diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp | 1329 |
1 files changed, 1329 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp b/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp new file mode 100644 index 000000000000..2ffa5e389f89 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/RegAllocFast.cpp @@ -0,0 +1,1329 @@ +//===- RegAllocFast.cpp - A fast register allocator for debug code --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file This register allocator allocates registers to a basic block at a +/// time, attempting to keep values in registers and reusing registers as +/// appropriate. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/IndexedMap.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/SparseSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/CodeGen/RegisterClassInfo.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Metadata.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <tuple> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "regalloc" + +STATISTIC(NumStores, "Number of stores added"); +STATISTIC(NumLoads , "Number of loads added"); +STATISTIC(NumCoalesced, "Number of copies coalesced"); + +static RegisterRegAlloc + fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); + +namespace { + + class RegAllocFast : public MachineFunctionPass { + public: + static char ID; + + RegAllocFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1) {} + + private: + MachineFrameInfo *MFI; + MachineRegisterInfo *MRI; + const TargetRegisterInfo *TRI; + const TargetInstrInfo *TII; + RegisterClassInfo RegClassInfo; + + /// Basic block currently being allocated. + MachineBasicBlock *MBB; + + /// Maps virtual regs to the frame index where these values are spilled. + IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; + + /// Everything we know about a live virtual register. + struct LiveReg { + MachineInstr *LastUse = nullptr; ///< Last instr to use reg. + unsigned VirtReg; ///< Virtual register number. + MCPhysReg PhysReg = 0; ///< Currently held here. + unsigned short LastOpNum = 0; ///< OpNum on LastUse. + bool Dirty = false; ///< Register needs spill. + + explicit LiveReg(unsigned VirtReg) : VirtReg(VirtReg) {} + + unsigned getSparseSetIndex() const { + return TargetRegisterInfo::virtReg2Index(VirtReg); + } + }; + + using LiveRegMap = SparseSet<LiveReg>; + /// This map contains entries for each virtual register that is currently + /// available in a physical register. + LiveRegMap LiveVirtRegs; + + DenseMap<unsigned, SmallVector<MachineInstr *, 2>> LiveDbgValueMap; + + /// Has a bit set for every virtual register for which it was determined + /// that it is alive across blocks. + BitVector MayLiveAcrossBlocks; + + /// State of a physical register. + enum RegState { + /// A disabled register is not available for allocation, but an alias may + /// be in use. A register can only be moved out of the disabled state if + /// all aliases are disabled. + regDisabled, + + /// A free register is not currently in use and can be allocated + /// immediately without checking aliases. + regFree, + + /// A reserved register has been assigned explicitly (e.g., setting up a + /// call parameter), and it remains reserved until it is used. + regReserved + + /// A register state may also be a virtual register number, indication + /// that the physical register is currently allocated to a virtual + /// register. In that case, LiveVirtRegs contains the inverse mapping. + }; + + /// Maps each physical register to a RegState enum or a virtual register. + std::vector<unsigned> PhysRegState; + + SmallVector<unsigned, 16> VirtDead; + SmallVector<MachineInstr *, 32> Coalesced; + + using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; + /// Set of register units that are used in the current instruction, and so + /// cannot be allocated. + RegUnitSet UsedInInstr; + + void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); + + /// Mark a physreg as used in this instruction. + void markRegUsedInInstr(MCPhysReg PhysReg) { + for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) + UsedInInstr.insert(*Units); + } + + /// Check if a physreg or any of its aliases are used in this instruction. + bool isRegUsedInInstr(MCPhysReg PhysReg) const { + for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) + if (UsedInInstr.count(*Units)) + return true; + return false; + } + + enum : unsigned { + spillClean = 50, + spillDirty = 100, + spillPrefBonus = 20, + spillImpossible = ~0u + }; + + public: + StringRef getPassName() const override { return "Fast Register Allocator"; } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + MachineFunctionProperties getRequiredProperties() const override { + return MachineFunctionProperties().set( + MachineFunctionProperties::Property::NoPHIs); + } + + MachineFunctionProperties getSetProperties() const override { + return MachineFunctionProperties().set( + MachineFunctionProperties::Property::NoVRegs); + } + + private: + bool runOnMachineFunction(MachineFunction &MF) override; + + void allocateBasicBlock(MachineBasicBlock &MBB); + void allocateInstruction(MachineInstr &MI); + void handleDebugValue(MachineInstr &MI); + void handleThroughOperands(MachineInstr &MI, + SmallVectorImpl<unsigned> &VirtDead); + bool isLastUseOfLocalReg(const MachineOperand &MO) const; + + void addKillFlag(const LiveReg &LRI); + void killVirtReg(LiveReg &LR); + void killVirtReg(unsigned VirtReg); + void spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR); + void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); + + void usePhysReg(MachineOperand &MO); + void definePhysReg(MachineBasicBlock::iterator MI, MCPhysReg PhysReg, + RegState NewState); + unsigned calcSpillCost(MCPhysReg PhysReg) const; + void assignVirtToPhysReg(LiveReg &, MCPhysReg PhysReg); + + LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { + return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); + } + + LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { + return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); + } + + void allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint); + void allocVirtRegUndef(MachineOperand &MO); + MCPhysReg defineVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, + unsigned Hint); + LiveReg &reloadVirtReg(MachineInstr &MI, unsigned OpNum, unsigned VirtReg, + unsigned Hint); + void spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut); + bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); + + unsigned traceCopies(unsigned VirtReg) const; + unsigned traceCopyChain(unsigned Reg) const; + + int getStackSpaceFor(unsigned VirtReg); + void spill(MachineBasicBlock::iterator Before, unsigned VirtReg, + MCPhysReg AssignedReg, bool Kill); + void reload(MachineBasicBlock::iterator Before, unsigned VirtReg, + MCPhysReg PhysReg); + + bool mayLiveOut(unsigned VirtReg); + bool mayLiveIn(unsigned VirtReg); + + void dumpState(); + }; + +} // end anonymous namespace + +char RegAllocFast::ID = 0; + +INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, + false) + +void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { + PhysRegState[PhysReg] = NewState; +} + +/// This allocates space for the specified virtual register to be held on the +/// stack. +int RegAllocFast::getStackSpaceFor(unsigned VirtReg) { + // Find the location Reg would belong... + int SS = StackSlotForVirtReg[VirtReg]; + // Already has space allocated? + if (SS != -1) + return SS; + + // Allocate a new stack object for this spill location... + const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); + unsigned Size = TRI->getSpillSize(RC); + unsigned Align = TRI->getSpillAlignment(RC); + int FrameIdx = MFI->CreateSpillStackObject(Size, Align); + + // Assign the slot. + StackSlotForVirtReg[VirtReg] = FrameIdx; + return FrameIdx; +} + +/// Returns false if \p VirtReg is known to not live out of the current block. +bool RegAllocFast::mayLiveOut(unsigned VirtReg) { + if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg))) { + // Cannot be live-out if there are no successors. + return !MBB->succ_empty(); + } + + // If this block loops back to itself, it would be necessary to check whether + // the use comes after the def. + if (MBB->isSuccessor(MBB)) { + MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg)); + return true; + } + + // See if the first \p Limit uses of the register are all in the current + // block. + static const unsigned Limit = 8; + unsigned C = 0; + for (const MachineInstr &UseInst : MRI->reg_nodbg_instructions(VirtReg)) { + if (UseInst.getParent() != MBB || ++C >= Limit) { + MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg)); + // Cannot be live-out if there are no successors. + return !MBB->succ_empty(); + } + } + + return false; +} + +/// Returns false if \p VirtReg is known to not be live into the current block. +bool RegAllocFast::mayLiveIn(unsigned VirtReg) { + if (MayLiveAcrossBlocks.test(TargetRegisterInfo::virtReg2Index(VirtReg))) + return !MBB->pred_empty(); + + // See if the first \p Limit def of the register are all in the current block. + static const unsigned Limit = 8; + unsigned C = 0; + for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { + if (DefInst.getParent() != MBB || ++C >= Limit) { + MayLiveAcrossBlocks.set(TargetRegisterInfo::virtReg2Index(VirtReg)); + return !MBB->pred_empty(); + } + } + + return false; +} + +/// Insert spill instruction for \p AssignedReg before \p Before. Update +/// DBG_VALUEs with \p VirtReg operands with the stack slot. +void RegAllocFast::spill(MachineBasicBlock::iterator Before, unsigned VirtReg, + MCPhysReg AssignedReg, bool Kill) { + LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) + << " in " << printReg(AssignedReg, TRI)); + int FI = getStackSpaceFor(VirtReg); + LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); + + const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); + TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI); + ++NumStores; + + // If this register is used by DBG_VALUE then insert new DBG_VALUE to + // identify spilled location as the place to find corresponding variable's + // value. + SmallVectorImpl<MachineInstr *> &LRIDbgValues = LiveDbgValueMap[VirtReg]; + for (MachineInstr *DBG : LRIDbgValues) { + MachineInstr *NewDV = buildDbgValueForSpill(*MBB, Before, *DBG, FI); + assert(NewDV->getParent() == MBB && "dangling parent pointer"); + (void)NewDV; + LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); + } + // Now this register is spilled there is should not be any DBG_VALUE + // pointing to this register because they are all pointing to spilled value + // now. + LRIDbgValues.clear(); +} + +/// Insert reload instruction for \p PhysReg before \p Before. +void RegAllocFast::reload(MachineBasicBlock::iterator