aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp1329
1 files changed, 1329 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp b/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp
new file mode 100644
index 000000000000..2ffa5e389f89
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp
@@ -0,0 +1,1329 @@
+//===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file This register allocator allocates registers to a basic block at a
+/// time, attempting to keep values in registers and reusing registers as
+/// appropriate.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/IndexedMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/SparseSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <tuple>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+STATISTIC(NumStores, "Number of stores added");
+STATISTIC(NumLoads , "Number of loads added");
+STATISTIC(NumCoalesced, "Number of copies coalesced");
+
+static RegisterRegAlloc
+ fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
+
+namespace {
+
+ class RegAllocFast : public MachineFunctionPass {
+ public:
+ static char ID;
+
+ RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {}
+
+ private:
+ MachineFrameInfo *MFI;
+ MachineRegisterInfo *MRI;
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+ RegisterClassInfo RegClassInfo;
+
+ /// Basic block currently being allocated.
+ MachineBasicBlock *MBB;
+
+ /// Maps virtual regs to the frame index where these values are spilled.
+ IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
+
+ /// Everything we know about a live virtual register.
+ struct LiveReg {
+ MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
+ unsigned VirtReg; ///< Virtual register number.
+ MCPhysReg PhysReg = 0; ///< Currently held here.
+ unsigned short LastOpNum = 0; ///< OpNum on LastUse.
+ bool Dirty = false; ///< Register needs spill.
+
+ explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {}
+
+ unsigned getSparseSetIndex() const {
+ return TargetRegisterInfo::virtReg2Index(VirtReg);
+ }
+ };
+
+ using LiveRegMap = SparseSet<LiveReg>;
+ /// This map contains entries for each virtual register that is currently
+ /// available in a physical register.
+ LiveRegMap LiveVirtRegs;
+
+ DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap;
+
+ /// Has a bit set for every virtual register for which it was determined
+ /// that it is alive across blocks.
+ BitVector MayLiveAcrossBlocks;
+
+ /// State of a physical register.
+ enum RegState {
+ /// A disabled register is not available for allocation, but an alias may
+ /// be in use. A register can only be moved out of the disabled state if
+ /// all aliases are disabled.
+ regDisabled,
+
+ /// A free register is not currently in use and can be allocated
+ /// immediately without checking aliases.
+ regFree,
+
+ /// A reserved register has been assigned explicitly (e.g., setting up a
+ /// call parameter), and it remains reserved until it is used.
+ regReserved
+
+ /// A register state may also be a virtual register number, indication
+ /// that the physical register is currently allocated to a virtual
+ /// register. In that case, LiveVirtRegs contains the inverse mapping.
+ };
+
+ /// Maps each physical register to a RegState enum or a virtual register.
+ std::vector<unsigned> PhysRegState;
+
+ SmallVector<unsigned, 16> VirtDead;
+ SmallVector<MachineInstr *, 32> Coalesced;
+
+ using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
+ /// Set of register units that are used in the current instruction, and so
+ /// cannot be allocated.
+ RegUnitSet UsedInInstr;
+
+ void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
+
+ /// Mark a physreg as used in this instruction.
+ void markRegUsedInInstr(MCPhysReg PhysReg) {
+ for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
+ UsedInInstr.insert(*Units);
+ }
+
+ /// Check if a physreg or any of its aliases are used in this instruction.
+ bool isRegUsedInInstr(MCPhysReg PhysReg) const {
+ for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
+ if (UsedInInstr.count(*Units))
+ return true;
+ return false;
+ }
+
+ enum : unsigned {
+ spillClean = 50,
+ spillDirty = 100,
+ spillPrefBonus = 20,
+ spillImpossible = ~0u
+ };
+
+ public:
+ StringRef getPassName() const override { return "Fast Register Allocator"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoPHIs);
+ }
+
+ MachineFunctionProperties getSetProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoVRegs);
+ }
+
+ private:
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ void allocateBasicBlock(MachineBasicBlock &MBB);
+ void allocateInstruction(MachineInstr &MI);
+ void handleDebugValue(MachineInstr &MI);
+ void handleThroughOperands(MachineInstr &MI,
+ SmallVectorImpl<unsigned> &VirtDead);
+ bool isLastUseOfLocalReg(const MachineOperand &MO) const;
+
+ void addKillFlag(const LiveReg &LRI);
+ void killVirtReg(LiveReg &LR);
+ void killVirtReg(unsigned VirtReg);
+ void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR);
+ void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
+
+ void usePhysReg(MachineOperand &MO);
+ void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg,
+ RegState NewState);
+ unsigned calcSpillCost(MCPhysReg PhysReg) const;
+ void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg);
+
+ LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
+ return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
+ }
+
+ LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
+ return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
+ }
+
+ void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint);
+ void allocVirtRegUndef(MachineOperand &MO);
+ MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
+ unsigned Hint);
+ LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg,
+ unsigned Hint);
+ void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut);
+ bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
+
+ unsigned traceCopies(unsigned VirtReg) const;
+ unsigned traceCopyChain(unsigned Reg) const;
+
+ int getStackSpaceFor(unsigned VirtReg);
+ void spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
+ MCPhysReg AssignedReg, bool Kill);
+ void reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
+ MCPhysReg PhysReg);
+
+ bool mayLiveOut(unsigned VirtReg);
+ bool mayLiveIn(unsigned VirtReg);
+
+ void dumpState();
+ };
+
+} // end anonymous namespace
+
+char RegAllocFast::ID = 0;
+
+INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
+ false)
+
+void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
+ PhysRegState[PhysReg] = NewState;
+}
+
+/// This allocates space for the specified virtual register to be held on the
+/// stack.
