aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2023-04-14 21:41:27 +0000
committerDimitry Andric <dim@FreeBSD.org>2023-06-22 18:20:56 +0000
commitbdd1243df58e60e85101c09001d9812a789b6bc4 (patch)
treea1ce621c7301dd47ba2ddc3b8eaa63b441389481 /contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp
parent781624ca2d054430052c828ba8d2c2eaf2d733e7 (diff)
parente3b557809604d036af6e00c60f012c2025b59a5e (diff)
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp1010
1 files changed, 866 insertions, 144 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp
index 56a9a30bc59a..11ba5c91dae9 100644
--- a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp
@@ -6,23 +6,114 @@
//
//===----------------------------------------------------------------------===//
//
-// This pass eliminates LDS uses from non-kernel functions.
+// This pass eliminates local data store, LDS, uses from non-kernel functions.
+// LDS is contiguous memory allocated per kernel execution.
//
-// The strategy is to create a new struct with a field for each LDS variable
-// and allocate that struct at the same address for every kernel. Uses of the
-// original LDS variables are then replaced with compile time offsets from that
-// known address. AMDGPUMachineFunction allocates the LDS global.
+// Background.
//
-// Local variables with constant annotation or non-undef initializer are passed
+// The programming model is global variables, or equivalently function local
+// static variables, accessible from kernels or other functions. For uses from
+// kernels this is straightforward - assign an integer to the kernel for the
+// memory required by all the variables combined, allocate them within that.
+// For uses from functions there are performance tradeoffs to choose between.
+//
+// This model means the GPU runtime can specify the amount of memory allocated.
+// If this is more than the kernel assumed, the excess can be made available
+// using a language specific feature, which IR represents as a variable with
+// no initializer. This feature is not yet implemented for non-kernel functions.
+// This lowering could be extended to handle that use case, but would probably
+// require closer integration with promoteAllocaToLDS.
+//
+// Consequences of this GPU feature:
+// - memory is limited and exceeding it halts compilation
+// - a global accessed by one kernel exists independent of other kernels
+// - a global exists independent of simultaneous execution of the same kernel
+// - the address of the global may be different from different kernels as they
+// do not alias, which permits only allocating variables they use
+// - if the address is allowed to differ, functions need help to find it
+//
+// Uses from kernels are implemented here by grouping them in a per-kernel
+// struct instance. This duplicates the variables, accurately modelling their
+// aliasing properties relative to a single global representation. It also
+// permits control over alignment via padding.
+//
+// Uses from functions are more complicated and the primary purpose of this
+// IR pass. Several different lowering are chosen between to meet requirements
+// to avoid allocating any LDS where it is not necessary, as that impacts
+// occupancy and may fail the compilation, while not imposing overhead on a
+// feature whose primary advantage over global memory is performance. The basic
+// design goal is to avoid one kernel imposing overhead on another.
+//
+// Implementation.
+//
+// LDS variables with constant annotation or non-undef initializer are passed
// through unchanged for simplification or error diagnostics in later passes.
+// Non-undef initializers are not yet implemented for LDS.
+//
+// LDS variables that are always allocated at the same address can be found
+// by lookup at that address. Otherwise runtime information/cost is required.
+//
+// The simplest strategy possible is to group all LDS variables in a single
+// struct and allocate that struct in every kernel such that the original
+// variables are always at the same address. LDS is however a limited resource
+// so this strategy is unusable in practice. It is not implemented here.
//
-// To reduce the memory overhead variables that are only used by kernels are
-// excluded from this transform. The analysis to determine whether a variable
-// is only used by a kernel is cheap and conservative so this may allocate
-// a variable in every kernel when it was not strictly necessary to do so.
+// Strategy | Precise allocation | Zero runtime cost | General purpose |
+// --------+--------------------+-------------------+-----------------+
+// Module | No | Yes | Yes |
+// Table | Yes | No | Yes |
+// Kernel | Yes | Yes | No |
+// Hybrid | Yes | Partial | Yes |
//
-// A possible future refinement is to specialise the structure per-kernel, so
-// that fields can be elided based on more expensive analysis.
