diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp | 517 |
1 files changed, 517 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp b/contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp new file mode 100644 index 000000000000..f1b2ecf3243b --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp @@ -0,0 +1,517 @@ +//==- TargetRegisterInfo.cpp - Target Register Information Implementation --==// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the TargetRegisterInfo interface. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MachineValueType.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/Printable.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <utility> + +#define DEBUG_TYPE "target-reg-info" + +using namespace llvm; + +TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID, + regclass_iterator RCB, regclass_iterator RCE, + const char *const *SRINames, + const LaneBitmask *SRILaneMasks, + LaneBitmask SRICoveringLanes, + const RegClassInfo *const RCIs, + unsigned Mode) + : InfoDesc(ID), SubRegIndexNames(SRINames), + SubRegIndexLaneMasks(SRILaneMasks), + RegClassBegin(RCB), RegClassEnd(RCE), + CoveringLanes(SRICoveringLanes), + RCInfos(RCIs), HwMode(Mode) { +} + +TargetRegisterInfo::~TargetRegisterInfo() = default; + +void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg) + const { + for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI) + RegisterSet.set(*AI); +} + +bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet, + ArrayRef<MCPhysReg> Exceptions) const { + // Check that all super registers of reserved regs are reserved as well. + BitVector Checked(getNumRegs()); + for (unsigned Reg : RegisterSet.set_bits()) { + if (Checked[Reg]) + continue; + for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) { + if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) { + dbgs() << "Error: Super register " << printReg(*SR, this) + << " of reserved register " << printReg(Reg, this) + << " is not reserved.\n"; + return false; + } + + // We transitively check superregs. So we can remember this for later + // to avoid compiletime explosion in deep register hierarchies. + Checked.set(*SR); + } + } + return true; +} + +namespace llvm { + +Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI, + unsigned SubIdx, const MachineRegisterInfo *MRI) { + return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) { + if (!Reg) + OS << "$noreg"; + else if (TargetRegisterInfo::isStackSlot(Reg)) + OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg); + else if (TargetRegisterInfo::isVirtualRegister(Reg)) { + StringRef Name = MRI ? MRI->getVRegName(Reg) : ""; + if (Name != "") { + OS << '%' << Name; + } else { + OS << '%' << TargetRegisterInfo::virtReg2Index(Reg); + } + } + else if (!TRI) + OS << '$' << "physreg" << Reg; + else if (Reg < TRI->getNumRegs()) { + OS << '$'; + printLowerCase(TRI->getName(Reg), OS); + } else + llvm_unreachable("Register kind is unsupported."); + + if (SubIdx) { + if (TRI) + OS << ':' << TRI->getSubRegIndexName(SubIdx); + else + OS << ":sub(" << SubIdx << ')'; + } + }); +} + +Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) { + return Printable([Unit, TRI](raw_ostream &OS) { + // Generic printout when TRI is missing. + if (!TRI) { + OS << "Unit~" << Unit; + return; + } + + // Check for invalid register units. + if (Unit >= TRI->getNumRegUnits()) { + OS << "BadUnit~" << Unit; + return; + } + + // Normal units have at least one root. + MCRegUnitRootIterator Roots(Unit, TRI); + assert(Roots.isValid() && "Unit has no roots."); + OS << TRI->getName(*Roots); + for (++Roots; Roots.isValid(); ++Roots) + OS << '~' << TRI->getName(*Roots); + }); +} + +Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) { + return Printable([Unit, TRI](raw_ostream &OS) { + if (TRI && TRI->isVirtualRegister(Unit)) { + OS << '%' << TargetRegisterInfo::virtReg2Index(Unit); + } else { + OS << printRegUnit(Unit, TRI); + } + }); +} + +Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo, + const TargetRegisterInfo *TRI) { + return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) { + if (RegInfo.getRegClassOrNull(Reg)) + OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower(); + else if (RegInfo.getRegBankOrNull(Reg)) + OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower(); + else { + OS << "_"; + assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) && + "Generic registers must have a valid type"); + } + }); +} + +} // end namespace llvm + +/// getAllocatableClass - Return the maximal subclass of the given register +/// class that is alloctable, or NULL. +const TargetRegisterClass * +TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const { + if (!RC || RC->isAllocatable()) + return RC; + + for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid(); + ++It) { + const TargetRegisterClass *SubRC = getRegClass(It.getID()); + if (SubRC->isAllocatable()) + return SubRC; + } + return nullptr; +} + +/// getMinimalPhysRegClass - Returns the Register Class of a physical +/// register of the given type, picking the most sub register class of +/// the right type that contains this physreg. +const TargetRegisterClass * +TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const { + assert(isPhysicalRegister(reg) && "reg must be a physical register"); + + // Pick the most sub register class of the