+int RegAllocFast::getStackSpaceFor(unsigned VirtReg) {
+ // Find the location Reg would belong...
+ int SS = StackSlotForVirtReg[VirtReg];
+ // Already has space allocated?
+ if (SS != -1)
+ return SS;
+
+ // Allocate a new stack object for this spill location...
+ const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
+ unsigned Size = TRI->getSpillSize(RC);
+ unsigned Align = TRI->getSpillAlignment(RC);
+ int FrameIdx = MFI->CreateSpillStackObject(Size, Align);
+
+ // Assign the slot.
+ StackSlotForVirtReg[VirtReg] = FrameIdx;
+ return FrameIdx;
+}
+
+/// Returns false if \p VirtReg is known to not live out of the current block.
+bool RegAllocFast::mayLiveOut(unsigned VirtReg) {
+ if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg))) {
+ // Cannot be live-out if there are no successors.
+ return !MBB->succ_empty();
+ }
+
+ // If this block loops back to itself, it would be necessary to check whether
+ // the use comes after the def.
+ if (MBB->isSuccessor(MBB)) {
+ MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg));
+ return true;
+ }
+
+ // See if the first \p Limit uses of the register are all in the current
+ // block.
+ static const unsigned Limit = 8;
+ unsigned C = 0;
+ for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) {
+ if (UseInst.getParent() != MBB || ++C >= Limit) {
+ MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg));
+ // Cannot be live-out if there are no successors.
+ return !MBB->succ_empty();
+ }
+ }
+
+ return false;
+}
+
+/// Returns false if \p VirtReg is known to not be live into the current block.
+bool RegAllocFast::mayLiveIn(unsigned VirtReg) {
+ if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg)))
+ return !MBB->pred_empty();
+
+ // See if the first \p Limit def of the register are all in the current block.
+ static const unsigned Limit = 8;
+ unsigned C = 0;
+ for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
+ if (DefInst.getParent() != MBB || ++C >= Limit) {
+ MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg));
+ return !MBB->pred_empty();
+ }
+ }
+
+ return false;
+}
+
+/// Insert spill instruction for \p AssignedReg before \p Before. Update
+/// DBG_VALUEs with \p VirtReg operands with the stack slot.
+void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg,
+ MCPhysReg AssignedReg, bool Kill) {
+ LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
+ << " in " << printReg(AssignedReg, TRI));
+ int FI = getStackSpaceFor(VirtReg);
+ LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
+
+ const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
+ TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
+ ++NumStores;
+
+ // If this register is used by DBG_VALUE then insert new DBG_VALUE to
+ // identify spilled location as the place to find corresponding variable's
+ // value.
+ SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg];
+ for (MachineInstr *DBG : LRIDbgValues) {
+ MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI);
+ assert(NewDV->getParent() == MBB && "dangling parent pointer");
+ (void)NewDV;
+ LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
+ }
+ // Now this register is spilled there is should not be any DBG_VALUE
+ // pointing to this register because they are all pointing to spilled value
+ // now.
+ LRIDbgValues.clear();
+}
+
+/// Insert reload instruction for \p PhysReg before \p Before.
+void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg,
+ MCPhysReg PhysReg) {
+ LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
+ << printReg(PhysReg, TRI) << '\n');
+ int FI = getStackSpaceFor(VirtReg);
+ const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
+ TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
+ ++NumLoads;
+}
+
+/// Return true if MO is the only remaining reference to its virtual register,
+/// and it is guaranteed to be a block-local register.
+bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const {
+ // If the register has ever been spilled or reloaded, we conservatively assume
+ // it is a global register used in multiple blocks.
+ if (StackSlotForVirtReg[MO.getReg()] != -1)
+ return false;
+
+ // Check that the use/def chain has exactly one operand - MO.
+ MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
+ if (&*I != &MO)
+ return false;
+ return ++I == MRI->reg_nodbg_end();
+}
+
+/// Set kill flags on last use of a virtual register.
+void RegAllocFast::addKillFlag(const LiveReg &LR) {
+ if (!LR.LastUse) return;
+ MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
+ if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
+ if (MO.getReg() == LR.PhysReg)
+ MO.setIsKill();
+ // else, don't do anything we are problably redefining a
+ // subreg of this register and given we don't track which
+ // lanes are actually dead, we cannot insert a kill flag here.
+ // Otherwise we may end up in a situation like this:
+ // ... = (MO) physreg:sub1, implicit killed physreg
+ // ... <== Here we would allow later pass to reuse physreg:sub1
+ // which is potentially wrong.
+ // LR:sub0 = ...