+// Module spends LDS memory to save cycles. Table spends cycles and global
+// memory to save LDS. Kernel is as fast as kernel allocation but only works
+// for variables that are known reachable from a single kernel. Hybrid picks
+// between all three. When forced to choose between LDS and cycles it minimises
+// LDS use.
+
+// The "module" lowering implemented here finds LDS variables which are used by
+// non-kernel functions and creates a new struct with a field for each of those
+// LDS variables. Variables that are only used from kernels are excluded.
+// Kernels that do not use this struct are annoteated with the attribute
+// amdgpu-elide-module-lds which allows the back end to elide the allocation.
+//
+// The "table" lowering implemented here has three components.
+// First kernels are assigned a unique integer identifier which is available in
+// functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
+// is passed through a specific SGPR, thus works with indirect calls.
+// Second, each kernel allocates LDS variables independent of other kernels and
+// writes the addresses it chose for each variable into an array in consistent
+// order. If the kernel does not allocate a given variable, it writes undef to
+// the corresponding array location. These arrays are written to a constant
+// table in the order matching the kernel unique integer identifier.
+// Third, uses from non-kernel functions are replaced with a table lookup using
+// the intrinsic function to find the address of the variable.
+//
+// "Kernel" lowering is only applicable for variables that are unambiguously
+// reachable from exactly one kernel. For those cases, accesses to the variable
+// can be lowered to ConstantExpr address of a struct instance specific to that
+// one kernel. This is zero cost in space and in compute. It will raise a fatal
+// error on any variable that might be reachable from multiple kernels and is
+// thus most easily used as part of the hybrid lowering strategy.
+//
+// Hybrid lowering is a mixture of the above. It uses the zero cost kernel
+// lowering where it can. It lowers the variable accessed by the greatest
+// number of kernels using the module strategy as that is free for the first
+// variable. Any futher variables that can be lowered with the module strategy
+// without incurring LDS memory overhead are. The remaining ones are lowered
+// via table.
+//
+// Consequences
+// - No heuristics or user controlled magic numbers, hybrid is the right choice
+// - Kernels that don't use functions (or have had them all inlined) are not
+// affected by any lowering for kernels that do.
+// - Kernels that don't make indirect function calls are not affected by those
+// that do.
+// - Variables which are used by lots of kernels, e.g. those injected by a
+// language runtime in most kernels, are expected to have no overhead
+// - Implementations that instantiate templates per-kernel where those templates
+// use LDS are expected to hit the "Kernel" lowering strategy
+// - The runtime properties impose a cost in compiler implementation complexity
//
//===----------------------------------------------------------------------===//
@@ -31,84 +122,83 @@
#include "Utils/AMDGPUMemoryUtils.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/OptimizedStructLayout.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
+
#include <tuple>
#include <vector>
+#include <cstdio>
+
#define DEBUG_TYPE "amdgpu-lower-module-lds"
using namespace llvm;
-static cl::opt<bool> SuperAlignLDSGlobals(
+namespace {
+
+cl::opt<bool> SuperAlignLDSGlobals(
"amdgpu-super-align-lds-globals",
cl::desc("Increase alignment of LDS if it is not on align boundary"),
cl::init(true), cl::Hidden);
-namespace {
-class AMDGPULowerModuleLDS : public ModulePass {
-
- static void removeFromUsedList(Module &M, StringRef Name,
- SmallPtrSetImpl<Constant *> &ToRemove) {
- GlobalVariable *GV = M.getNamedGlobal(Name);
- if (!GV || ToRemove.empty()) {
- return;
- }
-
- SmallVector<Constant *, 16> Init;
- auto *CA = cast<ConstantArray>(GV->getInitializer());
- for (auto &Op : CA->operands()) {
- // ModuleUtils::appendToUsed only inserts Constants
- Constant *C = cast<Constant>(Op);
- if (!ToRemove.contains(C->stripPointerCasts())) {
- Init.push_back(C);
- }
- }
-
- if (Init.size() == CA->getNumOperands()) {
- return; // none to remove
- }
-
- GV->eraseFromParent();
-
- for (Constant *C : ToRemove) {
- C->removeDeadConstantUsers();
- }
+enum class LoweringKind { module, table, kernel, hybrid };
+cl::opt<LoweringKind> LoweringKindLoc(
+ "amdgpu-lower-module-lds-strategy",
+ cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
+ cl::init(LoweringKind::module),
+ cl::values(
+ clEnumValN(LoweringKind::table, "table", "Lower via table lookup"),
+ clEnumValN(LoweringKind::module, "module", "Lower via module struct"),
+ clEnumValN(
+ LoweringKind::kernel, "kernel",
+ "Lower variables reachable from one kernel, otherwise abort"),
+ clEnumValN(LoweringKind::hybrid, "hybrid",
+ "Lower via mixture of above strategies")));
+
+bool isKernelLDS(const Function *F) {
+ // Some weirdness here. AMDGPU::isKernelCC does not call into
+ // AMDGPU::isKernel with the calling conv, it instead calls into
+ // isModuleEntryFunction which returns true for more calling conventions
+ // than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel.