Before, unsigned VirtReg, + MCPhysReg PhysReg) { + LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " + << printReg(PhysReg, TRI) << '\n'); + int FI = getStackSpaceFor(VirtReg); + const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); + TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI); + ++NumLoads; +} + +/// Return true if MO is the only remaining reference to its virtual register, +/// and it is guaranteed to be a block-local register. +bool RegAllocFast::isLastUseOfLocalReg(const MachineOperand &MO) const { + // If the register has ever been spilled or reloaded, we conservatively assume + // it is a global register used in multiple blocks. + if (StackSlotForVirtReg[MO.getReg()] != -1) + return false; + + // Check that the use/def chain has exactly one operand - MO. + MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); + if (&*I != &MO) + return false; + return ++I == MRI->reg_nodbg_end(); +} + +/// Set kill flags on last use of a virtual register. +void RegAllocFast::addKillFlag(const LiveReg &LR) { + if (!LR.LastUse) return; + MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); + if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { + if (MO.getReg() == LR.PhysReg) + MO.setIsKill(); + // else, don't do anything we are problably redefining a + // subreg of this register and given we don't track which + // lanes are actually dead, we cannot insert a kill flag here. + // Otherwise we may end up in a situation like this: + // ... = (MO) physreg:sub1, implicit killed physreg + // ... <== Here we would allow later pass to reuse physreg:sub1 + // which is potentially wrong. + // LR:sub0 = ... + // ... = LR.sub1 <== This is going to use physreg:sub1 + } +} + +/// Mark virtreg as no longer available. +void RegAllocFast::killVirtReg(LiveReg &LR) { + addKillFlag(LR); + assert(PhysRegState[LR.PhysReg] == LR.VirtReg && + "Broken RegState mapping"); + setPhysRegState(LR.PhysReg, regFree); + LR.PhysReg = 0; +} + +/// Mark virtreg as no longer available. +void RegAllocFast::killVirtReg(unsigned VirtReg) { + assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && + "killVirtReg needs a virtual register"); + LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); + if (LRI != LiveVirtRegs.end() && LRI->PhysReg) + killVirtReg(*LRI); +} + +/// This method spills the value specified by VirtReg into the corresponding +/// stack slot if needed. +void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, + unsigned VirtReg) { + assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && + "Spilling a physical register is illegal!"); + LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); + assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && + "Spilling unmapped virtual register"); + spillVirtReg(MI, *LRI); +} + +/// Do the actual work of spilling. +void RegAllocFast::spillVirtReg(MachineBasicBlock::iterator MI, LiveReg &LR) { + assert(PhysRegState[LR.PhysReg] == LR.VirtReg && "Broken RegState mapping"); + + if (LR.Dirty) { + // If this physreg is used by the instruction, we want to kill it on the + // instruction, not on the spill. + bool SpillKill = MachineBasicBlock::iterator(LR.LastUse) != MI; + LR.Dirty = false; + + spill(MI, LR.VirtReg, LR.PhysReg, SpillKill); + + if (SpillKill) + LR.LastUse = nullptr; // Don't kill register again + } + killVirtReg(LR); +} + +/// Spill all dirty virtregs without killing them. +void RegAllocFast::spillAll(MachineBasicBlock::iterator MI, bool OnlyLiveOut) { + if (LiveVirtRegs.empty()) + return; + // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order + // of spilling here is deterministic, if arbitrary. + for (LiveReg &LR : LiveVirtRegs) { + if (!LR.PhysReg) + continue; + if (OnlyLiveOut && !mayLiveOut(LR.VirtReg)) + continue; + spillVirtReg(MI, LR); + } + LiveVirtRegs.clear(); +} + +/// Handle the direct use of a physical register. Check that the register is +/// not used by a virtreg. Kill the physreg, marking it free. This may add +/// implicit kills to MO->getParent() and invalidate MO. +void RegAllocFast::usePhysReg(MachineOperand &MO) { + // Ignore undef uses. + if (MO.isUndef()) + return; + + unsigned PhysReg = MO.getReg(); + assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && + "Bad usePhysReg operand"); + + markRegUsedInInstr(PhysReg); + switch (PhysRegState[PhysReg]) { + case regDisabled: + break; + case regReserved: + PhysRegState[PhysReg] = regFree; + LLVM_FALLTHROUGH; + case regFree: + MO.setIsKill(); + return; + default: + // The physreg was allocated to a virtual register. That means the value we + // wanted has been clobbered. + llvm_unreachable("Instruction uses an allocated register"); + } + + // Maybe a superregister is reserved? + for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { + MCPhysReg Alias = *AI; + switch (PhysRegState[Alias]) { + case regDisabled: + break; + case regReserved: + // Either PhysReg is a subregister of Alias and we mark the + // whole register as free, or PhysReg is the superregister of + // Alias and we mark all the aliases as disabled before freeing + // PhysReg. + // In the latter case, since PhysReg was disabled, this means that + // its value is defined only by physical sub-registers. This check + // is performed by the assert of the default case in this loop. + // Note: The value of the superregister may only be partial + // defined, that is why regDisabled