aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp517
1 files changed, 517 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp b/contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp
new file mode 100644
index 000000000000..f1b2ecf3243b
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/TargetRegisterInfo.cpp
@@ -0,0 +1,517 @@
+//==- TargetRegisterInfo.cpp - Target Register Information Implementation --==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the TargetRegisterInfo interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Printable.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <utility>
+
+#define DEBUG_TYPE "target-reg-info"
+
+using namespace llvm;
+
+TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
+ regclass_iterator RCB, regclass_iterator RCE,
+ const char *const *SRINames,
+ const LaneBitmask *SRILaneMasks,
+ LaneBitmask SRICoveringLanes,
+ const RegClassInfo *const RCIs,
+ unsigned Mode)
+ : InfoDesc(ID), SubRegIndexNames(SRINames),
+ SubRegIndexLaneMasks(SRILaneMasks),
+ RegClassBegin(RCB), RegClassEnd(RCE),
+ CoveringLanes(SRICoveringLanes),
+ RCInfos(RCIs), HwMode(Mode) {
+}
+
+TargetRegisterInfo::~TargetRegisterInfo() = default;
+
+void TargetRegisterInfo::markSuperRegs(BitVector &RegisterSet, unsigned Reg)
+ const {
+ for (MCSuperRegIterator AI(Reg, this, true); AI.isValid(); ++AI)
+ RegisterSet.set(*AI);
+}
+
+bool TargetRegisterInfo::checkAllSuperRegsMarked(const BitVector &RegisterSet,
+ ArrayRef<MCPhysReg> Exceptions) const {
+ // Check that all super registers of reserved regs are reserved as well.
+ BitVector Checked(getNumRegs());
+ for (unsigned Reg : RegisterSet.set_bits()) {
+ if (Checked[Reg])
+ continue;
+ for (MCSuperRegIterator SR(Reg, this); SR.isValid(); ++SR) {
+ if (!RegisterSet[*SR] && !is_contained(Exceptions, Reg)) {
+ dbgs() << "Error: Super register " << printReg(*SR, this)
+ << " of reserved register " << printReg(Reg, this)
+ << " is not reserved.\n";
+ return false;
+ }
+
+ // We transitively check superregs. So we can remember this for later
+ // to avoid compiletime explosion in deep register hierarchies.
+ Checked.set(*SR);
+ }
+ }
+ return true;
+}
+
+namespace llvm {
+
+Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI,
+ unsigned SubIdx, const MachineRegisterInfo *MRI) {
+ return Printable([Reg, TRI, SubIdx, MRI](raw_ostream &OS) {
+ if (!Reg)
+ OS << "$noreg";
+ else if (TargetRegisterInfo::isStackSlot(Reg))
+ OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg);
+ else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
+ StringRef Name = MRI ? MRI->getVRegName(Reg) : "";
+ if (Name != "") {
+ OS << '%' << Name;
+ } else {
+ OS << '%' << TargetRegisterInfo::virtReg2Index(Reg);
+ }
+ }
+ else if (!TRI)
+ OS << '$' << "physreg" << Reg;
+ else if (Reg < TRI->getNumRegs()) {
+ OS << '$';
+ printLowerCase(TRI->getName(Reg), OS);
+ } else
+ llvm_unreachable("Register kind is unsupported.");
+
+ if (SubIdx) {
+ if (TRI)
+ OS << ':' << TRI->getSubRegIndexName(SubIdx);
+ else
+ OS << ":sub(" << SubIdx << ')';
+ }
+ });
+}
+
+Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
+ return Printable([Unit, TRI](raw_ostream &OS) {
+ // Generic printout when TRI is missing.
+ if (!TRI) {
+ OS << "Unit~" << Unit;
+ return;
+ }
+
+ // Check for invalid register units.
+ if (Unit >= TRI->getNumRegUnits()) {
+ OS << "BadUnit~" << Unit;
+ return;
+ }
+
+ // Normal units have at least one root.
