc). + return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); + + case Instruction::ShuffleVector: { + // TODO: This is copied almost directly from the SelectionDAG version of + // ComputeNumSignBits. It would be better if we could share common + // code. If not, make sure that changes are translated to the DAG. + + // Collect the minimum number of sign bits that are shared by every vector + // element referenced by the shuffle. + auto *Shuf = cast<ShuffleVectorInst>(U); + int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); + int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); + APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0); + for (int i = 0; i != NumMaskElts; ++i) { + int M = Shuf->getMaskValue(i); + assert(M < NumElts * 2 && "Invalid shuffle mask constant"); + // For undef elements, we don't know anything about the common state of + // the shuffle result. + if (M == -1) + return 1; + if (M < NumElts) + DemandedLHS.setBit(M % NumElts); + else + DemandedRHS.setBit(M % NumElts); + } + Tmp = std::numeric_limits<unsigned>::max(); + if (!!DemandedLHS) + Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q); + if (!!DemandedRHS) { + Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q); + Tmp = std::min(Tmp, Tmp2); + } + // If we don't know anything, early out and try computeKnownBits fall-back. + if (Tmp == 1) + break; + assert(Tmp <= V->getType()->getScalarSizeInBits() && + "Failed to determine minimum sign bits"); + return Tmp; + } + } + + // Finally, if we can prove that the top bits of the result are 0's or 1's, + // use this information. + + // If we can examine all elements of a vector constant successfully, we're + // done (we can't do any better than that). If not, keep trying. + if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) + return VecSignBits; + + KnownBits Known(TyBits); + computeKnownBits(V, Known, Depth, Q); + + // If we know that the sign bit is either zero or one, determine the number of + // identical bits in the top of the input value. + return std::max(FirstAnswer, Known.countMinSignBits()); +} + +/// This function computes the integer multiple of Base that equals V. +/// If successful, it returns true and returns the multiple in +/// Multiple. If unsuccessful, it returns false. It looks +/// through SExt instructions only if LookThroughSExt is true. +bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, + bool LookThroughSExt, unsigned Depth) { + const unsigned MaxDepth = 6; + + assert(V && "No Value?"); + assert(Depth <= MaxDepth && "Limit Search Depth"); + assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); + + Type *T = V->getType(); + + ConstantInt *CI = dyn_cast<ConstantInt>(V); + + if (Base == 0) + return false; + + if (Base == 1) { + Multiple = V; + return true; + } + + ConstantExpr *CO = dyn_cast<ConstantExpr>(V); + Constant *BaseVal = ConstantInt::get(T, Base); + if (CO && CO == BaseVal) { + // Multiple is 1. + Multiple = ConstantInt::get(T, 1); + return true; + } + + if (CI && CI->getZExtValue() % Base == 0) { + Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); + return true; + } + + if (Depth == MaxDepth) return false; // Limit search depth. + + Operator *I = dyn_cast<Operator>(V); + if (!I) return false; + + switch (I->getOpcode()) { + default: break; + case Instruction::SExt: + if (!LookThroughSExt) return false; + // otherwise fall through to ZExt + LLVM_FALLTHROUGH; + case Instruction::ZExt: + return ComputeMultiple(I->getOperand(0), Base, Multiple, + LookThroughSExt, Depth+1); + case Instruction::Shl: + case Instruction::Mul: { + Value *Op0 = I->getOperand(0); + Value *Op1 = I->getOperand(1); + + if (I->getOpcode() == Instruction::Shl) { + ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); + if (!Op1CI) return false; + // Turn Op0 << Op1 into Op0 * 2^Op1 + APInt Op1Int = Op1CI->getValue(); + uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); + APInt API(Op1Int.getBitWidth(), 0); + API.setBit(BitToSet); + Op1 = ConstantInt::get(V->getContext(), API); + } + + Value *Mul0 = nullptr; + if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { + if (Constant *Op1C = dyn_cast<Constant>(Op1)) + if (Constant *MulC = dyn_cast<Constant>(Mul0)) { + if (Op1C->getType()->getPrimitiveSizeInBits() < + MulC->getType()->getPrimitiveSizeInBits()) + Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); + if (Op1C->getType()->getPrimitiveSizeInBits() > + MulC->getType()->getPrimitiveSizeInBits()) + MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); + + // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) + Multiple = ConstantExpr::getMul(MulC, Op1C); + return true; + } + + if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) + if (Mul0CI->getValue() == 1) { + // V == Base * Op1, so return Op1 + Multiple = Op1; + return true; + } + } + + Value *Mul1 = nullptr; + if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { + if (Constant *Op0C = dyn_cast<Constant>(Op0)) + if (Constant *MulC = dyn_cast<Constant>(Mul1)) { + if (Op0C->getType()->getPrimitiveSizeInBits() < + MulC->getType()->getPrimitiveSizeInBits()) + Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); + if (Op0C->getType()->getPrimitiveSizeInBits() > + MulC->getType()->getPrimitiveSizeInBits()) + MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); + + // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) + Multiple = ConstantExpr::getMul(MulC, Op0C); + return true; + } + + if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) + if (Mul1CI->getValue() == 1) { + // V == Base * Op0, so return Op0 + Multiple = Op0; + return true; + } + } + } + } + + // We could not determine if V is a multiple of Base. + return false; +} + +Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, + const TargetLibraryInfo *TLI) { + const Function *F = ICS.getCalledFunction(); + if (!F) + return Intrinsic::not_intrinsic; + + if (F->isIntrinsic()) + return F->getIntrinsicID(); + + if (!TLI) + return Intrinsic::not_intrinsic; + + LibFunc Func; + // We're going to make assumptions on the semantics of the functions, check + // that the target knows that it's available in this environment and it does + // not have local linkage. + if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) + return Intrinsic::not_intrinsic; + + if (!ICS.onlyReadsMemory()) + return Intrinsic::not_intrinsic; + + // Otherwise check if we have a call to a function that can be turned into a + // vector intrinsic. + switch (Func) { + default: + break; + case LibFunc_sin: + case LibFunc_sinf: + case LibFunc_sinl: + return Intrinsic::sin; + case LibFunc_cos: + case LibFunc_cosf: + case LibFunc_cosl: + return Intrinsic::cos; + case LibFunc_exp: + case LibFunc_expf: + case LibFunc_expl: + return Intrinsic::exp; + case LibFunc_exp2: + case LibFunc_exp2f: + case LibFunc_exp2l: + return Intrinsic::exp2; + case LibFunc_log: + case LibFunc_logf: + case LibFunc_logl: + return Intrinsic::log; + case LibFunc_log10: + case LibFunc_log10f: + case LibFunc_log10l: + return Intrinsic::log10; + case LibFunc_log2: + case LibFunc_log2f: + case LibFunc_log2l: + return Intrinsic::log2; + case LibFunc_fabs: + case LibFunc_fabsf: + case LibFunc_fabsl: + return Intrinsic::fabs; + case LibFunc_fmin: + case LibFunc_fminf: + case LibFunc_fminl: + return Intrinsic::minnum; + case LibFunc_fmax: + case LibFunc_fmaxf: + case LibFunc_fmaxl: + return Intrinsic::maxnum; + case LibFunc_copysign: + case LibFunc_copysignf: + case LibFunc_copysignl: + return Intrinsic::copysign; + case LibFunc_floor: + case LibFunc_floorf: + case LibFunc_floorl: + return Intrinsic::floor; + case LibFunc_ceil: + case LibFunc_ceilf: + case LibFunc_ceill: + return Intrinsic::ceil; + case LibFunc_trunc: + case LibFunc_truncf: + case LibFunc_truncl: + return Intrinsic::trunc; + case LibFunc_rint: + case LibFunc_rintf: + case LibFunc_rintl: + return Intrinsic::rint; + case LibFunc_nearbyint: + case LibFunc_nearbyintf: + case LibFunc_nearbyintl: + return Intrinsic::nearbyint; + case LibFunc_round: + case LibFunc_roundf: + case LibFunc_roundl: + return Intrinsic::round; + case LibFunc_pow: + case LibFunc_powf: + case LibFunc_powl: + return Intrinsic::pow; + case LibFunc_sqrt: + case LibFunc_sqrtf: + case LibFunc_sqrtl: + return Intrinsic::sqrt; + } + + return Intrinsic::not_intrinsic; +} + +/// Return true if we can prove that the specified FP value is never equal to +/// -0.0. +/// +/// NOTE: this function will need to be revisited when we support non-default +/// rounding modes! +bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, + unsigned Depth) { + if (auto *CFP = dyn_cast<ConstantFP>(V)) + return !CFP->getValueAPF().isNegZero(); + + // Limit search depth. + if (Depth == MaxDepth) + return false; + + auto *Op = dyn_cast<Operator>(V); + if (!Op) + return false; + + // Check if the nsz fast-math flag is set. + if (auto *FPO = dyn_cast<FPMathOperator>(Op)) + if (FPO->hasNoSignedZeros()) + return true; + + // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. + if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) + return true; + + // sitofp and uitofp turn into +0.0 for zero. + if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) + return true; + + if (auto *Call = dyn_cast<CallInst>(Op)) { + Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); + switch (IID) { + default: + break; + // sqrt(-0.0) = -0.0, no other negative results are possible. + case Intrinsic::sqrt: + case Intrinsic::canonicalize: + return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); + // fabs(x) != -0.0 + case Intrinsic::fabs: + return true; + } + } + + return false; +} + +/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a +/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign +/// bit despite comparing equal. +static bool cannotBeOrderedLessThanZeroImpl(const Value *V, + const TargetLibraryInfo *TLI, + bool SignBitOnly, + unsigned Depth) { + // TODO: This function does not do the right thing when SignBitOnly is true + // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform + // which flips the sign bits of NaNs. See + // https://llvm.org/bugs/show_bug.cgi?id=31702. + + if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { + return !CFP->getValueAPF().isNegative() || + (!SignBitOnly && CFP->getValueAPF().isZero()); + } + + // Handle vector of constants. + if (auto *CV = dyn_cast<Constant>(V)) { + if (CV->getType()->isVectorTy()) { + unsigned NumElts = CV->getType()->getVectorNumElements(); + for (unsigned i = 0; i != NumElts; ++i) { + auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); + if (!CFP) + return false; + if (CFP->getValueAPF().isNegative() && + (SignBitOnly || !CFP->getValueAPF().isZero())) + return false; + } + + // All non-negative ConstantFPs. + return true; + } + } + + if (Depth == MaxDepth) + return false; // Limit search depth. + + const Operator *I = dyn_cast<Operator>(V); + if (!I) + return false; + + switch (I->getOpcode()) { + default: + break; + // Unsigned integers are always nonnegative. + case Instruction::UIToFP: + return true; + case Instruction::FMul: + // x*x is always non-negative or a NaN. + if (I->getOperand(0) == I->getOperand(1) && + (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) + return true; + + LLVM_FALLTHROUGH; + case Instruction::FAdd: + case Instruction::FDiv: + case Instruction::FRem: + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, + Depth + 1); + case Instruction::Select: + return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, + Depth + 1) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, + Depth + 1); + case Instruction::FPExt: + case Instruction::FPTrunc: + // Widening/narrowing never change sign. + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1); + case Instruction::ExtractElement: + // Look through extract element. At the moment we keep this simple and skip + // tracking the specific element. But at least we might find information + // valid for all elements of the vector. + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1); + case Instruction::Call: + const auto *CI = cast<CallInst>(I); + Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); + switch (IID) { + default: + break; + case Intrinsic::maxnum: + return (isKnownNeverNaN(I->getOperand(0), TLI) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, + SignBitOnly, Depth + 1)) || + (isKnownNeverNaN(I->getOperand(1), TLI) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, + SignBitOnly, Depth + 1)); + + case Intrinsic::maximum: + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1) || + cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, + Depth + 1); + case Intrinsic::minnum: + case Intrinsic::minimum: + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, + Depth + 1); + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::fabs: + return true; + + case Intrinsic::sqrt: + // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. + if (!SignBitOnly) + return true; + return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || + CannotBeNegativeZero(CI->getOperand(0), TLI)); + + case Intrinsic::powi: + if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { + // powi(x,n) is non-negative if n is even. + if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) + return true; + } + // TODO: This is not correct. Given that exp is an integer, here are the + // ways that pow can return a negative value: + // + // pow(x, exp) --> negative if exp is odd and x is negative. + // pow(-0, exp) --> -inf if exp is negative odd. + // pow(-0, exp) --> -0 if exp is positive odd. + // pow(-inf, exp) --> -0 if exp is negative odd. + // pow(-inf, exp) --> -inf if exp is positive odd. + // + // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, + // but we must return false if x == -0. Unfortunately we do not currently + // have a way of expressing this constraint. See details in + // https://llvm.org/bugs/show_bug.cgi?id=31702. + return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, + Depth + 1); + + case Intrinsic::fma: + case Intrinsic::fmuladd: + // x*x+y is non-negative if y is non-negative. + return I->getOperand(0) == I->getOperand(1) && + (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && + cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, + Depth + 1); + } + break; + } + return false; +} + +bool llvm::CannotBeOrderedLessThanZero(const Value *V, + const TargetLibraryInfo *TLI) { + return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); +} + +bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { + return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); +} + +bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, + unsigned Depth) { + assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); + + // If we're told that NaNs won't happen, assume they won't. + if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) + if (FPMathOp->hasNoNaNs()) + return true; + + // Handle scalar constants. + if (auto *CFP = dyn_cast<ConstantFP>(V)) + return !CFP->isNaN(); + + if (Depth == MaxDepth) + return false; + + if (auto *Inst = dyn_cast<Instruction>(V)) { + switch (Inst->getOpcode()) { + case Instruction::FAdd: + case Instruction::FMul: + case Instruction::FSub: + case Instruction::FDiv: + case Instruction::FRem: { + // TODO: Need isKnownNeverInfinity + return false; + } + case Instruction::Select: { + return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && + isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); + } + case Instruction::SIToFP: + case Instruction::UIToFP: + return true; + case Instruction::FPTrunc: + case Instruction::FPExt: + return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); + default: + break; + } + } + + if (const auto *II = dyn_cast<IntrinsicInst>(V)) { + switch (II->getIntrinsicID()) { + case Intrinsic::canonicalize: + case Intrinsic::fabs: + case Intrinsic::copysign: + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::floor: + case Intrinsic::ceil: + case Intrinsic::trunc: + case Intrinsic::rint: + case Intrinsic::nearbyint: + case Intrinsic::round: + return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); + case Intrinsic::sqrt: + return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && + CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); + case Intrinsic::minnum: + case Intrinsic::maxnum: + // If either operand is not NaN, the result is not NaN. + return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || + isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); + default: + return false; + } + } + + // Bail out for constant expressions, but try to handle vector constants. + if (!V->getType()->isVectorTy() || !isa<Constant>(V)) + return false; + + // For vectors, verify that each element is not NaN. + unsigned NumElts = V->getType()->getVectorNumElements(); + for (unsigned i = 0; i != NumElts; ++i) { + Constant *Elt = cast<Constant>(V)->getAggregateElement(i); + if (!Elt) + return false; + if (isa<UndefValue>(Elt)) + continue; + auto *CElt = dyn_cast<ConstantFP>(Elt); + if (!CElt || CElt->isNaN()) + return false; + } + // All elements were confirmed not-NaN or undefined. + return true; +} + +Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { + + // All byte-wide stores are splatable, even of arbitrary variables. + if (V->getType()->isIntegerTy(8)) + return V; + + LLVMContext &Ctx = V->getContext(); + + // Undef don't care. + auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); + if (isa<UndefValue>(V)) + return UndefInt8; + + const uint64_t Size = DL.getTypeStoreSize(V->getType()); + if (!Size) + return UndefInt8; + + Constant *C = dyn_cast<Constant>(V); + if (!C) { + // Conceptually, we could handle things like: + // %a = zext i8 %X to i16 + // %b = shl i16 %a, 8 + // %c = or i16 %a, %b + // but until there is an example that actually needs this, it doesn't seem + // worth worrying about. + return nullptr; + } + + // Handle 'null' ConstantArrayZero etc. + if (C->isNullValue()) + return Constant::getNullValue(Type::getInt8Ty(Ctx)); + + // Constant floating-point values can be handled as integer values if the + // corresponding integer value is "byteable". An important case is 0.0. + if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + Type *Ty = nullptr; + if (CFP->getType()->isHalfTy()) + Ty = Type::getInt16Ty(Ctx); + else if (CFP->getType()->isFloatTy()) + Ty = Type::getInt32Ty(Ctx); + else if (CFP->getType()->isDoubleTy()) + Ty = Type::getInt64Ty(Ctx); + // Don't handle long double formats, which have strange constraints. + return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) + : nullptr; + } + + // We can handle constant integers that are multiple of 8 bits. + if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { + if (CI->getBitWidth() % 8 == 0) { + assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); + if (!CI->getValue().isSplat(8)) + return nullptr; + return ConstantInt::get(Ctx, CI->getValue().trunc(8)); + } + } + + if (auto *CE = dyn_cast<ConstantExpr>(C)) { + if (CE->getOpcode() == Instruction::IntToPtr) { + auto PS = DL.getPointerSizeInBits( + cast<PointerType>(CE->getType())->getAddressSpace()); + return isBytewiseValue( + ConstantExpr::getIntegerCast(CE->getOperand(0), + Type::getIntNTy(Ctx, PS), false), + DL); + } + } + + auto Merge = [&](Value *LHS, Value *RHS) -> Value * { + if (LHS == RHS) + return LHS; + if (!LHS || !RHS) + return nullptr; + if (LHS == UndefInt8) + return RHS; + if (RHS == UndefInt8) + return LHS; + return nullptr; + }; + + if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { + Value *Val = UndefInt8; + for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) + if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) + return nullptr; + return Val; + } + + if (isa<ConstantAggregate>(C)) { + Value *Val = UndefInt8; + for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) + if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) + return nullptr; + return Val; + } + + // Don't try to handle the handful of other constants. + return nullptr; +} + +// This is the recursive version of BuildSubAggregate. It takes a few different +// arguments. Idxs is the index within the nested struct From that we are +// looking at now (which is of type IndexedType). IdxSkip is the number of +// indices from Idxs that should be left out when inserting into the resulting +// struct. To is the result struct built so far, new insertvalue instructions +// build on that. +static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, + SmallVectorImpl<unsigned> &Idxs, + unsigned IdxSkip, + Instruction *InsertBefore) { + StructType *STy = dyn_cast<StructType>(IndexedType); + if (STy) { + // Save the original To argument so we can modify it + Value *OrigTo = To; + // General case, the type indexed by Idxs is a struct + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + // Process each struct element recursively + Idxs.push_back(i); + Value *PrevTo = To; + To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, + InsertBefore); + Idxs.pop_back(); + if (!To) { + // Couldn't find any inserted value for this index? Cleanup + while (PrevTo != OrigTo) { + InsertValueInst* Del = cast<InsertValueInst>(PrevTo); + PrevTo = Del->getAggregateOperand(); + Del->eraseFromParent(); + } + // Stop processing elements + break; + } + } + // If we successfully found a value for each of our subaggregates + if (To) + return To; + } + // Base case, the type indexed by SourceIdxs is not a struct, or not all of + // the struct's elements had a value that was inserted directly. In the latter + // case, perhaps we can't determine each of the subelements individually, but + // we might be able to find the complete struct somewhere. + + // Find the value that is at that particular spot + Value *V = FindInsertedValue(From, Idxs); + + if (!V) + return nullptr; + + // Insert the value in the new (sub) aggregate + return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), + "tmp", InsertBefore); +} + +// This helper takes a nested struct and extracts a part of it (which is again a +// struct) into a new value. For example, given the struct: +// { a, { b, { c, d }, e } } +// and the indices "1, 1" this returns +// { c, d }. +// +// It does this by inserting an insertvalue for each element in the resulting +// struct, as opposed to just inserting a single struct. This will only work if +// each of the elements of the substruct are known (ie, inserted into From by an +// insertvalue instruction somewhere). +// +// All inserted insertvalue instructions are inserted before InsertBefore +static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, + Instruction *InsertBefore) { + assert(InsertBefore && "Must have someplace to insert!"); + Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), + idx_range); + Value *To = UndefValue::get(IndexedType); + SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); + unsigned IdxSkip = Idxs.size(); + + return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); +} + +/// Given an aggregate and a sequence of indices, see if the scalar value +/// indexed is already around as a register, for example if it was inserted +/// directly into the aggregate. +/// +/// If InsertBefore is not null, this function will duplicate (modified) +/// insertvalues when a part of a nested struct is extracted. +Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, + Instruction *InsertBefore) { + // Nothing to index? Just return V then (this is useful at the end of our + // recursion). + if (idx_range.empty()) + return V; + // We have indices, so V should have an indexable type. + assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && + "Not looking at a struct or array?"); + assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && + "Invalid indices for type?"); + + if (Constant *C = dyn_cast<Constant>(V)) { + C = C->getAggregateElement(idx_range[0]); + if (!C) return nullptr; + return FindInsertedValue(C, idx_range.slice(1), InsertBefore); + } + + if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { + // Loop the indices for the insertvalue instruction in parallel with the + // requested indices + const unsigned *req_idx = idx_range.begin(); + for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); + i != e; ++i, ++req_idx) { + if (req_idx == idx_range.end()) { + // We can't handle this without inserting insertvalues + if (!InsertBefore) + return nullptr; + + // The requested index identifies a part of a nested aggregate. Handle + // this specially. For example, + // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 + // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 + // %C = extractvalue {i32, { i32, i32 } } %B, 1 + // This can be changed into + // %A = insertvalue {i32, i32 } undef, i32 10, 0 + // %C = insertvalue {i32, i32 } %A, i32 11, 1 + // which allows the unused 0,0 element from the nested struct to be + // removed. + return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), + InsertBefore); + } + + // This insert value inserts something else than what we are looking for. + // See if the (aggregate) value inserted into has the value we are + // looking for, then. + if (*req_idx != *i) + return FindInsertedValue(I->getAggregateOperand(), idx_range, + InsertBefore); + } + // If we end up here, the indices of the insertvalue match with those + // requested (though possibly only partially). Now we recursively look at + // the