diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp | 7351 |
1 files changed, 7351 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp b/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp new file mode 100644 index 000000000000..e6f2aa9ef930 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/CodeGenPrepare.cpp @@ -0,0 +1,7351 @@ +//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass munges the code in the input function to better prepare it for +// SelectionDAG-based code generation. This works around limitations in it's +// basic-block-at-a-time approach. It should eventually be removed. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/ISDOpcodes.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Statepoint.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/IR/ValueMap.h" +#include "llvm/Pass.h" +#include "llvm/Support/BlockFrequency.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/BypassSlowDivision.h" +#include "llvm/Transforms/Utils/SimplifyLibCalls.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <limits> +#include <memory> +#include <utility> +#include <vector> + +using namespace llvm; +using namespace llvm::PatternMatch; + +#define DEBUG_TYPE "codegenprepare" + +STATISTIC(NumBlocksElim, "Number of blocks eliminated"); +STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); +STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); +STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " + "sunken Cmps"); +STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " + "of sunken Casts"); +STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " + "computations were sunk"); +STATISTIC(NumMemoryInstsPhiCreated, + "Number of phis created when address " + "computations were sunk to memory instructions"); +STATISTIC(NumMemoryInstsSelectCreated, + "Number of select created when address " + "computations were sunk to memory instructions"); +STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); +STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); +STATISTIC(NumAndsAdded, + "Number of and mask instructions added to form ext loads"); +STATISTIC(NumAndUses, "Number of uses of and mask instructions optimized"); +STATISTIC(NumRetsDup, "Number of return instructions duplicated"); +STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); +STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); +STATISTIC(NumStoreExtractExposed, "Number of store(extractelement) exposed"); + +static cl::opt<bool> DisableBranchOpts( + "disable-cgp-branch-opts", cl::Hidden, cl::init(false), + cl::desc("Disable branch optimizations in CodeGenPrepare")); + +static cl::opt<bool> + DisableGCOpts("disable-cgp-gc-opts", cl::Hidden, cl::init(false), + cl::desc("Disable GC optimizations in CodeGenPrepare")); + +static cl::opt<bool> DisableSelectToBranch( + "disable-cgp-select2branch", cl::Hidden, cl::init(false), + cl::desc("Disable select to branch conversion.")); + +static cl::opt<bool> AddrSinkUsingGEPs( + "addr-sink-using-gep", cl::Hidden, cl::init(true), + cl::desc("Address sinking in CGP using GEPs.")); + +static cl::opt<bool> EnableAndCmpSinking( + "enable-andcmp-sinking", cl::Hidden, cl::init(true), + cl::desc("Enable sinkinig and/cmp into branches.")); + +static cl::opt<bool> DisableStoreExtract( + "disable-cgp-store-extract", cl::Hidden, cl::init(false), + cl::desc("Disable store(extract) optimizations in CodeGenPrepare")); + +static cl::opt<bool> StressStoreExtract( + "stress-cgp-store-extract", cl::Hidden, cl::init(false), + cl::desc("Stress test store(extract) optimizations in CodeGenPrepare")); + +static cl::opt<bool> DisableExtLdPromotion( + "disable-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), + cl::desc("Disable ext(promotable(ld)) -> promoted(ext(ld)) optimization in " + "CodeGenPrepare")); + +static cl::opt<bool> StressExtLdPromotion( + "stress-cgp-ext-ld-promotion", cl::Hidden, cl::init(false), + cl::desc("Stress test ext(promotable(ld)) -> promoted(ext(ld)) " + "optimization in CodeGenPrepare")); + +static cl::opt<bool> DisablePreheaderProtect( + "disable-preheader-prot", cl::Hidden, cl::init(false), + cl::desc("Disable protection against removing loop preheaders")); + +static cl::opt<bool> ProfileGuidedSectionPrefix( + "profile-guided-section-prefix", cl::Hidden, cl::init(true), cl::ZeroOrMore, + cl::desc("Use profile info to add section prefix for hot/cold functions")); + +static cl::opt<unsigned> FreqRatioToSkipMerge( + "cgp-freq-ratio-to-skip-merge", cl::Hidden, cl::init(2), + cl::desc("Skip merging empty blocks if (frequency of empty block) / " + "(frequency of destination block) is greater than this ratio")); + +static cl::opt<bool> ForceSplitStore( + "force-split-store", cl::Hidden, cl::init(false), + cl::desc("Force store splitting no matter what the target query says.")); + +static cl::opt<bool> +EnableTypePromotionMerge("cgp-type-promotion-merge", cl::Hidden, + cl::desc("Enable merging of redundant sexts when one is dominating" + " the other."), cl::init(true)); + +static cl::opt<bool> DisableComplexAddrModes( + "disable-complex-addr-modes", cl::Hidden, cl::init(false), + cl::desc("Disables combining addressing modes with different parts " + "in optimizeMemoryInst.")); + +static cl::opt<bool> +AddrSinkNewPhis("addr-sink-new-phis", cl::Hidden, cl::init(false), + cl::desc("Allow creation of Phis in Address sinking.")); + +static cl::opt<bool> +AddrSinkNewSelects("addr-sink-new-select", cl::Hidden, cl::init(true), + cl::desc("Allow creation of selects in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineBaseReg( + "addr-sink-combine-base-reg", cl::Hidden, cl::init(true), + cl::desc("Allow combining of BaseReg field in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineBaseGV( + "addr-sink-combine-base-gv", cl::Hidden, cl::init(true), + cl::desc("Allow combining of BaseGV field in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineBaseOffs( + "addr-sink-combine-base-offs", cl::Hidden, cl::init(true), + cl::desc("Allow combining of BaseOffs field in Address sinking.")); + +static cl::opt<bool> AddrSinkCombineScaledReg( + "addr-sink-combine-scaled-reg", cl::Hidden, cl::init(true), + cl::desc("Allow combining of ScaledReg field in Address sinking.")); + +static cl::opt<bool> + EnableGEPOffsetSplit("cgp-split-large-offset-gep", cl::Hidden, + cl::init(true), + cl::desc("Enable splitting large offset of GEP.")); + +namespace { + +enum ExtType { + ZeroExtension, // Zero extension has been seen. + SignExtension, // Sign extension has been seen. + BothExtension // This extension type is used if we saw sext after + // ZeroExtension had been set, or if we saw zext after + // SignExtension had been set. It makes the type + // information of a promoted instruction invalid. +}; + +using SetOfInstrs = SmallPtrSet<Instruction *, 16>; +using TypeIsSExt = PointerIntPair<Type *, 2, ExtType>; +using InstrToOrigTy = DenseMap<Instruction *, TypeIsSExt>; +using SExts = SmallVector<Instruction *, 16>; +using ValueToSExts = DenseMap<Value *, SExts>; + +class TypePromotionTransaction; + + class CodeGenPrepare : public FunctionPass { + const TargetMachine *TM = nullptr; + const TargetSubtargetInfo *SubtargetInfo; + const TargetLowering *TLI = nullptr; + const TargetRegisterInfo *TRI; + const TargetTransformInfo *TTI = nullptr; + const TargetLibraryInfo *TLInfo; + const LoopInfo *LI; + std::unique_ptr<BlockFrequencyInfo> BFI; + std::unique_ptr<BranchProbabilityInfo> BPI; + + /// As we scan instructions optimizing them, this is the next instruction + /// to optimize. Transforms that can invalidate this should update it. + BasicBlock::iterator CurInstIterator; + + /// Keeps track of non-local addresses that have been sunk into a block. + /// This allows us to avoid inserting duplicate code for blocks with + /// multiple load/stores of the same address. The usage of WeakTrackingVH + /// enables SunkAddrs to be treated as a cache whose entries can be + /// invalidated if a sunken address computation has been erased. + ValueMap<Value*, WeakTrackingVH> SunkAddrs; + + /// Keeps track of all instructions inserted for the current function. + SetOfInstrs InsertedInsts; + + /// Keeps track of the type of the related instruction before their + /// promotion for the current function. + InstrToOrigTy PromotedInsts; + + /// Keep track of instructions removed during promotion. + SetOfInstrs RemovedInsts; + + /// Keep track of sext chains based on their initial value. + DenseMap<Value *, Instruction *> SeenChainsForSExt; + + /// Keep track of GEPs accessing the same data structures such as structs or + /// arrays that are candidates to be split later because of their large + /// size. + MapVector< + AssertingVH<Value>, + SmallVector<std::pair<AssertingVH<GetElementPtrInst>, int64_t>, 32>> + LargeOffsetGEPMap; + + /// Keep track of new GEP base after splitting the GEPs having large offset. + SmallSet<AssertingVH<Value>, 2> NewGEPBases; + + /// Map serial numbers to Large offset GEPs. + DenseMap<AssertingVH<GetElementPtrInst>, int> LargeOffsetGEPID; + + /// Keep track of SExt promoted. + ValueToSExts ValToSExtendedUses; + + /// True if optimizing for size. + bool OptSize; + + /// DataLayout for the Function being processed. + const DataLayout *DL = nullptr; + + /// Building the dominator tree can be expensive, so we only build it + /// lazily and update it when required. + std::unique_ptr<DominatorTree> DT; + + public: + static char ID; // Pass identification, replacement for typeid + + CodeGenPrepare() : FunctionPass(ID) { + initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override; + + StringRef getPassName() const override { return "CodeGen Prepare"; } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + // FIXME: When we can selectively preserve passes, preserve the domtree. + AU.addRequired<ProfileSummaryInfoWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + } + + private: + template <typename F> + void resetIteratorIfInvalidatedWhileCalling(BasicBlock *BB, F f) { + // Substituting can cause recursive simplifications, which can invalidate + // our iterator. Use a WeakTrackingVH to hold onto it in case this + // happens. + Value *CurValue = &*CurInstIterator; + WeakTrackingVH IterHandle(CurValue); + + f(); + + // If the iterator instruction was recursively deleted, start over at the + // start of the block. + if (IterHandle != CurValue) { + CurInstIterator = BB->begin(); + SunkAddrs.clear(); + } + } + + // Get the DominatorTree, building if necessary. + DominatorTree &getDT(Function &F) { + if (!DT) + DT = llvm::make_unique<DominatorTree>(F); + return *DT; + } + + bool eliminateFallThrough(Function &F); + bool eliminateMostlyEmptyBlocks(Function &F); + BasicBlock *findDestBlockOfMergeableEmptyBlock(BasicBlock *BB); + bool canMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; + void eliminateMostlyEmptyBlock(BasicBlock *BB); + bool isMergingEmptyBlockProfitable(BasicBlock *BB, BasicBlock *DestBB, + bool isPreheader); + bool optimizeBlock(BasicBlock &BB, bool &ModifiedDT); + bool optimizeInst(Instruction *I, bool &ModifiedDT); + bool optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, + Type *AccessTy, unsigned AddrSpace); + bool optimizeInlineAsmInst(CallInst *CS); + bool optimizeCallInst(CallInst *CI, bool &ModifiedDT); + bool optimizeExt(Instruction *&I); + bool optimizeExtUses(Instruction *I); + bool optimizeLoadExt(LoadInst *Load); + bool optimizeShiftInst(BinaryOperator *BO); + bool optimizeSelectInst(SelectInst *SI); + bool optimizeShuffleVectorInst(ShuffleVectorInst *SVI); + bool optimizeSwitchInst(SwitchInst *SI); + bool optimizeExtractElementInst(Instruction *Inst); + bool dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT); + bool placeDbgValues(Function &F); + bool canFormExtLd(const SmallVectorImpl<Instruction *> &MovedExts, + LoadInst *&LI, Instruction *&Inst, bool HasPromoted); + bool tryToPromoteExts(TypePromotionTransaction &TPT, + const SmallVectorImpl<Instruction *> &Exts, + SmallVectorImpl<Instruction *> &ProfitablyMovedExts, + unsigned CreatedInstsCost = 0); + bool mergeSExts(Function &F); + bool splitLargeGEPOffsets(); + bool performAddressTypePromotion( + Instruction *&Inst, + bool AllowPromotionWithoutCommonHeader, + bool HasPromoted, TypePromotionTransaction &TPT, + SmallVectorImpl<Instruction *> &SpeculativelyMovedExts); + bool splitBranchCondition(Function &F, bool &ModifiedDT); + bool simplifyOffsetableRelocate(Instruction &I); + + bool tryToSinkFreeOperands(Instruction *I); + bool replaceMathCmpWithIntrinsic(BinaryOperator *BO, CmpInst *Cmp, + Intrinsic::ID IID); + bool optimizeCmp(CmpInst *Cmp, bool &ModifiedDT); + bool combineToUSubWithOverflow(CmpInst *Cmp, bool &ModifiedDT); + bool combineToUAddWithOverflow(CmpInst *Cmp, bool &ModifiedDT); + }; + +} // end anonymous namespace + +char CodeGenPrepare::ID = 0; + +INITIALIZE_PASS_BEGIN(CodeGenPrepare, DEBUG_TYPE, + "Optimize for code generation", false, false) +INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) +INITIALIZE_PASS_END(CodeGenPrepare, DEBUG_TYPE, + "Optimize for code generation", false, false) + +FunctionPass *llvm::createCodeGenPreparePass() { return new CodeGenPrepare(); } + +bool CodeGenPrepare::runOnFunction(Function &F) { + if (skipFunction(F)) + return false; + + DL = &F.getParent()->getDataLayout(); + + bool EverMadeChange = false; + // Clear per function information. + InsertedInsts.clear(); + PromotedInsts.clear(); + + if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { + TM = &TPC->getTM<TargetMachine>(); + SubtargetInfo = TM->getSubtargetImpl(F); + TLI = SubtargetInfo->getTargetLowering(); + TRI = SubtargetInfo->getRegisterInfo(); + } + TLInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + BPI.reset(new BranchProbabilityInfo(F, *LI)); + BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI)); + OptSize = F.hasOptSize(); + + ProfileSummaryInfo *PSI = + &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); + if (ProfileGuidedSectionPrefix) { + if (PSI->isFunctionHotInCallGraph(&F, *BFI)) + F.setSectionPrefix(".hot"); + else if (PSI->isFunctionColdInCallGraph(&F, *BFI)) + F.setSectionPrefix(".unlikely"); + } + + /// This optimization identifies DIV instructions that can be + /// profitably bypassed and carried out with a shorter, faster divide. + if (!OptSize && !PSI->hasHugeWorkingSetSize() && TLI && + TLI->isSlowDivBypassed()) { + const DenseMap<unsigned int, unsigned int> &BypassWidths = + TLI->getBypassSlowDivWidths(); + BasicBlock* BB = &*F.begin(); + while (BB != nullptr) { + // bypassSlowDivision may create new BBs, but we don't want to reapply the + // optimization to those blocks. + BasicBlock* Next = BB->getNextNode(); + EverMadeChange |= bypassSlowDivision(BB, BypassWidths); + BB = Next; + } + } + + // Eliminate blocks that contain only PHI nodes and an + // unconditional branch. + EverMadeChange |= eliminateMostlyEmptyBlocks(F); + + bool ModifiedDT = false; + if (!DisableBranchOpts) + EverMadeChange |= splitBranchCondition(F, ModifiedDT); + + // Split some critical edges where one of the sources is an indirect branch, + // to help generate sane code for PHIs involving such edges. + EverMadeChange |= SplitIndirectBrCriticalEdges(F); + + bool MadeChange = true; + while (MadeChange) { + MadeChange = false; + DT.reset(); + for (Function::iterator I = F.begin(); I != F.end(); ) { + BasicBlock *BB = &*I++; + bool ModifiedDTOnIteration = false; + MadeChange |= optimizeBlock(*BB, ModifiedDTOnIteration); + + // Restart BB iteration if the dominator tree of the Function was changed + if (ModifiedDTOnIteration) + break; + } + if (EnableTypePromotionMerge && !ValToSExtendedUses.empty()) + MadeChange |= mergeSExts(F); + if (!LargeOffsetGEPMap.empty()) + MadeChange |= splitLargeGEPOffsets(); + + // Really free removed instructions during promotion. + for (Instruction *I : RemovedInsts) + I->deleteValue(); + + EverMadeChange |= MadeChange; + SeenChainsForSExt.clear(); + ValToSExtendedUses.clear(); + RemovedInsts.clear(); + LargeOffsetGEPMap.clear(); + LargeOffsetGEPID.clear(); + } + + SunkAddrs.clear(); + + if (!DisableBranchOpts) { + MadeChange = false; + // Use a set vector to get deterministic iteration order. The order the + // blocks are removed may affect whether or not PHI nodes in successors + // are removed. + SmallSetVector<BasicBlock*, 8> WorkList; + for (BasicBlock &BB : F) { + SmallVector<BasicBlock *, 2> Successors(succ_begin(&BB), succ_end(&BB)); + MadeChange |= ConstantFoldTerminator(&BB, true); + if (!MadeChange) continue; + + for (SmallVectorImpl<BasicBlock*>::iterator + II = Successors.begin(), IE = Successors.end(); II != IE; ++II) + if (pred_begin(*II) == pred_end(*II)) + WorkList.insert(*II); + } + + // Delete the dead blocks and any of their dead successors. + MadeChange |= !WorkList.empty(); + while (!WorkList.empty()) { + BasicBlock *BB = WorkList.pop_back_val(); + SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); + + DeleteDeadBlock(BB); + + for (SmallVectorImpl<BasicBlock*>::iterator + II = Successors.begin(), IE = Successors.end(); II != IE; ++II) + if (pred_begin(*II) == pred_end(*II)) + WorkList.insert(*II); + } + + // Merge pairs of basic blocks with unconditional branches, connected by + // a single edge. + if (EverMadeChange || MadeChange) + MadeChange |= eliminateFallThrough(F); + + EverMadeChange |= MadeChange; + } + + if (!DisableGCOpts) { + SmallVector<Instruction *, 2> Statepoints; + for (BasicBlock &BB : F) + for (Instruction &I : BB) + if (isStatepoint(I)) + Statepoints.push_back(&I); + for (auto &I : Statepoints) + EverMadeChange |= simplifyOffsetableRelocate(*I); + } + + // Do this last to clean up use-before-def scenarios introduced by other + // preparatory transforms. + EverMadeChange |= placeDbgValues(F); + + return EverMadeChange; +} + +/// Merge basic blocks which are connected by a single edge, where one of the +/// basic blocks has a single successor pointing to the other basic block, +/// which has a single predecessor. +bool CodeGenPrepare::eliminateFallThrough(Function &F) { + bool Changed = false; + // Scan all of the blocks in the function, except for the entry block. + // Use a temporary array to avoid iterator being invalidated when + // deleting blocks. + SmallVector<WeakTrackingVH, 16> Blocks; + for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) + Blocks.push_back(&Block); + + for (auto &Block : Blocks) { + auto *BB = cast_or_null<BasicBlock>(Block); + if (!BB) + continue; + // If the destination block has a single pred, then this is a trivial + // edge, just collapse it. + BasicBlock *SinglePred = BB->getSinglePredecessor(); + + // Don't merge if BB's address is taken. + if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; + + BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); + if (Term && !Term->isConditional()) { + Changed = true; + LLVM_DEBUG(dbgs() << "To merge:\n" << *BB << "\n\n\n"); + + // Merge BB into SinglePred and delete it. + MergeBlockIntoPredecessor(BB); + } + } + return Changed; +} + +/// Find a destination block from BB if BB is mergeable empty block. +BasicBlock *CodeGenPrepare::findDestBlockOfMergeableEmptyBlock(BasicBlock *BB) { + // If this block doesn't end with an uncond branch, ignore it. + BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); + if (!BI || !BI->isUnconditional()) + return nullptr; + + // If the instruction before the branch (skipping debug info) isn't a phi + // node, then other stuff is happening here. + BasicBlock::iterator BBI = BI->getIterator(); + if (BBI != BB->begin()) { + --BBI; + while (isa<DbgInfoIntrinsic>(BBI)) { + if (BBI == BB->begin()) + break; + --BBI; + } + if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) + return nullptr; + } + + // Do not break infinite loops. + BasicBlock *DestBB = BI->getSuccessor(0); + if (DestBB == BB) + return nullptr; + + if (!canMergeBlocks(BB, DestBB)) + DestBB = nullptr; + + return DestBB; +} + +/// Eliminate blocks that contain only PHI nodes, debug info directives, and an +/// unconditional branch. Passes before isel (e.g. LSR/loopsimplify) often split +/// edges in ways that are non-optimal for isel. Start by eliminating these +/// blocks so we can split them the way we want them. +bool CodeGenPrepare::eliminateMostlyEmptyBlocks(Function &F) { + SmallPtrSet<BasicBlock *, 16> Preheaders; + SmallVector<Loop *, 16> LoopList(LI->begin(), LI->end()); + while (!LoopList.empty()) { + Loop *L = LoopList.pop_back_val(); + LoopList.insert(LoopList.end(), L->begin(), L->end()); + if (BasicBlock *Preheader = L->getLoopPreheader()) + Preheaders.insert(Preheader); + } + + bool MadeChange = false; + // Copy blocks into a temporary array to avoid iterator invalidation issues + // as we remove them. + // Note that this intentionally skips the entry block. + SmallVector<WeakTrackingVH, 16> Blocks; + for (auto &Block : llvm::make_range(std::next(F.begin()), F.end())) + Blocks.push_back(&Block); + + for (auto &Block : Blocks) { + BasicBlock *BB = cast_or_null<BasicBlock>(Block); + if (!BB) + continue; + BasicBlock *DestBB = findDestBlockOfMergeableEmptyBlock(BB); + if (!DestBB || + !isMergingEmptyBlockProfitable(BB, DestBB, Preheaders.count(BB))) + continue; + + eliminateMostlyEmptyBlock(BB); + MadeChange = true; + } + return MadeChange; +} + +bool CodeGenPrepare::isMergingEmptyBlockProfitable(BasicBlock *BB, + BasicBlock *DestBB, + bool isPreheader) { + // Do not delete loop preheaders if doing so would create a critical edge. + // Loop preheaders can be good locations to spill registers. If the + // preheader is deleted and we create a critical edge, registers may be + // spilled in the loop body instead. + if (!DisablePreheaderProtect && isPreheader && + !(BB->getSinglePredecessor() && + BB->getSinglePredecessor()->getSingleSuccessor())) + return false; + + // Skip merging if the block's successor is also a successor to any callbr + // that leads to this block. + // FIXME: Is this really needed? Is this a correctness issue? + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { + if (auto *CBI = dyn_cast<CallBrInst>((*PI)->getTerminator())) + for (unsigned i = 0, e = CBI->getNumSuccessors(); i != e; ++i) + if (DestBB == CBI->getSuccessor(i)) + return false; + } + + // Try to skip merging if the unique predecessor of BB is terminated by a + // switch or indirect branch instruction, and BB is used as an incoming block + // of PHIs in DestBB. In such case, merging BB and DestBB would cause ISel to + // add COPY instructions in the predecessor of BB instead of BB (if it is not + // merged). Note that the critical edge created by merging such blocks wont be + // split in MachineSink because the jump table is not analyzable. By keeping + // such empty block (BB), ISel will place COPY instructions in BB, not in the + // predecessor of BB. + BasicBlock *Pred = BB->getUniquePredecessor(); + if (!Pred || + !(isa<SwitchInst>(Pred->getTerminator()) || + isa<IndirectBrInst>(Pred->getTerminator()))) + return true; + + if (BB->getTerminator() != BB->getFirstNonPHIOrDbg()) + return true; + + // We use a simple cost heuristic which determine skipping merging is + // profitable if the cost of skipping merging is less than the cost of + // merging : Cost(skipping merging) < Cost(merging BB), where the + // Cost(skipping merging) is Freq(BB) * (Cost(Copy) + Cost(Branch)), and + // the Cost(merging BB) is Freq(Pred) * Cost(Copy). + // Assuming Cost(Copy) == Cost(Branch), we could simplify it to : + // Freq(Pred) / Freq(BB) > 2. + // Note that if there are multiple empty blocks sharing the same incoming + // value for the PHIs in the DestBB, we consider them together. In such + // case, Cost(merging BB) will be the sum of their frequencies. + + if (!isa<PHINode>(DestBB->begin())) + return true; + + SmallPtrSet<BasicBlock *, 16> SameIncomingValueBBs; + + // Find all other incoming blocks from which incoming values of all PHIs in + // DestBB are the same as the ones from BB. + for (pred_iterator PI = pred_begin(DestBB), E = pred_end(DestBB); PI != E; + ++PI) { + BasicBlock *DestBBPred = *PI; + if (DestBBPred == BB) + continue; + + if (llvm::all_of(DestBB->phis(), [&](const PHINode &DestPN) { + return DestPN.getIncomingValueForBlock(BB) == + DestPN.getIncomingValueForBlock(DestBBPred); + })) + SameIncomingValueBBs.insert(DestBBPred); + } + + // See if all BB's incoming values are same as the value from Pred. In this + // case, no reason to skip merging because COPYs are expected to be place in + // Pred already. + if (SameIncomingValueBBs.count(Pred)) + return true; + + BlockFrequency PredFreq = BFI->getBlockFreq(Pred); + BlockFrequency BBFreq = BFI->getBlockFreq(BB); + + for (auto SameValueBB : SameIncomingValueBBs) + if (SameValueBB->getUniquePredecessor() == Pred && + DestBB == findDestBlockOfMergeableEmptyBlock(SameValueBB)) + BBFreq += BFI->getBlockFreq(SameValueBB); + + return PredFreq.getFrequency() <= + BBFreq.getFrequency() * FreqRatioToSkipMerge; +} + +/// Return true if we can merge BB into DestBB if there is a single +/// unconditional branch between them, and BB contains no other non-phi +/// instructions. +bool CodeGenPrepare::canMergeBlocks(const BasicBlock *BB, + const BasicBlock *DestBB) const { + // We only want to eliminate blocks whose phi nodes are used by phi nodes in + // the successor. If there are more complex condition (e.g. preheaders), + // don't mess around with them. + for (const PHINode &PN : BB->phis()) { + for (const User *U : PN.users()) { + const Instruction *UI = cast<Instruction>(U); + if (UI->getParent() != DestBB || !isa<PHINode>(UI)) + return false; + // If User is inside DestBB block and it is a PHINode then check + // incoming value. If incoming value is not from BB then this is + // a complex condition (e.g. preheaders) we want to avoid here. + if (UI->getParent() == DestBB) { + if (const PHINode *UPN = dyn_cast<PHINode>(UI)) + for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { + Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); + if (Insn && Insn->getParent() == BB && + Insn->getParent() != UPN->getIncomingBlock(I)) + return false; + } + } + } + } + + // If BB and DestBB contain any common predecessors, then the phi nodes in BB + // and DestBB may have conflicting incoming values for the block. If so, we + // can't merge the block. + const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); + if (!DestBBPN) return true; // no conflict. + + // Collect the preds of BB. + SmallPtrSet<const BasicBlock*, 16> BBPreds; + if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { + // It is faster to get preds from a PHI than with pred_iterator. + for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) + BBPreds.insert(BBPN->getIncomingBlock(i)); + } else { + BBPreds.insert(pred_begin(BB), pred_end(BB)); + } + + // Walk the preds of DestBB. + for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { + BasicBlock *Pred = DestBBPN->getIncomingBlock(i); + if (BBPreds.count(Pred)) { // Common predecessor? + for (const PHINode &PN : DestBB->phis()) { + const Value *V1 = PN.getIncomingValueForBlock(Pred); + const Value *V2 = PN.getIncomingValueForBlock(BB); + + // If V2 is a phi node in BB, look up what the mapped value will be. + if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) + if (V2PN->getParent() == BB) + V2 = V2PN->getIncomingValueForBlock(Pred); + + // If there is a conflict, bail out. + if (V1 != V2) return false; + } + } + } + + return true; +} + +/// Eliminate a basic block that has only phi's and an unconditional branch in +/// it. +void CodeGenPrepare::eliminateMostlyEmptyBlock(BasicBlock *BB) { + BranchInst *BI = cast<BranchInst>(BB->getTerminator()); + BasicBlock *DestBB = BI->getSuccessor(0); + + LLVM_DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" + << *BB << *DestBB); + + // If the destination block has a single pred, then this is a trivial edge, + // just collapse it. + if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { + if (SinglePred != DestBB) { + assert(SinglePred == BB && + "Single predecessor not the same as predecessor"); + // Merge DestBB into SinglePred/BB and delete it. + MergeBlockIntoPredecessor(DestBB); + // Note: BB(=SinglePred) will not be deleted on this path. + // DestBB(=its single successor) is the one that was deleted. + LLVM_DEBUG(dbgs() << "AFTER:\n" << *SinglePred << "\n\n\n"); + return; + } + } + + // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB + // to handle the new incoming edges it is about to have. + for (PHINode &PN : DestBB->phis()) { + // Remove the incoming value for BB, and remember it. + Value *InVal = PN.removeIncomingValue(BB, false); + + // Two options: either the InVal is a phi node defined in BB or it is some + // value that dominates BB. + PHINode *InValPhi = dyn_cast<PHINode>(InVal); + if (InValPhi && InValPhi->getParent() == BB) { + // Add all of the input values of the input PHI as inputs of this phi. + for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) + PN.addIncoming(InValPhi->getIncomingValue(i), + InValPhi->getIncomingBlock(i)); + } else { + // Otherwise, add one instance of the dominating value for each edge that + // we will be adding. + if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { + for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) + PN.addIncoming(InVal, BBPN->getIncomingBlock(i)); + } else { + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) + PN.addIncoming(InVal, *PI); + } + } + } + + // The PHIs are now updated, change everything that refers to BB to use + // DestBB and remove BB. + BB->replaceAllUsesWith(DestBB); + BB->eraseFromParent(); + ++NumBlocksElim; + + LLVM_DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); +} + +// Computes a map of base pointer relocation instructions to corresponding +// derived pointer relocation instructions given a vector of all relocate calls +static void computeBaseDerivedRelocateMap( + const SmallVectorImpl<GCRelocateInst *> &AllRelocateCalls, + DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> + &RelocateInstMap) { + // Collect information in two maps: one primarily for locating the base object + // while filling the second map; the second map is the final structure holding + // a mapping between Base and corresponding Derived relocate calls + DenseMap<std::pair<unsigned, unsigned>, GCRelocateInst *> RelocateIdxMap; + for (auto *ThisRelocate : AllRelocateCalls) { + auto K = std::make_pair(ThisRelocate->getBasePtrIndex(), + ThisRelocate->getDerivedPtrIndex()); + RelocateIdxMap.insert(std::make_pair(K, ThisRelocate)); + } + for (auto &Item : RelocateIdxMap) { + std::pair<unsigned, unsigned> Key = Item.first; + if (Key.first == Key.second) + // Base relocation: nothing to insert + continue; + + GCRelocateInst *I = Item.second; + auto BaseKey = std::make_pair(Key.first, Key.first); + + // We're iterating over RelocateIdxMap so we cannot modify it. + auto MaybeBase = RelocateIdxMap.find(BaseKey); + if (MaybeBase == RelocateIdxMap.end()) + // TODO: We might want to insert a new base object relocate and gep off + // that, if there are enough derived object relocates. + continue; + + RelocateInstMap[MaybeBase->second].push_back(I); + } +} + +// Accepts a GEP and extracts the operands into a vector provided they're all +// small integer constants +static bool getGEPSmallConstantIntOffsetV(GetElementPtrInst *GEP, + SmallVectorImpl<Value *> &OffsetV) { + for (unsigned i = 1; i < GEP->getNumOperands(); i++) { + // Only accept small constant integer operands + auto Op = dyn_cast<ConstantInt>(GEP->getOperand(i)); + if (!Op || Op->getZExtValue() > 20) + return false; + } + + for (unsigned i = 1; i < GEP->getNumOperands(); i++) + OffsetV.push_back(GEP->getOperand(i)); + return true; +} + +// Takes a RelocatedBase (base pointer relocation instruction) and Targets to +// replace, computes a replacement, and affects it. +static bool +simplifyRelocatesOffABase(GCRelocateInst *RelocatedBase, + const SmallVectorImpl<GCRelocateInst *> &Targets) { + bool