diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2023-12-18 20:30:12 +0000 | 
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2024-04-19 21:12:03 +0000 | 
| commit | c9157d925c489f07ba9c0b2ce47e5149b75969a5 (patch) | |
| tree | 08bc4a3d9cad3f9ebffa558ddf140b9d9257b219 /contrib/llvm-project/llvm/lib/CodeGen/MLRegAllocEvictAdvisor.cpp | |
| parent | 2a66844f606a35d68ad8a8061f4bea204274b3bc (diff) | |
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/MLRegAllocEvictAdvisor.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/MLRegAllocEvictAdvisor.cpp | 1164 | 
1 files changed, 1164 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/MLRegAllocEvictAdvisor.cpp b/contrib/llvm-project/llvm/lib/CodeGen/MLRegAllocEvictAdvisor.cpp new file mode 100644 index 000000000000..114e7910dc27 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/MLRegAllocEvictAdvisor.cpp @@ -0,0 +1,1164 @@ +//===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Implementation of the ML eviction advisor and reward injection pass +// +//===----------------------------------------------------------------------===// + +#include "AllocationOrder.h" +#include "RegAllocEvictionAdvisor.h" +#include "RegAllocGreedy.h" +#include "llvm/Analysis/InteractiveModelRunner.h" +#include "llvm/Analysis/MLModelRunner.h" +#include "llvm/Analysis/TensorSpec.h" +#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TFLITE) +#include "llvm/Analysis/ModelUnderTrainingRunner.h" +#include "llvm/Analysis/NoInferenceModelRunner.h" +#include "llvm/Analysis/Utils/TrainingLogger.h" +#endif +#include "MLRegAllocEvictAdvisor.h" +#include "llvm/Analysis/ReleaseModeModelRunner.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/LiveRegMatrix.h" +#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/PassRegistry.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" + +#include <array> +#include <bitset> +#include <memory> + +using namespace llvm; + +#define DEBUG_TYPE "ml-regalloc" + +// Generated header in release (AOT) mode +#if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) +#include "RegAllocEvictModel.h" +using CompiledModelType = RegAllocEvictModel; +#else +using CompiledModelType = NoopSavedModelImpl; +#endif + +static cl::opt<std::string> InteractiveChannelBaseName( +    "regalloc-evict-interactive-channel-base", cl::Hidden, +    cl::desc( +        "Base file path for the interactive mode. The incoming filename should " +        "have the name <regalloc-evict-interactive-channel-base>.in, while the " +        "outgoing name should be " +        "<regalloc-evict-interactive-channel-base>.out")); + +// Options that only make sense in development mode +#ifdef LLVM_HAVE_TFLITE +#include "RegAllocScore.h" +#include "llvm/Analysis/Utils/TFUtils.h" + +static cl::opt<std::string> TrainingLog( +    "regalloc-training-log", cl::Hidden, +    cl::desc("Training log for the register allocator eviction model")); + +static cl::opt<std::string> ModelUnderTraining( +    "regalloc-model", cl::Hidden, +    cl::desc("The model being trained for register allocation eviction")); + +static cl::opt<bool> EnableDevelopmentFeatures( +    "regalloc-enable-development-features", cl::Hidden, +    cl::desc("Whether or not to enable features under development for the ML " +             "regalloc advisor")); + +#else +static const bool EnableDevelopmentFeatures = false; +#endif // #ifdef LLVM_HAVE_TFLITE + +/// The score injection pass. +/// This pass calculates the score for a function and inserts it in the log, but +/// this happens only in development mode. It's a no-op otherwise. +namespace llvm { +extern cl::opt<unsigned> EvictInterferenceCutoff; + +class RegAllocScoring : public MachineFunctionPass { +public: +  static char ID; + +  RegAllocScoring() : MachineFunctionPass(ID) { +    initializeRegAllocScoringPass(*PassRegistry::getPassRegistry()); +  } + +  ~RegAllocScoring() override = default; + +  StringRef getPassName() const override { +    return "Register Allocation Pass Scoring"; +  } + +  /// RegAllocReward analysis usage. +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.setPreservesAll(); +    AU.addRequired<RegAllocEvictionAdvisorAnalysis>(); +    AU.addRequired<RegAllocPriorityAdvisorAnalysis>(); +    AU.addRequired<MachineBlockFrequencyInfo>(); +    MachineFunctionPass::getAnalysisUsage(AU); +  } + +  /// Performs this pass +  bool runOnMachineFunction(MachineFunction &) override; +}; + +char RegAllocScoring::ID = 0; +FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); } + +} // namespace llvm + +INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass", +                "Register Allocation Scoring Pass", false, false) + +// =================================== +// Common ML Advisor declarations +// =================================== +namespace { +// The model can only accept a specified number of opcodes and will error it if +// fed an opcode it hasn't seen before. This constant sets the current cutoff. +static const int OpcodeValueCutoff = 17716; + +// Most features are as described above, so we'll reuse this vector in defining +// them. +static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences}; + +// -------------- +// Features table +// -------------- +// For each interfering live range (incl. the candidate) we collect a number of +// features. However, because the features are of different types (and because +// of ML best practices), we organize the tensors per feature, not per +// candidate. Each such tensor has a scalar value corresponding to the +// interferring live range at that position, in the order in AllocationOrder. +// The last position corresponds to the virt reg seeking allocation. +// Exception to all that is the progression feature, which is just a scalar (see +// its documentation for details). +// Note on naming: the "_by_max" are normalized using the largest value of that +// tensor, as observed in the current decision making stage (i.e. for the +// current call to the advisor's tryFindEvictionCandidate) +// +// The feature list format: type, name, shape, documentation. +// Note: we can really just use int64 and float, hence the modeling of some +// bools as int64 values. +#define RA_EVICT_FEATURES_LIST(M)                                              \ +  