diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Support/APFloat.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Support/APFloat.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Support/APFloat.cpp | 4562 |
1 files changed, 4562 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Support/APFloat.cpp b/contrib/llvm-project/llvm/lib/Support/APFloat.cpp new file mode 100644 index 000000000000..b79baf1834a7 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Support/APFloat.cpp @@ -0,0 +1,4562 @@ +//===-- APFloat.cpp - Implement APFloat class -----------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements a class to represent arbitrary precision floating +// point values and provide a variety of arithmetic operations on them. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/FoldingSet.h" +#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <cstring> +#include <limits.h> + +#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ + do { \ + if (usesLayout<IEEEFloat>(getSemantics())) \ + return U.IEEE.METHOD_CALL; \ + if (usesLayout<DoubleAPFloat>(getSemantics())) \ + return U.Double.METHOD_CALL; \ + llvm_unreachable("Unexpected semantics"); \ + } while (false) + +using namespace llvm; + +/// A macro used to combine two fcCategory enums into one key which can be used +/// in a switch statement to classify how the interaction of two APFloat's +/// categories affects an operation. +/// +/// TODO: If clang source code is ever allowed to use constexpr in its own +/// codebase, change this into a static inline function. +#define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs)) + +/* Assumed in hexadecimal significand parsing, and conversion to + hexadecimal strings. */ +static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!"); + +namespace llvm { + /* Represents floating point arithmetic semantics. */ + struct fltSemantics { + /* The largest E such that 2^E is representable; this matches the + definition of IEEE 754. */ + APFloatBase::ExponentType maxExponent; + + /* The smallest E such that 2^E is a normalized number; this + matches the definition of IEEE 754. */ + APFloatBase::ExponentType minExponent; + + /* Number of bits in the significand. This includes the integer + bit. */ + unsigned int precision; + + /* Number of bits actually used in the semantics. */ + unsigned int sizeInBits; + }; + + static const fltSemantics semIEEEhalf = {15, -14, 11, 16}; + static const fltSemantics semIEEEsingle = {127, -126, 24, 32}; + static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64}; + static const fltSemantics semIEEEquad = {16383, -16382, 113, 128}; + static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80}; + static const fltSemantics semBogus = {0, 0, 0, 0}; + + /* The IBM double-double semantics. Such a number consists of a pair of IEEE + 64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal, + (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo. + Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent + to each other, and two 11-bit exponents. + + Note: we need to make the value different from semBogus as otherwise + an unsafe optimization may collapse both values to a single address, + and we heavily rely on them having distinct addresses. */ + static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 0}; + + /* These are legacy semantics for the fallback, inaccrurate implementation of + IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the + operation. It's equivalent to having an IEEE number with consecutive 106 + bits of mantissa and 11 bits of exponent. + + It's not equivalent to IBM double-double. For example, a legit IBM + double-double, 1 + epsilon: + + 1 + epsilon = 1 + (1 >> 1076) + + is not representable by a consecutive 106 bits of mantissa. + + Currently, these semantics are used in the following way: + + semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) -> + (64-bit APInt, 64-bit APInt) -> (128-bit APInt) -> + semPPCDoubleDoubleLegacy -> IEEE operations + + We use bitcastToAPInt() to get the bit representation (in APInt) of the + underlying IEEEdouble, then use the APInt constructor to construct the + legacy IEEE float. + + TODO: Implement all operations in semPPCDoubleDouble, and delete these + semantics. */ + static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53, + 53 + 53, 128}; + + const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) { + switch (S) { + case S_IEEEhalf: + return IEEEhalf(); + case S_IEEEsingle: + return IEEEsingle(); + case S_IEEEdouble: + return IEEEdouble(); + case S_x87DoubleExtended: + return x87DoubleExtended(); + case S_IEEEquad: + return IEEEquad(); + case S_PPCDoubleDouble: + return PPCDoubleDouble(); + } + llvm_unreachable("Unrecognised floating semantics"); + } + + APFloatBase::Semantics + APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) { + if (&Sem == &llvm::APFloat::IEEEhalf()) + return S_IEEEhalf; + else if (&Sem == &llvm::APFloat::IEEEsingle()) + return S_IEEEsingle; + else if (&Sem == &llvm::APFloat::IEEEdouble()) + return S_IEEEdouble; + else if (&Sem == &llvm::APFloat::x87DoubleExtended()) + return S_x87DoubleExtended; + else if (&Sem == &llvm::APFloat::IEEEquad()) + return S_IEEEquad; + else if (&Sem == &llvm::APFloat::PPCDoubleDouble()) + return S_PPCDoubleDouble; + else + llvm_unreachable("Unknown floating semantics"); + } + + const fltSemantics &APFloatBase::IEEEhalf() { + return semIEEEhalf; + } + const fltSemantics &APFloatBase::IEEEsingle() { + return semIEEEsingle; + } + const fltSemantics &APFloatBase::IEEEdouble() { + return semIEEEdouble; + } + const fltSemantics &APFloatBase::IEEEquad() { + return semIEEEquad; + } + const fltSemantics &APFloatBase::x87DoubleExtended() { + return semX87DoubleExtended; + } + const fltSemantics &APFloatBase::Bogus() { + return semBogus; + } + const fltSemantics &APFloatBase::PPCDoubleDouble() { + return semPPCDoubleDouble; + } + + /* A tight upper bound on number of parts required to hold the value + pow(5, power) is + + power * 815 / (351 * integerPartWidth) + 1 + + However, whilst the result may require only this many parts, + because we are multiplying two values to get it, the + multiplication may require an extra part with the excess part + being zero (consider the trivial case of 1 * 1, tcFullMultiply + requires two parts to hold the single-part result). So we add an + extra one to guarantee enough space whilst multiplying. */ + const unsigned int maxExponent = 16383; + const unsigned int maxPrecision = 113; + const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; + const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth)); + + unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) { + return semantics.precision; + } + APFloatBase::ExponentType + APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) { + return semantics.maxExponent; + } + APFloatBase::ExponentType + APFloatBase::semanticsMinExponent(const fltSemantics &semantics) { + return semantics.minExponent; + } + unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) { + return semantics.sizeInBits; + } + + unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) { + return Sem.sizeInBits; +} + +/* A bunch of private, handy routines. */ + +static inline unsigned int +partCountForBits(unsigned int bits) +{ + return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth; +} + +/* Returns 0U-9U. Return values >= 10U are not digits. */ +static inline unsigned int +decDigitValue(unsigned int c) +{ + return c - '0'; +} + +/* Return the value of a decimal exponent of the form + [+-]ddddddd. + + If the exponent overflows, returns a large exponent with the + appropriate sign. */ +static int +readExponent(StringRef::iterator begin, StringRef::iterator end) +{ + bool isNegative; + unsigned int absExponent; + const unsigned int overlargeExponent = 24000; /* FIXME. */ + StringRef::iterator p = begin; + + // Treat no exponent as 0 to match binutils + if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) { + return 0; + } + + isNegative = (*p == '-'); + if (*p == '-' || *p == '+') { + p++; + assert(p != end && "Exponent has no digits"); + } + + absExponent = decDigitValue(*p++); + assert(absExponent < 10U && "Invalid character in exponent"); + + for (; p != end; ++p) { + unsigned int value; + + value = decDigitValue(*p); + assert(value < 10U && "Invalid character in exponent"); + + value += absExponent * 10; + if (absExponent >= overlargeExponent) { + absExponent = overlargeExponent; + p = end; /* outwit assert below */ + break; + } + absExponent = value; + } + + assert(p == end && "Invalid exponent in exponent"); + + if (isNegative) + return -(int) absExponent; + else + return (int) absExponent; +} + +/* This is ugly and needs cleaning up, but I don't immediately see + how whilst remaining safe. */ +static int +totalExponent(StringRef::iterator p, StringRef::iterator end, + int exponentAdjustment) +{ + int unsignedExponent; + bool negative, overflow; + int exponent = 0; + + assert(p != end && "Exponent has no digits"); + + negative = *p == '-'; + if (*p == '-' || *p == '+') { + p++; + assert(p != end && "Exponent has no digits"); + } + + unsignedExponent = 0; + overflow = false; + for (; p != end; ++p) { + unsigned int value; + + value = decDigitValue(*p); + assert(value < 10U && "Invalid character in exponent"); + + unsignedExponent = unsignedExponent * 10 + value; + if (unsignedExponent > 32767) { + overflow = true; + break; + } + } + + if (exponentAdjustment > 32767 || exponentAdjustment < -32768) + overflow = true; + + if (!overflow) { + exponent = unsignedExponent; + if (negative) + exponent = -exponent; + exponent += exponentAdjustment; + if (exponent > 32767 || exponent < -32768) + overflow = true; + } + + if (overflow) + exponent = negative ? -32768: 32767; + + return exponent; +} + +static StringRef::iterator +skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, + StringRef::iterator *dot) +{ + StringRef::iterator p = begin; + *dot = end; + while (p != end && *p == '0') + p++; + + if (p != end && *p == '.') { + *dot = p++; + + assert(end - begin != 1 && "Significand has no digits"); + + while (p != end && *p == '0') + p++; + } + + return p; +} + +/* Given a normal decimal floating point number of the form + + dddd.dddd[eE][+-]ddd + + where the decimal point and exponent are optional, fill out the + structure D. Exponent is appropriate if the significand is + treated as an integer, and normalizedExponent if the significand + is taken to have the decimal point after a single leading + non-zero digit. + + If the value is zero, V->firstSigDigit points to a non-digit, and + the return exponent is zero. +*/ +struct decimalInfo { + const char *firstSigDigit; + const char *lastSigDigit; + int exponent; + int normalizedExponent; +}; + +static void +interpretDecimal(StringRef::iterator begin, StringRef::iterator end, + decimalInfo *D) +{ + StringRef::iterator dot = end; + StringRef::iterator p = skipLeadingZeroesAndAnyDot (begin, end, &dot); + + D->firstSigDigit = p; + D->exponent = 0; + D->normalizedExponent = 0; + + for (; p != end; ++p) { + if (*p == '.') { + assert(dot == end && "String contains multiple dots"); + dot = p++; + if (p == end) + break; + } + if (decDigitValue(*p) >= 10U) + break; + } + + if (p != end) { + assert((*p == 'e' || *p == 'E') && "Invalid character in significand"); + assert(p != begin && "Significand has no digits"); + assert((dot == end || p - begin != 1) && "Significand has no digits"); + + /* p points to the first non-digit in the string */ + D->exponent = readExponent(p + 1, end); + + /* Implied decimal point? */ + if (dot == end) + dot = p; + } + + /* If number is all zeroes accept any exponent. */ + if (p != D->firstSigDigit) { + /* Drop insignificant trailing zeroes. */ + if (p != begin) { + do + do + p--; + while (p != begin && *p == '0'); + while (p != begin && *p == '.'); + } + + /* Adjust the exponents for any decimal point. */ + D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p)); + D->normalizedExponent = (D->exponent + + static_cast<APFloat::ExponentType>((p - D->firstSigDigit) + - (dot > D->firstSigDigit && dot < p))); + } + + D->lastSigDigit = p; +} + +/* Return the trailing fraction of a hexadecimal number. + DIGITVALUE is the first hex digit of the fraction, P points to + the next digit. */ +static lostFraction +trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, + unsigned int digitValue) +{ + unsigned int hexDigit; + + /* If the first trailing digit isn't 0 or 8 we can work out the + fraction immediately. */ + if (digitValue > 8) + return lfMoreThanHalf; + else if (digitValue < 8 && digitValue > 0) + return lfLessThanHalf; + + // Otherwise we need to find the first non-zero digit. + while (p != end && (*p == '0' || *p == '.')) + p++; + + assert(p != end && "Invalid trailing hexadecimal fraction!"); + + hexDigit = hexDigitValue(*p); + + /* If we ran off the end it is exactly zero or one-half, otherwise + a little more. */ + if (hexDigit == -1U) + return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; + else + return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; +} + +/* Return the fraction lost were a bignum truncated losing the least + significant BITS bits. */ +static lostFraction +lostFractionThroughTruncation(const APFloatBase::integerPart *parts, + unsigned int partCount, + unsigned int bits) +{ + unsigned int lsb; + + lsb = APInt::tcLSB(parts, partCount); + + /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ + if (bits <= lsb) + return lfExactlyZero; + if (bits == lsb + 1) + return lfExactlyHalf; + if (bits <= partCount * APFloatBase::integerPartWidth && + APInt::tcExtractBit(parts, bits - 1)) + return lfMoreThanHalf; + + return lfLessThanHalf; +} + +/* Shift DST right BITS bits noting lost fraction. */ +static lostFraction +shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits) +{ + lostFraction lost_fraction; + + lost_fraction = lostFractionThroughTruncation(dst, parts, bits); + + APInt::tcShiftRight(dst, parts, bits); + + return lost_fraction; +} + +/* Combine the effect of two lost fractions. */ +static lostFraction +combineLostFractions(lostFraction moreSignificant, + lostFraction lessSignificant) +{ + if (lessSignificant != lfExactlyZero) { + if (moreSignificant == lfExactlyZero) + moreSignificant = lfLessThanHalf; + else if (moreSignificant == lfExactlyHalf) + moreSignificant = lfMoreThanHalf; + } + + return moreSignificant; +} + +/* The error from the true value, in half-ulps, on multiplying two + floating point numbers, which differ from the value they + approximate by at most HUE1 and HUE2 half-ulps, is strictly less + than the returned value. + + See "How to Read Floating Point Numbers Accurately" by William D + Clinger. */ +static unsigned int +HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) +{ + assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)); + + if (HUerr1 + HUerr2 == 0) + return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ + else + return inexactMultiply + 2 * (HUerr1 + HUerr2); +} + +/* The number of ulps from the boundary (zero, or half if ISNEAREST) + when the least significant BITS are truncated. BITS cannot be + zero. */ +static APFloatBase::integerPart +ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits, + bool isNearest) { + unsigned int count, partBits; + APFloatBase::integerPart part, boundary; + + assert(bits != 0); + + bits--; + count = bits / APFloatBase::integerPartWidth; + partBits = bits % APFloatBase::integerPartWidth + 1; + + part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits)); + + if (isNearest) + boundary = (APFloatBase::integerPart) 1 << (partBits - 1); + else + boundary = 0; + + if (count == 0) { + if (part - boundary <= boundary - part) + return part - boundary; + else + return boundary - part; + } + + if (part == boundary) { + while (--count) + if (parts[count]) + return ~(APFloatBase::integerPart) 0; /* A lot. */ + + return parts[0]; + } else if (part == boundary - 1) { + while (--count) + if (~parts[count]) + return ~(APFloatBase::integerPart) 0; /* A lot. */ + + return -parts[0]; + } + + return ~(APFloatBase::integerPart) 0; /* A lot. */ +} + +/* Place pow(5, power) in DST, and return the number of parts used. + DST must be at least one part larger than size of the answer. */ +static unsigned int +powerOf5(APFloatBase::integerPart *dst, unsigned int power) { + static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 }; + APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; + pow5s[0] = 78125 * 5; + + unsigned int partsCount[16] = { 1 }; + APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; + unsigned int result; + assert(power <= maxExponent); + + p1 = dst; + p2 = scratch; + + *p1 = firstEightPowers[power & 7]; + power >>= 3; + + result = 1; + pow5 = pow5s; + + for (unsigned int n = 0; power; power >>= 1, n++) { + unsigned int pc; + + pc = partsCount[n]; + + /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ + if (pc == 0) { + pc = partsCount[n - 1]; + APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); + pc *= 2; + if (pow5[pc - 1] == 0) + pc--; + partsCount[n] = pc; + } + + if (power & 1) { + APFloatBase::integerPart *tmp; + + APInt::tcFullMultiply(p2, p1, pow5, result, pc); + result += pc; + if (p2[result - 1] == 0) + result--; + + /* Now result is in p1 with partsCount parts and p2 is scratch + space. */ + tmp = p1; + p1 = p2; + p2 = tmp; + } + + pow5 += pc; + } + + if (p1 != dst) + APInt::tcAssign(dst, p1, result); + + return result; +} + +/* Zero at the end to avoid modular arithmetic when adding one; used + when rounding up during hexadecimal output. */ +static const char hexDigitsLower[] = "0123456789abcdef0"; +static const char hexDigitsUpper[] = "0123456789ABCDEF0"; +static const char infinityL[] = "infinity"; +static const char infinityU[] = "INFINITY"; +static const char NaNL[] = "nan"; +static const char NaNU[] = "NAN"; + +/* Write out an integerPart in hexadecimal, starting with the most + significant nibble. Write out exactly COUNT hexdigits, return + COUNT. */ +static unsigned int +partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count, + const char *hexDigitChars) +{ + unsigned int result = count; + + assert(count != 0 && count <= APFloatBase::integerPartWidth / 4); + + part >>= (APFloatBase::integerPartWidth - 4 * count); + while (count--) { + dst[count] = hexDigitChars[part & 0xf]; + part >>= 4; + } + + return result; +} + +/* Write out an unsigned decimal integer. */ +static char * +writeUnsignedDecimal (char *dst, unsigned int n) +{ + char buff[40], *p; + + p = buff; + do + *p++ = '0' + n % 10; + while (n /= 10); + + do + *dst++ = *--p; + while (p != buff); + + return dst; +} + +/* Write out a signed decimal integer. */ +static char * +writeSignedDecimal (char *dst, int value) +{ + if (value < 0) { + *dst++ = '-'; + dst = writeUnsignedDecimal(dst, -(unsigned) value); + } else + dst = writeUnsignedDecimal(dst, value); + + return dst; +} + +namespace detail { +/* Constructors. */ +void IEEEFloat::initialize(const fltSemantics *ourSemantics) { + unsigned int count; + + semantics = ourSemantics; + count = partCount(); + if (count > 1) + significand.parts = new integerPart[count]; +} + +void IEEEFloat::freeSignificand() { + if (needsCleanup()) + delete [] significand.parts; +} + +void IEEEFloat::assign(const IEEEFloat &rhs) { + assert(semantics == rhs.semantics); + + sign = rhs.sign; + category = rhs.category; + exponent = rhs.exponent; + if (isFiniteNonZero() || category == fcNaN) + copySignificand(rhs); +} + +void IEEEFloat::copySignificand(const IEEEFloat &rhs) { + assert(isFiniteNonZero() || category == fcNaN); + assert(rhs.partCount() >= partCount()); + + APInt::tcAssign(significandParts(), rhs.significandParts(), + partCount()); +} + +/* Make this number a NaN, with an arbitrary but deterministic value + for the significand. If double or longer, this is a signalling NaN, + which may not be ideal. If float, this is QNaN(0). */ +void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) { + category = fcNaN; + sign = Negative; + + integerPart *significand = significandParts(); + unsigned numParts = partCount(); + + // Set the significand bits to the fill. + if (!fill || fill->getNumWords() < numParts) + APInt::tcSet(significand, 0, numParts); + if (fill) { + APInt::tcAssign(significand, fill->getRawData(), + std::min(fill->getNumWords(), numParts)); + + // Zero out the excess bits of the significand. + unsigned bitsToPreserve = semantics->precision - 1; + unsigned part = bitsToPreserve / 64; + bitsToPreserve %= 64; + significand[part] &= ((1ULL << bitsToPreserve) - 1); + for (part++; part != numParts; ++part) + significand[part] = 0; + } + + unsigned QNaNBit = semantics->precision - 2; + + if (SNaN) { + // We always have to clear the QNaN bit to make it an SNaN. + APInt::tcClearBit(significand, QNaNBit); + + // If there are no bits set in the payload, we have to set + // *something* to make it a NaN instead of an infinity; + // conventionally, this is the next bit down from the QNaN bit. + if (APInt::tcIsZero(significand, numParts)) + APInt::tcSetBit(significand, QNaNBit - 1); + } else { + // We always have to set the QNaN bit to make it a QNaN. + APInt::tcSetBit(significand, QNaNBit); + } + + // For x87 extended precision, we want to make a NaN, not a + // pseudo-NaN. Maybe we should expose the ability to make + // pseudo-NaNs? + if (semantics == &semX87DoubleExtended) + APInt::tcSetBit(significand, QNaNBit + 1); +} + +IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) { + if (this != &rhs) { + if (semantics != rhs.semantics) { + freeSignificand(); + initialize(rhs.semantics); + } + assign(rhs); + } + + return *this; +} + +IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) { + freeSignificand(); + + semantics = rhs.semantics; + significand = rhs.significand; + exponent = rhs.exponent; + category = rhs.category; + sign = rhs.sign; + + rhs.semantics = &semBogus; + return *this; +} + +bool IEEEFloat::isDenormal() const { + return isFiniteNonZero() && (exponent == semantics->minExponent) && + (APInt::tcExtractBit(significandParts(), + semantics->precision - 1) == 0); +} + +bool IEEEFloat::isSmallest() const { + // The smallest number by magnitude in our format will be the smallest + // denormal, i.e. the floating point number with exponent being minimum + // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). + return isFiniteNonZero() && exponent == semantics->minExponent && + significandMSB() == 0; +} + +bool IEEEFloat::isSignificandAllOnes() const { + // Test if the significand excluding the integral bit is all ones. This allows + // us to test for binade boundaries. + const integerPart *Parts = significandParts(); + const unsigned PartCount = partCount(); + for (unsigned i = 0; i < PartCount - 1; i++) + if (~Parts[i]) + return false; + + // Set the unused high bits to all ones when we compare. + const unsigned NumHighBits = + PartCount*integerPartWidth - semantics->precision + 1; + assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " + "fill than integerPartWidth"); + const integerPart HighBitFill = + ~integerPart(0) << (integerPartWidth - NumHighBits); + if (~(Parts[PartCount - 1] | HighBitFill)) + return false; + + return true; +} + +bool IEEEFloat::isSignificandAllZeros() const { + // Test if the significand excluding the integral bit is all zeros. This + // allows us to test for binade boundaries. + const integerPart *Parts = significandParts(); + const unsigned PartCount = partCount(); + + for (unsigned i = 0; i < PartCount - 1; i++) + if (Parts[i]) + return false; + + const unsigned NumHighBits = + PartCount*integerPartWidth - semantics->precision + 1; + assert(NumHighBits <= integerPartWidth && "Can not have more high bits to " + "clear than integerPartWidth"); + const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; + + if (Parts[PartCount - 1] & HighBitMask) + return false; + + return true; +} + +bool IEEEFloat::isLargest() const { + // The largest number by magnitude in our format will be the floating point + // number with maximum exponent and with significand that is all ones. + return isFiniteNonZero() && exponent == semantics->maxExponent + && isSignificandAllOnes(); +} + +bool IEEEFloat::isInteger() const { + // This could be made more efficient; I'm going for obviously correct. + if (!isFinite()) return false; + IEEEFloat truncated = *this; + truncated.roundToIntegral(rmTowardZero); + return compare(truncated) == cmpEqual; +} + +bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const { + if (this == &rhs) + return true; + if (semantics != rhs.semantics || + category != rhs.category || + sign != rhs.sign) + return false; + if (category==fcZero || category==fcInfinity) + return true; + + if (isFiniteNonZero() && exponent != rhs.exponent) + return false; + + return std::equal(significandParts(), significandParts() + partCount(), + rhs.significandParts()); +} + +IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) { + initialize(&ourSemantics); + sign = 0; + category = fcNormal; + zeroSignificand(); + exponent = ourSemantics.precision - 1; + significandParts()[0] = value; + normalize(rmNearestTiesToEven, lfExactlyZero); +} + +IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) { + initialize(&ourSemantics); + category = fcZero; + sign = false; +} + +// Delegate to the previous constructor, because later copy constructor may +// actually inspects category, which can't be garbage. +IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag) + : IEEEFloat(ourSemantics) {} + +IEEEFloat::IEEEFloat(const IEEEFloat &rhs) { + initialize(rhs.semantics); + assign(rhs); +} + +IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) { + *this = std::move(rhs); +} + +IEEEFloat::~IEEEFloat() { freeSignificand(); } + +unsigned int IEEEFloat::partCount() const { + return partCountForBits(semantics->precision + 1); +} + +const IEEEFloat::integerPart *IEEEFloat::significandParts() const { + return const_cast<IEEEFloat *>(this)->significandParts(); +} + +IEEEFloat::integerPart *IEEEFloat::significandParts() { + if (partCount() > 1) + return significand.parts; + else + return &significand.part; +} + +void IEEEFloat::zeroSignificand() { + APInt::tcSet(significandParts(), 0, partCount()); +} + +/* Increment an fcNormal floating point number's significand. */ +void IEEEFloat::incrementSignificand() { + integerPart carry; + + carry = APInt::tcIncrement(significandParts(), partCount()); + + /* Our callers should never cause us to overflow. */ + assert(carry == 0); + (void)carry; +} + +/* Add the significand of the RHS. Returns the carry flag. */ +IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) { + integerPart *parts; + + parts = significandParts(); + + assert(semantics == rhs.semantics); + assert(exponent == rhs.exponent); + + return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); +} + +/* Subtract the significand of the RHS with a borrow flag. Returns + the borrow flag. */ +IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs, + integerPart borrow) { + integerPart *parts; + + parts = significandParts(); + + assert(semantics == rhs.semantics); + assert(exponent == rhs.exponent); + + return APInt::tcSubtract(parts, rhs.significandParts(), borrow, + partCount()); +} + +/* Multiply the significand of the RHS. If ADDEND is non-NULL, add it + on to the full-precision result of the multiplication. Returns the + lost fraction. */ +lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs, + const IEEEFloat *addend) { + unsigned int omsb; // One, not zero, based MSB. + unsigned int partsCount, newPartsCount, precision; + integerPart *lhsSignificand; + integerPart scratch[4]; + integerPart *fullSignificand; + lostFraction lost_fraction; + bool ignored; + + assert(semantics == rhs.semantics); + + precision = semantics->precision; + + // Allocate space for twice as many bits as the original significand, plus one + // extra bit for the addition to overflow into. + newPartsCount = partCountForBits(precision * 2 + 1); + + if (newPartsCount > 4) + fullSignificand = new integerPart[newPartsCount]; + else + fullSignificand = scratch; + + lhsSignificand = significandParts(); + partsCount = partCount(); + + APInt::tcFullMultiply(fullSignificand, lhsSignificand, + rhs.significandParts(), partsCount, partsCount); + + lost_fraction = lfExactlyZero; + omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; + exponent += rhs.exponent; + + // Assume the operands involved in the multiplication are single-precision + // FP, and the two multiplicants are: + // *this = a23 . a22 ... a0 * 2^e1 + // rhs = b23 . b22 ... b0 * 2^e2 + // the result of multiplication is: + // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2) + // Note that there are three significant bits at the left-hand side of the + // radix point: two for the multiplication, and an overflow bit for the + // addition (that will always be zero at this point). Move the radix point + // toward left by two bits, and adjust exponent accordingly. + exponent += 2; + + if (addend && addend->isNonZero()) { + // The intermediate result of the multiplication has "2 * precision" + // signicant bit; adjust the addend to be consistent with mul result. + // + Significand savedSignificand = significand; + const fltSemantics *savedSemantics = semantics; + fltSemantics extendedSemantics; + opStatus status; + unsigned int extendedPrecision; + + // Normalize our MSB to one below the top bit to allow for overflow. + extendedPrecision = 2 * precision + 1; + if (omsb != extendedPrecision - 1) { + assert(extendedPrecision > omsb); + APInt::tcShiftLeft(fullSignificand, newPartsCount, + (extendedPrecision - 1) - omsb); + exponent -= (extendedPrecision - 1) - omsb; + } + + /* Create new semantics. */ + extendedSemantics = *semantics; + extendedSemantics.precision = extendedPrecision; + + if (newPartsCount == 1) + significand.part = fullSignificand[0]; + else + significand.parts = fullSignificand; + semantics = &extendedSemantics; + + IEEEFloat extendedAddend(*addend); + status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); + assert(status == opOK); + (void)status; + + // Shift the significand of the addend right by one bit. This guarantees + // that the high bit of the significand is zero (same as fullSignificand), + // so the addition will overflow (if it does overflow at all) into the top bit. + lost_fraction = extendedAddend.shiftSignificandRight(1); + assert(lost_fraction == lfExactlyZero && + "Lost precision while shifting addend for fused-multiply-add."); + + lost_fraction = addOrSubtractSignificand(extendedAddend, false); + + /* Restore our state. */ + if (newPartsCount == 1) + fullSignificand[0] = significand.part; + significand = savedSignificand; + semantics = savedSemantics; + + omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; + } + + // Convert the result having "2 * precision" significant-bits back to the one + // having "precision" significant-bits. First, move the radix point from + // poision "2*precision - 1" to "precision - 1". The exponent need to be + // adjusted by "2*precision - 1" - "precision - 1" = "precision". + exponent -= precision + 1; + + // In case MSB resides at the left-hand side of radix point, shift the + // mantissa right by some amount to make sure the MSB reside right before + // the radix point (i.e. "MSB . rest-significant-bits"). + // + // Note that the result is not normalized when "omsb < precision". So, the + // caller needs to call IEEEFloat::normalize() if normalized value is + // expected. + if (omsb > precision) { + unsigned int bits, significantParts; + lostFraction lf; + + bits = omsb - precision; + significantParts = partCountForBits(omsb); + lf = shiftRight(fullSignificand, significantParts, bits); + lost_fraction = combineLostFractions(lf, lost_fraction); + exponent += bits; + } + + APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); + + if (newPartsCount > 4) + delete [] fullSignificand; + + return lost_fraction; +} + +/* Multiply the significands of LHS and RHS to DST. */ +lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) { + unsigned int bit, i, partsCount; + const integerPart *rhsSignificand; + integerPart *lhsSignificand, *dividend, *divisor; + integerPart scratch[4]; + lostFraction lost_fraction; + + assert(semantics == rhs.semantics); + + lhsSignificand = significandParts(); + rhsSignificand = rhs.significandParts(); + partsCount = partCount(); + + if (partsCount > 2) + dividend = new integerPart[partsCount * 2]; + else + dividend = scratch; + + divisor = dividend + partsCount; + + /* Copy the dividend and divisor as they will be modified in-place. */ + for (i = 0; i < partsCount; i++) { + dividend[i] = lhsSignificand[i]; + divisor[i] = rhsSignificand[i]; + lhsSignificand[i] = 0; + } + + exponent -= rhs.exponent; + + unsigned