MadeChange = false; + // We must ensure the relocation of derived pointer is defined after + // relocation of base pointer. If we find a relocation corresponding to base + // defined earlier than relocation of base then we move relocation of base + // right before found relocation. We consider only relocation in the same + // basic block as relocation of base. Relocations from other basic block will + // be skipped by optimization and we do not care about them. + for (auto R = RelocatedBase->getParent()->getFirstInsertionPt(); + &*R != RelocatedBase; ++R) + if (auto RI = dyn_cast<GCRelocateInst>(R)) + if (RI->getStatepoint() == RelocatedBase->getStatepoint()) + if (RI->getBasePtrIndex() == RelocatedBase->getBasePtrIndex()) { + RelocatedBase->moveBefore(RI); + break; + } + + for (GCRelocateInst *ToReplace : Targets) { + assert(ToReplace->getBasePtrIndex() == RelocatedBase->getBasePtrIndex() && + "Not relocating a derived object of the original base object"); + if (ToReplace->getBasePtrIndex() == ToReplace->getDerivedPtrIndex()) { + // A duplicate relocate call. TODO: coalesce duplicates. + continue; + } + + if (RelocatedBase->getParent() != ToReplace->getParent()) { + // Base and derived relocates are in different basic blocks. + // In this case transform is only valid when base dominates derived + // relocate. However it would be too expensive to check dominance + // for each such relocate, so we skip the whole transformation. + continue; + } + + Value *Base = ToReplace->getBasePtr(); + auto Derived = dyn_cast<GetElementPtrInst>(ToReplace->getDerivedPtr()); + if (!Derived || Derived->getPointerOperand() != Base) + continue; + + SmallVector<Value *, 2> OffsetV; + if (!getGEPSmallConstantIntOffsetV(Derived, OffsetV)) + continue; + + // Create a Builder and replace the target callsite with a gep + assert(RelocatedBase->getNextNode() && + "Should always have one since it's not a terminator"); + + // Insert after RelocatedBase + IRBuilder<> Builder(RelocatedBase->getNextNode()); + Builder.SetCurrentDebugLocation(ToReplace->getDebugLoc()); + + // If gc_relocate does not match the actual type, cast it to the right type. + // In theory, there must be a bitcast after gc_relocate if the type does not + // match, and we should reuse it to get the derived pointer. But it could be + // cases like this: + // bb1: + // ... + // %g1 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) + // br label %merge + // + // bb2: + // ... + // %g2 = call coldcc i8 addrspace(1)* @llvm.experimental.gc.relocate.p1i8(...) + // br label %merge + // + // merge: + // %p1 = phi i8 addrspace(1)* [ %g1, %bb1 ], [ %g2, %bb2 ] + // %cast = bitcast i8 addrspace(1)* %p1 in to i32 addrspace(1)* + // + // In this case, we can not find the bitcast any more. So we insert a new bitcast + // no matter there is already one or not. In this way, we can handle all cases, and + // the extra bitcast should be optimized away in later passes. + Value *ActualRelocatedBase = RelocatedBase; + if (RelocatedBase->getType() != Base->getType()) { + ActualRelocatedBase = + Builder.CreateBitCast(RelocatedBase, Base->getType()); + } + Value *Replacement = Builder.CreateGEP( + Derived->getSourceElementType(), ActualRelocatedBase, makeArrayRef(OffsetV)); + Replacement->takeName(ToReplace); + // If the newly generated derived pointer's type does not match the original derived + // pointer's type, cast the new derived pointer to match it. Same reasoning as above. + Value *ActualReplacement = Replacement; + if (Replacement->getType() != ToReplace->getType()) { + ActualReplacement = + Builder.CreateBitCast(Replacement, ToReplace->getType()); + } + ToReplace->replaceAllUsesWith(ActualReplacement); + ToReplace->eraseFromParent(); + + MadeChange = true; + } + return MadeChange; +} + +// Turns this: +// +// %base = ... +// %ptr = gep %base + 15 +// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) +// %base' = relocate(%tok, i32 4, i32 4) +// %ptr' = relocate(%tok, i32 4, i32 5) +// %val = load %ptr' +// +// into this: +// +// %base = ... +// %ptr = gep %base + 15 +// %tok = statepoint (%fun, i32 0, i32 0, i32 0, %base, %ptr) +// %base' = gc.relocate(%tok, i32 4, i32 4) +// %ptr' = gep %base' + 15 +// %val = load %ptr' +bool CodeGenPrepare::simplifyOffsetableRelocate(Instruction &I) { + bool MadeChange = false; + SmallVector<GCRelocateInst *, 2> AllRelocateCalls; + + for (auto *U : I.users()) + if (GCRelocateInst *Relocate = dyn_cast<GCRelocateInst>(U)) + // Collect all the relocate calls associated with a statepoint + AllRelocateCalls.push_back(Relocate); + + // We need atleast one base pointer relocation + one derived pointer + // relocation to mangle + if (AllRelocateCalls.size() < 2) + return false; + + // RelocateInstMap is a mapping from the base relocate instruction to the + // corresponding derived relocate instructions + DenseMap<GCRelocateInst *, SmallVector<GCRelocateInst *, 2>> RelocateInstMap; + computeBaseDerivedRelocateMap(AllRelocateCalls, RelocateInstMap); + if (RelocateInstMap.empty()) + return false; + + for (auto &Item : RelocateInstMap) + // Item.first is the RelocatedBase to offset against + // Item.second is the vector of Targets to replace + MadeChange = simplifyRelocatesOffABase(Item.first, Item.second); + return MadeChange; +} + +/// Sink the specified cast instruction into its user blocks. +static bool SinkCast(CastInst *CI) { + BasicBlock *DefBB = CI->getParent(); + + /// InsertedCasts - Only insert a cast in each block once. + DenseMap<BasicBlock*, CastInst*> InsertedCasts; + + bool MadeChange = false; + for (Value::user_iterator UI = CI->user_begin(), E = CI->user_end(); + UI != E; ) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Figure out which BB this cast is used in. For PHI's this is the + // appropriate predecessor block. + BasicBlock *UserBB = User->getParent(); + if (PHINode *PN = dyn_cast<PHINode>(User)) { + UserBB = PN->getIncomingBlock(TheUse); + } + + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // The first insertion point of a block containing an EH pad is after the + // pad. If the pad is the user, we cannot sink the cast past the pad. + if (User->isEHPad()) + continue; + + // If the block selected to receive the cast is an EH pad that does not + // allow non-PHI instructions before the terminator, we can't sink the + // cast. + if (UserBB->getTerminator()->isEHPad()) + continue; + + // If this user is in the same block as the cast, don't change the cast. + if (UserBB == DefBB) continue; + + // If we have already inserted a cast into this block, use it. + CastInst *&InsertedCast = InsertedCasts[UserBB]; + + if (!InsertedCast) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), + CI->getType(), "", &*InsertPt); + InsertedCast->setDebugLoc(CI->getDebugLoc()); + } + + // Replace a use of the cast with a use of the new cast. + TheUse = InsertedCast; + MadeChange = true; + ++NumCastUses; + } + + // If we removed all uses, nuke the cast. + if (CI->use_empty()) { + salvageDebugInfo(*CI); + CI->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +/// If the specified cast instruction is a noop copy (e.g. it's casting from +/// one pointer type to another, i32->i8 on PPC), sink it into user blocks to +/// reduce the number of virtual registers that must be created and coalesced. +/// +/// Return true if any changes are made. +static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI, + const DataLayout &DL) { + // Sink only "cheap" (or nop) address-space casts. This is a weaker condition + // than sinking only nop casts, but is helpful on some platforms. + if (auto *ASC = dyn_cast<AddrSpaceCastInst>(CI)) { + if (!TLI.isFreeAddrSpaceCast(ASC->getSrcAddressSpace(), + ASC->getDestAddressSpace())) + return false; + } + + // If this is a noop copy, + EVT SrcVT = TLI.getValueType(DL, CI->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(DL, CI->getType()); + + // This is an fp<->int conversion? + if (SrcVT.isInteger() != DstVT.isInteger()) + return false; + + // If this is an extension, it will be a zero or sign extension, which + // isn't a noop. + if (SrcVT.bitsLT(DstVT)) return false; + + // If these values will be promoted, find out what they will be promoted + // to. This helps us consider truncates on PPC as noop copies when they + // are. + if (TLI.getTypeAction(CI->getContext(), SrcVT) == + TargetLowering::TypePromoteInteger) + SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); + if (TLI.getTypeAction(CI->getContext(), DstVT) == + TargetLowering::TypePromoteInteger) + DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); + + // If, after promotion, these are the same types, this is a noop copy. + if (SrcVT != DstVT) + return false; + + return SinkCast(CI); +} + +bool CodeGenPrepare::replaceMathCmpWithIntrinsic(BinaryOperator *BO, + CmpInst *Cmp, + Intrinsic::ID IID) { + if (BO->getParent() != Cmp->getParent()) { + // We used to use a dominator tree here to allow multi-block optimization. + // But that was problematic because: + // 1. It could cause a perf regression by hoisting the math op into the + // critical path. + // 2. It could cause a perf regression by creating a value that was live + // across multiple blocks and increasing register pressure. + // 3. Use of a dominator tree could cause large compile-time regression. + // This is because we recompute the DT on every change in the main CGP + // run-loop. The recomputing is probably unnecessary in many cases, so if + // that was fixed, using a DT here would be ok. + return false; + } + + // We allow matching the canonical IR (add X, C) back to (usubo X, -C). + Value *Arg0 = BO->getOperand(0); + Value *Arg1 = BO->getOperand(1); + if (BO->getOpcode() == Instruction::Add && + IID == Intrinsic::usub_with_overflow) { + assert(isa<Constant>(Arg1) && "Unexpected input for usubo"); + Arg1 = ConstantExpr::getNeg(cast<Constant>(Arg1)); + } + + // Insert at the first instruction of the pair. + Instruction *InsertPt = nullptr; + for (Instruction &Iter : *Cmp->getParent()) { + if (&Iter == BO || &Iter == Cmp) { + InsertPt = &Iter; + break; + } + } + assert(InsertPt != nullptr && "Parent block did not contain cmp or binop"); + + IRBuilder<> Builder(InsertPt); + Value *MathOV = Builder.CreateBinaryIntrinsic(IID, Arg0, Arg1); + Value *Math = Builder.CreateExtractValue(MathOV, 0, "math"); + Value *OV = Builder.CreateExtractValue(MathOV, 1, "ov"); + BO->replaceAllUsesWith(Math); + Cmp->replaceAllUsesWith(OV); + BO->eraseFromParent(); + Cmp->eraseFromParent(); + return true; +} + +/// Match special-case patterns that check for unsigned add overflow. +static bool matchUAddWithOverflowConstantEdgeCases(CmpInst *Cmp, + BinaryOperator *&Add) { + // Add = add A, 1; Cmp = icmp eq A,-1 (overflow if A is max val) + // Add = add A,-1; Cmp = icmp ne A, 0 (overflow if A is non-zero) + Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); + + // We are not expecting non-canonical/degenerate code. Just bail out. + if (isa<Constant>(A)) + return false; + + ICmpInst::Predicate Pred = Cmp->getPredicate(); + if (Pred == ICmpInst::ICMP_EQ && match(B, m_AllOnes())) + B = ConstantInt::get(B->getType(), 1); + else if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) + B = ConstantInt::get(B->getType(), -1); + else + return false; + + // Check the users of the variable operand of the compare looking for an add + // with the adjusted constant. + for (User *U : A->users()) { + if (match(U, m_Add(m_Specific(A), m_Specific(B)))) { + Add = cast<BinaryOperator>(U); + return true; + } + } + return false; +} + +/// Try to combine the compare into a call to the llvm.uadd.with.overflow +/// intrinsic. Return true if any changes were made. +bool CodeGenPrepare::combineToUAddWithOverflow(CmpInst *Cmp, + bool &ModifiedDT) { + Value *A, *B; + BinaryOperator *Add; + if (!match(Cmp, m_UAddWithOverflow(m_Value(A), m_Value(B), m_BinOp(Add)))) + if (!matchUAddWithOverflowConstantEdgeCases(Cmp, Add)) + return false; + + if (!TLI->shouldFormOverflowOp(ISD::UADDO, + TLI->getValueType(*DL, Add->getType()))) + return false; + + // We don't want to move around uses of condition values this late, so we + // check if it is legal to create the call to the intrinsic in the basic + // block containing the icmp. + if (Add->getParent() != Cmp->getParent() && !Add->hasOneUse()) + return false; + + if (!replaceMathCmpWithIntrinsic(Add, Cmp, Intrinsic::uadd_with_overflow)) + return false; + + // Reset callers - do not crash by iterating over a dead instruction. + ModifiedDT = true; + return true; +} + +bool CodeGenPrepare::combineToUSubWithOverflow(CmpInst *Cmp, + bool &ModifiedDT) { + // We are not expecting non-canonical/degenerate code. Just bail out. + Value *A = Cmp->getOperand(0), *B = Cmp->getOperand(1); + if (isa<Constant>(A) && isa<Constant>(B)) + return false; + + // Convert (A u> B) to (A u< B) to simplify pattern matching. + ICmpInst::Predicate Pred = Cmp->getPredicate(); + if (Pred == ICmpInst::ICMP_UGT) { + std::swap(A, B); + Pred = ICmpInst::ICMP_ULT; + } + // Convert special-case: (A == 0) is the same as (A u< 1). + if (Pred == ICmpInst::ICMP_EQ && match(B, m_ZeroInt())) { + B = ConstantInt::get(B->getType(), 1); + Pred = ICmpInst::ICMP_ULT; + } + // Convert special-case: (A != 0) is the same as (0 u< A). + if (Pred == ICmpInst::ICMP_NE && match(B, m_ZeroInt())) { + std::swap(A, B); + Pred = ICmpInst::ICMP_ULT; + } + if (Pred != ICmpInst::ICMP_ULT) + return false; + + // Walk the users of a variable operand of a compare looking for a subtract or + // add with that same operand. Also match the 2nd operand of the compare to + // the add/sub, but that may be a negated constant operand of an add. + Value *CmpVariableOperand = isa<Constant>(A) ? B : A; + BinaryOperator *Sub = nullptr; + for (User *U : CmpVariableOperand->users()) { + // A - B, A u< B --> usubo(A, B) + if (match(U, m_Sub(m_Specific(A), m_Specific(B)))) { + Sub = cast<BinaryOperator>(U); + break; + } + + // A + (-C), A u< C (canonicalized form of (sub A, C)) + const APInt *CmpC, *AddC; + if (match(U, m_Add(m_Specific(A), m_APInt(AddC))) && + match(B, m_APInt(CmpC)) && *AddC == -(*CmpC)) { + Sub = cast<BinaryOperator>(U); + break; + } + } + if (!Sub) + return false; + + if (!TLI->shouldFormOverflowOp(ISD::USUBO, + TLI->getValueType(*DL, Sub->getType()))) + return false; + + if (!replaceMathCmpWithIntrinsic(Sub, Cmp, Intrinsic::usub_with_overflow)) + return false; + + // Reset callers - do not crash by iterating over a dead instruction. + ModifiedDT = true; + return true; +} + +/// Sink the given CmpInst into user blocks to reduce the number of virtual +/// registers that must be created and coalesced. This is a clear win except on +/// targets with multiple condition code registers (PowerPC), where it might +/// lose; some adjustment may be wanted there. +/// +/// Return true if any changes are made. +static bool sinkCmpExpression(CmpInst *Cmp, const TargetLowering &TLI) { + if (TLI.hasMultipleConditionRegisters()) + return false; + + // Avoid sinking soft-FP comparisons, since this can move them into a loop. + if (TLI.useSoftFloat() && isa<FCmpInst>(Cmp)) + return false; + + // Only insert a cmp in each block once. + DenseMap<BasicBlock*, CmpInst*> InsertedCmps; + + bool MadeChange = false; + for (Value::user_iterator UI = Cmp->user_begin(), E = Cmp->user_end(); + UI != E; ) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // Don't bother for PHI nodes. + if (isa<PHINode>(User)) + continue; + + // Figure out which BB this cmp is used in. + BasicBlock *UserBB = User->getParent(); + BasicBlock *DefBB = Cmp->getParent(); + + // If this user is in the same block as the cmp, don't change the cmp. + if (UserBB == DefBB) continue; + + // If we have already inserted a cmp into this block, use it. + CmpInst *&InsertedCmp = InsertedCmps[UserBB]; + + if (!InsertedCmp) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedCmp = + CmpInst::Create(Cmp->getOpcode(), Cmp->getPredicate(), + Cmp->getOperand(0), Cmp->getOperand(1), "", + &*InsertPt); + // Propagate the debug info. + InsertedCmp->setDebugLoc(Cmp->getDebugLoc()); + } + + // Replace a use of the cmp with a use of the new cmp. + TheUse = InsertedCmp; + MadeChange = true; + ++NumCmpUses; + } + + // If we removed all uses, nuke the cmp. + if (Cmp->use_empty()) { + Cmp->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +bool CodeGenPrepare::optimizeCmp(CmpInst *Cmp, bool &ModifiedDT) { + if (sinkCmpExpression(Cmp, *TLI)) + return true; + + if (combineToUAddWithOverflow(Cmp, ModifiedDT)) + return true; + + if (combineToUSubWithOverflow(Cmp, ModifiedDT)) + return true; + + return false; +} + +/// Duplicate and sink the given 'and' instruction into user blocks where it is +/// used in a compare to allow isel to generate better code for targets where +/// this operation can be combined. +/// +/// Return true if any changes are made. +static bool sinkAndCmp0Expression(Instruction *AndI, + const TargetLowering &TLI, + SetOfInstrs &InsertedInsts) { + // Double-check that we're not trying to optimize an instruction that was + // already optimized by some other part of this pass. + assert(!InsertedInsts.count(AndI) && + "Attempting to optimize already optimized and instruction"); + (void) InsertedInsts; + + // Nothing to do for single use in same basic block. + if (AndI->hasOneUse() && + AndI->getParent() == cast<Instruction>(*AndI->user_begin())->getParent()) + return false; + + // Try to avoid cases where sinking/duplicating is likely to increase register + // pressure. + if (!isa<ConstantInt>(AndI->getOperand(0)) && + !isa<ConstantInt>(AndI->getOperand(1)) && + AndI->getOperand(0)->hasOneUse() && AndI->getOperand(1)->hasOneUse()) + return false; + + for (auto *U : AndI->users()) { + Instruction *User = cast<Instruction>(U); + + // Only sink 'and' feeding icmp with 0. + if (!isa<ICmpInst>(User)) + return false; + + auto *CmpC = dyn_cast<ConstantInt>(User->getOperand(1)); + if (!CmpC || !CmpC->isZero()) + return false; + } + + if (!TLI.isMaskAndCmp0FoldingBeneficial(*AndI)) + return false; + + LLVM_DEBUG(dbgs() << "found 'and' feeding only icmp 0;\n"); + LLVM_DEBUG(AndI->getParent()->dump()); + + // Push the 'and' into the same block as the icmp 0. There should only be + // one (icmp (and, 0)) in each block, since CSE/GVN should have removed any + // others, so we don't need to keep track of which BBs we insert into. + for (Value::user_iterator UI = AndI->user_begin(), E = AndI->user_end(); + UI != E; ) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + + // Preincrement use iterator so we don't invalidate it. + ++UI; + + LLVM_DEBUG(dbgs() << "sinking 'and' use: " << *User << "\n"); + + // Keep the 'and' in the same place if the use is already in the same block. + Instruction *InsertPt = + User->getParent() == AndI->getParent() ? AndI : User; + Instruction *InsertedAnd = + BinaryOperator::Create(Instruction::And, AndI->getOperand(0), + AndI->getOperand(1), "", InsertPt); + // Propagate the debug info. + InsertedAnd->setDebugLoc(AndI->getDebugLoc()); + + // Replace a use of the 'and' with a use of the new 'and'. + TheUse = InsertedAnd; + ++NumAndUses; + LLVM_DEBUG(User->getParent()->dump()); + } + + // We removed all uses, nuke the and. + AndI->eraseFromParent(); + return true; +} + +/// Check if the candidates could be combined with a shift instruction, which +/// includes: +/// 1. Truncate instruction +/// 2. And instruction and the imm is a mask of the low bits: +/// imm & (imm+1) == 0 +static bool isExtractBitsCandidateUse(Instruction *User) { + if (!isa<TruncInst>(User)) { + if (User->getOpcode() != Instruction::And || + !isa<ConstantInt>(User->getOperand(1))) + return false; + + const APInt &Cimm = cast<ConstantInt>(User->getOperand(1))->getValue(); + + if ((Cimm & (Cimm + 1)).getBoolValue()) + return false; + } + return true; +} + +/// Sink both shift and truncate instruction to the use of truncate's BB. +static bool +SinkShiftAndTruncate(BinaryOperator *ShiftI, Instruction *User, ConstantInt *CI, + DenseMap<BasicBlock *, BinaryOperator *> &InsertedShifts, + const TargetLowering &TLI, const DataLayout &DL) { + BasicBlock *UserBB = User->getParent(); + DenseMap<BasicBlock *, CastInst *> InsertedTruncs; + TruncInst *TruncI = dyn_cast<TruncInst>(User); + bool MadeChange = false; + + for (Value::user_iterator TruncUI = TruncI->user_begin(), + TruncE = TruncI->user_end(); + TruncUI != TruncE;) { + + Use &TruncTheUse = TruncUI.getUse(); + Instruction *TruncUser = cast<Instruction>(*TruncUI); + // Preincrement use iterator so we don't invalidate it. + + ++TruncUI; + + int ISDOpcode = TLI.InstructionOpcodeToISD(TruncUser->getOpcode()); + if (!ISDOpcode) + continue; + + // If the use is actually a legal node, there will not be an + // implicit truncate. + // FIXME: always querying the result type is just an + // approximation; some nodes' legality is determined by the + // operand or other means. There's no good way to find out though. + if (TLI.isOperationLegalOrCustom( + ISDOpcode, TLI.getValueType(DL, TruncUser->getType(), true))) + continue; + + // Don't bother for PHI nodes. + if (isa<PHINode>(TruncUser)) + continue; + + BasicBlock *TruncUserBB = TruncUser->getParent(); + + if (UserBB == TruncUserBB) + continue; + + BinaryOperator *&InsertedShift = InsertedShifts[TruncUserBB]; + CastInst *&InsertedTrunc = InsertedTruncs[TruncUserBB]; + + if (!InsertedShift && !InsertedTrunc) { + BasicBlock::iterator InsertPt = TruncUserBB->getFirstInsertionPt(); + assert(InsertPt != TruncUserBB->end()); + // Sink the shift + if (ShiftI->getOpcode() == Instruction::AShr) + InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + else + InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); + + // Sink the trunc + BasicBlock::iterator TruncInsertPt = TruncUserBB->getFirstInsertionPt(); + TruncInsertPt++; + assert(TruncInsertPt != TruncUserBB->end()); + + InsertedTrunc = CastInst::Create(TruncI->getOpcode(), InsertedShift, + TruncI->getType(), "", &*TruncInsertPt); + InsertedTrunc->setDebugLoc(TruncI->getDebugLoc()); + + MadeChange = true; + + TruncTheUse = InsertedTrunc; + } + } + return MadeChange; +} + +/// Sink the shift *right* instruction into user blocks if the uses could +/// potentially be combined with this shift instruction and generate BitExtract +/// instruction. It will only be applied if the architecture supports BitExtract +/// instruction. Here is an example: +/// BB1: +/// %x.extract.shift = lshr i64 %arg1, 32 +/// BB2: +/// %x.extract.trunc = trunc i64 %x.extract.shift to i16 +/// ==> +/// +/// BB2: +/// %x.extract.shift.1 = lshr i64 %arg1, 32 +/// %x.extract.trunc = trunc i64 %x.extract.shift.1 to i16 +/// +/// CodeGen will recognize the pattern in BB2 and generate BitExtract +/// instruction. +/// Return true if any changes are made. +static bool OptimizeExtractBits(BinaryOperator *ShiftI, ConstantInt *CI, + const TargetLowering &TLI, + const DataLayout &DL) { + BasicBlock *DefBB = ShiftI->getParent(); + + /// Only insert instructions in each block once. + DenseMap<BasicBlock *, BinaryOperator *> InsertedShifts; + + bool shiftIsLegal = TLI.isTypeLegal(TLI.getValueType(DL, ShiftI->getType())); + + bool MadeChange = false; + for (Value::user_iterator UI = ShiftI->user_begin(), E = ShiftI->user_end(); + UI != E;) { + Use &TheUse = UI.getUse(); + Instruction *User = cast<Instruction>(*UI); + // Preincrement use iterator so we don't invalidate it. + ++UI; + + // Don't bother for PHI nodes. + if (isa<PHINode>(User)) + continue; + + if (!isExtractBitsCandidateUse(User)) + continue; + + BasicBlock *UserBB = User->getParent(); + + if (UserBB == DefBB) { + // If the shift and truncate instruction are in the same BB. The use of + // the truncate(TruncUse) may still introduce another truncate if not + // legal. In this case, we would like to sink both shift and truncate + // instruction to the BB of TruncUse. + // for example: + // BB1: + // i64 shift.result = lshr i64 opnd, imm + // trunc.result = trunc shift.result to i16 + // + // BB2: + // ----> We will have an implicit truncate here if the architecture does + // not have i16 compare. + // cmp i16 trunc.result, opnd2 + // + if (isa<TruncInst>(User) && shiftIsLegal + // If the type of the truncate is legal, no truncate will be + // introduced in other basic blocks. + && + (!TLI.isTypeLegal(TLI.getValueType(DL, User->getType())))) + MadeChange = + SinkShiftAndTruncate(ShiftI, User, CI, InsertedShifts, TLI, DL); + + continue; + } + // If we have already inserted a shift into this block, use it. + BinaryOperator *&InsertedShift = InsertedShifts[UserBB]; + + if (!InsertedShift) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + + if (ShiftI->getOpcode() == Instruction::AShr) + InsertedShift = BinaryOperator::CreateAShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + else + InsertedShift = BinaryOperator::CreateLShr(ShiftI->getOperand(0), CI, + "", &*InsertPt); + InsertedShift->setDebugLoc(ShiftI->getDebugLoc()); + + MadeChange = true; + } + + // Replace a use of the shift with a use of the new shift. + TheUse = InsertedShift; + } + + // If we removed all uses, or there are none, nuke the shift. + if (ShiftI->use_empty()) { + salvageDebugInfo(*ShiftI); + ShiftI->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +/// If counting leading or trailing zeros is an expensive operation and a zero +/// input is defined, add a check for zero to avoid calling the intrinsic. +/// +/// We want to transform: +/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 false) +/// +/// into: +/// entry: +/// %cmpz = icmp eq i64 %A, 0 +/// br i1 %cmpz, label %cond.end, label %cond.false +/// cond.false: +/// %z = call i64 @llvm.cttz.i64(i64 %A, i1 true) +/// br label %cond.end +/// cond.end: +/// %ctz = phi i64 [ 64, %entry ], [ %z, %cond.false ] +/// +/// If the transform is performed, return true and set ModifiedDT to true. +static bool despeculateCountZeros(IntrinsicInst *CountZeros, + const TargetLowering *TLI, + const DataLayout *DL, + bool &ModifiedDT) { + if (!TLI || !DL) + return false; + + // If a zero input is undefined, it doesn't make sense to despeculate that. + if (match(CountZeros->getOperand(1), m_One())) + return false; + + // If it's cheap to speculate, there's nothing to do. + auto IntrinsicID = CountZeros->getIntrinsicID(); + if ((IntrinsicID == Intrinsic::cttz && TLI->isCheapToSpeculateCttz()) || + (IntrinsicID == Intrinsic::ctlz && TLI->isCheapToSpeculateCtlz())) + return false; + + // Only handle legal scalar cases. Anything else requires too much work. + Type *Ty = CountZeros->getType(); + unsigned SizeInBits = Ty->getPrimitiveSizeInBits(); + if (Ty->isVectorTy() || SizeInBits > DL->getLargestLegalIntTypeSizeInBits()) + return false; + + // The intrinsic will be sunk behind a compare against zero and branch. + BasicBlock *StartBlock = CountZeros->getParent(); + BasicBlock *CallBlock = StartBlock->splitBasicBlock(CountZeros, "cond.false"); + + // Create another block after the count zero intrinsic. A PHI will be added + // in this block to select the result of the intrinsic or the bit-width + // constant if the input to the intrinsic is zero. + BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(CountZeros)); + BasicBlock *EndBlock = CallBlock->splitBasicBlock(SplitPt, "cond.end"); + + // Set up a builder to create a compare, conditional branch, and PHI. + IRBuilder<> Builder(CountZeros->getContext()); + Builder.SetInsertPoint(StartBlock->getTerminator()); + Builder.SetCurrentDebugLocation(CountZeros->getDebugLoc()); + + // Replace the unconditional branch that was created by the first split with + // a compare against zero and a conditional branch. + Value *Zero = Constant::getNullValue(Ty); + Value *Cmp = Builder.CreateICmpEQ(CountZeros->getOperand(0), Zero, "cmpz"); + Builder.CreateCondBr(Cmp, EndBlock, CallBlock); + StartBlock->getTerminator()->eraseFromParent(); + + // Create a PHI in the end block to select either the output of the intrinsic + // or the bit width of the operand. + Builder.SetInsertPoint(&EndBlock->front()); + PHINode *PN = Builder.CreatePHI(Ty, 2, "ctz"); + CountZeros->replaceAllUsesWith(PN); + Value *BitWidth = Builder.getInt(APInt(SizeInBits, SizeInBits)); + PN->addIncoming(BitWidth, StartBlock); + PN->addIncoming(CountZeros, CallBlock); + + // We are explicitly handling the zero case, so we can set the intrinsic's + // undefined zero argument to 'true'. This will also prevent reprocessing the + // intrinsic; we only despeculate when a zero input is defined. + CountZeros->setArgOperand(1, Builder.getTrue()); + ModifiedDT = true; + return true; +} + +bool CodeGenPrepare::optimizeCallInst(CallInst *CI, bool &ModifiedDT) { + BasicBlock *BB = CI->getParent(); + + // Lower inline assembly if we can. + // If we found an inline asm expession, and if the target knows how to + // lower it to normal LLVM code, do so now. + if (TLI && isa<InlineAsm>(CI->getCalledValue())) { + if (TLI->ExpandInlineAsm(CI)) { + // Avoid invalidating the iterator. + CurInstIterator = BB->begin(); + // Avoid processing instructions out of order, which could cause + // reuse before a value is defined. + SunkAddrs.clear(); + return true; + } + // Sink address computing for memory operands into the block. + if (optimizeInlineAsmInst(CI)) + return true; + } + + // Align the pointer arguments to this call if the target thinks it's a good + // idea + unsigned MinSize, PrefAlign; + if (TLI && TLI->shouldAlignPointerArgs(CI, MinSize, PrefAlign)) { + for (auto &Arg : CI->arg_operands()) { + // We want to align both objects whose address is used directly and + // objects whose address is used in casts and GEPs, though it only makes + // sense for GEPs if the offset is a multiple of the desired alignment and + // if size - offset meets the size threshold. + if (!Arg->getType()->isPointerTy()) + continue; + APInt Offset(DL->getIndexSizeInBits( + cast<PointerType>(Arg->getType())->getAddressSpace()), + 0); + Value *Val = Arg->stripAndAccumulateInBoundsConstantOffsets(*DL, Offset); + uint64_t Offset2 = Offset.getLimitedValue(); + if ((Offset2 & (PrefAlign-1)) != 0) + continue; + AllocaInst *AI; + if ((AI = dyn_cast<AllocaInst>(Val)) && AI->getAlignment() < PrefAlign && + DL->getTypeAllocSize(AI->getAllocatedType()) >= MinSize + Offset2) + AI->setAlignment(PrefAlign); + // Global variables can only be aligned if they are defined in this + // object (i.e. they are uniquely initialized in this object), and + // over-aligning global variables that have an explicit section is + // forbidden. + GlobalVariable *GV; + if ((GV = dyn_cast<GlobalVariable>(Val)) && GV->canIncreaseAlignment() && + GV->getPointerAlignment(*DL) < PrefAlign && + DL->getTypeAllocSize(GV->getValueType()) >= + MinSize + Offset2) + GV->setAlignment(PrefAlign); + } + // If this is a memcpy (or similar) then we may be able to improve the + // alignment + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(CI)) { + unsigned DestAlign = getKnownAlignment(MI->getDest(), *DL); + if (DestAlign > MI->getDestAlignment()) + MI->setDestAlignment(DestAlign); + if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { + unsigned SrcAlign = getKnownAlignment(MTI->getSource(), *DL); + if (SrcAlign > MTI->getSourceAlignment()) + MTI->setSourceAlignment(SrcAlign); + } + } + } + + // If we have a cold call site, try to sink addressing computation into the + // cold block. This interacts with our handling for loads and stores to + // ensure that we can fold all uses of a potential addressing computation + // into their uses. TODO: generalize this to work over profiling data + if (!OptSize && CI->hasFnAttr(Attribute::Cold)) + for (auto &Arg : CI->arg_operands()) { + if (!Arg->getType()->isPointerTy()) + continue; + unsigned AS = Arg->getType()->getPointerAddressSpace(); + return optimizeMemoryInst(CI, Arg, Arg->getType(), AS); + } + + IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); + if (II) { + switch (II->getIntrinsicID()) { + default: break; + case Intrinsic::experimental_widenable_condition: { + // Give up on future widening oppurtunties so that we can fold away dead + // paths and merge blocks before going into block-local instruction + // selection. + if (II->use_empty()) { + II->eraseFromParent(); + return true; + } + Constant *RetVal = ConstantInt::getTrue(II->getContext()); + resetIteratorIfInvalidatedWhileCalling(BB, [&]() { + replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); + }); + return true; + } + case Intrinsic::objectsize: { + // Lower all uses of llvm.objectsize.