aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2022-07-04 19:20:19 +0000
committerDimitry Andric <dim@FreeBSD.org>2023-02-08 19:02:26 +0000
commit81ad626541db97eb356e2c1d4a20eb2a26a766ab (patch)
tree311b6a8987c32b1e1dcbab65c54cfac3fdb56175 /contrib/llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp
parent5fff09660e06a66bed6482da9c70df328e16bbb6 (diff)
parent145449b1e420787bb99721a429341fa6be3adfb6 (diff)
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp989
1 files changed, 989 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp
new file mode 100644
index 000000000000..c199b6a6cca8
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp
@@ -0,0 +1,989 @@
+//===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass converts selects to conditional jumps when profitable.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/ScaledNumber.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Transforms/Utils/SizeOpts.h"
+#include <algorithm>
+#include <memory>
+#include <queue>
+#include <stack>
+#include <string>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "select-optimize"
+
+STATISTIC(NumSelectOptAnalyzed,
+ "Number of select groups considered for conversion to branch");
+STATISTIC(NumSelectConvertedExpColdOperand,
+ "Number of select groups converted due to expensive cold operand");
+STATISTIC(NumSelectConvertedHighPred,
+ "Number of select groups converted due to high-predictability");
+STATISTIC(NumSelectUnPred,
+ "Number of select groups not converted due to unpredictability");
+STATISTIC(NumSelectColdBB,
+ "Number of select groups not converted due to cold basic block");
+STATISTIC(NumSelectConvertedLoop,
+ "Number of select groups converted due to loop-level analysis");
+STATISTIC(NumSelectsConverted, "Number of selects converted");
+
+static cl::opt<unsigned> ColdOperandThreshold(
+ "cold-operand-threshold",
+ cl::desc("Maximum frequency of path for an operand to be considered cold."),
+ cl::init(20), cl::Hidden);
+
+static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
+ "cold-operand-max-cost-multiplier",
+ cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
+ "slice of a cold operand to be considered inexpensive."),
+ cl::init(1), cl::Hidden);
+
+static cl::opt<unsigned>
+ GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
+ cl::desc("Gradient gain threshold (%)."),
+ cl::init(25), cl::Hidden);
+
+static cl::opt<unsigned>
+ GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
+ cl::desc("Minimum gain per loop (in cycles) threshold."),
+ cl::init(4), cl::Hidden);
+
+static cl::opt<unsigned> GainRelativeThreshold(
+ "select-opti-loop-relative-gain-threshold",
+ cl::desc(
+ "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
+ cl::init(8), cl::Hidden);
+
+static cl::opt<unsigned> MispredictDefaultRate(
+ "mispredict-default-rate", cl::Hidden, cl::init(25),
+ cl::desc("Default mispredict rate (initialized to 25%)."));
+
+static cl::opt<bool>
+ DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
+ cl::init(false),
+ cl::desc("Disable loop-level heuristics."));
+
+namespace {
+
+class SelectOptimize : public FunctionPass {
+ const TargetMachine *TM = nullptr;
+ const TargetSubtargetInfo *TSI;
+ const TargetLowering *TLI = nullptr;
+ const TargetTransformInfo *TTI = nullptr;
+ const LoopInfo *LI;
+ DominatorTree *DT;
+ std::unique_ptr<BlockFrequencyInfo> BFI;
+ std::unique_ptr<BranchProbabilityInfo> BPI;
+ ProfileSummaryInfo *PSI;
+ OptimizationRemarkEmitter *ORE;
+ TargetSchedModel TSchedModel;
+
+public:
+ static char ID;
+
+ SelectOptimize() : FunctionPass(ID) {
+ initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<ProfileSummaryInfoWrapperPass>();
+ AU.addRequired<TargetPassConfig>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
+ }
+
+private:
+ // Select groups consist of consecutive select instructions with the same
+ // condition.
+ using SelectGroup = SmallVector<SelectInst *, 2>;
+ using SelectGroups = SmallVector<SelectGroup, 2>;
+
+ using Scaled64 = ScaledNumber<uint64_t>;
+
+ struct CostInfo {
+ /// Predicated cost (with selects as conditional moves).
+ Scaled64 PredCost;
+ /// Non-predicated cost (with selects converted to branches).
+ Scaled64 NonPredCost;
+ };
+
+ // Converts select instructions of a function to conditional jumps when deemed
+ // profitable. Returns true if at least one select was converted.
