aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/MachineCSE.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/CodeGen/MachineCSE.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/MachineCSE.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/MachineCSE.cpp896
1 files changed, 896 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/MachineCSE.cpp b/contrib/llvm-project/llvm/lib/CodeGen/MachineCSE.cpp
new file mode 100644
index 000000000000..a5af5cb72df9
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/MachineCSE.cpp
@@ -0,0 +1,896 @@
+//===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs global common subexpression elimination on machine
+// instructions using a scoped hash table based value numbering scheme. It
+// must be run while the machine function is still in SSA form.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/ScopedHashTable.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/RecyclingAllocator.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <iterator>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "machine-cse"
+
+STATISTIC(NumCoalesces, "Number of copies coalesced");
+STATISTIC(NumCSEs, "Number of common subexpression eliminated");
+STATISTIC(NumPREs, "Number of partial redundant expression"
+ " transformed to fully redundant");
+STATISTIC(NumPhysCSEs,
+ "Number of physreg referencing common subexpr eliminated");
+STATISTIC(NumCrossBBCSEs,
+ "Number of cross-MBB physreg referencing CS eliminated");
+STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
+
+namespace {
+
+ class MachineCSE : public MachineFunctionPass {
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+ AliasAnalysis *AA;
+ MachineDominatorTree *DT;
+ MachineRegisterInfo *MRI;
+ MachineBlockFrequencyInfo *MBFI;
+
+ public:
+ static char ID; // Pass identification
+
+ MachineCSE() : MachineFunctionPass(ID) {
+ initializeMachineCSEPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreservedID(MachineLoopInfoID);
+ AU.addRequired<MachineDominatorTree>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.addPreserved<MachineBlockFrequencyInfo>();
+ }
+
+ void releaseMemory() override {
+ ScopeMap.clear();
+ PREMap.clear();
+ Exps.clear();
+ }
+
+ private:
+ using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
+ ScopedHashTableVal<MachineInstr *, unsigned>>;
+ using ScopedHTType =
+ ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
+ AllocatorTy>;
+ using ScopeType = ScopedHTType::ScopeTy;
+ using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
+
+ unsigned LookAheadLimit = 0;
+ DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
+ DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
+ PREMap;
+ ScopedHTType VNT;
+ SmallVector<MachineInstr *, 64> Exps;
+ unsigned CurrVN = 0;
+
+ bool PerformTrivialCopyPropagation(MachineInstr *MI,
+ MachineBasicBlock *MBB);
+ bool isPhysDefTriviallyDead(unsigned Reg,
+ MachineBasicBlock::const_iterator I,
+ MachineBasicBlock::const_iterator E) const;
+ bool hasLivePhysRegDefUses(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ SmallSet<unsigned, 8> &PhysRefs,
+ PhysDefVector &PhysDefs, bool &PhysUseDef) const;
+ bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
+ SmallSet<unsigned, 8> &PhysRefs,
+ PhysDefVector &PhysDefs, bool &NonLocal) const;
+ bool isCSECandidate(MachineInstr *MI);
+ bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
+ MachineBasicBlock *CSBB, MachineInstr *MI);
+ void EnterScope(MachineBasicBlock *MBB);
+ void ExitScope(MachineBasicBlock *MBB);
+ bool ProcessBlockCSE(MachineBasicBlock *MBB);
+ void ExitScopeIfDone(MachineDomTreeNode *Node,
+ DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
+ bool PerformCSE(MachineDomTreeNode *Node);
+
+ bool isPRECandidate(MachineInstr *MI);
+ bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
+ bool PerformSimplePRE(MachineDominatorTree *DT);
+ /// Heuristics to see if it's beneficial to move common computations of MBB
+ /// and MBB1 to CandidateBB.