+ MCRegUnitRootIterator Roots(Unit, TRI);
+ assert(Roots.isValid() && "Unit has no roots.");
+ OS << TRI->getName(*Roots);
+ for (++Roots; Roots.isValid(); ++Roots)
+ OS << '~' << TRI->getName(*Roots);
+ });
+}
+
+Printable printVRegOrUnit(unsigned Unit, const TargetRegisterInfo *TRI) {
+ return Printable([Unit, TRI](raw_ostream &OS) {
+ if (TRI && TRI->isVirtualRegister(Unit)) {
+ OS << '%' << TargetRegisterInfo::virtReg2Index(Unit);
+ } else {
+ OS << printRegUnit(Unit, TRI);
+ }
+ });
+}
+
+Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
+ const TargetRegisterInfo *TRI) {
+ return Printable([Reg, &RegInfo, TRI](raw_ostream &OS) {
+ if (RegInfo.getRegClassOrNull(Reg))
+ OS << StringRef(TRI->getRegClassName(RegInfo.getRegClass(Reg))).lower();
+ else if (RegInfo.getRegBankOrNull(Reg))
+ OS << StringRef(RegInfo.getRegBankOrNull(Reg)->getName()).lower();
+ else {
+ OS << "_";
+ assert((RegInfo.def_empty(Reg) || RegInfo.getType(Reg).isValid()) &&
+ "Generic registers must have a valid type");
+ }
+ });
+}
+
+} // end namespace llvm
+
+/// getAllocatableClass - Return the maximal subclass of the given register
+/// class that is alloctable, or NULL.
+const TargetRegisterClass *
+TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const {
+ if (!RC || RC->isAllocatable())
+ return RC;
+
+ for (BitMaskClassIterator It(RC->getSubClassMask(), *this); It.isValid();
+ ++It) {
+ const TargetRegisterClass *SubRC = getRegClass(It.getID());
+ if (SubRC->isAllocatable())
+ return SubRC;
+ }
+ return nullptr;
+}
+
+/// getMinimalPhysRegClass - Returns the Register Class of a physical
+/// register of the given type, picking the most sub register class of
+/// the right type that contains this physreg.
+const TargetRegisterClass *
+TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, MVT VT) const {
+ assert(isPhysicalRegister(reg) && "reg must be a physical register");
+
+ // Pick the most sub register class of the right type that contains
+ // this physreg.
+ const TargetRegisterClass* BestRC = nullptr;
+ for (const TargetRegisterClass* RC : regclasses()) {
+ if ((VT == MVT::Other || isTypeLegalForClass(*RC, VT)) &&
+ RC->contains(reg) && (!BestRC || BestRC->hasSubClass(RC)))
+ BestRC = RC;
+ }
+
+ assert(BestRC && "Couldn't find the register class");
+ return BestRC;
+}
+
+/// getAllocatableSetForRC - Toggle the bits that represent allocatable
+/// registers for the specific register class.
+static void getAllocatableSetForRC(const MachineFunction &MF,
+ const TargetRegisterClass *RC, BitVector &R){
+ assert(RC->isAllocatable() && "invalid for nonallocatable sets");
+ ArrayRef<MCPhysReg> Order = RC->getRawAllocationOrder(MF);
+ for (unsigned i = 0; i != Order.size(); ++i)
+ R.set(Order[i]);
+}
+
+BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF,
+ const TargetRegisterClass *RC) const {
+ BitVector Allocatable(getNumRegs());
+ if (RC) {
+ // A register class with no allocatable subclass returns an empty set.
+ const TargetRegisterClass *SubClass = getAllocatableClass(RC);
+ if (SubClass)
+ getAllocatableSetForRC(MF, SubClass, Allocatable);
+ } else {
+ for (const TargetRegisterClass *C : regclasses())
+ if (C->isAllocatable())
+ getAllocatableSetForRC(MF, C, Allocatable);
+ }
+
+ // Mask out the reserved registers
+ BitVector Reserved = getReservedRegs(MF);
+ Allocatable &= Reserved.flip();
+
+ return Allocatable;
+}
+
+static inline
+const TargetRegisterClass *firstCommonClass(const uint32_t *A,
+ const uint32_t *B,
+ const TargetRegisterInfo *TRI,
+ const MVT::SimpleValueType SVT =
+ MVT::SimpleValueType::Any) {
+ const MVT VT(SVT);
+ for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32)
+ if (unsigned Common = *A++ & *B++) {
+ const TargetRegisterClass *RC =
+ TRI->getRegClass(I + countTrailingZeros(Common));
+ if (SVT == MVT::SimpleValueType::Any || TRI->isTypeLegalForClass(*RC, VT))
+ return RC;
+ }
+ return nullptr;
+}
+
+const TargetRegisterClass *
+TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A,
+ const TargetRegisterClass *B,
+ const MVT::SimpleValueType SVT) const {
+ // First take care of the trivial cases.
+ if (A == B)
+ return A;
+ if (!A || !B)
+ return nullptr;
+
+ // Register classes are ordered topologically, so the largest common
+ // sub-class it the common sub-class with the smallest ID.