+ // ... = LR.sub1 <== This is going to use physreg:sub1
+ }
+}
+
+/// Mark virtreg as no longer available.
+void RegAllocFast::killVirtReg(LiveReg &LR) {
+ addKillFlag(LR);
+ assert(PhysRegState[LR.PhysReg] == LR.VirtReg &&
+ "Broken RegState mapping");
+ setPhysRegState(LR.PhysReg, regFree);
+ LR.PhysReg = 0;
+}
+
+/// Mark virtreg as no longer available.
+void RegAllocFast::killVirtReg(unsigned VirtReg) {
+ assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+ "killVirtReg needs a virtual register");
+ LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
+ if (LRI != LiveVirtRegs.end() && LRI->PhysReg)
+ killVirtReg(*LRI);
+}
+
+/// This method spills the value specified by VirtReg into the corresponding
+/// stack slot if needed.
+void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI,
+ unsigned VirtReg) {
+ assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+ "Spilling a physical register is illegal!");
+ LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
+ assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
+ "Spilling unmapped virtual register");
+ spillVirtReg(MI, *LRI);
+}
+
+/// Do the actual work of spilling.
+void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) {
+ assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping");
+
+ if (LR.Dirty) {
+ // If this physreg is used by the instruction, we want to kill it on the
+ // instruction, not on the spill.
+ bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI;
+ LR.Dirty = false;
+
+ spill(MI, LR.VirtReg, LR.PhysReg, SpillKill);
+
+ if (SpillKill)
+ LR.LastUse = nullptr; // Don't kill register again
+ }
+ killVirtReg(LR);
+}
+
+/// Spill all dirty virtregs without killing them.
+void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) {
+ if (LiveVirtRegs.empty())
+ return;
+ // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
+ // of spilling here is deterministic, if arbitrary.
+ for (LiveReg &LR : LiveVirtRegs) {
+ if (!LR.PhysReg)
+ continue;
+ if (OnlyLiveOut && !mayLiveOut(LR.VirtReg))
+ continue;
+ spillVirtReg(MI, LR);
+ }
+ LiveVirtRegs.clear();
+}
+
+/// Handle the direct use of a physical register. Check that the register is
+/// not used by a virtreg. Kill the physreg, marking it free. This may add
+/// implicit kills to MO->getParent() and invalidate MO.
+void RegAllocFast::usePhysReg(MachineOperand &MO) {
+ // Ignore undef uses.
+ if (MO.isUndef())
+ return;
+
+ unsigned PhysReg = MO.getReg();
+ assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
+ "Bad usePhysReg operand");
+
+ markRegUsedInInstr(PhysReg);
+ switch (PhysRegState[PhysReg]) {
+ case regDisabled:
+ break;
+ case regReserved:
+ PhysRegState[PhysReg] = regFree;
+ LLVM_FALLTHROUGH;
+ case regFree:
+ MO.setIsKill();
+ return;
+ default:
+ // The physreg was allocated to a virtual register. That means the value we
+ // wanted has been clobbered.
+ llvm_unreachable("Instruction uses an allocated register");
+ }
+
+ // Maybe a superregister is reserved?
+ for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
+ MCPhysReg Alias = *AI;
+ switch (PhysRegState[Alias]) {
+ case regDisabled:
+ break;
+ case regReserved:
+ // Either PhysReg is a subregister of Alias and we mark the
+ // whole register as free, or PhysReg is the superregister of
+ // Alias and we mark all the aliases as disabled before freeing
+ // PhysReg.
+ // In the latter case, since PhysReg was disabled, this means that
+ // its value is defined only by physical sub-registers. This check
+ // is performed by the assert of the default case in this loop.
+ // Note: The value of the superregister may only be partial
+ // defined, that is why regDisabled is a valid state for aliases.
+ assert((TRI->isSuperRegister(PhysReg, Alias) ||
+ TRI->isSuperRegister(Alias, PhysReg)) &&
+ "Instruction is not using a subregister of a reserved register");
+ LLVM_FALLTHROUGH;
+ case regFree:
+ if (TRI->isSuperRegister(PhysReg, Alias)) {
+ // Leave the superregister in the working set.
+ setPhysRegState(Alias, regFree);
+ MO.getParent()->addRegisterKilled(Alias, TRI, true);
+ return;
+ }
+ // Some other alias was in the working set - clear it.
+ setPhysRegState(Alias, regDisabled);
+ break;
+ default:
+ llvm_unreachable("Instruction uses an alias of an allocated register");
+ }
+ }
+
+ // All aliases are disabled, bring register into working set.
+ setPhysRegState(PhysReg, regFree);
+ MO.setIsKill();
+}
+
+/// Mark PhysReg as reserved or free after spilling any virtregs. This is very
+/// similar to defineVirtReg except the physreg is reserved instead of
+/// allocated.
+void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI,
+ MCPhysReg PhysReg, RegState NewState) {
+ markRegUsedInInstr(PhysReg);
+ switch (unsigned VirtReg = PhysRegState[PhysReg]) {
+ case regDisabled:
+ break;
+ default:
+ spillVirtReg(MI, VirtReg);
+ LLVM_FALLTHROUGH;
+ case regFree:
+ case regReserved:
+ setPhysRegState(PhysReg, NewState);
+ return;
+ }
+
+ // This is a disabled register, disable all aliases.