+ bool isBeneficalToHoistInto(MachineBasicBlock *CandidateBB,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *MBB1);
+ };
+
+} // end anonymous namespace
+
+char MachineCSE::ID = 0;
+
+char &llvm::MachineCSEID = MachineCSE::ID;
+
+INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
+ "Machine Common Subexpression Elimination", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
+ "Machine Common Subexpression Elimination", false, false)
+
+/// The source register of a COPY machine instruction can be propagated to all
+/// its users, and this propagation could increase the probability of finding
+/// common subexpressions. If the COPY has only one user, the COPY itself can
+/// be removed.
+bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
+ MachineBasicBlock *MBB) {
+ bool Changed = false;
+ for (MachineOperand &MO : MI->operands()) {
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
+ MachineInstr *DefMI = MRI->getVRegDef(Reg);
+ if (!DefMI->isCopy())
+ continue;
+ unsigned SrcReg = DefMI->getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ continue;
+ if (DefMI->getOperand(0).getSubReg())
+ continue;
+ // FIXME: We should trivially coalesce subregister copies to expose CSE
+ // opportunities on instructions with truncated operands (see
+ // cse-add-with-overflow.ll). This can be done here as follows:
+ // if (SrcSubReg)
+ // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
+ // SrcSubReg);
+ // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
+ //
+ // The 2-addr pass has been updated to handle coalesced subregs. However,
+ // some machine-specific code still can't handle it.
+ // To handle it properly we also need a way find a constrained subregister
+ // class given a super-reg class and subreg index.
+ if (DefMI->getOperand(1).getSubReg())
+ continue;
+ if (!MRI->constrainRegAttrs(SrcReg, Reg))
+ continue;
+ LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
+ LLVM_DEBUG(dbgs() << "*** to: " << *MI);
+
+ // Update matching debug values.
+ DefMI->changeDebugValuesDefReg(SrcReg);
+
+ // Propagate SrcReg of copies to MI.
+ MO.setReg(SrcReg);
+ MRI->clearKillFlags(SrcReg);
+ // Coalesce single use copies.
+ if (OnlyOneUse) {
+ DefMI->eraseFromParent();
+ ++NumCoalesces;
+ }
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+bool
+MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
+ MachineBasicBlock::const_iterator I,
+ MachineBasicBlock::const_iterator E) const {
+ unsigned LookAheadLeft = LookAheadLimit;
+ while (LookAheadLeft) {
+ // Skip over dbg_value's.
+ I = skipDebugInstructionsForward(I, E);
+
+ if (I == E)
+ // Reached end of block, we don't know if register is dead or not.
+ return false;
+
+ bool SeenDef = false;
+ for (const MachineOperand &MO : I->operands()) {
+ if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
+ SeenDef = true;
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ if (!TRI->regsOverlap(MO.getReg(), Reg))
+ continue;
+ if (MO.isUse())
+ // Found a use!
+ return false;
+ SeenDef = true;
+ }
+ if (SeenDef)
+ // See a def of Reg (or an alias) before encountering any use, it's
+ // trivially dead.
+ return true;
+
+ --LookAheadLeft;
+ ++I;
+ }
+ return false;
+}
+
+static bool isCallerPreservedOrConstPhysReg(unsigned Reg,
+ const MachineFunction &MF,
+ const TargetRegisterInfo &TRI) {
+ // MachineRegisterInfo::isConstantPhysReg directly called by
+ // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
+ // reserved registers to be frozen. That doesn't cause a problem post-ISel as
+ // most (if not all) targets freeze reserved registers right after ISel.
+ //
+ // It does cause issues mid-GlobalISel, however, hence the additional
+ // reservedRegsFrozen check.
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ return TRI.isCallerPreservedPhysReg(Reg, MF) ||
+ (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
+}
+
+/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
+/// physical registers (except for dead defs of physical registers). It also
+/// returns the physical register def by reference if it's the only one and the
+/// instruction does not uses a physical register.
+bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
+ const MachineBasicBlock *MBB,
+ SmallSet<unsigned, 8> &PhysRefs,
+ PhysDefVector &PhysDefs,
+ bool &PhysUseDef) const {
+ // First, add all uses to PhysRefs.