+ return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this, SVT);
+}
+
+const TargetRegisterClass *
+TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A,
+ const TargetRegisterClass *B,
+ unsigned Idx) const {
+ assert(A && B && "Missing register class");
+ assert(Idx && "Bad sub-register index");
+
+ // Find Idx in the list of super-register indices.
+ for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI)
+ if (RCI.getSubReg() == Idx)
+ // The bit mask contains all register classes that are projected into B
+ // by Idx. Find a class that is also a sub-class of A.
+ return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this);
+ return nullptr;
+}
+
+const TargetRegisterClass *TargetRegisterInfo::
+getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
+ const TargetRegisterClass *RCB, unsigned SubB,
+ unsigned &PreA, unsigned &PreB) const {
+ assert(RCA && SubA && RCB && SubB && "Invalid arguments");
+
+ // Search all pairs of sub-register indices that project into RCA and RCB
+ // respectively. This is quadratic, but usually the sets are very small. On
+ // most targets like X86, there will only be a single sub-register index
+ // (e.g., sub_16bit projecting into GR16).
+ //
+ // The worst case is a register class like DPR on ARM.
+ // We have indices dsub_0..dsub_7 projecting into that class.
+ //
+ // It is very common that one register class is a sub-register of the other.
+ // Arrange for RCA to be the larger register so the answer will be found in
+ // the first iteration. This makes the search linear for the most common
+ // case.
+ const TargetRegisterClass *BestRC = nullptr;
+ unsigned *BestPreA = &PreA;
+ unsigned *BestPreB = &PreB;
+ if (getRegSizeInBits(*RCA) < getRegSizeInBits(*RCB)) {
+ std::swap(RCA, RCB);
+ std::swap(SubA, SubB);
+ std::swap(BestPreA, BestPreB);
+ }
+
+ // Also terminate the search one we have found a register class as small as
+ // RCA.
+ unsigned MinSize = getRegSizeInBits(*RCA);
+
+ for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) {
+ unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA);
+ for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) {
+ // Check if a common super-register class exists for this index pair.
+ const TargetRegisterClass *RC =
+ firstCommonClass(IA.getMask(), IB.getMask(), this);
+ if (!RC || getRegSizeInBits(*RC) < MinSize)
+ continue;
+
+ // The indexes must compose identically: PreA+SubA == PreB+SubB.
+ unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB);
+ if (FinalA != FinalB)
+ continue;
+
+ // Is RC a better candidate than BestRC?
+ if (BestRC && getRegSizeInBits(*RC) >= getRegSizeInBits(*BestRC))
+ continue;
+
+ // Yes, RC is the smallest super-register seen so far.
+ BestRC = RC;
+ *BestPreA = IA.getSubReg();
+ *BestPreB = IB.getSubReg();
+
+ // Bail early if we reached MinSize. We won't find a better candidate.
+ if (getRegSizeInBits(*BestRC) == MinSize)
+ return BestRC;
+ }
+ }
+ return BestRC;
+}
+
+/// Check if the registers defined by the pair (RegisterClass, SubReg)
+/// share the same register file.
+static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
+ const TargetRegisterClass *DefRC,
+ unsigned DefSubReg,
+ const TargetRegisterClass *SrcRC,
+ unsigned SrcSubReg) {
+ // Same register class.
+ if (DefRC == SrcRC)
+ return true;
+
+ // Both operands are sub registers. Check if they share a register class.
+ unsigned SrcIdx, DefIdx;
+ if (SrcSubReg && DefSubReg) {
+ return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
+ SrcIdx, DefIdx) != nullptr;
+ }
+
+ // At most one of the register is a sub register, make it Src to avoid
+ // duplicating the test.
+ if (!SrcSubReg) {
+ std::swap(DefSubReg, SrcSubReg);
+ std::swap(DefRC, SrcRC);
+ }
+
+ // One of the register is a sub register, check if we can get a superclass.
+ if (SrcSubReg)
+ return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
+
+ // Plain copy.
+ return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
+}
+
+bool TargetRegisterInfo::shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
+ unsigned DefSubReg,
+ const TargetRegisterClass *SrcRC,
+ unsigned SrcSubReg) const {
+ // If this source does not incur a cross register bank copy, use it.
+ return shareSameRegisterFile(*this, DefRC, DefSubReg, SrcRC, SrcSubReg);
+}
+
+// Compute target-independent register allocator hints to help eliminate copies.
+bool
+TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg,
+ ArrayRef<MCPhysReg> Order,
+ SmallVectorImpl<MCPhysReg> &Hints,
+ const MachineFunction &MF,
+ const VirtRegMap *VRM,
+ const LiveRegMatrix *Matrix) const {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+ const std::pair<unsigned, SmallVector<unsigned, 4>> &Hints_MRI =
+ MRI.getRegAllocationHints(VirtReg);
+
+ SmallSet<unsigned, 32> HintedRegs;
+ // First hint may be a target hint.