is a valid state for aliases. + assert((TRI->isSuperRegister(PhysReg, Alias) || + TRI->isSuperRegister(Alias, PhysReg)) && + "Instruction is not using a subregister of a reserved register"); + LLVM_FALLTHROUGH; + case regFree: + if (TRI->isSuperRegister(PhysReg, Alias)) { + // Leave the superregister in the working set. + setPhysRegState(Alias, regFree); + MO.getParent()->addRegisterKilled(Alias, TRI, true); + return; + } + // Some other alias was in the working set - clear it. + setPhysRegState(Alias, regDisabled); + break; + default: + llvm_unreachable("Instruction uses an alias of an allocated register"); + } + } + + // All aliases are disabled, bring register into working set. + setPhysRegState(PhysReg, regFree); + MO.setIsKill(); +} + +/// Mark PhysReg as reserved or free after spilling any virtregs. This is very +/// similar to defineVirtReg except the physreg is reserved instead of +/// allocated. +void RegAllocFast::definePhysReg(MachineBasicBlock::iterator MI, + MCPhysReg PhysReg, RegState NewState) { + markRegUsedInInstr(PhysReg); + switch (unsigned VirtReg = PhysRegState[PhysReg]) { + case regDisabled: + break; + default: + spillVirtReg(MI, VirtReg); + LLVM_FALLTHROUGH; + case regFree: + case regReserved: + setPhysRegState(PhysReg, NewState); + return; + } + + // This is a disabled register, disable all aliases. + setPhysRegState(PhysReg, NewState); + for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { + MCPhysReg Alias = *AI; + switch (unsigned VirtReg = PhysRegState[Alias]) { + case regDisabled: + break; + default: + spillVirtReg(MI, VirtReg); + LLVM_FALLTHROUGH; + case regFree: + case regReserved: + setPhysRegState(Alias, regDisabled); + if (TRI->isSuperRegister(PhysReg, Alias)) + return; + break; + } + } +} + +/// Return the cost of spilling clearing out PhysReg and aliases so it is free +/// for allocation. Returns 0 when PhysReg is free or disabled with all aliases +/// disabled - it can be allocated directly. +/// \returns spillImpossible when PhysReg or an alias can't be spilled. +unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const { + if (isRegUsedInInstr(PhysReg)) { + LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) + << " is already used in instr.\n"); + return spillImpossible; + } + switch (unsigned VirtReg = PhysRegState[PhysReg]) { + case regDisabled: + break; + case regFree: + return 0; + case regReserved: + LLVM_DEBUG(dbgs() << printReg(VirtReg, TRI) << " corresponding " + << printReg(PhysReg, TRI) << " is reserved already.\n"); + return spillImpossible; + default: { + LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); + assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && + "Missing VirtReg entry"); + return LRI->Dirty ? spillDirty : spillClean; + } + } + + // This is a disabled register, add up cost of aliases. + LLVM_DEBUG(dbgs() << printReg(PhysReg, TRI) << " is disabled.\n"); + unsigned Cost = 0; + for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { + MCPhysReg Alias = *AI; + switch (unsigned VirtReg = PhysRegState[Alias]) { + case regDisabled: + break; + case regFree: + ++Cost; + break; + case regReserved: + return spillImpossible; + default: { + LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); + assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && + "Missing VirtReg entry"); + Cost += LRI->Dirty ? spillDirty : spillClean; + break; + } + } + } + return Cost; +} + +/// This method updates local state so that we know that PhysReg is the +/// proper container for VirtReg now. The physical register must not be used +/// for anything else when this is called. +void RegAllocFast::assignVirtToPhysReg(LiveReg &LR, MCPhysReg PhysReg) { + unsigned VirtReg = LR.VirtReg; + LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " + << printReg(PhysReg, TRI) << '\n'); + assert(LR.PhysReg == 0 && "Already assigned a physreg"); + assert(PhysReg != 0 && "Trying to assign no register"); + LR.PhysReg = PhysReg; + setPhysRegState(PhysReg, VirtReg); +} + +static bool isCoalescable(const MachineInstr &MI) { + return MI.isFullCopy(); +} + +unsigned RegAllocFast::traceCopyChain(unsigned Reg) const { + static const unsigned ChainLengthLimit = 3; + unsigned C = 0; + do { + if (TargetRegisterInfo::isPhysicalRegister(Reg)) + return Reg; + assert(TargetRegisterInfo::isVirtualRegister(Reg)); + + MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); + if (!VRegDef || !isCoalescable(*VRegDef)) + return 0; + Reg = VRegDef->getOperand(1).getReg(); + } while (++C <= ChainLengthLimit); + return 0; +} + +/// Check if any of \p VirtReg's definitions is a copy. If it is follow the +/// chain of copies to check whether we reach a physical register we can +/// coalesce with. +unsigned RegAllocFast::traceCopies(unsigned VirtReg) const { + static const unsigned DefLimit = 3; + unsigned C = 0; + for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { + if (isCoalescable(MI)) { + unsigned Reg = MI.getOperand(1).getReg(); + Reg = traceCopyChain(Reg); + if (Reg != 0) + return Reg; + } + + if (++C >= DefLimit) + break; + } + return 0; +} + +/// Allocates a physical register for VirtReg. +void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR, unsigned Hint0) { + const unsigned VirtReg = LR.VirtReg; + + assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && + "Can only allocate virtual