+ for (const MachineOperand &MO : MI->operands()) {
+ if (!MO.isReg() || MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ // Reading either caller preserved or constant physregs is ok.
+ if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI))
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
+ PhysRefs.insert(*AI);
+ }
+
+ // Next, collect all defs into PhysDefs. If any is already in PhysRefs
+ // (which currently contains only uses), set the PhysUseDef flag.
+ PhysUseDef = false;
+ MachineBasicBlock::const_iterator I = MI; I = std::next(I);
+ for (const auto &MOP : llvm::enumerate(MI->operands())) {
+ const MachineOperand &MO = MOP.value();
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ // Check against PhysRefs even if the def is "dead".
+ if (PhysRefs.count(Reg))
+ PhysUseDef = true;
+ // If the def is dead, it's ok. But the def may not marked "dead". That's
+ // common since this pass is run before livevariables. We can scan
+ // forward a few instructions and check if it is obviously dead.
+ if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
+ PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
+ }
+
+ // Finally, add all defs to PhysRefs as well.
+ for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
+ for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
+ ++AI)
+ PhysRefs.insert(*AI);
+
+ return !PhysRefs.empty();
+}
+
+bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
+ SmallSet<unsigned, 8> &PhysRefs,
+ PhysDefVector &PhysDefs,
+ bool &NonLocal) const {
+ // For now conservatively returns false if the common subexpression is
+ // not in the same basic block as the given instruction. The only exception
+ // is if the common subexpression is in the sole predecessor block.
+ const MachineBasicBlock *MBB = MI->getParent();
+ const MachineBasicBlock *CSMBB = CSMI->getParent();
+
+ bool CrossMBB = false;
+ if (CSMBB != MBB) {
+ if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
+ return false;
+
+ for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
+ if (MRI->isAllocatable(PhysDefs[i].second) ||
+ MRI->isReserved(PhysDefs[i].second))
+ // Avoid extending live range of physical registers if they are
+ //allocatable or reserved.
+ return false;
+ }
+ CrossMBB = true;
+ }
+ MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
+ MachineBasicBlock::const_iterator E = MI;
+ MachineBasicBlock::const_iterator EE = CSMBB->end();
+ unsigned LookAheadLeft = LookAheadLimit;
+ while (LookAheadLeft) {
+ // Skip over dbg_value's.
+ while (I != E && I != EE && I->isDebugInstr())
+ ++I;
+
+ if (I == EE) {
+ assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
+ (void)CrossMBB;
+ CrossMBB = false;
+ NonLocal = true;
+ I = MBB->begin();
+ EE = MBB->end();
+ continue;
+ }
+
+ if (I == E)
+ return true;
+
+ for (const MachineOperand &MO : I->operands()) {
+ // RegMasks go on instructions like calls that clobber lots of physregs.
+ // Don't attempt to CSE across such an instruction.
+ if (MO.isRegMask())
+ return false;
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned MOReg = MO.getReg();
+ if (TargetRegisterInfo::isVirtualRegister(MOReg))
+ continue;
+ if (PhysRefs.count(MOReg))
+ return false;
+ }
+
+ --LookAheadLeft;
+ ++I;
+ }
+
+ return false;
+}
+
+bool MachineCSE::isCSECandidate(MachineInstr *MI) {
+ if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
+ MI->isInlineAsm() || MI->isDebugInstr())
+ return false;
+
+ // Ignore copies.
+ if (MI->isCopyLike())
+ return false;
+
+ // Ignore stuff that we obviously can't move.
+ if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
+ MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
+ return false;
+
+ if (MI->mayLoad()) {
+ // Okay, this instruction does a load. As a refinement, we allow the target
+ // to decide whether the loaded value is actually a constant. If so, we can
+ // actually use it as a load.
+ if (!MI->isDereferenceableInvariantLoad(AA))
+ // FIXME: we should be able to hoist loads with no other side effects if
+ // there are no other instructions which can change memory in this loop.