+ bool optimizeSelects(Function &F);
+
+ // Heuristics for determining which select instructions can be profitably
+ // conveted to branches. Separate heuristics for selects in inner-most loops
+ // and the rest of code regions (base heuristics for non-inner-most loop
+ // regions).
+ void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
+ void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
+
+ // Converts to branches the select groups that were deemed
+ // profitable-to-convert.
+ void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
+
+ // Splits selects of a given basic block into select groups.
+ void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
+
+ // Determines for which select groups it is profitable converting to branches
+ // (base and inner-most-loop heuristics).
+ void findProfitableSIGroupsBase(SelectGroups &SIGroups,
+ SelectGroups &ProfSIGroups);
+ void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
+ SelectGroups &ProfSIGroups);
+
+ // Determines if a select group should be converted to a branch (base
+ // heuristics).
+ bool isConvertToBranchProfitableBase(const SmallVector<SelectInst *, 2> &ASI);
+
+ // Returns true if there are expensive instructions in the cold value
+ // operand's (if any) dependence slice of any of the selects of the given
+ // group.
+ bool hasExpensiveColdOperand(const SmallVector<SelectInst *, 2> &ASI);
+
+ // For a given source instruction, collect its backwards dependence slice
+ // consisting of instructions exclusively computed for producing the operands
+ // of the source instruction.
+ void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
+ bool ForSinking = false);
+
+ // Returns true if the condition of the select is highly predictable.
+ bool isSelectHighlyPredictable(const SelectInst *SI);
+
+ // Loop-level checks to determine if a non-predicated version (with branches)
+ // of the given loop is more profitable than its predicated version.
+ bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
+
+ // Computes instruction and loop-critical-path costs for both the predicated
+ // and non-predicated version of the given loop.
+ bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
+ DenseMap<const Instruction *, CostInfo> &InstCostMap,
+ CostInfo *LoopCost);
+
+ // Returns a set of all the select instructions in the given select groups.
+ SmallPtrSet<const Instruction *, 2> getSIset(const SelectGroups &SIGroups);
+
+ // Returns the latency cost of a given instruction.
+ Optional<uint64_t> computeInstCost(const Instruction *I);
+
+ // Returns the misprediction cost of a given select when converted to branch.
+ Scaled64 getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost);
+
+ // Returns the cost of a branch when the prediction is correct.
+ Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
+ const SelectInst *SI);
+
+ // Returns true if the target architecture supports lowering a given select.
+ bool isSelectKindSupported(SelectInst *SI);
+};
+} // namespace
+
+char SelectOptimize::ID = 0;
+
+INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
+INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
+ false)
+
+FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
+
+bool SelectOptimize::runOnFunction(Function &F) {
+ TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
+ TSI = TM->getSubtargetImpl(F);
+ TLI = TSI->getTargetLowering();
+
+ // If none of the select types is supported then skip this pass.
+ // This is an optimization pass. Legality issues will be handled by
+ // instruction selection.
+ if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
+ !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
+ !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
+ return false;
+
+ TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ BPI.reset(new BranchProbabilityInfo(F, *LI));
+ BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
+ PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
+ ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
+ TSchedModel.init(TSI);
+
+ // When optimizing for size, selects are preferable over branches.
+ if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get()))
+ return false;
+
+ return optimizeSelects(F);
+}
+
+bool SelectOptimize::optimizeSelects(Function &F) {
+ // Determine for which select groups it is profitable converting to branches.
+ SelectGroups ProfSIGroups;
+ // Base heuristics apply only to non-loops and outer loops.
+ optimizeSelectsBase(F, ProfSIGroups);
+ // Separate heuristics for inner-most loops.
+ optimizeSelectsInnerLoops(F, ProfSIGroups);
+
+ // Convert to branches the select groups that were deemed
+ // profitable-to-convert.
+ convertProfitableSIGroups(ProfSIGroups);
+
+ // Code modified if at least one select group was converted.
+ return !ProfSIGroups.empty();
+}
+
+void SelectOptimize::optimizeSelectsBase(Function &F,
+ SelectGroups &ProfSIGroups) {
+ // Collect all the select groups.
+ SelectGroups SIGroups;
+ for (BasicBlock &BB : F) {
+ // Base heuristics apply only to non-loops and outer loops.