inserted value, passing any remaining indices. + return FindInsertedValue(I->getInsertedValueOperand(), + makeArrayRef(req_idx, idx_range.end()), + InsertBefore); + } + + if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { + // If we're extracting a value from an aggregate that was extracted from + // something else, we can extract from that something else directly instead. + // However, we will need to chain I's indices with the requested indices. + + // Calculate the number of indices required + unsigned size = I->getNumIndices() + idx_range.size(); + // Allocate some space to put the new indices in + SmallVector<unsigned, 5> Idxs; + Idxs.reserve(size); + // Add indices from the extract value instruction + Idxs.append(I->idx_begin(), I->idx_end()); + + // Add requested indices + Idxs.append(idx_range.begin(), idx_range.end()); + + assert(Idxs.size() == size + && "Number of indices added not correct?"); + + return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); + } + // Otherwise, we don't know (such as, extracting from a function return value + // or load instruction) + return nullptr; +} + +bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, + unsigned CharSize) { + // Make sure the GEP has exactly three arguments. + if (GEP->getNumOperands() != 3) + return false; + + // Make sure the index-ee is a pointer to array of \p CharSize integers. + // CharSize. + ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); + if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) + return false; + + // Check to make sure that the first operand of the GEP is an integer and + // has value 0 so that we are sure we're indexing into the initializer. + const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); + if (!FirstIdx || !FirstIdx->isZero()) + return false; + + return true; +} + +bool llvm::getConstantDataArrayInfo(const Value *V, + ConstantDataArraySlice &Slice, + unsigned ElementSize, uint64_t Offset) { + assert(V); + + // Look through bitcast instructions and geps. + V = V->stripPointerCasts(); + + // If the value is a GEP instruction or constant expression, treat it as an + // offset. + if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + // The GEP operator should be based on a pointer to string constant, and is + // indexing into the string constant. + if (!isGEPBasedOnPointerToString(GEP, ElementSize)) + return false; + + // If the second index isn't a ConstantInt, then this is a variable index + // into the array. If this occurs, we can't say anything meaningful about + // the string. + uint64_t StartIdx = 0; + if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) + StartIdx = CI->getZExtValue(); + else + return false; + return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, + StartIdx + Offset); + } + + // The GEP instruction, constant or instruction, must reference a global + // variable that is a constant and is initialized. The referenced constant + // initializer is the array that we'll use for optimization. + const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); + if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) + return false; + + const ConstantDataArray *Array; + ArrayType *ArrayTy; + if (GV->getInitializer()->isNullValue()) { + Type *GVTy = GV->getValueType(); + if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { + // A zeroinitializer for the array; there is no ConstantDataArray. + Array = nullptr; + } else { + const DataLayout &DL = GV->getParent()->getDataLayout(); + uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); + uint64_t Length = SizeInBytes / (ElementSize / 8); + if (Length <= Offset) + return false; + + Slice.Array = nullptr; + Slice.Offset = 0; + Slice.Length = Length - Offset; + return true; + } + } else { + // This must be a ConstantDataArray. + Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); + if (!Array) + return false; + ArrayTy = Array->getType(); + } + if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) + return false; + + uint64_t NumElts = ArrayTy->getArrayNumElements(); + if (Offset > NumElts) + return false; + + Slice.Array = Array; + Slice.Offset = Offset; + Slice.Length = NumElts - Offset; + return true; +} + +/// This function computes the length of a null-terminated C string pointed to +/// by V. If successful, it returns true and returns the string in Str. +/// If unsuccessful, it returns false. +bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, + uint64_t Offset, bool TrimAtNul) { + ConstantDataArraySlice Slice; + if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) + return false; + + if (Slice.Array == nullptr) { + if (TrimAtNul) { + Str = StringRef(); + return true; + } + if (Slice.Length == 1) { + Str = StringRef("", 1); + return true; + } + // We cannot instantiate a StringRef as we do not have an appropriate string + // of 0s at hand. + return false; + } + + // Start out with the entire array in the StringRef. + Str = Slice.Array->getAsString(); + // Skip over 'offset' bytes. + Str = Str.substr(Slice.Offset); + + if (TrimAtNul) { + // Trim off the \0 and anything after it. If the array is not nul + // terminated, we just return the whole end of string. The client may know + // some other way that the string is length-bound. + Str = Str.substr(0, Str.find('\0')); + } + return true; +} + +// These next two are very similar to the above, but also look through PHI +// nodes. +// TODO: See if we can integrate these two together. + +/// If we can compute the length of the string pointed to by +/// the specified pointer, return 'len+1'. If we can't, return 0. +static uint64_t GetStringLengthH(const Value *V, + SmallPtrSetImpl<const PHINode*> &PHIs, + unsigned CharSize) { + // Look through noop bitcast instructions. + V = V->stripPointerCasts(); + + // If this is a PHI node, there are two cases: either we have already seen it + // or we haven't. + if (const PHINode *PN = dyn_cast<PHINode>(V)) { + if (!PHIs.insert(PN).second) + return ~0ULL; // already in the set. + + // If it was new, see if all the input strings are the same length. + uint64_t LenSoFar = ~0ULL; + for (Value *IncValue : PN->incoming_values()) { + uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); + if (Len == 0) return 0; // Unknown length -> unknown. + + if (Len == ~0ULL) continue; + + if (Len != LenSoFar && LenSoFar != ~0ULL) + return 0; // Disagree -> unknown. + LenSoFar = Len; + } + + // Success, all agree. + return LenSoFar; + } + + // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) + if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { + uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); + if (Len1 == 0) return 0; + uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); + if (Len2 == 0) return 0; + if (Len1 == ~0ULL) return Len2; + if (Len2 == ~0ULL) return Len1; + if (Len1 != Len2) return 0; + return Len1; + } + + // Otherwise, see if we can read the string. + ConstantDataArraySlice Slice; + if (!getConstantDataArrayInfo(V, Slice, CharSize)) + return 0; + + if (Slice.Array == nullptr) + return 1; + + // Search for nul characters + unsigned NullIndex = 0; + for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { + if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) + break; + } + + return NullIndex + 1; +} + +/// If we can compute the length of the string pointed to by +/// the specified pointer, return 'len+1'. If we can't, return 0. +uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { + if (!V->getType()->isPointerTy()) + return 0; + + SmallPtrSet<const PHINode*, 32> PHIs; + uint64_t Len = GetStringLengthH(V, PHIs, CharSize); + // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return + // an empty string as a length. + return Len == ~0ULL ? 1 : Len; +} + +const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) { + assert(Call && + "getArgumentAliasingToReturnedPointer only works on nonnull calls"); + if (const Value *RV = Call->getReturnedArgOperand()) + return RV; + // This can be used only as a aliasing property. + if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call)) + return Call->getArgOperand(0); + return nullptr; +} + +bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( + const CallBase *Call) { + return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || + Call->getIntrinsicID() == Intrinsic::strip_invariant_group || + Call->getIntrinsicID() == Intrinsic::aarch64_irg || + Call->getIntrinsicID() == Intrinsic::aarch64_tagp; +} + +/// \p PN defines a loop-variant pointer to an object. Check if the +/// previous iteration of the loop was referring to the same object as \p PN. +static bool isSameUnderlyingObjectInLoop(const PHINode *PN, + const LoopInfo *LI) { + // Find the loop-defined value. + Loop *L = LI->getLoopFor(PN->getParent()); + if (PN->getNumIncomingValues() != 2) + return true; + + // Find the value from previous iteration. + auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); + if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) + PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); + if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) + return true; + + // If a new pointer is loaded in the loop, the pointer references a different + // object in every iteration. E.g.: + // for (i) + // int *p = a[i]; + // ... + if (auto *Load = dyn_cast<LoadInst>(PrevValue)) + if (!L->isLoopInvariant(Load->getPointerOperand())) + return false; + return true; +} + +Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, + unsigned MaxLookup) { + if (!V->getType()->isPointerTy()) + return V; + for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { + if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { + V = GEP->getPointerOperand(); + } else if (Operator::getOpcode(V) == Instruction::BitCast || + Operator::getOpcode(V) == Instruction::AddrSpaceCast) { + V = cast<Operator>(V)->getOperand(0); + } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { + if (GA->isInterposable()) + return V; + V = GA->getAliasee(); + } else if (isa<AllocaInst>(V)) { + // An alloca can't be further simplified. + return V; + } else { + if (auto *Call = dyn_cast<CallBase>(V)) { + // CaptureTracking can know about special capturing properties of some + // intrinsics like launder.invariant.group, that can't be expressed with + // the attributes, but have properties like returning aliasing pointer. + // Because some analysis may assume that nocaptured pointer is not + // returned from some special intrinsic (because function would have to + // be marked with returns attribute), it is crucial to use this function + // because it should be in sync with CaptureTracking. Not using it may + // cause weird miscompilations where 2 aliasing pointers are assumed to + // noalias. + if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) { + V = RP; + continue; + } + } + + // See if InstructionSimplify knows any relevant tricks. + if (Instruction *I = dyn_cast<Instruction>(V)) + // TODO: Acquire a DominatorTree and AssumptionCache and use them. + if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { + V = Simplified; + continue; + } + + return V; + } + assert(V->getType()->isPointerTy() && "Unexpected operand type!"); + } + return V; +} + +void llvm::GetUnderlyingObjects(const Value *V, + SmallVectorImpl<const Value *> &Objects, + const DataLayout &DL, LoopInfo *LI, + unsigned MaxLookup) { + SmallPtrSet<const Value *, 4> Visited; + SmallVector<const Value *, 4> Worklist; + Worklist.push_back(V); + do { + const Value *P = Worklist.pop_back_val(); + P = GetUnderlyingObject(P, DL, MaxLookup); + + if (!Visited.insert(P).second) + continue; + + if (auto *SI = dyn_cast<SelectInst>(P)) { + Worklist.push_back(SI->getTrueValue()); + Worklist.push_back(SI->getFalseValue()); + continue; + } + + if (auto *PN = dyn_cast<PHINode>(P)) { + // If this PHI changes the underlying object in every iteration of the + // loop, don't look through it. Consider: + // int **A; + // for (i) { + // Prev = Curr; // Prev = PHI (Prev_0, Curr) + // Curr = A[i]; + // *Prev, *Curr; + // + // Prev is tracking Curr one iteration behind so they refer to different + // underlying objects. + if (!LI || !LI->isLoopHeader(PN->getParent()) || + isSameUnderlyingObjectInLoop(PN, LI)) + for (Value *IncValue : PN->incoming_values()) + Worklist.push_back(IncValue); + continue; + } + + Objects.push_back(P); + } while (!Worklist.empty()); +} + +/// This is the function that does the work of looking through basic +/// ptrtoint+arithmetic+inttoptr sequences. +static const Value *getUnderlyingObjectFromInt(const Value *V) { + do { + if (const Operator *U = dyn_cast<Operator>(V)) { + // If we find a ptrtoint, we can transfer control back to the + // regular