right type that contains + // this physreg. + const TargetRegisterClass* BestRC = nullptr; + for (const TargetRegisterClass* RC : regclasses()) { + if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) && + RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC))) + BestRC = RC; + } + + assert(BestRC && "Couldn't find the register class"); + return BestRC; +} + +/// getAllocatableSetForRC - Toggle the bits that represent allocatable +/// registers for the specific register class. +static void getAllocatableSetForRC(const MachineFunction &MF, + const TargetRegisterClass *RC, BitVector &R){ + assert(RC->isAllocatable() && "invalid for nonallocatable sets"); + ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF); + for (unsigned i = 0; i != Order.size(); ++i) + R.set(Order[i]); +} + +BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF, + const TargetRegisterClass *RC) const { + BitVector Allocatable(getNumRegs()); + if (RC) { + // A register class with no allocatable subclass returns an empty set. + const TargetRegisterClass *SubClass = getAllocatableClass(RC); + if (SubClass) + getAllocatableSetForRC(MF, SubClass, Allocatable); + } else { + for (const TargetRegisterClass *C : regclasses()) + if (C->isAllocatable()) + getAllocatableSetForRC(MF, C, Allocatable); + } + + // Mask out the reserved registers + BitVector Reserved = getReservedRegs(MF); + Allocatable &= Reserved.flip(); + + return Allocatable; +} + +static inline +const TargetRegisterClass *firstCommonClass(const uint32_t *A, + const uint32_t *B, + const TargetRegisterInfo *TRI, + const MVT::SimpleValueType SVT = + MVT::SimpleValueType::Any) { + const MVT VT(SVT); + for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32) + if (unsigned Common = *A++ & *B++) { + const TargetRegisterClass *RC = + TRI->getRegClass(I + countTrailingZeros(Common)); + if (SVT == MVT::SimpleValueType::Any || TRI->isTypeLegalForClass(*RC, VT)) + return RC; + } + return nullptr; +} + +const TargetRegisterClass * +TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A, + const TargetRegisterClass *B, + const MVT::SimpleValueType SVT) const { + // First take care of the trivial cases. + if (A == B) + return A; + if (!A || !B) + return nullptr; + + // Register classes are ordered topologically, so the largest common + // sub-class it the common sub-class with the smallest ID. + return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT); +} + +const TargetRegisterClass * +TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, + const TargetRegisterClass *B, + unsigned Idx) const { + assert(A && B && "Missing register class"); + assert(Idx && "Bad sub-register index"); + + // Find Idx in the list of super-register indices. + for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI) + if (RCI.getSubReg() == Idx) + // The bit mask contains all register classes that are projected into B + // by Idx. Find a class that is also a sub-class of A. + return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this); + return nullptr; +} + +const TargetRegisterClass *TargetRegisterInfo:: +getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, + const TargetRegisterClass *RCB, unsigned SubB, + unsigned &PreA, unsigned &PreB) const { + assert(RCA && SubA && RCB && SubB && "Invalid arguments"); + + // Search all pairs of sub-register indices that project into RCA and RCB + // respectively. This is quadratic, but usually the sets are very small. On + // most targets like X86, there will only be a single sub-register index + // (e.g., sub_16bit projecting into GR16). + // + // The worst case is a register class like DPR on ARM. + // We have indices dsub_0..dsub_7 projecting into that class. + // + // It is very common that one register class is a sub-register of the other. + // Arrange for RCA to be the larger register so the answer will be found in + // the first iteration. This makes the search linear for the most common + // case. + const TargetRegisterClass *BestRC = nullptr; + unsigned *BestPreA = &PreA; + unsigned *BestPreB = &PreB; + if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) { + std::swap(RCA, RCB); + std::swap(SubA, SubB); + std::swap(BestPreA, BestPreB); + } + + // Also terminate the search one we have found a register class as small as + // RCA. + unsigned MinSize = getRegSizeInBits(*RCA); + + for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) { + unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA); + for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) { + // Check if a common super-register class exists for this index pair. + const TargetRegisterClass *RC = + firstCommonClass(IA.getMask(), IB.getMask(), this); + if (!RC || getRegSizeInBits(*RC) < MinSize) + continue; + + // The indexes must compose identically: PreA+SubA == PreB+SubB. + unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB); + if (FinalA != FinalB) + continue; + + // Is RC a better candidate than BestRC? + if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC)) + continue; + + // Yes, RC is the smallest super-register seen so far. + BestRC = RC; + *BestPreA = IA.getSubReg(); + *BestPreB = IB.getSubReg(); + + // Bail early if we reached MinSize. We won't find a better candidate. + if (getRegSizeInBits(*BestRC) == MinSize) + return BestRC; + } + } + return BestRC; +} + +/// Check if the registers defined