M(int64_t, mask, PerLiveRangeShape,                                          \ +    "boolean values, 0 for unavailable candidates (i.e. if a position is 0, "  \ +    "it "                                                                      \ +    "can't be evicted)")                                                       \ +  M(int64_t, is_free, PerLiveRangeShape,                                       \ +    "boolean values, 1 if this phys reg is actually free (no interferences)")  \ +  M(float, nr_urgent, PerLiveRangeShape,                                       \ +    "number of 'urgent' intervals, normalized. Urgent are those that are OK "  \ +    "to break cascades")                                                       \ +  M(float, nr_broken_hints, PerLiveRangeShape,                                 \ +    "if this position were evicted, how many broken hints would there be")     \ +  M(int64_t, is_hint, PerLiveRangeShape,                                       \ +    "is this a preferred phys reg for the candidate")                          \ +  M(int64_t, is_local, PerLiveRangeShape,                                      \ +    "is this live range local to a basic block")                               \ +  M(float, nr_rematerializable, PerLiveRangeShape,                             \ +    "nr rematerializable ranges")                                              \ +  M(float, nr_defs_and_uses, PerLiveRangeShape,                                \ +    "bb freq - weighed nr defs and uses")                                      \ +  M(float, weighed_reads_by_max, PerLiveRangeShape,                            \ +    "bb freq - weighed nr of reads, normalized")                               \ +  M(float, weighed_writes_by_max, PerLiveRangeShape,                           \ +    "bb feq - weighed nr of writes, normalized")                               \ +  M(float, weighed_read_writes_by_max, PerLiveRangeShape,                      \ +    "bb freq - weighed nr of uses that are both read and writes, normalized")  \ +  M(float, weighed_indvars_by_max, PerLiveRangeShape,                          \ +    "bb freq - weighed nr of uses that are indvars, normalized")               \ +  M(float, hint_weights_by_max, PerLiveRangeShape,                             \ +    "bb freq - weighed nr of uses that are hints, normalized")                 \ +  M(float, start_bb_freq_by_max, PerLiveRangeShape,                            \ +    "the freq in the start block, normalized")                                 \ +  M(float, end_bb_freq_by_max, PerLiveRangeShape,                              \ +    "freq of end block, normalized")                                           \ +  M(float, hottest_bb_freq_by_max, PerLiveRangeShape,                          \ +    "hottest BB freq, normalized")                                             \ +  M(float, liverange_size, PerLiveRangeShape,                                  \ +    "size (instr index diff) of the LR")                                       \ +  M(float, use_def_density, PerLiveRangeShape,                                 \ +    "the max weight, as computed by the manual heuristic")                     \ +  M(int64_t, max_stage, PerLiveRangeShape,                                     \ +    "largest stage of an interval in this LR")                                 \ +  M(int64_t, min_stage, PerLiveRangeShape,                                     \ +    "lowest stage of an interval in this LR")                                  \ +  M(float, progress, {1}, "ratio of current queue size to initial size") + +#ifdef LLVM_HAVE_TFLITE +#define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M)                                  \ +  M(int64_t, instructions, InstructionsShape,                                  \ +    "Opcodes of the instructions covered by the eviction problem") + +#define RA_EVICT_REST_DEVELOPMENT_FEATURES(M)                                  \ +  M(int64_t, instructions_mapping, InstructionsMappingShape,                   \ +    "A binary matrix mapping LRs to instruction opcodes")                      \ +  M(float, mbb_frequencies, MBBFrequencyShape,                                 \ +    "A vector of machine basic block frequencies")                             \ +  M(int64_t, mbb_mapping, InstructionsShape,                                   \ +    "A vector of indicies mapping instructions to MBBs") +#else +#define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) +#define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) +#endif + +// The model learns to pick one of the mask == 1 interferences. This is the +// name of the output tensor. The contract with the model is that the output +// will be guaranteed to be to a mask == 1 position. Using a macro here to +// avoid 'not used' warnings (and keep cond compilation to a minimum) +#define DecisionName "index_to_evict" +static const TensorSpec DecisionSpec = +    TensorSpec::createSpec<int64_t>(DecisionName, {1}); + +// Named features index. +enum FeatureIDs { +#define _FEATURE_IDX_SIMPLE(_, name, __, ___) name +#define _FEATURE_IDX(A, B, C, D) _FEATURE_IDX_SIMPLE(A, B, C, D), +  RA_EVICT_FEATURES_LIST(_FEATURE_IDX) FeatureCount, +#ifdef LLVM_HAVE_TFLITE +  RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX_SIMPLE) = FeatureCount, +#else +  RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX) +#endif // #ifdef LLVM_HAVE_TFLITE +  RA_EVICT_REST_DEVELOPMENT_FEATURES(_FEATURE_IDX) FeaturesWithDevelopmentCount +#undef _FEATURE_IDX +#undef _FEATURE_IDX_SIMPLE +}; + +// The ML advisor will typically have a sparse input to the evaluator, because +// various phys regs won't be available. It's easier (maintenance-wise) to +// bulk-reset the state of the evaluator each time we are about to use it +// again. +template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) { +  size_t Ret = sizeof(T); +  for (const auto V : Shape) +    Ret *= V; +  return Ret; +} + +void resetInputs(MLModelRunner &Runner) { +#define _RESET(TYPE, NAME, SHAPE, __)                                          \ +  std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0,                    \ +              getTotalSize<TYPE>(SHAPE)); +  RA_EVICT_FEATURES_LIST(_RESET) +  if (EnableDevelopmentFeatures) { +    RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_RESET) +    