+ // This is a trivial form of alias analysis.
+ return false;
+ }
+
+ // Ignore stack guard loads, otherwise the register that holds CSEed value may
+ // be spilled and get loaded back with corrupted data.
+ if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
+ return false;
+
+ return true;
+}
+
+/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
+/// common expression that defines Reg. CSBB is basic block where CSReg is
+/// defined.
+bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
+ MachineBasicBlock *CSBB, MachineInstr *MI) {
+ // FIXME: Heuristics that works around the lack the live range splitting.
+
+ // If CSReg is used at all uses of Reg, CSE should not increase register
+ // pressure of CSReg.
+ bool MayIncreasePressure = true;
+ if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
+ TargetRegisterInfo::isVirtualRegister(Reg)) {
+ MayIncreasePressure = false;
+ SmallPtrSet<MachineInstr*, 8> CSUses;
+ for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
+ CSUses.insert(&MI);
+ }
+ for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
+ if (!CSUses.count(&MI)) {
+ MayIncreasePressure = true;
+ break;
+ }
+ }
+ }
+ if (!MayIncreasePressure) return true;
+
+ // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
+ // an immediate predecessor. We don't want to increase register pressure and
+ // end up causing other computation to be spilled.
+ if (TII->isAsCheapAsAMove(*MI)) {
+ MachineBasicBlock *BB = MI->getParent();
+ if (CSBB != BB && !CSBB->isSuccessor(BB))
+ return false;
+ }
+
+ // Heuristics #2: If the expression doesn't not use a vr and the only use
+ // of the redundant computation are copies, do not cse.
+ bool HasVRegUse = false;
+ for (const MachineOperand &MO : MI->operands()) {
+ if (MO.isReg() && MO.isUse() &&
+ TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
+ HasVRegUse = true;
+ break;
+ }
+ }
+ if (!HasVRegUse) {
+ bool HasNonCopyUse = false;
+ for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
+ // Ignore copies.
+ if (!MI.isCopyLike()) {
+ HasNonCopyUse = true;
+ break;
+ }
+ }
+ if (!HasNonCopyUse)
+ return false;
+ }
+
+ // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
+ // it unless the defined value is already used in the BB of the new use.
+ bool HasPHI = false;
+ for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
+ HasPHI |= UseMI.isPHI();
+ if (UseMI.getParent() == MI->getParent())
+ return true;
+ }
+
+ return !HasPHI;
+}
+
+void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
+ LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
+ ScopeType *Scope = new ScopeType(VNT);
+ ScopeMap[MBB] = Scope;
+}
+
+void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
+ LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
+ DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
+ assert(SI != ScopeMap.end());
+ delete SI->second;
+ ScopeMap.erase(SI);
+}
+
+bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
+ bool Changed = false;
+
+ SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
+ SmallVector<unsigned, 2> ImplicitDefsToUpdate;
+ SmallVector<unsigned, 2> ImplicitDefs;
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
+ MachineInstr *MI = &*I;
+ ++I;
+
+ if (!isCSECandidate(MI))
+ continue;
+
+ bool FoundCSE = VNT.count(MI);
+ if (!FoundCSE) {
+ // Using trivial copy propagation to find more CSE opportunities.
+ if (PerformTrivialCopyPropagation(MI, MBB)) {
+ Changed = true;
+
+ // After coalescing MI itself may become a copy.
+ if (MI->isCopyLike())
+ continue;
+
+ // Try again to see if CSE is possible.
+ FoundCSE = VNT.count(MI);
+ }
+ }
+
+ // Commute commutable instructions.
+ bool Commuted = false;
+ if (!FoundCSE && MI->isCommutable()) {
+ if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
+ Commuted = true;
+ FoundCSE = VNT.count(NewMI);
+ if (NewMI != MI) {
+ // New instruction. It doesn't need to be kept.
+ NewMI->eraseFromParent();
+ Changed = true;
+ } else if (!FoundCSE)
+ // MI was changed but it didn't help, commute it back!