+ Loop *L = LI->getLoopFor(&BB);
+ if (L && L->isInnermost())
+ continue;
+ collectSelectGroups(BB, SIGroups);
+ }
+
+ // Determine for which select groups it is profitable converting to branches.
+ findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
+}
+
+void SelectOptimize::optimizeSelectsInnerLoops(Function &F,
+ SelectGroups &ProfSIGroups) {
+ SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
+ // Need to check size on each iteration as we accumulate child loops.
+ for (unsigned long i = 0; i < Loops.size(); ++i)
+ for (Loop *ChildL : Loops[i]->getSubLoops())
+ Loops.push_back(ChildL);
+
+ for (Loop *L : Loops) {
+ if (!L->isInnermost())
+ continue;
+
+ SelectGroups SIGroups;
+ for (BasicBlock *BB : L->getBlocks())
+ collectSelectGroups(*BB, SIGroups);
+
+ findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
+ }
+}
+
+/// If \p isTrue is true, return the true value of \p SI, otherwise return
+/// false value of \p SI. If the true/false value of \p SI is defined by any
+/// select instructions in \p Selects, look through the defining select
+/// instruction until the true/false value is not defined in \p Selects.
+static Value *
+getTrueOrFalseValue(SelectInst *SI, bool isTrue,
+ const SmallPtrSet<const Instruction *, 2> &Selects) {
+ Value *V = nullptr;
+ for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
+ DefSI = dyn_cast<SelectInst>(V)) {
+ assert(DefSI->getCondition() == SI->getCondition() &&
+ "The condition of DefSI does not match with SI");
+ V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
+ }
+ assert(V && "Failed to get select true/false value");
+ return V;
+}
+
+void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
+ for (SelectGroup &ASI : ProfSIGroups) {
+ // The code transformation here is a modified version of the sinking
+ // transformation in CodeGenPrepare::optimizeSelectInst with a more
+ // aggressive strategy of which instructions to sink.
+ //
+ // TODO: eliminate the redundancy of logic transforming selects to branches
+ // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
+ // selects for all cases (with and without profile information).
+
+ // Transform a sequence like this:
+ // start:
+ // %cmp = cmp uge i32 %a, %b
+ // %sel = select i1 %cmp, i32 %c, i32 %d
+ //
+ // Into:
+ // start:
+ // %cmp = cmp uge i32 %a, %b
+ // %cmp.frozen = freeze %cmp
+ // br i1 %cmp.frozen, label %select.true, label %select.false
+ // select.true:
+ // br label %select.end
+ // select.false:
+ // br label %select.end
+ // select.end:
+ // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
+ //
+ // %cmp should be frozen, otherwise it may introduce undefined behavior.
+ // In addition, we may sink instructions that produce %c or %d into the
+ // destination(s) of the new branch.
+ // If the true or false blocks do not contain a sunken instruction, that
+ // block and its branch may be optimized away. In that case, one side of the
+ // first branch will point directly to select.end, and the corresponding PHI
+ // predecessor block will be the start block.
+
+ // Find all the instructions that can be soundly sunk to the true/false
+ // blocks. These are instructions that are computed solely for producing the
+ // operands of the select instructions in the group and can be sunk without
+ // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
+ // with side effects).
+ SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
+ typedef std::stack<Instruction *>::size_type StackSizeType;
+ StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
+ for (SelectInst *SI : ASI) {
+ // For each select, compute the sinkable dependence chains of the true and
+ // false operands.
+ if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue())) {
+ std::stack<Instruction *> TrueSlice;
+ getExclBackwardsSlice(TI, TrueSlice, true);
+ maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
+ TrueSlices.push_back(TrueSlice);
+ }
+ if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue())) {
+ std::stack<Instruction *> FalseSlice;
+ getExclBackwardsSlice(FI, FalseSlice, true);
+ maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
+ FalseSlices.push_back(FalseSlice);
+ }
+ }
+ // In the case of multiple select instructions in the same group, the order
+ // of non-dependent instructions (instructions of different dependence
+ // slices) in the true/false blocks appears to affect performance.
+ // Interleaving the slices seems to experimentally be the optimal approach.
+ // This interleaving scheduling allows for more ILP (with a natural downside
+ // of increasing a bit register pressure) compared to a simple ordering of
+ // one whole chain after another. One would expect that this ordering would
+ // not matter since the scheduling in the backend of the compiler would
+ // take care of it, but apparently the scheduler fails to deliver optimal
+ // ILP with a naive ordering here.
+ SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
+ for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
+ for (auto &S : TrueSlices) {
+ if (!S.empty()) {
+ TrueSlicesInterleaved.push_back(S.top());
+ S.pop();
+ }
+ }
+ }
+ for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
+ for (auto &S : FalseSlices) {
+ if (!S.empty()) {
+ FalseSlicesInterleaved.push_back(S.top());
+ S.pop();
+ }
+ }
+ }
+
+ // We split the block containing the select(s) into two blocks.
+ SelectInst *SI = ASI.front();
+ SelectInst *LastSI = ASI.back();
+ BasicBlock *StartBlock = SI->getParent();
+ BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
+ BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
+ BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
+ // Delete the unconditional branch that was just created by the split.
+ StartBlock->getTerminator()->eraseFromParent();
+
+ // Move any debug/pseudo instructions that were in-between the select
+ // group to the newly-created end block.
+ SmallVector<Instruction *, 2> DebugPseudoINS;
+ auto DIt = SI->getIterator();
+ while (&*DIt != LastSI) {
+ if (DIt->isDebugOrPseudoInst())
+ DebugPseudoINS.push_back(&*DIt);
+ DIt++;
+ }
+ for (auto DI : DebugPseudoINS) {
+ DI->moveBefore(&*EndBlock->getFirstInsertionPt());
+ }
+
+ // These are the new basic blocks for the conditional branch.
+ // At least one will become an actual new basic block.
+ BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
+ BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
+ if (!TrueSlicesInterleaved.empty()) {
+ TrueBlock = BasicBlock::Create(LastSI->getContext(), "select.true.sink",
+ EndBlock->getParent(), EndBlock);
+ TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
+ TrueBranch->setDebugLoc(LastSI->getDebugLoc());
+ for (Instruction *TrueInst : TrueSlicesInterleaved)
+ TrueInst->moveBefore(TrueBranch);
+ }
+ if (!FalseSlicesInterleaved.empty()) {
+ FalseBlock = BasicBlock::Create(LastSI->getContext(), "select.false.sink",
+ EndBlock->getParent(), EndBlock);
+ FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
+ FalseBranch->setDebugLoc(LastSI->getDebugLoc());
+ for (Instruction *FalseInst : FalseSlicesInterleaved)
+ FalseInst->moveBefore(FalseBranch);
+ }
+ // If there was nothing to sink, then arbitrarily choose the 'false' side
+ // for a new input value to the PHI.
+ if (TrueBlock == FalseBlock) {
+ assert(TrueBlock == nullptr &&
+ "Unexpected basic block transform while optimizing select");
+
+ FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
+ EndBlock->getParent(), EndBlock);
+ auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
+ FalseBranch->setDebugLoc(SI->getDebugLoc());
+ }
+
+ // Insert the real conditional branch based on the original condition.
+ // If we did not create a new block for one of the 'true' or 'false' paths
+ // of the condition, it means that side of the branch goes to the end block
+ // directly and the path originates from the start block from the point of
+ // view of the new PHI.
+ BasicBlock *TT, *FT;
+ if (TrueBlock == nullptr) {
+ TT = EndBlock;
+ FT = FalseBlock;
+ TrueBlock = StartBlock;
+ } else if (FalseBlock == nullptr) {
+ TT = TrueBlock;
+ FT = EndBlock;
+ FalseBlock = StartBlock;
+ } else {
+ TT = TrueBlock;
+ FT = FalseBlock;
+ }
+ IRBuilder<> IB(SI);
+ auto *CondFr =
+ IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
+ IB.CreateCondBr(CondFr, TT, FT, SI);
+
+ SmallPtrSet<const Instruction *, 2> INS;
+ INS.insert(ASI.begin(), ASI.end());
+ // Use reverse iterator because later select may use the value of the
+ // earlier select, and we need to propagate value through earlier select
+ // to get the PHI operand.
+ for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
+ SelectInst *SI = *It;
+ // The select itself is replaced with a PHI Node.