* + Value *RetVal = + lowerObjectSizeCall(II, *DL, TLInfo, /*MustSucceed=*/true); + + resetIteratorIfInvalidatedWhileCalling(BB, [&]() { + replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); + }); + return true; + } + case Intrinsic::is_constant: { + // If is_constant hasn't folded away yet, lower it to false now. + Constant *RetVal = ConstantInt::get(II->getType(), 0); + resetIteratorIfInvalidatedWhileCalling(BB, [&]() { + replaceAndRecursivelySimplify(CI, RetVal, TLInfo, nullptr); + }); + return true; + } + case Intrinsic::aarch64_stlxr: + case Intrinsic::aarch64_stxr: { + ZExtInst *ExtVal = dyn_cast<ZExtInst>(CI->getArgOperand(0)); + if (!ExtVal || !ExtVal->hasOneUse() || + ExtVal->getParent() == CI->getParent()) + return false; + // Sink a zext feeding stlxr/stxr before it, so it can be folded into it. + ExtVal->moveBefore(CI); + // Mark this instruction as "inserted by CGP", so that other + // optimizations don't touch it. + InsertedInsts.insert(ExtVal); + return true; + } + + case Intrinsic::launder_invariant_group: + case Intrinsic::strip_invariant_group: { + Value *ArgVal = II->getArgOperand(0); + auto it = LargeOffsetGEPMap.find(II); + if (it != LargeOffsetGEPMap.end()) { + // Merge entries in LargeOffsetGEPMap to reflect the RAUW. + // Make sure not to have to deal with iterator invalidation + // after possibly adding ArgVal to LargeOffsetGEPMap. + auto GEPs = std::move(it->second); + LargeOffsetGEPMap[ArgVal].append(GEPs.begin(), GEPs.end()); + LargeOffsetGEPMap.erase(II); + } + + II->replaceAllUsesWith(ArgVal); + II->eraseFromParent(); + return true; + } + case Intrinsic::cttz: + case Intrinsic::ctlz: + // If counting zeros is expensive, try to avoid it. + return despeculateCountZeros(II, TLI, DL, ModifiedDT); + } + + if (TLI) { + SmallVector<Value*, 2> PtrOps; + Type *AccessTy; + if (TLI->getAddrModeArguments(II, PtrOps, AccessTy)) + while (!PtrOps.empty()) { + Value *PtrVal = PtrOps.pop_back_val(); + unsigned AS = PtrVal->getType()->getPointerAddressSpace(); + if (optimizeMemoryInst(II, PtrVal, AccessTy, AS)) + return true; + } + } + } + + // From here on out we're working with named functions. + if (!CI->getCalledFunction()) return false; + + // Lower all default uses of _chk calls. This is very similar + // to what InstCombineCalls does, but here we are only lowering calls + // to fortified library functions (e.g. __memcpy_chk) that have the default + // "don't know" as the objectsize. Anything else should be left alone. + FortifiedLibCallSimplifier Simplifier(TLInfo, true); + if (Value *V = Simplifier.optimizeCall(CI)) { + CI->replaceAllUsesWith(V); + CI->eraseFromParent(); + return true; + } + + return false; +} + +/// Look for opportunities to duplicate return instructions to the predecessor +/// to enable tail call optimizations. The case it is currently looking for is: +/// @code +/// bb0: +/// %tmp0 = tail call i32 @f0() +/// br label %return +/// bb1: +/// %tmp1 = tail call i32 @f1() +/// br label %return +/// bb2: +/// %tmp2 = tail call i32 @f2() +/// br label %return +/// return: +/// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] +/// ret i32 %retval +/// @endcode +/// +/// => +/// +/// @code +/// bb0: +/// %tmp0 = tail call i32 @f0() +/// ret i32 %tmp0 +/// bb1: +/// %tmp1 = tail call i32 @f1() +/// ret i32 %tmp1 +/// bb2: +/// %tmp2 = tail call i32 @f2() +/// ret i32 %tmp2 +/// @endcode +bool CodeGenPrepare::dupRetToEnableTailCallOpts(BasicBlock *BB, bool &ModifiedDT) { + if (!TLI) + return false; + + ReturnInst *RetI = dyn_cast<ReturnInst>(BB->getTerminator()); + if (!RetI) + return false; + + PHINode *PN = nullptr; + BitCastInst *BCI = nullptr; + Value *V = RetI->getReturnValue(); + if (V) { + BCI = dyn_cast<BitCastInst>(V); + if (BCI) + V = BCI->getOperand(0); + + PN = dyn_cast<PHINode>(V); + if (!PN) + return false; + } + + if (PN && PN->getParent() != BB) + return false; + + // Make sure there are no instructions between the PHI and return, or that the + // return is the first instruction in the block. + if (PN) { + BasicBlock::iterator BI = BB->begin(); + // Skip over debug and the bitcast. + do { ++BI; } while (isa<DbgInfoIntrinsic>(BI) || &*BI == BCI); + if (&*BI != RetI) + return false; + } else { + BasicBlock::iterator BI = BB->begin(); + while (isa<DbgInfoIntrinsic>(BI)) ++BI; + if (&*BI != RetI) + return false; + } + + /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail + /// call. + const Function *F = BB->getParent(); + SmallVector<CallInst*, 4> TailCalls; + if (PN) { + for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { + // Look through bitcasts. + Value *IncomingVal = PN->getIncomingValue(I)->stripPointerCasts(); + CallInst *CI = dyn_cast<CallInst>(IncomingVal); + // Make sure the phi value is indeed produced by the tail call. + if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && + TLI->mayBeEmittedAsTailCall(CI) && + attributesPermitTailCall(F, CI, RetI, *TLI)) + TailCalls.push_back(CI); + } + } else { + SmallPtrSet<BasicBlock*, 4> VisitedBBs; + for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { + if (!VisitedBBs.insert(*PI).second) + continue; + + BasicBlock::InstListType &InstList = (*PI)->getInstList(); + BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); + BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); + do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); + if (RI == RE) + continue; + + CallInst *CI = dyn_cast<CallInst>(&*RI); + if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI) && + attributesPermitTailCall(F, CI, RetI, *TLI)) + TailCalls.push_back(CI); + } + } + + bool Changed = false; + for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { + CallInst *CI = TailCalls[i]; + CallSite CS(CI); + + // Make sure the call instruction is followed by an unconditional branch to + // the return block. + BasicBlock *CallBB = CI->getParent(); + BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); + if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) + continue; + + // Duplicate the return into CallBB. + (void)FoldReturnIntoUncondBranch(RetI, BB, CallBB); + ModifiedDT = Changed = true; + ++NumRetsDup; + } + + // If we eliminated all predecessors of the block, delete the block now. + if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) + BB->eraseFromParent(); + + return Changed; +} + +//===----------------------------------------------------------------------===// +// Memory Optimization +//===----------------------------------------------------------------------===// + +namespace { + +/// This is an extended version of TargetLowering::AddrMode +/// which holds actual Value*'s for register values. +struct ExtAddrMode : public TargetLowering::AddrMode { + Value *BaseReg = nullptr; + Value *ScaledReg = nullptr; + Value *OriginalValue = nullptr; + bool InBounds = true; + + enum FieldName { + NoField = 0x00, + BaseRegField = 0x01, + BaseGVField = 0x02, + BaseOffsField = 0x04, + ScaledRegField = 0x08, + ScaleField = 0x10, + MultipleFields = 0xff + }; + + + ExtAddrMode() = default; + + void print(raw_ostream &OS) const; + void dump() const; + + FieldName compare(const ExtAddrMode &other) { + // First check that the types are the same on each field, as differing types + // is something we can't cope with later on. + if (BaseReg && other.BaseReg && + BaseReg->getType() != other.BaseReg->getType()) + return MultipleFields; + if (BaseGV && other.BaseGV && + BaseGV->getType() != other.BaseGV->getType()) + return MultipleFields; + if (ScaledReg && other.ScaledReg && + ScaledReg->getType() != other.ScaledReg->getType()) + return MultipleFields; + + // Conservatively reject 'inbounds' mismatches. + if (InBounds != other.InBounds) + return MultipleFields; + + // Check each field to see if it differs. + unsigned Result = NoField; + if (BaseReg != other.BaseReg) + Result |= BaseRegField; + if (BaseGV != other.BaseGV) + Result |= BaseGVField; + if (BaseOffs != other.BaseOffs) + Result |= BaseOffsField; + if (ScaledReg != other.ScaledReg) + Result |= ScaledRegField; + // Don't count 0 as being a different scale, because that actually means + // unscaled (which will already be counted by having no ScaledReg). + if (Scale && other.Scale && Scale != other.Scale) + Result |= ScaleField; + + if (countPopulation(Result) > 1) + return MultipleFields; + else + return static_cast<FieldName>(Result); + } + + // An AddrMode is trivial if it involves no calculation i.e. it is just a base + // with no offset. + bool isTrivial() { + // An AddrMode is (BaseGV + BaseReg + BaseOffs + ScaleReg * Scale) so it is + // trivial if at most one of these terms is nonzero, except that BaseGV and + // BaseReg both being zero actually means a null pointer value, which we + // consider to be 'non-zero' here. + return !BaseOffs && !Scale && !(BaseGV && BaseReg); + } + + Value *GetFieldAsValue(FieldName Field, Type *IntPtrTy) { + switch (Field) { + default: + return nullptr; + case BaseRegField: + return BaseReg; + case BaseGVField: + return BaseGV; + case ScaledRegField: + return ScaledReg; + case BaseOffsField: + return ConstantInt::get(IntPtrTy, BaseOffs); + } + } + + void SetCombinedField(FieldName Field, Value *V, + const SmallVectorImpl<ExtAddrMode> &AddrModes) { + switch (Field) { + default: + llvm_unreachable("Unhandled fields are expected to be rejected earlier"); + break; + case ExtAddrMode::BaseRegField: + BaseReg = V; + break; + case ExtAddrMode::BaseGVField: + // A combined BaseGV is an Instruction, not a GlobalValue, so it goes + // in the BaseReg field. + assert(BaseReg == nullptr); + BaseReg = V; + BaseGV = nullptr; + break; + case ExtAddrMode::ScaledRegField: + ScaledReg = V; + // If we have a mix of scaled and unscaled addrmodes then we want scale + // to be the scale and not zero. + if (!Scale) + for (const ExtAddrMode &AM : AddrModes) + if (AM.Scale) { + Scale = AM.Scale; + break; + } + break; + case ExtAddrMode::BaseOffsField: + // The offset is no longer a constant, so it goes in ScaledReg with a + // scale of 1. + assert(ScaledReg == nullptr); + ScaledReg = V; + Scale = 1; + BaseOffs = 0; + break; + } + } +}; + +} // end anonymous namespace + +#ifndef NDEBUG +static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { + AM.print(OS); + return OS; +} +#endif + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ExtAddrMode::print(raw_ostream &OS) const { + bool NeedPlus = false; + OS << "["; + if (InBounds) + OS << "inbounds "; + if (BaseGV) { + OS << (NeedPlus ? " + " : "") + << "GV:"; + BaseGV->printAsOperand(OS, /*PrintType=*/false); + NeedPlus = true; + } + + if (BaseOffs) { + OS << (NeedPlus ? " + " : "") + << BaseOffs; + NeedPlus = true; + } + + if (BaseReg) { + OS << (NeedPlus ? " + " : "") + << "Base:"; + BaseReg->printAsOperand(OS, /*PrintType=*/false); + NeedPlus = true; + } + if (Scale) { + OS << (NeedPlus ? " + " : "") + << Scale << "*"; + ScaledReg->printAsOperand(OS, /*PrintType=*/false); + } + + OS << ']'; +} + +LLVM_DUMP_METHOD void ExtAddrMode::dump() const { + print(dbgs()); + dbgs() << '\n'; +} +#endif + +namespace { + +/// This class provides transaction based operation on the IR. +/// Every change made through this class is recorded in the internal state and +/// can be undone (rollback) until commit is called. +class TypePromotionTransaction { + /// This represents the common interface of the individual transaction. + /// Each class implements the logic for doing one specific modification on + /// the IR via the TypePromotionTransaction. + class TypePromotionAction { + protected: + /// The Instruction modified. + Instruction *Inst; + + public: + /// Constructor of the action. + /// The constructor performs the related action on the IR. + TypePromotionAction(Instruction *Inst) : Inst(Inst) {} + + virtual ~TypePromotionAction() = default; + + /// Undo the modification done by this action. + /// When this method is called, the IR must be in the same state as it was + /// before this action was applied. + /// \pre Undoing the action works if and only if the IR is in the exact same + /// state as it was directly after this action was applied. + virtual void undo() = 0; + + /// Advocate every change made by this action. + /// When the results on the IR of the action are to be kept, it is important + /// to call this function, otherwise hidden information may be kept forever. + virtual void commit() { + // Nothing to be done, this action is not doing anything. + } + }; + + /// Utility to remember the position of an instruction. + class InsertionHandler { + /// Position of an instruction. + /// Either an instruction: + /// - Is the first in a basic block: BB is used. + /// - Has a previous instruction: PrevInst is used. + union { + Instruction *PrevInst; + BasicBlock *BB; + } Point; + + /// Remember whether or not the instruction had a previous instruction. + bool HasPrevInstruction; + + public: + /// Record the position of \p Inst. + InsertionHandler(Instruction *Inst) { + BasicBlock::iterator It = Inst->getIterator(); + HasPrevInstruction = (It != (Inst->getParent()->begin())); + if (HasPrevInstruction) + Point.PrevInst = &*--It; + else + Point.BB = Inst->getParent(); + } + + /// Insert \p Inst at the recorded position. + void insert(Instruction *Inst) { + if (HasPrevInstruction) { + if (Inst->getParent()) + Inst->removeFromParent(); + Inst->insertAfter(Point.PrevInst); + } else { + Instruction *Position = &*Point.BB->getFirstInsertionPt(); + if (Inst->getParent()) + Inst->moveBefore(Position); + else + Inst->insertBefore(Position); + } + } + }; + + /// Move an instruction before another. + class InstructionMoveBefore : public TypePromotionAction { + /// Original position of the instruction. + InsertionHandler Position; + + public: + /// Move \p Inst before \p Before. + InstructionMoveBefore(Instruction *Inst, Instruction *Before) + : TypePromotionAction(Inst), Position(Inst) { + LLVM_DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before + << "\n"); + Inst->moveBefore(Before); + } + + /// Move the instruction back to its original position. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n"); + Position.insert(Inst); + } + }; + + /// Set the operand of an instruction with a new value. + class OperandSetter : public TypePromotionAction { + /// Original operand of the instruction. + Value *Origin; + + /// Index of the modified instruction. + unsigned Idx; + + public: + /// Set \p Idx operand of \p Inst with \p NewVal. + OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal) + : TypePromotionAction(Inst), Idx(Idx) { + LLVM_DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n" + << "for:" << *Inst << "\n" + << "with:" << *NewVal << "\n"); + Origin = Inst->getOperand(Idx); + Inst->setOperand(Idx, NewVal); + } + + /// Restore the original value of the instruction. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n" + << "for: " << *Inst << "\n" + << "with: " << *Origin << "\n"); + Inst->setOperand(Idx, Origin); + } + }; + + /// Hide the operands of an instruction. + /// Do as if this instruction was not using any of its operands. + class OperandsHider : public TypePromotionAction { + /// The list of original operands. + SmallVector<Value *, 4> OriginalValues; + + public: + /// Remove \p Inst from the uses of the operands of \p Inst. + OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) { + LLVM_DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n"); + unsigned NumOpnds = Inst->getNumOperands(); + OriginalValues.reserve(NumOpnds); + for (unsigned It = 0; It < NumOpnds; ++It) { + // Save the current operand. + Value *Val = Inst->getOperand(It); + OriginalValues.push_back(Val); + // Set a dummy one. + // We could use OperandSetter here, but that would imply an overhead + // that we are not willing to pay. + Inst->setOperand(It, UndefValue::get(Val->getType())); + } + } + + /// Restore the original list of uses. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n"); + for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It) + Inst->setOperand(It, OriginalValues[It]); + } + }; + + /// Build a truncate instruction. + class TruncBuilder : public TypePromotionAction { + Value *Val; + + public: + /// Build a truncate instruction of \p Opnd producing a \p Ty + /// result. + /// trunc Opnd to Ty. + TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) { + IRBuilder<> Builder(Opnd); + Val = Builder.CreateTrunc(Opnd, Ty, "promoted"); + LLVM_DEBUG(dbgs() << "Do: TruncBuilder: " << *Val << "\n"); + } + + /// Get the built value. + Value *getBuiltValue() { return Val; } + + /// Remove the built instruction. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: TruncBuilder: " << *Val << "\n"); + if (Instruction *IVal = dyn_cast<Instruction>(Val)) + IVal->eraseFromParent(); + } + }; + + /// Build a sign extension instruction. + class SExtBuilder : public TypePromotionAction { + Value *Val; + + public: + /// Build a sign extension instruction of \p Opnd producing a \p Ty + /// result. + /// sext Opnd to Ty. + SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) + : TypePromotionAction(InsertPt) { + IRBuilder<> Builder(InsertPt); + Val = Builder.CreateSExt(Opnd, Ty, "promoted"); + LLVM_DEBUG(dbgs() << "Do: SExtBuilder: " << *Val << "\n"); + } + + /// Get the built value. + Value *getBuiltValue() { return Val; } + + /// Remove the built instruction. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: SExtBuilder: " << *Val << "\n"); + if (Instruction *IVal = dyn_cast<Instruction>(Val)) + IVal->eraseFromParent(); + } + }; + + /// Build a zero extension instruction. + class ZExtBuilder : public TypePromotionAction { + Value *Val; + + public: + /// Build a zero extension instruction of \p Opnd producing a \p Ty + /// result. + /// zext Opnd to Ty. + ZExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty) + : TypePromotionAction(InsertPt) { + IRBuilder<> Builder(InsertPt); + Val = Builder.CreateZExt(Opnd, Ty, "promoted"); + LLVM_DEBUG(dbgs() << "Do: ZExtBuilder: " << *Val << "\n"); + } + + /// Get the built value. + Value *getBuiltValue() { return Val; } + + /// Remove the built instruction. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: ZExtBuilder: " << *Val << "\n"); + if (Instruction *IVal = dyn_cast<Instruction>(Val)) + IVal->eraseFromParent(); + } + }; + + /// Mutate an instruction to another type. + class TypeMutator : public TypePromotionAction { + /// Record the original type. + Type *OrigTy; + + public: + /// Mutate the type of \p Inst into \p NewTy. + TypeMutator(Instruction *Inst, Type *NewTy) + : TypePromotionAction(Inst), OrigTy(Inst->getType()) { + LLVM_DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy + << "\n"); + Inst->mutateType(NewTy); + } + + /// Mutate the instruction back to its original type. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy + << "\n"); + Inst->mutateType(OrigTy); + } + }; + + /// Replace the uses of an instruction by another instruction. + class UsesReplacer : public TypePromotionAction { + /// Helper structure to keep track of the replaced uses. + struct InstructionAndIdx { + /// The instruction using the instruction. + Instruction *Inst; + + /// The index where this instruction is used for Inst. + unsigned Idx; + + InstructionAndIdx(Instruction *Inst, unsigned Idx) + : Inst(Inst), Idx(Idx) {} + }; + + /// Keep track of the original uses (pair Instruction, Index). + SmallVector<InstructionAndIdx, 4> OriginalUses; + /// Keep track of the debug users. + SmallVector<DbgValueInst *, 1> DbgValues; + + using use_iterator = SmallVectorImpl<InstructionAndIdx>::iterator; + + public: + /// Replace all the use of \p Inst by \p New. + UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) { + LLVM_DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New + << "\n"); + // Record the original uses. + for (Use &U : Inst->uses()) { + Instruction *UserI = cast<Instruction>(U.getUser()); + OriginalUses.push_back(InstructionAndIdx(UserI, U.getOperandNo())); + } + // Record the debug uses separately. They are not in the instruction's + // use list, but they are replaced by RAUW. + findDbgValues(DbgValues, Inst); + + // Now, we can replace the uses. + Inst->replaceAllUsesWith(New); + } + + /// Reassign the original uses of Inst to Inst. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n"); + for (use_iterator UseIt = OriginalUses.begin(), + EndIt = OriginalUses.end(); + UseIt != EndIt; ++UseIt) { + UseIt->Inst->setOperand(UseIt->Idx, Inst); + } + // RAUW has replaced all original uses with references to the new value, + // including the debug uses. Since we are undoing the replacements, + // the original debug uses must also be reinstated to maintain the + // correctness and utility of debug value instructions. + for (auto *DVI: DbgValues) { + LLVMContext &Ctx = Inst->getType()->getContext(); + auto *MV = MetadataAsValue::get(Ctx, ValueAsMetadata::get(Inst)); + DVI->setOperand(0, MV); + } + } + }; + + /// Remove an instruction from the IR. + class InstructionRemover : public TypePromotionAction { + /// Original position of the instruction. + InsertionHandler Inserter; + + /// Helper structure to hide all the link to the instruction. In other + /// words, this helps to do as if the instruction was removed. + OperandsHider Hider; + + /// Keep track of the uses replaced, if any. + UsesReplacer *Replacer = nullptr; + + /// Keep track of instructions removed. + SetOfInstrs &RemovedInsts; + + public: + /// Remove all reference of \p Inst and optionally replace all its + /// uses with New. + /// \p RemovedInsts Keep track of the instructions removed by this Action. + /// \pre If !Inst->use_empty(), then New != nullptr + InstructionRemover(Instruction *Inst, SetOfInstrs &RemovedInsts, + Value *New = nullptr) + : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst), + RemovedInsts(RemovedInsts) { + if (New) + Replacer = new UsesReplacer(Inst, New); + LLVM_DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n"); + RemovedInsts.insert(Inst); + /// The instructions removed here will be freed after completing + /// optimizeBlock() for all blocks as we need to keep track of the + /// removed instructions during promotion. + Inst->removeFromParent(); + } + + ~InstructionRemover() override { delete Replacer; } + + /// Resurrect the instruction and reassign it to the proper uses if + /// new value was provided when build this action. + void undo() override { + LLVM_DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n"); + Inserter.insert(Inst); + if (Replacer) + Replacer->undo(); + Hider.undo(); + RemovedInsts.erase(Inst); + } + }; + +public: + /// Restoration point. + /// The restoration point is a pointer to an action instead of an iterator + /// because the iterator may be invalidated but not the pointer. + using ConstRestorationPt = const TypePromotionAction *; + + TypePromotionTransaction(SetOfInstrs &RemovedInsts) + : RemovedInsts(RemovedInsts) {} + + /// Advocate every changes made in that transaction. + void commit(); + + /// Undo all the changes made after the given point. + void rollback(ConstRestorationPt Point); + + /// Get the current restoration point. + ConstRestorationPt getRestorationPoint() const; + + /// \name API for IR modification with state keeping to support rollback. + /// @{ + /// Same as Instruction::setOperand. + void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal); + + /// Same as Instruction::eraseFromParent. + void eraseInstruction(Instruction *Inst, Value *NewVal = nullptr); + + /// Same as Value::replaceAllUsesWith. + void replaceAllUsesWith(Instruction *Inst, Value *New); + + /// Same as Value::mutateType. + void mutateType(Instruction *Inst, Type *NewTy); + + /// Same as IRBuilder::createTrunc. + Value *createTrunc(Instruction *Opnd, Type *Ty); + + /// Same as IRBuilder::createSExt. + Value *createSExt(Instruction *Inst, Value *Opnd, Type *Ty); + + /// Same as IRBuilder::createZExt. + Value *createZExt(Instruction *Inst, Value *Opnd, Type *Ty); + + /// Same as Instruction::moveBefore. + void moveBefore(Instruction *Inst, Instruction *Before); + /// @} + +private: + /// The ordered list of actions made so far. + SmallVector<std::unique_ptr<TypePromotionAction>, 16> Actions; + + using CommitPt = SmallVectorImpl<std::unique_ptr<TypePromotionAction>>::iterator; + + SetOfInstrs &RemovedInsts; +}; + +} // end anonymous namespace + +void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx, + Value *NewVal) { + Actions.push_back(llvm::make_unique<TypePromotionTransaction::OperandSetter>( + Inst, Idx, NewVal)); +} + +void TypePromotionTransaction::eraseInstruction(Instruction *Inst, + Value *NewVal) { + Actions.push_back( + llvm::make_unique<TypePromotionTransaction::InstructionRemover>( + Inst, RemovedInsts, NewVal)); +} + +void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst, + Value *New) { + Actions.push_back( + llvm::make_unique<TypePromotionTransaction::UsesReplacer>(Inst, New)); +} + +void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) { + Actions.push_back( + llvm::make_unique<TypePromotionTransaction::TypeMutator>(Inst, NewTy)); +} + +Value *TypePromotionTransaction::createTrunc(Instruction *Opnd, + Type *Ty) { + std::unique_ptr<TruncBuilder> Ptr(new TruncBuilder(Opnd, Ty)); + Value *Val = Ptr->getBuiltValue(); + Actions.push_back(std::move(Ptr)); + return Val; +} + +Value *TypePromotionTransaction::createSExt(Instruction *Inst, + Value *Opnd, Type *Ty) { + std::unique_ptr<SExtBuilder> Ptr(new SExtBuilder(Inst, Opnd, Ty)); + Value *Val = Ptr->getBuiltValue(); + Actions.push_back(std::move(Ptr)); + return Val; +} + +Value *TypePromotionTransaction::createZExt(Instruction *Inst, + Value *Opnd, Type *Ty) { + std::unique_ptr<ZExtBuilder> Ptr(new ZExtBuilder(Inst, Opnd, Ty)); + Value *Val = Ptr->getBuiltValue(); + Actions.push_back(std::move(Ptr)); + return Val; +} + +void TypePromotionTransaction::moveBefore(Instruction *Inst, + Instruction *Before) { + Actions.push_back( + llvm::make_unique<TypePromotionTransaction::InstructionMoveBefore>( + Inst, Before)); +} + +TypePromotionTransaction::ConstRestorationPt +TypePromotionTransaction::getRestorationPoint() const { + return !Actions.empty() ? Actions.back().get() : nullptr; +} + +void TypePromotionTransaction::commit() { + for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; + ++It) + (*It)->commit(); + Actions.clear(); +} + +void TypePromotionTransaction::rollback( + TypePromotionTransaction::ConstRestorationPt Point) { + while (!Actions.empty() && Point != Actions.back().get()) { + std::unique_ptr<TypePromotionAction> Curr = Actions.pop_back_val(); + Curr->undo(); + } +} + +namespace { + +/// A helper class for matching addressing modes. +/// +/// This encapsulates the logic for matching the target-legal addressing modes. +class AddressingModeMatcher { + SmallVectorImpl<Instruction*> &AddrModeInsts; + const TargetLowering &TLI; + const TargetRegisterInfo &TRI; + const DataLayout &DL; + + /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and + /// the memory instruction that we're computing this address for. + Type *AccessTy; + unsigned AddrSpace; + Instruction *MemoryInst; + + /// This is the addressing mode that we're building up. This is + /// part of the return value of this addressing mode matching stuff. + ExtAddrMode &AddrMode; + + /// The instructions inserted by other CodeGenPrepare optimizations. + const SetOfInstrs &InsertedInsts; + + /// A map from the instructions to their type before promotion. + InstrToOrigTy &PromotedInsts; + + /// The ongoing transaction where every action should be registered. + TypePromotionTransaction &TPT; + + // A GEP which has too large offset to be folded into the addressing mode. + std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP; + + /// This is set to true when we should not do profitability checks. + /// When true, IsProfitableToFoldIntoAddressingMode always returns true. + bool IgnoreProfitability; + + AddressingModeMatcher( + SmallVectorImpl<Instruction *> &AMI, const TargetLowering &TLI, + const TargetRegisterInfo &TRI, Type *AT, unsigned AS, Instruction *MI, + ExtAddrMode &AM, const SetOfInstrs &InsertedInsts, + InstrToOrigTy &PromotedInsts, TypePromotionTransaction &TPT, + std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) + : AddrModeInsts(AMI), TLI(TLI), TRI(TRI), + DL(MI->getModule()->getDataLayout()), AccessTy(AT), AddrSpace(AS), + MemoryInst(MI), AddrMode(AM), InsertedInsts(InsertedInsts), + PromotedInsts(PromotedInsts), TPT(TPT), LargeOffsetGEP(LargeOffsetGEP) { + IgnoreProfitability = false; + } + +public: + /// Find the maximal addressing mode that a load/store of V can fold, + /// give an access type of AccessTy. This returns a list of involved + /// instructions in AddrModeInsts. + /// \p InsertedInsts The instructions inserted by other CodeGenPrepare + /// optimizations. + /// \p PromotedInsts maps the instructions to their type before promotion. + /// \p The ongoing transaction where every action should be registered. + static ExtAddrMode + Match(Value *V, Type *AccessTy, unsigned AS, Instruction *MemoryInst, + SmallVectorImpl<Instruction *> &AddrModeInsts, + const TargetLowering &TLI, const TargetRegisterInfo &TRI, + const SetOfInstrs &InsertedInsts, InstrToOrigTy &PromotedInsts, + TypePromotionTransaction &TPT, + std::pair<AssertingVH<GetElementPtrInst>, int64_t> &LargeOffsetGEP) { + ExtAddrMode Result; + + bool Success = AddressingModeMatcher(AddrModeInsts, TLI, TRI, AccessTy, AS, + MemoryInst, Result, InsertedInsts, + PromotedInsts, TPT, LargeOffsetGEP) + .matchAddr(V, 0); + (void)Success; assert(Success && "Couldn't select *anything*?"); + return Result; + } + +private: + bool matchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); + bool matchAddr(Value *Addr, unsigned Depth); + bool matchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth, + bool *MovedAway = nullptr); + bool isProfitableToFoldIntoAddressingMode(Instruction *I, + ExtAddrMode &AMBefore, + ExtAddrMode &AMAfter); + bool valueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); + bool isPromotionProfitable(unsigned NewCost, unsigned OldCost, + Value *PromotedOperand) const; +}; + +class PhiNodeSet; + +/// An iterator for PhiNodeSet. +class PhiNodeSetIterator { + PhiNodeSet * const Set; + size_t CurrentIndex = 0; + +public: + /// The constructor. Start should point to either a valid element, or be equal + /// to the size of the underlying SmallVector of the PhiNodeSet. + PhiNodeSetIterator(PhiNodeSet * const Set, size_t Start); + PHINode * operator*() const; + PhiNodeSetIterator& operator++(); + bool operator==(const PhiNodeSetIterator &RHS) const; + bool operator!