+ (void)TII->commuteInstruction(*MI);
+ }
+ }
+
+ // If the instruction defines physical registers and the values *may* be
+ // used, then it's not safe to replace it with a common subexpression.
+ // It's also not safe if the instruction uses physical registers.
+ bool CrossMBBPhysDef = false;
+ SmallSet<unsigned, 8> PhysRefs;
+ PhysDefVector PhysDefs;
+ bool PhysUseDef = false;
+ if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
+ PhysDefs, PhysUseDef)) {
+ FoundCSE = false;
+
+ // ... Unless the CS is local or is in the sole predecessor block
+ // and it also defines the physical register which is not clobbered
+ // in between and the physical register uses were not clobbered.
+ // This can never be the case if the instruction both uses and
+ // defines the same physical register, which was detected above.
+ if (!PhysUseDef) {
+ unsigned CSVN = VNT.lookup(MI);
+ MachineInstr *CSMI = Exps[CSVN];
+ if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
+ FoundCSE = true;
+ }
+ }
+
+ if (!FoundCSE) {
+ VNT.insert(MI, CurrVN++);
+ Exps.push_back(MI);
+ continue;
+ }
+
+ // Found a common subexpression, eliminate it.
+ unsigned CSVN = VNT.lookup(MI);
+ MachineInstr *CSMI = Exps[CSVN];
+ LLVM_DEBUG(dbgs() << "Examining: " << *MI);
+ LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
+
+ // Check if it's profitable to perform this CSE.
+ bool DoCSE = true;
+ unsigned NumDefs = MI->getNumDefs();
+
+ for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned OldReg = MO.getReg();
+ unsigned NewReg = CSMI->getOperand(i).getReg();
+
+ // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
+ // we should make sure it is not dead at CSMI.
+ if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
+ ImplicitDefsToUpdate.push_back(i);
+
+ // Keep track of implicit defs of CSMI and MI, to clear possibly
+ // made-redundant kill flags.
+ if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
+ ImplicitDefs.push_back(OldReg);
+
+ if (OldReg == NewReg) {
+ --NumDefs;
+ continue;
+ }
+
+ assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
+ TargetRegisterInfo::isVirtualRegister(NewReg) &&
+ "Do not CSE physical register defs!");
+
+ if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) {
+ LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
+ DoCSE = false;
+ break;
+ }
+
+ // Don't perform CSE if the result of the new instruction cannot exist
+ // within the constraints (register class, bank, or low-level type) of
+ // the old instruction.
+ if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
+ LLVM_DEBUG(
+ dbgs() << "*** Not the same register constraints, avoid CSE!\n");
+ DoCSE = false;
+ break;
+ }
+
+ CSEPairs.push_back(std::make_pair(OldReg, NewReg));
+ --NumDefs;
+ }
+
+ // Actually perform the elimination.
+ if (DoCSE) {
+ for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
+ unsigned OldReg = CSEPair.first;
+ unsigned NewReg = CSEPair.second;
+ // OldReg may have been unused but is used now, clear the Dead flag
+ MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
+ assert(Def != nullptr && "CSEd register has no unique definition?");
+ Def->clearRegisterDeads(NewReg);
+ // Replace with NewReg and clear kill flags which may be wrong now.
+ MRI->replaceRegWith(OldReg, NewReg);
+ MRI->clearKillFlags(NewReg);
+ }
+
+ // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
+ // we should make sure it is not dead at CSMI.
+ for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
+ CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
+ for (auto PhysDef : PhysDefs)
+ if (!MI->getOperand(PhysDef.first).isDead())
+ CSMI->getOperand(PhysDef.first).setIsDead(false);
+
+ // Go through implicit defs of CSMI and MI, and clear the kill flags on
+ // their uses in all the instructions between CSMI and MI.