RA_EVICT_REST_DEVELOPMENT_FEATURES(_RESET) +#undef _RESET +  } +} + +// Per-live interval components that get aggregated into the feature values +// that will be passed to the evaluator. +struct LIFeatureComponents { +  double R = 0; +  double W = 0; +  double RW = 0; +  double IndVarUpdates = 0; +  double HintWeights = 0.0; +  int64_t NrDefsAndUses = 0; +  float HottestBlockFreq = 0.0; +  bool IsRemat = false; +}; + +using CandidateRegList = +    std::array<std::pair<MCRegister, bool>, NumberOfInterferences>; +using FeaturesListNormalizer = +    llvm::SmallVector<float, FeatureIDs::FeatureCount>; + +/// The ML evictor (commonalities between release and development mode) +class MLEvictAdvisor : public RegAllocEvictionAdvisor { +public: +  MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, +                 MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI, +                 const MachineLoopInfo &Loops); + +protected: +  const RegAllocEvictionAdvisor &getDefaultAdvisor() const { +    return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor); +  } + +  // The assumption is that if the Runner could not be constructed, we emit-ed +  // error, and we shouldn't be asking for it here. +  const MLModelRunner &getRunner() const { return *Runner; } + +  /// This just calls Evaluate on the Runner, but in the development mode +  /// case, if we're just capturing the log of the default advisor, it needs +  /// to call the latter instead, so we need to pass all the necessary +  /// parameters for it. In the development case, it will also log. +  virtual int64_t +  tryFindEvictionCandidatePosition(const LiveInterval &VirtReg, +                                   const AllocationOrder &Order, +                                   unsigned OrderLimit, uint8_t CostPerUseLimit, +                                   const SmallVirtRegSet &FixedRegisters) const; + +  /// Load the features of the given VirtReg (allocated or not) at column Pos, +  /// but if  that can't be evicted, return false instead. +  bool +  loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg, +                           bool IsHint, const SmallVirtRegSet &FixedRegisters, +                           llvm::SmallVectorImpl<float> &Largest, size_t Pos, +                           SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; + +private: +  static float getInitialQueueSize(const MachineFunction &MF); + +  MCRegister tryFindEvictionCandidate( +      const LiveInterval &VirtReg, const AllocationOrder &Order, +      uint8_t CostPerUseLimit, +      const SmallVirtRegSet &FixedRegisters) const override; + +  void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals, +                       llvm::SmallVectorImpl<float> &Largest, size_t Pos, +                       int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent, +                       SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; + +  // Point-in-time: we didn't learn this, so we always delegate to the +  // default. +  bool canEvictHintInterference( +      const LiveInterval &VirtReg, MCRegister PhysReg, +      const SmallVirtRegSet &FixedRegisters) const override { +    return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg, +                                                        FixedRegisters); +  } + +  const LIFeatureComponents & +  getLIFeatureComponents(const LiveInterval &LI) const; + +  // Hold on to a default advisor for: +  // 1) the implementation of canEvictHintInterference, because we didn't +  // learn that nuance yet; 2) for bootstrapping (logging) in the development +  // mode case. +  const DefaultEvictionAdvisor DefaultAdvisor; +  MLModelRunner *const Runner; +  const MachineBlockFrequencyInfo &MBFI; +  const MachineLoopInfo &Loops; + +  // Indices of those features we don't want to normalize. +  // This could be static and shared, but its initialization is non-trivial. +  std::bitset<FeatureIDs::FeatureCount> DoNotNormalize; +  const float InitialQSize; + +  using RegID = unsigned; +  mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures; +}; + +#define _DECL_FEATURES(type, name, shape, _)                                   \ +  TensorSpec::createSpec<type>(#name, shape), + +// =================================== +// Release (AOT) - specifics +// =================================== +class ReleaseModeEvictionAdvisorAnalysis final +    : public RegAllocEvictionAdvisorAnalysis { +public: +  ReleaseModeEvictionAdvisorAnalysis() +      : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) { +    if (EnableDevelopmentFeatures) { +      InputFeatures = {RA_EVICT_FEATURES_LIST( +          _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) +                           RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; +    } else { +      InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; +    } +  } +  // support for isa<> and dyn_cast. +  static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { +    return R->getAdvisorMode() == AdvisorMode::Release; +  } + +private: +  std::vector<TensorSpec> InputFeatures; + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<MachineBlockFrequencyInfo>(); +    AU.addRequired<MachineLoopInfo>(); +    RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); +  } + +  std::unique_ptr<RegAllocEvictionAdvisor> +  getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override { +    if (!Runner) { +      if (InteractiveChannelBaseName.empty()) +        Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>( +            MF.getFunction().getContext(), InputFeatures, DecisionName); +      else +        Runner = std::make_unique<InteractiveModelRunner>( +            MF.getFunction().getContext(), InputFeatures, DecisionSpec, +            InteractiveChannelBaseName + ".out", +            InteractiveChannelBaseName + ".in"); +    } +    return std::make_unique<MLEvictAdvisor>( +        MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), +        getAnalysis<MachineLoopInfo>()); +  } +  std::unique_ptr<MLModelRunner> Runner; +}; + +// =================================== +// Development mode-specifics +// =================================== +// +// Features we log +#ifdef LLVM_HAVE_TFLITE +static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1}); + +// Features