=(const PhiNodeSetIterator &RHS) const; +}; + +/// Keeps a set of PHINodes. +/// +/// This is a minimal set implementation for a specific use case: +/// It is very fast when there are very few elements, but also provides good +/// performance when there are many. It is similar to SmallPtrSet, but also +/// provides iteration by insertion order, which is deterministic and stable +/// across runs. It is also similar to SmallSetVector, but provides removing +/// elements in O(1) time. This is achieved by not actually removing the element +/// from the underlying vector, so comes at the cost of using more memory, but +/// that is fine, since PhiNodeSets are used as short lived objects. +class PhiNodeSet { + friend class PhiNodeSetIterator; + + using MapType = SmallDenseMap<PHINode *, size_t, 32>; + using iterator = PhiNodeSetIterator; + + /// Keeps the elements in the order of their insertion in the underlying + /// vector. To achieve constant time removal, it never deletes any element. + SmallVector<PHINode *, 32> NodeList; + + /// Keeps the elements in the underlying set implementation. This (and not the + /// NodeList defined above) is the source of truth on whether an element + /// is actually in the collection. + MapType NodeMap; + + /// Points to the first valid (not deleted) element when the set is not empty + /// and the value is not zero. Equals to the size of the underlying vector + /// when the set is empty. When the value is 0, as in the beginning, the + /// first element may or may not be valid. + size_t FirstValidElement = 0; + +public: + /// Inserts a new element to the collection. + /// \returns true if the element is actually added, i.e. was not in the + /// collection before the operation. + bool insert(PHINode *Ptr) { + if (NodeMap.insert(std::make_pair(Ptr, NodeList.size())).second) { + NodeList.push_back(Ptr); + return true; + } + return false; + } + + /// Removes the element from the collection. + /// \returns whether the element is actually removed, i.e. was in the + /// collection before the operation. + bool erase(PHINode *Ptr) { + auto it = NodeMap.find(Ptr); + if (it != NodeMap.end()) { + NodeMap.erase(Ptr); + SkipRemovedElements(FirstValidElement); + return true; + } + return false; + } + + /// Removes all elements and clears the collection. + void clear() { + NodeMap.clear(); + NodeList.clear(); + FirstValidElement = 0; + } + + /// \returns an iterator that will iterate the elements in the order of + /// insertion. + iterator begin() { + if (FirstValidElement == 0) + SkipRemovedElements(FirstValidElement); + return PhiNodeSetIterator(this, FirstValidElement); + } + + /// \returns an iterator that points to the end of the collection. + iterator end() { return PhiNodeSetIterator(this, NodeList.size()); } + + /// Returns the number of elements in the collection. + size_t size() const { + return NodeMap.size(); + } + + /// \returns 1 if the given element is in the collection, and 0 if otherwise. + size_t count(PHINode *Ptr) const { + return NodeMap.count(Ptr); + } + +private: + /// Updates the CurrentIndex so that it will point to a valid element. + /// + /// If the element of NodeList at CurrentIndex is valid, it does not + /// change it. If there are no more valid elements, it updates CurrentIndex + /// to point to the end of the NodeList. + void SkipRemovedElements(size_t &CurrentIndex) { + while (CurrentIndex < NodeList.size()) { + auto it = NodeMap.find(NodeList[CurrentIndex]); + // If the element has been deleted and added again later, NodeMap will + // point to a different index, so CurrentIndex will still be invalid. + if (it != NodeMap.end() && it->second == CurrentIndex) + break; + ++CurrentIndex; + } + } +}; + +PhiNodeSetIterator::PhiNodeSetIterator(PhiNodeSet *const Set, size_t Start) + : Set(Set), CurrentIndex(Start) {} + +PHINode * PhiNodeSetIterator::operator*() const { + assert(CurrentIndex < Set->NodeList.size() && + "PhiNodeSet access out of range"); + return Set->NodeList[CurrentIndex]; +} + +PhiNodeSetIterator& PhiNodeSetIterator::operator++() { + assert(CurrentIndex < Set->NodeList.size() && + "PhiNodeSet access out of range"); + ++CurrentIndex; + Set->SkipRemovedElements(CurrentIndex); + return *this; +} + +bool PhiNodeSetIterator::operator==(const PhiNodeSetIterator &RHS) const { + return CurrentIndex == RHS.CurrentIndex; +} + +bool PhiNodeSetIterator::operator!=(const PhiNodeSetIterator &RHS) const { + return !((*this) == RHS); +} + +/// Keep track of simplification of Phi nodes. +/// Accept the set of all phi nodes and erase phi node from this set +/// if it is simplified. +class SimplificationTracker { + DenseMap<Value *, Value *> Storage; + const SimplifyQuery &SQ; + // Tracks newly created Phi nodes. The elements are iterated by insertion + // order. + PhiNodeSet AllPhiNodes; + // Tracks newly created Select nodes. + SmallPtrSet<SelectInst *, 32> AllSelectNodes; + +public: + SimplificationTracker(const SimplifyQuery &sq) + : SQ(sq) {} + + Value *Get(Value *V) { + do { + auto SV = Storage.find(V); + if (SV == Storage.end()) + return V; + V = SV->second; + } while (true); + } + + Value *Simplify(Value *Val) { + SmallVector<Value *, 32> WorkList; + SmallPtrSet<Value *, 32> Visited; + WorkList.push_back(Val); + while (!WorkList.empty()) { + auto P = WorkList.pop_back_val(); + if (!Visited.insert(P).second) + continue; + if (auto *PI = dyn_cast<Instruction>(P)) + if (Value *V = SimplifyInstruction(cast<Instruction>(PI), SQ)) { + for (auto *U : PI->users()) + WorkList.push_back(cast<Value>(U)); + Put(PI, V); + PI->replaceAllUsesWith(V); + if (auto *PHI = dyn_cast<PHINode>(PI)) + AllPhiNodes.erase(PHI); + if (auto *Select = dyn_cast<SelectInst>(PI)) + AllSelectNodes.erase(Select); + PI->eraseFromParent(); + } + } + return Get(Val); + } + + void Put(Value *From, Value *To) { + Storage.insert({ From, To }); + } + + void ReplacePhi(PHINode *From, PHINode *To) { + Value* OldReplacement = Get(From); + while (OldReplacement != From) { + From = To; + To = dyn_cast<PHINode>(OldReplacement); + OldReplacement = Get(From); + } + assert(Get(To) == To && "Replacement PHI node is already replaced."); + Put(From, To); + From->replaceAllUsesWith(To); + AllPhiNodes.erase(From); + From->eraseFromParent(); + } + + PhiNodeSet& newPhiNodes() { return AllPhiNodes; } + + void insertNewPhi(PHINode *PN) { AllPhiNodes.insert(PN); } + + void insertNewSelect(SelectInst *SI) { AllSelectNodes.insert(SI); } + + unsigned countNewPhiNodes() const { return AllPhiNodes.size(); } + + unsigned countNewSelectNodes() const { return AllSelectNodes.size(); } + + void destroyNewNodes(Type *CommonType) { + // For safe erasing, replace the uses with dummy value first. + auto Dummy = UndefValue::get(CommonType); + for (auto I : AllPhiNodes) { + I->replaceAllUsesWith(Dummy); + I->eraseFromParent(); + } + AllPhiNodes.clear(); + for (auto I : AllSelectNodes) { + I->replaceAllUsesWith(Dummy); + I->eraseFromParent(); + } + AllSelectNodes.clear(); + } +}; + +/// A helper class for combining addressing modes. +class AddressingModeCombiner { + typedef DenseMap<Value *, Value *> FoldAddrToValueMapping; + typedef std::pair<PHINode *, PHINode *> PHIPair; + +private: + /// The addressing modes we've collected. + SmallVector<ExtAddrMode, 16> AddrModes; + + /// The field in which the AddrModes differ, when we have more than one. + ExtAddrMode::FieldName DifferentField = ExtAddrMode::NoField; + + /// Are the AddrModes that we have all just equal to their original values? + bool AllAddrModesTrivial = true; + + /// Common Type for all different fields in addressing modes. + Type *CommonType; + + /// SimplifyQuery for simplifyInstruction utility. + const SimplifyQuery &SQ; + + /// Original Address. + Value *Original; + +public: + AddressingModeCombiner(const SimplifyQuery &_SQ, Value *OriginalValue) + : CommonType(nullptr), SQ(_SQ), Original(OriginalValue) {} + + /// Get the combined AddrMode + const ExtAddrMode &getAddrMode() const { + return AddrModes[0]; + } + + /// Add a new AddrMode if it's compatible with the AddrModes we already + /// have. + /// \return True iff we succeeded in doing so. + bool addNewAddrMode(ExtAddrMode &NewAddrMode) { + // Take note of if we have any non-trivial AddrModes, as we need to detect + // when all AddrModes are trivial as then we would introduce a phi or select + // which just duplicates what's already there. + AllAddrModesTrivial = AllAddrModesTrivial && NewAddrMode.isTrivial(); + + // If this is the first addrmode then everything is fine. + if (AddrModes.empty()) { + AddrModes.emplace_back(NewAddrMode); + return true; + } + + // Figure out how different this is from the other address modes, which we + // can do just by comparing against the first one given that we only care + // about the cumulative difference. + ExtAddrMode::FieldName ThisDifferentField = + AddrModes[0].compare(NewAddrMode); + if (DifferentField == ExtAddrMode::NoField) + DifferentField = ThisDifferentField; + else if (DifferentField != ThisDifferentField) + DifferentField = ExtAddrMode::MultipleFields; + + // If NewAddrMode differs in more than one dimension we cannot handle it. + bool CanHandle = DifferentField != ExtAddrMode::MultipleFields; + + // If Scale Field is different then we reject. + CanHandle = CanHandle && DifferentField != ExtAddrMode::ScaleField; + + // We also must reject the case when base offset is different and + // scale reg is not null, we cannot handle this case due to merge of + // different offsets will be used as ScaleReg. + CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseOffsField || + !NewAddrMode.ScaledReg); + + // We also must reject the case when GV is different and BaseReg installed + // due to we want to use base reg as a merge of GV values. + CanHandle = CanHandle && (DifferentField != ExtAddrMode::BaseGVField || + !NewAddrMode.HasBaseReg); + + // Even if NewAddMode is the same we still need to collect it due to + // original value is different. And later we will need all original values + // as anchors during finding the common Phi node. + if (CanHandle) + AddrModes.emplace_back(NewAddrMode); + else + AddrModes.clear(); + + return CanHandle; + } + + /// Combine the addressing modes we've collected into a single + /// addressing mode. + /// \return True iff we successfully combined them or we only had one so + /// didn't need to combine them anyway. + bool combineAddrModes() { + // If we have no AddrModes then they can't be combined. + if (AddrModes.size() == 0) + return false; + + // A single AddrMode can trivially be combined. + if (AddrModes.size() == 1 || DifferentField == ExtAddrMode::NoField) + return true; + + // If the AddrModes we collected are all just equal to the value they are + // derived from then combining them wouldn't do anything useful. + if (AllAddrModesTrivial) + return false; + + if (!addrModeCombiningAllowed()) + return false; + + // Build a map between <original value, basic block where we saw it> to + // value of base register. + // Bail out if there is no common type. + FoldAddrToValueMapping Map; + if (!initializeMap(Map)) + return false; + + Value *CommonValue = findCommon(Map); + if (CommonValue) + AddrModes[0].SetCombinedField(DifferentField, CommonValue, AddrModes); + return CommonValue != nullptr; + } + +private: + /// Initialize Map with anchor values. For address seen + /// we set the value of different field saw in this address. + /// At the same time we find a common type for different field we will + /// use to create new Phi/Select nodes. Keep it in CommonType field. + /// Return false if there is no common type found. + bool initializeMap(FoldAddrToValueMapping &Map) { + // Keep track of keys where the value is null. We will need to replace it + // with constant null when we know the common type. + SmallVector<Value *, 2> NullValue; + Type *IntPtrTy = SQ.DL.getIntPtrType(AddrModes[0].OriginalValue->getType()); + for (auto &AM : AddrModes) { + Value *DV = AM.GetFieldAsValue(DifferentField, IntPtrTy); + if (DV) { + auto *Type = DV->getType(); + if (CommonType && CommonType != Type) + return false; + CommonType = Type; + Map[AM.OriginalValue] = DV; + } else { + NullValue.push_back(AM.OriginalValue); + } + } + assert(CommonType && "At least one non-null value must be!"); + for (auto *V : NullValue) + Map[V] = Constant::getNullValue(CommonType); + return true; + } + + /// We have mapping between value A and other value B where B was a field in + /// addressing mode represented by A. Also we have an original value C + /// representing an address we start with. Traversing from C through phi and + /// selects we ended up with A's in a map. This utility function tries to find + /// a value V which is a field in addressing mode C and traversing through phi + /// nodes and selects we will end up in corresponded values B in a map. + /// The utility will create a new Phi/Selects if needed. + // The simple example looks as follows: + // BB1: + // p1 = b1 + 40 + // br cond BB2, BB3 + // BB2: + // p2 = b2 + 40 + // br BB3 + // BB3: + // p = phi [p1, BB1], [p2, BB2] + // v = load p + // Map is + // p1 -> b1 + // p2 -> b2 + // Request is + // p -> ? + // The function tries to find or build phi [b1, BB1], [b2, BB2] in BB3. + Value *findCommon(FoldAddrToValueMapping &Map) { + // Tracks the simplification of newly created phi nodes. The reason we use + // this mapping is because we will add new created Phi nodes in AddrToBase. + // Simplification of Phi nodes is recursive, so some Phi node may + // be simplified after we added it to AddrToBase. In reality this + // simplification is possible only if original phi/selects were not + // simplified yet. + // Using this mapping we can find the current value in AddrToBase. + SimplificationTracker ST(SQ); + + // First step, DFS to create PHI nodes for all intermediate blocks. + // Also fill traverse order for the second step. + SmallVector<Value *, 32> TraverseOrder; + InsertPlaceholders(Map, TraverseOrder, ST); + + // Second Step, fill new nodes by merged values and simplify if possible. + FillPlaceholders(Map, TraverseOrder, ST); + + if (!AddrSinkNewSelects && ST.countNewSelectNodes() > 0) { + ST.destroyNewNodes(CommonType); + return nullptr; + } + + // Now we'd like to match New Phi nodes to existed ones. + unsigned PhiNotMatchedCount = 0; + if (!MatchPhiSet(ST, AddrSinkNewPhis, PhiNotMatchedCount)) { + ST.destroyNewNodes(CommonType); + return nullptr; + } + + auto *Result = ST.Get(Map.find(Original)->second); + if (Result) { + NumMemoryInstsPhiCreated += ST.countNewPhiNodes() + PhiNotMatchedCount; + NumMemoryInstsSelectCreated += ST.countNewSelectNodes(); + } + return Result; + } + + /// Try to match PHI node to Candidate. + /// Matcher tracks the matched Phi nodes. + bool MatchPhiNode(PHINode *PHI, PHINode *Candidate, + SmallSetVector<PHIPair, 8> &Matcher, + PhiNodeSet &PhiNodesToMatch) { + SmallVector<PHIPair, 8> WorkList; + Matcher.insert({ PHI, Candidate }); + SmallSet<PHINode *, 8> MatchedPHIs; + MatchedPHIs.insert(PHI); + WorkList.push_back({ PHI, Candidate }); + SmallSet<PHIPair, 8> Visited; + while (!WorkList.empty()) { + auto Item = WorkList.pop_back_val(); + if (!Visited.insert(Item).second) + continue; + // We iterate over all incoming values to Phi to compare them. + // If values are different and both of them Phi and the first one is a + // Phi we added (subject to match) and both of them is in the same basic + // block then we can match our pair if values match. So we state that + // these values match and add it to work list to verify that. + for (auto B : Item.first->blocks()) { + Value *FirstValue = Item.first->getIncomingValueForBlock(B); + Value *SecondValue = Item.second->getIncomingValueForBlock(B); + if (FirstValue == SecondValue) + continue; + + PHINode *FirstPhi = dyn_cast<PHINode>(FirstValue); + PHINode *SecondPhi = dyn_cast<PHINode>(SecondValue); + + // One of them is not Phi or + // The first one is not Phi node from the set we'd like to match or + // Phi nodes from different basic blocks then + // we will not be able to match. + if (!FirstPhi || !SecondPhi || !PhiNodesToMatch.count(FirstPhi) || + FirstPhi->getParent() != SecondPhi->getParent()) + return false; + + // If we already matched them then continue. + if (Matcher.count({ FirstPhi, SecondPhi })) + continue; + // So the values are different and does not match. So we need them to + // match. (But we register no more than one match per PHI node, so that + // we won't later try to replace them twice.) + if (!MatchedPHIs.insert(FirstPhi).second) + Matcher.insert({ FirstPhi, SecondPhi }); + // But me must check it. + WorkList.push_back({ FirstPhi, SecondPhi }); + } + } + return true; + } + + /// For the given set of PHI nodes (in the SimplificationTracker) try + /// to find their equivalents. + /// Returns false if this matching fails and creation of new Phi is disabled. + bool MatchPhiSet(SimplificationTracker &ST, bool AllowNewPhiNodes, + unsigned &PhiNotMatchedCount) { + // Matched and PhiNodesToMatch iterate their elements in a deterministic + // order, so the replacements (ReplacePhi) are also done in a deterministic + // order. + SmallSetVector<PHIPair, 8> Matched; + SmallPtrSet<PHINode *, 8> WillNotMatch; + PhiNodeSet &PhiNodesToMatch = ST.newPhiNodes(); + while (PhiNodesToMatch.size()) { + PHINode *PHI = *PhiNodesToMatch.begin(); + + // Add us, if no Phi nodes in the basic block we do not match. + WillNotMatch.clear(); + WillNotMatch.insert(PHI); + + // Traverse all Phis until we found equivalent or fail to do that. + bool IsMatched = false; + for (auto &P : PHI->getParent()->phis()) { + if (&P == PHI) + continue; + if ((IsMatched = MatchPhiNode(PHI, &P, Matched, PhiNodesToMatch))) + break; + // If it does not match, collect all Phi nodes from matcher. + // if we end up with no match, them all these Phi nodes will not match + // later. + for (auto M : Matched) + WillNotMatch.insert(M.first); + Matched.clear(); + } + if (IsMatched) { + // Replace all matched values and erase them. + for (auto MV : Matched) + ST.ReplacePhi(MV.first, MV.second); + Matched.clear(); + continue; + } + // If we are not allowed to create new nodes then bail out. + if (!AllowNewPhiNodes) + return false; + // Just remove all seen values in matcher. They will not match anything. + PhiNotMatchedCount += WillNotMatch.size(); + for (auto *P : WillNotMatch) + PhiNodesToMatch.erase(P); + } + return true; + } + /// Fill the placeholders with values from predecessors and simplify them. + void FillPlaceholders(FoldAddrToValueMapping &Map, + SmallVectorImpl<Value *> &TraverseOrder, + SimplificationTracker &ST) { + while (!TraverseOrder.empty()) { + Value *Current = TraverseOrder.pop_back_val(); + assert(Map.find(Current) != Map.end() && "No node to fill!!!"); + Value *V = Map[Current]; + + if (SelectInst *Select = dyn_cast<SelectInst>(V)) { + // CurrentValue also must be Select. + auto *CurrentSelect = cast<SelectInst>(Current); + auto *TrueValue = CurrentSelect->getTrueValue(); + assert(Map.find(TrueValue) != Map.end() && "No True Value!"); + Select->setTrueValue(ST.Get(Map[TrueValue])); + auto *FalseValue = CurrentSelect->getFalseValue(); + assert(Map.find(FalseValue) != Map.end() && "No False Value!"); + Select->setFalseValue(ST.Get(Map[FalseValue])); + } else { + // Must be a Phi node then. + PHINode *PHI = cast<PHINode>(V); + auto *CurrentPhi = dyn_cast<PHINode>(Current); + // Fill the Phi node with values from predecessors. + for (auto B : predecessors(PHI->getParent())) { + Value *PV = CurrentPhi->getIncomingValueForBlock(B); + assert(Map.find(PV) != Map.end() && "No predecessor Value!"); + PHI->addIncoming(ST.Get(Map[PV]), B); + } + } + Map[Current] = ST.Simplify(V); + } + } + + /// Starting from original value recursively iterates over def-use chain up to + /// known ending values represented in a map. For each traversed phi/select + /// inserts a placeholder Phi or Select. + /// Reports all new created Phi/Select nodes by adding them to set. + /// Also reports and order in what values have been traversed. + void InsertPlaceholders(FoldAddrToValueMapping &Map, + SmallVectorImpl<Value *> &TraverseOrder, + SimplificationTracker &ST) { + SmallVector<Value *, 32> Worklist; + assert((isa<PHINode>(Original) || isa<SelectInst>(Original)) && + "Address must be a Phi or Select node"); + auto *Dummy = UndefValue::get(CommonType); + Worklist.push_back(Original); + while (!Worklist.empty()) { + Value *Current = Worklist.pop_back_val(); + // if it is already visited or it is an ending value then skip it. + if (Map.find(Current) != Map.end()) + continue; + TraverseOrder.push_back(Current); + + // CurrentValue must be a Phi node or select. All others must be covered + // by anchors. + if (SelectInst *CurrentSelect = dyn_cast<SelectInst>(Current)) { + // Is it OK to get metadata from OrigSelect?! + // Create a Select placeholder with dummy value. + SelectInst *Select = SelectInst::Create( + CurrentSelect->getCondition(), Dummy, Dummy, + CurrentSelect->getName(), CurrentSelect, CurrentSelect); + Map[Current] = Select; + ST.insertNewSelect(Select); + // We are interested in True and False values. + Worklist.push_back(CurrentSelect->getTrueValue()); + Worklist.push_back(CurrentSelect->getFalseValue()); + } else { + // It must be a Phi node then. + PHINode *CurrentPhi = cast<PHINode>(Current); + unsigned PredCount = CurrentPhi->getNumIncomingValues(); + PHINode *PHI = + PHINode::Create(CommonType, PredCount, "sunk_phi", CurrentPhi); + Map[Current] = PHI; + ST.insertNewPhi(PHI); + for (Value *P : CurrentPhi->incoming_values()) + Worklist.push_back(P); + } + } + } + + bool addrModeCombiningAllowed() { + if (DisableComplexAddrModes) + return false; + switch (DifferentField) { + default: + return false; + case ExtAddrMode::BaseRegField: + return AddrSinkCombineBaseReg; + case ExtAddrMode::BaseGVField: + return AddrSinkCombineBaseGV; + case ExtAddrMode::BaseOffsField: + return AddrSinkCombineBaseOffs; + case ExtAddrMode::ScaledRegField: + return AddrSinkCombineScaledReg; + } + } +}; +} // end anonymous namespace + +/// Try adding ScaleReg*Scale to the current addressing mode. +/// Return true and update AddrMode if this addr mode is legal for the target, +/// false if not. +bool AddressingModeMatcher::matchScaledValue(Value *ScaleReg, int64_t Scale, + unsigned Depth) { + // If Scale is 1, then this is the same as adding ScaleReg to the addressing + // mode. Just process that directly. + if (Scale == 1) + return matchAddr(ScaleReg, Depth); + + // If the scale is 0, it takes nothing to add this. + if (Scale == 0) + return true; + + // If we already have a scale of this value, we can add to it, otherwise, we + // need an available scale field. + if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) + return false; + + ExtAddrMode TestAddrMode = AddrMode; + + // Add scale to turn X*4+X*3 -> X*7. This could also do things like + // [A+B + A*7] -> [B+A*8]. + TestAddrMode.Scale += Scale; + TestAddrMode.ScaledReg = ScaleReg; + + // If the new address isn't legal, bail out. + if (!TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) + return false; + + // It was legal, so commit it. + AddrMode = TestAddrMode; + + // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now + // to see if ScaleReg is actually X+C. If so, we can turn this into adding + // X*Scale + C*Scale to addr mode. + ConstantInt *CI = nullptr; Value *AddLHS = nullptr; + if (isa<Instruction>(ScaleReg) && // not a constant expr. + match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { + TestAddrMode.InBounds = false; + TestAddrMode.ScaledReg = AddLHS; + TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; + + // If this addressing mode is legal, commit it and remember that we folded + // this instruction. + if (TLI.isLegalAddressingMode(DL, TestAddrMode, AccessTy, AddrSpace)) { + AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); + AddrMode = TestAddrMode; + return true; + } + } + + // Otherwise, not (x+c)*scale, just return what we have. + return true; +} + +/// This is a little filter, which returns true if an addressing computation +/// involving I might be folded into a load/store accessing it. +/// This doesn't need to be perfect, but needs to accept at least +/// the set of instructions that MatchOperationAddr can. +static bool MightBeFoldableInst(Instruction *I) { + switch (I->getOpcode()) { + case Instruction::BitCast: + case Instruction::AddrSpaceCast: + // Don't touch identity bitcasts. + if (I->getType() == I->getOperand(0)->getType()) + return false; + return I->getType()->isIntOrPtrTy(); + case Instruction::PtrToInt: + // PtrToInt is always a noop, as we know that the int type is pointer sized. + return true; + case Instruction::IntToPtr: + // We know the input is intptr_t, so this is foldable. + return true; + case Instruction::Add: + return true; + case Instruction::Mul: + case Instruction::Shl: + // Can only handle X*C and X << C. + return isa<ConstantInt>(I->getOperand(1)); + case Instruction::GetElementPtr: + return true; + default: + return false; + } +} + +/// Check whether or not \p Val is a legal instruction for \p TLI. +/// \note \p Val is assumed to be the product of some type promotion. +/// Therefore if \p Val has an undefined state in \p TLI, this is assumed +/// to be legal, as the non-promoted value would have had the same state. +static bool isPromotedInstructionLegal(const TargetLowering &TLI, + const DataLayout &DL, Value *Val) { + Instruction *PromotedInst = dyn_cast<Instruction>(Val); + if (!PromotedInst) + return false; + int ISDOpcode = TLI.InstructionOpcodeToISD(PromotedInst->getOpcode()); + // If the ISDOpcode is undefined, it was undefined before the promotion. + if (!ISDOpcode) + return true; + // Otherwise, check if the promoted instruction is legal or not. + return TLI.isOperationLegalOrCustom( + ISDOpcode, TLI.getValueType(DL, PromotedInst->getType())); +} + +namespace { + +/// Hepler class to perform type promotion. +class TypePromotionHelper { + /// Utility function to add a promoted instruction \p ExtOpnd to + /// \p PromotedInsts and record the type of extension we have seen. + static void addPromotedInst(InstrToOrigTy &PromotedInsts, + Instruction *ExtOpnd, + bool IsSExt) { + ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; + InstrToOrigTy::iterator It = PromotedInsts.find(ExtOpnd); + if (It != PromotedInsts.end()) { + // If the new extension is same as original, the information in + // PromotedInsts[ExtOpnd] is still correct. + if (It->second.getInt() == ExtTy) + return; + + // Now the new extension is different from old extension, we make + // the type information invalid by setting extension type to + // BothExtension. + ExtTy = BothExtension; + } + PromotedInsts[ExtOpnd] = TypeIsSExt(ExtOpnd->getType(), ExtTy); + } + + /// Utility function to query the original type of instruction \p Opnd + /// with a matched extension type. If the extension doesn't match, we + /// cannot use the information we had on the original type. + /// BothExtension doesn't match any extension type. + static const Type *getOrigType(const InstrToOrigTy &PromotedInsts, + Instruction *Opnd, + bool IsSExt) { + ExtType ExtTy = IsSExt ? SignExtension : ZeroExtension; + InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd); + if (It != PromotedInsts.end() && It->second.getInt() == ExtTy) + return It->second.getPointer(); + return nullptr; + } + + /// Utility function to check whether or not a sign or zero extension + /// of \p Inst with \p ConsideredExtType can be moved through \p Inst by + /// either using the operands of \p Inst or promoting \p Inst. + /// The type of the extension is defined by \p IsSExt. + /// In other words, check if: + /// ext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredExtType. + /// #1 Promotion applies: + /// ConsideredExtType Inst (ext opnd1 to ConsideredExtType, ...). + /// #2 Operand reuses: + /// ext opnd1 to ConsideredExtType. + /// \p PromotedInsts maps the instructions to their type before promotion. + static bool canGetThrough(const Instruction *Inst, Type *ConsideredExtType, + const InstrToOrigTy &PromotedInsts, bool IsSExt); + + /// Utility function to determine if \p OpIdx should be promoted when + /// promoting \p Inst. + static bool shouldExtOperand(const Instruction *Inst, int OpIdx) { + return !