int precision = semantics->precision; + + /* Normalize the divisor. */ + bit = precision - APInt::tcMSB(divisor, partsCount) - 1; + if (bit) { + exponent += bit; + APInt::tcShiftLeft(divisor, partsCount, bit); + } + + /* Normalize the dividend. */ + bit = precision - APInt::tcMSB(dividend, partsCount) - 1; + if (bit) { + exponent -= bit; + APInt::tcShiftLeft(dividend, partsCount, bit); + } + + /* Ensure the dividend >= divisor initially for the loop below. + Incidentally, this means that the division loop below is + guaranteed to set the integer bit to one. */ + if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { + exponent--; + APInt::tcShiftLeft(dividend, partsCount, 1); + assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0); + } + + /* Long division. */ + for (bit = precision; bit; bit -= 1) { + if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { + APInt::tcSubtract(dividend, divisor, 0, partsCount); + APInt::tcSetBit(lhsSignificand, bit - 1); + } + + APInt::tcShiftLeft(dividend, partsCount, 1); + } + + /* Figure out the lost fraction. */ + int cmp = APInt::tcCompare(dividend, divisor, partsCount); + + if (cmp > 0) + lost_fraction = lfMoreThanHalf; + else if (cmp == 0) + lost_fraction = lfExactlyHalf; + else if (APInt::tcIsZero(dividend, partsCount)) + lost_fraction = lfExactlyZero; + else + lost_fraction = lfLessThanHalf; + + if (partsCount > 2) + delete [] dividend; + + return lost_fraction; +} + +unsigned int IEEEFloat::significandMSB() const { + return APInt::tcMSB(significandParts(), partCount()); +} + +unsigned int IEEEFloat::significandLSB() const { + return APInt::tcLSB(significandParts(), partCount()); +} + +/* Note that a zero result is NOT normalized to fcZero. */ +lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) { + /* Our exponent should not overflow. */ + assert((ExponentType) (exponent + bits) >= exponent); + + exponent += bits; + + return shiftRight(significandParts(), partCount(), bits); +} + +/* Shift the significand left BITS bits, subtract BITS from its exponent. */ +void IEEEFloat::shiftSignificandLeft(unsigned int bits) { + assert(bits < semantics->precision); + + if (bits) { + unsigned int partsCount = partCount(); + + APInt::tcShiftLeft(significandParts(), partsCount, bits); + exponent -= bits; + + assert(!APInt::tcIsZero(significandParts(), partsCount)); + } +} + +IEEEFloat::cmpResult +IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const { + int compare; + + assert(semantics == rhs.semantics); + assert(isFiniteNonZero()); + assert(rhs.isFiniteNonZero()); + + compare = exponent - rhs.exponent; + + /* If exponents are equal, do an unsigned bignum comparison of the + significands. */ + if (compare == 0) + compare = APInt::tcCompare(significandParts(), rhs.significandParts(), + partCount()); + + if (compare > 0) + return cmpGreaterThan; + else if (compare < 0) + return cmpLessThan; + else + return cmpEqual; +} + +/* Handle overflow. Sign is preserved. We either become infinity or + the largest finite number. */ +IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) { + /* Infinity? */ + if (rounding_mode == rmNearestTiesToEven || + rounding_mode == rmNearestTiesToAway || + (rounding_mode == rmTowardPositive && !sign) || + (rounding_mode == rmTowardNegative && sign)) { + category = fcInfinity; + return (opStatus) (opOverflow | opInexact); + } + + /* Otherwise we become the largest finite number. */ + category = fcNormal; + exponent = semantics->maxExponent; + APInt::tcSetLeastSignificantBits(significandParts(), partCount(), + semantics->precision); + + return opInexact; +} + +/* Returns TRUE if, when truncating the current number, with BIT the + new LSB, with the given lost fraction and rounding mode, the result + would need to be rounded away from zero (i.e., by increasing the + signficand). This routine must work for fcZero of both signs, and + fcNormal numbers. */ +bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode, + lostFraction lost_fraction, + unsigned int bit) const { + /* NaNs and infinities should not have lost fractions. */ + assert(isFiniteNonZero() || category == fcZero); + + /* Current callers never pass this so we don't handle it. */ + assert(lost_fraction != lfExactlyZero); + + switch (rounding_mode) { + case rmNearestTiesToAway: + return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; + + case rmNearestTiesToEven: + if (lost_fraction == lfMoreThanHalf) + return true; + + /* Our zeroes don't have a significand to test. */ + if (lost_fraction == lfExactlyHalf && category != fcZero) + return APInt::tcExtractBit(significandParts(), bit); + + return false; + + case rmTowardZero: + return false; + + case rmTowardPositive: + return !sign; + + case rmTowardNegative: + return sign; + } + llvm_unreachable("Invalid rounding mode found"); +} + +IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode, + lostFraction lost_fraction) { + unsigned int omsb; /* One, not zero, based MSB. */ + int exponentChange; + + if (!isFiniteNonZero()) + return opOK; + + /* Before rounding normalize the exponent of fcNormal numbers. */ + omsb = significandMSB() + 1; + + if (omsb) { + /* OMSB is numbered from 1. We want to place it in the integer + bit numbered PRECISION if possible, with a compensating change in + the exponent. */ + exponentChange = omsb - semantics->precision; + + /* If the resulting exponent is too high, overflow according to + the rounding mode. */ + if (exponent + exponentChange > semantics->maxExponent) + return handleOverflow(rounding_mode); + + /* Subnormal numbers have exponent minExponent, and their MSB + is forced based on that. */ + if (exponent + exponentChange < semantics->minExponent) + exponentChange = semantics->minExponent - exponent; + + /* Shifting left is easy as we don't lose precision. */ + if (exponentChange < 0) { + assert(lost_fraction == lfExactlyZero); + + shiftSignificandLeft(-exponentChange); + + return opOK; + } + + if (exponentChange > 0) { + lostFraction lf; + + /* Shift right and capture any new lost fraction. */ + lf = shiftSignificandRight(exponentChange); + + lost_fraction = combineLostFractions(lf, lost_fraction); + + /* Keep OMSB up-to-date. */ + if (omsb > (unsigned) exponentChange) + omsb -= exponentChange; + else + omsb = 0; + } + } + + /* Now round the number according to rounding_mode given the lost + fraction. */ + + /* As specified in IEEE 754, since we do not trap we do not report + underflow for exact results. */ + if (lost_fraction == lfExactlyZero) { + /* Canonicalize zeroes. */ + if (omsb == 0) + category = fcZero; + + return opOK; + } + + /* Increment the significand if we're rounding away from zero. */ + if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { + if (omsb == 0) + exponent = semantics->minExponent; + + incrementSignificand(); + omsb = significandMSB() + 1; + + /* Did the significand increment overflow? */ + if (omsb == (unsigned) semantics->precision + 1) { + /* Renormalize by incrementing the exponent and shifting our + significand right one. However if we already have the + maximum exponent we overflow to infinity. */ + if (exponent == semantics->maxExponent) { + category = fcInfinity; + + return (opStatus) (opOverflow | opInexact); + } + + shiftSignificandRight(1); + + return opInexact; + } + } + + /* The normal case - we were and are not denormal, and any + significand increment above didn't overflow. */ + if (omsb == semantics->precision) + return opInexact; + + /* We have a non-zero denormal. */ + assert(omsb < semantics->precision); + + /* Canonicalize zeroes. */ + if (omsb == 0) + category = fcZero; + + /* The fcZero case is a denormal that underflowed to zero. */ + return (opStatus) (opUnderflow | opInexact); +} + +IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs, + bool subtract) { + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcZero): + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcInfinity, fcZero): + return opOK; + + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + // We need to be sure to flip the sign here for subtraction because we + // don't have a separate negate operation so -NaN becomes 0 - NaN here. + sign = rhs.sign ^ subtract; + category = fcNaN; + copySignificand(rhs); + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcInfinity): + category = fcInfinity; + sign = rhs.sign ^ subtract; + return opOK; + + case PackCategoriesIntoKey(fcZero, fcNormal): + assign(rhs); + sign = rhs.sign ^ subtract; + return opOK; + + case PackCategoriesIntoKey(fcZero, fcZero): + /* Sign depends on rounding mode; handled by caller. */ + return opOK; + + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + /* Differently signed infinities can only be validly + subtracted. */ + if (((sign ^ rhs.sign)!=0) != subtract) { + makeNaN(); + return opInvalidOp; + } + + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + return opDivByZero; + } +} + +/* Add or subtract two normal numbers. */ +lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs, + bool subtract) { + integerPart carry; + lostFraction lost_fraction; + int bits; + + /* Determine if the operation on the absolute values is effectively + an addition or subtraction. */ + subtract ^= static_cast<bool>(sign ^ rhs.sign); + + /* Are we bigger exponent-wise than the RHS? */ + bits = exponent - rhs.exponent; + + /* Subtraction is more subtle than one might naively expect. */ + if (subtract) { + IEEEFloat temp_rhs(rhs); + bool reverse; + + if (bits == 0) { + reverse = compareAbsoluteValue(temp_rhs) == cmpLessThan; + lost_fraction = lfExactlyZero; + } else if (bits > 0) { + lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); + shiftSignificandLeft(1); + reverse = false; + } else { + lost_fraction = shiftSignificandRight(-bits - 1); + temp_rhs.shiftSignificandLeft(1); + reverse = true; + } + + if (reverse) { + carry = temp_rhs.subtractSignificand + (*this, lost_fraction != lfExactlyZero); + copySignificand(temp_rhs); + sign = !sign; + } else { + carry = subtractSignificand + (temp_rhs, lost_fraction != lfExactlyZero); + } + + /* Invert the lost fraction - it was on the RHS and + subtracted. */ + if (lost_fraction == lfLessThanHalf) + lost_fraction = lfMoreThanHalf; + else if (lost_fraction == lfMoreThanHalf) + lost_fraction = lfLessThanHalf; + + /* The code above is intended to ensure that no borrow is + necessary. */ + assert(!carry); + (void)carry; + } else { + if (bits > 0) { + IEEEFloat temp_rhs(rhs); + + lost_fraction = temp_rhs.shiftSignificandRight(bits); + carry = addSignificand(temp_rhs); + } else { + lost_fraction = shiftSignificandRight(-bits); + carry = addSignificand(rhs); + } + + /* We have a guard bit; generating a carry cannot happen. */ + assert(!carry); + (void)carry; + } + + return lost_fraction; +} + +IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) { + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + sign = false; + return opOK; + + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + sign = false; + category = fcNaN; + copySignificand(rhs); + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcInfinity): + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + category = fcInfinity; + return opOK; + + case PackCategoriesIntoKey(fcZero, fcNormal): + case PackCategoriesIntoKey(fcNormal, fcZero): + case PackCategoriesIntoKey(fcZero, fcZero): + category = fcZero; + return opOK; + + case PackCategoriesIntoKey(fcZero, fcInfinity): + case PackCategoriesIntoKey(fcInfinity, fcZero): + makeNaN(); + return opInvalidOp; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + return opOK; + } +} + +IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) { + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + category = fcNaN; + copySignificand(rhs); + LLVM_FALLTHROUGH; + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + sign = false; + LLVM_FALLTHROUGH; + case PackCategoriesIntoKey(fcInfinity, fcZero): + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcZero, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcNormal): + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcInfinity): + category = fcZero; + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcZero): + category = fcInfinity; + return opDivByZero; + + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcZero): + makeNaN(); + return opInvalidOp; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + return opOK; + } +} + +IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) { + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + case PackCategoriesIntoKey(fcZero, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcNormal): + case PackCategoriesIntoKey(fcNormal, fcInfinity): + return opOK; + + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + sign = false; + category = fcNaN; + copySignificand(rhs); + return opOK; + + case PackCategoriesIntoKey(fcNormal, fcZero): + case PackCategoriesIntoKey(fcInfinity, fcZero): + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcZero): + makeNaN(); + return opInvalidOp; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + return opOK; + } +} + +/* Change sign. */ +void IEEEFloat::changeSign() { + /* Look mummy, this one's easy. */ + sign = !sign; +} + +/* Normalized addition or subtraction. */ +IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs, + roundingMode rounding_mode, + bool subtract) { + opStatus fs; + + fs = addOrSubtractSpecials(rhs, subtract); + + /* This return code means it was not a simple case. */ + if (fs == opDivByZero) { + lostFraction lost_fraction; + + lost_fraction = addOrSubtractSignificand(rhs, subtract); + fs = normalize(rounding_mode, lost_fraction); + + /* Can only be zero if we lost no fraction. */ + assert(category != fcZero || lost_fraction == lfExactlyZero); + } + + /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a + positive zero unless rounding to minus infinity, except that + adding two like-signed zeroes gives that zero. */ + if (category == fcZero) { + if (rhs.category != fcZero || (sign == rhs.sign) == subtract) + sign = (rounding_mode == rmTowardNegative); + } + + return fs; +} + +/* Normalized addition. */ +IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs, + roundingMode rounding_mode) { + return addOrSubtract(rhs, rounding_mode, false); +} + +/* Normalized subtraction. */ +IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs, + roundingMode rounding_mode) { + return addOrSubtract(rhs, rounding_mode, true); +} + +/* Normalized multiply. */ +IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs, + roundingMode rounding_mode) { + opStatus fs; + + sign ^= rhs.sign; + fs = multiplySpecials(rhs); + + if (isFiniteNonZero()) { + lostFraction lost_fraction = multiplySignificand(rhs, nullptr); + fs = normalize(rounding_mode, lost_fraction); + if (lost_fraction != lfExactlyZero) + fs = (opStatus) (fs | opInexact); + } + + return fs; +} + +/* Normalized divide. */ +IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs, + roundingMode rounding_mode) { + opStatus fs; + + sign ^= rhs.sign; + fs = divideSpecials(rhs); + + if (isFiniteNonZero()) { + lostFraction lost_fraction = divideSignificand(rhs); + fs = normalize(rounding_mode, lost_fraction); + if (lost_fraction != lfExactlyZero) + fs = (opStatus) (fs | opInexact); + } + + return fs; +} + +/* Normalized remainder. This is not currently correct in all cases. */ +IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) { + opStatus fs; + IEEEFloat V = *this; + unsigned int origSign = sign; + + fs = V.divide(rhs, rmNearestTiesToEven); + if (fs == opDivByZero) + return fs; + + int parts = partCount(); + integerPart *x = new integerPart[parts]; + bool ignored; + fs = V.convertToInteger(makeMutableArrayRef(x, parts), + parts * integerPartWidth, true, rmNearestTiesToEven, + &ignored); + if (fs == opInvalidOp) { + delete[] x; + return fs; + } + + fs = V.convertFromZeroExtendedInteger(x, parts * integerPartWidth, true, + rmNearestTiesToEven); + assert(fs==opOK); // should always work + + fs = V.multiply(rhs, rmNearestTiesToEven); + assert(fs==opOK || fs==opInexact); // should not overflow or underflow + + fs = subtract(V, rmNearestTiesToEven); + assert(fs==opOK || fs==opInexact); // likewise + + if (isZero()) + sign = origSign; // IEEE754 requires this + delete[] x; + return fs; +} + +/* Normalized llvm frem (C fmod). */ +IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) { + opStatus fs; + fs = modSpecials(rhs); + unsigned int origSign = sign; + + while (isFiniteNonZero() && rhs.isFiniteNonZero() && + compareAbsoluteValue(rhs) != cmpLessThan) { + IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven); + if (compareAbsoluteValue(V) == cmpLessThan) + V = scalbn(V, -1, rmNearestTiesToEven); + V.sign = sign; + + fs = subtract(V, rmNearestTiesToEven); + assert(fs==opOK); + } + if (isZero()) + sign = origSign; // fmod requires this + return fs; +} + +/* Normalized fused-multiply-add. */ +IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand, + const IEEEFloat &addend, + roundingMode rounding_mode) { + opStatus fs; + + /* Post-multiplication sign, before addition. */ + sign ^= multiplicand.sign; + + /* If and only if all arguments are normal do we need to do an + extended-precision calculation. */ + if (isFiniteNonZero() && + multiplicand.isFiniteNonZero() && + addend.isFinite()) { + lostFraction lost_fraction; + + lost_fraction = multiplySignificand(multiplicand, &addend); + fs = normalize(rounding_mode, lost_fraction); + if (lost_fraction != lfExactlyZero) + fs = (opStatus) (fs | opInexact); + + /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a + positive zero unless rounding to minus infinity, except that + adding two like-signed zeroes gives that zero. */ + if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign) + sign = (rounding_mode == rmTowardNegative); + } else { + fs = multiplySpecials(multiplicand); + + /* FS can only be opOK or opInvalidOp. There is no more work + to do in the latter case. The IEEE-754R standard says it is + implementation-defined in this case whether, if ADDEND is a + quiet NaN, we raise invalid op; this implementation does so. + + If we need to do the addition we can do so with normal + precision. */ + if (fs == opOK) + fs = addOrSubtract(addend, rounding_mode, false); + } + + return fs; +} + +/* Rounding-mode corrrect round to integral value. */ +IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) { + opStatus fs; + + // If the exponent is large enough, we know that this value is already + // integral, and the arithmetic below would potentially cause it to saturate + // to +/-Inf. Bail out early instead. + if (isFiniteNonZero() && exponent+1 >= (int)semanticsPrecision(*semantics)) + return opOK; + + // The algorithm here is quite simple: we add 2^(p-1), where p is the + // precision of our format, and then subtract it back off again. The choice + // of rounding modes for the addition/subtraction determines the rounding mode + // for our integral rounding as well. + // NOTE: When the input value is negative, we do subtraction followed by + // addition instead. + APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1); + IntegerConstant <<= semanticsPrecision(*semantics)-1; + IEEEFloat MagicConstant(*semantics); + fs = MagicConstant.convertFromAPInt(IntegerConstant, false, + rmNearestTiesToEven); + MagicConstant.sign = sign; + + if (fs != opOK) + return fs; + + // Preserve the input sign so that we can handle 0.0/-0.0 cases correctly. + bool inputSign = isNegative(); + + fs = add(MagicConstant, rounding_mode); + if (fs != opOK && fs != opInexact) + return fs; + + fs = subtract(MagicConstant, rounding_mode); + + // Restore the input sign. + if (inputSign != isNegative()) + changeSign(); + + return fs; +} + + +/* Comparison requires normalized numbers. */ +IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const { + cmpResult result; + + assert(semantics == rhs.semantics); + + switch (PackCategoriesIntoKey(category, rhs.category)) { + default: + llvm_unreachable(nullptr); + + case PackCategoriesIntoKey(fcNaN, fcZero): + case PackCategoriesIntoKey(fcNaN, fcNormal): + case PackCategoriesIntoKey(fcNaN, fcInfinity): + case PackCategoriesIntoKey(fcNaN, fcNaN): + case PackCategoriesIntoKey(fcZero, fcNaN): + case PackCategoriesIntoKey(fcNormal, fcNaN): + case PackCategoriesIntoKey(fcInfinity, fcNaN): + return cmpUnordered; + + case PackCategoriesIntoKey(fcInfinity, fcNormal): + case PackCategoriesIntoKey(fcInfinity, fcZero): + case PackCategoriesIntoKey(fcNormal, fcZero): + if (sign) + return cmpLessThan; + else + return cmpGreaterThan; + + case PackCategoriesIntoKey(fcNormal, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcInfinity): + case PackCategoriesIntoKey(fcZero, fcNormal): + if (rhs.sign) + return cmpGreaterThan; + else + return cmpLessThan; + + case PackCategoriesIntoKey(fcInfinity, fcInfinity): + if (sign == rhs.sign) + return cmpEqual; + else if (sign) + return cmpLessThan; + else + return cmpGreaterThan; + + case PackCategoriesIntoKey(fcZero, fcZero): + return cmpEqual; + + case PackCategoriesIntoKey(fcNormal, fcNormal): + break; + } + + /* Two normal numbers. Do they have the same sign? */ + if (sign != rhs.sign) { + if (sign) + result = cmpLessThan; + else + result = cmpGreaterThan; + } else { + /* Compare absolute values; invert result if negative. */ + result = compareAbsoluteValue(rhs); + + if (sign) { + if (result == cmpLessThan) + result = cmpGreaterThan; + else if (result == cmpGreaterThan) + result = cmpLessThan; + } + } + + return result; +} + +/// IEEEFloat::convert - convert a value of one floating point type to another. +/// The return value corresponds to the IEEE754 exceptions. *losesInfo +/// records whether the transformation lost information, i.e. whether +/// converting the result back to the original type will produce the +/// original value (this is almost the same as return value==fsOK, but there +/// are edge cases where this is not so). + +IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics, + roundingMode rounding_mode, + bool *losesInfo) { + lostFraction lostFraction; + unsigned int newPartCount, oldPartCount; + opStatus fs; + int shift; + const fltSemantics &fromSemantics = *semantics; + + lostFraction = lfExactlyZero; + newPartCount = partCountForBits(toSemantics.precision + 1); + oldPartCount = partCount(); + shift = toSemantics.precision - fromSemantics.precision; + + bool X86SpecialNan = false; + if (&fromSemantics == &semX87DoubleExtended && + &toSemantics != &semX87DoubleExtended && category == fcNaN && + (!(*significandParts() & 0x8000000000000000ULL) || + !(*significandParts() & 0x4000000000000000ULL))) { + // x86 has some unusual NaNs which cannot be represented in any other + // format; note them here. + X86SpecialNan = true; + } + + // If this is a truncation of a denormal number, and the target semantics + // has larger exponent range than the source semantics (this can happen + // when truncating from PowerPC double-double to double format), the + // right shift could lose result mantissa bits. Adjust exponent instead + // of performing excessive shift. + if (shift < 0 && isFiniteNonZero()) { + int exponentChange = significandMSB() + 1 - fromSemantics.precision; + if (exponent + exponentChange < toSemantics.minExponent) + exponentChange = toSemantics.minExponent - exponent; + if (exponentChange < shift) + exponentChange = shift; + if (exponentChange < 0) { + shift -= exponentChange; + exponent += exponentChange; + } + } + + // If this is a truncation, perform the shift before we narrow the storage. + if (shift < 0 && (isFiniteNonZero() || category==fcNaN)) + lostFraction = shiftRight(significandParts(), oldPartCount, -shift); + + // Fix the storage so it can hold to new value. + if (newPartCount > oldPartCount) { + // The new type requires more storage; make it available. + integerPart *newParts; + newParts = new integerPart[newPartCount]; + APInt::tcSet(newParts, 0, newPartCount); + if (isFiniteNonZero() || category==fcNaN) + APInt::tcAssign(newParts, significandParts(), oldPartCount); + freeSignificand(); + significand.parts = newParts; + } else if (newPartCount == 1 && oldPartCount != 1) { + // Switch to built-in storage for a single part. + integerPart newPart = 0; + if (isFiniteNonZero() || category==fcNaN) + newPart = significandParts()[0]; + freeSignificand(); + significand.part = newPart; + } + + // Now that we have the right storage, switch the semantics. + semantics = &toSemantics; + + // If this is an extension, perform the shift now that the storage is + // available. + if (shift > 0 && (isFiniteNonZero() || category==fcNaN)) + APInt::tcShiftLeft(significandParts(), newPartCount, shift); + + if (isFiniteNonZero()) { + fs = normalize(rounding_mode, lostFraction); + *losesInfo = (fs != opOK); + } else if (category == fcNaN) { + *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan; + + // For x87 extended precision, we want to make a NaN, not a special NaN if + // the input wasn't special either. + if (!X86SpecialNan && semantics == &semX87DoubleExtended) + APInt::tcSetBit(significandParts(), semantics->precision - 1); + + // gcc forces the Quiet bit on, which means (float)(double)(float_sNan) + // does not give you back the same bits. This is dubious, and we + // don't currently do it. You're really supposed to get + // an invalid operation signal at runtime, but nobody does that. + fs = opOK; + } else { + *losesInfo = false; + fs = opOK; + } + + return fs; +} + +/* Convert a floating point number to an integer according to the + rounding mode. If the rounded integer value is out of range this + returns an invalid operation exception and the contents of the + destination parts are unspecified. If the rounded value is in + range but the floating point number is not the exact integer, the C + standard doesn't require an inexact exception to be raised. IEEE + 854 does require it so we do that. + + Note that for conversions to integer type the C standard requires + round-to-zero to always be used. */ +IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger( + MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned, + roundingMode rounding_mode, bool *isExact) const { + lostFraction lost_fraction; + const integerPart *src; + unsigned int dstPartsCount, truncatedBits; + + *isExact = false; + + /* Handle the three special cases first. */ + if (category == fcInfinity || category == fcNaN) + return opInvalidOp; + + dstPartsCount = partCountForBits(width); + assert(dstPartsCount <= parts.size() && "Integer too big"); + + if (category == fcZero) { + APInt::tcSet(parts.data(), 0, dstPartsCount); + // Negative zero can't be represented as an int. + *isExact = !sign; + return opOK; + } + + src = significandParts(); + + /* Step 1: place our absolute value, with any fraction truncated, in + the destination. */ + if (exponent < 0) { + /* Our absolute value is less than one; truncate everything. */ + APInt::tcSet(parts.data(), 0, dstPartsCount); + /* For exponent -1 the integer bit represents .5, look at that. + For smaller exponents leftmost truncated bit is 0. */ + truncatedBits = semantics->precision -1U - exponent; + } else { + /* We want the most significant (exponent + 1) bits; the rest are + truncated. */ + unsigned int bits = exponent + 1U; + + /* Hopelessly large in magnitude? */ + if (bits > width) + return opInvalidOp; + + if (bits < semantics->precision) { + /* We truncate (semantics->precision - bits) bits. */ + truncatedBits = semantics->precision - bits; + APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits); + } else { + /* We want at least as many bits as are available. */ + APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision, + 0); + APInt::tcShiftLeft(parts.data(), dstPartsCount, + bits - semantics->precision); + truncatedBits = 0; + } + } + + /* Step 2: work out any lost fraction, and increment the absolute + value if we would round away from zero. */ + if (truncatedBits) { + lost_fraction = lostFractionThroughTruncation(src, partCount(), + truncatedBits); + if (lost_fraction != lfExactlyZero && + roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { + if (APInt::tcIncrement(parts.data(), dstPartsCount)) + return opInvalidOp; /* Overflow. */ + } + } else { + lost_fraction = lfExactlyZero; + } + + /* Step 3: check if we fit in the destination. */ + unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1; + + if (sign) { + if (!isSigned) { + /* Negative numbers cannot be represented as unsigned. */ + if (omsb != 0) + return opInvalidOp; + } else { + /* It takes omsb bits to represent the unsigned integer value. + We lose a bit for the sign, but care is needed as the + maximally negative integer is a special case. */ + if (omsb == width && + APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb) + return opInvalidOp; + + /* This case can happen because of rounding. */ + if (omsb > width) + return opInvalidOp; + } + + APInt::tcNegate (parts.data(), dstPartsCount); + } else { + if (omsb >= width + !isSigned) + return opInvalidOp; + } + + if (lost_fraction == lfExactlyZero) { + *isExact = true; + return opOK; + } else + return opInexact; +} + +/* Same as convertToSignExtendedInteger, except we provide + deterministic values in case of an invalid operation exception, + namely zero for NaNs and the minimal or maximal value respectively + for underflow or overflow. + The *isExact output tells whether the result is exact, in the sense + that converting it back to the original floating point type produces + the original value. This is almost equivalent to result==opOK, + except for negative zeroes. +*/ +IEEEFloat::opStatus +IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts, + unsigned int width, bool isSigned, + roundingMode rounding_mode, bool *isExact) const { + opStatus fs; + + fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, + isExact); + + if (fs == opInvalidOp) { + unsigned int bits, dstPartsCount; + + dstPartsCount = partCountForBits(width); + assert(dstPartsCount <= parts.size() && "Integer too big"); + + if (category == fcNaN) + bits = 0; + else if (sign) + bits = isSigned; + else + bits = width - isSigned; + + APInt::tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits); + if (sign && isSigned) + APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1); + } + + return fs; +} + +/* Convert an unsigned integer SRC to a floating point number, + rounding according to ROUNDING_MODE. The sign of the floating + point number is not modified. */ +IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts( + const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) { + unsigned int omsb, precision, dstCount; + integerPart *dst; + lostFraction lost_fraction; + + category = fcNormal; + omsb = APInt::tcMSB(src, srcCount) + 1; + dst = significandParts(); + dstCount = partCount(); + precision = semantics->precision; + + /* We want the most significant PRECISION bits of SRC. There may not + be that many; extract what we can. */ + if (precision <= omsb) { + exponent = omsb - 1; + lost_fraction = lostFractionThroughTruncation(src, srcCount, + omsb - precision); + APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); + } else { + exponent = precision - 1; + lost_fraction = lfExactlyZero; + APInt::tcExtract(dst, dstCount, src, omsb, 0); + } + + return normalize(rounding_mode, lost_fraction); +} + +IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned, + roundingMode rounding_mode) { + unsigned int partCount = Val.getNumWords(); + APInt api = Val; + + sign = false; + if (isSigned && api.isNegative()) { + sign = true; + api = -api; + } + + return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); +} + +/* Convert a two's complement integer SRC to a floating point number, + rounding according to ROUNDING_MODE. ISSIGNED is true if the + integer is signed, in which case it must be sign-extended. */ +IEEEFloat::opStatus +IEEEFloat::convertFromSignExtendedInteger(const integerPart *src, + unsigned int srcCount, bool isSigned, + roundingMode rounding_mode) { + opStatus status; + + if (isSigned && + APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { + integerPart *copy; + + /* If we're signed and negative negate a copy. */ + sign = true; + copy = new integerPart[srcCount]; + APInt::tcAssign(copy, src, srcCount); + APInt::tcNegate(copy, srcCount); + status = convertFromUnsignedParts(copy, srcCount, rounding_mode); + delete [] copy; + } else { + sign = false; + status = convertFromUnsignedParts(src, srcCount, rounding_mode); + } + + return status; +} + +/* FIXME: should this just take a const APInt reference? */ +IEEEFloat::opStatus +IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts, + unsigned int width, bool isSigned, + roundingMode rounding_mode) { + unsigned int partCount = partCountForBits(width); + APInt api = APInt(width, makeArrayRef(parts, partCount)); + + sign = false; + if (isSigned && APInt::tcExtractBit(parts, width - 1)) { + sign = true; + api = -api; + } + + return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); +} + +IEEEFloat::opStatus +IEEEFloat::convertFromHexadecimalString(StringRef s, + roundingMode rounding_mode) { + lostFraction lost_fraction = lfExactlyZero; + + category = fcNormal; + zeroSignificand(); + exponent = 0; + + integerPart *significand = significandParts(); + unsigned partsCount = partCount(); + unsigned bitPos = partsCount * integerPartWidth; + bool computedTrailingFraction = false; + + // Skip leading zeroes and any (hexa)decimal point. + StringRef::iterator begin = s.begin(); + StringRef::iterator end = s.end(); + StringRef::iterator dot; + StringRef::iterator p = skipLeadingZeroesAndAnyDot(begin, end, &dot); + StringRef::iterator firstSignificantDigit = p; + + while (p != end) { + integerPart hex_value; + + if (*p == '.') { + assert(dot == end && "String contains multiple dots"); + dot = p++; + continue; + } + + hex_value = hexDigitValue(*p); + if (hex_value == -1U) + break; + + p++; + + // Store the number while we have space. + if (bitPos) { + bitPos -= 4; + hex_value <<= bitPos % integerPartWidth; + significand[bitPos / integerPartWidth] |= hex_value; + } else if (!computedTrailingFraction) { + lost_fraction = trailingHexadecimalFraction(p, end, hex_value); + computedTrailingFraction = true; + } + } + + /* Hex floats require an exponent but not a hexadecimal point. */ + assert(p != end && "Hex strings require an exponent"); + assert((*p == 'p' || *p == 'P') && "Invalid character in significand"); + assert(p != begin && "Significand has no digits"); + assert((dot == end || p - begin != 1) && "Significand has no digits"); + + /* Ignore the exponent if we are zero. */ + if (p != firstSignificantDigit) { + int expAdjustment; + + /* Implicit hexadecimal point? */ + if (dot == end) + dot = p; + + /* Calculate the exponent adjustment implicit in the number of + significant digits. */ + expAdjustment = static_cast<int>(dot - firstSignificantDigit); + if (expAdjustment < 0) + expAdjustment++; + expAdjustment = expAdjustment * 4 - 1; + + /* Adjust for writing the significand starting at the most + significant nibble. */ + expAdjustment += semantics->precision; + expAdjustment -= partsCount * integerPartWidth; + + /* Adjust for the given exponent. */ + exponent = totalExponent(p + 1, end, expAdjustment); + } + + return normalize(rounding_mode, lost_fraction); +} + +IEEEFloat::opStatus +IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts, + unsigned sigPartCount, int exp, + roundingMode rounding_mode) { + unsigned int parts, pow5PartCount; + fltSemantics calcSemantics = { 32767, -32767, 0, 0 }; + integerPart pow5Parts[maxPowerOfFiveParts]; + bool isNearest; + + isNearest = (rounding_mode == rmNearestTiesToEven || + rounding_mode == rmNearestTiesToAway); + + parts = partCountForBits(semantics->precision + 11); + + /* Calculate pow(5, abs(exp)). */ + pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); + + for (;; parts *= 2) { + opStatus sigStatus, powStatus; + unsigned int excessPrecision, truncatedBits; + + calcSemantics.precision = parts * integerPartWidth - 1; + excessPrecision = calcSemantics.precision - semantics->precision; + truncatedBits = excessPrecision; + + IEEEFloat decSig(calcSemantics, uninitialized); + decSig.makeZero(sign); + IEEEFloat pow5(calcSemantics); + + sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, + rmNearestTiesToEven); + powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, + rmNearestTiesToEven); + /* Add exp, as 10^n = 5^n * 2^n. */ + decSig.exponent += exp; + + lostFraction calcLostFraction; + integerPart HUerr, HUdistance; + unsigned int powHUerr; + + if (exp >= 0) { + /* multiplySignificand leaves the precision-th bit set to 1. */ + calcLostFraction = decSig.multiplySignificand(pow5, nullptr); + powHUerr = powStatus != opOK; + } else { + calcLostFraction = decSig.divideSignificand(pow5); + /* Denormal numbers have less precision. */ + if (decSig.exponent < semantics->minExponent) { + excessPrecision += (semantics->minExponent - decSig.exponent); + truncatedBits = excessPrecision; + if (excessPrecision > calcSemantics.precision) + excessPrecision = calcSemantics.precision; + } + /* Extra half-ulp lost in reciprocal of exponent. */ + powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; + } + + /* Both multiplySignificand and divideSignificand return the + result with the integer bit set. */ + assert(APInt::tcExtractBit + (decSig.significandParts(), calcSemantics.precision - 1) == 1); + + HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, + powHUerr); + HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), + excessPrecision, isNearest); + + /* Are we guaranteed to round correctly if we truncate? */ + if (HUdistance >= HUerr) { + APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), + calcSemantics.precision - excessPrecision, + excessPrecision); + /* Take the exponent of decSig. If we tcExtract-ed less bits + above we must adjust our exponent to compensate for the + implicit right shift. */ + exponent = (decSig.exponent + semantics->precision + - (calcSemantics.precision - excessPrecision)); + calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), + decSig.partCount(), + truncatedBits); + return normalize(rounding_mode, calcLostFraction); + } + } +} + +IEEEFloat::opStatus +IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) { + decimalInfo D; + opStatus fs; + + /* Scan the text. */ + StringRef::iterator p = str.begin(); + interpretDecimal(p, str.end(), &D); + + /* Handle the quick cases. First the case of no significant digits, + i.e. zero, and then exponents that are obviously too large or too + small. Writing L for log 10 / log 2, a number d.ddddd*10^exp + definitely overflows if + + (exp - 1) * L >= maxExponent + + and definitely underflows to zero where + + (exp + 1) * L <= minExponent - precision + + With integer arithmetic the tightest bounds for L are + + 93/28 < L < 196/59 [ numerator <= 256 ] + 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] + */ + + // Test if we have a zero number allowing for strings with no null terminators + // and zero decimals with non-zero exponents. + // + // We computed firstSigDigit by ignoring all zeros and dots. Thus if + // D->firstSigDigit equals str.end(), every digit must be a zero and there can + // be at most one dot. On the other hand, if we have a zero with a non-zero + // exponent, then we know that D.firstSigDigit will be non-numeric. + if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) { + category = fcZero; + fs = opOK; + + /* Check whether the normalized exponent is high enough to overflow + max during the log-rebasing in the max-exponent check below. */ + } else if (D.normalizedExponent - 1 > INT_MAX / 42039) { + fs = handleOverflow(rounding_mode); + + /* If it wasn't, then it also wasn't high enough to overflow max + during the log-rebasing in the min-exponent check. Check that it + won't overflow min in either check, then perform the min-exponent + check. */ + } else if (D.normalizedExponent - 1 < INT_MIN / 42039 || + (D.normalizedExponent + 1) * 28738 <= + 8651 * (semantics->minExponent - (int) semantics->precision)) { + /* Underflow to zero and round. */ + category = fcNormal; + zeroSignificand(); + fs = normalize(rounding_mode, lfLessThanHalf); + + /* We can finally safely perform the max-exponent check. */ + } else if ((D.normalizedExponent - 1) * 42039 + >= 12655 * semantics->maxExponent) { + /* Overflow and round. */ + fs = handleOverflow(rounding_mode); + } else { + integerPart *decSignificand; + unsigned int partCount; + + /* A tight upper bound on number of bits required to hold an + N-digit decimal integer is N * 196 / 59. Allocate enough space + to hold the full significand, and an extra part required by + tcMultiplyPart. */ + partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; + partCount = partCountForBits(1 + 196 * partCount / 59); + decSignificand = new integerPart[partCount + 1]; + partCount = 0; + + /* Convert to binary efficiently - we do almost all multiplication + in an integerPart. When this would overflow do we do a single + bignum multiplication, and then revert again to multiplication + in an integerPart. */ + do { + integerPart decValue, val, multiplier; + + val = 0; + multiplier = 1; + + do { + if (*p == '.') { + p++; + if (p == str.end()) { + break; + } + } + decValue = decDigitValue(*p++); + assert(decValue < 10U && "Invalid character in significand"); + multiplier *= 10; + val = val * 10 + decValue; + /* The maximum number that can be multiplied by ten with any + digit added without overflowing an integerPart. */ + } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); + + /* Multiply out the current part. */ + APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, + partCount, partCount + 1, false); + + /* If we used another part (likely but not guaranteed), increase + the count. */ + if (decSignificand[partCount]) + partCount++; + } while (p <= D.lastSigDigit); + + category = fcNormal; + fs = roundSignificandWithExponent(decSignificand, partCount, + D.exponent, rounding_mode); + + delete [] decSignificand; + } + + return fs; +} + +bool IEEEFloat::convertFromStringSpecials(StringRef str) { + if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) { + makeInf(false); + return true; + } + + if (str.equals("-inf") || str.equals("-INFINITY") || str.equals("-Inf")) { + makeInf(true); + return true; + } + + if (str.equals("nan") || str.equals("NaN")) { + makeNaN(false, false); + return true; + } + + if (str.equals("-nan") || str.equals("-NaN")) { + makeNaN(false, true); + return true; + } + + return false; +} + +IEEEFloat::opStatus IEEEFloat::convertFromString(StringRef str, + roundingMode rounding_mode) { + assert(!str.empty() && "Invalid string length"); + + // Handle special cases. + if (convertFromStringSpecials(str)) + return opOK; + + /* Handle a leading minus sign. */ + StringRef::iterator p = str.begin(); + size_t slen = str.size(); + sign = *p == '-' ? 1 : 0; + if (*p == '-' || *p == '+') { + p++; + slen--; + assert(slen && "String has no digits"); + } + + if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { + assert(slen - 2 && "Invalid string"); + return convertFromHexadecimalString(StringRef(p + 2, slen - 2), + rounding_mode); + } + + return convertFromDecimalString(StringRef(p, slen), rounding_mode); +} + +/* Write out a hexadecimal representation of the floating point value + to DST, which must be of sufficient size, in the C99 form + [-]0xh.hhhhp[+-]d. Return the number of characters written, + excluding the terminating NUL. + + If UPPERCASE, the output is in upper case, otherwise in lower case. + + HEXDIGITS digits appear altogether, rounding the value if + necessary. If HEXDIGITS is 0, the minimal precision to display the + number precisely is used instead. If nothing would appear after + the decimal point it is suppressed. + + The decimal exponent is always printed and has at least one digit. + Zero values display an exponent of zero. Infinities and NaNs + appear as "infinity" or "nan" respectively. + + The above rules are as specified by C99. There is ambiguity about + what the leading hexadecimal digit should be. This implementation + uses whatever is necessary so that the exponent is displayed as + stored. This implies the exponent will fall within the IEEE format + range, and the leading hexadecimal digit will be 0 (for denormals), + 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with + any other digits zero). +*/ +unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits, + bool upperCase, + roundingMode rounding_mode) const { + char *p; + + p = dst; + if (sign) + *dst++ = '-'; + + switch (category) { + case fcInfinity: + memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); + dst += sizeof infinityL - 1; + break; + + case fcNaN: + memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); + dst += sizeof NaNU - 1; + break; + + case fcZero: + *dst++ = '0'; + *dst++ = upperCase ? 'X': 'x'; + *dst++ = '0'; + if (hexDigits > 1) { + *dst++ = '.'; + memset (dst, '0', hexDigits - 1); + dst += hexDigits - 1; + } + *dst++ = upperCase ? 'P': 'p'; + *dst++ = '0'; + break; + + case fcNormal: + dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); + break; + } + + *dst = 0; + + return static_cast<unsigned int>(dst - p); +} + +/* Does the hard work of outputting the correctly rounded hexadecimal + form of a normal floating point number with the specified number of + hexadecimal digits. If HEXDIGITS is zero the minimum number of + digits necessary to print the value precisely is output. */ +char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, + bool upperCase, + roundingMode rounding_mode) const { + unsigned int count, valueBits, shift, partsCount, outputDigits; + const char *hexDigitChars; + const integerPart *significand; + char *p; + bool roundUp; + + *dst++ = '0'; + *dst++ = upperCase ? 'X': 'x'; + + roundUp = false; + hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; + + significand = significandParts(); + partsCount = partCount(); + + /* +3 because the first digit only uses the single integer bit, so + we have 3 virtual zero most-significant-bits. */ + valueBits = semantics->precision + 3; + shift = integerPartWidth - valueBits % integerPartWidth; + + /* The natural number of digits required ignoring trailing + insignificant zeroes. */ + outputDigits = (valueBits - significandLSB () + 3) / 4; + + /* hexDigits of zero means use the required number for the + precision. Otherwise, see if we are truncating. If we are, + find out if we need to round away from zero. */ + if (hexDigits) { + if (hexDigits < outputDigits) { + /* We are dropping non-zero bits, so need to check how to round. + "bits" is the number of dropped bits. */ + unsigned int bits; + lostFraction fraction; + + bits = valueBits - hexDigits * 4; + fraction = lostFractionThroughTruncation (significand, partsCount, bits); + roundUp = roundAwayFromZero(rounding_mode, fraction, bits); + } + outputDigits = hexDigits; + } + + /* Write the digits consecutively, and start writing in the location + of the hexadecimal point. We move the most significant digit + left and add the hexadecimal point later. */ + p = ++dst; + + count = (valueBits + integerPartWidth - 1) / integerPartWidth; + + while (outputDigits && count) { + integerPart part; + + /* Put the most significant integerPartWidth bits in "part". */ + if (--count == partsCount) + part = 0; /* An imaginary higher zero part. */ + else + part = significand[count] << shift; + + if (count && shift) + part |= significand[count - 1] >> (integerPartWidth - shift); + + /* Convert as much of "part" to hexdigits as we can. */ + unsigned int curDigits = integerPartWidth / 4; + + if (curDigits > outputDigits) + curDigits = outputDigits; + dst += partAsHex (dst, part, curDigits, hexDigitChars); + outputDigits -= curDigits; + } + + if (roundUp) { + char *q = dst; + + /* Note that hexDigitChars has a trailing '0'. */ + do { + q--; + *q = hexDigitChars[hexDigitValue (*q) + 1]; + } while (*q == '0'); + assert(q >= p); + } else { + /* Add trailing zeroes. */ + memset (dst, '0', outputDigits); + dst += outputDigits; + } + + /* Move the most significant digit to before the point, and if there + is something after the decimal point add it. This must come + after rounding above. */ + p[-1] = p[0]; + if (dst -1 == p) + dst--; + else + p[0] = '.'; + + /* Finally output the exponent. */ + *dst++ = upperCase ? 