+ bool Skip = (Hints_MRI.first != 0);
+ for (auto Reg : Hints_MRI.second) {
+ if (Skip) {
+ Skip = false;
+ continue;
+ }
+
+ // Target-independent hints are either a physical or a virtual register.
+ unsigned Phys = Reg;
+ if (VRM && isVirtualRegister(Phys))
+ Phys = VRM->getPhys(Phys);
+
+ // Don't add the same reg twice (Hints_MRI may contain multiple virtual
+ // registers allocated to the same physreg).
+ if (!HintedRegs.insert(Phys).second)
+ continue;
+ // Check that Phys is a valid hint in VirtReg's register class.
+ if (!isPhysicalRegister(Phys))
+ continue;
+ if (MRI.isReserved(Phys))
+ continue;
+ // Check that Phys is in the allocation order. We shouldn't heed hints
+ // from VirtReg's register class if they aren't in the allocation order. The
+ // target probably has a reason for removing the register.
+ if (!is_contained(Order, Phys))
+ continue;
+
+ // All clear, tell the register allocator to prefer this register.
+ Hints.push_back(Phys);
+ }
+ return false;
+}
+
+bool TargetRegisterInfo::canRealignStack(const MachineFunction &MF) const {
+ return !MF.getFunction().hasFnAttribute("no-realign-stack");
+}
+
+bool TargetRegisterInfo::needsStackRealignment(
+ const MachineFunction &MF) const {
+ const MachineFrameInfo &MFI = MF.getFrameInfo();
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
+ const Function &F = MF.getFunction();
+ unsigned StackAlign = TFI->getStackAlignment();
+ bool requiresRealignment = ((MFI.getMaxAlignment() > StackAlign) ||
+ F.hasFnAttribute(Attribute::StackAlignment));
+ if (F.hasFnAttribute("stackrealign") || requiresRealignment) {
+ if (canRealignStack(MF))
+ return true;
+ LLVM_DEBUG(dbgs() << "Can't realign function's stack: " << F.getName()
+ << "\n");
+ }
+ return false;
+}
+
+bool TargetRegisterInfo::regmaskSubsetEqual(const uint32_t *mask0,
+ const uint32_t *mask1) const {
+ unsigned N = (getNumRegs()+31) / 32;
+ for (unsigned I = 0; I < N; ++I)
+ if ((mask0[I] & mask1[I]) != mask0[I])
+ return false;
+ return true;
+}
+
+unsigned TargetRegisterInfo::getRegSizeInBits(unsigned Reg,
+ const MachineRegisterInfo &MRI) const {
+ const TargetRegisterClass *RC{};
+ if (isPhysicalRegister(Reg)) {
+ // The size is not directly available for physical registers.
+ // Instead, we need to access a register class that contains Reg and
+ // get the size of that register class.
+ RC = getMinimalPhysRegClass(Reg);
+ } else {
+ LLT Ty = MRI.getType(Reg);
+ unsigned RegSize = Ty.isValid() ? Ty.getSizeInBits() : 0;
+ // If Reg is not a generic register, query the register class to
+ // get its size.
+ if (RegSize)
+ return RegSize;
+ // Since Reg is not a generic register, it must have a register class.
+ RC = MRI.getRegClass(Reg);
+ }
+ assert(RC && "Unable to deduce the register class");
+ return getRegSizeInBits(*RC);
+}
+
+unsigned
+TargetRegisterInfo::lookThruCopyLike(unsigned SrcReg,
+ const MachineRegisterInfo *MRI) const {
+ while (true) {
+ const MachineInstr *MI = MRI->getVRegDef(SrcReg);
+ if (!MI->isCopyLike())
+ return SrcReg;
+
+ unsigned CopySrcReg;
+ if (MI->isCopy())
+ CopySrcReg = MI->getOperand(1).getReg();
+ else {
+ assert(MI->isSubregToReg() && "Bad opcode for lookThruCopyLike");
+ CopySrcReg = MI->getOperand(2).getReg();
+ }
+
+ if (!isVirtualRegister(CopySrcReg))
+ return CopySrcReg;
+
+ SrcReg = CopySrcReg;
+ }
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD
+void TargetRegisterInfo::dumpReg(unsigned Reg, unsigned SubRegIndex,
+ const TargetRegisterInfo *TRI) {
+ dbgs() << printReg(Reg, TRI, SubRegIndex) << "\n";
+}
+#endif