+ // We might have made some of the kill flags redundant, consider:
+ // subs ... implicit-def %nzcv <- CSMI
+ // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
+ // subs ... implicit-def %nzcv <- MI, to be eliminated
+ // csinc ... implicit killed %nzcv
+ // Since we eliminated MI, and reused a register imp-def'd by CSMI
+ // (here %nzcv), that register, if it was killed before MI, should have
+ // that kill flag removed, because it's lifetime was extended.
+ if (CSMI->getParent() == MI->getParent()) {
+ for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
+ for (auto ImplicitDef : ImplicitDefs)
+ if (MachineOperand *MO = II->findRegisterUseOperand(
+ ImplicitDef, /*isKill=*/true, TRI))
+ MO->setIsKill(false);
+ } else {
+ // If the instructions aren't in the same BB, bail out and clear the
+ // kill flag on all uses of the imp-def'd register.
+ for (auto ImplicitDef : ImplicitDefs)
+ MRI->clearKillFlags(ImplicitDef);
+ }
+
+ if (CrossMBBPhysDef) {
+ // Add physical register defs now coming in from a predecessor to MBB
+ // livein list.
+ while (!PhysDefs.empty()) {
+ auto LiveIn = PhysDefs.pop_back_val();
+ if (!MBB->isLiveIn(LiveIn.second))
+ MBB->addLiveIn(LiveIn.second);
+ }
+ ++NumCrossBBCSEs;
+ }
+
+ MI->eraseFromParent();
+ ++NumCSEs;
+ if (!PhysRefs.empty())
+ ++NumPhysCSEs;
+ if (Commuted)
+ ++NumCommutes;
+ Changed = true;
+ } else {
+ VNT.insert(MI, CurrVN++);
+ Exps.push_back(MI);
+ }
+ CSEPairs.clear();
+ ImplicitDefsToUpdate.clear();
+ ImplicitDefs.clear();
+ }
+
+ return Changed;
+}
+
+/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
+/// dominator tree node if its a leaf or all of its children are done. Walk
+/// up the dominator tree to destroy ancestors which are now done.
+void
+MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
+ DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
+ if (OpenChildren[Node])
+ return;
+
+ // Pop scope.
+ ExitScope(Node->getBlock());
+
+ // Now traverse upwards to pop ancestors whose offsprings are all done.
+ while (MachineDomTreeNode *Parent = Node->getIDom()) {
+ unsigned Left = --OpenChildren[Parent];
+ if (Left != 0)
+ break;
+ ExitScope(Parent->getBlock());
+ Node = Parent;
+ }
+}
+
+bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
+ SmallVector<MachineDomTreeNode*, 32> Scopes;
+ SmallVector<MachineDomTreeNode*, 8> WorkList;
+ DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
+
+ CurrVN = 0;
+
+ // Perform a DFS walk to determine the order of visit.
+ WorkList.push_back(Node);
+ do {
+ Node = WorkList.pop_back_val();
+ Scopes.push_back(Node);
+ const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
+ OpenChildren[Node] = Children.size();
+ for (MachineDomTreeNode *Child : Children)
+ WorkList.push_back(Child);
+ } while (!WorkList.empty());
+
+ // Now perform CSE.
+ bool Changed = false;
+ for (MachineDomTreeNode *Node : Scopes) {
+ MachineBasicBlock *MBB = Node->getBlock();
+ EnterScope(MBB);
+ Changed |= ProcessBlockCSE(MBB);
+ // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
+ ExitScopeIfDone(Node, OpenChildren);
+ }
+
+ return Changed;
+}
+
+// We use stronger checks for PRE candidate rather than for CSE ones to embrace
+// checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
+// to exclude instrs created by PRE that won't be CSEed later.