registers"); + + const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); + LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) + << " in class " << TRI->getRegClassName(&RC) + << " with hint " << printReg(Hint0, TRI) << '\n'); + + // Take hint when possible. + if (TargetRegisterInfo::isPhysicalRegister(Hint0) && + MRI->isAllocatable(Hint0) && RC.contains(Hint0)) { + // Ignore the hint if we would have to spill a dirty register. + unsigned Cost = calcSpillCost(Hint0); + if (Cost < spillDirty) { + LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) + << '\n'); + if (Cost) + definePhysReg(MI, Hint0, regFree); + assignVirtToPhysReg(LR, Hint0); + return; + } else { + LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) + << "occupied\n"); + } + } else { + Hint0 = 0; + } + + // Try other hint. + unsigned Hint1 = traceCopies(VirtReg); + if (TargetRegisterInfo::isPhysicalRegister(Hint1) && + MRI->isAllocatable(Hint1) && RC.contains(Hint1) && + !isRegUsedInInstr(Hint1)) { + // Ignore the hint if we would have to spill a dirty register. + unsigned Cost = calcSpillCost(Hint1); + if (Cost < spillDirty) { + LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) + << '\n'); + if (Cost) + definePhysReg(MI, Hint1, regFree); + assignVirtToPhysReg(LR, Hint1); + return; + } else { + LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) + << "occupied\n"); + } + } else { + Hint1 = 0; + } + + MCPhysReg BestReg = 0; + unsigned BestCost = spillImpossible; + ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); + for (MCPhysReg PhysReg : AllocationOrder) { + LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); + unsigned Cost = calcSpillCost(PhysReg); + LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); + // Immediate take a register with cost 0. + if (Cost == 0) { + assignVirtToPhysReg(LR, PhysReg); + return; + } + + if (PhysReg == Hint1 || PhysReg == Hint0) + Cost -= spillPrefBonus; + + if (Cost < BestCost) { + BestReg = PhysReg; + BestCost = Cost; + } + } + + if (!BestReg) { + // Nothing we can do: Report an error and keep going with an invalid + // allocation. + if (MI.isInlineAsm()) + MI.emitError("inline assembly requires more registers than available"); + else + MI.emitError("ran out of registers during register allocation"); + definePhysReg(MI, *AllocationOrder.begin(), regFree); + assignVirtToPhysReg(LR, *AllocationOrder.begin()); + return; + } + + definePhysReg(MI, BestReg, regFree); + assignVirtToPhysReg(LR, BestReg); +} + +void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) { + assert(MO.isUndef() && "expected undef use"); + unsigned VirtReg = MO.getReg(); + assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && "Expected virtreg"); + + LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); + MCPhysReg PhysReg; + if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { + PhysReg = LRI->PhysReg; + } else { + const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); + ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); + assert(!AllocationOrder.empty() && "Allocation order must not be empty"); + PhysReg = AllocationOrder[0]; + } + + unsigned SubRegIdx = MO.getSubReg(); + if (SubRegIdx != 0) { + PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); + MO.setSubReg(0); + } + MO.setReg(PhysReg); + MO.setIsRenamable(true); +} + +/// Allocates a register for VirtReg and mark it as dirty. +MCPhysReg RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum, + unsigned VirtReg, unsigned Hint) { + assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && + "Not a virtual register"); + LiveRegMap::iterator LRI; + bool New; + std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); + if (!LRI->PhysReg) { + // If there is no hint, peek at the only use of this register. + if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && + MRI->hasOneNonDBGUse(VirtReg)) { + const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg); + // It's a copy, use the destination register as a hint. + if (UseMI.isCopyLike()) + Hint = UseMI.getOperand(0).getReg(); + } + allocVirtReg(MI, *LRI, Hint); + } else if (LRI->LastUse) { + // Redefining a live register - kill at the last use, unless it is this + // instruction defining VirtReg multiple times. + if (LRI->LastUse != &MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) + addKillFlag(*LRI); + } + assert(LRI->PhysReg && "Register not assigned"); + LRI->LastUse = &MI; + LRI->LastOpNum = OpNum; + LRI->Dirty = true; + markRegUsedInInstr(LRI->PhysReg); + return LRI->PhysReg; +} + +/// Make sure VirtReg is available in a physreg and return it. +RegAllocFast::LiveReg &RegAllocFast::reloadVirtReg(MachineInstr &MI, + unsigned OpNum, + unsigned VirtReg, + unsigned Hint) { + assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && + "Not a virtual register"); + LiveRegMap::iterator LRI; + bool New; + std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); + MachineOperand &MO = MI.getOperand(OpNum); + if (!LRI->PhysReg) { + allocVirtReg(MI, *LRI, Hint); + reload(MI, VirtReg, LRI->PhysReg); + } else if (LRI->Dirty) { + if (isLastUseOfLocalReg(MO)) { + LLVM_DEBUG(dbgs() << "Killing last use: " << MO << '\n'); + if (MO.isUse()) + MO.setIsKill(); + else + MO.setIsDead(); + } else if (MO.isKill()) { + LLVM_DEBUG(dbgs() << "Clearing dubious kill: " << MO << '\n'); + MO.setIsKill(false); + } else if (MO.isDead()) { + LLVM_DEBUG(dbgs() << "Clearing dubious dead: " << MO << '\n'); + MO.setIsDead(false); + } + } else if (MO.isKill()) { + // We must remove kill flags from uses of reloaded registers because the + // register would be killed immediately, and there might be a second use: + // %foo = OR killed %x, %x + // This would cause a second reload of %x into a different register. + LLVM_DEBUG(dbgs() << "Clearing clean kill: " << MO << '\n'); + MO.setIsKill(false); + } else if (MO.isDead()) { + LLVM_DEBUG(dbgs() << "Clearing clean dead: " << MO << '\n'); + MO.setIsDead(false); + } + assert(LRI->PhysReg && "Register not assigned"); + LRI->LastUse = &MI; + LRI->LastOpNum = OpNum; + markRegUsedInInstr(LRI->PhysReg); + return *LRI; +} + +/// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This +/// may invalidate any operand pointers. Return true if the operand kills its +/// register. +bool RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO, + MCPhysReg PhysReg) { + bool Dead = MO.isDead(); + if (!MO.getSubReg()) { + MO.setReg(PhysReg); + MO.setIsRenamable(true); + return MO.isKill() || Dead; + } + + // Handle subregister index. + MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); + MO.setIsRenamable(true); + MO.setSubReg(0); + + // A kill flag implies killing the full register. Add corresponding super + // register kill. + if (MO.isKill()) { + MI.addRegisterKilled(PhysReg, TRI, true); + return true; + } + + // A <def,read-undef> of a sub-register requires an implicit def of the full + // register. + if (MO.isDef() && MO.isUndef()) + MI.addRegisterDefined(PhysReg, TRI); + + return Dead; +} + +// Handles special instruction operand like early clobbers and tied ops when +// there are additional physreg defines. +void RegAllocFast::handleThroughOperands(MachineInstr &MI, + SmallVectorImpl<unsigned> &VirtDead) { + LLVM_DEBUG(dbgs() << "Scanning for through registers:"); + SmallSet<unsigned, 8> ThroughRegs; + for (const MachineOperand &MO : MI.operands()) { + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + continue; + if (MO.isEarlyClobber() || (MO.isUse() && MO.isTied()) || + (MO.getSubReg() && MI.readsVirtualRegister(Reg))) { + if (ThroughRegs.insert(Reg).second) + LLVM_DEBUG(dbgs() << ' ' << printReg(Reg)); + } + } + + // If any physreg defines collide with preallocated through registers, + // we must spill and reallocate. + LLVM_DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); + for (const MachineOperand &MO : MI.operands()) { + if (!MO.isReg() || !MO.isDef()) continue; + unsigned Reg = MO.getReg(); + if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; + markRegUsedInInstr(Reg); + for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { + if (ThroughRegs.count(PhysRegState[*AI])) + definePhysReg(MI, *AI, regFree); + } + } + + SmallVector<unsigned, 8> PartialDefs; + LLVM_DEBUG(dbgs() << "Allocating tied uses.\n"); + for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { + MachineOperand &MO = MI.getOperand(I); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; + if (MO.isUse()) { + if (!MO.isTied()) continue; + LLVM_DEBUG(dbgs() << "Operand " << I << "(" << MO + << ") is tied to operand " << MI.findTiedOperandIdx(I) + << ".\n"); + LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); + MCPhysReg PhysReg = LR.PhysReg; + setPhysReg(MI, MO, PhysReg); + // Note: we don't update the def operand yet. That would cause the normal + // def-scan to attempt spilling. + } else if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) { + LLVM_DEBUG(dbgs() << "Partial redefine: " << MO << '\n'); + // Reload the register, but don't assign to the operand just yet. + // That would confuse the later phys-def processing pass. + LiveReg &LR = reloadVirtReg(MI, I, Reg, 0); + PartialDefs.push_back(LR.PhysReg); + } + } + + LLVM_DEBUG(dbgs() << "Allocating early clobbers.\n"); + for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { + const MachineOperand &MO = MI.getOperand(I); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; + if (!MO.isEarlyClobber()) + continue; + // Note: defineVirtReg may invalidate MO. + MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, 0); + if (setPhysReg(MI, MI.getOperand(I), PhysReg)) + VirtDead.push_back(Reg); + } + + // Restore UsedInInstr to a state usable for allocating normal virtual uses. + UsedInInstr.clear(); + for (const MachineOperand &MO : MI.operands()) { + if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; + unsigned Reg = MO.getReg(); + if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; + LLVM_DEBUG(dbgs() << "\tSetting " << printReg(Reg, TRI) + << " as used in instr\n"); + markRegUsedInInstr(Reg); + } + + // Also mark PartialDefs as used to avoid reallocation. + for (unsigned PartialDef : PartialDefs) + markRegUsedInInstr(PartialDef); +} + +#ifndef NDEBUG +void RegAllocFast::dumpState() { + for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { + if (PhysRegState[Reg] == regDisabled) continue; + dbgs() << " " << printReg(Reg, TRI); + switch(PhysRegState[Reg]) { + case regFree: + break; + case regReserved: + dbgs() << "*"; + break; + default: { + dbgs() << '=' << printReg(PhysRegState[Reg]); + LiveRegMap::iterator LRI = findLiveVirtReg(PhysRegState[Reg]); + assert(LRI != LiveVirtRegs.end() && LRI->PhysReg && + "Missing VirtReg entry"); + if (LRI->Dirty) + dbgs() << "*"; + assert(LRI->PhysReg == Reg && "Bad inverse map"); + break; + } + } + } + dbgs() << '\n'; + // Check that LiveVirtRegs