+ setPhysRegState(PhysReg, NewState);
+ for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
+ MCPhysReg Alias = *AI;
+ switch (unsigned VirtReg = PhysRegState[Alias]) {
+ case regDisabled:
+ break;
+ default:
+ spillVirtReg(MI, VirtReg);
+ LLVM_FALLTHROUGH;
+ case regFree:
+ case regReserved:
+ setPhysRegState(Alias, regDisabled);
+ if (TRI->isSuperRegister(PhysReg, Alias))
+ return;
+ break;
+ }
+ }
+}
+
+/// Return the cost of spilling clearing out PhysReg and aliases so it is free
+/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
+/// disabled - it can be allocated directly.
+/// \returns spillImpossible when PhysReg or an alias can't be spilled.
+unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
+ if (isRegUsedInInstr(PhysReg)) {
+ LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI)
+ << " is already used in instr.\n");
+ return spillImpossible;
+ }
+ switch (unsigned VirtReg = PhysRegState[PhysReg]) {
+ case regDisabled:
+ break;
+ case regFree:
+ return 0;
+ case regReserved:
+ LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding "
+ << printReg(PhysReg, TRI) << " is reserved already.\n");
+ return spillImpossible;
+ default: {
+ LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
+ assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
+ "Missing VirtReg entry");
+ return LRI->Dirty ? spillDirty : spillClean;
+ }
+ }
+
+ // This is a disabled register, add up cost of aliases.
+ LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n");
+ unsigned Cost = 0;
+ for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
+ MCPhysReg Alias = *AI;
+ switch (unsigned VirtReg = PhysRegState[Alias]) {
+ case regDisabled:
+ break;
+ case regFree:
+ ++Cost;
+ break;
+ case regReserved:
+ return spillImpossible;
+ default: {
+ LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
+ assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
+ "Missing VirtReg entry");
+ Cost += LRI->Dirty ? spillDirty : spillClean;
+ break;
+ }
+ }
+ }
+ return Cost;
+}
+
+/// This method updates local state so that we know that PhysReg is the
+/// proper container for VirtReg now. The physical register must not be used
+/// for anything else when this is called.
+void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) {
+ unsigned VirtReg = LR.VirtReg;
+ LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
+ << printReg(PhysReg, TRI) << '\n');
+ assert(LR.PhysReg == 0 && "Already assigned a physreg");
+ assert(PhysReg != 0 && "Trying to assign no register");
+ LR.PhysReg = PhysReg;
+ setPhysRegState(PhysReg, VirtReg);
+}
+
+static bool isCoalescable(const MachineInstr &MI) {
+ return MI.isFullCopy();
+}
+
+unsigned RegAllocFast::traceCopyChain(unsigned Reg) const {
+ static const unsigned ChainLengthLimit = 3;
+ unsigned C = 0;
+ do {
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return Reg;
+ assert(TargetRegisterInfo::isVirtualRegister(Reg));
+
+ MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
+ if (!VRegDef || !isCoalescable(*VRegDef))
+ return 0;
+ Reg = VRegDef->getOperand(1).getReg();
+ } while (++C <= ChainLengthLimit);
+ return 0;
+}
+
+/// Check if any of \p VirtReg's definitions is a copy. If it is follow the
+/// chain of copies to check whether we reach a physical register we can
+/// coalesce with.
+unsigned RegAllocFast::traceCopies(unsigned VirtReg) const {
+ static const unsigned DefLimit = 3;
+ unsigned C = 0;
+ for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
+ if (isCoalescable(MI)) {
+ unsigned Reg = MI.getOperand(1).getReg();
+ Reg = traceCopyChain(Reg);
+ if (Reg != 0)
+ return Reg;
+ }
+
+ if (++C >= DefLimit)
+ break;
+ }
+ return 0;
+}
+
+/// Allocates a physical register for VirtReg.
+void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint0) {
+ const unsigned VirtReg = LR.VirtReg;
+
+ assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+ "Can only allocate virtual registers");
+
+ const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
+ LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
+ << " in class " << TRI->getRegClassName(&RC)
+ << " with hint " << printReg(Hint0, TRI) << '\n');
+
+ // Take hint when possible.
+ if (TargetRegisterInfo::isPhysicalRegister(Hint0) &&
+ MRI->isAllocatable(Hint0) && RC.contains(Hint0)) {
+ // Ignore the hint if we would have to spill a dirty register.
+ unsigned Cost = calcSpillCost(Hint0);
+ if (Cost < spillDirty) {
+ LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
+ << '\n');
+ if (Cost)
+ definePhysReg(MI, Hint0, regFree);
+ assignVirtToPhysReg(LR, Hint0);
+ return;
+ } else {
+ LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
+ << "occupied\n");
+ }
+ } else {
+ Hint0 = 0;
+ }
+
+ // Try other hint.