+bool MachineCSE::isPRECandidate(MachineInstr *MI) {
+ if (!isCSECandidate(MI) ||
+ MI->isNotDuplicable() ||
+ MI->mayLoad() ||
+ MI->isAsCheapAsAMove() ||
+ MI->getNumDefs() != 1 ||
+ MI->getNumExplicitDefs() != 1)
+ return false;
+
+ for (auto def : MI->defs())
+ if (!TRI->isVirtualRegister(def.getReg()))
+ return false;
+
+ for (auto use : MI->uses())
+ if (use.isReg() && !TRI->isVirtualRegister(use.getReg()))
+ return false;
+
+ return true;
+}
+
+bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
+ MachineBasicBlock *MBB) {
+ bool Changed = false;
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
+ MachineInstr *MI = &*I;
+ ++I;
+
+ if (!isPRECandidate(MI))
+ continue;
+
+ if (!PREMap.count(MI)) {
+ PREMap[MI] = MBB;
+ continue;
+ }
+
+ auto MBB1 = PREMap[MI];
+ assert(
+ !DT->properlyDominates(MBB, MBB1) &&
+ "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
+ auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
+ if (!CMBB->isLegalToHoistInto())
+ continue;
+
+ if (!isBeneficalToHoistInto(CMBB, MBB, MBB1))
+ continue;
+
+ // Two instrs are partial redundant if their basic blocks are reachable
+ // from one to another but one doesn't dominate another.
+ if (CMBB != MBB1) {
+ auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
+ if (BB != nullptr && BB1 != nullptr &&
+ (isPotentiallyReachable(BB1, BB) ||
+ isPotentiallyReachable(BB, BB1))) {
+
+ assert(MI->getOperand(0).isDef() &&
+ "First operand of instr with one explicit def must be this def");
+ unsigned VReg = MI->getOperand(0).getReg();
+ unsigned NewReg = MRI->cloneVirtualRegister(VReg);
+ if (!isProfitableToCSE(NewReg, VReg, CMBB, MI))
+ continue;
+ MachineInstr &NewMI =
+ TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI);
+ NewMI.getOperand(0).setReg(NewReg);
+
+ PREMap[MI] = CMBB;
+ ++NumPREs;
+ Changed = true;
+ }
+ }
+ }
+ return Changed;
+}
+
+// This simple PRE (partial redundancy elimination) pass doesn't actually
+// eliminate partial redundancy but transforms it to full redundancy,
+// anticipating that the next CSE step will eliminate this created redundancy.
+// If CSE doesn't eliminate this, than created instruction will remain dead
+// and eliminated later by Remove Dead Machine Instructions pass.
+bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
+ SmallVector<MachineDomTreeNode *, 32> BBs;
+
+ PREMap.clear();
+ bool Changed = false;
+ BBs.push_back(DT->getRootNode());
+ do {
+ auto Node = BBs.pop_back_val();
+ const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
+ for (MachineDomTreeNode *Child : Children)
+ BBs.push_back(Child);
+
+ MachineBasicBlock *MBB = Node->getBlock();
+ Changed |= ProcessBlockPRE(DT, MBB);
+
+ } while (!BBs.empty());
+
+ return Changed;
+}
+
+bool MachineCSE::isBeneficalToHoistInto(MachineBasicBlock *CandidateBB,
+ MachineBasicBlock *MBB,
+ MachineBasicBlock *MBB1) {
+ if (CandidateBB->getParent()->getFunction().hasMinSize())
+ return true;
+ assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
+ assert(DT->dominates(CandidateBB, MBB1) &&
+ "CandidateBB should dominate MBB1");
+ return MBFI->getBlockFreq(CandidateBB) <=
+ MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
+}
+
+bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ TII = MF.getSubtarget().getInstrInfo();
+ TRI = MF.getSubtarget().getRegisterInfo();
+ MRI = &MF.getRegInfo();
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ DT = &getAnalysis<MachineDominatorTree>();
+ MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
+ LookAheadLimit = TII->getMachineCSELookAheadLimit();
+ bool ChangedPRE, ChangedCSE;
+ ChangedPRE = PerformSimplePRE(DT);
+ ChangedCSE = PerformCSE(DT->getRootNode());
+ return ChangedPRE || ChangedCSE;
+}