+ // There's also a test that checks that the LDS lowering does not hit on
+ // a graphics shader, denoted amdgpu_ps, so stay with the limited case.
+ // Putting LDS in the name of the function to draw attention to this.
+ return AMDGPU::isKernel(F->getCallingConv());
+}
- if (!Init.empty()) {
- ArrayType *ATy =
- ArrayType::get(Type::getInt8PtrTy(M.getContext()), Init.size());
- GV =
- new llvm::GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage,
- ConstantArray::get(ATy, Init), Name);
- GV->setSection("llvm.metadata");
- }
- }
+class AMDGPULowerModuleLDS : public ModulePass {
static void
- removeFromUsedLists(Module &M,
- const std::vector<GlobalVariable *> &LocalVars) {
+ removeLocalVarsFromUsedLists(Module &M,
+ const DenseSet<GlobalVariable *> &LocalVars) {
// The verifier rejects used lists containing an inttoptr of a constant
// so remove the variables from these lists before replaceAllUsesWith
+ SmallPtrSet<Constant *, 8> LocalVarsSet;
+ for (GlobalVariable *LocalVar : LocalVars)
+ LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
+
+ removeFromUsedLists(
+ M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
- SmallPtrSet<Constant *, 32> LocalVarsSet;
for (GlobalVariable *LocalVar : LocalVars)
- if (Constant *C = dyn_cast<Constant>(LocalVar->stripPointerCasts()))
- LocalVarsSet.insert(C);
- removeFromUsedList(M, "llvm.used", LocalVarsSet);
- removeFromUsedList(M, "llvm.compiler.used", LocalVarsSet);
+ LocalVar->removeDeadConstantUsers();
}
static void markUsedByKernel(IRBuilder<> &Builder, Function *Func,
@@ -144,6 +234,79 @@ class AMDGPULowerModuleLDS : public ModulePass {
"");
}
+ static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
+ // Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
+ // global may have uses from multiple different functions as a result.
+ // This pass specialises LDS variables with respect to the kernel that
+ // allocates them.