+ unsigned Hint1 = traceCopies(VirtReg);
+ if (TargetRegisterInfo::isPhysicalRegister(Hint1) &&
+ MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
+ !isRegUsedInInstr(Hint1)) {
+ // Ignore the hint if we would have to spill a dirty register.
+ unsigned Cost = calcSpillCost(Hint1);
+ if (Cost < spillDirty) {
+ LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
+ << '\n');
+ if (Cost)
+ definePhysReg(MI, Hint1, regFree);
+ assignVirtToPhysReg(LR, Hint1);
+ return;
+ } else {
+ LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
+ << "occupied\n");
+ }
+ } else {
+ Hint1 = 0;
+ }
+
+ MCPhysReg BestReg = 0;
+ unsigned BestCost = spillImpossible;
+ ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
+ for (MCPhysReg PhysReg : AllocationOrder) {
+ LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
+ unsigned Cost = calcSpillCost(PhysReg);
+ LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
+ // Immediate take a register with cost 0.
+ if (Cost == 0) {
+ assignVirtToPhysReg(LR, PhysReg);
+ return;
+ }
+
+ if (PhysReg == Hint1 || PhysReg == Hint0)
+ Cost -= spillPrefBonus;
+
+ if (Cost < BestCost) {
+ BestReg = PhysReg;
+ BestCost = Cost;
+ }
+ }
+
+ if (!BestReg) {
+ // Nothing we can do: Report an error and keep going with an invalid
+ // allocation.
+ if (MI.isInlineAsm())
+ MI.emitError("inline assembly requires more registers than available");
+ else
+ MI.emitError("ran out of registers during register allocation");
+ definePhysReg(MI, *AllocationOrder.begin(), regFree);
+ assignVirtToPhysReg(LR, *AllocationOrder.begin());
+ return;
+ }
+
+ definePhysReg(MI, BestReg, regFree);
+ assignVirtToPhysReg(LR, BestReg);
+}
+
+void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
+ assert(MO.isUndef() && "expected undef use");
+ unsigned VirtReg = MO.getReg();
+ assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Expected virtreg");
+
+ LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
+ MCPhysReg PhysReg;
+ if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
+ PhysReg = LRI->PhysReg;
+ } else {
+ const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
+ ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
+ assert(!AllocationOrder.empty() && "Allocation order must not be empty");
+ PhysReg = AllocationOrder[0];
+ }
+
+ unsigned SubRegIdx = MO.getSubReg();
+ if (SubRegIdx != 0) {
+ PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
+ MO.setSubReg(0);
+ }
+ MO.setReg(PhysReg);
+ MO.setIsRenamable(true);
+}
+
+/// Allocates a register for VirtReg and mark it as dirty.
+MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
+ unsigned VirtReg, unsigned Hint) {
+ assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+ "Not a virtual register");
+ LiveRegMap::iterator LRI;
+ bool New;
+ std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
+ if (!LRI->PhysReg) {
+ // If there is no hint, peek at the only use of this register.
+ if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
+ MRI->hasOneNonDBGUse(VirtReg)) {
+ const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
+ // It's a copy, use the destination register as a hint.
+ if (UseMI.isCopyLike())
+ Hint = UseMI.getOperand(0).getReg();
+ }
+ allocVirtReg(MI, *LRI, Hint);
+ } else if (LRI->LastUse) {
+ // Redefining a live register - kill at the last use, unless it is this
+ // instruction defining VirtReg multiple times.
+ if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
+ addKillFlag(*LRI);
+ }
+ assert(LRI->PhysReg && "Register not assigned");
+ LRI->LastUse = &MI;
+ LRI->LastOpNum = OpNum;
+ LRI->Dirty = true;
+ markRegUsedInInstr(LRI->PhysReg);
+ return LRI->PhysReg;
+}
+
+/// Make sure VirtReg is available in a physreg and return it.
+RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI,
+ unsigned OpNum,
+ unsigned VirtReg,
+ unsigned Hint) {
+ assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
+ "Not a virtual register");
+ LiveRegMap::iterator LRI;
+ bool New;
+ std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
+ MachineOperand &MO = MI.getOperand(OpNum);
+ if (!LRI->PhysReg) {
+ allocVirtReg(MI, *LRI, Hint);
+ reload(MI, VirtReg, LRI->PhysReg);
+ } else if (LRI->Dirty) {
+ if (isLastUseOfLocalReg(MO)) {
+ LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n');
+ if (MO.isUse())
+ MO.setIsKill();
+ else
+ MO.setIsDead();
+ } else if (MO.isKill()) {
+ LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n');
+ MO.setIsKill(false);
+ } else if (MO.isDead()) {
+ LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n');
+ MO.setIsDead(false);
+ }
+ } else if (MO.isKill()) {
+ // We must remove kill flags from uses of reloaded registers because the
+ // register would be killed immediately, and there might be a second use:
+ // %foo = OR killed %x, %x
+ // This would cause a second reload of %x into a different register.
+ LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n');
+ MO.setIsKill(false);
+ } else if (MO.isDead()) {
+ LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n');
+ MO.setIsDead(false);
+ }
+ assert(LRI->PhysReg && "Register not assigned");
+ LRI->LastUse = &MI;
+ LRI->LastOpNum = OpNum;
+ markRegUsedInInstr(LRI->PhysReg);
+ return *LRI;
+}
+
+/// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
+/// may invalidate any operand pointers. Return true if the operand kills its
+/// register.
+bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
+ MCPhysReg PhysReg) {
+ bool Dead = MO.isDead();
+ if (!MO.getSubReg()) {
+ MO.setReg(PhysReg);
+ MO.setIsRenamable(true);
+ return MO.isKill() || Dead;
+ }
+
+ // Handle subregister index.
+ MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
+ MO.setIsRenamable(true);
+ MO.setSubReg(0);
+
+ // A kill flag implies killing the full register. Add corresponding super
+ // register kill.
+ if (MO.isKill()) {
+ MI.addRegisterKilled(PhysReg, TRI, true);
+ return true;
+ }
+
+ // A <def,read-undef> of a sub-register requires an implicit def of the full
+ // register.
+ if (MO.isDef() && MO.isUndef())
+ MI.addRegisterDefined(PhysReg, TRI);
+
+ return Dead;
+}
+
+// Handles special instruction operand like early clobbers and tied ops when
+// there are additional physreg defines.
+void RegAllocFast::handleThroughOperands(MachineInstr &MI,
+ SmallVectorImpl<unsigned> &VirtDead) {
+ LLVM_DEBUG(dbgs() << "Scanning for through registers:");
+ SmallSet<unsigned, 8> ThroughRegs;
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+ if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) ||
+ (MO.getSubReg() && MI.readsVirtualRegister(Reg))) {
+ if (ThroughRegs.insert(Reg).second)
+ LLVM_DEBUG(dbgs() << ' ' << printReg(Reg));
+ }
+ }
+
+ // If any physreg defines collide with preallocated through registers,
+ // we must spill and reallocate.
+ LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg() || !MO.isDef()) continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
+ markRegUsedInInstr(Reg);
+ for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
+ if (ThroughRegs.count(PhysRegState[*AI]))
+ definePhysReg(MI, *AI, regFree);
+ }
+ }
+
+ SmallVector<unsigned, 8> PartialDefs;
+ LLVM_DEBUG(dbgs() << "Allocating tied uses.\n");
+ for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
+ MachineOperand &MO = MI.getOperand(I);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
+ if (MO.isUse()) {
+ if (!MO.isTied()) continue;
+ LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO
+ << ") is tied to operand " << MI.findTiedOperandIdx(I)
+ << ".\n");
+ LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
+ MCPhysReg PhysReg = LR.PhysReg;
+ setPhysReg(MI, MO, PhysReg);
+ // Note: we don't update the def operand yet. That would cause the normal
+ // def-scan to attempt spilling.
+ } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) {
+ LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n');
+ // Reload the register, but don't assign to the operand just yet.
+ // That would confuse the later phys-def processing pass.
+ LiveReg &LR = reloadVirtReg(MI, I, Reg, 0);
+ PartialDefs.push_back(LR.PhysReg);
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n");
+ for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
+ const MachineOperand &MO = MI.getOperand(I);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
+ if (!MO.isEarlyClobber())
+ continue;
+ // Note: defineVirtReg may invalidate MO.
+ MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0);
+ if (setPhysReg(MI, MI.getOperand(I), PhysReg))
+ VirtDead.push_back(Reg);
+ }
+
+ // Restore UsedInInstr to a state usable for allocating normal virtual uses.
+ UsedInInstr.clear();
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
+ LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI)
+ << " as used in instr\n");
+ markRegUsedInInstr(Reg);
+ }
+
+ // Also mark PartialDefs as used to avoid reallocation.
+ for (unsigned PartialDef : PartialDefs)
+ markRegUsedInInstr(PartialDef);
+}
+
+#ifndef NDEBUG
+void RegAllocFast::dumpState() {
+ for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
+ if (PhysRegState[Reg] == regDisabled) continue;
+ dbgs() << " " << printReg(Reg, TRI);
+ switch(PhysRegState[Reg]) {
+ case regFree:
+ break;
+ case regReserved:
+ dbgs() << "*";
+ break;
+ default: {
+ dbgs() << '=' << printReg(PhysRegState[Reg]);
+ LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]);
+ assert(LRI != LiveVirtRegs.end() && LRI->PhysReg &&
+ "Missing VirtReg entry");
+ if (LRI->Dirty)
+ dbgs() << "*";
+ assert(LRI->PhysReg == Reg && "Bad inverse map");
+ break;
+ }
+ }
+ }
+ dbgs() << '\n';
+ // Check that LiveVirtRegs is the inverse.
+ for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
+ e = LiveVirtRegs.end(); i != e; ++i) {
+ if (!i->PhysReg)
+ continue;
+ assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
+ "Bad map key");
+ assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
+ "Bad map value");
+ assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
+ }
+}
+#endif
+
+void RegAllocFast::allocateInstruction(MachineInstr &MI) {
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ // If this is a copy, we may be able to coalesce.
