diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2023-04-14 21:41:27 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2023-06-22 18:20:56 +0000 |
commit | bdd1243df58e60e85101c09001d9812a789b6bc4 (patch) | |
tree | a1ce621c7301dd47ba2ddc3b8eaa63b441389481 /contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp | |
parent | 781624ca2d054430052c828ba8d2c2eaf2d733e7 (diff) | |
parent | e3b557809604d036af6e00c60f012c2025b59a5e (diff) |
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp | 1010 |
1 files changed, 866 insertions, 144 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp index 56a9a30bc59a..11ba5c91dae9 100644 --- a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp +++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp @@ -6,23 +6,114 @@ // //===----------------------------------------------------------------------===// // -// This pass eliminates LDS uses from non-kernel functions. +// This pass eliminates local data store, LDS, uses from non-kernel functions. +// LDS is contiguous memory allocated per kernel execution. // -// The strategy is to create a new struct with a field for each LDS variable -// and allocate that struct at the same address for every kernel. Uses of the -// original LDS variables are then replaced with compile time offsets from that -// known address. AMDGPUMachineFunction allocates the LDS global. +// Background. // -// Local variables with constant annotation or non-undef initializer are passed +// The programming model is global variables, or equivalently function local +// static variables, accessible from kernels or other functions. For uses from +// kernels this is straightforward - assign an integer to the kernel for the +// memory required by all the variables combined, allocate them within that. +// For uses from functions there are performance tradeoffs to choose between. +// +// This model means the GPU runtime can specify the amount of memory allocated. +// If this is more than the kernel assumed, the excess can be made available +// using a language specific feature, which IR represents as a variable with +// no initializer. This feature is not yet implemented for non-kernel functions. +// This lowering could be extended to handle that use case, but would probably +// require closer integration with promoteAllocaToLDS. +// +// Consequences of this GPU feature: +// - memory is limited and exceeding it halts compilation +// - a global accessed by one kernel exists independent of other kernels +// - a global exists independent of simultaneous execution of the same kernel +// - the address of the global may be different from different kernels as they +// do not alias, which permits only allocating variables they use +// - if the address is allowed to differ, functions need help to find it +// +// Uses from kernels are implemented here by grouping them in a per-kernel +// struct instance. This duplicates the variables, accurately modelling their +// aliasing properties relative to a single global representation. It also +// permits control over alignment via padding. +// +// Uses from functions are more complicated and the primary purpose of this +// IR pass. Several different lowering are chosen between to meet requirements +// to avoid allocating any LDS where it is not necessary, as that impacts +// occupancy and may fail the compilation, while not imposing overhead on a +// feature whose primary advantage over global memory is performance. The basic +// design goal is to avoid one kernel imposing overhead on another. +// +// Implementation. +// +// LDS variables with constant annotation or non-undef initializer are passed // through unchanged for simplification or error diagnostics in later passes. +// Non-undef initializers are not yet implemented for LDS. +// +// LDS variables that are always allocated at the same address can be found +// by lookup at that address. Otherwise runtime information/cost is required. +// +// The simplest strategy possible is to group all LDS variables in a single +// struct and allocate that struct in every kernel such that the original +// variables are always at the same address. LDS is however a limited resource +// so this strategy is unusable in practice. It is not implemented here. // -// To reduce the memory overhead variables that are only used by kernels are -// excluded from this transform. The analysis to determine whether a variable -// is only used by a kernel is cheap and conservative so this may allocate -// a variable in every kernel when it was not strictly necessary to do so. +// Strategy | Precise allocation | Zero runtime cost | General purpose | +// --------+--------------------+-------------------+-----------------+ +// Module | No | Yes | Yes | +// Table | Yes | No | Yes | +// Kernel | Yes | Yes | No | +// Hybrid | Yes | Partial | Yes | // -// A possible future refinement is to specialise the structure per-kernel, so -// that fields can be elided based on more expensive analysis. +// Module spends LDS memory to save cycles. Table