getUnderlyingObjectFromInt. + if (U->getOpcode() == Instruction::PtrToInt) + return U->getOperand(0); + // If we find an add of a constant, a multiplied value, or a phi, it's + // likely that the other operand will lead us to the base + // object. We don't have to worry about the case where the + // object address is somehow being computed by the multiply, + // because our callers only care when the result is an + // identifiable object. + if (U->getOpcode() != Instruction::Add || + (!isa<ConstantInt>(U->getOperand(1)) && + Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && + !isa<PHINode>(U->getOperand(1)))) + return V; + V = U->getOperand(0); + } else { + return V; + } + assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); + } while (true); +} + +/// This is a wrapper around GetUnderlyingObjects and adds support for basic +/// ptrtoint+arithmetic+inttoptr sequences. +/// It returns false if unidentified object is found in GetUnderlyingObjects. +bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, + SmallVectorImpl<Value *> &Objects, + const DataLayout &DL) { + SmallPtrSet<const Value *, 16> Visited; + SmallVector<const Value *, 4> Working(1, V); + do { + V = Working.pop_back_val(); + + SmallVector<const Value *, 4> Objs; + GetUnderlyingObjects(V, Objs, DL); + + for (const Value *V : Objs) { + if (!Visited.insert(V).second) + continue; + if (Operator::getOpcode(V) == Instruction::IntToPtr) { + const Value *O = + getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); + if (O->getType()->isPointerTy()) { + Working.push_back(O); + continue; + } + } + // If GetUnderlyingObjects fails to find an identifiable object, + // getUnderlyingObjectsForCodeGen also fails for safety. + if (!isIdentifiedObject(V)) { + Objects.clear(); + return false; + } + Objects.push_back(const_cast<Value *>(V)); + } + } while (!Working.empty()); + return true; +} + +/// Return true if the only users of this pointer are lifetime markers. +bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { + for (const User *U : V->users()) { + const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); + if (!II) return false; + + if (!II->isLifetimeStartOrEnd()) + return false; + } + return true; +} + +bool llvm::isSafeToSpeculativelyExecute(const Value *V, + const Instruction *CtxI, + const DominatorTree *DT) { + const Operator *Inst = dyn_cast<Operator>(V); + if (!Inst) + return false; + + for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) + if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) + if (C->canTrap()) + return false; + + switch (Inst->getOpcode()) { + default: + return true; + case Instruction::UDiv: + case Instruction::URem: { + // x / y is undefined if y == 0. + const APInt *V; + if (match(Inst->getOperand(1), m_APInt(V))) + return *V != 0; + return false; + } + case Instruction::SDiv: + case Instruction::SRem: { + // x / y is undefined if y == 0 or x == INT_MIN and y == -1 + const APInt *Numerator, *Denominator; + if (!match(Inst->getOperand(1), m_APInt(Denominator))) + return false; + // We cannot hoist this division if the denominator is 0. + if (*Denominator == 0) + return false; + // It's safe to hoist if the denominator is not 0 or -1. + if (*Denominator != -1) + return true; + // At this point we know that the denominator is -1. It is safe to hoist as + // long we know that the numerator is not INT_MIN. + if (match(Inst->getOperand(0), m_APInt(Numerator))) + return !Numerator->isMinSignedValue(); + // The numerator *might* be MinSignedValue. + return false; + } + case Instruction::Load: { + const LoadInst *LI = cast<LoadInst>(Inst); + if (!LI->isUnordered() || + // Speculative load may create a race that did not exist in the source. + LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || + // Speculative load may load data from dirty regions. + LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || + LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) + return false; + const DataLayout &DL = LI->getModule()->getDataLayout(); + return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), + LI->getType(), LI->getAlignment(), + DL, CtxI, DT); + } + case Instruction::Call: { + auto *CI = cast<const CallInst>(Inst); + const Function *Callee = CI->getCalledFunction(); + + // The called function could have undefined behavior or side-effects, even + // if marked readnone nounwind. + return Callee && Callee->isSpeculatable(); + } + case Instruction::VAArg: + case Instruction::Alloca: + case Instruction::Invoke: + case Instruction::CallBr: + case Instruction::PHI: + case Instruction::Store: + case Instruction::Ret: + case Instruction::Br: + case Instruction::IndirectBr: + case Instruction::Switch: + case Instruction::Unreachable: + case Instruction::Fence: + case Instruction::AtomicRMW: + case Instruction::AtomicCmpXchg: + case Instruction::LandingPad: + case Instruction::Resume: + case Instruction::CatchSwitch: + case Instruction::CatchPad: + case Instruction::CatchRet: + case Instruction::CleanupPad: + case Instruction::CleanupRet: + return false; // Misc instructions which have effects + } +} + +bool llvm::mayBeMemoryDependent(const Instruction &I) { + return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); +} + +/// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. +static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { + switch (OR) { + case ConstantRange::OverflowResult::MayOverflow: + return OverflowResult::MayOverflow; + case ConstantRange::OverflowResult::AlwaysOverflowsLow: + return OverflowResult::AlwaysOverflowsLow; + case ConstantRange::OverflowResult::AlwaysOverflowsHigh: + return OverflowResult::AlwaysOverflowsHigh; + case ConstantRange::OverflowResult::NeverOverflows: + return OverflowResult::NeverOverflows; + } + llvm_unreachable("Unknown OverflowResult"); +} + +/// Combine constant ranges from computeConstantRange() and computeKnownBits(). +static ConstantRange computeConstantRangeIncludingKnownBits( + const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, + AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, + OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { + KnownBits Known = computeKnownBits( + V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); + ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); + ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); + ConstantRange::PreferredRangeType RangeType = + ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; + return CR1.intersectWith(CR2, RangeType); +} + +OverflowResult llvm::computeOverflowForUnsignedMul( + const Value *LHS, const Value *RHS, const DataLayout &DL, + AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, + bool UseInstrInfo) { + KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); + ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); + return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); +} + +OverflowResult +llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, + const DataLayout &DL, AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT, bool UseInstrInfo) { + // Multiplying n * m significant bits yields a result of n + m significant + // bits. If the total number of significant bits does not exceed the + // result bit width (minus 1), there is no overflow. + // This means if we have enough leading sign bits in the operands + // we can guarantee that the result does not overflow. + // Ref: "Hacker's Delight" by Henry Warren + unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); + + // Note that underestimating the number of sign bits gives a more + // conservative answer. + unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + + ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); + + // First handle the easy case: if we have enough sign bits there's + // definitely no overflow. + if (SignBits > BitWidth + 1) + return OverflowResult::NeverOverflows; + + // There are two ambiguous cases where there can be no overflow: + // SignBits == BitWidth + 1 and + // SignBits == BitWidth + // The second case is difficult to check, therefore we only handle the + // first case. + if (SignBits == BitWidth + 1) { + // It overflows only when both arguments are negative and the true + // product is exactly the minimum negative number. + // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 + // For simplicity we just check if at least one side is not negative. + KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) + return OverflowResult::NeverOverflows; + } + return OverflowResult::MayOverflow; +} + +OverflowResult llvm::computeOverflowForUnsignedAdd( + const Value *LHS, const Value *RHS, const DataLayout &DL, + AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, + bool UseInstrInfo) { + ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( + LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( + RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, + nullptr, UseInstrInfo); + return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); +} + +static OverflowResult computeOverflowForSignedAdd(const Value *LHS, + const Value *RHS, + const AddOperator *Add, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + if (Add && Add->hasNoSignedWrap()) { + return OverflowResult::NeverOverflows; + } + + // If LHS and RHS each have at least two sign bits, the addition will look + // like + // + // XX..... + + // YY..... + // + // If the carry into the most significant position is 0, X and Y can't both + // be 1 and therefore the carry out of the addition is also 0. + // + // If the carry into the most significant position is 1, X and Y can't both + // be 0 and therefore the carry out of the addition is also 1. + // + // Since the carry into the most significant position is always equal to + // the carry out of the addition, there is no signed overflow. + if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && + ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) + return OverflowResult::NeverOverflows; + + ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( + LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); + ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( + RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); + OverflowResult OR = + mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); + if (OR != OverflowResult::MayOverflow) + return OR; + + // The remaining code needs Add to be available. Early returns if not so. + if (!Add) + return OverflowResult::MayOverflow; + + // If the sign of Add is the same as at least one of the operands, this add + // CANNOT overflow. If this can be determined from the known bits of the + // operands the above signedAddMayOverflow() check will have already done so. + // The only other way to improve on the known bits is from an assumption, so + // call computeKnownBitsFromAssume() directly. + bool LHSOrRHSKnownNonNegative = + (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); + bool LHSOrRHSKnownNegative = + (LHSRange.isAllNegative() || RHSRange.isAllNegative()); + if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { + KnownBits AddKnown(LHSRange.getBitWidth()); + computeKnownBitsFromAssume( + Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); + if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || + (AddKnown.isNegative() && LHSOrRHSKnownNegative)) + return OverflowResult::NeverOverflows; + } + + return OverflowResult::MayOverflow; +} + +OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, + const Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( + LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); + ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( + RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); + return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); +} + +OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, + const Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + // If LHS and RHS each have at least two sign bits, the subtraction + // cannot overflow. + if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && + ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) + return OverflowResult::NeverOverflows; + + ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( + LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); + ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( + RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); + return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); +} + +bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, + const DominatorTree &DT) { + SmallVector<const BranchInst *, 2> GuardingBranches; + SmallVector<const ExtractValueInst *, 2> Results; + + for (const User *U : WO->users()) { + if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { + assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); + + if (EVI->getIndices()[0] == 0) + Results.push_back(EVI); + else { + assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); + + for (const auto *U : EVI->users()) + if (const auto *B = dyn_cast<BranchInst>(U)) { + assert(B->isConditional() && "How else is it using an i1?"); + GuardingBranches.push_back(B); + } + } + } else { + // We are using the aggregate directly in a way we don't want to analyze + // here (storing it to a global, say). + return false; + } + } + + auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { + BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); + if (!NoWrapEdge.isSingleEdge()) + return false; + + // Check if all users of the add are provably no-wrap. + for (const auto *Result : Results) { + // If the extractvalue itself is not executed on overflow, the we don't + // need to check each use separately, since domination is transitive. + if (DT.dominates(NoWrapEdge, Result->getParent())) + continue; + + for (auto &RU : Result->uses()) + if (!DT.dominates(NoWrapEdge, RU)) + return false; + } + + return true; + }; + + return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); +} + + +OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), + Add, DL, AC, CxtI, DT); +} + +OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, + const Value *RHS, + const DataLayout &DL, + AssumptionCache *AC, + const Instruction *CxtI, + const DominatorTree *DT) { + return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); +} + +bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { + // A memory operation returns normally if it isn't volatile. A volatile + // operation is allowed to trap. + // + // An atomic operation isn't guaranteed to return in a reasonable amount of + // time because it's possible for another thread to interfere with it for an + // arbitrary length of time, but programs aren't allowed to rely on that. + if (const LoadInst *LI = dyn_cast<LoadInst>(I)) + return !LI->isVolatile(); + if (const StoreInst *SI = dyn_cast<StoreInst>(I)) + return !SI->isVolatile(); + if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) + return !CXI->isVolatile(); + if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) + return !RMWI->isVolatile(); + if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) + return !MII->isVolatile(); + + // If there is no successor, then execution can't transfer to it. + if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) + return !CRI->unwindsToCaller(); + if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) + return !CatchSwitch->unwindsToCaller(); + if (isa<ResumeInst>(I)) + return false; + if (isa<ReturnInst>(I)) + return false; + if (isa<UnreachableInst>(I)) + return false; + + // Calls can throw, or contain an infinite loop, or kill the process. + if (auto CS = ImmutableCallSite(I)) { + // Call sites that throw have implicit non-local control flow. + if (!CS.doesNotThrow()) + return false; + + // A function which doens't throw and has "willreturn" attribute will + // always return. + if (CS.hasFnAttr(Attribute::WillReturn)) + return true; + + // Non-throwing call sites can loop infinitely, call exit/pthread_exit + // etc. and thus not return. However, LLVM already assumes that + // + // - Thread exiting actions are modeled as writes to memory invisible to + // the program. + // + // - Loops that don't have side effects (side effects are volatile/atomic + // stores and IO) always terminate (see http://llvm.org/PR965). + // Furthermore IO itself is also modeled as writes to memory invisible to + // the program. + // + // We rely on those assumptions here, and use the memory effects of the call + // target as a proxy for checking that it always returns. + + // FIXME: This isn't aggressive enough; a call which only writes to a global + // is guaranteed to return. + return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || + match(I, m_Intrinsic<Intrinsic::assume>()) || + match(I, m_Intrinsic<Intrinsic::sideeffect>()) || + match(I, m_Intrinsic<Intrinsic::experimental_widenable_condition>()); + } + + // Other instructions return normally. + return true; +} + +bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { + // TODO: This is slightly conservative for invoke instruction since exiting + // via an exception *is* normal control for them. + for (auto I = BB->begin(), E = BB->end(); I != E; ++I) + if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) + return false; + return true; +} + +bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, + const Loop *L) { + // The loop header is guaranteed to be executed for every iteration. + // + // FIXME: Relax this constraint to cover all basic blocks that are + // guaranteed to be executed at every iteration. + if (I->getParent() != L->getHeader()) return false; + + for (const Instruction &LI : *L->getHeader()) { + if (&LI == I) return true; + if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; + } + llvm_unreachable("Instruction not contained in its own parent basic block."); +} + +bool llvm::propagatesFullPoison(const Instruction *I) { + // TODO: This should include all instructions apart from phis, selects and + // call-like instructions. + switch (I->getOpcode()) { + case Instruction::Add: + case Instruction::Sub: + case Instruction::Xor: + case Instruction::Trunc: + case Instruction::BitCast: + case Instruction::AddrSpaceCast: + case Instruction::Mul: + case Instruction::Shl: + case Instruction::GetElementPtr: + // These operations all propagate poison unconditionally. Note that poison + // is not any particular value, so xor or subtraction of poison with + // itself still yields poison, not zero. + return true; + + case Instruction::AShr: + case Instruction::SExt: + // For these operations, one bit of the input is replicated across + // multiple output bits. A replicated poison bit is still poison. + return true; + + case Instruction::ICmp: + // Comparing poison with any value yields poison. This is why, for + // instance, x s< (x +nsw 1) can be folded to true. + return true; + + default: + return false; + } +} + +const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { + switch (I->getOpcode()) { + case Instruction::Store: + return cast<StoreInst>(I)->getPointerOperand(); + + case Instruction::Load: + return cast<LoadInst>(I)->getPointerOperand(); + + case Instruction::AtomicCmpXchg: + return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); + + case Instruction::AtomicRMW: + return cast<AtomicRMWInst>(I)->getPointerOperand(); + + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + return I->getOperand(1); + + default: + // Note: It's really tempting to think that a conditional branch or + // switch should be listed here, but that's incorrect. It's not + // branching off of poison which is UB, it is executing a side effecting + // instruction which follows the branch. + return nullptr; + } +} + +bool llvm::mustTriggerUB(const Instruction *I, + const SmallSet<const Value *, 16>& KnownPoison) { + auto *NotPoison = getGuaranteedNonFullPoisonOp(I); + return (NotPoison && KnownPoison.count(NotPoison)); +} + + +bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { + // We currently only look for uses of poison values within the same basic + // block, as that makes it easier to guarantee that the uses will be + // executed given that PoisonI is executed. + // + // FIXME: Expand this to consider uses beyond the same basic block. To do + // this, look out for the distinction between post-dominance and strong + // post-dominance. + const BasicBlock *BB = PoisonI->getParent(); + + // Set of instructions that we have proved will yield poison if PoisonI + // does. + SmallSet<const Value *, 16> YieldsPoison; + SmallSet<const BasicBlock *, 4> Visited; + YieldsPoison.insert(PoisonI); + Visited.insert(PoisonI->getParent()); + + BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); + + unsigned Iter = 0; + while (Iter++ < MaxDepth) { + for (auto &I : make_range(Begin, End)) { + if (&I != PoisonI) { + if (mustTriggerUB(&I, YieldsPoison)) + return true; + if (!isGuaranteedToTransferExecutionToSuccessor(&I)) + return false; + } + + // Mark poison that propagates from I through uses of I. + if (YieldsPoison.count(&I)) { + for (const User *User : I.users()) { + const Instruction *UserI = cast<Instruction>(User); + if (propagatesFullPoison(UserI)) + YieldsPoison.insert(User); + } + } + } + + if (auto *NextBB = BB->getSingleSuccessor()) { + if (Visited.insert(NextBB).second) { + BB = NextBB; + Begin = BB->getFirstNonPHI()->getIterator(); + End = BB->end(); + continue; + } + } + + break; + } + return false; +} + +static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { + if (FMF.noNaNs()) + return true; + + if (auto *C = dyn_cast<ConstantFP>(V)) + return !C->isNaN(); + + if (auto *C = dyn_cast<ConstantDataVector>(V)) { + if (!C->getElementType()->isFloatingPointTy()) + return false; + for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { + if (C->getElementAsAPFloat(I).isNaN()) + return false; + } + return true; + } + + return false; +} + +static bool isKnownNonZero(const Value *V) { + if (auto *C = dyn_cast<ConstantFP>(V)) + return !C->isZero(); + + if (auto *C = dyn_cast<ConstantDataVector>(V)) { + if (!C->getElementType()->isFloatingPointTy()) + return false; + for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { + if (C->getElementAsAPFloat(I).isZero()) + return false; + } + return true; + } + + return false; +} + +/// Match clamp pattern for float types without care about NaNs or signed zeros. +/// Given non-min/max outer cmp/select from the clamp pattern this +/// function recognizes if it can be substitued by a "canonical" min/max +/// pattern. +static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal, + Value *&LHS, Value *&RHS) { + // Try to match + // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) + // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) + // and return description of the outer Max/Min. + + // First, check if select has inverse order: + if (CmpRHS == FalseVal) { + std::swap(TrueVal, FalseVal); + Pred = CmpInst::getInversePredicate(Pred); + } + + // Assume success now. If there's no match, callers should not use these anyway. + LHS = TrueVal; + RHS = FalseVal; + + const APFloat *FC1; + if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) + return {SPF_UNKNOWN, SPNB_NA, false}; + + const APFloat *FC2; + switch (Pred) { + case CmpInst::FCMP_OLT: + case CmpInst::FCMP_OLE: + case CmpInst::FCMP_ULT: + case CmpInst::FCMP_ULE: + if (match(FalseVal, + m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), + m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && + FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) + return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; + break; + case CmpInst::FCMP_OGT: + case CmpInst::FCMP_OGE: + case CmpInst::FCMP_UGT: + case CmpInst::FCMP_UGE: + if (match(FalseVal, + m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), + m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && + FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) + return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; + break; + default: + break; + } + + return {SPF_UNKNOWN, SPNB_NA, false}; +} + +/// Recognize variations of: +/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) +static SelectPatternResult matchClamp(CmpInst::Predicate Pred, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal) { + // Swap the select operands and predicate to match the patterns below. + if (CmpRHS != TrueVal) { + Pred = ICmpInst::getSwappedPredicate(Pred); + std::swap(TrueVal, FalseVal); + } + const APInt *C1; + if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { + const APInt *C2; + // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) + if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && + C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) + return {SPF_SMAX, SPNB_NA, false}; + + // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) + if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && + C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) + return {SPF_SMIN, SPNB_NA, false}; + + // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) + if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && + C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) + return {SPF_UMAX, SPNB_NA, false}; + + // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) + if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && + C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) + return {SPF_UMIN, SPNB_NA, false}; + } + return {SPF_UNKNOWN, SPNB_NA, false}; +} + +/// Recognize variations of: +/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) +static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, + Value *CmpLHS, Value *CmpRHS, + Value *TVal, Value *FVal, + unsigned Depth) { + // TODO: Allow FP min/max with nnan/nsz. + assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); + + Value *A, *B; + SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); + if (!SelectPatternResult::isMinOrMax(L.Flavor)) + return {SPF_UNKNOWN, SPNB_NA, false}; + + Value *C, *D; + SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); + if (L.Flavor != R.Flavor) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // We have something like: x Pred y ? min(a, b) : min(c, d). + // Try to match the compare to the min/max operations of the select operands. + // First, make sure we have the right compare predicate. + switch (L.Flavor) { + case SPF_SMIN: + if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { + Pred = ICmpInst::getSwappedPredicate(Pred); + std::swap(CmpLHS, CmpRHS); + } + if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) + break; + return {SPF_UNKNOWN, SPNB_NA, false}; + case SPF_SMAX: + if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { + Pred = ICmpInst::getSwappedPredicate(Pred); + std::swap(CmpLHS, CmpRHS); + } + if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) + break; + return {SPF_UNKNOWN, SPNB_NA, false}; + case SPF_UMIN: + if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { + Pred = ICmpInst::getSwappedPredicate(Pred); + std::swap(CmpLHS, CmpRHS); + } + if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) + break; + return {SPF_UNKNOWN, SPNB_NA, false}; + case SPF_UMAX: + if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { + Pred = ICmpInst::getSwappedPredicate(Pred); + std::swap(CmpLHS, CmpRHS); + } + if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) + break; + return {SPF_UNKNOWN, SPNB_NA, false}; + default: + return {SPF_UNKNOWN, SPNB_NA, false}; + } + + // If there is a common operand in the already matched min/max and the other + // min/max operands match the compare operands (either directly or inverted), + // then this is min/max of the same flavor. + + // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) + // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) + if (D == B) { + if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && + match(A, m_Not(m_Specific(CmpRHS))))) + return {L.Flavor, SPNB_NA, false}; + } + // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) + // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) + if (C == B) { + if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && + match(A, m_Not(m_Specific(CmpRHS))))) + return {L.Flavor, SPNB_NA, false}; + } + // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) + // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) + if (D == A) { + if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && + match(B, m_Not(m_Specific(CmpRHS))))) + return {L.Flavor, SPNB_NA, false}; + } + // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) + // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) + if (C == A) { + if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && + match(B, m_Not(m_Specific(CmpRHS))))) + return {L.Flavor, SPNB_NA, false}; + } + + return {SPF_UNKNOWN, SPNB_NA, false}; +} + +/// Match non-obvious integer minimum and maximum sequences. +static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal, + Value *&LHS, Value *&RHS, + unsigned Depth) { + // Assume success. If there's no match, callers should not use these anyway. + LHS = TrueVal; + RHS = FalseVal; + + SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); + if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) + return SPR; + + SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); + if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) + return SPR; + + if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // Z = X -nsw Y + // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) + // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) + if (match(TrueVal, m_Zero()) && + match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) + return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; + + // Z = X -nsw Y + // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) + // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) + if (match(FalseVal, m_Zero()) && + match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) + return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; + + const APInt *C1; + if (!match(CmpRHS, m_APInt(C1))) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // An unsigned min/max can be written with a signed compare. + const APInt *C2; + if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || + (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { + // Is the sign bit set? + // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX + // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN + if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && + C2->isMaxSignedValue()) + return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; + + // Is the sign bit clear? + // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX + // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN + if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && + C2->isMinSignedValue()) + return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; + } + + // Look through 'not' ops to find disguised signed min/max. + // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) + // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) + if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && + match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) + return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; + + // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) + // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) + if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && + match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) + return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; + + return {SPF_UNKNOWN, SPNB_NA, false}; +} + +bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { + assert(X && Y && "Invalid operand"); + + // X = sub (0, Y) || X = sub nsw (0, Y) + if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || + (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) + return true; + + // Y = sub (0, X) || Y = sub nsw (0, X) + if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || + (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) + return true; + + // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) + Value *A, *B; + return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && + match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || + (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && + match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); +} + +static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, + FastMathFlags FMF, + Value *CmpLHS, Value *CmpRHS, + Value *TrueVal, Value *FalseVal, + Value *&LHS, Value *&RHS, + unsigned Depth) { + if (CmpInst::isFPPredicate(Pred)) { + // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one + // 0.0 operand, set the compare's 0.0 operands to that same value for the + // purpose of identifying min/max. Disregard vector constants with undefined + // elements because those can not be back-propagated for analysis. + Value *OutputZeroVal = nullptr; + if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && + !cast<Constant>(TrueVal)->containsUndefElement()) + OutputZeroVal = TrueVal; + else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && + !cast<Constant>(FalseVal)->containsUndefElement()) + OutputZeroVal = FalseVal; + + if (OutputZeroVal) { + if (match(CmpLHS, m_AnyZeroFP())) + CmpLHS = OutputZeroVal; + if (match(CmpRHS, m_AnyZeroFP())) + CmpRHS = OutputZeroVal; + } + } + + LHS = CmpLHS; + RHS = CmpRHS; + + // Signed zero may return inconsistent results between implementations. + // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 + // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) + // Therefore, we behave conservatively and only proceed if at least one of the + // operands is known to not be zero or if we don't care about signed zero. + switch (Pred) { + default: break; + // FIXME: Include OGT/OLT/UGT/ULT. + case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: + case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: + if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && + !isKnownNonZero(CmpRHS)) + return {SPF_UNKNOWN, SPNB_NA, false}; + } + + SelectPatternNaNBehavior NaNBehavior = SPNB_NA; + bool Ordered = false; + + // When given one NaN and one non-NaN input: + // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. + // - A simple C99 (a < b ? a : b) construction will return 'b' (as the + // ordered comparison fails), which could be NaN or non-NaN. + // so here we discover exactly what NaN behavior is required/accepted. + if (CmpInst::isFPPredicate(Pred)) { + bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); + bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); + + if (LHSSafe && RHSSafe) { + // Both operands are known non-NaN. + NaNBehavior = SPNB_RETURNS_ANY; + } else if (CmpInst::isOrdered(Pred)) { + // An ordered comparison will return false when given a NaN, so it + // returns the RHS. + Ordered = true; + if (LHSSafe) + // LHS is non-NaN, so if RHS is NaN then NaN will be returned. + NaNBehavior = SPNB_RETURNS_NAN; + else if (RHSSafe) + NaNBehavior = SPNB_RETURNS_OTHER; + else + // Completely unsafe. + return {SPF_UNKNOWN, SPNB_NA, false}; + } else { + Ordered = false; + // An unordered comparison will return true when given a NaN, so it + // returns the LHS. + if (LHSSafe) + // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. + NaNBehavior = SPNB_RETURNS_OTHER; + else if (RHSSafe) + NaNBehavior = SPNB_RETURNS_NAN; + else + // Completely unsafe. + return {SPF_UNKNOWN, SPNB_NA, false}; + } + } + + if (TrueVal == CmpRHS && FalseVal == CmpLHS) { + std::swap(CmpLHS, CmpRHS); + Pred = CmpInst::getSwappedPredicate(Pred); + if (NaNBehavior == SPNB_RETURNS_NAN) + NaNBehavior = SPNB_RETURNS_OTHER; + else if (NaNBehavior == SPNB_RETURNS_OTHER) + NaNBehavior = SPNB_RETURNS_NAN; + Ordered = !Ordered; + } + + // ([if]cmp X, Y) ? X : Y + if (TrueVal == CmpLHS && FalseVal == CmpRHS) { + switch (Pred) { + default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. + case ICmpInst::ICMP_UGT: + case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; + case ICmpInst::ICMP_SGT: + case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; + case ICmpInst::ICMP_ULT: + case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; + case ICmpInst::ICMP_SLT: + case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; + case FCmpInst::FCMP_UGT: + case FCmpInst::FCMP_UGE: + case FCmpInst::FCMP_OGT: + case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; + case FCmpInst::FCMP_ULT: + case FCmpInst::FCMP_ULE: + case FCmpInst::FCMP_OLT: + case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; + } + } + + if (isKnownNegation(TrueVal, FalseVal)) { + // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can + // match against either LHS or sext(LHS). + auto MaybeSExtCmpLHS = + m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); + auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); + auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); + if (match(TrueVal, MaybeSExtCmpLHS)) { + // Set the return values. If the compare uses the negated value (-X >s 0), + // swap the return values because the negated value is always 'RHS'. + LHS = TrueVal; + RHS = FalseVal; + if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) + std::swap(LHS, RHS); + + // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) + // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) + if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) + return {SPF_ABS, SPNB_NA, false}; + + // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) + if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) + return {SPF_ABS, SPNB_NA, false}; + + // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) + // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) + if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) + return {SPF_NABS, SPNB_NA, false}; + } + else if (match(FalseVal, MaybeSExtCmpLHS)) { + // Set the return values. If the compare uses the negated value (-X >s 0), + // swap the return values because the negated value is always 'RHS'. + LHS = FalseVal; + RHS = TrueVal; + if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) + std::swap(LHS, RHS); + + // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) + // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) + if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) + return {SPF_NABS, SPNB_NA, false}; + + // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) + // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) + if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) + return {SPF_ABS, SPNB_NA, false}; + } + } + + if (CmpInst::isIntPredicate(Pred)) + return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); + + // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar + // may return either -0.0 or 0.0, so fcmp/select pair has stricter + // semantics than minNum. Be conservative in such case. + if (NaNBehavior != SPNB_RETURNS_ANY || + (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && + !isKnownNonZero(CmpRHS))) + return {SPF_UNKNOWN, SPNB_NA, false}; + + return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); +} + +/// Helps to match a select pattern in case of a type mismatch. +/// +/// The function processes the case when type of true and false values of a +/// select instruction differs from type of the cmp instruction operands because +/// of a cast instruction. The function checks if it is legal to move the cast +/// operation after "select". If yes, it returns the new second value of +/// "select" (with the assumption that cast is moved): +/// 1. As operand of cast instruction when both values of "select" are same cast +/// instructions. +/// 2. As restored constant (by applying reverse cast operation) when the first +/// value of the "select" is a cast operation and the second value is a +/// constant. +/// NOTE: We return only the new second value because the first value could be +/// accessed as operand of cast instruction. +static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, + Instruction::CastOps *CastOp) { + auto *Cast1 = dyn_cast<CastInst>(V1); + if (!Cast1) + return nullptr; + + *CastOp = Cast1->getOpcode(); + Type *SrcTy = Cast1->getSrcTy(); + if (auto *Cast2 = dyn_cast<CastInst>(V2)) { + // If V1 and V2 are both the same cast from the same type, look through V1. + if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) + return Cast2->getOperand(0); + return nullptr; + } + + auto *C = dyn_cast<Constant>(V2); + if (!C) + return nullptr; + + Constant *CastedTo = nullptr; + switch (*CastOp) { + case Instruction::ZExt: + if (CmpI->isUnsigned()) + CastedTo = ConstantExpr::getTrunc(C, SrcTy); + break; + case Instruction::SExt: + if (CmpI->isSigned()) + CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); + break; + case Instruction::Trunc: + Constant *CmpConst; + if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && + CmpConst->getType() == SrcTy) { + // Here we have the following case: + // + // %cond = cmp iN %x, CmpConst + // %tr = trunc iN %x to iK + // %narrowsel = select i1 %cond, iK %t, iK C + // + // We can always move trunc after select operation: + // + // %cond = cmp iN %x, CmpConst + // %widesel = select i1 %cond, iN %x, iN CmpConst + // %tr = trunc iN %widesel to iK + // + // Note that C could be extended in any way because we don't care about + // upper bits after truncation. It can't be abs pattern, because it would + // look like: + // + // select i1 %cond, x, -x. + // + // So only min/max pattern could be matched. Such match requires widened C + // == CmpConst. That is why set widened C = CmpConst, condition trunc + // CmpConst == C is checked below. + CastedTo = CmpConst; + } else { + CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); + } + break; + case Instruction::FPTrunc: + CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); + break; + case Instruction::FPExt: + CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); + break; + case Instruction::FPToUI: + CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); + break; + case Instruction::FPToSI: + CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); + break; + case Instruction::UIToFP: + CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); + break; + case Instruction::SIToFP: + CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); + break; + default: + break; + } + + if (!CastedTo) + return nullptr; + + // Make sure the cast doesn't lose any information. + Constant *CastedBack = + ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); + if (CastedBack != C) + return nullptr; + + return CastedTo; +} + +SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, + Instruction::CastOps *CastOp, + unsigned Depth) { + if (Depth >= MaxDepth) + return {SPF_UNKNOWN, SPNB_NA, false}; + + SelectInst *SI = dyn_cast<SelectInst>(V); + if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; + + CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); + if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; + + Value *TrueVal = SI->getTrueValue(); + Value *FalseVal = SI->getFalseValue(); + + return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, + CastOp, Depth); +} + +SelectPatternResult llvm::matchDecomposedSelectPattern( + CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, + Instruction::CastOps *CastOp, unsigned Depth) { + CmpInst::Predicate Pred = CmpI->getPredicate(); + Value *CmpLHS = CmpI->getOperand(0); + Value *CmpRHS = CmpI->getOperand(1); + FastMathFlags FMF; + if (isa<FPMathOperator>(CmpI)) + FMF = CmpI->getFastMathFlags(); + + // Bail out early. + if (CmpI->isEquality()) + return {SPF_UNKNOWN, SPNB_NA, false}; + + // Deal with type mismatches. + if (CastOp && CmpLHS->getType() != TrueVal->getType()) { + if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { + // If this is a potential fmin/fmax with a cast to integer, then ignore + // -0.0 because there is no corresponding integer value. + if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) + FMF.setNoSignedZeros(); + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, + cast<CastInst>(TrueVal)->getOperand(0), C, + LHS, RHS, Depth); + } + if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { + // If this is a potential fmin/fmax with a cast to integer, then ignore + // -0.0 because there is no corresponding integer value. + if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) + FMF.setNoSignedZeros(); + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, + C, cast<CastInst>(FalseVal)->getOperand(0), + LHS, RHS, Depth); + } + } + return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, + LHS, RHS, Depth); +} + +CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { + if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; + if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; + if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; + if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; + if (SPF == SPF_FMINNUM) + return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; + if (SPF == SPF_FMAXNUM) + return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; + llvm_unreachable("unhandled!"); +} + +SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { + if (SPF == SPF_SMIN) return SPF_SMAX; + if (SPF == SPF_UMIN) return SPF_UMAX; + if (SPF == SPF_SMAX) return SPF_SMIN; + if (SPF == SPF_UMAX) return SPF_UMIN; + llvm_unreachable("unhandled!"); +} + +CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { + return getMinMaxPred(getInverseMinMaxFlavor(SPF)); +} + +/// Return true if "icmp Pred LHS RHS" is always true. +static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, + const Value *RHS, const DataLayout &DL, + unsigned Depth) { + assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); + if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) + return true; + + switch (Pred) { + default: + return false; + + case CmpInst::ICMP_SLE: { + const APInt *C; + + // LHS s<= LHS +_{nsw} C if C >= 0 + if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) + return !C->isNegative(); + return false; + } + + case CmpInst::ICMP_ULE: { + const APInt *C; + + // LHS u<= LHS +_{nuw} C for any C + if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) + return true; + + // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) + auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, + const Value *&X, + const APInt *&CA, const APInt *&CB) { + if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && + match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) + return true; + + // If X & C == 0 then (X | C) == X +_{nuw} C + if (match(A, m_Or(m_Value(X), m_APInt(CA))) && + match(B, m_Or(m_Specific(X), m_APInt(CB)))) { + KnownBits Known(CA->getBitWidth()); + computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, + /*CxtI*/ nullptr, /*DT*/ nullptr); + if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) + return true; + } + + return false; + }; + + const Value *X; + const APInt *CLHS, *CRHS; + if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) + return CLHS->ule(*CRHS); + + return false; + } + } +} + +/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred +/// ALHS ARHS" is true. Otherwise, return None. +static Optional<bool> +isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, + const Value *ARHS, const Value *BLHS, const Value *BRHS, + const DataLayout &DL, unsigned Depth) { + switch (Pred) { + default: + return None; + + case CmpInst::ICMP_SLT: + case CmpInst::ICMP_SLE: + if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && + isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) + return true; + return None; + + case CmpInst::ICMP_ULT: + case CmpInst::ICMP_ULE: + if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && + isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) + return true; + return None; + } +} + +/// Return true if the operands of the two compares match. IsSwappedOps is true +/// when the operands match, but are swapped. +static bool isMatchingOps(const Value *ALHS, const Value *ARHS, + const Value *BLHS, const Value *BRHS, + bool &IsSwappedOps) { + + bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); + IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); + return IsMatchingOps || IsSwappedOps; +} + +/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. +/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. +/// Otherwise, return None if we can't infer anything. +static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, + CmpInst::Predicate BPred, + bool AreSwappedOps) { + // Canonicalize the predicate as if the operands were not commuted. + if (AreSwappedOps) + BPred = ICmpInst::getSwappedPredicate(BPred); + + if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) + return true; + if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) + return false; + + return None; +} + +/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. +/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. +/// Otherwise, return None if we can't infer anything. +static Optional<bool> +isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, + const ConstantInt *C1, + CmpInst::Predicate BPred, + const ConstantInt *C2) { + ConstantRange DomCR = + ConstantRange::makeExactICmpRegion(APred, C1->getValue()); + ConstantRange CR = + ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); + ConstantRange Intersection = DomCR.intersectWith(CR); + ConstantRange Difference = DomCR.difference(CR); + if (Intersection.isEmptySet()) + return false; + if (Difference.isEmptySet()) + return true; + return None; +} + +/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is +/// false. Otherwise, return None if we can't infer anything. +static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, + const ICmpInst *RHS, + const DataLayout &DL, bool LHSIsTrue, + unsigned Depth) { + Value *ALHS = LHS->getOperand(0); + Value *ARHS = LHS->getOperand(1); + // The rest of the logic assumes the LHS condition is true. If that's not the + // case, invert the predicate to make it so. + ICmpInst::Predicate APred = + LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); + + Value *BLHS = RHS->getOperand(0); + Value *BRHS = RHS->getOperand(1); + ICmpInst::Predicate BPred = RHS->getPredicate(); + + // Can we infer anything when the two compares have matching operands? + bool AreSwappedOps; + if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { + if (Optional<bool> Implication = isImpliedCondMatchingOperands( + APred, BPred, AreSwappedOps)) + return Implication; + // No amount of additional analysis will infer the second condition, so + // early exit. + return None; + } + + // Can we infer anything when the LHS operands match and the RHS operands are + // constants (not necessarily