+ unsigned CopySrcReg = 0;
+ unsigned CopyDstReg = 0;
+ unsigned CopySrcSub = 0;
+ unsigned CopyDstSub = 0;
+ if (MI.isCopy()) {
+ CopyDstReg = MI.getOperand(0).getReg();
+ CopySrcReg = MI.getOperand(1).getReg();
+ CopyDstSub = MI.getOperand(0).getSubReg();
+ CopySrcSub = MI.getOperand(1).getSubReg();
+ }
+
+ // Track registers used by instruction.
+ UsedInInstr.clear();
+
+ // First scan.
+ // Mark physreg uses and early clobbers as used.
+ // Find the end of the virtreg operands
+ unsigned VirtOpEnd = 0;
+ bool hasTiedOps = false;
+ bool hasEarlyClobbers = false;
+ bool hasPartialRedefs = false;
+ bool hasPhysDefs = false;
+ for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI.getOperand(i);
+ // Make sure MRI knows about registers clobbered by regmasks.
+ if (MO.isRegMask()) {
+ MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
+ continue;
+ }
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg) continue;
+ if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ VirtOpEnd = i+1;
+ if (MO.isUse()) {
+ hasTiedOps = hasTiedOps ||
+ MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
+ } else {
+ if (MO.isEarlyClobber())
+ hasEarlyClobbers = true;
+ if (MO.getSubReg() && MI.readsVirtualRegister(Reg))
+ hasPartialRedefs = true;
+ }
+ continue;
+ }
+ if (!MRI->isAllocatable(Reg)) continue;
+ if (MO.isUse()) {
+ usePhysReg(MO);
+ } else if (MO.isEarlyClobber()) {
+ definePhysReg(MI, Reg,
+ (MO.isImplicit() || MO.isDead()) ? regFree : regReserved);
+ hasEarlyClobbers = true;
+ } else
+ hasPhysDefs = true;
+ }
+
+ // The instruction may have virtual register operands that must be allocated
+ // the same register at use-time and def-time: early clobbers and tied
+ // operands. If there are also physical defs, these registers must avoid
+ // both physical defs and uses, making them more constrained than normal
+ // operands.
+ // Similarly, if there are multiple defs and tied operands, we must make
+ // sure the same register is allocated to uses and defs.
+ // We didn't detect inline asm tied operands above, so just make this extra
+ // pass for all inline asm.
+ if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
+ (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
+ handleThroughOperands(MI, VirtDead);
+ // Don't attempt coalescing when we have funny stuff going on.
+ CopyDstReg = 0;
+ // Pretend we have early clobbers so the use operands get marked below.
+ // This is not necessary for the common case of a single tied use.
+ hasEarlyClobbers = true;
+ }
+
+ // Second scan.
+ // Allocate virtreg uses.
+ bool HasUndefUse = false;
+ for (unsigned I = 0; I != VirtOpEnd; ++I) {
+ MachineOperand &MO = MI.getOperand(I);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
+ if (MO.isUse()) {
+ if (MO.isUndef()) {
+ HasUndefUse = true;
+ // There is no need to allocate a register for an undef use.
+ continue;
+ }
+
+ // Populate MayLiveAcrossBlocks in case the use block is allocated before
+ // the def block (removing the vreg uses).
+ mayLiveIn(Reg);
+
+ LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg);
+ MCPhysReg PhysReg = LR.PhysReg;
+ CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0;
+ if (setPhysReg(MI, MO, PhysReg))
+ killVirtReg(LR);
+ }
+ }
+
+ // Allocate undef operands. This is a separate step because in a situation
+ // like ` = OP undef %X, %X` both operands need the same register assign
+ // so we should perform the normal assignment first.
+ if (HasUndefUse) {
+ for (MachineOperand &MO : MI.uses()) {
+ if (!MO.isReg() || !MO.isUse())
+ continue;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ continue;
+
+ assert(MO.isUndef() && "Should only have undef virtreg uses left");
+ allocVirtRegUndef(MO);
+ }
+ }
+
+ // Track registers defined by instruction - early clobbers and tied uses at
+ // this point.
+ UsedInInstr.clear();
+ if (hasEarlyClobbers) {
+ for (const MachineOperand &MO : MI.operands()) {
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
+ // Look for physreg defs and tied uses.
+ if (!MO.isDef() && !MO.isTied()) continue;
+ markRegUsedInInstr(Reg);
+ }
+ }
+
+ unsigned DefOpEnd = MI.getNumOperands();
+ if (MI.isCall()) {
+ // Spill all virtregs before a call. This serves one purpose: If an
+ // exception is thrown, the landing pad is going to expect to find
+ // registers in their spill slots.
+ // Note: although this is appealing to just consider all definitions
+ // as call-clobbered, this is not correct because some of those
+ // definitions may be used later on and we do not want to reuse
+ // those for virtual registers in between.
+ LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n");
+ spillAll(MI, /*OnlyLiveOut*/ false);
+ }
+
+ // Third scan.
+ // Mark all physreg defs as used before allocating virtreg defs.
+ for (unsigned I = 0; I != DefOpEnd; ++I) {
+ const MachineOperand &MO = MI.getOperand(I);
+ if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
+ continue;
+ unsigned Reg = MO.getReg();
+
+ if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg) ||
+ !MRI->isAllocatable(Reg))
+ continue;
+ definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
+ }
+
+ // Fourth scan.