(isa<SelectInst>(Inst) && OpIdx == 0); + } + + /// Utility function to promote the operand of \p Ext when this + /// operand is a promotable trunc or sext or zext. + /// \p PromotedInsts maps the instructions to their type before promotion. + /// \p CreatedInstsCost[out] contains the cost of all instructions + /// created to promote the operand of Ext. + /// Newly added extensions are inserted in \p Exts. + /// Newly added truncates are inserted in \p Truncs. + /// Should never be called directly. + /// \return The promoted value which is used instead of Ext. + static Value *promoteOperandForTruncAndAnyExt( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI); + + /// Utility function to promote the operand of \p Ext when this + /// operand is promotable and is not a supported trunc or sext. + /// \p PromotedInsts maps the instructions to their type before promotion. + /// \p CreatedInstsCost[out] contains the cost of all the instructions + /// created to promote the operand of Ext. + /// Newly added extensions are inserted in \p Exts. + /// Newly added truncates are inserted in \p Truncs. + /// Should never be called directly. + /// \return The promoted value which is used instead of Ext. + static Value *promoteOperandForOther(Instruction *Ext, + TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, + unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, + const TargetLowering &TLI, bool IsSExt); + + /// \see promoteOperandForOther. + static Value *signExtendOperandForOther( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { + return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, + Exts, Truncs, TLI, true); + } + + /// \see promoteOperandForOther. + static Value *zeroExtendOperandForOther( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { + return promoteOperandForOther(Ext, TPT, PromotedInsts, CreatedInstsCost, + Exts, Truncs, TLI, false); + } + +public: + /// Type for the utility function that promotes the operand of Ext. + using Action = Value *(*)(Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, + unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, + const TargetLowering &TLI); + + /// Given a sign/zero extend instruction \p Ext, return the appropriate + /// action to promote the operand of \p Ext instead of using Ext. + /// \return NULL if no promotable action is possible with the current + /// sign extension. + /// \p InsertedInsts keeps track of all the instructions inserted by the + /// other CodeGenPrepare optimizations. This information is important + /// because we do not want to promote these instructions as CodeGenPrepare + /// will reinsert them later. Thus creating an infinite loop: create/remove. + /// \p PromotedInsts maps the instructions to their type before promotion. + static Action getAction(Instruction *Ext, const SetOfInstrs &InsertedInsts, + const TargetLowering &TLI, + const InstrToOrigTy &PromotedInsts); +}; + +} // end anonymous namespace + +bool TypePromotionHelper::canGetThrough(const Instruction *Inst, + Type *ConsideredExtType, + const InstrToOrigTy &PromotedInsts, + bool IsSExt) { + // The promotion helper does not know how to deal with vector types yet. + // To be able to fix that, we would need to fix the places where we + // statically extend, e.g., constants and such. + if (Inst->getType()->isVectorTy()) + return false; + + // We can always get through zext. + if (isa<ZExtInst>(Inst)) + return true; + + // sext(sext) is ok too. + if (IsSExt && isa<SExtInst>(Inst)) + return true; + + // We can get through binary operator, if it is legal. In other words, the + // binary operator must have a nuw or nsw flag. + const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst); + if (BinOp && isa<OverflowingBinaryOperator>(BinOp) && + ((!IsSExt && BinOp->hasNoUnsignedWrap()) || + (IsSExt && BinOp->hasNoSignedWrap()))) + return true; + + // ext(and(opnd, cst)) --> and(ext(opnd), ext(cst)) + if ((Inst->getOpcode() == Instruction::And || + Inst->getOpcode() == Instruction::Or)) + return true; + + // ext(xor(opnd, cst)) --> xor(ext(opnd), ext(cst)) + if (Inst->getOpcode() == Instruction::Xor) { + const ConstantInt *Cst = dyn_cast<ConstantInt>(Inst->getOperand(1)); + // Make sure it is not a NOT. + if (Cst && !Cst->getValue().isAllOnesValue()) + return true; + } + + // zext(shrl(opnd, cst)) --> shrl(zext(opnd), zext(cst)) + // It may change a poisoned value into a regular value, like + // zext i32 (shrl i8 %val, 12) --> shrl i32 (zext i8 %val), 12 + // poisoned value regular value + // It should be OK since undef covers valid value. + if (Inst->getOpcode() == Instruction::LShr && !IsSExt) + return true; + + // and(ext(shl(opnd, cst)), cst) --> and(shl(ext(opnd), ext(cst)), cst) + // It may change a poisoned value into a regular value, like + // zext i32 (shl i8 %val, 12) --> shl i32 (zext i8 %val), 12 + // poisoned value regular value + // It should be OK since undef covers valid value. + if (Inst->getOpcode() == Instruction::Shl && Inst->hasOneUse()) { + const Instruction *ExtInst = + dyn_cast<const Instruction>(*Inst->user_begin()); + if (ExtInst->hasOneUse()) { + const Instruction *AndInst = + dyn_cast<const Instruction>(*ExtInst->user_begin()); + if (AndInst && AndInst->getOpcode() == Instruction::And) { + const ConstantInt *Cst = dyn_cast<ConstantInt>(AndInst->getOperand(1)); + if (Cst && + Cst->getValue().isIntN(Inst->getType()->getIntegerBitWidth())) + return true; + } + } + } + + // Check if we can do the following simplification. + // ext(trunc(opnd)) --> ext(opnd) + if (!isa<TruncInst>(Inst)) + return false; + + Value *OpndVal = Inst->getOperand(0); + // Check if we can use this operand in the extension. + // If the type is larger than the result type of the extension, we cannot. + if (!OpndVal->getType()->isIntegerTy() || + OpndVal->getType()->getIntegerBitWidth() > + ConsideredExtType->getIntegerBitWidth()) + return false; + + // If the operand of the truncate is not an instruction, we will not have + // any information on the dropped bits. + // (Actually we could for constant but it is not worth the extra logic). + Instruction *Opnd = dyn_cast<Instruction>(OpndVal); + if (!Opnd) + return false; + + // Check if the source of the type is narrow enough. + // I.e., check that trunc just drops extended bits of the same kind of + // the extension. + // #1 get the type of the operand and check the kind of the extended bits. + const Type *OpndType = getOrigType(PromotedInsts, Opnd, IsSExt); + if (OpndType) + ; + else if ((IsSExt && isa<SExtInst>(Opnd)) || (!IsSExt && isa<ZExtInst>(Opnd))) + OpndType = Opnd->getOperand(0)->getType(); + else + return false; + + // #2 check that the truncate just drops extended bits. + return Inst->getType()->getIntegerBitWidth() >= + OpndType->getIntegerBitWidth(); +} + +TypePromotionHelper::Action TypePromotionHelper::getAction( + Instruction *Ext, const SetOfInstrs &InsertedInsts, + const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) { + assert((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && + "Unexpected instruction type"); + Instruction *ExtOpnd = dyn_cast<Instruction>(Ext->getOperand(0)); + Type *ExtTy = Ext->getType(); + bool IsSExt = isa<SExtInst>(Ext); + // If the operand of the extension is not an instruction, we cannot + // get through. + // If it, check we can get through. + if (!ExtOpnd || !canGetThrough(ExtOpnd, ExtTy, PromotedInsts, IsSExt)) + return nullptr; + + // Do not promote if the operand has been added by codegenprepare. + // Otherwise, it means we are undoing an optimization that is likely to be + // redone, thus causing potential infinite loop. + if (isa<TruncInst>(ExtOpnd) && InsertedInsts.count(ExtOpnd)) + return nullptr; + + // SExt or Trunc instructions. + // Return the related handler. + if (isa<SExtInst>(ExtOpnd) || isa<TruncInst>(ExtOpnd) || + isa<ZExtInst>(ExtOpnd)) + return promoteOperandForTruncAndAnyExt; + + // Regular instruction. + // Abort early if we will have to insert non-free instructions. + if (!ExtOpnd->hasOneUse() && !TLI.isTruncateFree(ExtTy, ExtOpnd->getType())) + return nullptr; + return IsSExt ? signExtendOperandForOther : zeroExtendOperandForOther; +} + +Value *TypePromotionHelper::promoteOperandForTruncAndAnyExt( + Instruction *SExt, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI) { + // By construction, the operand of SExt is an instruction. Otherwise we cannot + // get through it and this method should not be called. + Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0)); + Value *ExtVal = SExt; + bool HasMergedNonFreeExt = false; + if (isa<ZExtInst>(SExtOpnd)) { + // Replace s|zext(zext(opnd)) + // => zext(opnd). + HasMergedNonFreeExt = !TLI.isExtFree(SExtOpnd); + Value *ZExt = + TPT.createZExt(SExt, SExtOpnd->getOperand(0), SExt->getType()); + TPT.replaceAllUsesWith(SExt, ZExt); + TPT.eraseInstruction(SExt); + ExtVal = ZExt; + } else { + // Replace z|sext(trunc(opnd)) or sext(sext(opnd)) + // => z|sext(opnd). + TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0)); + } + CreatedInstsCost = 0; + + // Remove dead code. + if (SExtOpnd->use_empty()) + TPT.eraseInstruction(SExtOpnd); + + // Check if the extension is still needed. + Instruction *ExtInst = dyn_cast<Instruction>(ExtVal); + if (!ExtInst || ExtInst->getType() != ExtInst->getOperand(0)->getType()) { + if (ExtInst) { + if (Exts) + Exts->push_back(ExtInst); + CreatedInstsCost = !TLI.isExtFree(ExtInst) && !HasMergedNonFreeExt; + } + return ExtVal; + } + + // At this point we have: ext ty opnd to ty. + // Reassign the uses of ExtInst to the opnd and remove ExtInst. + Value *NextVal = ExtInst->getOperand(0); + TPT.eraseInstruction(ExtInst, NextVal); + return NextVal; +} + +Value *TypePromotionHelper::promoteOperandForOther( + Instruction *Ext, TypePromotionTransaction &TPT, + InstrToOrigTy &PromotedInsts, unsigned &CreatedInstsCost, + SmallVectorImpl<Instruction *> *Exts, + SmallVectorImpl<Instruction *> *Truncs, const TargetLowering &TLI, + bool IsSExt) { + // By construction, the operand of Ext is an instruction. Otherwise we cannot + // get through it and this method should not be called. + Instruction *ExtOpnd = cast<Instruction>(Ext->getOperand(0)); + CreatedInstsCost = 0; + if (!ExtOpnd->hasOneUse()) { + // ExtOpnd will be promoted. + // All its uses, but Ext, will need to use a truncated value of the + // promoted version. + // Create the truncate now. + Value *Trunc = TPT.createTrunc(Ext, ExtOpnd->getType()); + if (Instruction *ITrunc = dyn_cast<Instruction>(Trunc)) { + // Insert it just after the definition. + ITrunc->moveAfter(ExtOpnd); + if (Truncs) + Truncs->push_back(ITrunc); + } + + TPT.replaceAllUsesWith(ExtOpnd, Trunc); + // Restore the operand of Ext (which has been replaced by the previous call + // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext. + TPT.setOperand(Ext, 0, ExtOpnd); + } + + // Get through the Instruction: + // 1. Update its type. + // 2. Replace the uses of Ext by Inst. + // 3. Extend each operand that needs to be extended. + + // Remember the original type of the instruction before promotion. + // This is useful to know that the high bits are sign extended bits. + addPromotedInst(PromotedInsts, ExtOpnd, IsSExt); + // Step #1. + TPT.mutateType(ExtOpnd, Ext->getType()); + // Step #2. + TPT.replaceAllUsesWith(Ext, ExtOpnd); + // Step #3. + Instruction *ExtForOpnd = Ext; + + LLVM_DEBUG(dbgs() << "Propagate Ext to operands\n"); + for (int OpIdx = 0, EndOpIdx = ExtOpnd->getNumOperands(); OpIdx != EndOpIdx; + ++OpIdx) { + LLVM_DEBUG(dbgs() << "Operand:\n" << *(ExtOpnd->getOperand(OpIdx)) << '\n'); + if (ExtOpnd->getOperand(OpIdx)->getType() == Ext->getType() || + !shouldExtOperand(ExtOpnd, OpIdx)) { + LLVM_DEBUG(dbgs() << "No need to propagate\n"); + continue; + } + // Check if we can statically extend the operand. + Value *Opnd = ExtOpnd->getOperand(OpIdx); + if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) { + LLVM_DEBUG(dbgs() << "Statically extend\n"); + unsigned BitWidth = Ext->getType()->getIntegerBitWidth(); + APInt CstVal = IsSExt ? Cst->getValue().sext(BitWidth) + : Cst->getValue().zext(BitWidth); + TPT.setOperand(ExtOpnd, OpIdx, ConstantInt::get(Ext->getType(), CstVal)); + continue; + } + // UndefValue are typed, so we have to statically sign extend them. + if (isa<UndefValue>(Opnd)) { + LLVM_DEBUG(dbgs() << "Statically extend\n"); + TPT.setOperand(ExtOpnd, OpIdx, UndefValue::get(Ext->getType())); + continue; + } + + // Otherwise we have to explicitly sign extend the operand. + // Check if Ext was reused to extend an operand. + if (!ExtForOpnd) { + // If yes, create a new one. + LLVM_DEBUG(dbgs() << "More operands to ext\n"); + Value *ValForExtOpnd = IsSExt ? TPT.createSExt(Ext, Opnd, Ext->getType()) + : TPT.createZExt(Ext, Opnd, Ext->getType()); + if (!isa<Instruction>(ValForExtOpnd)) { + TPT.setOperand(ExtOpnd, OpIdx, ValForExtOpnd); + continue; + } + ExtForOpnd = cast<Instruction>(ValForExtOpnd); + } + if (Exts) + Exts->push_back(ExtForOpnd); + TPT.setOperand(ExtForOpnd, 0, Opnd); + + // Move the sign extension before the insertion point. + TPT.moveBefore(ExtForOpnd, ExtOpnd); + TPT.setOperand(ExtOpnd, OpIdx, ExtForOpnd); + CreatedInstsCost += !TLI.isExtFree(ExtForOpnd); + // If more sext are required, new instructions will have to be created. + ExtForOpnd = nullptr; + } + if (ExtForOpnd == Ext) { + LLVM_DEBUG(dbgs() << "Extension is useless now\n"); + TPT.eraseInstruction(Ext); + } + return ExtOpnd; +} + +/// Check whether or not promoting an instruction to a wider type is profitable. +/// \p NewCost gives the cost of extension instructions created by the +/// promotion. +/// \p OldCost gives the cost of extension instructions before the promotion +/// plus the number of instructions that have been +/// matched in the addressing mode the promotion. +/// \p PromotedOperand is the value that has been promoted. +/// \return True if the promotion is profitable, false otherwise. +bool AddressingModeMatcher::isPromotionProfitable( + unsigned NewCost, unsigned OldCost, Value *PromotedOperand) const { + LLVM_DEBUG(dbgs() << "OldCost: " << OldCost << "\tNewCost: " << NewCost + << '\n'); + // The cost of the new extensions is greater than the cost of the + // old extension plus what we folded. + // This is not profitable. + if (NewCost > OldCost) + return false; + if (NewCost < OldCost) + return true; + // The promotion is neutral but it may help folding the sign extension in + // loads for instance. + // Check that we did not create an illegal instruction. + return isPromotedInstructionLegal(TLI, DL, PromotedOperand); +} + +/// Given an instruction or constant expr, see if we can fold the operation +/// into the addressing mode. If so, update the addressing mode and return +/// true, otherwise return false without modifying AddrMode. +/// If \p MovedAway is not NULL, it contains the information of whether or +/// not AddrInst has to be folded into the addressing mode on success. +/// If \p MovedAway == true, \p AddrInst will not be part of the addressing +/// because it has been moved away. +/// Thus AddrInst must not be added in the matched instructions. +/// This state can happen when AddrInst is a sext, since it may be moved away. +/// Therefore, AddrInst may not be valid when MovedAway is true and it must +/// not be referenced anymore. +bool AddressingModeMatcher::matchOperationAddr(User *AddrInst, unsigned Opcode, + unsigned Depth, + bool *MovedAway) { + // Avoid exponential behavior on extremely deep expression trees. + if (Depth >= 5) return false; + + // By default, all matched instructions stay in place. + if (MovedAway) + *MovedAway = false; + + switch (Opcode) { + case Instruction::PtrToInt: + // PtrToInt is always a noop, as we know that the int type is pointer sized. + return matchAddr(AddrInst->getOperand(0), Depth); + case Instruction::IntToPtr: { + auto AS = AddrInst->getType()->getPointerAddressSpace(); + auto PtrTy = MVT::getIntegerVT(DL.getPointerSizeInBits(AS)); + // This inttoptr is a no-op if the integer type is pointer sized. + if (TLI.getValueType(DL, AddrInst->getOperand(0)->getType()) == PtrTy) + return matchAddr(AddrInst->getOperand(0), Depth); + return false; + } + case Instruction::BitCast: + // BitCast is always a noop, and we can handle it as long as it is + // int->int or pointer->pointer (we don't want int<->fp or something). + if (AddrInst->getOperand(0)->getType()->isIntOrPtrTy() && + // Don't touch identity bitcasts. These were probably put here by LSR, + // and we don't want to mess around with them. Assume it knows what it + // is doing. + AddrInst->getOperand(0)->getType() != AddrInst->getType()) + return matchAddr(AddrInst->getOperand(0), Depth); + return false; + case Instruction::AddrSpaceCast: { + unsigned SrcAS + = AddrInst->getOperand(0)->getType()->getPointerAddressSpace(); + unsigned DestAS = AddrInst->getType()->getPointerAddressSpace(); + if (TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) + return matchAddr(AddrInst->getOperand(0), Depth); + return false; + } + case Instruction::Add: { + // Check to see if we can merge in the RHS then the LHS. If so, we win. + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + // Start a transaction at this point. + // The LHS may match but not the RHS. + // Therefore, we need a higher level restoration point to undo partially + // matched operation. + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + + AddrMode.InBounds = false; + if (matchAddr(AddrInst->getOperand(1), Depth+1) && + matchAddr(AddrInst->getOperand(0), Depth+1)) + return true; + + // Restore the old addr mode info. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + TPT.rollback(LastKnownGood); + + // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. + if (matchAddr(AddrInst->getOperand(0), Depth+1) && + matchAddr(AddrInst->getOperand(1), Depth+1)) + return true; + + // Otherwise we definitely can't merge the ADD in. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + TPT.rollback(LastKnownGood); + break; + } + //case Instruction::Or: + // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. + //break; + case Instruction::Mul: + case Instruction::Shl: { + // Can only handle X*C and X << C. + AddrMode.InBounds = false; + ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); + if (!RHS || RHS->getBitWidth() > 64) + return false; + int64_t Scale = RHS->getSExtValue(); + if (Opcode == Instruction::Shl) + Scale = 1LL << Scale; + + return matchScaledValue(AddrInst->getOperand(0), Scale, Depth); + } + case Instruction::GetElementPtr: { + // Scan the GEP. We check it if it contains constant offsets and at most + // one variable offset. + int VariableOperand = -1; + unsigned VariableScale = 0; + + int64_t ConstantOffset = 0; + gep_type_iterator GTI = gep_type_begin(AddrInst); + for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { + if (StructType *STy = GTI.getStructTypeOrNull()) { + const StructLayout *SL = DL.getStructLayout(STy); + unsigned Idx = + cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); + ConstantOffset += SL->getElementOffset(Idx); + } else { + uint64_t TypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); + if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { + const APInt &CVal = CI->getValue(); + if (CVal.getMinSignedBits() <= 64) { + ConstantOffset += CVal.getSExtValue() * TypeSize; + continue; + } + } + if (TypeSize) { // Scales of zero don't do anything. + // We only allow one variable index at the moment. + if (VariableOperand != -1) + return false; + + // Remember the variable index. + VariableOperand = i; + VariableScale = TypeSize; + } + } + } + + // A common case is for the GEP to only do a constant offset. In this case, + // just add it to the disp field and check validity. + if (VariableOperand == -1) { + AddrMode.BaseOffs += ConstantOffset; + if (ConstantOffset == 0 || + TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) { + // Check to see if we can fold the base pointer in too. + if (matchAddr(AddrInst->getOperand(0), Depth+1)) { + if (!cast<GEPOperator>(AddrInst)->isInBounds()) + AddrMode.InBounds = false; + return true; + } + } else if (EnableGEPOffsetSplit && isa<GetElementPtrInst>(AddrInst) && + TLI.shouldConsiderGEPOffsetSplit() && Depth == 0 && + ConstantOffset > 0) { + // Record GEPs with non-zero offsets as candidates for splitting in the + // event that the offset cannot fit into the r+i addressing mode. + // Simple and common case that only one GEP is used in calculating the + // address for the memory access. + Value *Base = AddrInst->getOperand(0); + auto *BaseI = dyn_cast<Instruction>(Base); + auto *GEP = cast<GetElementPtrInst>(AddrInst); + if (isa<Argument>(Base) || isa<GlobalValue>(Base) || + (BaseI && !isa<CastInst>(BaseI) && + !isa<GetElementPtrInst>(BaseI))) { + // Make sure the parent block allows inserting non-PHI instructions + // before the terminator. + BasicBlock *Parent = + BaseI ? BaseI->getParent() : &GEP->getFunction()->getEntryBlock(); + if (!Parent->getTerminator()->isEHPad()) + LargeOffsetGEP = std::make_pair(GEP, ConstantOffset); + } + } + AddrMode.BaseOffs -= ConstantOffset; + return false; + } + + // Save the valid addressing mode in case we can't match. + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + + // See if the scale and offset amount is valid for this target. + AddrMode.BaseOffs += ConstantOffset; + if (!cast<GEPOperator>(AddrInst)->isInBounds()) + AddrMode.InBounds = false; + + // Match the base operand of the GEP. + if (!matchAddr(AddrInst->getOperand(0), Depth+1)) { + // If it couldn't be matched, just stuff the value in a register. + if (AddrMode.HasBaseReg) { + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + return false; + } + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = AddrInst->getOperand(0); + } + + // Match the remaining variable portion of the GEP. + if (!matchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, + Depth)) { + // If it couldn't be matched, try stuffing the base into a register + // instead of matching it, and retrying the match of the scale. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + if (AddrMode.HasBaseReg) + return false; + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = AddrInst->getOperand(0); + AddrMode.BaseOffs += ConstantOffset; + if (!matchScaledValue(AddrInst->getOperand(VariableOperand), + VariableScale, Depth)) { + // If even that didn't work, bail. + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + return false; + } + } + + return true; + } + case Instruction::SExt: + case Instruction::ZExt: { + Instruction *Ext = dyn_cast<Instruction>(AddrInst); + if (!Ext) + return false; + + // Try to move this ext out of the way of the addressing mode. + // Ask for a method for doing so. + TypePromotionHelper::Action TPH = + TypePromotionHelper::getAction(Ext, InsertedInsts, TLI, PromotedInsts); + if (!TPH) + return false; + + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + unsigned CreatedInstsCost = 0; + unsigned ExtCost = !TLI.isExtFree(Ext); + Value *PromotedOperand = + TPH(Ext, TPT, PromotedInsts, CreatedInstsCost, nullptr, nullptr, TLI); + // SExt has been moved away. + // Thus either it will be rematched later in the recursive calls or it is + // gone. Anyway, we must not fold it into the addressing mode at this point. + // E.g., + // op = add opnd, 1 + // idx = ext op + // addr = gep base, idx + // is now: + // promotedOpnd = ext opnd <- no match here + // op = promoted_add promotedOpnd, 1 <- match (later in recursive calls) + // addr = gep base, op <- match + if (MovedAway) + *MovedAway = true; + + assert(PromotedOperand && + "TypePromotionHelper should have filtered out those cases"); + + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + + if (!matchAddr(PromotedOperand, Depth) || + // The total of the new cost is equal to the cost of the created + // instructions. + // The total of the old cost is equal to the cost of the extension plus + // what we have saved in the addressing mode. + !isPromotionProfitable(CreatedInstsCost, + ExtCost + (AddrModeInsts.size() - OldSize), + PromotedOperand)) { + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + LLVM_DEBUG(dbgs() << "Sign extension does not pay off: rollback\n"); + TPT.rollback(LastKnownGood); + return false; + } + return true; + } + } + return false; +} + +/// If we can, try to add the value of 'Addr' into the current addressing mode. +/// If Addr can't be added to AddrMode this returns false and leaves AddrMode +/// unmodified. This assumes that Addr is either a pointer type or intptr_t +/// for the target. +/// +bool AddressingModeMatcher::matchAddr(Value *Addr, unsigned Depth) { + // Start a transaction at this point that we will rollback if the matching + // fails. + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { + // Fold in immediates if legal for the target. + AddrMode.BaseOffs += CI->getSExtValue(); + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.BaseOffs -= CI->getSExtValue(); + } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { + // If this is a global variable, try to fold it into the addressing mode. + if (!AddrMode.BaseGV) { + AddrMode.BaseGV = GV; + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.BaseGV = nullptr; + } + } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { + ExtAddrMode BackupAddrMode = AddrMode; + unsigned OldSize = AddrModeInsts.size(); + + // Check to see if it is possible to fold this operation. + bool MovedAway = false; + if (matchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) { + // This instruction may have been moved away. If so, there is nothing + // to check here. + if (MovedAway) + return true; + // Okay, it's possible to fold this. Check to see if it is actually + // *profitable* to do so. We use a simple cost model to avoid increasing + // register pressure too much. + if (I->hasOneUse() || + isProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { + AddrModeInsts.push_back(I); + return true; + } + + // It isn't profitable to do this, roll back. + //cerr << "NOT FOLDING: " << *I; + AddrMode = BackupAddrMode; + AddrModeInsts.resize(OldSize); + TPT.rollback(LastKnownGood); + } + } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { + if (matchOperationAddr(CE, CE->getOpcode(), Depth)) + return true; + TPT.rollback(LastKnownGood); + } else if (isa<ConstantPointerNull>(Addr)) { + // Null pointer gets folded without affecting the addressing mode. + return true; + } + + // Worse case, the target should support [reg] addressing modes. :) + if (!AddrMode.HasBaseReg) { + AddrMode.HasBaseReg = true; + AddrMode.BaseReg = Addr; + // Still check for legality in case the target supports [imm] but not [i+r]. + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.HasBaseReg = false; + AddrMode.BaseReg = nullptr; + } + + // If the base register is already taken, see if we can do [r+r]. + if (AddrMode.Scale == 0) { + AddrMode.Scale = 1; + AddrMode.ScaledReg = Addr; + if (TLI.isLegalAddressingMode(DL, AddrMode, AccessTy, AddrSpace)) + return true; + AddrMode.Scale = 0; + AddrMode.ScaledReg = nullptr; + } + // Couldn't match. + TPT.rollback(LastKnownGood); + return false; +} + +/// Check to see if all uses of OpVal by the specified inline asm call are due +/// to memory operands. If so, return true, otherwise return false. +static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, + const TargetLowering &TLI, + const TargetRegisterInfo &TRI) { + const Function *F = CI->getFunction(); + TargetLowering::AsmOperandInfoVector TargetConstraints = + TLI.ParseConstraints(F->getParent()->getDataLayout(), &TRI, + ImmutableCallSite(CI)); + + for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { + TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; + + // Compute the constraint code and ConstraintType to use. + TLI.ComputeConstraintToUse(OpInfo, SDValue()); + + // If this asm operand is our Value*, and if it isn't an indirect memory + // operand, we can't fold it! + if (OpInfo.CallOperandVal == OpVal && + (OpInfo.ConstraintType != TargetLowering::C_Memory || + !OpInfo.isIndirect)) + return false; + } + + return true; +} + +// Max number of memory uses to look at before aborting the search to conserve +// compile time. +static constexpr int MaxMemoryUsesToScan = 20; + +/// Recursively walk all the uses of I until we find a memory use. +/// If we find an obviously non-foldable instruction, return true. +/// Add the ultimately found memory instructions to MemoryUses. +static bool FindAllMemoryUses( + Instruction *I, + SmallVectorImpl<std::pair<Instruction *, unsigned>> &MemoryUses, + SmallPtrSetImpl<Instruction *> &ConsideredInsts, const TargetLowering &TLI, + const TargetRegisterInfo &TRI, int SeenInsts = 0) { + // If we already considered this instruction, we're done. + if (!ConsideredInsts.insert(I).second) + return false; + + // If this is an obviously unfoldable instruction, bail out. + if (!MightBeFoldableInst(I)) + return true; + + const bool OptSize = I->getFunction()->hasOptSize(); + + // Loop over all the uses, recursively processing them. + for (Use &U : I->uses()) { + // Conservatively return true if we're seeing a large number or a deep chain + // of users. This avoids excessive compilation times in pathological cases. + if (SeenInsts++ >= MaxMemoryUsesToScan) + return true; + + Instruction *UserI = cast<Instruction>(U.getUser()); + if (LoadInst *LI = dyn_cast<LoadInst>(UserI)) { + MemoryUses.push_back(std::make_pair(LI, U.getOperandNo())); + continue; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(UserI)) { + unsigned opNo = U.getOperandNo(); + if (opNo != StoreInst::getPointerOperandIndex()) + return true; // Storing addr, not into addr. + MemoryUses.push_back(std::make_pair(SI, opNo)); + continue; + } + + if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UserI)) { + unsigned opNo = U.getOperandNo(); + if (opNo != AtomicRMWInst::getPointerOperandIndex()) + return true; // Storing addr, not into addr. + MemoryUses.push_back(std::make_pair(RMW, opNo)); + continue; + } + + if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(UserI)) { + unsigned opNo = U.getOperandNo(); + if (opNo != AtomicCmpXchgInst::getPointerOperandIndex()) + return true; // Storing addr, not into addr. + MemoryUses.push_back(std::make_pair(CmpX, opNo)); + continue; + } + + if (CallInst *CI = dyn_cast<CallInst>(UserI)) { + // If this is a cold call, we can sink the addressing calculation into + // the cold path. See optimizeCallInst + if (!OptSize && CI->hasFnAttr(Attribute::Cold)) + continue; + + InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); + if (!IA) return true; + + // If this is a memory operand, we're cool, otherwise bail out. + if (!IsOperandAMemoryOperand(CI, IA, I, TLI, TRI)) + return true; + continue; + } + + if (FindAllMemoryUses(UserI, MemoryUses, ConsideredInsts, TLI, TRI, + SeenInsts)) + return true; + } + + return false; +} + +/// Return true if Val is already known to be live at the use site that we're +/// folding it into. If so, there is no cost to include it in the addressing +/// mode. KnownLive1 and KnownLive2 are two values that we know are live at the +/// instruction already. +bool AddressingModeMatcher::valueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, + Value *KnownLive2) { + // If Val is either of the known-live values, we know it is live! + if (Val == nullptr || Val == KnownLive1 || Val == KnownLive2) + return true; + + // All values other than instructions and arguments (e.g. constants) are live. + if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; + + // If Val is a constant sized alloca in the entry block, it is live, this is + // true because it is just a reference to the stack/frame pointer, which is + // live for the whole function. + if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) + if (AI->isStaticAlloca()) + return true; + + // Check to see if this value is already used in the memory instruction's + // block. If so, it's already live into the block at the very least, so we + // can reasonably fold it. + return Val->isUsedInBasicBlock(MemoryInst->getParent()); +} + +/// It is possible for the addressing mode of the machine to fold the specified +/// instruction into a load or store that ultimately uses it. +/// However, the specified instruction has multiple uses. +/// Given this, it may actually increase register pressure to fold it +/// into the load. For example, consider this code: +/// +/// X = ... +/// Y = X+1 +/// use(Y) -> nonload/store +/// Z = Y+1 +/// load Z +/// +/// In this case, Y has multiple uses, and can be folded into the load of Z +/// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to +/// be live at the use(Y) line. If we don't fold Y into load Z, we use one +/// fewer register. Since Y can't be folded into "use(Y)" we don't increase the +/// number of computations either. +/// +/// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If +/// X was live across 'load Z' for other reasons, we actually *would* want to +/// fold the addressing mode in the Z case. This would make Y die earlier. +bool AddressingModeMatcher:: +isProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, + ExtAddrMode &AMAfter) { + if (IgnoreProfitability) return true; + + // AMBefore is the addressing mode before this instruction was folded into it, + // and AMAfter is the addressing mode after the instruction was folded. Get + // the set of registers referenced by AMAfter and subtract out those + // referenced by AMBefore: this is the set of values which folding in this + // address extends the lifetime of. + // + // Note that there are only two potential values being referenced here, + // BaseReg and ScaleReg (global addresses are always available, as are any + // folded immediates). + Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; + + // If the BaseReg or ScaledReg was referenced by the previous addrmode, their + // lifetime wasn't extended by adding this instruction. + if (valueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) + BaseReg = nullptr; + if (valueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) + ScaledReg = nullptr; + + // If folding this instruction (and it's subexprs) didn't extend any live + // ranges, we're ok with it. + if (!BaseReg && !ScaledReg) + return true; + + // If all uses of this instruction can have the address mode sunk into them, + // we can remove the addressing mode and effectively trade one live register + // for another (at worst.) In this context, folding an addressing mode into + // the use is just a particularly nice way of sinking it. + SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; + SmallPtrSet<Instruction*, 16> ConsideredInsts; + if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI, TRI)) + return false; // Has a non-memory, non-foldable use! + + // Now that we know that all uses of this instruction are part of a chain of + // computation involving only operations that could theoretically be folded + // into a memory use, loop over each of these memory operation uses and see + // if they could *actually* fold the instruction. The assumption is that + // addressing modes are cheap and that duplicating the computation involved + // many times is worthwhile, even on a fastpath. For sinking candidates + // (i.e. cold call sites), this serves as a way to prevent excessive code + // growth since most architectures have some reasonable small and fast way to + // compute an effective address. (i.e LEA on x86) + SmallVector<Instruction*, 32> MatchedAddrModeInsts; + for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { + Instruction *User = MemoryUses[i].first; + unsigned OpNo = MemoryUses[i].second; + + // Get the access type of this use. If the use isn't a pointer, we don't + // know what it accesses. + Value *Address = User->getOperand(OpNo); + PointerType *AddrTy = dyn_cast<PointerType>(Address->getType()); + if (!AddrTy) + return false; + Type *AddressAccessTy = AddrTy->getElementType(); + unsigned AS = AddrTy->getAddressSpace(); + + // Do a match against the root of this address, ignoring profitability. This + // will tell us if the addressing mode for the memory operation will + // *actually* cover the shared instruction. + ExtAddrMode Result; + std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, + 0); + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + AddressingModeMatcher