spends cycles and global +// memory to save LDS. Kernel is as fast as kernel allocation but only works +// for variables that are known reachable from a single kernel. Hybrid picks +// between all three. When forced to choose between LDS and cycles it minimises +// LDS use. + +// The "module" lowering implemented here finds LDS variables which are used by +// non-kernel functions and creates a new struct with a field for each of those +// LDS variables. Variables that are only used from kernels are excluded. +// Kernels that do not use this struct are annoteated with the attribute +// amdgpu-elide-module-lds which allows the back end to elide the allocation. +// +// The "table" lowering implemented here has three components. +// First kernels are assigned a unique integer identifier which is available in +// functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer +// is passed through a specific SGPR, thus works with indirect calls. +// Second, each kernel allocates LDS variables independent of other kernels and +// writes the addresses it chose for each variable into an array in consistent +// order. If the kernel does not allocate a given variable, it writes undef to +// the corresponding array location. These arrays are written to a constant +// table in the order matching the kernel unique integer identifier. +// Third, uses from non-kernel functions are replaced with a table lookup using +// the intrinsic function to find the address of the variable. +// +// "Kernel" lowering is only applicable for variables that are unambiguously +// reachable from exactly one kernel. For those cases, accesses to the variable +// can be lowered to ConstantExpr address of a struct instance specific to that +// one kernel. This is zero cost in space and in compute. It will raise a fatal +// error on any variable that might be reachable from multiple kernels and is +// thus most easily used as part of the hybrid lowering strategy. +// +// Hybrid lowering is a mixture of the above. It uses the zero cost kernel +// lowering where it can. It lowers the variable accessed by the greatest +// number of kernels using the module strategy as that is free for the first +// variable. Any futher variables that can be lowered with the module strategy +// without incurring LDS memory overhead are. The remaining ones are lowered +// via table. +// +// Consequences +// - No heuristics or user controlled magic numbers, hybrid is the right choice +// - Kernels that don't use functions (or have had them all inlined) are not +// affected by any lowering for kernels that do. +// - Kernels that don't make indirect function calls are not affected by those +// that do. +// - Variables which are used by lots of kernels, e.g. those injected by a +// language runtime in most kernels, are expected to have no overhead +// - Implementations that instantiate templates per-kernel where those templates +// use LDS are expected to hit the "Kernel" lowering strategy +// - The runtime properties impose a cost in compiler implementation complexity // //===----------------------------------------------------------------------===// @@ -31,84 +122,83 @@ #include "Utils/AMDGPUMemoryUtils.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/SetVector.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicsAMDGPU.h" #include "llvm/IR/MDBuilder.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/OptimizedStructLayout.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/ModuleUtils.h" + #include <tuple> #include <vector> +#include <cstdio> + #define DEBUG_TYPE "amdgpu-lower-module-lds" using namespace llvm; -static cl::opt<bool> SuperAlignLDSGlobals( +namespace { + +cl::opt<bool> SuperAlignLDSGlobals( "amdgpu-super-align-lds-globals", cl::desc("Increase alignment of LDS if it is not on align boundary"), cl::init(true), cl::Hidden); -namespace { -class AMDGPULowerModuleLDS : public ModulePass { - - static void removeFromUsedList(Module &M, StringRef Name, - SmallPtrSetImpl<Constant *> &ToRemove) { - GlobalVariable *GV = M.getNamedGlobal(Name); - if (!GV || ToRemove.empty()) { - return; - } - - SmallVector<Constant *, 16> Init; - auto *CA = cast<ConstantArray>(GV->getInitializer()); - for (auto &Op : CA->operands()) { - // ModuleUtils::appendToUsed only inserts Constants - Constant *C = cast<Constant>(Op); - if (!ToRemove.contains(C->stripPointerCasts())) { - Init.push_back(C); - } - } - - if (Init.size() == CA->getNumOperands()) { - return; // none to remove - } - - GV->eraseFromParent(); - - for (Constant *C : ToRemove) { - C->removeDeadConstantUsers(); - } +enum class LoweringKind { module, table, kernel, hybrid }; +cl::opt<LoweringKind> LoweringKindLoc( + "amdgpu-lower-module-lds-strategy", + cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden, + cl::init(LoweringKind::module), + cl::values( + clEnumValN(LoweringKind::table, "table", "Lower via table lookup"), + clEnumValN(LoweringKind::module, "module", "Lower via module struct"), + clEnumValN( + LoweringKind::kernel, "kernel", + "Lower variables