+ PHINode *PN = PHINode::Create(SI->getType(), 2, "", &EndBlock->front());
+ PN->takeName(SI);
+ PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
+ PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
+ PN->setDebugLoc(SI->getDebugLoc());
+
+ SI->replaceAllUsesWith(PN);
+ SI->eraseFromParent();
+ INS.erase(SI);
+ ++NumSelectsConverted;
+ }
+ }
+}
+
+void SelectOptimize::collectSelectGroups(BasicBlock &BB,
+ SelectGroups &SIGroups) {
+ BasicBlock::iterator BBIt = BB.begin();
+ while (BBIt != BB.end()) {
+ Instruction *I = &*BBIt++;
+ if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
+ SelectGroup SIGroup;
+ SIGroup.push_back(SI);
+ while (BBIt != BB.end()) {
+ Instruction *NI = &*BBIt;
+ SelectInst *NSI = dyn_cast<SelectInst>(NI);
+ if (NSI && SI->getCondition() == NSI->getCondition()) {
+ SIGroup.push_back(NSI);
+ } else if (!NI->isDebugOrPseudoInst()) {
+ // Debug/pseudo instructions should be skipped and not prevent the
+ // formation of a select group.
+ break;
+ }
+ ++BBIt;
+ }
+
+ // If the select type is not supported, no point optimizing it.
+ // Instruction selection will take care of it.
+ if (!isSelectKindSupported(SI))
+ continue;
+
+ SIGroups.push_back(SIGroup);
+ }
+ }
+}
+
+void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups,
+ SelectGroups &ProfSIGroups) {
+ for (SelectGroup &ASI : SIGroups) {
+ ++NumSelectOptAnalyzed;
+ if (isConvertToBranchProfitableBase(ASI))
+ ProfSIGroups.push_back(ASI);
+ }
+}
+
+void SelectOptimize::findProfitableSIGroupsInnerLoops(
+ const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
+ NumSelectOptAnalyzed += SIGroups.size();
+ // For each select group in an inner-most loop,
+ // a branch is more preferable than a select/conditional-move if:
+ // i) conversion to branches for all the select groups of the loop satisfies
+ // loop-level heuristics including reducing the loop's critical path by
+ // some threshold (see SelectOptimize::checkLoopHeuristics); and
+ // ii) the total cost of the select group is cheaper with a branch compared
+ // to its predicated version. The cost is in terms of latency and the cost
+ // of a select group is the cost of its most expensive select instruction
+ // (assuming infinite resources and thus fully leveraging available ILP).
+
+ DenseMap<const Instruction *, CostInfo> InstCostMap;
+ CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
+ {Scaled64::getZero(), Scaled64::getZero()}};
+ if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
+ !checkLoopHeuristics(L, LoopCost)) {
+ return;
+ }
+
+ for (SelectGroup &ASI : SIGroups) {
+ // Assuming infinite resources, the cost of a group of instructions is the
+ // cost of the most expensive instruction of the group.
+ Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
+ for (SelectInst *SI : ASI) {
+ SelectCost = std::max(SelectCost, InstCostMap[SI].PredCost);
+ BranchCost = std::max(BranchCost, InstCostMap[SI].NonPredCost);
+ }
+ if (BranchCost < SelectCost) {
+ OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front());
+ OR << "Profitable to convert to branch (loop analysis). BranchCost="
+ << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
+ << ". ";
+ ORE->emit(OR);
+ ++NumSelectConvertedLoop;
+ ProfSIGroups.push_back(ASI);
+ } else {
+ OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
+ ORmiss << "Select is more profitable (loop analysis). BranchCost="
+ << BranchCost.toString()
+ << ", SelectCost=" << SelectCost.toString() << ". ";
+ ORE->emit(ORmiss);
+ }
+ }
+}
+
+bool SelectOptimize::isConvertToBranchProfitableBase(
+ const SmallVector<SelectInst *, 2> &ASI) {
+ SelectInst *SI = ASI.front();
+ OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI);
+ OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI);
+
+ // Skip cold basic blocks. Better to optimize for size for cold blocks.
+ if (PSI->isColdBlock(SI->getParent(), BFI.get())) {
+ ++NumSelectColdBB;
+ ORmiss << "Not converted to branch because of cold basic block. ";
+ ORE->emit(ORmiss);
+ return false;
+ }
+
+ // If unpredictable, branch form is less profitable.
+ if (SI->getMetadata(LLVMContext::MD_unpredictable)) {
+ ++NumSelectUnPred;
+ ORmiss << "Not converted to branch because of unpredictable branch. ";
+ ORE->emit(ORmiss);
+ return false;
+ }
+
+ // If highly predictable, branch form is more profitable, unless a
+ // predictable select is inexpensive in the target architecture.