+ // Allocate defs and collect dead defs.
+ for (unsigned I = 0; I != DefOpEnd; ++I) {
+ const MachineOperand &MO = MI.getOperand(I);
+ if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
+ continue;
+ unsigned Reg = MO.getReg();
+
+ // We have already dealt with phys regs in the previous scan.
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ continue;
+ MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg);
+ if (setPhysReg(MI, MI.getOperand(I), PhysReg)) {
+ VirtDead.push_back(Reg);
+ CopyDstReg = 0; // cancel coalescing;
+ } else
+ CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0;
+ }
+
+ // Kill dead defs after the scan to ensure that multiple defs of the same
+ // register are allocated identically. We didn't need to do this for uses
+ // because we are crerating our own kill flags, and they are always at the
+ // last use.
+ for (unsigned VirtReg : VirtDead)
+ killVirtReg(VirtReg);
+ VirtDead.clear();
+
+ LLVM_DEBUG(dbgs() << "<< " << MI);
+ if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) {
+ LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
+ Coalesced.push_back(&MI);
+ }
+}
+
+void RegAllocFast::handleDebugValue(MachineInstr &MI) {
+ MachineOperand &MO = MI.getOperand(0);
+
+ // Ignore DBG_VALUEs that aren't based on virtual registers. These are
+ // mostly constants and frame indices.
+ if (!MO.isReg())
+ return;
+ unsigned Reg = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return;
+
+ // See if this virtual register has already been allocated to a physical
+ // register or spilled to a stack slot.
+ LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
+ if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
+ setPhysReg(MI, MO, LRI->PhysReg);
+ } else {
+ int SS = StackSlotForVirtReg[Reg];
+ if (SS != -1) {
+ // Modify DBG_VALUE now that the value is in a spill slot.
+ updateDbgValueForSpill(MI, SS);
+ LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI);
+ return;
+ }
+
+ // We can't allocate a physreg for a DebugValue, sorry!
+ LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
+ MO.setReg(0);
+ }
+
+ // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
+ // that future spills of Reg will have DBG_VALUEs.
+ LiveDbgValueMap[Reg].push_back(&MI);
+}
+
+void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
+ this->MBB = &MBB;
+ LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
+
+ PhysRegState.assign(TRI->getNumRegs(), regDisabled);
+ assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
+
+ MachineBasicBlock::iterator MII = MBB.begin();
+
+ // Add live-in registers as live.
+ for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins())
+ if (MRI->isAllocatable(LI.PhysReg))
+ definePhysReg(MII, LI.PhysReg, regReserved);
+
+ VirtDead.clear();
+ Coalesced.clear();
+
+ // Otherwise, sequentially allocate each instruction in the MBB.
+ for (MachineInstr &MI : MBB) {
+ LLVM_DEBUG(
+ dbgs() << "\n>> " << MI << "Regs:";
+ dumpState()
+ );
+
+ // Special handling for debug values. Note that they are not allowed to
+ // affect codegen of the other instructions in any way.
+ if (MI.isDebugValue()) {
+ handleDebugValue(MI);
+ continue;
+ }
+
+ allocateInstruction(MI);
+ }
+
+ // Spill all physical registers holding virtual registers now.
+ LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n");
+ spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true);
+
+ // Erase all the coalesced copies. We are delaying it until now because
+ // LiveVirtRegs might refer to the instrs.
+ for (MachineInstr *MI : Coalesced)
+ MBB.erase(MI);
+ NumCoalesced += Coalesced.size();
+
+ LLVM_DEBUG(MBB.dump());
+}
+
+bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
+ LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
+ << "********** Function: " << MF.getName() << '\n');
+ MRI = &MF.getRegInfo();
+ const TargetSubtargetInfo &STI = MF.getSubtarget();
+ TRI = STI.getRegisterInfo();
+ TII = STI.getInstrInfo();
+ MFI = &MF.getFrameInfo();
+ MRI->freezeReservedRegs(MF);
+ RegClassInfo.runOnMachineFunction(MF);
+ UsedInInstr.clear();
+ UsedInInstr.setUniverse(TRI->getNumRegUnits());
+
+ // initialize the virtual->physical register map to have a 'null'
+ // mapping for all virtual registers
+ unsigned NumVirtRegs = MRI->getNumVirtRegs();
+ StackSlotForVirtReg.resize(NumVirtRegs);
+ LiveVirtRegs.setUniverse(NumVirtRegs);
+ MayLiveAcrossBlocks.clear();
+ MayLiveAcrossBlocks.resize(NumVirtRegs);
+
+ // Loop over all of the basic blocks, eliminating virtual register references
+ for (MachineBasicBlock &MBB : MF)
+ allocateBasicBlock(MBB);
+
+ // All machine operands and other references to virtual registers have been
+ // replaced. Remove the virtual registers.
+ MRI->clearVirtRegs();
+
+ StackSlotForVirtReg.clear();
+ LiveDbgValueMap.clear();
+ return true;
+}
+
+FunctionPass *llvm::createFastRegisterAllocator() {
+ return new RegAllocFast();
+}