Matcher( + MatchedAddrModeInsts, TLI, TRI, AddressAccessTy, AS, MemoryInst, Result, + InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); + Matcher.IgnoreProfitability = true; + bool Success = Matcher.matchAddr(Address, 0); + (void)Success; assert(Success && "Couldn't select *anything*?"); + + // The match was to check the profitability, the changes made are not + // part of the original matcher. Therefore, they should be dropped + // otherwise the original matcher will not present the right state. + TPT.rollback(LastKnownGood); + + // If the match didn't cover I, then it won't be shared by it. + if (!is_contained(MatchedAddrModeInsts, I)) + return false; + + MatchedAddrModeInsts.clear(); + } + + return true; +} + +/// Return true if the specified values are defined in a +/// different basic block than BB. +static bool IsNonLocalValue(Value *V, BasicBlock *BB) { + if (Instruction *I = dyn_cast<Instruction>(V)) + return I->getParent() != BB; + return false; +} + +/// Sink addressing mode computation immediate before MemoryInst if doing so +/// can be done without increasing register pressure. The need for the +/// register pressure constraint means this can end up being an all or nothing +/// decision for all uses of the same addressing computation. +/// +/// Load and Store Instructions often have addressing modes that can do +/// significant amounts of computation. As such, instruction selection will try +/// to get the load or store to do as much computation as possible for the +/// program. The problem is that isel can only see within a single block. As +/// such, we sink as much legal addressing mode work into the block as possible. +/// +/// This method is used to optimize both load/store and inline asms with memory +/// operands. It's also used to sink addressing computations feeding into cold +/// call sites into their (cold) basic block. +/// +/// The motivation for handling sinking into cold blocks is that doing so can +/// both enable other address mode sinking (by satisfying the register pressure +/// constraint above), and reduce register pressure globally (by removing the +/// addressing mode computation from the fast path entirely.). +bool CodeGenPrepare::optimizeMemoryInst(Instruction *MemoryInst, Value *Addr, + Type *AccessTy, unsigned AddrSpace) { + Value *Repl = Addr; + + // Try to collapse single-value PHI nodes. This is necessary to undo + // unprofitable PRE transformations. + SmallVector<Value*, 8> worklist; + SmallPtrSet<Value*, 16> Visited; + worklist.push_back(Addr); + + // Use a worklist to iteratively look through PHI and select nodes, and + // ensure that the addressing mode obtained from the non-PHI/select roots of + // the graph are compatible. + bool PhiOrSelectSeen = false; + SmallVector<Instruction*, 16> AddrModeInsts; + const SimplifyQuery SQ(*DL, TLInfo); + AddressingModeCombiner AddrModes(SQ, Addr); + TypePromotionTransaction TPT(RemovedInsts); + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + while (!worklist.empty()) { + Value *V = worklist.back(); + worklist.pop_back(); + + // We allow traversing cyclic Phi nodes. + // In case of success after this loop we ensure that traversing through + // Phi nodes ends up with all cases to compute address of the form + // BaseGV + Base + Scale * Index + Offset + // where Scale and Offset are constans and BaseGV, Base and Index + // are exactly the same Values in all cases. + // It means that BaseGV, Scale and Offset dominate our memory instruction + // and have the same value as they had in address computation represented + // as Phi. So we can safely sink address computation to memory instruction. + if (!Visited.insert(V).second) + continue; + + // For a PHI node, push all of its incoming values. + if (PHINode *P = dyn_cast<PHINode>(V)) { + for (Value *IncValue : P->incoming_values()) + worklist.push_back(IncValue); + PhiOrSelectSeen = true; + continue; + } + // Similar for select. + if (SelectInst *SI = dyn_cast<SelectInst>(V)) { + worklist.push_back(SI->getFalseValue()); + worklist.push_back(SI->getTrueValue()); + PhiOrSelectSeen = true; + continue; + } + + // For non-PHIs, determine the addressing mode being computed. Note that + // the result may differ depending on what other uses our candidate + // addressing instructions might have. + AddrModeInsts.clear(); + std::pair<AssertingVH<GetElementPtrInst>, int64_t> LargeOffsetGEP(nullptr, + 0); + ExtAddrMode NewAddrMode = AddressingModeMatcher::Match( + V, AccessTy, AddrSpace, MemoryInst, AddrModeInsts, *TLI, *TRI, + InsertedInsts, PromotedInsts, TPT, LargeOffsetGEP); + + GetElementPtrInst *GEP = LargeOffsetGEP.first; + if (GEP && !NewGEPBases.count(GEP)) { + // If splitting the underlying data structure can reduce the offset of a + // GEP, collect the GEP. Skip the GEPs that are the new bases of + // previously split data structures. + LargeOffsetGEPMap[GEP->getPointerOperand()].push_back(LargeOffsetGEP); + if (LargeOffsetGEPID.find(GEP) == LargeOffsetGEPID.end()) + LargeOffsetGEPID[GEP] = LargeOffsetGEPID.size(); + } + + NewAddrMode.OriginalValue = V; + if (!AddrModes.addNewAddrMode(NewAddrMode)) + break; + } + + // Try to combine the AddrModes we've collected. If we couldn't collect any, + // or we have multiple but either couldn't combine them or combining them + // wouldn't do anything useful, bail out now. + if (!AddrModes.combineAddrModes()) { + TPT.rollback(LastKnownGood); + return false; + } + TPT.commit(); + + // Get the combined AddrMode (or the only AddrMode, if we only had one). + ExtAddrMode AddrMode = AddrModes.getAddrMode(); + + // If all the instructions matched are already in this BB, don't do anything. + // If we saw a Phi node then it is not local definitely, and if we saw a select + // then we want to push the address calculation past it even if it's already + // in this BB. + if (!PhiOrSelectSeen && none_of(AddrModeInsts, [&](Value *V) { + return IsNonLocalValue(V, MemoryInst->getParent()); + })) { + LLVM_DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode + << "\n"); + return false; + } + + // Insert this computation right after this user. Since our caller is + // scanning from the top of the BB to the bottom, reuse of the expr are + // guaranteed to happen later. + IRBuilder<> Builder(MemoryInst); + + // Now that we determined the addressing expression we want to use and know + // that we have to sink it into this block. Check to see if we have already + // done this for some other load/store instr in this block. If so, reuse + // the computation. Before attempting reuse, check if the address is valid + // as it may have been erased. + + WeakTrackingVH SunkAddrVH = SunkAddrs[Addr]; + + Value * SunkAddr = SunkAddrVH.pointsToAliveValue() ? SunkAddrVH : nullptr; + if (SunkAddr) { + LLVM_DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode + << " for " << *MemoryInst << "\n"); + if (SunkAddr->getType() != Addr->getType()) + SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); + } else if (AddrSinkUsingGEPs || + (!AddrSinkUsingGEPs.getNumOccurrences() && TM && TTI->useAA())) { + // By default, we use the GEP-based method when AA is used later. This + // prevents new inttoptr/ptrtoint pairs from degrading AA capabilities. + LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode + << " for " << *MemoryInst << "\n"); + Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); + Value *ResultPtr = nullptr, *ResultIndex = nullptr; + + // First, find the pointer. + if (AddrMode.BaseReg && AddrMode.BaseReg->getType()->isPointerTy()) { + ResultPtr = AddrMode.BaseReg; + AddrMode.BaseReg = nullptr; + } + + if (AddrMode.Scale && AddrMode.ScaledReg->getType()->isPointerTy()) { + // We can't add more than one pointer together, nor can we scale a + // pointer (both of which seem meaningless). + if (ResultPtr || AddrMode.Scale != 1) + return false; + + ResultPtr = AddrMode.ScaledReg; + AddrMode.Scale = 0; + } + + // It is only safe to sign extend the BaseReg if we know that the math + // required to create it did not overflow before we extend it. Since + // the original IR value was tossed in favor of a constant back when + // the AddrMode was created we need to bail out gracefully if widths + // do not match instead of extending it. + // + // (See below for code to add the scale.) + if (AddrMode.Scale) { + Type *ScaledRegTy = AddrMode.ScaledReg->getType(); + if (cast<IntegerType>(IntPtrTy)->getBitWidth() > + cast<IntegerType>(ScaledRegTy)->getBitWidth()) + return false; + } + + if (AddrMode.BaseGV) { + if (ResultPtr) + return false; + + ResultPtr = AddrMode.BaseGV; + } + + // If the real base value actually came from an inttoptr, then the matcher + // will look through it and provide only the integer value. In that case, + // use it here. + if (!DL->isNonIntegralPointerType(Addr->getType())) { + if (!ResultPtr && AddrMode.BaseReg) { + ResultPtr = Builder.CreateIntToPtr(AddrMode.BaseReg, Addr->getType(), + "sunkaddr"); + AddrMode.BaseReg = nullptr; + } else if (!ResultPtr && AddrMode.Scale == 1) { + ResultPtr = Builder.CreateIntToPtr(AddrMode.ScaledReg, Addr->getType(), + "sunkaddr"); + AddrMode.Scale = 0; + } + } + + if (!ResultPtr && + !AddrMode.BaseReg && !AddrMode.Scale && !AddrMode.BaseOffs) { + SunkAddr = Constant::getNullValue(Addr->getType()); + } else if (!ResultPtr) { + return false; + } else { + Type *I8PtrTy = + Builder.getInt8PtrTy(Addr->getType()->getPointerAddressSpace()); + Type *I8Ty = Builder.getInt8Ty(); + + // Start with the base register. Do this first so that subsequent address + // matching finds it last, which will prevent it from trying to match it + // as the scaled value in case it happens to be a mul. That would be + // problematic if we've sunk a different mul for the scale, because then + // we'd end up sinking both muls. + if (AddrMode.BaseReg) { + Value *V = AddrMode.BaseReg; + if (V->getType() != IntPtrTy) + V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); + + ResultIndex = V; + } + + // Add the scale value. + if (AddrMode.Scale) { + Value *V = AddrMode.ScaledReg; + if (V->getType() == IntPtrTy) { + // done. + } else { + assert(cast<IntegerType>(IntPtrTy)->getBitWidth() < + cast<IntegerType>(V->getType())->getBitWidth() && + "We can't transform if ScaledReg is too narrow"); + V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); + } + + if (AddrMode.Scale != 1) + V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), + "sunkaddr"); + if (ResultIndex) + ResultIndex = Builder.CreateAdd(ResultIndex, V, "sunkaddr"); + else + ResultIndex = V; + } + + // Add in the Base Offset if present. + if (AddrMode.BaseOffs) { + Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); + if (ResultIndex) { + // We need to add this separately from the scale above to help with + // SDAG consecutive load/store merging. + if (ResultPtr->getType() != I8PtrTy) + ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); + ResultPtr = + AddrMode.InBounds + ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, + "sunkaddr") + : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); + } + + ResultIndex = V; + } + + if (!ResultIndex) { + SunkAddr = ResultPtr; + } else { + if (ResultPtr->getType() != I8PtrTy) + ResultPtr = Builder.CreatePointerCast(ResultPtr, I8PtrTy); + SunkAddr = + AddrMode.InBounds + ? Builder.CreateInBoundsGEP(I8Ty, ResultPtr, ResultIndex, + "sunkaddr") + : Builder.CreateGEP(I8Ty, ResultPtr, ResultIndex, "sunkaddr"); + } + + if (SunkAddr->getType() != Addr->getType()) + SunkAddr = Builder.CreatePointerCast(SunkAddr, Addr->getType()); + } + } else { + // We'd require a ptrtoint/inttoptr down the line, which we can't do for + // non-integral pointers, so in that case bail out now. + Type *BaseTy = AddrMode.BaseReg ? AddrMode.BaseReg->getType() : nullptr; + Type *ScaleTy = AddrMode.Scale ? AddrMode.ScaledReg->getType() : nullptr; + PointerType *BasePtrTy = dyn_cast_or_null<PointerType>(BaseTy); + PointerType *ScalePtrTy = dyn_cast_or_null<PointerType>(ScaleTy); + if (DL->isNonIntegralPointerType(Addr->getType()) || + (BasePtrTy && DL->isNonIntegralPointerType(BasePtrTy)) || + (ScalePtrTy && DL->isNonIntegralPointerType(ScalePtrTy)) || + (AddrMode.BaseGV && + DL->isNonIntegralPointerType(AddrMode.BaseGV->getType()))) + return false; + + LLVM_DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode + << " for " << *MemoryInst << "\n"); + Type *IntPtrTy = DL->getIntPtrType(Addr->getType()); + Value *Result = nullptr; + + // Start with the base register. Do this first so that subsequent address + // matching finds it last, which will prevent it from trying to match it + // as the scaled value in case it happens to be a mul. That would be + // problematic if we've sunk a different mul for the scale, because then + // we'd end up sinking both muls. + if (AddrMode.BaseReg) { + Value *V = AddrMode.BaseReg; + if (V->getType()->isPointerTy()) + V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); + if (V->getType() != IntPtrTy) + V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); + Result = V; + } + + // Add the scale value. + if (AddrMode.Scale) { + Value *V = AddrMode.ScaledReg; + if (V->getType() == IntPtrTy) { + // done. + } else if (V->getType()->isPointerTy()) { + V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); + } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < + cast<IntegerType>(V->getType())->getBitWidth()) { + V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); + } else { + // It is only safe to sign extend the BaseReg if we know that the math + // required to create it did not overflow before we extend it. Since + // the original IR value was tossed in favor of a constant back when + // the AddrMode was created we need to bail out gracefully if widths + // do not match instead of extending it. + Instruction *I = dyn_cast_or_null<Instruction>(Result); + if (I && (Result != AddrMode.BaseReg)) + I->eraseFromParent(); + return false; + } + if (AddrMode.Scale != 1) + V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), + "sunkaddr"); + if (Result) + Result = Builder.CreateAdd(Result, V, "sunkaddr"); + else + Result = V; + } + + // Add in the BaseGV if present. + if (AddrMode.BaseGV) { + Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); + if (Result) + Result = Builder.CreateAdd(Result, V, "sunkaddr"); + else + Result = V; + } + + // Add in the Base Offset if present. + if (AddrMode.BaseOffs) { + Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); + if (Result) + Result = Builder.CreateAdd(Result, V, "sunkaddr"); + else + Result = V; + } + + if (!Result) + SunkAddr = Constant::getNullValue(Addr->getType()); + else + SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); + } + + MemoryInst->replaceUsesOfWith(Repl, SunkAddr); + // Store the newly computed address into the cache. In the case we reused a + // value, this should be idempotent. + SunkAddrs[Addr] = WeakTrackingVH(SunkAddr); + + // If we have no uses, recursively delete the value and all dead instructions + // using it. + if (Repl->use_empty()) { + // This can cause recursive deletion, which can invalidate our iterator. + // Use a WeakTrackingVH to hold onto it in case this happens. + Value *CurValue = &*CurInstIterator; + WeakTrackingVH IterHandle(CurValue); + BasicBlock *BB = CurInstIterator->getParent(); + + RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); + + if (IterHandle != CurValue) { + // If the iterator instruction was recursively deleted, start over at the + // start of the block. + CurInstIterator = BB->begin(); + SunkAddrs.clear(); + } + } + ++NumMemoryInsts; + return true; +} + +/// If there are any memory operands, use OptimizeMemoryInst to sink their +/// address computing into the block when possible / profitable. +bool CodeGenPrepare::optimizeInlineAsmInst(CallInst *CS) { + bool MadeChange = false; + + const TargetRegisterInfo *TRI = + TM->getSubtargetImpl(*CS->getFunction())->getRegisterInfo(); + TargetLowering::AsmOperandInfoVector TargetConstraints = + TLI->ParseConstraints(*DL, TRI, CS); + unsigned ArgNo = 0; + for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { + TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; + + // Compute the constraint code and ConstraintType to use. + TLI->ComputeConstraintToUse(OpInfo, SDValue()); + + if (OpInfo.ConstraintType == TargetLowering::C_Memory && + OpInfo.isIndirect) { + Value *OpVal = CS->getArgOperand(ArgNo++); + MadeChange |= optimizeMemoryInst(CS, OpVal, OpVal->getType(), ~0u); + } else if (OpInfo.Type == InlineAsm::isInput) + ArgNo++; + } + + return MadeChange; +} + +/// Check if all the uses of \p Val are equivalent (or free) zero or +/// sign extensions. +static bool hasSameExtUse(Value *Val, const TargetLowering &TLI) { + assert(!Val->use_empty() && "Input must have at least one use"); + const Instruction *FirstUser = cast<Instruction>(*Val->user_begin()); + bool IsSExt = isa<SExtInst>(FirstUser); + Type *ExtTy = FirstUser->getType(); + for (const User *U : Val->users()) { + const Instruction *UI = cast<Instruction>(U); + if ((IsSExt && !isa<SExtInst>(UI)) || (!IsSExt && !isa<ZExtInst>(UI))) + return false; + Type *CurTy = UI->getType(); + // Same input and output types: Same instruction after CSE. + if (CurTy == ExtTy) + continue; + + // If IsSExt is true, we are in this situation: + // a = Val + // b = sext ty1 a to ty2 + // c = sext ty1 a to ty3 + // Assuming ty2 is shorter than ty3, this could be turned into: + // a = Val + // b = sext ty1 a to ty2 + // c = sext ty2 b to ty3 + // However, the last sext is not free. + if (IsSExt) + return false; + + // This is a ZExt, maybe this is free to extend from one type to another. + // In that case, we would not account for a different use. + Type *NarrowTy; + Type *LargeTy; + if (ExtTy->getScalarType()->getIntegerBitWidth() > + CurTy->getScalarType()->getIntegerBitWidth()) { + NarrowTy = CurTy; + LargeTy = ExtTy; + } else { + NarrowTy = ExtTy; + LargeTy = CurTy; + } + + if (!TLI.isZExtFree(NarrowTy, LargeTy)) + return false; + } + // All uses are the same or can be derived from one another for free. + return true; +} + +/// Try to speculatively promote extensions in \p Exts and continue +/// promoting through newly promoted operands recursively as far as doing so is +/// profitable. Save extensions profitably moved up, in \p ProfitablyMovedExts. +/// When some promotion happened, \p TPT contains the proper state to revert +/// them. +/// +/// \return true if some promotion happened, false otherwise. +bool CodeGenPrepare::tryToPromoteExts( + TypePromotionTransaction &TPT, const SmallVectorImpl<Instruction *> &Exts, + SmallVectorImpl<Instruction *> &ProfitablyMovedExts, + unsigned CreatedInstsCost) { + bool Promoted = false; + + // Iterate over all the extensions to try to promote them. + for (auto I : Exts) { + // Early check if we directly have ext(load). + if (isa<LoadInst>(I->getOperand(0))) { + ProfitablyMovedExts.push_back(I); + continue; + } + + // Check whether or not we want to do any promotion. The reason we have + // this check inside the for loop is to catch the case where an extension + // is directly fed by a load because in such case the extension can be moved + // up without any promotion on its operands. + if (!TLI || !TLI->enableExtLdPromotion() || DisableExtLdPromotion) + return false; + + // Get the action to perform the promotion. + TypePromotionHelper::Action TPH = + TypePromotionHelper::getAction(I, InsertedInsts, *TLI, PromotedInsts); + // Check if we can promote. + if (!TPH) { + // Save the current extension as we cannot move up through its operand. + ProfitablyMovedExts.push_back(I); + continue; + } + + // Save the current state. + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + SmallVector<Instruction *, 4> NewExts; + unsigned NewCreatedInstsCost = 0; + unsigned ExtCost = !TLI->isExtFree(I); + // Promote. + Value *PromotedVal = TPH(I, TPT, PromotedInsts, NewCreatedInstsCost, + &NewExts, nullptr, *TLI); + assert(PromotedVal && + "TypePromotionHelper should have filtered out those cases"); + + // We would be able to merge only one extension in a load. + // Therefore, if we have more than 1 new extension we heuristically + // cut this search path, because it means we degrade the code quality. + // With exactly 2, the transformation is neutral, because we will merge + // one extension but leave one. However, we optimistically keep going, + // because the new extension may be removed too. + long long TotalCreatedInstsCost = CreatedInstsCost + NewCreatedInstsCost; + // FIXME: It would be possible to propagate a negative value instead of + // conservatively ceiling it to 0. + TotalCreatedInstsCost = + std::max((long long)0, (TotalCreatedInstsCost - ExtCost)); + if (!StressExtLdPromotion && + (TotalCreatedInstsCost > 1 || + !isPromotedInstructionLegal(*TLI, *DL, PromotedVal))) { + // This promotion is not profitable, rollback to the previous state, and + // save the current extension in ProfitablyMovedExts as the latest + // speculative promotion turned out to be unprofitable. + TPT.rollback(LastKnownGood); + ProfitablyMovedExts.push_back(I); + continue; + } + // Continue promoting NewExts as far as doing so is profitable. + SmallVector<Instruction *, 2> NewlyMovedExts; + (void)tryToPromoteExts(TPT, NewExts, NewlyMovedExts, TotalCreatedInstsCost); + bool NewPromoted = false; + for (auto ExtInst : NewlyMovedExts) { + Instruction *MovedExt = cast<Instruction>(ExtInst); + Value *ExtOperand = MovedExt->getOperand(0); + // If we have reached to a load, we need this extra profitability check + // as it could potentially be merged into an ext(load). + if (isa<LoadInst>(ExtOperand) && + !(StressExtLdPromotion || NewCreatedInstsCost <= ExtCost || + (ExtOperand->hasOneUse() || hasSameExtUse(ExtOperand, *TLI)))) + continue; + + ProfitablyMovedExts.push_back(MovedExt); + NewPromoted = true; + } + + // If none of speculative promotions for NewExts is profitable, rollback + // and save the current extension (I) as the last profitable extension. + if (!NewPromoted) { + TPT.rollback(LastKnownGood); + ProfitablyMovedExts.push_back(I); + continue; + } + // The promotion is profitable. + Promoted = true; + } + return Promoted; +} + +/// Merging redundant sexts when one is dominating the other. +bool CodeGenPrepare::mergeSExts(Function &F) { + bool Changed = false; + for (auto &Entry : ValToSExtendedUses) { + SExts &Insts = Entry.second; + SExts CurPts; + for (Instruction *Inst : Insts) { + if (RemovedInsts.count(Inst) || !isa<SExtInst>(Inst) || + Inst->getOperand(0) != Entry.first) + continue; + bool inserted = false; + for (auto &Pt : CurPts) { + if (getDT(F).dominates(Inst, Pt)) { + Pt->replaceAllUsesWith(Inst); + RemovedInsts.insert(Pt); + Pt->removeFromParent(); + Pt = Inst; + inserted = true; + Changed = true; + break; + } + if (!getDT(F).dominates(Pt, Inst)) + // Give up if we need to merge in a common dominator as the + // experiments show it is not profitable. + continue; + Inst->replaceAllUsesWith(Pt); + RemovedInsts.insert(Inst); + Inst->removeFromParent(); + inserted = true; + Changed = true; + break; + } + if (!inserted) + CurPts.push_back(Inst); + } + } + return Changed; +} + +// Spliting large data structures so that the GEPs accessing them can have +// smaller offsets so that they can be sunk to the same blocks as their users. +// For example, a large struct starting from %base is splitted into two parts +// where the second part starts from %new_base. +// +// Before: +// BB0: +// %base = +// +// BB1: +// %gep0 = gep %base, off0 +// %gep1 = gep %base, off1 +// %gep2 = gep %base, off2 +// +// BB2: +// %load1 = load %gep0 +// %load2 = load %gep1 +// %load3 = load %gep2 +// +// After: +// BB0: +// %base = +// %new_base = gep %base, off0 +// +// BB1: +// %new_gep0 = %new_base +// %new_gep1 = gep %new_base, off1 - off0 +// %new_gep2 = gep %new_base, off2 - off0 +// +// BB2: +// %load1 = load i32, i32* %new_gep0 +// %load2 = load i32, i32* %new_gep1 +// %load3 = load i32, i32* %new_gep2 +// +// %new_gep1 and %new_gep2 can be sunk to BB2 now after the splitting because +// their offsets are smaller enough to fit into the addressing mode. +bool CodeGenPrepare::splitLargeGEPOffsets() { + bool Changed = false; + for (auto &Entry : LargeOffsetGEPMap) { + Value *OldBase = Entry.first; + SmallVectorImpl<std::pair<AssertingVH<GetElementPtrInst>, int64_t>> + &LargeOffsetGEPs = Entry.second; + auto compareGEPOffset = + [&](const std::pair<GetElementPtrInst *, int64_t> &LHS, + const std::pair<GetElementPtrInst *, int64_t> &RHS) { + if (LHS.first == RHS.first) + return false; + if (LHS.second != RHS.second) + return LHS.second < RHS.second; + return LargeOffsetGEPID[LHS.first] < LargeOffsetGEPID[RHS.first]; + }; + // Sorting all the GEPs of the same data structures based on the offsets. + llvm::sort(LargeOffsetGEPs, compareGEPOffset); + LargeOffsetGEPs.erase( + std::unique(LargeOffsetGEPs.begin(), LargeOffsetGEPs.end()), + LargeOffsetGEPs.end()); + // Skip if all the GEPs have the same offsets. + if (LargeOffsetGEPs.front().second == LargeOffsetGEPs.back().second) + continue; + GetElementPtrInst *BaseGEP = LargeOffsetGEPs.begin()->first; + int64_t BaseOffset = LargeOffsetGEPs.begin()->second; + Value *NewBaseGEP = nullptr; + + auto LargeOffsetGEP = LargeOffsetGEPs.begin(); + while (LargeOffsetGEP != LargeOffsetGEPs.end()) { + GetElementPtrInst *GEP = LargeOffsetGEP->first; + int64_t Offset = LargeOffsetGEP->second; + if (Offset != BaseOffset) { + TargetLowering::AddrMode AddrMode; + AddrMode.BaseOffs = Offset - BaseOffset; + // The result type of the GEP might not be the type of the memory + // access. + if (!TLI->isLegalAddressingMode(*DL, AddrMode, + GEP->getResultElementType(), + GEP->getAddressSpace())) { + // We need to create a new base if the offset to the current base is + // too large to fit into the addressing mode. So, a very large struct + // may be splitted into several parts. + BaseGEP = GEP; + BaseOffset = Offset; + NewBaseGEP = nullptr; + } + } + + // Generate a new GEP to replace the current one. + LLVMContext &Ctx = GEP->getContext(); + Type *IntPtrTy = DL->getIntPtrType(GEP->getType()); + Type *I8PtrTy = + Type::getInt8PtrTy(Ctx, GEP->getType()->getPointerAddressSpace()); + Type *I8Ty = Type::getInt8Ty(Ctx); + + if (!NewBaseGEP) { + // Create a new base if we don't have one yet. Find the insertion + // pointer for the new base first. + BasicBlock::iterator NewBaseInsertPt; + BasicBlock *NewBaseInsertBB; + if (auto *BaseI = dyn_cast<Instruction>(OldBase)) { + // If the base of the struct is an instruction, the new base will be + // inserted close to it. + NewBaseInsertBB = BaseI->getParent(); + if (isa<PHINode>(BaseI)) + NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); + else if (InvokeInst *Invoke = dyn_cast<InvokeInst>(BaseI)) { + NewBaseInsertBB = + SplitEdge(NewBaseInsertBB, Invoke->getNormalDest()); + NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); + } else + NewBaseInsertPt = std::next(BaseI->getIterator()); + } else { + // If the current base is an argument or global value, the new base + // will be inserted to the entry block. + NewBaseInsertBB = &BaseGEP->getFunction()->getEntryBlock(); + NewBaseInsertPt = NewBaseInsertBB->getFirstInsertionPt(); + } + IRBuilder<> NewBaseBuilder(NewBaseInsertBB, NewBaseInsertPt); + // Create a new base. + Value *BaseIndex = ConstantInt::get(IntPtrTy, BaseOffset); + NewBaseGEP = OldBase; + if (NewBaseGEP->getType() != I8PtrTy) + NewBaseGEP = NewBaseBuilder.CreatePointerCast(NewBaseGEP, I8PtrTy); + NewBaseGEP = + NewBaseBuilder.CreateGEP(I8Ty, NewBaseGEP, BaseIndex, "splitgep"); + NewGEPBases.insert(NewBaseGEP); + } + + IRBuilder<> Builder(GEP); + Value *NewGEP = NewBaseGEP; + if (Offset == BaseOffset) { + if (GEP->getType() != I8PtrTy) + NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); + } else { + // Calculate the new offset for the new GEP. + Value *Index = ConstantInt::get(IntPtrTy, Offset - BaseOffset); + NewGEP = Builder.CreateGEP(I8Ty, NewBaseGEP, Index); + + if (GEP->getType() != I8PtrTy) + NewGEP = Builder.CreatePointerCast(NewGEP, GEP->getType()); + } + GEP->replaceAllUsesWith(NewGEP); + LargeOffsetGEPID.erase(GEP); + LargeOffsetGEP = LargeOffsetGEPs.erase(LargeOffsetGEP); + GEP->eraseFromParent(); + Changed = true; + } + } + return Changed; +} + +/// Return true, if an ext(load) can be formed from an extension in +/// \p MovedExts. +bool CodeGenPrepare::canFormExtLd( + const SmallVectorImpl<Instruction *> &MovedExts, LoadInst *&LI, + Instruction *&Inst, bool HasPromoted) { + for (auto *MovedExtInst : MovedExts) { + if (isa<LoadInst>(MovedExtInst->getOperand(0))) { + LI = cast<LoadInst>(MovedExtInst->getOperand(0)); + Inst = MovedExtInst; + break; + } + } + if (!LI) + return false; + + // If they're already in the same block, there's nothing to do. + // Make the cheap checks first if we did not promote. + // If we promoted, we need to check if it is indeed profitable. + if (!HasPromoted && LI->getParent() == Inst->getParent()) + return false; + + return TLI->isExtLoad(LI, Inst, *DL); +} + +/// Move a zext or sext fed by a load into the same basic block as the load, +/// unless conditions are unfavorable. This allows SelectionDAG to fold the +/// extend into the load. +/// +/// E.g., +/// \code +/// %ld = load i32* %addr +/// %add = add nuw i32 %ld, 4 +/// %zext = zext i32 %add to i64 +// \endcode +/// => +/// \code +/// %ld = load i32* %addr +/// %zext = zext i32 %ld to i64 +/// %add = add nuw i64 %zext, 4 +/// \encode +/// Note that the promotion in %add to i64 is done in tryToPromoteExts(), which +/// allow us to match zext(load i32*) to i64. +/// +/// Also, try to promote the computations used to obtain a sign extended +/// value used into memory accesses. +/// E.g., +/// \code +/// a = add nsw i32 b, 3 +/// d = sext i32 a to i64 +/// e = getelementptr ..., i64 d +/// \endcode +/// => +/// \code +/// f = sext i32 b to i64 +/// a = add nsw i64 f, 3 +/// e = getelementptr ..., i64 a +/// \endcode +/// +/// \p Inst[in/out] the extension may be modified during the process if some +/// promotions apply. +bool CodeGenPrepare::optimizeExt(Instruction *&Inst) { + // ExtLoad formation and address type promotion infrastructure requires TLI to + // be effective. + if (!TLI) + return false; + + bool AllowPromotionWithoutCommonHeader = false; + /// See if it is an interesting sext operations for the address type + /// promotion before trying to promote it, e.g., the ones with the right + /// type and used in memory accesses. + bool ATPConsiderable = TTI->shouldConsiderAddressTypePromotion( + *Inst, AllowPromotionWithoutCommonHeader); + TypePromotionTransaction TPT(RemovedInsts); + TypePromotionTransaction::ConstRestorationPt LastKnownGood = + TPT.getRestorationPoint(); + SmallVector<Instruction *, 1> Exts; + SmallVector<Instruction *, 2> SpeculativelyMovedExts; + Exts.push_back(Inst); + + bool HasPromoted = tryToPromoteExts(TPT, Exts, SpeculativelyMovedExts); + + // Look for a load being extended. + LoadInst *LI = nullptr; + Instruction *ExtFedByLoad; + + // Try to promote a chain of computation if it allows to form an extended + // load. + if (canFormExtLd(SpeculativelyMovedExts, LI, ExtFedByLoad, HasPromoted)) { + assert(LI && ExtFedByLoad && "Expect a valid load and extension"); + TPT.commit(); + // Move the extend into the same block as the load + ExtFedByLoad->moveAfter(LI); + // CGP does not check if the zext would be speculatively executed when moved + // to the same basic block as the load. Preserving its original location + // would pessimize the debugging experience, as well as negatively impact + // the quality of sample pgo. We don't want to use "line 0" as that has a + // size cost in the line-table section and logically the zext can be seen as + // part of the load. Therefore we conservatively reuse the same debug + // location for the load and the zext. + ExtFedByLoad->setDebugLoc(LI->getDebugLoc()); + ++NumExtsMoved; + Inst = ExtFedByLoad; + return true; + } + + // Continue promoting SExts if known as considerable depending