is the inverse. + for (LiveRegMap::iterator i = LiveVirtRegs.begin(), + e = LiveVirtRegs.end(); i != e; ++i) { + if (!i->PhysReg) + continue; + assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && + "Bad map key"); + assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && + "Bad map value"); + assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); + } +} +#endif + +void RegAllocFast::allocateInstruction(MachineInstr &MI) { + const MCInstrDesc &MCID = MI.getDesc(); + + // If this is a copy, we may be able to coalesce. + unsigned CopySrcReg = 0; + unsigned CopyDstReg = 0; + unsigned CopySrcSub = 0; + unsigned CopyDstSub = 0; + if (MI.isCopy()) { + CopyDstReg = MI.getOperand(0).getReg(); + CopySrcReg = MI.getOperand(1).getReg(); + CopyDstSub = MI.getOperand(0).getSubReg(); + CopySrcSub = MI.getOperand(1).getSubReg(); + } + + // Track registers used by instruction. + UsedInInstr.clear(); + + // First scan. + // Mark physreg uses and early clobbers as used. + // Find the end of the virtreg operands + unsigned VirtOpEnd = 0; + bool hasTiedOps = false; + bool hasEarlyClobbers = false; + bool hasPartialRedefs = false; + bool hasPhysDefs = false; + for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI.getOperand(i); + // Make sure MRI knows about registers clobbered by regmasks. + if (MO.isRegMask()) { + MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); + continue; + } + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (!Reg) continue; + if (TargetRegisterInfo::isVirtualRegister(Reg)) { + VirtOpEnd = i+1; + if (MO.isUse()) { + hasTiedOps = hasTiedOps || + MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; + } else { + if (MO.isEarlyClobber()) + hasEarlyClobbers = true; + if (MO.getSubReg() && MI.readsVirtualRegister(Reg)) + hasPartialRedefs = true; + } + continue; + } + if (!MRI->isAllocatable(Reg)) continue; + if (MO.isUse()) { + usePhysReg(MO); + } else if (MO.isEarlyClobber()) { + definePhysReg(MI, Reg, + (MO.isImplicit() || MO.isDead()) ? regFree : regReserved); + hasEarlyClobbers = true; + } else + hasPhysDefs = true; + } + + // The instruction may have virtual register operands that must be allocated + // the same register at use-time and def-time: early clobbers and tied + // operands. If there are also physical defs, these registers must avoid + // both physical defs and uses, making them more constrained than normal + // operands. + // Similarly, if there are multiple defs and tied operands, we must make + // sure the same register is allocated to uses and defs. + // We didn't detect inline asm tied operands above, so just make this extra + // pass for all inline asm. + if (MI.isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || + (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { + handleThroughOperands(MI, VirtDead); + // Don't attempt coalescing when we have funny stuff going on. + CopyDstReg = 0; + // Pretend we have early clobbers so the use operands get marked below. + // This is not necessary for the common case of a single tied use. + hasEarlyClobbers = true; + } + + // Second scan. + // Allocate virtreg uses. + bool HasUndefUse = false; + for (unsigned I = 0; I != VirtOpEnd; ++I) { + MachineOperand &MO = MI.getOperand(I); + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; + if (MO.isUse()) { + if (MO.isUndef()) { + HasUndefUse = true; + // There is no need to allocate a register for an undef use. + continue; + } + + // Populate MayLiveAcrossBlocks in case the use block is allocated before + // the def block (removing the vreg uses). + mayLiveIn(Reg); + + LiveReg &LR = reloadVirtReg(MI, I, Reg, CopyDstReg); + MCPhysReg PhysReg = LR.PhysReg; + CopySrcReg = (CopySrcReg == Reg || CopySrcReg == PhysReg) ? PhysReg : 0; + if (setPhysReg(MI, MO, PhysReg)) + killVirtReg(LR); + } + } + + // Allocate undef operands. This is a separate step because in a situation + // like ` = OP undef %X, %X` both operands need the same register assign + // so we should perform the normal assignment first. + if (HasUndefUse) { + for (MachineOperand &MO : MI.uses()) { + if (!MO.isReg() || !MO.isUse()) + continue; + unsigned Reg = MO.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + continue; + + assert(MO.isUndef() && "Should only have undef virtreg uses left"); + allocVirtRegUndef(MO); + } + } + + // Track registers defined by instruction - early clobbers and tied uses at + // this point. + UsedInInstr.clear(); + if (hasEarlyClobbers) { + for (const MachineOperand &MO : MI.operands()) { + if (!MO.isReg()) continue; + unsigned Reg = MO.getReg(); + if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; + // Look for physreg defs and tied uses. + if (!MO.isDef() && !MO.isTied()) continue; + markRegUsedInInstr(Reg); + } + } + + unsigned DefOpEnd = MI.getNumOperands(); + if (MI.isCall()) { + // Spill all virtregs before a call. This serves one purpose: If an + // exception is thrown, the landing pad is going to expect to find + // registers in their spill slots. + // Note: although this is appealing to just consider all definitions + // as call-clobbered, this is not correct because some of those + // definitions may be used later on and we do not want to reuse + // those for virtual registers in between. + LLVM_DEBUG(dbgs() << " Spilling remaining registers before call.