we bind on the model. The tensor names have a prefix, and we also +// need to include some tensors that are expected to be present by the +// training algo. +// TODO: can we just get rid of these? +#define _DECL_TRAIN_FEATURES(type, name, shape, _)                             \ +  TensorSpec::createSpec<type>(std::string("action_") + #name, shape), + +class DevelopmentModeEvictAdvisor : public MLEvictAdvisor { +public: +  DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, +                              MLModelRunner *Runner, +                              const MachineBlockFrequencyInfo &MBFI, +                              const MachineLoopInfo &Loops, Logger *Log) +      : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {} + +private: +  int64_t tryFindEvictionCandidatePosition( +      const LiveInterval &VirtReg, const AllocationOrder &Order, +      unsigned OrderLimit, uint8_t CostPerUseLimit, +      const SmallVirtRegSet &FixedRegisters) const override; + +  Logger *const Log; +}; + +class DevelopmentModeEvictionAdvisorAnalysis final +    : public RegAllocEvictionAdvisorAnalysis { +public: +  DevelopmentModeEvictionAdvisorAnalysis() +      : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) { +    if (EnableDevelopmentFeatures) { +      InputFeatures = {RA_EVICT_FEATURES_LIST( +          _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) +                           RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; +      TrainingInputFeatures = { +          RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) +              RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_TRAIN_FEATURES) +                  RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_TRAIN_FEATURES) +                      TensorSpec::createSpec<float>("action_discount", {1}), +          TensorSpec::createSpec<int32_t>("action_step_type", {1}), +          TensorSpec::createSpec<float>("action_reward", {1})}; +    } else { +      InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; +      TrainingInputFeatures = { +          RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) +              TensorSpec::createSpec<float>("action_discount", {1}), +          TensorSpec::createSpec<int32_t>("action_step_type", {1}), +          TensorSpec::createSpec<float>("action_reward", {1})}; +    } +  } +  // support for isa<> and dyn_cast. +  static bool classof(const RegAllocEvictionAdvisorAnalysis *R) { +    return R->getAdvisorMode() == AdvisorMode::Development; +  } + +  void logRewardIfNeeded(const MachineFunction &MF, +                         llvm::function_ref<float()> GetReward) override { +    if (!Log || !Log->hasAnyObservationForContext(MF.getName())) +      return; +    // The function pass manager would run all the function passes for a +    // function, so we assume the last context belongs to this function. If +    // this invariant ever changes, we can implement at that time switching +    // contexts. At this point, it'd be an error +    if (Log->currentContext() != MF.getName()) { +      MF.getFunction().getContext().emitError( +          "The training log context shouldn't have had changed."); +    } +    if (Log->hasObservationInProgress()) +      Log->logReward<float>(GetReward()); +  } + +private: +  std::vector<TensorSpec> InputFeatures; +  std::vector<TensorSpec> TrainingInputFeatures; + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<MachineBlockFrequencyInfo>(); +    AU.addRequired<MachineLoopInfo>(); +    RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU); +  } + +  bool doInitialization(Module &M) override { +    LLVMContext &Ctx = M.getContext(); +    if (ModelUnderTraining.empty() && TrainingLog.empty()) { +      Ctx.emitError("Regalloc development mode should be requested with at " +                    "least logging enabled and/or a training model"); +      return false; +    } +    if (ModelUnderTraining.empty()) +      Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); +    else +      Runner = ModelUnderTrainingRunner::createAndEnsureValid( +          Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); +    if (!Runner) { +      Ctx.emitError("Regalloc: could not set up the model runner"); +      return false; +    } +    if (TrainingLog.empty()) +      return false; +    std::error_code EC; +    auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); +    if (EC) { +      M.getContext().emitError(EC.message() + ":" + TrainingLog); +      return false; +    } +    std::vector<TensorSpec> LFS = InputFeatures; +    if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) +      append_range(LFS, MUTR->extraOutputsForLoggingSpecs()); +    // We always log the output; in particular, if we're not evaluating, we +    // don't have an output spec json file. That's why we handle the +    // 'normal' output separately. +    LFS.push_back(DecisionSpec); + +    Log = std::make_unique<Logger>(std::move(OS), LFS, Reward, +                                   /*IncludeReward*/ true); +    return false; +  } + +  std::unique_ptr<RegAllocEvictionAdvisor> +  getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override { +    if (!Runner) +      return nullptr; +    if (Log) +      Log->switchContext(MF.getName()); +    return std::make_unique<DevelopmentModeEvictAdvisor>( +        MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(), +        getAnalysis<MachineLoopInfo>(), Log.get()); +  } + +  std::unique_ptr<MLModelRunner> Runner; +  std::unique_ptr<Logger> Log; +}; + +#endif //#ifdef LLVM_HAVE_TFLITE +} // namespace + +float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) { +  auto &MRI = MF.getRegInfo(); +  float Ret = 0.0; +  for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { +    Register Reg = Register::index2VirtReg(I); +    if (MRI.reg_nodbg_empty(Reg)) +      continue; +    ++Ret; +  } +  return Ret; +} + +MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, +                               MLModelRunner *Runner, +                               const MachineBlockFrequencyInfo &MBFI, +                               const MachineLoopInfo &Loops) +    : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA), +      Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops), +      InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) { +  assert(this->Runner); +  Runner->switchContext(MF.getName()); +  DoNotNormalize.set(FeatureIDs::mask); +  DoNotNormalize.set(FeatureIDs::is_free); +  DoNotNormalize.set(FeatureIDs::is_hint); +  DoNotNormalize.set(FeatureIDs::is_local); +  DoNotNormalize.set(FeatureIDs::min_stage); +  DoNotNormalize.set(FeatureIDs::max_stage); +  DoNotNormalize.set(FeatureIDs::progress); +} + +int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition( +    const LiveInterval &, const AllocationOrder &, unsigned, uint8_t, +    const SmallVirtRegSet &) const { +  int64_t Ret = Runner->evaluate<int64_t>(); +  assert(Ret >= 0); +  assert(Ret <= CandidateVirtRegPos); +  return Ret; +} + +bool MLEvictAdvisor::loadInterferenceFeatures( +    const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, +    const SmallVirtRegSet &FixedRegisters, +    llvm::SmallVectorImpl<float> &Largest, size_t Pos, +    llvm::SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { +  // It is only possible to evict virtual register interference. +  if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) { +    // leave unavailable +    return false; +  } + +  const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg); +  int64_t LocalIntfs = 0; +  float NrUrgent = 0.0f; + +  // The cascade tracking is the same as in the default advisor +  unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg()); + +  SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals; +  for (MCRegUnit Unit : TRI->regunits(PhysReg)) { +    LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit); +    // Different from the default heuristic, we don't make any assumptions +    // about what having more than 10 results in the query may mean. +    const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff); +    if (IFIntervals.empty() && InterferingIntervals.empty()) +      continue; +    if (IFIntervals.size() >= EvictInterferenceCutoff) +      return false; +    InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end()); +    for (const LiveInterval *Intf : reverse(IFIntervals)) { +      assert(Intf->reg().isVirtual() && +             "Only expecting virtual register interference from query"); +      // This is the same set of legality checks as in the default case: don't +      // try to evict fixed regs or 'done' ones. Also don't break cascades, +      // except in the urgent case, with the same nuances used in the default +      // heuristic. +      // We could try sharing this between the advisors, but it may end up +      // more complex than it is right now. +      if (FixedRegisters.count(Intf->reg())) +        return false; +      if (RA.getExtraInfo().getStage(*Intf) == RS_Done) +        return false; +      bool Urgent = +          !VirtReg.isSpillable() && +          (Intf->isSpillable() || +           RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) < +               RegClassInfo.getNumAllocatableRegs( +                   MRI->getRegClass(Intf->reg()))); +      // Only evict older cascades or live ranges without a cascade. +      unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg()); +      if (Cascade <= IntfCascade) { +        if (!Urgent) +          return false; +        ++NrUrgent; +      } + +      LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) && +                     (!EnableLocalReassign || !canReassign(*Intf, PhysReg))); +    } +  } +  // OK, so if we made it this far, this LR is an eviction candidate, load its +  // features. +  extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs, +                  NrUrgent, LRPosInfo); +  return true; +} + +MCRegister MLEvictAdvisor::tryFindEvictionCandidate( +    const LiveInterval &VirtReg, const AllocationOrder &Order, +    uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { +  auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); +  if (!MaybeOrderLimit) +    return MCRegister::NoRegister; +  unsigned OrderLimit = *MaybeOrderLimit; + +  // The heuristic sets initial costs such as, if CostPerUseLimit is +  // max<uint8_t>, then any of the costs of the legally-evictable intervals +  // would be lower. When that happens, one of those will be selected. +  // Therefore, we allow the candidate be selected, unless the candidate is +  // unspillable, in which case it would be incorrect to not find a register +  // for it. +  const bool MustFindEviction = +      (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u)); +  // Number of available candidates - if 0, no need to continue. +  size_t Available = 0; +  // Make sure we don't have leftover partial state from an attempt where we +  // had no available candidates and bailed out early. +  resetInputs(*Runner); + +  // Track the index->register mapping because AllocationOrder doesn't do that +  // and we'd have to scan it. +  // Also track their mask, to write asserts/debug. +  CandidateRegList Regs; +  Regs.fill({0, false}); + +  // Track the largest value of features seen during this eviction session. We +  // only normalize (some of) the float features, but it's just simpler to +  // dimension 'Largest' to all the features, especially since we have the +  // 'DoNotNormalize' list. +  FeaturesListNormalizer Largest(FeatureIDs::FeatureCount, 0.0); + +  // Same overal idea as in the default eviction policy - we visit the values +  // of AllocationOrder one at a time. If it's not legally available, we mask +  // off the corresponding feature column (==do nothing because we already +  // reset all the features to 0) Use Pos to capture the column we load +  // features at - in AllocationOrder order. +  size_t Pos = 0; +  SmallVector<LRStartEndInfo, NumberOfInterferences> LRPosInfo; +  for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; +       ++I, ++Pos) { +    MCRegister PhysReg = *I; +    assert(!Regs[Pos].second); +    assert(PhysReg); +    if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) { +      continue; +    } +    if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters, +                                 Largest, Pos, LRPosInfo)) { +      ++Available; +      Regs[Pos] = std::make_pair(PhysReg, true); +    } +  } +  if (Available == 0) { +    // Nothing to decide, nothing to learn. +    assert(!MustFindEviction); +    