+
+ // This is semantically equivalent to:
+ // for (auto &F : M.functions())
+ // for (auto &BB : F)
+ // for (auto &I : BB)
+ // for (Use &Op : I.operands())
+ // if (constantExprUsesLDS(Op))
+ // replaceConstantExprInFunction(I, Op);
+
+ bool Changed = false;
+
+ // Find all ConstantExpr that are direct users of an LDS global
+ SmallVector<ConstantExpr *> Stack;
+ for (auto &GV : M.globals())
+ if (AMDGPU::isLDSVariableToLower(GV))
+ for (User *U : GV.users())
+ if (ConstantExpr *C = dyn_cast<ConstantExpr>(U))
+ Stack.push_back(C);
+
+ // Expand to include constexpr users of direct users
+ SetVector<ConstantExpr *> ConstExprUsersOfLDS;
+ while (!Stack.empty()) {
+ ConstantExpr *V = Stack.pop_back_val();
+ if (ConstExprUsersOfLDS.contains(V))
+ continue;
+
+ ConstExprUsersOfLDS.insert(V);
+
+ for (auto *Nested : V->users())
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Nested))
+ Stack.push_back(CE);
+ }
+
+ // Find all instructions that use any of the ConstExpr users of LDS
+ SetVector<Instruction *> InstructionWorklist;
+ for (ConstantExpr *CE : ConstExprUsersOfLDS)
+ for (User *U : CE->users())
+ if (auto *I = dyn_cast<Instruction>(U))
+ InstructionWorklist.insert(I);
+
+ // Replace those ConstExpr operands with instructions
+ while (!InstructionWorklist.empty()) {
+ Instruction *I = InstructionWorklist.pop_back_val();
+ for (Use &U : I->operands()) {
+
+ auto *BI = I;
+ if (auto *Phi = dyn_cast<PHINode>(I)) {
+ BasicBlock *BB = Phi->getIncomingBlock(U);
+ BasicBlock::iterator It = BB->getFirstInsertionPt();
+ assert(It != BB->end() && "Unexpected empty basic block");
+ BI = &(*(It));
+ }
+
+ if (ConstantExpr *C = dyn_cast<ConstantExpr>(U.get())) {
+ if (ConstExprUsersOfLDS.contains(C)) {
+ Changed = true;
+ Instruction *NI = C->getAsInstruction(BI);
+ InstructionWorklist.insert(NI);
+ U.set(NI);
+ C->removeDeadConstantUsers();
+ }
+ }
+ }
+ }
+
+ return Changed;
+ }
+
public:
static char ID;
@@ -151,100 +314,643 @@ public:
initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
}
+ using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>;
+
+ using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>;
+
+ static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M,
+ FunctionVariableMap &kernels,
+ FunctionVariableMap &functions) {
+
+ // Get uses from the current function, excluding uses by called functions
+ // Two output variables to avoid walking the globals list twice
+ for (auto &GV : M.globals()) {
+ if (!AMDGPU::isLDSVariableToLower(GV)) {
+ continue;
+ }
+
+ SmallVector<User *, 16> Stack(GV.users());
+ for (User *V : GV.users()) {
+ if (auto *I = dyn_cast<Instruction>(V)) {
+ Function *F = I->getFunction();
+ if (isKernelLDS(F)) {
+ kernels[F].insert(&GV);
+ } else {
+ functions[F].insert(&GV);
+ }
+ }
+ }
+ }
+ }
+
+ struct LDSUsesInfoTy {
+ FunctionVariableMap direct_access;
+ FunctionVariableMap indirect_access;
+ };
+
+ static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) {
+
+ FunctionVariableMap direct_map_kernel;
+ FunctionVariableMap direct_map_function;
+ getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function);
+
+ // Collect variables that are used by functions whose address has escaped
+ DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer;
+ for (Function &F : M.functions()) {
+ if (!isKernelLDS(&F))
+ if (F.hasAddressTaken(nullptr,
+ /* IgnoreCallbackUses */ false,
+ /* IgnoreAssumeLikeCalls */ false,
+ /* IgnoreLLVMUsed */ true,
+ /* IgnoreArcAttachedCall */ false)) {
+ set_union(VariablesReachableThroughFunctionPointer,
+ direct_map_function[&F]);
+ }
+ }
+
+ auto functionMakesUnknownCall = [&](const Function *F) -> bool {
+ assert(!F->isDeclaration());
+ for (CallGraphNode::CallRecord R : *CG[F]) {
+ if (!R.second->getFunction()) {
+ return true;
+ }
+ }
+ return false;
+ };
+
+ // Work out which variables are reachable through function calls
+ FunctionVariableMap transitive_map_function = direct_map_function;
+
+ // If the function makes any unknown call, assume the worst case that it can
+ // access all variables accessed by functions whose address escaped
+ for (Function &F : M.functions()) {
+ if (!F.isDeclaration() && functionMakesUnknownCall(&F)) {