reachable from one kernel, otherwise abort"), + clEnumValN(LoweringKind::hybrid, "hybrid", + "Lower via mixture of above strategies"))); + +bool isKernelLDS(const Function *F) { + // Some weirdness here. AMDGPU::isKernelCC does not call into + // AMDGPU::isKernel with the calling conv, it instead calls into + // isModuleEntryFunction which returns true for more calling conventions + // than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel. + // There's also a test that checks that the LDS lowering does not hit on + // a graphics shader, denoted amdgpu_ps, so stay with the limited case. + // Putting LDS in the name of the function to draw attention to this. + return AMDGPU::isKernel(F->getCallingConv()); +} - if (!Init.empty()) { - ArrayType *ATy = - ArrayType::get(Type::getInt8PtrTy(M.getContext()), Init.size()); - GV = - new llvm::GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage, - ConstantArray::get(ATy, Init), Name); - GV->setSection("llvm.metadata"); - } - } +class AMDGPULowerModuleLDS : public ModulePass { static void - removeFromUsedLists(Module &M, - const std::vector<GlobalVariable *> &LocalVars) { + removeLocalVarsFromUsedLists(Module &M, + const DenseSet<GlobalVariable *> &LocalVars) { // The verifier rejects used lists containing an inttoptr of a constant // so remove the variables from these lists before replaceAllUsesWith + SmallPtrSet<Constant *, 8> LocalVarsSet; + for (GlobalVariable *LocalVar : LocalVars) + LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts())); + + removeFromUsedLists( + M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); }); - SmallPtrSet<Constant *, 32> LocalVarsSet; for (GlobalVariable *LocalVar : LocalVars) - if (Constant *C = dyn_cast<Constant>(LocalVar->stripPointerCasts())) - LocalVarsSet.insert(C); - removeFromUsedList(M, "llvm.used", LocalVarsSet); - removeFromUsedList(M, "llvm.compiler.used", LocalVarsSet); + LocalVar->removeDeadConstantUsers(); } static void markUsedByKernel(IRBuilder<> &Builder, Function *Func, @@ -144,6 +234,79 @@ class AMDGPULowerModuleLDS : public ModulePass { ""); } + static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) { + // Constants are uniqued within LLVM. A ConstantExpr referring to a LDS + // global may have uses from multiple different functions as a result. + // This pass specialises LDS variables with respect to the kernel that + // allocates them. + + // This is semantically equivalent to: + // for (auto &F : M.functions()) + // for (auto &BB : F) + // for (auto &I : BB) + // for (Use &Op : I.operands()) + // if (constantExprUsesLDS(Op)) + // replaceConstantExprInFunction(I, Op); + + bool Changed = false; + + // Find all ConstantExpr that are direct users of an LDS global + SmallVector<ConstantExpr *> Stack; + for (auto &GV : M.globals()) + if (AMDGPU::isLDSVariableToLower(GV)) + for (User *U : GV.users()) + if (ConstantExpr *C = dyn_cast<ConstantExpr>(U)) + Stack.push_back(C); + + // Expand to include constexpr users of direct users + SetVector<ConstantExpr *> ConstExprUsersOfLDS; + while (!Stack.empty()) { + ConstantExpr *V = Stack.pop_back_val(); + if (ConstExprUsersOfLDS.contains(V)) + continue; + + ConstExprUsersOfLDS.insert(V); + + for (auto *Nested : V->users()) + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Nested)) + Stack.push_back(CE); + } + + // Find all instructions that use any of the ConstExpr users of LDS + SetVector<Instruction *> InstructionWorklist; + for (ConstantExpr *CE : ConstExprUsersOfLDS) + for (User *U : CE->users()) + if (auto *I = dyn_cast<Instruction>(U)) + InstructionWorklist.insert(I); + + // Replace those ConstExpr operands with instructions + while (!InstructionWorklist.empty()) { + Instruction *I = InstructionWorklist.pop_back_val(); + for (Use &U : I->operands()) { + + auto *BI = I; + if (auto *Phi = dyn_cast<PHINode>(I)) { + BasicBlock *BB = Phi->getIncomingBlock(U); + BasicBlock::iterator It = BB->getFirstInsertionPt(); + assert(It != BB->end() && "Unexpected empty basic block"); + BI = &(*(It)); + } + + if (ConstantExpr *C = dyn_cast<ConstantExpr>(U.get())) { + if (ConstExprUsersOfLDS.contains(C)) { + Changed = true; + Instruction *NI = C->getAsInstruction(BI); + InstructionWorklist.insert(NI); + U.set(NI); + C->removeDeadConstantUsers(); + } + } + } + } + + return Changed; + } + public: static char ID; @@ -151,100 +314,643 @@ public: initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry()); } + using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>; + + using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>; + + static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M, + FunctionVariableMap &kernels, + FunctionVariableMap &functions) { + + // Get uses from the current function, excluding uses by called functions + // Two output variables to avoid walking the globals list twice + for (auto &GV : M.globals()) { + if (!AMDGPU::isLDSVariableToLower(GV)) { + continue; + } + + SmallVector<User *, 16> Stack(GV.users()); + for (User *V : GV.users()) { + if (auto *I = dyn_cast<Instruction>(V)) { + Function *F = I->getFunction(); + if (isKernelLDS(F)) { + kernels[F].insert(&GV); + } else { + functions[F].insert(&GV); + } + } + } + } + } + + struct LDSUsesInfoTy { + FunctionVariableMap direct_access; + FunctionVariableMap indirect_access; + }; + + static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) { + + FunctionVariableMap direct_map_kernel; + FunctionVariableMap direct_map_function; + getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function); + + // Collect variables that are used by functions whose address has escaped + DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer; + for (Function &F : M.functions()) { + if (!isKernelLDS(&F)) + if (F.hasAddressTaken(nullptr, + /* IgnoreCallbackUses */ false, + /* IgnoreAssumeLikeCalls */ false, + /* IgnoreLLVMUsed */ true, + /* IgnoreArcAttachedCall */ false)) { + set_union(VariablesReachableThroughFunctionPointer, + direct_map_function[&F]); + } + } + + auto functionMakesUnknownCall = [&](const Function *F) -> bool { + assert(!F->isDeclaration()); + for (CallGraphNode::CallRecord R : *CG[F]) { + if (!R.second->getFunction()) { + return true; + } + } + return false; + }; + + // Work out which variables are reachable through function calls + FunctionVariableMap transitive_map_function = direct_map_function; + + // If the function makes any unknown call, assume the worst case that it can + // access all variables accessed by functions whose address escaped + for (Function &F : M.functions()) { + if (!F.isDeclaration() && functionMakesUnknownCall(&F)) { + if (!isKernelLDS(&F)) { + set_union(transitive_map_function[&F], + VariablesReachableThroughFunctionPointer); + } + } + } + + // Direct implementation of collecting all variables reachable from each + // function + for (Function &Func : M.functions()) { + if (Func.isDeclaration() || isKernelLDS(&Func)) + continue; + + DenseSet<Function *> seen; // catches cycles + SmallVector<Function *, 4> wip{&Func}; + + while (!wip.empty()) { + Function *F = wip.pop_back_val(); + + // Can accelerate this by referring to transitive map for functions that + // have already been computed, with more care than this + set_union(transitive_map_function[&Func], direct_map_function[F]); + + for (CallGraphNode::CallRecord R : *CG[F]) { + Function *ith = R.second->getFunction(); + if (ith) { + if (!seen.contains(ith)) { + seen.insert(ith); + wip.push_back(ith); + } + } + } + } + } + + // direct_map_kernel lists which variables are used by the kernel + // find the variables which are used through a function call + FunctionVariableMap indirect_map_kernel; + + for (Function &Func : M.functions()) { + if (Func.isDeclaration() || !isKernelLDS(&Func)) + continue; + + for (CallGraphNode::CallRecord R : *CG[&Func]) { + Function *ith = R.second->getFunction(); + if (ith) { + set_union(indirect_map_kernel[&Func], transitive_map_function[ith]); + } else { + set_union(indirect_map_kernel[&Func], + VariablesReachableThroughFunctionPointer); + } + } + } + + return {std::move(direct_map_kernel), std::move(indirect_map_kernel)}; + } + + struct LDSVariableReplacement { + GlobalVariable *SGV = nullptr; + DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP; + }; + + // remap from lds global to a constantexpr gep to where it has been moved to + // for each kernel + // an array with an element for each kernel containing where the corresponding + // variable was remapped to + + static Constant *getAddressesOfVariablesInKernel( + LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables, + DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) { + // Create a ConstantArray containing the address of each Variable within the + // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel + // does not allocate it + // TODO: Drop the ptrtoint conversion + + Type *I32 = Type::getInt32Ty(Ctx); + + ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size()); + + SmallVector<Constant *> Elements; + for (size_t i = 0; i < Variables.size(); i++) { + GlobalVariable *GV = Variables[i]; + if (LDSVarsToConstantGEP.count(GV) != 0) { + auto elt = ConstantExpr::getPtrToInt(LDSVarsToConstantGEP[GV], I32); + Elements.push_back(elt); + } else { + Elements.push_back(PoisonValue::get(I32)); + } + } + return ConstantArray::get(KernelOffsetsType, Elements); + } + + static GlobalVariable *buildLookupTable( + Module &M, ArrayRef<GlobalVariable *> Variables, + ArrayRef<Function *> kernels, + DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) { + if (Variables.empty()) { + return nullptr; + } + LLVMContext &Ctx = M.getContext(); + + const size_t NumberVariables = Variables.size(); + const size_t NumberKernels = kernels.size(); + + ArrayType *KernelOffsetsType = + ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables); + + ArrayType *AllKernelsOffsetsType = + ArrayType::get(KernelOffsetsType, NumberKernels); + + std::vector<Constant *> overallConstantExprElts(NumberKernels); + for (size_t i = 0; i < NumberKernels; i++) { + LDSVariableReplacement Replacement = KernelToReplacement[kernels[i]]; + overallConstantExprElts[i] = getAddressesOfVariablesInKernel( + Ctx, Variables, Replacement.LDSVarsToConstantGEP); + } + + Constant *init = + ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts); + + return new GlobalVariable( + M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init, + "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal, + AMDGPUAS::CONSTANT_ADDRESS); + } + + void replaceUsesInInstructionsWithTableLookup( + Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables, + GlobalVariable *LookupTable) { + + LLVMContext &Ctx = M.getContext(); + IRBuilder<> Builder(Ctx); + Type *I32 = Type::getInt32Ty(Ctx); + + // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which + // lowers to a read from a live in register. Emit it once in the entry + // block to spare deduplicating it later. + + DenseMap<Function *, Value *> tableKernelIndexCache; + auto getTableKernelIndex = [&](Function *F) -> Value * { + if (tableKernelIndexCache.count(F) == 0) { + LLVMContext &Ctx = M.getContext(); + FunctionType *FTy = FunctionType::get(Type::getInt32Ty(Ctx), {}); + Function *Decl = + Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {}); + + BasicBlock::iterator it = + F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca(); + Instruction &i = *it; + Builder.SetInsertPoint(&i); + + tableKernelIndexCache[F] = Builder.CreateCall(FTy, Decl, {}); + } + + return tableKernelIndexCache[F]; + }; + + for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) { + auto *GV = ModuleScopeVariables[Index]; + + for (Use &U : make_early_inc_range(GV->uses())) { + auto *I = dyn_cast<Instruction>(U.getUser()); + if (!I) + continue; + + Value *tableKernelIndex = getTableKernelIndex(I->getFunction()); + + // So if the phi uses this value multiple times, what does this look + // like? + if (auto *Phi = dyn_cast<PHINode>(I)) { + BasicBlock *BB = Phi->getIncomingBlock(U); + Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt()))); + } else { + Builder.SetInsertPoint(I); + } + + Value *GEPIdx[3] = { + ConstantInt::get(I32, 0), + tableKernelIndex, + ConstantInt::get(I32, Index), + }; + + Value *Address = Builder.CreateInBoundsGEP( + LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName()); + + Value *loaded = Builder.CreateLoad(I32, Address); + + Value *replacement = + Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName()); + + U.set(replacement); + } + } + } + + static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables( + Module &M, LDSUsesInfoTy &LDSUsesInfo, + DenseSet<GlobalVariable *> const &VariableSet) { + + DenseSet<Function *> KernelSet; + + if (VariableSet.empty()) return KernelSet; + + for (Function &Func : M.functions()) { + if (Func.isDeclaration() || !isKernelLDS(&Func)) + continue; + for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) { + if (VariableSet.contains(GV)) { + KernelSet.insert(&Func); + break; + } + } + } + + return KernelSet; + } + + static GlobalVariable * + chooseBestVariableForModuleStrategy(const DataLayout &DL, + VariableFunctionMap &LDSVars) { + // Find the global variable with the most indirect uses from kernels + + struct CandidateTy { + GlobalVariable *GV = nullptr; + size_t UserCount = 0; + size_t Size = 0; + + CandidateTy() = default; + + CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize) + : GV(GV), UserCount(UserCount), Size(AllocSize) {} + + bool operator<(const CandidateTy &Other) const { + // Fewer users makes module scope variable less attractive + if (UserCount < Other.UserCount) { + return true; + } + if (UserCount > Other.UserCount) { + return false; + } + + // Bigger makes module scope variable less attractive + if (Size < Other.Size) { + return false; + } + + if (Size > Other.Size) { + return true; + } + + // Arbitrary but consistent + return GV->getName() < Other.GV->getName(); + } + }; + + CandidateTy MostUsed; + + for (auto &K : LDSVars) { + GlobalVariable *GV = K.first; + if (K.second.size() <= 1) { + // A variable reachable by only one kernel is best lowered with kernel + // strategy + continue; + } + CandidateTy Candidate(GV, K.second.size(), + DL.getTypeAllocSize(GV->getValueType()).getFixedValue()); + if (MostUsed < Candidate) + MostUsed = Candidate; + } + + return MostUsed.GV; + } + bool runOnModule(Module &M) override { LLVMContext &Ctx = M.getContext(); CallGraph CG = CallGraph(M); bool Changed = superAlignLDSGlobals(M); - // Move variables used by functions into amdgcn.module.lds - std::vector<GlobalVariable *> ModuleScopeVariables = - AMDGPU::findVariablesToLower(M, nullptr); - if (!ModuleScopeVariables.empty()) { - std::string VarName = "llvm.amdgcn.module.lds"; + Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M); - GlobalVariable *SGV; - DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP; - std::tie(SGV, LDSVarsToConstantGEP) = - createLDSVariableReplacement(M, VarName, ModuleScopeVariables); + Changed = true; // todo: narrow this down - appendToCompilerUsed( - M, {static_cast<GlobalValue *>( - ConstantExpr::getPointerBitCastOrAddrSpaceCast( - cast<Constant>(SGV), Type::getInt8PtrTy(Ctx)))}); + // For