matching)? + if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { + if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( + APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) + return Implication; + // No amount of additional analysis will infer the second condition, so + // early exit. + return None; + } + + if (APred == BPred) + return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); + return None; +} + +/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is +/// false. Otherwise, return None if we can't infer anything. We expect the +/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. +static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, + const ICmpInst *RHS, + const DataLayout &DL, bool LHSIsTrue, + unsigned Depth) { + // The LHS must be an 'or' or an 'and' instruction. + assert((LHS->getOpcode() == Instruction::And || + LHS->getOpcode() == Instruction::Or) && + "Expected LHS to be 'and' or 'or'."); + + assert(Depth <= MaxDepth && "Hit recursion limit"); + + // If the result of an 'or' is false, then we know both legs of the 'or' are + // false. Similarly, if the result of an 'and' is true, then we know both + // legs of the 'and' are true. + Value *ALHS, *ARHS; + if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || + (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { + // FIXME: Make this non-recursion. + if (Optional<bool> Implication = + isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) + return Implication; + if (Optional<bool> Implication = + isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) + return Implication; + return None; + } + return None; +} + +Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, + const DataLayout &DL, bool LHSIsTrue, + unsigned Depth) { + // Bail out when we hit the limit. + if (Depth == MaxDepth) + return None; + + // A mismatch occurs when we compare a scalar cmp to a vector cmp, for + // example. + if (LHS->getType() != RHS->getType()) + return None; + + Type *OpTy = LHS->getType(); + assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); + + // LHS ==> RHS by definition + if (LHS == RHS) + return LHSIsTrue; + + // FIXME: Extending the code below to handle vectors. + if (OpTy->isVectorTy()) + return None; + + assert(OpTy->isIntegerTy(1) && "implied by above"); + + // Both LHS and RHS are icmps. + const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); + const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); + if (LHSCmp && RHSCmp) + return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); + + // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be + // an icmp. FIXME: Add support for and/or on the RHS. + const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); + if (LHSBO && RHSCmp) { + if ((LHSBO->getOpcode() == Instruction::And || + LHSBO->getOpcode() == Instruction::Or)) + return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); + } + return None; +} + +Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, + const Instruction *ContextI, + const DataLayout &DL) { + assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); + if (!ContextI || !ContextI->getParent()) + return None; + + // TODO: This is a poor/cheap way to determine dominance. Should we use a + // dominator tree (eg, from a SimplifyQuery) instead? + const BasicBlock *ContextBB = ContextI->getParent(); + const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); + if (!PredBB) + return None; + + // We need a conditional branch in the predecessor. + Value *PredCond; + BasicBlock *TrueBB, *FalseBB; + if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) + return None; + + // The branch should get simplified. Don't bother simplifying this condition. + if (TrueBB == FalseBB) + return None; + + assert((TrueBB == ContextBB || FalseBB == ContextBB) && + "Predecessor block does not point to successor?"); + + // Is this condition implied by the predecessor condition? + bool CondIsTrue = TrueBB == ContextBB; + return isImpliedCondition(PredCond, Cond, DL, CondIsTrue); +} + +static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, + APInt &Upper, const InstrInfoQuery &IIQ) { + unsigned Width = Lower.getBitWidth(); + const APInt *C; + switch (BO.getOpcode()) { + case Instruction::Add: + if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { + // FIXME: If we have both nuw and nsw, we should reduce the range further. + if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { + // 'add nuw x, C' produces [C, UINT_MAX]. + Lower = *C; + } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { + if (C->isNegative()) { + // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. + Lower = APInt::getSignedMinValue(Width); + Upper = APInt::getSignedMaxValue(Width) + *C + 1; + } else { + // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. + Lower = APInt::getSignedMinValue(Width) + *C; + Upper = APInt::getSignedMaxValue(Width) + 1; + } + } + } + break; + + case Instruction::And: + if (match(BO.getOperand(1), m_APInt(C))) + // 'and x, C' produces [0, C]. + Upper = *C + 1; + break; + + case Instruction::Or: + if (match(BO.getOperand(1), m_APInt(C))) + // 'or x, C' produces [C, UINT_MAX]. + Lower = *C; + break; + + case Instruction::AShr: + if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { + // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. + Lower = APInt::getSignedMinValue(Width).ashr(*C); + Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; + } else if (match(BO.getOperand(0), m_APInt(C))) { + unsigned ShiftAmount = Width - 1; + if (!C->isNullValue() && IIQ.isExact(&BO)) + ShiftAmount = C->countTrailingZeros(); + if (C->isNegative()) { + // 'ashr C, x' produces [C, C >> (Width-1)] + Lower = *C; + Upper = C->ashr(ShiftAmount) + 1; + } else { + // 'ashr C, x' produces [C >> (Width-1), C] + Lower = C->ashr(ShiftAmount); + Upper = *C + 1; + } + } + break; + + case Instruction::LShr: + if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { + // 'lshr x, C' produces [0, UINT_MAX >> C]. + Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; + } else if (match(BO.getOperand(0), m_APInt(C))) { + // 'lshr C, x' produces [C >> (Width-1), C]. + unsigned ShiftAmount = Width - 1; + if (!C->isNullValue() && IIQ.isExact(&BO)) + ShiftAmount = C->countTrailingZeros(); + Lower = C->lshr(ShiftAmount); + Upper = *C + 1; + } + break; + + case Instruction::Shl: + if (match(BO.getOperand(0), m_APInt(C))) { + if (IIQ.hasNoUnsignedWrap(&BO)) { + // 'shl nuw C, x' produces [C, C << CLZ(C)] + Lower = *C; + Upper = Lower.shl(Lower.countLeadingZeros()) + 1; + } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? + if (C->isNegative()) { + // 'shl nsw C, x' produces [C << CLO(C)-1, C] + unsigned ShiftAmount = C->countLeadingOnes() - 1; + Lower = C->shl(ShiftAmount); + Upper = *C + 1; + } else { + // 'shl nsw C, x' produces [C, C << CLZ(C)-1] + unsigned ShiftAmount = C->countLeadingZeros() - 1; + Lower = *C; + Upper = C->shl(ShiftAmount) + 1; + } + } + } + break; + + case Instruction::SDiv: + if (match(BO.getOperand(1), m_APInt(C))) { + APInt IntMin = APInt::getSignedMinValue(Width); + APInt IntMax = APInt::getSignedMaxValue(Width); + if (C->isAllOnesValue()) { + // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] + // where C != -1 and C != 0 and C != 1 + Lower = IntMin + 1; + Upper = IntMax + 1; + } else if (C->countLeadingZeros() < Width - 1) { + // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] + // where C != -1 and C != 0 and C != 1 + Lower = IntMin.sdiv(*C); + Upper = IntMax.sdiv(*C); + if (Lower.sgt(Upper)) + std::swap(Lower, Upper); + Upper = Upper + 1; + assert(Upper != Lower && "Upper part of range has wrapped!"); + } + } else if (match(BO.getOperand(0), m_APInt(C))) { + if (C->isMinSignedValue()) { + // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. + Lower = *C; + Upper = Lower.lshr(1) + 1; + } else { + // 'sdiv C, x' produces [-|C|, |C|]. + Upper = C->abs() + 1; + Lower = (-Upper) + 1; + } + } + break; + + case Instruction::UDiv: + if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { + // 'udiv x, C' produces [0, UINT_MAX / C]. + Upper = APInt::getMaxValue(Width).udiv(*C) + 1; + } else if (match(BO.getOperand(0), m_APInt(C))) { + // 'udiv C, x' produces [0, C]. + Upper = *C + 1; + } + break; + + case Instruction::SRem: + if (match(BO.getOperand(1), m_APInt(C))) { + // 'srem x, C' produces (-|C|, |C|). + Upper = C->abs(); + Lower = (-Upper) + 1; + } + break; + + case Instruction::URem: + if (match(BO.getOperand(1), m_APInt(C))) + // 'urem x, C' produces [0, C). + Upper = *C; + break; + + default: + break; + } +} + +static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, + APInt &Upper) { + unsigned Width = Lower.getBitWidth(); + const APInt *C; + switch (II.getIntrinsicID()) { + case Intrinsic::uadd_sat: + // uadd.sat(x, C) produces [C, UINT_MAX]. + if (match(II.getOperand(0), m_APInt(C)) || + match(II.getOperand(1), m_APInt(C))) + Lower = *C; + break; + case Intrinsic::sadd_sat: + if (match(II.getOperand(0), m_APInt(C)) || + match(II.getOperand(1), m_APInt(C))) { + if (C->isNegative()) { + // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. + Lower = APInt::getSignedMinValue(Width); + Upper = APInt::getSignedMaxValue(Width) + *C + 1; + } else { + // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. + Lower = APInt::getSignedMinValue(Width) + *C; + Upper = APInt::getSignedMaxValue(Width) + 1; + } + } + break; + case Intrinsic::usub_sat: + // usub.sat(C, x) produces [0, C]. + if (match(II.getOperand(0), m_APInt(C))) + Upper = *C + 1; + // usub.sat(x, C) produces [0, UINT_MAX - C]. + else if (match(II.getOperand(1), m_APInt(C))) + Upper = APInt::getMaxValue(Width) - *C + 1; + break; + case Intrinsic::ssub_sat: + if (match(II.getOperand(0), m_APInt(C))) { + if (C->isNegative()) { + // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. + Lower = APInt::getSignedMinValue(Width); + Upper = *C - APInt::getSignedMinValue(Width) + 1; + } else { + // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. + Lower = *C - APInt::getSignedMaxValue(Width); + Upper = APInt::getSignedMaxValue(Width) + 1; + } + } else if (match(II.getOperand(1), m_APInt(C))) { + if (C->isNegative()) { + // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: + Lower = APInt::getSignedMinValue(Width) - *C; + Upper = APInt::getSignedMaxValue(Width) + 1; + } else { + // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. + Lower = APInt::getSignedMinValue(Width); + Upper = APInt::getSignedMaxValue(Width) - *C + 1; + } + } + break; + default: + break; + } +} + +static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, + APInt &Upper) { + const Value *LHS, *RHS; + SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); + if (R.Flavor == SPF_UNKNOWN) + return; + + unsigned BitWidth = SI.getType()->getScalarSizeInBits(); + + if (R.Flavor == SelectPatternFlavor::SPF_ABS) { + // If the negation part of the abs (in RHS) has the NSW flag, + // then the result of abs(X) is [0..SIGNED_MAX], + // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. + Lower = APInt::getNullValue(BitWidth); + if (cast<Instruction>(RHS)->hasNoSignedWrap()) + Upper = APInt::getSignedMaxValue(BitWidth) + 1; + else + Upper = APInt::getSignedMinValue(BitWidth) + 1; + return; + } + + if (R.Flavor == SelectPatternFlavor::SPF_NABS) { + // The result of -abs(X) is <= 0. + Lower = APInt::getSignedMinValue(BitWidth); + Upper = APInt(BitWidth, 1); + return; + } + + const APInt *C; + if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) + return; + + switch (R.Flavor) { + case SPF_UMIN: + Upper = *C + 1; + break; + case SPF_UMAX: + Lower = *C; + break; + case SPF_SMIN: + Lower = APInt::getSignedMinValue(BitWidth); + Upper = *C + 1; + break; + case SPF_SMAX: + Lower = *C; + Upper = APInt::getSignedMaxValue(BitWidth) + 1; + break; + default: + break; + } +} + +ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { + assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); + + const APInt *C; + if (match(V, m_APInt(C))) + return ConstantRange(*C); + + InstrInfoQuery IIQ(UseInstrInfo); + unsigned BitWidth = V->getType()->getScalarSizeInBits(); + APInt Lower = APInt(BitWidth, 0); + APInt Upper = APInt(BitWidth, 0); + if (auto *BO = dyn_cast<BinaryOperator>(V)) + setLimitsForBinOp(*BO, Lower, Upper, IIQ); + else if (auto *II = dyn_cast<IntrinsicInst>(V)) + setLimitsForIntrinsic(*II, Lower, Upper); + else if (auto *SI = dyn_cast<SelectInst>(V)) + setLimitsForSelectPattern(*SI, Lower, Upper); + + ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); + + if (auto *I = dyn_cast<Instruction>(V)) + if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) + CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); + + return CR; +} |