'P': 'p'; + + return writeSignedDecimal (dst, exponent); +} + +hash_code hash_value(const IEEEFloat &Arg) { + if (!Arg.isFiniteNonZero()) + return hash_combine((uint8_t)Arg.category, + // NaN has no sign, fix it at zero. + Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign, + Arg.semantics->precision); + + // Normal floats need their exponent and significand hashed. + return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign, + Arg.semantics->precision, Arg.exponent, + hash_combine_range( + Arg.significandParts(), + Arg.significandParts() + Arg.partCount())); +} + +// Conversion from APFloat to/from host float/double. It may eventually be +// possible to eliminate these and have everybody deal with APFloats, but that +// will take a while. This approach will not easily extend to long double. +// Current implementation requires integerPartWidth==64, which is correct at +// the moment but could be made more general. + +// Denormals have exponent minExponent in APFloat, but minExponent-1 in +// the actual IEEE respresentations. We compensate for that here. + +APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended); + assert(partCount()==2); + + uint64_t myexponent, mysignificand; + + if (isFiniteNonZero()) { + myexponent = exponent+16383; //bias + mysignificand = significandParts()[0]; + if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) + myexponent = 0; // denormal + } else if (category==fcZero) { + myexponent = 0; + mysignificand = 0; + } else if (category==fcInfinity) { + myexponent = 0x7fff; + mysignificand = 0x8000000000000000ULL; + } else { + assert(category == fcNaN && "Unknown category"); + myexponent = 0x7fff; + mysignificand = significandParts()[0]; + } + + uint64_t words[2]; + words[0] = mysignificand; + words[1] = ((uint64_t)(sign & 1) << 15) | + (myexponent & 0x7fffLL); + return APInt(80, words); +} + +APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy); + assert(partCount()==2); + + uint64_t words[2]; + opStatus fs; + bool losesInfo; + + // Convert number to double. To avoid spurious underflows, we re- + // normalize against the "double" minExponent first, and only *then* + // truncate the mantissa. The result of that second conversion + // may be inexact, but should never underflow. + // Declare fltSemantics before APFloat that uses it (and + // saves pointer to it) to ensure correct destruction order. + fltSemantics extendedSemantics = *semantics; + extendedSemantics.minExponent = semIEEEdouble.minExponent; + IEEEFloat extended(*this); + fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + (void)fs; + + IEEEFloat u(extended); + fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK || fs == opInexact); + (void)fs; + words[0] = *u.convertDoubleAPFloatToAPInt().getRawData(); + + // If conversion was exact or resulted in a special case, we're done; + // just set the second double to zero. Otherwise, re-convert back to + // the extended format and compute the difference. This now should + // convert exactly to double. + if (u.isFiniteNonZero() && losesInfo) { + fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + (void)fs; + + IEEEFloat v(extended); + v.subtract(u, rmNearestTiesToEven); + fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + (void)fs; + words[1] = *v.convertDoubleAPFloatToAPInt().getRawData(); + } else { + words[1] = 0; + } + + return APInt(128, words); +} + +APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEquad); + assert(partCount()==2); + + uint64_t myexponent, mysignificand, mysignificand2; + + if (isFiniteNonZero()) { + myexponent = exponent+16383; //bias + mysignificand = significandParts()[0]; + mysignificand2 = significandParts()[1]; + if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) + myexponent = 0; // denormal + } else if (category==fcZero) { + myexponent = 0; + mysignificand = mysignificand2 = 0; + } else if (category==fcInfinity) { + myexponent = 0x7fff; + mysignificand = mysignificand2 = 0; + } else { + assert(category == fcNaN && "Unknown category!"); + myexponent = 0x7fff; + mysignificand = significandParts()[0]; + mysignificand2 = significandParts()[1]; + } + + uint64_t words[2]; + words[0] = mysignificand; + words[1] = ((uint64_t)(sign & 1) << 63) | + ((myexponent & 0x7fff) << 48) | + (mysignificand2 & 0xffffffffffffLL); + + return APInt(128, words); +} + +APInt IEEEFloat::convertDoubleAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble); + assert(partCount()==1); + + uint64_t myexponent, mysignificand; + + if (isFiniteNonZero()) { + myexponent = exponent+1023; //bias + mysignificand = *significandParts(); + if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) + myexponent = 0; // denormal + } else if (category==fcZero) { + myexponent = 0; + mysignificand = 0; + } else if (category==fcInfinity) { + myexponent = 0x7ff; + mysignificand = 0; + } else { + assert(category == fcNaN && "Unknown category!"); + myexponent = 0x7ff; + mysignificand = *significandParts(); + } + + return APInt(64, ((((uint64_t)(sign & 1) << 63) | + ((myexponent & 0x7ff) << 52) | + (mysignificand & 0xfffffffffffffLL)))); +} + +APInt IEEEFloat::convertFloatAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle); + assert(partCount()==1); + + uint32_t myexponent, mysignificand; + + if (isFiniteNonZero()) { + myexponent = exponent+127; //bias + mysignificand = (uint32_t)*significandParts(); + if (myexponent == 1 && !(mysignificand & 0x800000)) + myexponent = 0; // denormal + } else if (category==fcZero) { + myexponent = 0; + mysignificand = 0; + } else if (category==fcInfinity) { + myexponent = 0xff; + mysignificand = 0; + } else { + assert(category == fcNaN && "Unknown category!"); + myexponent = 0xff; + mysignificand = (uint32_t)*significandParts(); + } + + return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | + (mysignificand & 0x7fffff))); +} + +APInt IEEEFloat::convertHalfAPFloatToAPInt() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf); + assert(partCount()==1); + + uint32_t myexponent, mysignificand; + + if (isFiniteNonZero()) { + myexponent = exponent+15; //bias + mysignificand = (uint32_t)*significandParts(); + if (myexponent == 1 && !(mysignificand & 0x400)) + myexponent = 0; // denormal + } else if (category==fcZero) { + myexponent = 0; + mysignificand = 0; + } else if (category==fcInfinity) { + myexponent = 0x1f; + mysignificand = 0; + } else { + assert(category == fcNaN && "Unknown category!"); + myexponent = 0x1f; + mysignificand = (uint32_t)*significandParts(); + } + + return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | + (mysignificand & 0x3ff))); +} + +// This function creates an APInt that is just a bit map of the floating +// point constant as it would appear in memory. It is not a conversion, +// and treating the result as a normal integer is unlikely to be useful. + +APInt IEEEFloat::bitcastToAPInt() const { + if (semantics == (const llvm::fltSemantics*)&semIEEEhalf) + return convertHalfAPFloatToAPInt(); + + if (semantics == (const llvm::fltSemantics*)&semIEEEsingle) + return convertFloatAPFloatToAPInt(); + + if (semantics == (const llvm::fltSemantics*)&semIEEEdouble) + return convertDoubleAPFloatToAPInt(); + + if (semantics == (const llvm::fltSemantics*)&semIEEEquad) + return convertQuadrupleAPFloatToAPInt(); + + if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy) + return convertPPCDoubleDoubleAPFloatToAPInt(); + + assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended && + "unknown format!"); + return convertF80LongDoubleAPFloatToAPInt(); +} + +float IEEEFloat::convertToFloat() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle && + "Float semantics are not IEEEsingle"); + APInt api = bitcastToAPInt(); + return api.bitsToFloat(); +} + +double IEEEFloat::convertToDouble() const { + assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble && + "Float semantics are not IEEEdouble"); + APInt api = bitcastToAPInt(); + return api.bitsToDouble(); +} + +/// Integer bit is explicit in this format. Intel hardware (387 and later) +/// does not support these bit patterns: +/// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") +/// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") +/// exponent!=0 nor all 1's, integer bit 0 ("unnormal") +/// exponent = 0, integer bit 1 ("pseudodenormal") +/// At the moment, the first three are treated as NaNs, the last one as Normal. +void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) { + assert(api.getBitWidth()==80); + uint64_t i1 = api.getRawData()[0]; + uint64_t i2 = api.getRawData()[1]; + uint64_t myexponent = (i2 & 0x7fff); + uint64_t mysignificand = i1; + uint8_t myintegerbit = mysignificand >> 63; + + initialize(&semX87DoubleExtended); + assert(partCount()==2); + + sign = static_cast<unsigned int>(i2>>15); + if (myexponent == 0 && mysignificand == 0) { + // exponent, significand meaningless + category = fcZero; + } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { + // exponent, significand meaningless + category = fcInfinity; + } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) || + (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) { + // exponent meaningless + category = fcNaN; + significandParts()[0] = mysignificand; + significandParts()[1] = 0; + } else { + category = fcNormal; + exponent = myexponent - 16383; + significandParts()[0] = mysignificand; + significandParts()[1] = 0; + if (myexponent==0) // denormal + exponent = -16382; + } +} + +void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) { + assert(api.getBitWidth()==128); + uint64_t i1 = api.getRawData()[0]; + uint64_t i2 = api.getRawData()[1]; + opStatus fs; + bool losesInfo; + + // Get the first double and convert to our format. + initFromDoubleAPInt(APInt(64, i1)); + fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + (void)fs; + + // Unless we have a special case, add in second double. + if (isFiniteNonZero()) { + IEEEFloat v(semIEEEdouble, APInt(64, i2)); + fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); + assert(fs == opOK && !losesInfo); + (void)fs; + + add(v, rmNearestTiesToEven); + } +} + +void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) { + assert(api.getBitWidth()==128); + uint64_t i1 = api.getRawData()[0]; + uint64_t i2 = api.getRawData()[1]; + uint64_t myexponent = (i2 >> 48) & 0x7fff; + uint64_t mysignificand = i1; + uint64_t mysignificand2 = i2 & 0xffffffffffffLL; + + initialize(&semIEEEquad); + assert(partCount()==2); + + sign = static_cast<unsigned int>(i2>>63); + if (myexponent==0 && + (mysignificand==0 && mysignificand2==0)) { + // exponent, significand meaningless + category = fcZero; + } else if (myexponent==0x7fff && + (mysignificand==0 && mysignificand2==0)) { + // exponent, significand meaningless + category = fcInfinity; + } else if (myexponent==0x7fff && + (mysignificand!=0 || mysignificand2 !=0)) { + // exponent meaningless + category = fcNaN; + significandParts()[0] = mysignificand; + significandParts()[1] = mysignificand2; + } else { + category = fcNormal; + exponent = myexponent - 16383; + significandParts()[0] = mysignificand; + significandParts()[1] = mysignificand2; + if (myexponent==0) // denormal + exponent = -16382; + else + significandParts()[1] |= 0x1000000000000LL; // integer bit + } +} + +void IEEEFloat::initFromDoubleAPInt(const APInt &api) { + assert(api.getBitWidth()==64); + uint64_t i = *api.getRawData(); + uint64_t myexponent = (i >> 52) & 0x7ff; + uint64_t mysignificand = i & 0xfffffffffffffLL; + + initialize(&semIEEEdouble); + assert(partCount()==1); + + sign = static_cast<unsigned int>(i>>63); + if (myexponent==0 && mysignificand==0) { + // exponent, significand meaningless + category = fcZero; + } else if (myexponent==0x7ff && mysignificand==0) { + // exponent, significand meaningless + category = fcInfinity; + } else if (myexponent==0x7ff && mysignificand!=0) { + // exponent meaningless + category = fcNaN; + *significandParts() = mysignificand; + } else { + category = fcNormal; + exponent = myexponent - 1023; + *significandParts() = mysignificand; + if (myexponent==0) // denormal + exponent = -1022; + else + *significandParts() |= 0x10000000000000LL; // integer bit + } +} + +void IEEEFloat::initFromFloatAPInt(const APInt &api) { + assert(api.getBitWidth()==32); + uint32_t i = (uint32_t)*api.getRawData(); + uint32_t myexponent = (i >> 23) & 0xff; + uint32_t mysignificand = i & 0x7fffff; + + initialize(&semIEEEsingle); + assert(partCount()==1); + + sign = i >> 31; + if (myexponent==0 && mysignificand==0) { + // exponent, significand meaningless + category = fcZero; + } else if (myexponent==0xff && mysignificand==0) { + // exponent, significand meaningless + category = fcInfinity; + } else if (myexponent==0xff && mysignificand!=0) { + // sign, exponent, significand meaningless + category = fcNaN; + *significandParts() = mysignificand; + } else { + category = fcNormal; + exponent = myexponent - 127; //bias + *significandParts() = mysignificand; + if (myexponent==0) // denormal + exponent = -126; + else + *significandParts() |= 0x800000; // integer bit + } +} + +void IEEEFloat::initFromHalfAPInt(const APInt &api) { + assert(api.getBitWidth()==16); + uint32_t i = (uint32_t)*api.getRawData(); + uint32_t myexponent = (i >> 10) & 0x1f; + uint32_t mysignificand = i & 0x3ff; + + initialize(&semIEEEhalf); + assert(partCount()==1); + + sign = i >> 15; + if (myexponent==0 && mysignificand==0) { + // exponent, significand meaningless + category = fcZero; + } else if (myexponent==0x1f && mysignificand==0) { + // exponent, significand meaningless + category = fcInfinity; + } else if (myexponent==0x1f && mysignificand!=0) { + // sign, exponent, significand meaningless + category = fcNaN; + *significandParts() = mysignificand; + } else { + category = fcNormal; + exponent = myexponent - 15; //bias + *significandParts() = mysignificand; + if (myexponent==0) // denormal + exponent = -14; + else + *significandParts() |= 0x400; // integer bit + } +} + +/// Treat api as containing the bits of a floating point number. Currently +/// we infer the floating point type from the size of the APInt. The +/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful +/// when the size is anything else). +void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) { + if (Sem == &semIEEEhalf) + return initFromHalfAPInt(api); + if (Sem == &semIEEEsingle) + return initFromFloatAPInt(api); + if (Sem == &semIEEEdouble) + return initFromDoubleAPInt(api); + if (Sem == &semX87DoubleExtended) + return initFromF80LongDoubleAPInt(api); + if (Sem == &semIEEEquad) + return initFromQuadrupleAPInt(api); + if (Sem == &semPPCDoubleDoubleLegacy) + return initFromPPCDoubleDoubleAPInt(api); + + llvm_unreachable(nullptr); +} + +/// Make this number the largest magnitude normal number in the given +/// semantics. +void IEEEFloat::makeLargest(bool Negative) { + // We want (in interchange format): + // sign = {Negative} + // exponent = 1..10 + // significand = 1..1 + category = fcNormal; + sign = Negative; + exponent = semantics->maxExponent; + + // Use memset to set all but the highest integerPart to all ones. + integerPart *significand = significandParts(); + unsigned PartCount = partCount(); + memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); + + // Set the high integerPart especially setting all unused top bits for + // internal consistency. + const unsigned NumUnusedHighBits = + PartCount*integerPartWidth - semantics->precision; + significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth) + ? (~integerPart(0) >> NumUnusedHighBits) + : 0; +} + +/// Make this number the smallest magnitude denormal number in the given +/// semantics. +void IEEEFloat::makeSmallest(bool Negative) { + // We want (in interchange format): + // sign = {Negative} + // exponent = 0..0 + // significand = 0..01 + category = fcNormal; + sign = Negative; + exponent = semantics->minExponent; + APInt::tcSet(significandParts(), 1, partCount()); +} + +void IEEEFloat::makeSmallestNormalized(bool Negative) { + // We want (in interchange format): + // sign = {Negative} + // exponent = 0..0 + // significand = 10..0 + + category = fcNormal; + zeroSignificand(); + sign = Negative; + exponent = semantics->minExponent; + significandParts()[partCountForBits(semantics->precision) - 1] |= + (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth)); +} + +IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) { + initFromAPInt(&Sem, API); +} + +IEEEFloat::IEEEFloat(float f) { + initFromAPInt(&semIEEEsingle, APInt::floatToBits(f)); +} + +IEEEFloat::IEEEFloat(double d) { + initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d)); +} + +namespace { + void append(SmallVectorImpl<char> &Buffer, StringRef Str) { + Buffer.append(Str.begin(), Str.end()); + } + + /// Removes data from the given significand until it is no more + /// precise than is required for the desired precision. + void AdjustToPrecision(APInt &significand, + int &exp, unsigned FormatPrecision) { + unsigned bits = significand.getActiveBits(); + + // 196/59 is a very slight overestimate of lg_2(10). + unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; + + if (bits <= bitsRequired) return; + + unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; + if (!tensRemovable) return; + + exp += tensRemovable; + + APInt divisor(significand.getBitWidth(), 