return MCRegister::NoRegister; +  } +  const size_t ValidPosLimit = Pos; +  // If we must find eviction, the candidate should be masked out of the +  // decision making process. +  Regs[CandidateVirtRegPos].second = !MustFindEviction; +  if (!MustFindEviction) +    extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest, +                    CandidateVirtRegPos, /*IsHint*/ 0, +                    /*LocalIntfsCount*/ 0, +                    /*NrUrgent*/ 0.0, LRPosInfo); +  assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had " +                               "nothing to allocate initially."); +#ifdef LLVM_HAVE_TFLITE +  if (EnableDevelopmentFeatures) { +    extractInstructionFeatures( +        LRPosInfo, Runner, +        [this](SlotIndex InputIndex) -> int { +          auto *CurrentMachineInstruction = +              LIS->getInstructionFromIndex(InputIndex); +          if (!CurrentMachineInstruction) { +            return -1; +          } +          return CurrentMachineInstruction->getOpcode(); +        }, +        [this](SlotIndex InputIndex) -> float { +          auto *CurrentMachineInstruction = +              LIS->getInstructionFromIndex(InputIndex); +          return MBFI.getBlockFreqRelativeToEntryBlock( +              CurrentMachineInstruction->getParent()); +        }, +        [this](SlotIndex InputIndex) -> MachineBasicBlock * { +          auto *CurrentMachineInstruction = +              LIS->getInstructionFromIndex(InputIndex); +          return CurrentMachineInstruction->getParent(); +        }, +        FeatureIDs::instructions, FeatureIDs::instructions_mapping, +        FeatureIDs::mbb_frequencies, FeatureIDs::mbb_mapping, +        LIS->getSlotIndexes()->getLastIndex()); +  } +#endif // #ifdef LLVM_HAVE_TFLITE +  // Normalize the features. +  for (auto &V : Largest) +    V = V ? V : 1.0; +  for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount; +       ++FeatureIndex) { +    if (DoNotNormalize.test(FeatureIndex)) +      continue; +    for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) { +      Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex]; +    } +  } +  *Runner->getTensor<float>(FeatureIDs::progress) = +      static_cast<float>(RA.getQueueSize()) / InitialQSize; + +  // Get a decision. +  size_t CandidatePos = tryFindEvictionCandidatePosition( +      VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); +  // The contract with the ML side is that CandidatePos is mask == 1 (i.e. +  // Regs[CandidatePos].second) +  assert(Regs[CandidatePos].second); +  if (CandidatePos == CandidateVirtRegPos) { +    assert(!MustFindEviction); +    return MCRegister::NoRegister; +  } +  assert(CandidatePos < ValidPosLimit); +  (void)ValidPosLimit; +  return Regs[CandidatePos].first; +} + +const LIFeatureComponents & +MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const { +  RegID ID = LI.reg().id(); +  LIFeatureComponents Empty; +  auto I = CachedFeatures.insert(std::make_pair(ID, Empty)); +  LIFeatureComponents &Ret = I.first->getSecond(); +  if (!I.second) +    return Ret; + +  SmallPtrSet<MachineInstr *, 8> Visited; +  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); + +  for (MachineRegisterInfo::reg_instr_nodbg_iterator +           I = MRI->reg_instr_nodbg_begin(LI.reg()), +           E = MRI->reg_instr_nodbg_end(); +       I != E;) { +    MachineInstr *MI = &*(I++); + +    ++Ret.NrDefsAndUses; +    if (!Visited.insert(MI).second) +      continue; + +    if (MI->isIdentityCopy() || MI->isImplicitDef()) +      continue; + +    bool Reads, Writes; +    std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg()); + +    float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent()); +    Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq); + +    Ret.R += (Reads && !Writes) * Freq; +    Ret.W += (!Reads && Writes) * Freq; +    Ret.RW += (Reads && Writes) * Freq; + +    auto *MBB = MI->getParent(); +    auto *Loop = Loops.getLoopFor(MBB); +    bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false; + +    if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB)) +      Ret.IndVarUpdates += Freq; + +    if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI)) +      Ret.HintWeights += Freq; +  } +  Ret.IsRemat = VirtRegAuxInfo::isRematerializable( +      LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo()); +  return Ret; +} + +// Overall, this currently mimics what we do for weight calculation, but instead +// of accummulating the various features, we keep them separate. +void MLEvictAdvisor::extractFeatures( +    const SmallVectorImpl<const LiveInterval *> &Intervals, +    llvm::SmallVectorImpl<float> &Largest, size_t Pos, int64_t IsHint, +    int64_t LocalIntfsCount, float NrUrgent, +    SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { +  int64_t NrDefsAndUses = 0; +  int64_t NrBrokenHints = 0; +  double R = 0.0; +  double W = 0.0; +  double RW = 0.0; +  double IndVarUpdates = 0.0; +  double HintWeights = 0.0; +  float StartBBFreq = 0.0; +  float EndBBFreq = 0.0; +  float HottestBlockFreq = 0.0; +  int32_t NrRematerializable = 0; +  float TotalWeight = 0.0; + +  SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex(); +  SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex(); +  int64_t MaxStage = 0; +  int64_t MinStage = +      Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max(); + +  for (const auto *L : Intervals) { +    const LiveInterval &LI = *L; +    MaxStage = std::max<int64_t>( +        MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); +    MinStage = std::min<int64_t>( +        MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI))); + +    TotalWeight = std::max(TotalWeight, LI.weight()); + +    if (LI.beginIndex() < StartSI) +      StartSI = LI.beginIndex(); + +    if (LI.endIndex() > EndSI) +      EndSI = LI.endIndex(); +    const LIFeatureComponents &LIFC = getLIFeatureComponents(LI); +    NrBrokenHints += VRM->hasPreferredPhys(LI.reg()); + +    NrDefsAndUses += LIFC.NrDefsAndUses; +    HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq); +    R += LIFC.R; +    W += LIFC.W; +    RW += LIFC.RW; + +    IndVarUpdates += LIFC.IndVarUpdates; + +    HintWeights += LIFC.HintWeights; +    NrRematerializable += LIFC.IsRemat; + +    if (EnableDevelopmentFeatures) { +      for (auto CurrentSegment : LI) { +        LRPosInfo.push_back( +            LRStartEndInfo{CurrentSegment.start, CurrentSegment.end, Pos}); +      } +    } +  } +  size_t Size = 0; +  if (!Intervals.empty()) { +    StartBBFreq = +        MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI)); +    if (EndSI >= LIS->getSlotIndexes()->getLastIndex()) +      EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex(); +    EndBBFreq = +        MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI)); +    Size = StartSI.distance(EndSI); +  } +  // Set the features at the column 'Pos'. +#define SET(ID, TYPE, VAL)                                                     \ +  do {                                                                         \ +    Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL);     \ +    if (!DoNotNormalize.test(FeatureIDs::ID))                                  \ +      Largest[FeatureIDs::ID] =                                                \ +          std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL));          \ +  } while (false) +  SET(mask, int64_t, 1); +  SET(is_free, int64_t, Intervals.empty()); +  SET(nr_urgent, float, NrUrgent); +  SET(nr_broken_hints, float, NrBrokenHints); +  SET(is_hint, int64_t, IsHint); +  SET(is_local, int64_t, LocalIntfsCount); +  SET(nr_rematerializable, float, NrRematerializable); +  SET(nr_defs_and_uses, float, NrDefsAndUses); +  SET(weighed_reads_by_max, float, R); +  SET(weighed_writes_by_max, float, W); +  SET(weighed_read_writes_by_max, float, RW); +  SET(weighed_indvars_by_max, float, IndVarUpdates); +  SET(hint_weights_by_max, float, HintWeights); +  SET(start_bb_freq_by_max, float, StartBBFreq); +  SET(end_bb_freq_by_max, float, EndBBFreq); +  SET(hottest_bb_freq_by_max, float, HottestBlockFreq); +  SET(liverange_size, float, Size); +  SET(use_def_density, float, TotalWeight); +  SET(max_stage, int64_t, MaxStage); +  SET(min_stage, int64_t, MinStage); +#undef SET +} + +void extractInstructionFeatures( +    SmallVectorImpl<LRStartEndInfo> &LRPosInfo, MLModelRunner *RegallocRunner, +    function_ref<int(SlotIndex)> GetOpcode, +    function_ref<float(SlotIndex)> GetMBBFreq, +    function_ref<MachineBasicBlock *(SlotIndex)> GetMBBReference, +    const int InstructionsIndex, const int InstructionsMappingIndex, +    const int MBBFreqIndex, const int MBBMappingIndex, +    const SlotIndex LastIndex) { +  // This function extracts instruction based features relevant to the eviction +  // problem currently being solved. This function ends up extracting two +  // tensors. +  // 1 - A vector of size max instruction count. It contains the opcodes of the +  // instructions spanned by all the intervals in the current instance of the +  // eviction problem. +  // 2 - A binary mapping matrix of size (LR count * max +  // instruction count) which maps where the LRs are live to the actual opcodes +  // for which they are live. +  // 3 - A vector of size max supported MBB count storing MBB frequencies, +  // encompassing all of the MBBs covered by the eviction problem. +  // 4 - A vector of size max instruction count of indices to members of the MBB +  // frequency vector, mapping each instruction to its associated MBB. + +  // Start off by sorting the segments based on the beginning slot index. +  std::sort( +      LRPosInfo.begin(), LRPosInfo.end(), +      [](LRStartEndInfo A, LRStartEndInfo B) { return A.Begin < B.Begin; }); +  size_t InstructionIndex = 0; +  size_t CurrentSegmentIndex = 0; +  SlotIndex CurrentIndex = LRPosInfo[0].Begin; +  std::map<MachineBasicBlock *, size_t> VisitedMBBs; +  size_t CurrentMBBIndex = 0; +  // This loop processes all the segments sequentially by starting at the +  // beginning slot index of the first segment, iterating through all the slot +  // indices before the end slot index of that segment (while checking for +  // overlaps with segments that start at greater slot indices). After hitting +  // that end index, the current segment being processed gets bumped until they +  // are all processed or the max instruction count is hit, where everything is +  // just truncated. +  while (true) { +    // If the index that we are currently at is within the current segment and +    // we haven't hit the max instruction count, continue processing the current +    // segment. +    while (CurrentIndex <= LRPosInfo[CurrentSegmentIndex].End && +           InstructionIndex < ModelMaxSupportedInstructionCount) { +      int CurrentOpcode = GetOpcode(CurrentIndex); +      // If the current machine instruction is null, skip it +      if (CurrentOpcode == -1) { +        // If we're currently at the last index in the SlotIndex analysis, +        // we can't go any further, so return from the function +        if (CurrentIndex >= LastIndex) { +          return; +        } +        CurrentIndex = CurrentIndex.getNextIndex(); +        continue; +      } +      MachineBasicBlock *CurrentMBBReference = GetMBBReference(CurrentIndex); +      if (VisitedMBBs.count(CurrentMBBReference) == 0) { +        VisitedMBBs[CurrentMBBReference] = CurrentMBBIndex; +        ++CurrentMBBIndex; +      } +      extractMBBFrequency(CurrentIndex, InstructionIndex, VisitedMBBs, +                          GetMBBFreq, CurrentMBBReference, RegallocRunner, +                          MBBFreqIndex, MBBMappingIndex); +      // Current code assumes we're not going to get any disjointed segments +      assert(LRPosInfo[CurrentSegmentIndex].Begin <= CurrentIndex); +      RegallocRunner->getTensor<int64_t>(InstructionsIndex)[InstructionIndex] = +          CurrentOpcode < OpcodeValueCutoff ? CurrentOpcode : 0; +      // set value in the binary mapping matrix for the current instruction +      auto CurrentSegmentPosition = LRPosInfo[CurrentSegmentIndex].Pos; +      RegallocRunner->getTensor<int64_t>( +          InstructionsMappingIndex)[CurrentSegmentPosition * +                                        ModelMaxSupportedInstructionCount + +                                    InstructionIndex] = 1; +      // All of the segments are sorted based on the beginning slot index, but +      // this doesn't mean that the beginning slot index of the next segment is +      // after the end segment of the one being currently processed. This while +      // loop