\n"); + spillAll(MI, /*OnlyLiveOut*/ false); + } + + // Third scan. + // Mark all physreg defs as used before allocating virtreg defs. + for (unsigned I = 0; I != DefOpEnd; ++I) { + const MachineOperand &MO = MI.getOperand(I); + if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) + continue; + unsigned Reg = MO.getReg(); + + if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg) || + !MRI->isAllocatable(Reg)) + continue; + definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved); + } + + // Fourth scan. + // Allocate defs and collect dead defs. + for (unsigned I = 0; I != DefOpEnd; ++I) { + const MachineOperand &MO = MI.getOperand(I); + if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) + continue; + unsigned Reg = MO.getReg(); + + // We have already dealt with phys regs in the previous scan. + if (TargetRegisterInfo::isPhysicalRegister(Reg)) + continue; + MCPhysReg PhysReg = defineVirtReg(MI, I, Reg, CopySrcReg); + if (setPhysReg(MI, MI.getOperand(I), PhysReg)) { + VirtDead.push_back(Reg); + CopyDstReg = 0; // cancel coalescing; + } else + CopyDstReg = (CopyDstReg == Reg || CopyDstReg == PhysReg) ? PhysReg : 0; + } + + // Kill dead defs after the scan to ensure that multiple defs of the same + // register are allocated identically. We didn't need to do this for uses + // because we are crerating our own kill flags, and they are always at the + // last use. + for (unsigned VirtReg : VirtDead) + killVirtReg(VirtReg); + VirtDead.clear(); + + LLVM_DEBUG(dbgs() << "<< " << MI); + if (CopyDstReg && CopyDstReg == CopySrcReg && CopyDstSub == CopySrcSub) { + LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); + Coalesced.push_back(&MI); + } +} + +void RegAllocFast::handleDebugValue(MachineInstr &MI) { + MachineOperand &MO = MI.getOperand(0); + + // Ignore DBG_VALUEs that aren't based on virtual registers. These are + // mostly constants and frame indices. + if (!MO.isReg()) + return; + unsigned Reg = MO.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(Reg)) + return; + + // See if this virtual register has already been allocated to a physical + // register or spilled to a stack slot. + LiveRegMap::iterator LRI = findLiveVirtReg(Reg); + if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { + setPhysReg(MI, MO, LRI->PhysReg); + } else { + int SS = StackSlotForVirtReg[Reg]; + if (SS != -1) { + // Modify DBG_VALUE now that the value is in a spill slot. + updateDbgValueForSpill(MI, SS); + LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << MI); + return; + } + + // We can't allocate a physreg for a DebugValue, sorry! + LLVM_DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); + MO.setReg(0); + } + + // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so + // that future spills of Reg will have DBG_VALUEs. + LiveDbgValueMap[Reg].push_back(&MI); +} + +void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) { + this->MBB = &MBB; + LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); + + PhysRegState.assign(TRI->getNumRegs(), regDisabled); + assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); + + MachineBasicBlock::iterator MII = MBB.begin(); + + // Add live-in registers as live. + for (const MachineBasicBlock::RegisterMaskPair LI : MBB.liveins()) + if (MRI->isAllocatable(LI.PhysReg)) + definePhysReg(MII, LI.PhysReg, regReserved); + + VirtDead.clear(); + Coalesced.clear(); + + // Otherwise, sequentially allocate each instruction in the MBB. + for (MachineInstr &MI : MBB) { + LLVM_DEBUG( + dbgs() << "\n>> " << MI << "Regs:"; + dumpState() + ); + + // Special handling for debug values. Note that they are not allowed to + // affect codegen of the other instructions in any way. + if (MI.isDebugValue()) { + handleDebugValue(MI); + continue; + } + + allocateInstruction(MI); + } + + // Spill all physical registers holding virtual registers now. + LLVM_DEBUG(dbgs() << "Spilling live registers at end of block.\n"); + spillAll(MBB.getFirstTerminator(), /*OnlyLiveOut*/ true); + + // Erase all the coalesced copies. We are delaying it until now because + // LiveVirtRegs might refer to the instrs. + for (MachineInstr *MI : Coalesced) + MBB.erase(MI); + NumCoalesced += Coalesced.size(); + + LLVM_DEBUG(MBB.dump()); +} + +bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) { + LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" + << "********** Function: " << MF.getName() << '\n'); + MRI = &MF.getRegInfo(); + const TargetSubtargetInfo &STI = MF.getSubtarget(); + TRI = STI.getRegisterInfo(); + TII = STI.getInstrInfo(); + MFI = &MF.getFrameInfo(); + MRI->freezeReservedRegs(MF); + RegClassInfo.runOnMachineFunction(MF); + UsedInInstr.clear(); + UsedInInstr.setUniverse(TRI->getNumRegUnits()); + + // initialize the virtual->physical register map to have a 'null' + // mapping for all virtual registers + unsigned NumVirtRegs = MRI->getNumVirtRegs(); + StackSlotForVirtReg.resize(NumVirtRegs); + LiveVirtRegs.setUniverse(NumVirtRegs); + MayLiveAcrossBlocks.clear(); + MayLiveAcrossBlocks.resize(NumVirtRegs); + + // Loop over all of the basic blocks, eliminating virtual register references + for (MachineBasicBlock &MBB : MF) + allocateBasicBlock(MBB); + + // All machine operands and other references to virtual registers have been + // replaced. Remove the virtual registers. + MRI->clearVirtRegs(); + + StackSlotForVirtReg.clear(); + LiveDbgValueMap.clear(); + return true; +} + +FunctionPass *llvm::createFastRegisterAllocator() { + return new RegAllocFast(); +} |