on targets. + if (ATPConsiderable && + performAddressTypePromotion(Inst, AllowPromotionWithoutCommonHeader, + HasPromoted, TPT, SpeculativelyMovedExts)) + return true; + + TPT.rollback(LastKnownGood); + return false; +} + +// Perform address type promotion if doing so is profitable. +// If AllowPromotionWithoutCommonHeader == false, we should find other sext +// instructions that sign extended the same initial value. However, if +// AllowPromotionWithoutCommonHeader == true, we expect promoting the +// extension is just profitable. +bool CodeGenPrepare::performAddressTypePromotion( + Instruction *&Inst, bool AllowPromotionWithoutCommonHeader, + bool HasPromoted, TypePromotionTransaction &TPT, + SmallVectorImpl<Instruction *> &SpeculativelyMovedExts) { + bool Promoted = false; + SmallPtrSet<Instruction *, 1> UnhandledExts; + bool AllSeenFirst = true; + for (auto I : SpeculativelyMovedExts) { + Value *HeadOfChain = I->getOperand(0); + DenseMap<Value *, Instruction *>::iterator AlreadySeen = + SeenChainsForSExt.find(HeadOfChain); + // If there is an unhandled SExt which has the same header, try to promote + // it as well. + if (AlreadySeen != SeenChainsForSExt.end()) { + if (AlreadySeen->second != nullptr) + UnhandledExts.insert(AlreadySeen->second); + AllSeenFirst = false; + } + } + + if (!AllSeenFirst || (AllowPromotionWithoutCommonHeader && + SpeculativelyMovedExts.size() == 1)) { + TPT.commit(); + if (HasPromoted) + Promoted = true; + for (auto I : SpeculativelyMovedExts) { + Value *HeadOfChain = I->getOperand(0); + SeenChainsForSExt[HeadOfChain] = nullptr; + ValToSExtendedUses[HeadOfChain].push_back(I); + } + // Update Inst as promotion happen. + Inst = SpeculativelyMovedExts.pop_back_val(); + } else { + // This is the first chain visited from the header, keep the current chain + // as unhandled. Defer to promote this until we encounter another SExt + // chain derived from the same header. + for (auto I : SpeculativelyMovedExts) { + Value *HeadOfChain = I->getOperand(0); + SeenChainsForSExt[HeadOfChain] = Inst; + } + return false; + } + + if (!AllSeenFirst && !UnhandledExts.empty()) + for (auto VisitedSExt : UnhandledExts) { + if (RemovedInsts.count(VisitedSExt)) + continue; + TypePromotionTransaction TPT(RemovedInsts); + SmallVector<Instruction *, 1> Exts; + SmallVector<Instruction *, 2> Chains; + Exts.push_back(VisitedSExt); + bool HasPromoted = tryToPromoteExts(TPT, Exts, Chains); + TPT.commit(); + if (HasPromoted) + Promoted = true; + for (auto I : Chains) { + Value *HeadOfChain = I->getOperand(0); + // Mark this as handled. + SeenChainsForSExt[HeadOfChain] = nullptr; + ValToSExtendedUses[HeadOfChain].push_back(I); + } + } + return Promoted; +} + +bool CodeGenPrepare::optimizeExtUses(Instruction *I) { + BasicBlock *DefBB = I->getParent(); + + // If the result of a {s|z}ext and its source are both live out, rewrite all + // other uses of the source with result of extension. + Value *Src = I->getOperand(0); + if (Src->hasOneUse()) + return false; + + // Only do this xform if truncating is free. + if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) + return false; + + // Only safe to perform the optimization if the source is also defined in + // this block. + if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) + return false; + + bool DefIsLiveOut = false; + for (User *U : I->users()) { + Instruction *UI = cast<Instruction>(U); + + // Figure out which BB this ext is used in. + BasicBlock *UserBB = UI->getParent(); + if (UserBB == DefBB) continue; + DefIsLiveOut = true; + break; + } + if (!DefIsLiveOut) + return false; + + // Make sure none of the uses are PHI nodes. + for (User *U : Src->users()) { + Instruction *UI = cast<Instruction>(U); + BasicBlock *UserBB = UI->getParent(); + if (UserBB == DefBB) continue; + // Be conservative. We don't want this xform to end up introducing + // reloads just before load / store instructions. + if (isa<PHINode>(UI) || isa<LoadInst>(UI) || isa<StoreInst>(UI)) + return false; + } + + // InsertedTruncs - Only insert one trunc in each block once. + DenseMap<BasicBlock*, Instruction*> InsertedTruncs; + + bool MadeChange = false; + for (Use &U : Src->uses()) { + Instruction *User = cast<Instruction>(U.getUser()); + + // Figure out which BB this ext is used in. + BasicBlock *UserBB = User->getParent(); + if (UserBB == DefBB) continue; + + // Both src and def are live in this block. Rewrite the use. + Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; + + if (!InsertedTrunc) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedTrunc = new TruncInst(I, Src->getType(), "", &*InsertPt); + InsertedInsts.insert(InsertedTrunc); + } + + // Replace a use of the {s|z}ext source with a use of the result. + U = InsertedTrunc; + ++NumExtUses; + MadeChange = true; + } + + return MadeChange; +} + +// Find loads whose uses only use some of the loaded value's bits. Add an "and" +// just after the load if the target can fold this into one extload instruction, +// with the hope of eliminating some of the other later "and" instructions using +// the loaded value. "and"s that are made trivially redundant by the insertion +// of the new "and" are removed by this function, while others (e.g. those whose +// path from the load goes through a phi) are left for isel to potentially +// remove. +// +// For example: +// +// b0: +// x = load i32 +// ... +// b1: +// y = and x, 0xff +// z = use y +// +// becomes: +// +// b0: +// x = load i32 +// x' = and x, 0xff +// ... +// b1: +// z = use x' +// +// whereas: +// +// b0: +// x1 = load i32 +// ... +// b1: +// x2 = load i32 +// ... +// b2: +// x = phi x1, x2 +// y = and x, 0xff +// +// becomes (after a call to optimizeLoadExt for each load): +// +// b0: +// x1 = load i32 +// x1' = and x1, 0xff +// ... +// b1: +// x2 = load i32 +// x2' = and x2, 0xff +// ... +// b2: +// x = phi x1', x2' +// y = and x, 0xff +bool CodeGenPrepare::optimizeLoadExt(LoadInst *Load) { + if (!Load->isSimple() || !Load->getType()->isIntOrPtrTy()) + return false; + + // Skip loads we've already transformed. + if (Load->hasOneUse() && + InsertedInsts.count(cast<Instruction>(*Load->user_begin()))) + return false; + + // Look at all uses of Load, looking through phis, to determine how many bits + // of the loaded value are needed. + SmallVector<Instruction *, 8> WorkList; + SmallPtrSet<Instruction *, 16> Visited; + SmallVector<Instruction *, 8> AndsToMaybeRemove; + for (auto *U : Load->users()) + WorkList.push_back(cast<Instruction>(U)); + + EVT LoadResultVT = TLI->getValueType(*DL, Load->getType()); + unsigned BitWidth = LoadResultVT.getSizeInBits(); + APInt DemandBits(BitWidth, 0); + APInt WidestAndBits(BitWidth, 0); + + while (!WorkList.empty()) { + Instruction *I = WorkList.back(); + WorkList.pop_back(); + + // Break use-def graph loops. + if (!Visited.insert(I).second) + continue; + + // For a PHI node, push all of its users. + if (auto *Phi = dyn_cast<PHINode>(I)) { + for (auto *U : Phi->users()) + WorkList.push_back(cast<Instruction>(U)); + continue; + } + + switch (I->getOpcode()) { + case Instruction::And: { + auto *AndC = dyn_cast<ConstantInt>(I->getOperand(1)); + if (!AndC) + return false; + APInt AndBits = AndC->getValue(); + DemandBits |= AndBits; + // Keep track of the widest and mask we see. + if (AndBits.ugt(WidestAndBits)) + WidestAndBits = AndBits; + if (AndBits == WidestAndBits && I->getOperand(0) == Load) + AndsToMaybeRemove.push_back(I); + break; + } + + case Instruction::Shl: { + auto *ShlC = dyn_cast<ConstantInt>(I->getOperand(1)); + if (!ShlC) + return false; + uint64_t ShiftAmt = ShlC->getLimitedValue(BitWidth - 1); + DemandBits.setLowBits(BitWidth - ShiftAmt); + break; + } + + case Instruction::Trunc: { + EVT TruncVT = TLI->getValueType(*DL, I->getType()); + unsigned TruncBitWidth = TruncVT.getSizeInBits(); + DemandBits.setLowBits(TruncBitWidth); + break; + } + + default: + return false; + } + } + + uint32_t ActiveBits = DemandBits.getActiveBits(); + // Avoid hoisting (and (load x) 1) since it is unlikely to be folded by the + // target even if isLoadExtLegal says an i1 EXTLOAD is valid. For example, + // for the AArch64 target isLoadExtLegal(ZEXTLOAD, i32, i1) returns true, but + // (and (load x) 1) is not matched as a single instruction, rather as a LDR + // followed by an AND. + // TODO: Look into removing this restriction by fixing backends to either + // return false for isLoadExtLegal for i1 or have them select this pattern to + // a single instruction. + // + // Also avoid hoisting if we didn't see any ands with the exact DemandBits + // mask, since these are the only ands that will be removed by isel. + if (ActiveBits <= 1 || !DemandBits.isMask(ActiveBits) || + WidestAndBits != DemandBits) + return false; + + LLVMContext &Ctx = Load->getType()->getContext(); + Type *TruncTy = Type::getIntNTy(Ctx, ActiveBits); + EVT TruncVT = TLI->getValueType(*DL, TruncTy); + + // Reject cases that won't be matched as extloads. + if (!LoadResultVT.bitsGT(TruncVT) || !TruncVT.isRound() || + !TLI->isLoadExtLegal(ISD::ZEXTLOAD, LoadResultVT, TruncVT)) + return false; + + IRBuilder<> Builder(Load->getNextNode()); + auto *NewAnd = dyn_cast<Instruction>( + Builder.CreateAnd(Load, ConstantInt::get(Ctx, DemandBits))); + // Mark this instruction as "inserted by CGP", so that other + // optimizations don't touch it. + InsertedInsts.insert(NewAnd); + + // Replace all uses of load with new and (except for the use of load in the + // new and itself). + Load->replaceAllUsesWith(NewAnd); + NewAnd->setOperand(0, Load); + + // Remove any and instructions that are now redundant. + for (auto *And : AndsToMaybeRemove) + // Check that the and mask is the same as the one we decided to put on the + // new and. + if (cast<ConstantInt>(And->getOperand(1))->getValue() == DemandBits) { + And->replaceAllUsesWith(NewAnd); + if (&*CurInstIterator == And) + CurInstIterator = std::next(And->getIterator()); + And->eraseFromParent(); + ++NumAndUses; + } + + ++NumAndsAdded; + return true; +} + +/// Check if V (an operand of a select instruction) is an expensive instruction +/// that is only used once. +static bool sinkSelectOperand(const TargetTransformInfo *TTI, Value *V) { + auto *I = dyn_cast<Instruction>(V); + // If it's safe to speculatively execute, then it should not have side + // effects; therefore, it's safe to sink and possibly *not* execute. + return I && I->hasOneUse() && isSafeToSpeculativelyExecute(I) && + TTI->getUserCost(I) >= TargetTransformInfo::TCC_Expensive; +} + +/// Returns true if a SelectInst should be turned into an explicit branch. +static bool isFormingBranchFromSelectProfitable(const TargetTransformInfo *TTI, + const TargetLowering *TLI, + SelectInst *SI) { + // If even a predictable select is cheap, then a branch can't be cheaper. + if (!TLI->isPredictableSelectExpensive()) + return false; + + // FIXME: This should use the same heuristics as IfConversion to determine + // whether a select is better represented as a branch. + + // If metadata tells us that the select condition is obviously predictable, + // then we want to replace the select with a branch. + uint64_t TrueWeight, FalseWeight; + if (SI->extractProfMetadata(TrueWeight, FalseWeight)) { + uint64_t Max = std::max(TrueWeight, FalseWeight); + uint64_t Sum = TrueWeight + FalseWeight; + if (Sum != 0) { + auto Probability = BranchProbability::getBranchProbability(Max, Sum); + if (Probability > TLI->getPredictableBranchThreshold()) + return true; + } + } + + CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); + + // If a branch is predictable, an out-of-order CPU can avoid blocking on its + // comparison condition. If the compare has more than one use, there's + // probably another cmov or setcc around, so it's not worth emitting a branch. + if (!Cmp || !Cmp->hasOneUse()) + return false; + + // If either operand of the select is expensive and only needed on one side + // of the select, we should form a branch. + if (sinkSelectOperand(TTI, SI->getTrueValue()) || + sinkSelectOperand(TTI, SI->getFalseValue())) + return true; + + return false; +} + +/// If \p isTrue is true, return the true value of \p SI, otherwise return +/// false value of \p SI. If the true/false value of \p SI is defined by any +/// select instructions in \p Selects, look through the defining select +/// instruction until the true/false value is not defined in \p Selects. +static Value *getTrueOrFalseValue( + SelectInst *SI, bool isTrue, + const SmallPtrSet<const Instruction *, 2> &Selects) { + Value *V = nullptr; + + for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI); + DefSI = dyn_cast<SelectInst>(V)) { + assert(DefSI->getCondition() == SI->getCondition() && + "The condition of DefSI does not match with SI"); + V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue()); + } + + assert(V && "Failed to get select true/false value"); + return V; +} + +bool CodeGenPrepare::optimizeShiftInst(BinaryOperator *Shift) { + assert(Shift->isShift() && "Expected a shift"); + + // If this is (1) a vector shift, (2) shifts by scalars are cheaper than + // general vector shifts, and (3) the shift amount is a select-of-splatted + // values, hoist the shifts before the select: + // shift Op0, (select Cond, TVal, FVal) --> + // select Cond, (shift Op0, TVal), (shift Op0, FVal) + // + // This is inverting a generic IR transform when we know that the cost of a + // general vector shift is more than the cost of 2 shift-by-scalars. + // We can't do this effectively in SDAG because we may not be able to + // determine if the select operands are splats from within a basic block. + Type *Ty = Shift->getType(); + if (!Ty->isVectorTy() || !TLI->isVectorShiftByScalarCheap(Ty)) + return false; + Value *Cond, *TVal, *FVal; + if (!match(Shift->getOperand(1), + m_OneUse(m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal))))) + return false; + if (!isSplatValue(TVal) || !isSplatValue(FVal)) + return false; + + IRBuilder<> Builder(Shift); + BinaryOperator::BinaryOps Opcode = Shift->getOpcode(); + Value *NewTVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), TVal); + Value *NewFVal = Builder.CreateBinOp(Opcode, Shift->getOperand(0), FVal); + Value *NewSel = Builder.CreateSelect(Cond, NewTVal, NewFVal); + Shift->replaceAllUsesWith(NewSel); + Shift->eraseFromParent(); + return true; +} + +/// If we have a SelectInst that will likely profit from branch prediction, +/// turn it into a branch. +bool CodeGenPrepare::optimizeSelectInst(SelectInst *SI) { + // If branch conversion isn't desirable, exit early. + if (DisableSelectToBranch || OptSize || !TLI) + return false; + + // Find all consecutive select instructions that share the same condition. + SmallVector<SelectInst *, 2> ASI; + ASI.push_back(SI); + for (BasicBlock::iterator It = ++BasicBlock::iterator(SI); + It != SI->getParent()->end(); ++It) { + SelectInst *I = dyn_cast<SelectInst>(&*It); + if (I && SI->getCondition() == I->getCondition()) { + ASI.push_back(I); + } else { + break; + } + } + + SelectInst *LastSI = ASI.back(); + // Increment the current iterator to skip all the rest of select instructions + // because they will be either "not lowered" or "all lowered" to branch. + CurInstIterator = std::next(LastSI->getIterator()); + + bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); + + // Can we convert the 'select' to CF ? + if (VectorCond || SI->getMetadata(LLVMContext::MD_unpredictable)) + return false; + + TargetLowering::SelectSupportKind SelectKind; + if (VectorCond) + SelectKind = TargetLowering::VectorMaskSelect; + else if (SI->getType()->isVectorTy()) + SelectKind = TargetLowering::ScalarCondVectorVal; + else + SelectKind = TargetLowering::ScalarValSelect; + + if (TLI->isSelectSupported(SelectKind) && + !isFormingBranchFromSelectProfitable(TTI, TLI, SI)) + return false; + + // The DominatorTree needs to be rebuilt by any consumers after this + // transformation. We simply reset here rather than setting the ModifiedDT + // flag to avoid restarting the function walk in runOnFunction for each + // select optimized. + DT.reset(); + + // Transform a sequence like this: + // start: + // %cmp = cmp uge i32 %a, %b + // %sel = select i1 %cmp, i32 %c, i32 %d + // + // Into: + // start: + // %cmp = cmp uge i32 %a, %b + // br i1 %cmp, label %select.true, label %select.false + // select.true: + // br label %select.end + // select.false: + // br label %select.end + // select.end: + // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ] + // + // In addition, we may sink instructions that produce %c or %d from + // the entry block into the destination(s) of the new branch. + // If the true or false blocks do not contain a sunken instruction, that + // block and its branch may be optimized away. In that case, one side of the + // first branch will point directly to select.end, and the corresponding PHI + // predecessor block will be the start block. + + // First, we split the block containing the select into 2 blocks. + BasicBlock *StartBlock = SI->getParent(); + BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI)); + BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); + + // Delete the unconditional branch that was just created by the split. + StartBlock->getTerminator()->eraseFromParent(); + + // These are the new basic blocks for the conditional branch. + // At least one will become an actual new basic block. + BasicBlock *TrueBlock = nullptr; + BasicBlock *FalseBlock = nullptr; + BranchInst *TrueBranch = nullptr; + BranchInst *FalseBranch = nullptr; + + // Sink expensive instructions into the conditional blocks to avoid executing + // them speculatively. + for (SelectInst *SI : ASI) { + if (sinkSelectOperand(TTI, SI->getTrueValue())) { + if (TrueBlock == nullptr) { + TrueBlock = BasicBlock::Create(SI->getContext(), "select.true.sink", + EndBlock->getParent(), EndBlock); + TrueBranch = BranchInst::Create(EndBlock, TrueBlock); + TrueBranch->setDebugLoc(SI->getDebugLoc()); + } + auto *TrueInst = cast<Instruction>(SI->getTrueValue()); + TrueInst->moveBefore(TrueBranch); + } + if (sinkSelectOperand(TTI, SI->getFalseValue())) { + if (FalseBlock == nullptr) { + FalseBlock = BasicBlock::Create(SI->getContext(), "select.false.sink", + EndBlock->getParent(), EndBlock); + FalseBranch = BranchInst::Create(EndBlock, FalseBlock); + FalseBranch->setDebugLoc(SI->getDebugLoc()); + } + auto *FalseInst = cast<Instruction>(SI->getFalseValue()); + FalseInst->moveBefore(FalseBranch); + } + } + + // If there was nothing to sink, then arbitrarily choose the 'false' side + // for a new input value to the PHI. + if (TrueBlock == FalseBlock) { + assert(TrueBlock == nullptr && + "Unexpected basic block transform while optimizing select"); + + FalseBlock = BasicBlock::Create(SI->getContext(), "select.false", + EndBlock->getParent(), EndBlock); + auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock); + FalseBranch->setDebugLoc(SI->getDebugLoc()); + } + + // Insert the real conditional branch based on the original condition. + // If we did not create a new block for one of the 'true' or 'false' paths + // of the condition, it means that side of the branch goes to the end block + // directly and the path originates from the start block from the point of + // view of the new PHI. + BasicBlock *TT, *FT; + if (TrueBlock == nullptr) { + TT = EndBlock; + FT = FalseBlock; + TrueBlock = StartBlock; + } else if (FalseBlock == nullptr) { + TT = TrueBlock; + FT = EndBlock; + FalseBlock = StartBlock; + } else { + TT = TrueBlock; + FT = FalseBlock; + } + IRBuilder<>(SI).CreateCondBr(SI->getCondition(), TT, FT, SI); + + SmallPtrSet<const Instruction *, 2> INS; + INS.insert(ASI.begin(), ASI.end()); + // Use reverse iterator because later select may use the value of the + // earlier select, and we need to propagate value through earlier select + // to get the PHI operand. + for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) { + SelectInst *SI = *It; + // The select itself is replaced with a PHI Node. + PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front()); + PN->takeName(SI); + PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock); + PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock); + PN->setDebugLoc(SI->getDebugLoc()); + + SI->replaceAllUsesWith(PN); + SI->eraseFromParent(); + INS.erase(SI); + ++NumSelectsExpanded; + } + + // Instruct OptimizeBlock to skip to the next block. + CurInstIterator = StartBlock->end(); + return true; +} + +static bool isBroadcastShuffle(ShuffleVectorInst *SVI) { + SmallVector<int, 16> Mask(SVI->getShuffleMask()); + int SplatElem = -1; + for (unsigned i = 0; i < Mask.size(); ++i) { + if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem) + return false; + SplatElem = Mask[i]; + } + + return true; +} + +/// Some targets have expensive vector shifts if the lanes aren't all the same +/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases +/// it's often worth sinking a shufflevector splat down to its use so that +/// codegen can spot all lanes are identical. +bool CodeGenPrepare::optimizeShuffleVectorInst(ShuffleVectorInst *SVI) { + BasicBlock *DefBB = SVI->getParent(); + + // Only do this xform if variable vector shifts are particularly expensive. + if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType())) + return false; + + // We only expect better codegen by sinking a shuffle if we can recognise a + // constant splat. + if (!isBroadcastShuffle(SVI)) + return false; + + // InsertedShuffles - Only insert a shuffle in each block once. + DenseMap<BasicBlock*, Instruction*> InsertedShuffles; + + bool MadeChange = false; + for (User *U : SVI->users()) { + Instruction *UI = cast<Instruction>(U); + + // Figure out which BB this ext is used in. + BasicBlock *UserBB = UI->getParent(); + if (UserBB == DefBB) continue; + + // For now only apply this when the splat is used by a shift instruction. + if (!UI->isShift()) continue; + + // Everything checks out, sink the shuffle if the user's block doesn't + // already have a copy. + Instruction *&InsertedShuffle = InsertedShuffles[UserBB]; + + if (!InsertedShuffle) { + BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); + assert(InsertPt != UserBB->end()); + InsertedShuffle = + new ShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), + SVI->getOperand(2), "", &*InsertPt); + InsertedShuffle->setDebugLoc(SVI->getDebugLoc()); + } + + UI->replaceUsesOfWith(SVI, InsertedShuffle); + MadeChange = true; + } + + // If we removed all uses, nuke the shuffle. + if (SVI->use_empty()) { + SVI->eraseFromParent(); + MadeChange = true; + } + + return MadeChange; +} + +bool CodeGenPrepare::tryToSinkFreeOperands(Instruction *I) { + // If the operands of I can be folded into a target instruction together with + // I, duplicate and sink them. + SmallVector<Use *, 4> OpsToSink; + if (!TLI || !TLI->shouldSinkOperands(I, OpsToSink)) + return false; + + // OpsToSink can contain multiple uses in a use chain (e.g. + // (%u1 with %u1 = shufflevector), (%u2 with %u2 = zext %u1)). The dominating + // uses must come first, which means they are sunk first, temporarily creating + // invalid IR. This will be fixed once their dominated users are sunk and + // updated. + BasicBlock *TargetBB = I->getParent(); + bool Changed = false; + SmallVector<Use *, 4> ToReplace; + for (Use *U : OpsToSink) { + auto *UI = cast<Instruction>(U->get()); + if (UI->getParent() == TargetBB || isa<PHINode>(UI)) + continue; + ToReplace.push_back(U); + } + + SmallPtrSet<Instruction *, 4> MaybeDead; + for (Use *U : ToReplace) { + auto *UI = cast<Instruction>(U->get()); + Instruction *NI = UI->clone(); + MaybeDead.insert(UI); + LLVM_DEBUG(dbgs() << "Sinking " << *UI << " to user " << *I << "\n"); + NI->insertBefore(I); + InsertedInsts.insert(NI); + U->set(NI); + Changed = true; + } + + // Remove instructions that are dead after sinking. + for (auto *I : MaybeDead) + if (!I->hasNUsesOrMore(1)) + I->eraseFromParent(); + + return Changed; +} + +bool CodeGenPrepare::optimizeSwitchInst(SwitchInst *SI) { + if (!TLI || !DL) + return false; + + Value *Cond = SI->getCondition(); + Type *OldType = Cond->getType(); + LLVMContext &Context = Cond->getContext(); + MVT RegType = TLI->getRegisterType(Context, TLI->getValueType(*DL, OldType)); + unsigned RegWidth = RegType.getSizeInBits(); + + if (RegWidth <= cast<IntegerType>(OldType)->getBitWidth()) + return false; + + // If the register width is greater than the type width, expand the condition + // of the switch instruction and each case constant to the width of the + // register. By widening the type of the switch condition, subsequent + // comparisons (for case comparisons) will not need to be extended to the + // preferred register width, so we will potentially eliminate N-1 extends, + // where N is the number of cases in the switch. + auto *NewType = Type::getIntNTy(Context, RegWidth); + + // Zero-extend the switch condition and case constants unless the switch + // condition is a function argument that is already being sign-extended. + // In that case, we can avoid an unnecessary mask/extension by sign-extending + // everything instead. + Instruction::CastOps ExtType = Instruction::ZExt; + if (auto *Arg = dyn_cast<Argument>(Cond)) + if (Arg->hasSExtAttr()) + ExtType = Instruction::SExt; + + auto *ExtInst = CastInst::Create(ExtType, Cond, NewType); + ExtInst->insertBefore(SI); + ExtInst->setDebugLoc(SI->getDebugLoc()); + SI->setCondition(ExtInst); + for (auto Case : SI->cases()) { + APInt NarrowConst = Case.getCaseValue()->getValue(); + APInt WideConst = (ExtType == Instruction::ZExt) ? + NarrowConst.zext(RegWidth) : NarrowConst.sext(RegWidth); + Case.setValue(ConstantInt::get(Context, WideConst)); + } + + return true; +} + + +namespace { + +/// Helper class to promote a scalar operation to a vector one. +/// This class is used to move downward extractelement transition. +/// E.g., +/// a = vector_op <2 x i32> +/// b = extractelement <2 x i32> a, i32 0 +/// c = scalar_op b +/// store c +/// +/// => +/// a = vector_op <2 x i32> +/// c = vector_op a (equivalent to scalar_op on the related lane) +/// * d = extractelement <2 x i32> c, i32 0 +/// * store d +/// Assuming both extractelement and store can be combine, we get rid of the +/// transition. +class VectorPromoteHelper { + /// DataLayout associated with the current module. + const DataLayout &DL; + + /// Used to perform some checks on the legality of vector operations. + const TargetLowering &TLI; + + /// Used to estimated the cost of the promoted chain. + const TargetTransformInfo &TTI; + + /// The transition being moved downwards. + Instruction *Transition; + + /// The sequence of instructions to be promoted. + SmallVector<Instruction *, 4> InstsToBePromoted; + + /// Cost of combining a store and an extract. + unsigned StoreExtractCombineCost; + + /// Instruction that will be combined with the transition. + Instruction *CombineInst = nullptr; + + /// The instruction that represents the current end of the transition. + /// Since we are faking the promotion until we reach the end of the chain + /// of computation, we need a way to get the current end of the transition. + Instruction *getEndOfTransition() const { + if (InstsToBePromoted.empty()) + return Transition; + return InstsToBePromoted.back(); + } + + /// Return the index of the original value in the transition. + /// E.g., for "extractelement <2 x i32> c, i32 1" the original value, + /// c, is at index 0. + unsigned getTransitionOriginalValueIdx() const { + assert(isa<ExtractElementInst>(Transition) && + "Other kind of transitions are not supported yet"); + return 0; + } + + /// Return the index of the index in the transition. + /// E.g., for "extractelement <2 x i32> c, i32 0" the index + /// is at index 1. + unsigned getTransitionIdx() const { + assert(isa<ExtractElementInst>(Transition) && + "Other kind of transitions are not supported yet"); + return 1; + } + + /// Get the type of the transition. + /// This is the type of the original value. + /// E.g., for "extractelement <2 x i32> c, i32 1" the type of the + /// transition is <2 x i32>. + Type *getTransitionType() const { + return Transition->getOperand(getTransitionOriginalValueIdx())->getType(); + } + + /// Promote \p ToBePromoted by moving \p Def downward through. + /// I.e., we have the following sequence: + /// Def = Transition <ty1> a to <ty2> + /// b = ToBePromoted <ty2> Def, ... + /// => + /// b = ToBePromoted <ty1> a, ... + /// Def = Transition <ty1> ToBePromoted to <ty2> + void promoteImpl(Instruction *ToBePromoted); + + /// Check whether or not it is profitable to promote all the + /// instructions enqueued to be promoted. + bool isProfitableToPromote() { + Value *ValIdx = Transition->getOperand(getTransitionOriginalValueIdx()); + unsigned Index = isa<ConstantInt>(ValIdx) + ? cast<ConstantInt>(ValIdx)->getZExtValue() + : -1; + Type *PromotedType = getTransitionType(); + + StoreInst *ST = cast<StoreInst>(CombineInst); + unsigned AS = ST->getPointerAddressSpace(); + unsigned Align = ST->getAlignment(); + // Check if this store is supported. + if (!TLI.allowsMisalignedMemoryAccesses( + TLI.getValueType(DL, ST->getValueOperand()->getType()), AS, + Align)) { + // If this is not supported, there is no way we can combine + // the extract with the store. + return false; + } + + // The scalar chain of computation has to pay for the transition + // scalar to vector. + // The vector chain has to account for the combining cost. + uint64_t ScalarCost = + TTI.getVectorInstrCost(Transition->getOpcode(), PromotedType, Index); + uint64_t VectorCost = StoreExtractCombineCost; + for (const auto &Inst : InstsToBePromoted) { + // Compute the cost. + // By construction, all instructions being promoted are arithmetic ones. + // Moreover, one argument is a constant that can be viewed as a splat + // constant. + Value *Arg0 = Inst->getOperand(0); + bool IsArg0Constant = isa<UndefValue>(Arg0) || isa<ConstantInt>(Arg0) || + isa<ConstantFP>(Arg0); + TargetTransformInfo::OperandValueKind Arg0OVK = + IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue + : TargetTransformInfo::OK_AnyValue; + TargetTransformInfo::OperandValueKind Arg1OVK = + !IsArg0Constant ? TargetTransformInfo::OK_UniformConstantValue + : TargetTransformInfo::OK_AnyValue; + ScalarCost += TTI.getArithmeticInstrCost( + Inst->getOpcode(), Inst->getType(), Arg0OVK, Arg1OVK); + VectorCost += TTI.getArithmeticInstrCost(Inst->getOpcode(), PromotedType, + Arg0OVK, Arg1OVK); + } + LLVM_DEBUG( + dbgs() << "Estimated cost of computation to be promoted:\nScalar: " + << ScalarCost << "\nVector: " << VectorCost << '\n'); + return ScalarCost > VectorCost; + } + + /// Generate a constant vector with \p Val with the same + /// number of elements as the transition. + /// \p UseSplat defines whether or not \p Val should be replicated + /// across the whole vector. + /// In other words, if UseSplat == true, we generate <Val, Val, ..., Val>, + /// otherwise we generate a vector with as many undef as possible: + /// <undef, ..., undef, Val, undef, ..., undef> where \p Val is only + /// used at the index of the extract. + Value *getConstantVector(Constant *Val, bool UseSplat) const { + unsigned ExtractIdx = std::numeric_limits<unsigned>::max(); + if (!UseSplat) { + // If we cannot determine where the constant must be, we have to + // use a splat constant. + Value *ValExtractIdx = Transition->getOperand(getTransitionIdx()); + if (ConstantInt *CstVal = dyn_cast<ConstantInt>(ValExtractIdx)) + ExtractIdx = CstVal->getSExtValue(); + else + UseSplat = true; + } + + unsigned End = getTransitionType()->getVectorNumElements(); + if (UseSplat) + return ConstantVector::getSplat(End, Val); + + SmallVector<Constant *, 4> ConstVec; + UndefValue *UndefVal = UndefValue::get(Val->getType()); + for (unsigned Idx = 0; Idx != End; ++Idx) { + if (Idx == ExtractIdx) + ConstVec.push_back(Val); + else + ConstVec.push_back(UndefVal); + } + return ConstantVector::get(ConstVec); + } + + /// Check if