checks for overlapping segments and modifies the portion of the +      // column in the mapping matrix for the currently processed instruction +      // for the LR it is checking. Also make sure that the beginning of the +      // current segment we're checking for overlap in is less than the current +      // index, otherwise we're done checking overlaps. +      size_t OverlapCheckCurrentSegment = CurrentSegmentIndex + 1; +      while (OverlapCheckCurrentSegment < LRPosInfo.size() && +             LRPosInfo[OverlapCheckCurrentSegment].Begin <= CurrentIndex) { +        auto OverlapCurrentSegmentPosition = +            LRPosInfo[OverlapCheckCurrentSegment].Pos; +        if (LRPosInfo[OverlapCheckCurrentSegment].End >= CurrentIndex) { +          RegallocRunner->getTensor<int64_t>( +              InstructionsMappingIndex)[OverlapCurrentSegmentPosition * +                                            ModelMaxSupportedInstructionCount + +                                        InstructionIndex] = 1; +        } +        ++OverlapCheckCurrentSegment; +      } +      ++InstructionIndex; +      if (CurrentIndex >= LastIndex) { +        return; +      } +      CurrentIndex = CurrentIndex.getNextIndex(); +    } +    // if we've just finished processing through the last segment or if we've +    // hit the maximum number of instructions, break out of the loop. +    if (CurrentSegmentIndex == LRPosInfo.size() - 1 || +        InstructionIndex >= ModelMaxSupportedInstructionCount) { +      break; +    } +    // If the segments are not overlapping, we need to move to the beginning +    // index of the next segment to avoid having instructions not attached to +    // any register. +    if (LRPosInfo[CurrentSegmentIndex + 1].Begin > +        LRPosInfo[CurrentSegmentIndex].End) { +      CurrentIndex = LRPosInfo[CurrentSegmentIndex + 1].Begin; +    } +    ++CurrentSegmentIndex; +  } +} + +void extractMBBFrequency(const SlotIndex CurrentIndex, +                         const size_t CurrentInstructionIndex, +                         std::map<MachineBasicBlock *, size_t> &VisitedMBBs, +                         function_ref<float(SlotIndex)> GetMBBFreq, +                         MachineBasicBlock *CurrentMBBReference, +                         MLModelRunner *RegallocRunner, const int MBBFreqIndex, +                         const int MBBMappingIndex) { +  size_t CurrentMBBIndex = VisitedMBBs[CurrentMBBReference]; +  float CurrentMBBFreq = GetMBBFreq(CurrentIndex); +  if (CurrentMBBIndex < ModelMaxSupportedMBBCount) { +    RegallocRunner->getTensor<float>(MBBFreqIndex)[CurrentMBBIndex] = +        CurrentMBBFreq; +    RegallocRunner->getTensor<int64_t>( +        MBBMappingIndex)[CurrentInstructionIndex] = CurrentMBBIndex; +  } +} + +// Development mode-specific implementations +#ifdef LLVM_HAVE_TFLITE + +RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() { +  return new DevelopmentModeEvictionAdvisorAnalysis(); +} + +int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition( +    const LiveInterval &VirtReg, const AllocationOrder &Order, +    unsigned OrderLimit, uint8_t CostPerUseLimit, +    const SmallVirtRegSet &FixedRegisters) const { +  int64_t Ret = 0; +  if (isa<ModelUnderTrainingRunner>(getRunner())) { +    Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition( +        VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); +  } else { +    MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate( +        VirtReg, Order, CostPerUseLimit, FixedRegisters); +    // Find the index of the selected PhysReg. We need it for logging, +    // otherwise this is wasted cycles (but so would starting development mode +    // without a model nor logging) +    if (!PhysReg) +      Ret = CandidateVirtRegPos; +    else +      for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); +           I != E; ++I, ++Ret) +        if (*I == PhysReg) +          break; +  } +  if (TrainingLog.empty()) +    return Ret; +  // TODO(mtrofin): when we support optional rewards, this can go away. In the +  // meantime, we log the "pretend" reward (0) for the previous observation +  // before starting a new one. +  if (Log->hasObservationInProgress()) +    Log->logReward<float>(0.0); + +  Log->startObservation(); +  size_t CurrentFeature = 0; +  size_t FeatureCount = EnableDevelopmentFeatures +                            ? FeatureIDs::FeaturesWithDevelopmentCount +                            : FeatureIDs::FeatureCount; +  for (; CurrentFeature < FeatureCount; ++CurrentFeature) { +    Log->logTensorValue(CurrentFeature, +                        reinterpret_cast<const char *>( +                            getRunner().getTensorUntyped(CurrentFeature))); +  } +  if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) +    for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size(); +         ++I, ++CurrentFeature) +      Log->logTensorValue( +          CurrentFeature, +          reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I))); +  // The output is right after the features and the extra outputs +  Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret)); +  Log->endObservation(); +  return Ret; +} + +bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) { +  std::optional<float> CachedReward; +  auto GetReward = [&]() { +    if (!CachedReward) +      CachedReward = static_cast<float>( +          calculateRegAllocScore(MF, getAnalysis<MachineBlockFrequencyInfo>()) +              .getScore()); +    return *CachedReward; +  }; + +  getAnalysis<RegAllocEvictionAdvisorAnalysis>().logRewardIfNeeded(MF, +                                                                   GetReward); +  getAnalysis<RegAllocPriorityAdvisorAnalysis>().logRewardIfNeeded(MF, +                                                                   GetReward); +  return false; +} +#endif // #ifdef LLVM_HAVE_TFLITE + +RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() { +  return llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() || +                 !InteractiveChannelBaseName.empty() +             ? new ReleaseModeEvictionAdvisorAnalysis() +             : nullptr; +} + +// In all cases except development mode, we don't need scoring. +#if !defined(LLVM_HAVE_TFLITE) +bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; } +#endif  | 