by the pair (RegisterClass, SubReg) +/// share the same register file. +static bool shareSameRegisterFile(const TargetRegisterInfo &TRI, + const TargetRegisterClass *DefRC, + unsigned DefSubReg, + const TargetRegisterClass *SrcRC, + unsigned SrcSubReg) { + // Same register class. + if (DefRC == SrcRC) + return true; + + // Both operands are sub registers. Check if they share a register class. + unsigned SrcIdx, DefIdx; + if (SrcSubReg && DefSubReg) { + return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg, + SrcIdx, DefIdx) != nullptr; + } + + // At most one of the register is a sub register, make it Src to avoid + // duplicating the test. + if (!SrcSubReg) { + std::swap(DefSubReg, SrcSubReg); + std::swap(DefRC, SrcRC); + } + + // One of the register is a sub register, check if we can get a superclass. + if (SrcSubReg) + return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr; + + // Plain copy. + return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr; +} + +bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC, + unsigned DefSubReg, + const TargetRegisterClass *SrcRC, + unsigned SrcSubReg) const { + // If this source does not incur a cross register bank copy, use it. + return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg); +} + +// Compute target-independent register allocator hints to help eliminate copies. +bool +TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg, + ArrayRef<MCPhysReg> Order, + SmallVectorImpl<MCPhysReg> &Hints, + const MachineFunction &MF, + const VirtRegMap *VRM, + const LiveRegMatrix *Matrix) const { + const MachineRegisterInfo &MRI = MF.getRegInfo(); + const std::pair<unsigned, SmallVector<unsigned, 4>> &Hints_MRI = + MRI.getRegAllocationHints(VirtReg); + + SmallSet<unsigned, 32> HintedRegs; + // First hint may be a target hint. + bool Skip = (Hints_MRI.first != 0); + for (auto Reg : Hints_MRI.second) { + if (Skip) { + Skip = false; + continue; + } + + // Target-independent hints are either a physical or a virtual register. + unsigned Phys = Reg; + if (VRM && isVirtualRegister(Phys)) + Phys = VRM->getPhys(Phys); + + // Don't add the same reg twice (Hints_MRI may contain multiple virtual + // registers allocated to the same physreg). + if (!HintedRegs.insert(Phys).second) + continue; + // Check that Phys is a valid hint in VirtReg's register class. + if (!isPhysicalRegister(Phys)) + continue; + if (MRI.isReserved(Phys)) + continue; + // Check that Phys is in the allocation order. We shouldn't heed hints + // from VirtReg's register class if they aren't in the allocation order. The + // target probably has a reason for removing the register. + if (!is_contained(Order, Phys)) + continue; + + // All clear, tell the register allocator to prefer this register. + Hints.push_back(Phys); + } + return false; +} + +bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const { + return !MF.getFunction().hasFnAttribute("no-realign-stack"); +} + +bool TargetRegisterInfo::needsStackRealignment( + const MachineFunction &MF) const { + const MachineFrameInfo &MFI = MF.getFrameInfo(); + const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering(); + const Function &F = MF.getFunction(); + unsigned StackAlign = TFI->getStackAlignment(); + bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) || + F.hasFnAttribute(Attribute::StackAlignment)); + if (F.hasFnAttribute("stackrealign") || requiresRealignment) { + if (canRealignStack(MF)) + return true; + LLVM_DEBUG(dbgs() << "Can't realign function's stack: " << F.getName() + << "\n"); + } + return false; +} + +bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0, + const uint32_t *mask1) const { + unsigned N = (getNumRegs()+31) / 32; + for (unsigned I = 0; I < N; ++I) + if ((mask0[I] & mask1[I]) != mask0[I]) + return false; + return true; +} + +unsigned TargetRegisterInfo::getRegSizeInBits(unsigned Reg, + const MachineRegisterInfo &MRI) const { + const TargetRegisterClass *RC{}; + if (isPhysicalRegister(Reg)) { + // The size is not directly available for physical registers. + // Instead, we need to access a register class that contains Reg and + // get the size of that register class. + RC = getMinimalPhysRegClass(Reg); + } else { + LLT Ty = MRI.getType(Reg); + unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0; + // If Reg is not a generic register, query the register class to + // get its size. + if (RegSize) + return RegSize; + // Since Reg is not a generic register, it must have a register class. + RC = MRI.getRegClass(Reg); + } + assert(RC && "Unable to deduce the register class"); + return getRegSizeInBits(*RC); +} + +unsigned +TargetRegisterInfo::lookThruCopyLike(unsigned SrcReg, + const MachineRegisterInfo *MRI) const { + while (true) { + const MachineInstr *MI = MRI->getVRegDef(SrcReg); + if (!MI->isCopyLike()) + return SrcReg; + + unsigned CopySrcReg; + if (MI->isCopy()) + CopySrcReg = MI->getOperand(1).getReg(); + else { + assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike"); + CopySrcReg = MI->getOperand(2).getReg(); + } + + if (!isVirtualRegister(CopySrcReg)) + return CopySrcReg; + + SrcReg = CopySrcReg; + } +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD +void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex, + const TargetRegisterInfo *TRI) { + dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n"; +} +#endif |