promoting to a vector type an operand at \p OperandIdx + /// in \p Use can trigger undefined behavior. + static bool canCauseUndefinedBehavior(const Instruction *Use, + unsigned OperandIdx) { + // This is not safe to introduce undef when the operand is on + // the right hand side of a division-like instruction. + if (OperandIdx != 1) + return false; + switch (Use->getOpcode()) { + default: + return false; + case Instruction::SDiv: + case Instruction::UDiv: + case Instruction::SRem: + case Instruction::URem: + return true; + case Instruction::FDiv: + case Instruction::FRem: + return !Use->hasNoNaNs(); + } + llvm_unreachable(nullptr); + } + +public: + VectorPromoteHelper(const DataLayout &DL, const TargetLowering &TLI, + const TargetTransformInfo &TTI, Instruction *Transition, + unsigned CombineCost) + : DL(DL), TLI(TLI), TTI(TTI), Transition(Transition), + StoreExtractCombineCost(CombineCost) { + assert(Transition && "Do not know how to promote null"); + } + + /// Check if we can promote \p ToBePromoted to \p Type. + bool canPromote(const Instruction *ToBePromoted) const { + // We could support CastInst too. + return isa<BinaryOperator>(ToBePromoted); + } + + /// Check if it is profitable to promote \p ToBePromoted + /// by moving downward the transition through. + bool shouldPromote(const Instruction *ToBePromoted) const { + // Promote only if all the operands can be statically expanded. + // Indeed, we do not want to introduce any new kind of transitions. + for (const Use &U : ToBePromoted->operands()) { + const Value *Val = U.get(); + if (Val == getEndOfTransition()) { + // If the use is a division and the transition is on the rhs, + // we cannot promote the operation, otherwise we may create a + // division by zero. + if (canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())) + return false; + continue; + } + if (!isa<ConstantInt>(Val) && !isa<UndefValue>(Val) && + !isa<ConstantFP>(Val)) + return false; + } + // Check that the resulting operation is legal. + int ISDOpcode = TLI.InstructionOpcodeToISD(ToBePromoted->getOpcode()); + if (!ISDOpcode) + return false; + return StressStoreExtract || + TLI.isOperationLegalOrCustom( + ISDOpcode, TLI.getValueType(DL, getTransitionType(), true)); + } + + /// Check whether or not \p Use can be combined + /// with the transition. + /// I.e., is it possible to do Use(Transition) => AnotherUse? + bool canCombine(const Instruction *Use) { return isa<StoreInst>(Use); } + + /// Record \p ToBePromoted as part of the chain to be promoted. + void enqueueForPromotion(Instruction *ToBePromoted) { + InstsToBePromoted.push_back(ToBePromoted); + } + + /// Set the instruction that will be combined with the transition. + void recordCombineInstruction(Instruction *ToBeCombined) { + assert(canCombine(ToBeCombined) && "Unsupported instruction to combine"); + CombineInst = ToBeCombined; + } + + /// Promote all the instructions enqueued for promotion if it is + /// is profitable. + /// \return True if the promotion happened, false otherwise. + bool promote() { + // Check if there is something to promote. + // Right now, if we do not have anything to combine with, + // we assume the promotion is not profitable. + if (InstsToBePromoted.empty() || !CombineInst) + return false; + + // Check cost. + if (!StressStoreExtract && !isProfitableToPromote()) + return false; + + // Promote. + for (auto &ToBePromoted : InstsToBePromoted) + promoteImpl(ToBePromoted); + InstsToBePromoted.clear(); + return true; + } +}; + +} // end anonymous namespace + +void VectorPromoteHelper::promoteImpl(Instruction *ToBePromoted) { + // At this point, we know that all the operands of ToBePromoted but Def + // can be statically promoted. + // For Def, we need to use its parameter in ToBePromoted: + // b = ToBePromoted ty1 a + // Def = Transition ty1 b to ty2 + // Move the transition down. + // 1. Replace all uses of the promoted operation by the transition. + // = ... b => = ... Def. + assert(ToBePromoted->getType() == Transition->getType() && + "The type of the result of the transition does not match " + "the final type"); + ToBePromoted->replaceAllUsesWith(Transition); + // 2. Update the type of the uses. + // b = ToBePromoted ty2 Def => b = ToBePromoted ty1 Def. + Type *TransitionTy = getTransitionType(); + ToBePromoted->mutateType(TransitionTy); + // 3. Update all the operands of the promoted operation with promoted + // operands. + // b = ToBePromoted ty1 Def => b = ToBePromoted ty1 a. + for (Use &U : ToBePromoted->operands()) { + Value *Val = U.get(); + Value *NewVal = nullptr; + if (Val == Transition) + NewVal = Transition->getOperand(getTransitionOriginalValueIdx()); + else if (isa<UndefValue>(Val) || isa<ConstantInt>(Val) || + isa<ConstantFP>(Val)) { + // Use a splat constant if it is not safe to use undef. + NewVal = getConstantVector( + cast<Constant>(Val), + isa<UndefValue>(Val) || + canCauseUndefinedBehavior(ToBePromoted, U.getOperandNo())); + } else + llvm_unreachable("Did you modified shouldPromote and forgot to update " + "this?"); + ToBePromoted->setOperand(U.getOperandNo(), NewVal); + } + Transition->moveAfter(ToBePromoted); + Transition->setOperand(getTransitionOriginalValueIdx(), ToBePromoted); +} + +/// Some targets can do store(extractelement) with one instruction. +/// Try to push the extractelement towards the stores when the target +/// has this feature and this is profitable. +bool CodeGenPrepare::optimizeExtractElementInst(Instruction *Inst) { + unsigned CombineCost = std::numeric_limits<unsigned>::max(); + if (DisableStoreExtract || !TLI || + (!StressStoreExtract && + !TLI->canCombineStoreAndExtract(Inst->getOperand(0)->getType(), + Inst->getOperand(1), CombineCost))) + return false; + + // At this point we know that Inst is a vector to scalar transition. + // Try to move it down the def-use chain, until: + // - We can combine the transition with its single use + // => we got rid of the transition. + // - We escape the current basic block + // => we would need to check that we are moving it at a cheaper place and + // we do not do that for now. + BasicBlock *Parent = Inst->getParent(); + LLVM_DEBUG(dbgs() << "Found an interesting transition: " << *Inst << '\n'); + VectorPromoteHelper VPH(*DL, *TLI, *TTI, Inst, CombineCost); + // If the transition has more than one use, assume this is not going to be + // beneficial. + while (Inst->hasOneUse()) { + Instruction *ToBePromoted = cast<Instruction>(*Inst->user_begin()); + LLVM_DEBUG(dbgs() << "Use: " << *ToBePromoted << '\n'); + + if (ToBePromoted->getParent() != Parent) { + LLVM_DEBUG(dbgs() << "Instruction to promote is in a different block (" + << ToBePromoted->getParent()->getName() + << ") than the transition (" << Parent->getName() + << ").\n"); + return false; + } + + if (VPH.canCombine(ToBePromoted)) { + LLVM_DEBUG(dbgs() << "Assume " << *Inst << '\n' + << "will be combined with: " << *ToBePromoted << '\n'); + VPH.recordCombineInstruction(ToBePromoted); + bool Changed = VPH.promote(); + NumStoreExtractExposed += Changed; + return Changed; + } + + LLVM_DEBUG(dbgs() << "Try promoting.\n"); + if (!VPH.canPromote(ToBePromoted) || !VPH.shouldPromote(ToBePromoted)) + return false; + + LLVM_DEBUG(dbgs() << "Promoting is possible... Enqueue for promotion!\n"); + + VPH.enqueueForPromotion(ToBePromoted); + Inst = ToBePromoted; + } + return false; +} + +/// For the instruction sequence of store below, F and I values +/// are bundled together as an i64 value before being stored into memory. +/// Sometimes it is more efficient to generate separate stores for F and I, +/// which can remove the bitwise instructions or sink them to colder places. +/// +/// (store (or (zext (bitcast F to i32) to i64), +/// (shl (zext I to i64), 32)), addr) --> +/// (store F, addr) and (store I, addr+4) +/// +/// Similarly, splitting for other merged store can also be beneficial, like: +/// For pair of {i32, i32}, i64 store --> two i32 stores. +/// For pair of {i32, i16}, i64 store --> two i32 stores. +/// For pair of {i16, i16}, i32 store --> two i16 stores. +/// For pair of {i16, i8}, i32 store --> two i16 stores. +/// For pair of {i8, i8}, i16 store --> two i8 stores. +/// +/// We allow each target to determine specifically which kind of splitting is +/// supported. +/// +/// The store patterns are commonly seen from the simple code snippet below +/// if only std::make_pair(...) is sroa transformed before inlined into hoo. +/// void goo(const std::pair<int, float> &); +/// hoo() { +/// ... +/// goo(std::make_pair(tmp, ftmp)); +/// ... +/// } +/// +/// Although we already have similar splitting in DAG Combine, we duplicate +/// it in CodeGenPrepare to catch the case in which pattern is across +/// multiple BBs. The logic in DAG Combine is kept to catch case generated +/// during code expansion. +static bool splitMergedValStore(StoreInst &SI, const DataLayout &DL, + const TargetLowering &TLI) { + // Handle simple but common cases only. + Type *StoreType = SI.getValueOperand()->getType(); + if (!DL.typeSizeEqualsStoreSize(StoreType) || + DL.getTypeSizeInBits(StoreType) == 0) + return false; + + unsigned HalfValBitSize = DL.getTypeSizeInBits(StoreType) / 2; + Type *SplitStoreType = Type::getIntNTy(SI.getContext(), HalfValBitSize); + if (!DL.typeSizeEqualsStoreSize(SplitStoreType)) + return false; + + // Don't split the store if it is volatile. + if (SI.isVolatile()) + return false; + + // Match the following patterns: + // (store (or (zext LValue to i64), + // (shl (zext HValue to i64), 32)), HalfValBitSize) + // or + // (store (or (shl (zext HValue to i64), 32)), HalfValBitSize) + // (zext LValue to i64), + // Expect both operands of OR and the first operand of SHL have only + // one use. + Value *LValue, *HValue; + if (!match(SI.getValueOperand(), + m_c_Or(m_OneUse(m_ZExt(m_Value(LValue))), + m_OneUse(m_Shl(m_OneUse(m_ZExt(m_Value(HValue))), + m_SpecificInt(HalfValBitSize)))))) + return false; + + // Check LValue and HValue are int with size less or equal than 32. + if (!LValue->getType()->isIntegerTy() || + DL.getTypeSizeInBits(LValue->getType()) > HalfValBitSize || + !HValue->getType()->isIntegerTy() || + DL.getTypeSizeInBits(HValue->getType()) > HalfValBitSize) + return false; + + // If LValue/HValue is a bitcast instruction, use the EVT before bitcast + // as the input of target query. + auto *LBC = dyn_cast<BitCastInst>(LValue); + auto *HBC = dyn_cast<BitCastInst>(HValue); + EVT LowTy = LBC ? EVT::getEVT(LBC->getOperand(0)->getType()) + : EVT::getEVT(LValue->getType()); + EVT HighTy = HBC ? EVT::getEVT(HBC->getOperand(0)->getType()) + : EVT::getEVT(HValue->getType()); + if (!ForceSplitStore && !TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy)) + return false; + + // Start to split store. + IRBuilder<> Builder(SI.getContext()); + Builder.SetInsertPoint(&SI); + + // If LValue/HValue is a bitcast in another BB, create a new one in current + // BB so it may be merged with the splitted stores by dag combiner. + if (LBC && LBC->getParent() != SI.getParent()) + LValue = Builder.CreateBitCast(LBC->getOperand(0), LBC->getType()); + if (HBC && HBC->getParent() != SI.getParent()) + HValue = Builder.CreateBitCast(HBC->getOperand(0), HBC->getType()); + + bool IsLE = SI.getModule()->getDataLayout().isLittleEndian(); + auto CreateSplitStore = [&](Value *V, bool Upper) { + V = Builder.CreateZExtOrBitCast(V, SplitStoreType); + Value *Addr = Builder.CreateBitCast( + SI.getOperand(1), + SplitStoreType->getPointerTo(SI.getPointerAddressSpace())); + if ((IsLE && Upper) || (!IsLE && !Upper)) + Addr = Builder.CreateGEP( + SplitStoreType, Addr, + ConstantInt::get(Type::getInt32Ty(SI.getContext()), 1)); + Builder.CreateAlignedStore( + V, Addr, Upper ? SI.getAlignment() / 2 : SI.getAlignment()); + }; + + CreateSplitStore(LValue, false); + CreateSplitStore(HValue, true); + + // Delete the old store. + SI.eraseFromParent(); + return true; +} + +// Return true if the GEP has two operands, the first operand is of a sequential +// type, and the second operand is a constant. +static bool GEPSequentialConstIndexed(GetElementPtrInst *GEP) { + gep_type_iterator I = gep_type_begin(*GEP); + return GEP->getNumOperands() == 2 && + I.isSequential() && + isa<ConstantInt>(GEP->getOperand(1)); +} + +// Try unmerging GEPs to reduce liveness interference (register pressure) across +// IndirectBr edges. Since IndirectBr edges tend to touch on many blocks, +// reducing liveness interference across those edges benefits global register +// allocation. Currently handles only certain cases. +// +// For example, unmerge %GEPI and %UGEPI as below. +// +// ---------- BEFORE ---------- +// SrcBlock: +// ... +// %GEPIOp = ... +// ... +// %GEPI = gep %GEPIOp, Idx +// ... +// indirectbr ... [ label %DstB0, label %DstB1, ... label %DstBi ... ] +// (* %GEPI is alive on the indirectbr edges due to other uses ahead) +// (* %GEPIOp is alive on the indirectbr edges only because of it's used by +// %UGEPI) +// +// DstB0: ... (there may be a gep similar to %UGEPI to be unmerged) +// DstB1: ... (there may be a gep similar to %UGEPI to be unmerged) +// ... +// +// DstBi: +// ... +// %UGEPI = gep %GEPIOp, UIdx +// ... +// --------------------------- +// +// ---------- AFTER ---------- +// SrcBlock: +// ... (same as above) +// (* %GEPI is still alive on the indirectbr edges) +// (* %GEPIOp is no longer alive on the indirectbr edges as a result of the +// unmerging) +// ... +// +// DstBi: +// ... +// %UGEPI = gep %GEPI, (UIdx-Idx) +// ... +// --------------------------- +// +// The register pressure on the IndirectBr edges is reduced because %GEPIOp is +// no longer alive on them. +// +// We try to unmerge GEPs here in CodGenPrepare, as opposed to limiting merging +// of GEPs in the first place in InstCombiner::visitGetElementPtrInst() so as +// not to disable further simplications and optimizations as a result of GEP +// merging. +// +// Note this unmerging may increase the length of the data flow critical path +// (the path from %GEPIOp to %UGEPI would go through %GEPI), which is a tradeoff +// between the register pressure and the length of data-flow critical +// path. Restricting this to the uncommon IndirectBr case would minimize the +// impact of potentially longer critical path, if any, and the impact on compile +// time. +static bool tryUnmergingGEPsAcrossIndirectBr(GetElementPtrInst *GEPI, + const TargetTransformInfo *TTI) { + BasicBlock *SrcBlock = GEPI->getParent(); + // Check that SrcBlock ends with an IndirectBr. If not, give up. The common + // (non-IndirectBr) cases exit early here. + if (!isa<IndirectBrInst>(SrcBlock->getTerminator())) + return false; + // Check that GEPI is a simple gep with a single constant index. + if (!GEPSequentialConstIndexed(GEPI)) + return false; + ConstantInt *GEPIIdx = cast<ConstantInt>(GEPI->getOperand(1)); + // Check that GEPI is a cheap one. + if (TTI->getIntImmCost(GEPIIdx->getValue(), GEPIIdx->getType()) + > TargetTransformInfo::TCC_Basic) + return false; + Value *GEPIOp = GEPI->getOperand(0); + // Check that GEPIOp is an instruction that's also defined in SrcBlock. + if (!isa<Instruction>(GEPIOp)) + return false; + auto *GEPIOpI = cast<Instruction>(GEPIOp); + if (GEPIOpI->getParent() != SrcBlock) + return false; + // Check that GEP is used outside the block, meaning it's alive on the + // IndirectBr edge(s). + if (find_if(GEPI->users(), [&](User *Usr) { + if (auto *I = dyn_cast<Instruction>(Usr)) { + if (I->getParent() != SrcBlock) { + return true; + } + } + return false; + }) == GEPI->users().end()) + return false; + // The second elements of the GEP chains to be unmerged. + std::vector<GetElementPtrInst *> UGEPIs; + // Check each user of GEPIOp to check if unmerging would make GEPIOp not alive + // on IndirectBr edges. + for (User *Usr : GEPIOp->users()) { + if (Usr == GEPI) continue; + // Check if Usr is an Instruction. If not, give up. + if (!isa<Instruction>(Usr)) + return false; + auto *UI = cast<Instruction>(Usr); + // Check if Usr in the same block as GEPIOp, which is fine, skip. + if (UI->getParent() == SrcBlock) + continue; + // Check if Usr is a GEP. If not, give up. + if (!isa<GetElementPtrInst>(Usr)) + return false; + auto *UGEPI = cast<GetElementPtrInst>(Usr); + // Check if UGEPI is a simple gep with a single constant index and GEPIOp is + // the pointer operand to it. If so, record it in the vector. If not, give + // up. + if (!GEPSequentialConstIndexed(UGEPI)) + return false; + if (UGEPI->getOperand(0) != GEPIOp) + return false; + if (GEPIIdx->getType() != + cast<ConstantInt>(UGEPI->getOperand(1))->getType()) + return false; + ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); + if (TTI->getIntImmCost(UGEPIIdx->getValue(), UGEPIIdx->getType()) + > TargetTransformInfo::TCC_Basic) + return false; + UGEPIs.push_back(UGEPI); + } + if (UGEPIs.size() == 0) + return false; + // Check the materializing cost of (Uidx-Idx). + for (GetElementPtrInst *UGEPI : UGEPIs) { + ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); + APInt NewIdx = UGEPIIdx->getValue() - GEPIIdx->getValue(); + unsigned ImmCost = TTI->getIntImmCost(NewIdx, GEPIIdx->getType()); + if (ImmCost > TargetTransformInfo::TCC_Basic) + return false; + } + // Now unmerge between GEPI and UGEPIs. + for (GetElementPtrInst *UGEPI : UGEPIs) { + UGEPI->setOperand(0, GEPI); + ConstantInt *UGEPIIdx = cast<ConstantInt>(UGEPI->getOperand(1)); + Constant *NewUGEPIIdx = + ConstantInt::get(GEPIIdx->getType(), + UGEPIIdx->getValue() - GEPIIdx->getValue()); + UGEPI->setOperand(1, NewUGEPIIdx); + // If GEPI is not inbounds but UGEPI is inbounds, change UGEPI to not + // inbounds to avoid UB. + if (!GEPI->isInBounds()) { + UGEPI->setIsInBounds(false); + } + } + // After unmerging, verify that GEPIOp is actually only used in SrcBlock (not + // alive on IndirectBr edges). + assert(find_if(GEPIOp->users(), [&](User *Usr) { + return cast<Instruction>(Usr)->getParent() != SrcBlock; + }) == GEPIOp->users().end() && "GEPIOp is used outside SrcBlock"); + return true; +} + +bool CodeGenPrepare::optimizeInst(Instruction *I, bool &ModifiedDT) { + // Bail out if we inserted the instruction to prevent optimizations from + // stepping on each other's toes. + if (InsertedInsts.count(I)) + return false; + + // TODO: Move into the switch on opcode below here. + if (PHINode *P = dyn_cast<PHINode>(I)) { + // It is possible for very late stage optimizations (such as SimplifyCFG) + // to introduce PHI nodes too late to be cleaned up. If we detect such a + // trivial PHI, go ahead and zap it here. + if (Value *V = SimplifyInstruction(P, {*DL, TLInfo})) { + LargeOffsetGEPMap.erase(P); + P->replaceAllUsesWith(V); + P->eraseFromParent(); + ++NumPHIsElim; + return true; + } + return false; + } + + if (CastInst *CI = dyn_cast<CastInst>(I)) { + // If the source of the cast is a constant, then this should have + // already been constant folded. The only reason NOT to constant fold + // it is if something (e.g. LSR) was careful to place the constant + // evaluation in a block other than then one that uses it (e.g. to hoist + // the address of globals out of a loop). If this is the case, we don't + // want to forward-subst the cast. + if (isa<Constant>(CI->getOperand(0))) + return false; + + if (TLI && OptimizeNoopCopyExpression(CI, *TLI, *DL)) + return true; + + if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { + /// Sink a zext or sext into its user blocks if the target type doesn't + /// fit in one register + if (TLI && + TLI->getTypeAction(CI->getContext(), + TLI->getValueType(*DL, CI->getType())) == + TargetLowering::TypeExpandInteger) { + return SinkCast(CI); + } else { + bool MadeChange = optimizeExt(I); + return MadeChange | optimizeExtUses(I); + } + } + return false; + } + + if (auto *Cmp = dyn_cast<CmpInst>(I)) + if (TLI && optimizeCmp(Cmp, ModifiedDT)) + return true; + + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + LI->setMetadata(LLVMContext::MD_invariant_group, nullptr); + if (TLI) { + bool Modified = optimizeLoadExt(LI); + unsigned AS = LI->getPointerAddressSpace(); + Modified |= optimizeMemoryInst(I, I->getOperand(0), LI->getType(), AS); + return Modified; + } + return false; + } + + if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + if (TLI && splitMergedValStore(*SI, *DL, *TLI)) + return true; + SI->setMetadata(LLVMContext::MD_invariant_group, nullptr); + if (TLI) { + unsigned AS = SI->getPointerAddressSpace(); + return optimizeMemoryInst(I, SI->getOperand(1), + SI->getOperand(0)->getType(), AS); + } + return false; + } + + if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { + unsigned AS = RMW->getPointerAddressSpace(); + return optimizeMemoryInst(I, RMW->getPointerOperand(), + RMW->getType(), AS); + } + + if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(I)) { + unsigned AS = CmpX->getPointerAddressSpace(); + return optimizeMemoryInst(I, CmpX->getPointerOperand(), + CmpX->getCompareOperand()->getType(), AS); + } + + BinaryOperator *BinOp = dyn_cast<BinaryOperator>(I); + + if (BinOp && (BinOp->getOpcode() == Instruction::And) && + EnableAndCmpSinking && TLI) + return sinkAndCmp0Expression(BinOp, *TLI, InsertedInsts); + + // TODO: Move this into the switch on opcode - it handles shifts already. + if (BinOp && (BinOp->getOpcode() == Instruction::AShr || + BinOp->getOpcode() == Instruction::LShr)) { + ConstantInt *CI = dyn_cast<ConstantInt>(BinOp->getOperand(1)); + if (TLI && CI && TLI->hasExtractBitsInsn()) + if (OptimizeExtractBits(BinOp, CI, *TLI, *DL)) + return true; + } + + if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { + if (GEPI->hasAllZeroIndices()) { + /// The GEP operand must be a pointer, so must its result -> BitCast + Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), + GEPI->getName(), GEPI); + NC->setDebugLoc(GEPI->getDebugLoc()); + GEPI->replaceAllUsesWith(NC); + GEPI->eraseFromParent(); + ++NumGEPsElim; + optimizeInst(NC, ModifiedDT); + return true; + } + if (tryUnmergingGEPsAcrossIndirectBr(GEPI, TTI)) { + return true; + } + return false; + } + + if (tryToSinkFreeOperands(I)) + return true; + + switch (I->getOpcode()) { + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + return optimizeShiftInst(cast<BinaryOperator>(I)); + case Instruction::Call: + return optimizeCallInst(cast<CallInst>(I), ModifiedDT); + case Instruction::Select: + return optimizeSelectInst(cast<SelectInst>(I)); + case Instruction::ShuffleVector: + return optimizeShuffleVectorInst(cast<ShuffleVectorInst>(I)); + case Instruction::Switch: + return optimizeSwitchInst(cast<SwitchInst>(I)); + case Instruction::ExtractElement: + return optimizeExtractElementInst(cast<ExtractElementInst>(I)); + } + + return false; +} + +/// Given an OR instruction, check to see if this is a bitreverse +/// idiom. If so, insert the new intrinsic and return true. +static bool makeBitReverse(Instruction &I, const DataLayout &DL, + const TargetLowering &TLI) { + if (!I.getType()->isIntegerTy() || + !TLI.isOperationLegalOrCustom(ISD::BITREVERSE, + TLI.getValueType(DL, I.getType(), true))) + return false; + + SmallVector<Instruction*, 4> Insts; + if (!recognizeBSwapOrBitReverseIdiom(&I, false, true, Insts)) + return false; + Instruction *LastInst = Insts.back(); + I.replaceAllUsesWith(LastInst); + RecursivelyDeleteTriviallyDeadInstructions(&I); + return true; +} + +// In this pass we look for GEP and cast instructions that are used +// across basic blocks and rewrite them to improve basic-block-at-a-time +// selection. +bool CodeGenPrepare::optimizeBlock(BasicBlock &BB, bool &ModifiedDT) { + SunkAddrs.clear(); + bool MadeChange = false; + + CurInstIterator = BB.begin(); + while (CurInstIterator != BB.end()) { + MadeChange |= optimizeInst(&*CurInstIterator++, ModifiedDT); + if (ModifiedDT) + return true; + } + + bool MadeBitReverse = true; + while (TLI && MadeBitReverse) { + MadeBitReverse = false; + for (auto &I : reverse(BB)) { + if (makeBitReverse(I, *DL, *TLI)) { + MadeBitReverse = MadeChange = true; + ModifiedDT = true; + break; + } + } + } + MadeChange |= dupRetToEnableTailCallOpts(&BB, ModifiedDT); + + return MadeChange; +} + +// llvm.dbg.value is far away from the value then iSel may not be able +// handle it properly. iSel will drop llvm.dbg.value if it can not +// find a node corresponding to the value. +bool CodeGenPrepare::placeDbgValues(Function &F) { + bool MadeChange = false; + for (BasicBlock &BB : F) { + Instruction *PrevNonDbgInst = nullptr; + for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { + Instruction *Insn = &*BI++; + DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); + // Leave dbg.values that refer to an alloca alone. These + // intrinsics describe the address of a variable (= the alloca) + // being taken. They should not be moved next to the alloca + // (and to the beginning of the scope), but rather stay close to + // where said address is used. + if (!DVI || (DVI->getValue() && isa<AllocaInst>(DVI->getValue()))) { + PrevNonDbgInst = Insn; + continue; + } + + Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); + if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { + // If VI is a phi in a block with an EHPad terminator, we can't insert + // after it. + if (isa<PHINode>(VI) && VI->getParent()->getTerminator()->isEHPad()) + continue; + LLVM_DEBUG(dbgs() << "Moving Debug Value before :\n" + << *DVI << ' ' << *VI); + DVI->removeFromParent(); + if (isa<PHINode>(VI)) + DVI->insertBefore(&*VI->getParent()->getFirstInsertionPt()); + else + DVI->insertAfter(VI); + MadeChange = true; + ++NumDbgValueMoved; + } + } + } + return MadeChange; +} + +/// Scale down both weights to fit into uint32_t. +static void scaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { + uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; + uint32_t Scale = (NewMax / std::numeric_limits<uint32_t>::max()) + 1; + NewTrue = NewTrue / Scale; + NewFalse = NewFalse / Scale; +} + +/// Some targets prefer to split a conditional branch like: +/// \code +/// %0 = icmp ne i32 %a, 0 +/// %1 = icmp ne i32 %b, 0 +/// %or.cond = or i1 %0, %1 +/// br i1 %or.cond, label %TrueBB, label %FalseBB +/// \endcode +/// into multiple branch instructions like: +/// \code +/// bb1: +/// %0 = icmp ne i32 %a, 0 +/// br i1 %0, label %TrueBB, label %bb2 +/// bb2: +/// %1 = icmp ne i32 %b, 0 +/// br i1 %1, label %TrueBB, label %FalseBB +/// \endcode +/// This usually allows instruction selection to do even further optimizations +/// and combine the compare with the branch instruction. Currently this is +/// applied for targets which have "cheap" jump instructions. +/// +/// FIXME: Remove the (equivalent?) implementation in SelectionDAG. +/// +bool CodeGenPrepare::splitBranchCondition(Function &F, bool &ModifiedDT) { + if (!TM || !TM->Options.EnableFastISel || !TLI || TLI->isJumpExpensive()) + return false; + + bool MadeChange = false; + for (auto &BB : F) { + // Does this BB end with the following? + // %cond1 = icmp|fcmp|binary instruction ... + // %cond2 = icmp|fcmp|binary instruction ... + // %cond.or = or|and i1 %cond1, cond2 + // br i1 %cond.or label %dest1, label %dest2" + BinaryOperator *LogicOp; + BasicBlock *TBB, *FBB; + if (!match(BB.getTerminator(), m_Br(m_OneUse(m_BinOp(LogicOp)), TBB, FBB))) + continue; + + auto *Br1 = cast<BranchInst>(BB.getTerminator()); + if (Br1->getMetadata(LLVMContext::MD_unpredictable)) + continue; + + unsigned Opc; + Value *Cond1, *Cond2; + if (match(LogicOp, m_And(m_OneUse(m_Value(Cond1)), + m_OneUse(m_Value(Cond2))))) + Opc = Instruction::And; + else if (match(LogicOp, m_Or(m_OneUse(m_Value(Cond1)), + m_OneUse(m_Value(Cond2))))) + Opc = Instruction::Or; + else + continue; + + if (!match(Cond1, m_CombineOr(m_Cmp(), m_BinOp())) || + !match(Cond2, m_CombineOr(m_Cmp(), m_BinOp())) ) + continue; + + LLVM_DEBUG(dbgs() << "Before branch condition splitting\n"; BB.dump()); + + // Create a new BB. + auto TmpBB = + BasicBlock::Create(BB.getContext(), BB.getName() + ".cond.split", + BB.getParent(), BB.getNextNode()); + + // Update original basic block by using the first condition directly by the + // branch instruction and removing the no longer needed and/or instruction. + Br1->setCondition(Cond1); + LogicOp->eraseFromParent(); + + // Depending on the condition we have to either replace the true or the + // false successor of the original branch instruction. + if (Opc == Instruction::And) + Br1->setSuccessor(0, TmpBB); + else + Br1->setSuccessor(1, TmpBB); + + // Fill in the new basic block. + auto *Br2 = IRBuilder<>(TmpBB).CreateCondBr(Cond2, TBB, FBB); + if (auto *I = dyn_cast<Instruction>(Cond2)) { + I->removeFromParent(); + I->insertBefore(Br2); + } + + // Update PHI nodes in both successors. The original BB needs to be + // replaced in one successor's PHI nodes, because the branch comes now from + // the newly generated BB (NewBB). In the other successor we need to add one + // incoming edge to the PHI nodes, because both branch instructions target + // now the same successor. Depending on the original branch condition + // (and/or) we have to swap the successors (TrueDest, FalseDest), so that + // we perform the correct update for the PHI nodes. + // This doesn't change the successor order of the just created branch + // instruction (or any other instruction). + if (Opc == Instruction::Or) + std::swap(TBB, FBB); + + // Replace the old BB with the new BB. + TBB->replacePhiUsesWith(&BB, TmpBB); + + // Add another incoming edge form the new BB. + for (PHINode &PN : FBB->phis()) { + auto *Val = PN.getIncomingValueForBlock(&BB); + PN.addIncoming(Val, TmpBB); + } + + // Update the branch weights (from SelectionDAGBuilder:: + // FindMergedConditions). + if (Opc == Instruction::Or) { + // Codegen X | Y as: + // BB1: + // jmp_if_X TBB + // jmp TmpBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + + // We have flexibility in setting Prob for BB1 and Prob for NewBB. + // The requirement is that + // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) + // = TrueProb for original BB. + // Assuming the original weights are A and B, one choice is to set BB1's + // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice + // assumes that + // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. + // Another choice is to assume TrueProb for BB1 equals to TrueProb for + // TmpBB, but the math is more complicated. + uint64_t TrueWeight, FalseWeight; + if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { + uint64_t NewTrueWeight = TrueWeight; + uint64_t NewFalseWeight = TrueWeight + 2 * FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + + NewTrueWeight = TrueWeight; + NewFalseWeight = 2 * FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + } + } else { + // Codegen X & Y as: + // BB1: + // jmp_if_X TmpBB + // jmp FBB + // TmpBB: + // jmp_if_Y TBB + // jmp FBB + // + // This requires creation of TmpBB after CurBB. + + // We have flexibility in setting Prob for BB1 and Prob for TmpBB. + // The requirement is that + // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) + // = FalseProb for original BB. + // Assuming the original weights are A and B, one choice is to set BB1's + // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice + // assumes that + // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. + uint64_t TrueWeight, FalseWeight; + if (Br1->extractProfMetadata(TrueWeight, FalseWeight)) { + uint64_t NewTrueWeight = 2 * TrueWeight + FalseWeight; + uint64_t NewFalseWeight = FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br1->setMetadata(LLVMContext::MD_prof, MDBuilder(Br1->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + + NewTrueWeight = 2 * TrueWeight; + NewFalseWeight = FalseWeight; + scaleWeights(NewTrueWeight, NewFalseWeight); + Br2->setMetadata(LLVMContext::MD_prof, MDBuilder(Br2->getContext()) + .createBranchWeights(TrueWeight, FalseWeight)); + } + } + + ModifiedDT = true; + MadeChange = true; + + LLVM_DEBUG(dbgs() << "After branch condition splitting\n"; BB.dump(); + TmpBB->dump()); + } + return MadeChange; +} |