each kernel, what variables does it access directly or through + // callees + LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M); - removeFromUsedLists(M, ModuleScopeVariables); - replaceLDSVariablesWithStruct(M, ModuleScopeVariables, SGV, - LDSVarsToConstantGEP, - [](Use &) { return true; }); + // For each variable accessed through callees, which kernels access it + VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly; + for (auto &K : LDSUsesInfo.indirect_access) { + Function *F = K.first; + assert(isKernelLDS(F)); + for (GlobalVariable *GV : K.second) { + LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F); + } + } - // This ensures the variable is allocated when called functions access it. - // It also lets other passes, specifically PromoteAlloca, accurately - // calculate how much LDS will be used by the kernel after lowering. + // Partition variables into the different strategies + DenseSet<GlobalVariable *> ModuleScopeVariables; + DenseSet<GlobalVariable *> TableLookupVariables; + DenseSet<GlobalVariable *> KernelAccessVariables; - IRBuilder<> Builder(Ctx); - for (Function &Func : M.functions()) { - if (!Func.isDeclaration() && AMDGPU::isKernelCC(&Func)) { - const CallGraphNode *N = CG[&Func]; - const bool CalleesRequireModuleLDS = N->size() > 0; - - if (CalleesRequireModuleLDS) { - // If a function this kernel might call requires module LDS, - // annotate the kernel to let later passes know it will allocate - // this structure, even if not apparent from the IR. - markUsedByKernel(Builder, &Func, SGV); + { + GlobalVariable *HybridModuleRoot = + LoweringKindLoc != LoweringKind::hybrid + ? nullptr + : chooseBestVariableForModuleStrategy( + M.getDataLayout(), + LDSToKernelsThatNeedToAccessItIndirectly); + + DenseSet<Function *> const EmptySet; + DenseSet<Function *> const &HybridModuleRootKernels = + HybridModuleRoot + ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot] + : EmptySet; + + for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) { + // Each iteration of this loop assigns exactly one global variable to + // exactly one of the implementation strategies. + + GlobalVariable *GV = K.first; + assert(AMDGPU::isLDSVariableToLower(*GV)); + assert(K.second.size() != 0); + + switch (LoweringKindLoc) { + case LoweringKind::module: + ModuleScopeVariables.insert(GV); + break; + + case LoweringKind::table: + TableLookupVariables.insert(GV); + break; + + case LoweringKind::kernel: + if (K.second.size() == 1) { + KernelAccessVariables.insert(GV); } else { - // However if we are certain this kernel cannot call a function that - // requires module LDS, annotate the kernel so the backend can elide - // the allocation without repeating callgraph walks. - Func.addFnAttr("amdgpu-elide-module-lds"); + report_fatal_error( + "cannot lower LDS '" + GV->getName() + + "' to kernel access as it is reachable from multiple kernels"); } + break; + + case LoweringKind::hybrid: { + if (GV == HybridModuleRoot) { + assert(K.second.size() != 1); + ModuleScopeVariables.insert(GV); + } else if (K.second.size() == 1) { + KernelAccessVariables.insert(GV); + } else if (set_is_subset(K.second, HybridModuleRootKernels)) { + ModuleScopeVariables.insert(GV); + } else { + TableLookupVariables.insert(GV); + } + break; + } } } - Changed = true; + assert(ModuleScopeVariables.size() + TableLookupVariables.size() + + KernelAccessVariables.size() == + LDSToKernelsThatNeedToAccessItIndirectly.size()); + } // Variables have now been partitioned into the three lowering strategies. + + // If the kernel accesses a variable that is going to be stored in the + // module instance through a call then that kernel needs to allocate the + // module instance + DenseSet<Function *> KernelsThatAllocateModuleLDS = + kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo, + ModuleScopeVariables); + DenseSet<Function *> KernelsThatAllocateTableLDS = + kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo, + TableLookupVariables); + + if (!ModuleScopeVariables.empty()) { + LDSVariableReplacement ModuleScopeReplacement = + createLDSVariableReplacement(M, "llvm.amdgcn.module.lds", + ModuleScopeVariables); + + appendToCompilerUsed(M, + {static_cast<GlobalValue *>( + ConstantExpr::getPointerBitCastOrAddrSpaceCast( + cast<Constant>(ModuleScopeReplacement.SGV), + Type::getInt8PtrTy(Ctx)))}); + + // historic + removeLocalVarsFromUsedLists(M, ModuleScopeVariables); + + // Replace all uses of module scope variable from non-kernel functions + replaceLDSVariablesWithStruct( + M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) { + Instruction *I = dyn_cast<Instruction>(U.getUser()); + if (!I) { + return false; + } + Function *F = I->getFunction(); + return !isKernelLDS(F); + }); + + // Replace uses of module scope variable from kernel functions that + // allocate the module scope variable, otherwise leave them unchanged + // Record on each kernel whether the module scope global is used by it + + LLVMContext &Ctx = M.getContext(); + IRBuilder<> Builder(Ctx); + + for (Function &Func : M.functions()) { + if (Func.isDeclaration() || !isKernelLDS(&Func)) + continue; + + if (KernelsThatAllocateModuleLDS.contains(&Func)) { + replaceLDSVariablesWithStruct( + M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) { + Instruction *I = dyn_cast<Instruction>(U.getUser()); + if (!I) { + return false; + } + Function *F = I->getFunction(); + return F == &Func; + }); + + markUsedByKernel(Builder, &Func, ModuleScopeReplacement.SGV); + + } else { + Func.addFnAttr("amdgpu-elide-module-lds"); + } + } } - // Move variables used by kernels into per-kernel instances - for (Function &F : M.functions()) { - if (F.isDeclaration()) + // Create a struct for each kernel for the non-module-scope variables + DenseMap<Function *, LDSVariableReplacement> KernelToReplacement; + for (Function &Func : M.functions()) { + if (Func.isDeclaration() || !isKernelLDS(&Func)) continue; - // Only lower compute kernels' LDS. - if (!AMDGPU::isKernel(F.getCallingConv())) + DenseSet<GlobalVariable *> KernelUsedVariables; + for (auto &v : LDSUsesInfo.direct_access[&Func]) { + KernelUsedVariables.insert(v); + } + for (auto &v : LDSUsesInfo.indirect_access[&Func]) { + KernelUsedVariables.insert(v); + } + + // Variables allocated in module lds must all resolve to that struct, + // not to the per-kernel instance. + if (KernelsThatAllocateModuleLDS.contains(&Func)) { + for (GlobalVariable *v : ModuleScopeVariables) { + KernelUsedVariables.erase(v); + } + } + + if (KernelUsedVariables.empty()) { + // Either used no LDS, or all the LDS it used was also in module continue; + } - std::vector<GlobalVariable *> KernelUsedVariables = - AMDGPU::findVariablesToLower(M, &F); + // The association between kernel function and LDS struct is done by + // symbol name, which only works if the function in question has a + // name This is not expected to be a problem in practice as kernels + // are called by name making anonymous ones (which are named by the + // backend) difficult to use. This does mean that llvm test cases need + // to name the kernels. + if (!Func.hasName()) { + report_fatal_error("Anonymous kernels cannot use LDS variables"); + } - // Replace all constant uses with instructions if they belong to the - // current kernel. Unnecessary, removing will cause test churn. - for (size_t I = 0; I < KernelUsedVariables.size(); I++) { - GlobalVariable *GV = KernelUsedVariables[I]; - for (User *U : make_early_inc_range(GV->users())) { - if (ConstantExpr *C = dyn_cast<ConstantExpr>(U)) - AMDGPU::replaceConstantUsesInFunction(C, &F); + std::string VarName = + (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str(); + + auto Replacement = + createLDSVariableReplacement(M, VarName, KernelUsedVariables); + + // remove preserves existing codegen + removeLocalVarsFromUsedLists(M, KernelUsedVariables); + KernelToReplacement[&Func] = Replacement; + + // Rewrite uses within kernel to the new struct + replaceLDSVariablesWithStruct( + M, KernelUsedVariables, Replacement, [&Func](Use &U) { + Instruction *I = dyn_cast<Instruction>(U.getUser()); + return I && I->getFunction() == &Func; + }); + } + + // Lower zero cost accesses to the kernel instances just created + for (auto &GV : KernelAccessVariables) { + auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV]; + assert(funcs.size() == 1); // Only one kernel can access it + LDSVariableReplacement Replacement = + KernelToReplacement[*(funcs.begin())]; + + DenseSet<GlobalVariable *> Vec; + Vec.insert(GV); + + replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) { + return isa<Instruction>(U.getUser()); + }); + } + + if (!KernelsThatAllocateTableLDS.empty()) { + // Collect the kernels that allocate table lookup LDS + std::vector<Function *> OrderedKernels; + { + for (Function &Func : M.functions()) { + if (Func.isDeclaration()) + continue; + if (!isKernelLDS(&Func)) + continue; + + if (KernelsThatAllocateTableLDS.contains(&Func)) { + assert(Func.hasName()); // else fatal error earlier + OrderedKernels.push_back(&Func); + } + } + + // Put them in an arbitrary but reproducible order + llvm::sort(OrderedKernels.begin(), OrderedKernels.end(), + [](const Function *lhs, const Function *rhs) -> bool { + return lhs->getName() < rhs->getName(); + }); + + // Annotate the kernels with their order in this vector + LLVMContext &Ctx = M.getContext(); + IRBuilder<> Builder(Ctx); + + if (OrderedKernels.size() > UINT32_MAX) { + // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU + report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels"); + } + + for (size_t i = 0; i < OrderedKernels.size(); i++) { + Metadata *AttrMDArgs[1] = { + ConstantAsMetadata::get(Builder.getInt32(i)), + }; + OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id", + MDNode::get(Ctx, AttrMDArgs)); + + markUsedByKernel(Builder, OrderedKernels[i], + KernelToReplacement[OrderedKernels[i]].SGV); } - GV->removeDeadConstantUsers(); - } - - if (!KernelUsedVariables.empty()) { - std::string VarName = - (Twine("llvm.amdgcn.kernel.") + F.getName() + ".lds").str(); - GlobalVariable *SGV; - DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP; - std::tie(SGV, LDSVarsToConstantGEP) = - createLDSVariableReplacement(M, VarName, KernelUsedVariables); - - removeFromUsedLists(M, KernelUsedVariables); - replaceLDSVariablesWithStruct( - M, KernelUsedVariables, SGV, LDSVarsToConstantGEP, [&F](Use &U) { - Instruction *I = dyn_cast<Instruction>(U.getUser()); - return I && I->getFunction() == &F; - }); - Changed = true; } + + // The order must be consistent between lookup table and accesses to + // lookup table + std::vector<GlobalVariable *> TableLookupVariablesOrdered( + TableLookupVariables.begin(), TableLookupVariables.end()); + llvm::sort(TableLookupVariablesOrdered.begin(), + TableLookupVariablesOrdered.end(), + [](const GlobalVariable *lhs, const GlobalVariable *rhs) { + return lhs->getName() < rhs->getName(); + }); + + GlobalVariable *LookupTable = buildLookupTable( + M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement); + replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered, + LookupTable); } + for (auto &GV : make_early_inc_range(M.globals())) + if (AMDGPU::isLDSVariableToLower(GV)) { + + // probably want to remove from used lists + GV.removeDeadConstantUsers(); + if (GV.use_empty()) + GV.eraseFromParent(); + } + return Changed; } @@ -293,10 +999,9 @@ private: return Changed; } - std::tuple<GlobalVariable *, DenseMap<GlobalVariable *, Constant *>> - createLDSVariableReplacement( + static LDSVariableReplacement createLDSVariableReplacement( Module &M, std::string VarName, - std::vector<GlobalVariable *> const &LDSVarsToTransform) { + DenseSet<GlobalVariable *> const &LDSVarsToTransform) { // Create a struct instance containing LDSVarsToTransform and map from those // variables to ConstantExprGEP // Variables may be introduced to meet alignment requirements. No aliasing @@ -308,10 +1013,22 @@ private: SmallVector<OptimizedStructLayoutField, 8> LayoutFields; LayoutFields.reserve(LDSVarsToTransform.size()); - for (GlobalVariable *GV : LDSVarsToTransform) { - OptimizedStructLayoutField F(GV, DL.getTypeAllocSize(GV->getValueType()), - AMDGPU::getAlign(DL, GV)); - LayoutFields.emplace_back(F); + { + // The order of fields in this struct depends on the order of + // varables in the argument which varies when changing how they + // are identified, leading to spurious test breakage. + std::vector<GlobalVariable *> Sorted(LDSVarsToTransform.begin(), + LDSVarsToTransform.end()); + llvm::sort(Sorted.begin(), Sorted.end(), + [](const GlobalVariable *lhs, const GlobalVariable *rhs) { + return lhs->getName() < rhs->getName(); + }); + for (GlobalVariable *GV : Sorted) { + OptimizedStructLayoutField F(GV, + DL.getTypeAllocSize(GV->getValueType()), + AMDGPU::getAlign(DL, GV)); + LayoutFields.emplace_back(F); + } } performOptimizedStructLayout(LayoutFields); @@ -358,8 +1075,7 @@ private: StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t"); - Align StructAlign = - AMDGPU::getAlign(DL, LocalVars[0]); + Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]); GlobalVariable *SGV = new GlobalVariable( M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy), @@ -386,13 +1102,21 @@ private: template <typename PredicateTy> void replaceLDSVariablesWithStruct( - Module &M, std::vector<GlobalVariable *> const &LDSVarsToTransform, - GlobalVariable *SGV, - DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP, - PredicateTy Predicate) { + Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg, + LDSVariableReplacement Replacement, PredicateTy Predicate) { LLVMContext &Ctx = M.getContext(); const DataLayout &DL = M.getDataLayout(); + // A hack... we need to insert the aliasing info in a predictable order for + // lit tests. Would like to have them in a stable order already, ideally the + // same order they get allocated, which might mean an ordered set container + std::vector<GlobalVariable *> LDSVarsToTransform( + LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end()); + llvm::sort(LDSVarsToTransform.begin(), LDSVarsToTransform.end(), + [](const GlobalVariable *lhs, const GlobalVariable *rhs) { + return lhs->getName() < rhs->getName(); + }); + // Create alias.scope and their lists. Each field in the new structure // does not alias with all other fields. SmallVector<MDNode *> AliasScopes; @@ -413,18 +1137,16 @@ private: // field of the instance that will be allocated by AMDGPUMachineFunction for (size_t I = 0; I < NumberVars; I++) { GlobalVariable *GV = LDSVarsToTransform[I]; - Constant *GEP = LDSVarsToConstantGEP[GV]; + Constant *GEP = Replacement.LDSVarsToConstantGEP[GV]; GV->replaceUsesWithIf(GEP, Predicate); - if (GV->use_empty()) { - GV->eraseFromParent(); - } APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0); GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff); uint64_t Offset = APOff.getZExtValue(); - Align A = commonAlignment(SGV->getAlign().valueOrOne(), Offset); + Align A = + commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset); if (I) NoAliasList[I - 1] = AliasScopes[I - 1]; |