1); + APInt powten(significand.getBitWidth(), 10); + while (true) { + if (tensRemovable & 1) + divisor *= powten; + tensRemovable >>= 1; + if (!tensRemovable) break; + powten *= powten; + } + + significand = significand.udiv(divisor); + + // Truncate the significand down to its active bit count. + significand = significand.trunc(significand.getActiveBits()); + } + + + void AdjustToPrecision(SmallVectorImpl<char> &buffer, + int &exp, unsigned FormatPrecision) { + unsigned N = buffer.size(); + if (N <= FormatPrecision) return; + + // The most significant figures are the last ones in the buffer. + unsigned FirstSignificant = N - FormatPrecision; + + // Round. + // FIXME: this probably shouldn't use 'round half up'. + + // Rounding down is just a truncation, except we also want to drop + // trailing zeros from the new result. + if (buffer[FirstSignificant - 1] < '5') { + while (FirstSignificant < N && buffer[FirstSignificant] == '0') + FirstSignificant++; + + exp += FirstSignificant; + buffer.erase(&buffer[0], &buffer[FirstSignificant]); + return; + } + + // Rounding up requires a decimal add-with-carry. If we continue + // the carry, the newly-introduced zeros will just be truncated. + for (unsigned I = FirstSignificant; I != N; ++I) { + if (buffer[I] == '9') { + FirstSignificant++; + } else { + buffer[I]++; + break; + } + } + + // If we carried through, we have exactly one digit of precision. + if (FirstSignificant == N) { + exp += FirstSignificant; + buffer.clear(); + buffer.push_back('1'); + return; + } + + exp += FirstSignificant; + buffer.erase(&buffer[0], &buffer[FirstSignificant]); + } +} + +void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, + unsigned FormatMaxPadding, bool TruncateZero) const { + switch (category) { + case fcInfinity: + if (isNegative()) + return append(Str, "-Inf"); + else + return append(Str, "+Inf"); + + case fcNaN: return append(Str, "NaN"); + + case fcZero: + if (isNegative()) + Str.push_back('-'); + + if (!FormatMaxPadding) { + if (TruncateZero) + append(Str, "0.0E+0"); + else { + append(Str, "0.0"); + if (FormatPrecision > 1) + Str.append(FormatPrecision - 1, '0'); + append(Str, "e+00"); + } + } else + Str.push_back('0'); + return; + + case fcNormal: + break; + } + + if (isNegative()) + Str.push_back('-'); + + // Decompose the number into an APInt and an exponent. + int exp = exponent - ((int) semantics->precision - 1); + APInt significand(semantics->precision, + makeArrayRef(significandParts(), + partCountForBits(semantics->precision))); + + // Set FormatPrecision if zero. We want to do this before we + // truncate trailing zeros, as those are part of the precision. + if (!FormatPrecision) { + // We use enough digits so the number can be round-tripped back to an + // APFloat. The formula comes from "How to Print Floating-Point Numbers + // Accurately" by Steele and White. + // FIXME: Using a formula based purely on the precision is conservative; + // we can print fewer digits depending on the actual value being printed. + + // FormatPrecision = 2 + floor(significandBits / lg_2(10)) + FormatPrecision = 2 + semantics->precision * 59 / 196; + } + + // Ignore trailing binary zeros. + int trailingZeros = significand.countTrailingZeros(); + exp += trailingZeros; + significand.lshrInPlace(trailingZeros); + + // Change the exponent from 2^e to 10^e. + if (exp == 0) { + // Nothing to do. + } else if (exp > 0) { + // Just shift left. + significand = significand.zext(semantics->precision + exp); + significand <<= exp; + exp = 0; + } else { /* exp < 0 */ + int texp = -exp; + + // We transform this using the identity: + // (N)(2^-e) == (N)(5^e)(10^-e) + // This means we have to multiply N (the significand) by 5^e. + // To avoid overflow, we have to operate on numbers large + // enough to store N * 5^e: + // log2(N * 5^e) == log2(N) + e * log2(5) + // <= semantics->precision + e * 137 / 59 + // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) + + unsigned precision = semantics->precision + (137 * texp + 136) / 59; + + // Multiply significand by 5^e. + // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) + significand = significand.zext(precision); + APInt five_to_the_i(precision, 5); + while (true) { + if (texp & 1) significand *= five_to_the_i; + + texp >>= 1; + if (!texp) break; + five_to_the_i *= five_to_the_i; + } + } + + AdjustToPrecision(significand, exp, FormatPrecision); + + SmallVector<char, 256> buffer; + + // Fill the buffer. + unsigned precision = significand.getBitWidth(); + APInt ten(precision, 10); + APInt digit(precision, 0); + + bool inTrail = true; + while (significand != 0) { + // digit <- significand % 10 + // significand <- significand / 10 + APInt::udivrem(significand, ten, significand, digit); + + unsigned d = digit.getZExtValue(); + + // Drop trailing zeros. + if (inTrail && !d) exp++; + else { + buffer.push_back((char) ('0' + d)); + inTrail = false; + } + } + + assert(!buffer.empty() && "no characters in buffer!"); + + // Drop down to FormatPrecision. + // TODO: don't do more precise calculations above than are required. + AdjustToPrecision(buffer, exp, FormatPrecision); + + unsigned NDigits = buffer.size(); + + // Check whether we should use scientific notation. + bool FormatScientific; + if (!FormatMaxPadding) + FormatScientific = true; + else { + if (exp >= 0) { + // 765e3 --> 765000 + // ^^^ + // But we shouldn't make the number look more precise than it is. + FormatScientific = ((unsigned) exp > FormatMaxPadding || + NDigits + (unsigned) exp > FormatPrecision); + } else { + // Power of the most significant digit. + int MSD = exp + (int) (NDigits - 1); + if (MSD >= 0) { + // 765e-2 == 7.65 + FormatScientific = false; + } else { + // 765e-5 == 0.00765 + // ^ ^^ + FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; + } + } + } + + // Scientific formatting is pretty straightforward. + if (FormatScientific) { + exp += (NDigits - 1); + + Str.push_back(buffer[NDigits-1]); + Str.push_back('.'); + if (NDigits == 1 && TruncateZero) + Str.push_back('0'); + else + for (unsigned I = 1; I != NDigits; ++I) + Str.push_back(buffer[NDigits-1-I]); + // Fill with zeros up to FormatPrecision. + if (!TruncateZero && FormatPrecision > NDigits - 1) + Str.append(FormatPrecision - NDigits + 1, '0'); + // For !TruncateZero we use lower 'e'. + Str.push_back(TruncateZero ? 'E' : 'e'); + + Str.push_back(exp >= 0 ? '+' : '-'); + if (exp < 0) exp = -exp; + SmallVector<char, 6> expbuf; + do { + expbuf.push_back((char) ('0' + (exp % 10))); + exp /= 10; + } while (exp); + // Exponent always at least two digits if we do not truncate zeros. + if (!TruncateZero && expbuf.size() < 2) + expbuf.push_back('0'); + for (unsigned I = 0, E = expbuf.size(); I != E; ++I) + Str.push_back(expbuf[E-1-I]); + return; + } + + // Non-scientific, positive exponents. + if (exp >= 0) { + for (unsigned I = 0; I != NDigits; ++I) + Str.push_back(buffer[NDigits-1-I]); + for (unsigned I = 0; I != (unsigned) exp; ++I) + Str.push_back('0'); + return; + } + + // Non-scientific, negative exponents. + + // The number of digits to the left of the decimal point. + int NWholeDigits = exp + (int) NDigits; + + unsigned I = 0; + if (NWholeDigits > 0) { + for (; I != (unsigned) NWholeDigits; ++I) + Str.push_back(buffer[NDigits-I-1]); + Str.push_back('.'); + } else { + unsigned NZeros = 1 + (unsigned) -NWholeDigits; + + Str.push_back('0'); + Str.push_back('.'); + for (unsigned Z = 1; Z != NZeros; ++Z) + Str.push_back('0'); + } + + for (; I != NDigits; ++I) + Str.push_back(buffer[NDigits-I-1]); +} + +bool IEEEFloat::getExactInverse(APFloat *inv) const { + // Special floats and denormals have no exact inverse. + if (!isFiniteNonZero()) + return false; + + // Check that the number is a power of two by making sure that only the + // integer bit is set in the significand. + if (significandLSB() != semantics->precision - 1) + return false; + + // Get the inverse. + IEEEFloat reciprocal(*semantics, 1ULL); + if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) + return false; + + // Avoid multiplication with a denormal, it is not safe on all platforms and + // may be slower than a normal division. + if (reciprocal.isDenormal()) + return false; + + assert(reciprocal.isFiniteNonZero() && + reciprocal.significandLSB() == reciprocal.semantics->precision - 1); + + if (inv) + *inv = APFloat(reciprocal, *semantics); + + return true; +} + +bool IEEEFloat::isSignaling() const { + if (!isNaN()) + return false; + + // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the + // first bit of the trailing significand being 0. + return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); +} + +/// IEEE-754R 2008 5.3.1: nextUp/nextDown. +/// +/// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with +/// appropriate sign switching before/after the computation. +IEEEFloat::opStatus IEEEFloat::next(bool nextDown) { + // If we are performing nextDown, swap sign so we have -x. + if (nextDown) + changeSign(); + + // Compute nextUp(x) + opStatus result = opOK; + + // Handle each float category separately. + switch (category) { + case fcInfinity: + // nextUp(+inf) = +inf + if (!isNegative()) + break; + // nextUp(-inf) = -getLargest() + makeLargest(true); + break; + case fcNaN: + // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. + // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not + // change the payload. + if (isSignaling()) { + result = opInvalidOp; + // For consistency, propagate the sign of the sNaN to the qNaN. + makeNaN(false, isNegative(), nullptr); + } + break; + case fcZero: + // nextUp(pm 0) = +getSmallest() + makeSmallest(false); + break; + case fcNormal: + // nextUp(-getSmallest()) = -0 + if (isSmallest() && isNegative()) { + APInt::tcSet(significandParts(), 0, partCount()); + category = fcZero; + exponent = 0; + break; + } + + // nextUp(getLargest()) == INFINITY + if (isLargest() && !isNegative()) { + APInt::tcSet(significandParts(), 0, partCount()); + category = fcInfinity; + exponent = semantics->maxExponent + 1; + break; + } + + // nextUp(normal) == normal + inc. + if (isNegative()) { + // If we are negative, we need to decrement the significand. + + // We only cross a binade boundary that requires adjusting the exponent + // if: + // 1. exponent != semantics->minExponent. This implies we are not in the + // smallest binade or are dealing with denormals. + // 2. Our significand excluding the integral bit is all zeros. + bool WillCrossBinadeBoundary = + exponent != semantics->minExponent && isSignificandAllZeros(); + + // Decrement the significand. + // + // We always do this since: + // 1. If we are dealing with a non-binade decrement, by definition we + // just decrement the significand. + // 2. If we are dealing with a normal -> normal binade decrement, since + // we have an explicit integral bit the fact that all bits but the + // integral bit are zero implies that subtracting one will yield a + // significand with 0 integral bit and 1 in all other spots. Thus we + // must just adjust the exponent and set the integral bit to 1. + // 3. If we are dealing with a normal -> denormal binade decrement, + // since we set the integral bit to 0 when we represent denormals, we + // just decrement the significand. + integerPart *Parts = significandParts(); + APInt::tcDecrement(Parts, partCount()); + + if (WillCrossBinadeBoundary) { + // Our result is a normal number. Do the following: + // 1. Set the integral bit to 1. + // 2. Decrement the exponent. + APInt::tcSetBit(Parts, semantics->precision - 1); + exponent--; + } + } else { + // If we are positive, we need to increment the significand. + + // We only cross a binade boundary that requires adjusting the exponent if + // the input is not a denormal and all of said input's significand bits + // are set. If all of said conditions are true: clear the significand, set + // the integral bit to 1, and increment the exponent. If we have a + // denormal always increment since moving denormals and the numbers in the + // smallest normal binade have the same exponent in our representation. + bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); + + if (WillCrossBinadeBoundary) { + integerPart *Parts = significandParts(); + APInt::tcSet(Parts, 0, partCount()); + APInt::tcSetBit(Parts, semantics->precision - 1); + assert(exponent != semantics->maxExponent && + "We can not increment an exponent beyond the maxExponent allowed" + " by the given floating point semantics."); + exponent++; + } else { + incrementSignificand(); + } + } + break; + } + + // If we are performing nextDown, swap sign so we have -nextUp(-x) + if (nextDown) + changeSign(); + + return result; +} + +void IEEEFloat::makeInf(bool Negative) { + category = fcInfinity; + sign = Negative; + exponent = semantics->maxExponent + 1; + APInt::tcSet(significandParts(), 0, partCount()); +} + +void IEEEFloat::makeZero(bool Negative) { + category = fcZero; + sign = Negative; + exponent = semantics->minExponent-1; + APInt::tcSet(significandParts(), 0, partCount()); +} + +void IEEEFloat::makeQuiet() { + assert(isNaN()); + APInt::tcSetBit(significandParts(), semantics->precision - 2); +} + +int ilogb(const IEEEFloat &Arg) { + if (Arg.isNaN()) + return IEEEFloat::IEK_NaN; + if (Arg.isZero()) + return IEEEFloat::IEK_Zero; + if (Arg.isInfinity()) + return IEEEFloat::IEK_Inf; + if (!Arg.isDenormal()) + return Arg.exponent; + + IEEEFloat Normalized(Arg); + int SignificandBits = Arg.getSemantics().precision - 1; + + Normalized.exponent += SignificandBits; + Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero); + return Normalized.exponent - SignificandBits; +} + +IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) { + auto MaxExp = X.getSemantics().maxExponent; + auto MinExp = X.getSemantics().minExponent; + + // If Exp is wildly out-of-scale, simply adding it to X.exponent will + // overflow; clamp it to a safe range before adding, but ensure that the range + // is large enough that the clamp does not change the result. The range we + // need to support is the difference between the largest possible exponent and + // the normalized exponent of half the smallest denormal. + + int SignificandBits = X.getSemantics().precision - 1; + int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1; + + // Clamp to one past the range ends to let normalize handle overlflow. + X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement); + X.normalize(RoundingMode, lfExactlyZero); + if (X.isNaN()) + X.makeQuiet(); + return X; +} + +IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) { + Exp = ilogb(Val); + + // Quiet signalling nans. + if (Exp == IEEEFloat::IEK_NaN) { + IEEEFloat Quiet(Val); + Quiet.makeQuiet(); + return Quiet; + } + + if (Exp == IEEEFloat::IEK_Inf) + return Val; + + // 1 is added because frexp is defined to return a normalized fraction in + // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0). + Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1; + return scalbn(Val, -Exp, RM); +} + +DoubleAPFloat::DoubleAPFloat(const fltSemantics &S) + : Semantics(&S), + Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) { + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag) + : Semantics(&S), + Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized), + APFloat(semIEEEdouble, uninitialized)}) { + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I) + : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I), + APFloat(semIEEEdouble)}) { + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I) + : Semantics(&S), + Floats(new APFloat[2]{ + APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])), + APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) { + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First, + APFloat &&Second) + : Semantics(&S), + Floats(new APFloat[2]{std::move(First), std::move(Second)}) { + assert(Semantics == &semPPCDoubleDouble); + assert(&Floats[0].getSemantics() == &semIEEEdouble); + assert(&Floats[1].getSemantics() == &semIEEEdouble); +} + +DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS) + : Semantics(RHS.Semantics), + Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]), + APFloat(RHS.Floats[1])} + : nullptr) { + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS) + : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) { + RHS.Semantics = &semBogus; + assert(Semantics == &semPPCDoubleDouble); +} + +DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) { + if (Semantics == RHS.Semantics && RHS.Floats) { + Floats[0] = RHS.Floats[0]; + Floats[1] = RHS.Floats[1]; + } else if (this != &RHS) { + this->~DoubleAPFloat(); + new (this) DoubleAPFloat(RHS); + } + return *this; +} + +// Implement addition, subtraction, multiplication and division based on: +// "Software for Doubled-Precision Floating-Point Computations", +// by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283. +APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa, + const APFloat &c, const APFloat &cc, + roundingMode RM) { + int Status = opOK; + APFloat z = a; + Status |= z.add(c, RM); + if (!z.isFinite()) { + if (!z.isInfinity()) { + Floats[0] = std::move(z); + Floats[1].makeZero(/* Neg = */ false); + return (opStatus)Status; + } + Status = opOK; + auto AComparedToC = a.compareAbsoluteValue(c); + z = cc; + Status |= z.add(aa, RM); + if (AComparedToC == APFloat::cmpGreaterThan) { + // z = cc + aa + c + a; + Status |= z.add(c, RM); + Status |= z.add(a, RM); + } else { + // z = cc + aa + a + c; + Status |= z.add(a, RM); + Status |= z.add(c, RM); + } + if (!z.isFinite()) { + Floats[0] = std::move(z); + Floats[1].makeZero(/* Neg = */ false); + return (opStatus)Status; + } + Floats[0] = z; + APFloat zz = aa; + Status |= zz.add(cc, RM); + if (AComparedToC == APFloat::cmpGreaterThan) { + // Floats[1] = a - z + c + zz; + Floats[1] = a; + Status |= Floats[1].subtract(z, RM); + Status |= Floats[1].add(c, RM); + Status |= Floats[1].add(zz, RM); + } else { + // Floats[1] = c - z + a + zz; + Floats[1] = c; + Status |= Floats[1].subtract(z, RM); + Status |= Floats[1].add(a, RM); + Status |= Floats[1].add(zz, RM); + } + } else { + // q = a - z; + APFloat q = a; + Status |= q.subtract(z, RM); + + // zz = q + c + (a - (q + z)) + aa + cc; + // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies. + auto zz = q; + Status |= zz.add(c, RM); + Status |= q.add(z, RM); + Status |= q.subtract(a, RM); + q.changeSign(); + Status |= zz.add(q, RM); + Status |= zz.add(aa, RM); + Status |= zz.add(cc, RM); + if (zz.isZero() && !zz.isNegative()) { + Floats[0] = std::move(z); + Floats[1].makeZero(/* Neg = */ false); + return opOK; + } + Floats[0] = z; + Status |= Floats[0].add(zz, RM); + if (!Floats[0].isFinite()) { + Floats[1].makeZero(/* Neg = */ false); + return (opStatus)Status; + } + Floats[1] = std::move(z); + Status |= Floats[1].subtract(Floats[0], RM); + Status |= Floats[1].add(zz, RM); + } + return (opStatus)Status; +} + +APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS, + const DoubleAPFloat &RHS, + DoubleAPFloat &Out, + roundingMode RM) { + if (LHS.getCategory() == fcNaN) { + Out = LHS; + return opOK; + } + if (RHS.getCategory() == fcNaN) { + Out = RHS; + return opOK; + } + if (LHS.getCategory() == fcZero) { + Out = RHS; + return opOK; + } + if (RHS.getCategory() == fcZero) { + Out = LHS; + return opOK; + } + if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity && + LHS.isNegative() != RHS.isNegative()) { + Out.makeNaN(false, Out.isNegative(), nullptr); + return opInvalidOp; + } + if (LHS.getCategory() == fcInfinity) { + Out = LHS; + return opOK; + } + if (RHS.getCategory() == fcInfinity) { + Out = RHS; + return opOK; + } + assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal); + + APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]), + CC(RHS.Floats[1]); + assert(&A.getSemantics() == &semIEEEdouble); + assert(&AA.getSemantics() == &semIEEEdouble); + assert(&C.getSemantics() == &semIEEEdouble); + assert(&CC.getSemantics() == &semIEEEdouble); + assert(&Out.Floats[0].getSemantics() == &semIEEEdouble); + assert(&Out.Floats[1].getSemantics() == &semIEEEdouble); + return Out.addImpl(A, AA, C, CC, RM); +} + +APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS, + roundingMode RM) { + return addWithSpecial(*this, RHS, *this, RM); +} + +APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS, + roundingMode RM) { + changeSign(); + auto Ret = add(RHS, RM); + changeSign(); + return Ret; +} + +APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS, + APFloat::roundingMode RM) { + const auto &LHS = *this; + auto &Out = *this; + /* Interesting observation: For special categories, finding the lowest + common ancestor of the following layered graph gives the correct + return category: + + NaN + / \ + Zero Inf + \ / + Normal + + e.g. NaN * NaN = NaN + Zero * Inf = NaN + Normal * Zero = Zero + Normal * Inf = Inf + */ + if (LHS.getCategory() == fcNaN) { + Out = LHS; + return opOK; + } + if (RHS.getCategory() == fcNaN) { + Out = RHS; + return opOK; + } + if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) || + (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) { + Out.makeNaN(false, false, nullptr); + return opOK; + } + if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) { + Out = LHS; + return opOK; + } + if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) { + Out = RHS; + return opOK; + } + assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && + "Special cases not handled exhaustively"); + + int Status = opOK; + APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1]; + // t = a * c + APFloat T = A; + Status |= T.multiply(C, RM); + if (!T.isFiniteNonZero()) { + Floats[0] = T; + Floats[1].makeZero(/* Neg = */ false); + return (opStatus)Status; + } + + // tau = fmsub(a, c, t), that is -fmadd(-a, c, t). + APFloat Tau = A; + T.changeSign(); + Status |= Tau.fusedMultiplyAdd(C, T, RM); + T.changeSign(); + { + // v = a * d + APFloat V = A; + Status |= V.multiply(D, RM); + // w = b * c + APFloat W = B; + Status |= W.multiply(C, RM); + Status |= V.add(W, RM); + // tau += v + w + Status |= Tau.add(V, RM); + } + // u = t + tau + APFloat U = T; + Status |= U.add(Tau, RM); + + Floats[0] = U; + if (!U.isFinite()) { + Floats[1].makeZero(/* Neg = */ false); + } else { + // Floats[1] = (t - u) + tau + Status |= T.subtract(U, RM); + Status |= T.add(Tau, RM); + Floats[1] = T; + } + return (opStatus)Status; +} + +APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS, + APFloat::roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = + Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = + Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus +DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, + const DoubleAPFloat &Addend, + APFloat::roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = Tmp.fusedMultiplyAdd( + APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()), + APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = Tmp.roundToIntegral(RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +void DoubleAPFloat::changeSign() { + Floats[0].changeSign(); + Floats[1].changeSign(); +} + +APFloat::cmpResult +DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const { + auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]); + if (Result != cmpEqual) + return Result; + Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]); + if (Result == cmpLessThan || Result == cmpGreaterThan) { + auto Against = Floats[0].isNegative() ^ Floats[1].isNegative(); + auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative(); + if (Against && !RHSAgainst) + return cmpLessThan; + if (!Against && RHSAgainst) + return cmpGreaterThan; + if (!Against && !RHSAgainst) + return Result; + if (Against && RHSAgainst) + return (cmpResult)(cmpLessThan + cmpGreaterThan - Result); + } + return Result; +} + +APFloat::fltCategory DoubleAPFloat::getCategory() const { + return Floats[0].getCategory(); +} + +bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); } + +void DoubleAPFloat::makeInf(bool Neg) { + Floats[0].makeInf(Neg); + Floats[1].makeZero(/* Neg = */ false); +} + +void DoubleAPFloat::makeZero(bool Neg) { + Floats[0].makeZero(Neg); + Floats[1].makeZero(/* Neg = */ false); +} + +void DoubleAPFloat::makeLargest(bool Neg) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull)); + Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull)); + if (Neg) + changeSign(); +} + +void DoubleAPFloat::makeSmallest(bool Neg) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + Floats[0].makeSmallest(Neg); + Floats[1].makeZero(/* Neg = */ false); +} + +void DoubleAPFloat::makeSmallestNormalized(bool Neg) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull)); + if (Neg) + Floats[0].changeSign(); + Floats[1].makeZero(/* Neg = */ false); +} + +void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) { + Floats[0].makeNaN(SNaN, Neg, fill); + Floats[1].makeZero(/* Neg = */ false); +} + +APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const { + auto Result = Floats[0].compare(RHS.Floats[0]); + // |Float[0]| > |Float[1]| + if (Result == APFloat::cmpEqual) + return Floats[1].compare(RHS.Floats[1]); + return Result; +} + +bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const { + return Floats[0].bitwiseIsEqual(RHS.Floats[0]) && + Floats[1].bitwiseIsEqual(RHS.Floats[1]); +} + +hash_code hash_value(const DoubleAPFloat &Arg) { + if (Arg.Floats) + return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1])); + return hash_combine(Arg.Semantics); +} + +APInt DoubleAPFloat::bitcastToAPInt() const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + uint64_t Data[] = { + Floats[0].bitcastToAPInt().getRawData()[0], + Floats[1].bitcastToAPInt().getRawData()[0], + }; + return APInt(128, 2, Data); +} + +APFloat::opStatus DoubleAPFloat::convertFromString(StringRef S, + roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy); + auto Ret = Tmp.convertFromString(S, RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus DoubleAPFloat::next(bool nextDown) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + auto Ret = Tmp.next(nextDown); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus +DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input, + unsigned int Width, bool IsSigned, + roundingMode RM, bool *IsExact) const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) + .convertToInteger(Input, Width, IsSigned, RM, IsExact); +} + +APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input, + bool IsSigned, + roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy); + auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus +DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input, + unsigned int InputSize, + bool IsSigned, roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy); + auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +APFloat::opStatus +DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input, + unsigned int InputSize, + bool IsSigned, roundingMode RM) { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy); + auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM); + *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); + return Ret; +} + +unsigned int DoubleAPFloat::convertToHexString(char *DST, + unsigned int HexDigits, + bool UpperCase, + roundingMode RM) const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) + .convertToHexString(DST, HexDigits, UpperCase, RM); +} + +bool DoubleAPFloat::isDenormal() const { + return getCategory() == fcNormal && + (Floats[0].isDenormal() || Floats[1].isDenormal() || + // (double)(Hi + Lo) == Hi defines a normal number. + Floats[0].compare(Floats[0] + Floats[1]) != cmpEqual); +} + +bool DoubleAPFloat::isSmallest() const { + if (getCategory() != fcNormal) + return false; + DoubleAPFloat Tmp(*this); + Tmp.makeSmallest(this->isNegative()); + return Tmp.compare(*this) == cmpEqual; +} + +bool DoubleAPFloat::isLargest() const { + if (getCategory() != fcNormal) + return false; + DoubleAPFloat Tmp(*this); + Tmp.makeLargest(this->isNegative()); + return Tmp.compare(*this) == cmpEqual; +} + +bool DoubleAPFloat::isInteger() const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + return Floats[0].isInteger() && Floats[1].isInteger(); +} + +void DoubleAPFloat::toString(SmallVectorImpl<char> &Str, + unsigned FormatPrecision, + unsigned FormatMaxPadding, + bool TruncateZero) const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) + .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero); +} + +bool DoubleAPFloat::getExactInverse(APFloat *inv) const { + assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); + if (!inv) + return Tmp.getExactInverse(nullptr); + APFloat Inv(semPPCDoubleDoubleLegacy); + auto Ret = Tmp.getExactInverse(&Inv); + *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt()); + return Ret; +} + +DoubleAPFloat scalbn(DoubleAPFloat Arg, int Exp, APFloat::roundingMode RM) { + assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM), + scalbn(Arg.Floats[1], Exp, RM)); +} + +DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp, + APFloat::roundingMode RM) { + assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics"); + APFloat First = frexp(Arg.Floats[0], Exp, RM); + APFloat Second = Arg.Floats[1]; + if (Arg.getCategory() == APFloat::fcNormal) + Second = scalbn(Second, -Exp, RM); + return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second)); +} + +} // End detail namespace + +APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) { + if (usesLayout<IEEEFloat>(Semantics)) { + new (&IEEE) IEEEFloat(std::move(F)); + return; + } + if (usesLayout<DoubleAPFloat>(Semantics)) { + const fltSemantics& S = F.getSemantics(); + new (&Double) + DoubleAPFloat(Semantics, APFloat(std::move(F), S), + APFloat(semIEEEdouble)); + return; + } + llvm_unreachable("Unexpected semantics"); +} + +APFloat::opStatus APFloat::convertFromString(StringRef Str, roundingMode RM) { + APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM)); +} + +hash_code hash_value(const APFloat &Arg) { + if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics())) + return hash_value(Arg.U.IEEE); + if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics())) + return hash_value(Arg.U.Double); + llvm_unreachable("Unexpected semantics"); +} + +APFloat::APFloat(const fltSemantics &Semantics, StringRef S) + : APFloat(Semantics) { + convertFromString(S, rmNearestTiesToEven); +} + +APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics, + roundingMode RM, bool *losesInfo) { + if (&getSemantics() == &ToSemantics) { + *losesInfo = false; + return opOK; + } + if (usesLayout<IEEEFloat>(getSemantics()) && + usesLayout<IEEEFloat>(ToSemantics)) + return U.IEEE.convert(ToSemantics, RM, losesInfo); + if (usesLayout<IEEEFloat>(getSemantics()) && + usesLayout<DoubleAPFloat>(ToSemantics)) { + assert(&ToSemantics == &semPPCDoubleDouble); + auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo); + *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt()); + return Ret; + } + if (usesLayout<DoubleAPFloat>(getSemantics()) && + usesLayout<IEEEFloat>(ToSemantics)) { + auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo); + *this = APFloat(std::move(getIEEE()), ToSemantics); + return Ret; + } + llvm_unreachable("Unexpected semantics"); +} + +APFloat APFloat::getAllOnesValue(unsigned BitWidth, bool isIEEE) { + if (isIEEE) { + switch (BitWidth) { + case 16: + return APFloat(semIEEEhalf, APInt::getAllOnesValue(BitWidth)); + case 32: + return APFloat(semIEEEsingle, APInt::getAllOnesValue(BitWidth)); + case 64: + return APFloat(semIEEEdouble, APInt::getAllOnesValue(BitWidth)); + case 80: + return APFloat(semX87DoubleExtended, APInt::getAllOnesValue(BitWidth)); + case 128: + return APFloat(semIEEEquad, APInt::getAllOnesValue(BitWidth)); + default: + llvm_unreachable("Unknown floating bit width"); + } + } else { + assert(BitWidth == 128); + return APFloat(semPPCDoubleDouble, APInt::getAllOnesValue(BitWidth)); + } +} + +void APFloat::print(raw_ostream &OS) const { + SmallVector<char, 16> Buffer; + toString(Buffer); + OS << Buffer << "\n"; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); } +#endif + +void APFloat::Profile(FoldingSetNodeID &NID) const { + NID.Add(bitcastToAPInt()); +} + +/* Same as convertToInteger(integerPart*, ...), except the result is returned in + an APSInt, whose initial bit-width and signed-ness are used to determine the + precision of the conversion. + */ +APFloat::opStatus APFloat::convertToInteger(APSInt &result, + roundingMode rounding_mode, + bool *isExact) const { + unsigned bitWidth = result.getBitWidth(); + SmallVector<uint64_t, 4> parts(result.getNumWords()); + opStatus status = convertToInteger(parts, bitWidth, result.isSigned(), + rounding_mode, isExact); + // Keeps the original signed-ness. + result = APInt(bitWidth, parts); + return status; +} + +} // End llvm namespace + +#undef APFLOAT_DISPATCH_ON_SEMANTICS |