+ if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
+ ++NumSelectConvertedHighPred;
+ OR << "Converted to branch because of highly predictable branch. ";
+ ORE->emit(OR);
+ return true;
+ }
+
+ // Look for expensive instructions in the cold operand's (if any) dependence
+ // slice of any of the selects in the group.
+ if (hasExpensiveColdOperand(ASI)) {
+ ++NumSelectConvertedExpColdOperand;
+ OR << "Converted to branch because of expensive cold operand.";
+ ORE->emit(OR);
+ return true;
+ }
+
+ ORmiss << "Not profitable to convert to branch (base heuristic).";
+ ORE->emit(ORmiss);
+ return false;
+}
+
+static InstructionCost divideNearest(InstructionCost Numerator,
+ uint64_t Denominator) {
+ return (Numerator + (Denominator / 2)) / Denominator;
+}
+
+bool SelectOptimize::hasExpensiveColdOperand(
+ const SmallVector<SelectInst *, 2> &ASI) {
+ bool ColdOperand = false;
+ uint64_t TrueWeight, FalseWeight, TotalWeight;
+ if (ASI.front()->extractProfMetadata(TrueWeight, FalseWeight)) {
+ uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
+ TotalWeight = TrueWeight + FalseWeight;
+ // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
+ ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
+ } else if (PSI->hasProfileSummary()) {
+ OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
+ ORmiss << "Profile data available but missing branch-weights metadata for "
+ "select instruction. ";
+ ORE->emit(ORmiss);
+ }
+ if (!ColdOperand)
+ return false;
+ // Check if the cold path's dependence slice is expensive for any of the
+ // selects of the group.
+ for (SelectInst *SI : ASI) {
+ Instruction *ColdI = nullptr;
+ uint64_t HotWeight;
+ if (TrueWeight < FalseWeight) {
+ ColdI = dyn_cast<Instruction>(SI->getTrueValue());
+ HotWeight = FalseWeight;
+ } else {
+ ColdI = dyn_cast<Instruction>(SI->getFalseValue());
+ HotWeight = TrueWeight;
+ }
+ if (ColdI) {
+ std::stack<Instruction *> ColdSlice;
+ getExclBackwardsSlice(ColdI, ColdSlice);
+ InstructionCost SliceCost = 0;
+ while (!ColdSlice.empty()) {
+ SliceCost += TTI->getInstructionCost(ColdSlice.top(),
+ TargetTransformInfo::TCK_Latency);
+ ColdSlice.pop();
+ }
+ // The colder the cold value operand of the select is the more expensive
+ // the cmov becomes for computing the cold value operand every time. Thus,
+ // the colder the cold operand is the more its cost counts.
+ // Get nearest integer cost adjusted for coldness.
+ InstructionCost AdjSliceCost =
+ divideNearest(SliceCost * HotWeight, TotalWeight);
+ if (AdjSliceCost >=
+ ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
+ return true;
+ }
+ }
+ return false;
+}
+
+// For a given source instruction, collect its backwards dependence slice
+// consisting of instructions exclusively computed for the purpose of producing
+// the operands of the source instruction. As an approximation
+// (sufficiently-accurate in practice), we populate this set with the
+// instructions of the backwards dependence slice that only have one-use and
+// form an one-use chain that leads to the source instruction.
+void SelectOptimize::getExclBackwardsSlice(Instruction *I,
+ std::stack<Instruction *> &Slice,
+ bool ForSinking) {
+ SmallPtrSet<Instruction *, 2> Visited;
+ std::queue<Instruction *> Worklist;
+ Worklist.push(I);
+ while (!Worklist.empty()) {
+ Instruction *II = Worklist.front();
+ Worklist.pop();
+
+ // Avoid cycles.
+ if (!Visited.insert(II).second)
+ continue;
+
+ if (!II->hasOneUse())
+ continue;
+
+ // Cannot soundly sink instructions with side-effects.
+ // Terminator or phi instructions cannot be sunk.
+ // Avoid sinking other select instructions (should be handled separetely).
+ if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
+ isa<SelectInst>(II) || isa<PHINode>(II)))
+ continue;
+
+ // Avoid considering instructions with less frequency than the source
+ // instruction (i.e., avoid colder code regions of the dependence slice).
+ if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
+ continue;
+
+ // Eligible one-use instruction added to the dependence slice.
+ Slice.push(II);
+
+ // Explore all the operands of the current instruction to expand the slice.
+ for (unsigned k = 0; k < II->getNumOperands(); ++k)
+ if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
+ Worklist.push(OpI);
+ }
+}
+
+bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) {
+ uint64_t TrueWeight, FalseWeight;
+ if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
+ uint64_t Max = std::max(TrueWeight, FalseWeight);
+ uint64_t Sum = TrueWeight + FalseWeight;
+ if (Sum != 0) {
+ auto Probability = BranchProbability::getBranchProbability(Max, Sum);
+ if (Probability > TTI->getPredictableBranchThreshold())
+ return true;
+ }
+ }
+ return false;
+}
+
+bool SelectOptimize::checkLoopHeuristics(const Loop *L,
+ const CostInfo LoopCost[2]) {
+ // Loop-level checks to determine if a non-predicated version (with branches)
+ // of the loop is more profitable than its predicated version.
+
+ if (DisableLoopLevelHeuristics)
+ return true;
+
+ OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
+ L->getHeader()->getFirstNonPHI());
+
+ if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
+ LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
+ ORmissL << "No select conversion in the loop due to no reduction of loop's "
+ "critical path. ";
+ ORE->emit(ORmissL);
+ return false;
+ }
+
+ Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
+ LoopCost[1].PredCost - LoopCost[1].NonPredCost};
+
+ // Profitably converting to branches need to reduce the loop's critical path
+ // by at least some threshold (absolute gain of GainCycleThreshold cycles and
+ // relative gain of 12.5%).
+ if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
+ Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
+ Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
+ ORmissL << "No select conversion in the loop due to small reduction of "
+ "loop's critical path. Gain="
+ << Gain[1].toString()
+ << ", RelativeGain=" << RelativeGain.toString() << "%. ";
+ ORE->emit(ORmissL);
+ return false;
+ }
+
+ // If the loop's critical path involves loop-carried dependences, the gradient
+ // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
+ // This check ensures that the latency reduction for the loop's critical path
+ // keeps decreasing with sufficient rate beyond the two analyzed loop
+ // iterations.
+ if (Gain[1] > Gain[0]) {
+ Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
+ (LoopCost[1].PredCost - LoopCost[0].PredCost);
+ if (GradientGain < Scaled64::get(GainGradientThreshold)) {
+ ORmissL << "No select conversion in the loop due to small gradient gain. "
+ "GradientGain="
+ << GradientGain.toString() << "%. ";
+ ORE->emit(ORmissL);
+ return false;
+ }
+ }
+ // If the gain decreases it is not profitable to convert.
+ else if (Gain[1] < Gain[0]) {
+ ORmissL
+ << "No select conversion in the loop due to negative gradient gain. ";
+ ORE->emit(ORmissL);
+ return false;
+ }
+
+ // Non-predicated version of the loop is more profitable than its
+ // predicated version.
+ return true;
+}
+
+// Computes instruction and loop-critical-path costs for both the predicated
+// and non-predicated version of the given loop.
+// Returns false if unable to compute these costs due to invalid cost of loop
+// instruction(s).
+bool SelectOptimize::computeLoopCosts(
+ const Loop *L, const SelectGroups &SIGroups,
+ DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
+ const auto &SIset = getSIset(SIGroups);
+ // Compute instruction and loop-critical-path costs across two iterations for
+ // both predicated and non-predicated version.
+ const unsigned Iterations = 2;
+ for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
+ // Cost of the loop's critical path.
+ CostInfo &MaxCost = LoopCost[Iter];
+ for (BasicBlock *BB : L->getBlocks()) {
+ for (const Instruction &I : *BB) {
+ if (I.isDebugOrPseudoInst())
+ continue;
+ // Compute the predicated and non-predicated cost of the instruction.
+ Scaled64 IPredCost = Scaled64::getZero(),
+ INonPredCost = Scaled64::getZero();
+
+ // Assume infinite resources that allow to fully exploit the available
+ // instruction-level parallelism.
+ // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
+ for (const Use &U : I.operands()) {
+ auto UI = dyn_cast<Instruction>(U.get());
+ if (!UI)
+ continue;
+ if (InstCostMap.count(UI)) {
+ IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
+ INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
+ }
+ }
+ auto ILatency = computeInstCost(&I);
+ if (!ILatency) {
+ OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
+ ORmissL << "Invalid instruction cost preventing analysis and "
+ "optimization of the inner-most loop containing this "
+ "instruction. ";
+ ORE->emit(ORmissL);
+ return false;
+ }
+ IPredCost += Scaled64::get(ILatency.getValue());
+ INonPredCost += Scaled64::get(ILatency.getValue());
+
+ // For a select that can be converted to branch,
+ // compute its cost as a branch (non-predicated cost).
+ //
+ // BranchCost = PredictedPathCost + MispredictCost
+ // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
+ // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
+ if (SIset.contains(&I)) {
+ auto SI = dyn_cast<SelectInst>(&I);
+
+ Scaled64 TrueOpCost = Scaled64::getZero(),
+ FalseOpCost = Scaled64::getZero();
+ if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue()))
+ if (InstCostMap.count(TI))
+ TrueOpCost = InstCostMap[TI].NonPredCost;
+ if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue()))
+ if (InstCostMap.count(FI))
+ FalseOpCost = InstCostMap[FI].NonPredCost;
+ Scaled64 PredictedPathCost =
+ getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
+
+ Scaled64 CondCost = Scaled64::getZero();
+ if (auto *CI = dyn_cast<Instruction>(SI->getCondition()))
+ if (InstCostMap.count(CI))
+ CondCost = InstCostMap[CI].NonPredCost;
+ Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
+
+ INonPredCost = PredictedPathCost + MispredictCost;
+ }
+
+ InstCostMap[&I] = {IPredCost, INonPredCost};
+ MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
+ MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
+ }
+ }
+ }
+ return true;
+}
+
+SmallPtrSet<const Instruction *, 2>
+SelectOptimize::getSIset(const SelectGroups &SIGroups) {
+ SmallPtrSet<const Instruction *, 2> SIset;
+ for (const SelectGroup &ASI : SIGroups)
+ for (const SelectInst *SI : ASI)
+ SIset.insert(SI);
+ return SIset;
+}
+
+Optional<uint64_t> SelectOptimize::computeInstCost(const Instruction *I) {
+ InstructionCost ICost =
+ TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
+ if (auto OC = ICost.getValue())
+ return Optional<uint64_t>(*OC);
+ return Optional<uint64_t>(None);
+}
+
+ScaledNumber<uint64_t>
+SelectOptimize::getMispredictionCost(const SelectInst *SI,
+ const Scaled64 CondCost) {
+ uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
+
+ // Account for the default misprediction rate when using a branch
+ // (conservatively set to 25% by default).
+ uint64_t MispredictRate = MispredictDefaultRate;
+ // If the select condition is obviously predictable, then the misprediction
+ // rate is zero.
+ if (isSelectHighlyPredictable(SI))
+ MispredictRate = 0;
+
+ // CondCost is included to account for cases where the computation of the
+ // condition is part of a long dependence chain (potentially loop-carried)
+ // that would delay detection of a misprediction and increase its cost.
+ Scaled64 MispredictCost =
+ std::max(Scaled64::get(MispredictPenalty), CondCost) *
+ Scaled64::get(MispredictRate);
+ MispredictCost /= Scaled64::get(100);
+
+ return MispredictCost;
+}
+
+// Returns the cost of a branch when the prediction is correct.
+// TrueCost * TrueProbability + FalseCost * FalseProbability.
+ScaledNumber<uint64_t>
+SelectOptimize::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
+ const SelectInst *SI) {
+ Scaled64 PredPathCost;
+ uint64_t TrueWeight, FalseWeight;
+ if (SI->extractProfMetadata(TrueWeight, FalseWeight)) {
+ uint64_t SumWeight = TrueWeight + FalseWeight;
+ if (SumWeight != 0) {
+ PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
+ FalseCost * Scaled64::get(FalseWeight);
+ PredPathCost /= Scaled64::get(SumWeight);
+ return PredPathCost;
+ }
+ }
+ // Without branch weight metadata, we assume 75% for the one path and 25% for
+ // the other, and pick the result with the biggest cost.
+ PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
+ FalseCost * Scaled64::get(3) + TrueCost);
+ PredPathCost /= Scaled64::get(4);
+ return PredPathCost;
+}
+
+bool SelectOptimize::isSelectKindSupported(SelectInst *SI) {
+ bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
+ if (VectorCond)
+ return false;
+ TargetLowering::SelectSupportKind SelectKind;
+ if (SI->getType()->isVectorTy())
+ SelectKind = TargetLowering::ScalarCondVectorVal;
+ else
+ SelectKind = TargetLowering::ScalarValSelect;
+ return TLI->isSelectSupported(SelectKind);
+}