+ if (!isKernelLDS(&F)) {
+ set_union(transitive_map_function[&F],
+ VariablesReachableThroughFunctionPointer);
+ }
+ }
+ }
+
+ // Direct implementation of collecting all variables reachable from each
+ // function
+ for (Function &Func : M.functions()) {
+ if (Func.isDeclaration() || isKernelLDS(&Func))
+ continue;
+
+ DenseSet<Function *> seen; // catches cycles
+ SmallVector<Function *, 4> wip{&Func};
+
+ while (!wip.empty()) {
+ Function *F = wip.pop_back_val();
+
+ // Can accelerate this by referring to transitive map for functions that
+ // have already been computed, with more care than this
+ set_union(transitive_map_function[&Func], direct_map_function[F]);
+
+ for (CallGraphNode::CallRecord R : *CG[F]) {
+ Function *ith = R.second->getFunction();
+ if (ith) {
+ if (!seen.contains(ith)) {
+ seen.insert(ith);
+ wip.push_back(ith);
+ }
+ }
+ }
+ }
+ }
+
+ // direct_map_kernel lists which variables are used by the kernel
+ // find the variables which are used through a function call
+ FunctionVariableMap indirect_map_kernel;
+
+ for (Function &Func : M.functions()) {
+ if (Func.isDeclaration() || !isKernelLDS(&Func))
+ continue;
+
+ for (CallGraphNode::CallRecord R : *CG[&Func]) {
+ Function *ith = R.second->getFunction();
+ if (ith) {
+ set_union(indirect_map_kernel[&Func], transitive_map_function[ith]);
+ } else {
+ set_union(indirect_map_kernel[&Func],
+ VariablesReachableThroughFunctionPointer);
+ }
+ }
+ }
+
+ return {std::move(direct_map_kernel), std::move(indirect_map_kernel)};
+ }
+
+ struct LDSVariableReplacement {
+ GlobalVariable *SGV = nullptr;
+ DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
+ };
+
+ // remap from lds global to a constantexpr gep to where it has been moved to
+ // for each kernel
+ // an array with an element for each kernel containing where the corresponding
+ // variable was remapped to
+
+ static Constant *getAddressesOfVariablesInKernel(
+ LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
+ DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
+ // Create a ConstantArray containing the address of each Variable within the
+ // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
+ // does not allocate it
+ // TODO: Drop the ptrtoint conversion
+
+ Type *I32 = Type::getInt32Ty(Ctx);
+
+ ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
+
+ SmallVector<Constant *> Elements;
+ for (size_t i = 0; i < Variables.size(); i++) {
+ GlobalVariable *GV = Variables[i];
+ if (LDSVarsToConstantGEP.count(GV) != 0) {
+ auto elt = ConstantExpr::getPtrToInt(LDSVarsToConstantGEP[GV], I32);
+ Elements.push_back(elt);
+ } else {
+ Elements.push_back(PoisonValue::get(I32));
+ }
+ }
+ return ConstantArray::get(KernelOffsetsType, Elements);
+ }
+
+ static GlobalVariable *buildLookupTable(
+ Module &M, ArrayRef<GlobalVariable *> Variables,
+ ArrayRef<Function *> kernels,
+ DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
+ if (Variables.empty()) {
+ return nullptr;
+ }
+ LLVMContext &Ctx = M.getContext();
+
+ const size_t NumberVariables = Variables.size();
+ const size_t NumberKernels = kernels.size();
+
+ ArrayType *KernelOffsetsType =
+ ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
+
+ ArrayType *AllKernelsOffsetsType =
+ ArrayType::get(KernelOffsetsType, NumberKernels);
+
+ std::vector<Constant *> overallConstantExprElts(NumberKernels);
+ for (size_t i = 0; i < NumberKernels; i++) {
+ LDSVariableReplacement Replacement = KernelToReplacement[kernels[i]];
+ overallConstantExprElts[i] = getAddressesOfVariablesInKernel(
+ Ctx, Variables, Replacement.LDSVarsToConstantGEP);
+ }
+
+ Constant *init =
+ ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
+
+ return new GlobalVariable(
+ M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
+ "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
+ AMDGPUAS::CONSTANT_ADDRESS);
+ }
+
+ void replaceUsesInInstructionsWithTableLookup(
+ Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
+ GlobalVariable *LookupTable) {
+
+ LLVMContext &Ctx = M.getContext();
+ IRBuilder<> Builder(Ctx);
+ Type *I32 = Type::getInt32Ty(Ctx);
+
+ // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
+ // lowers to a read from a live in register. Emit it once in the entry
+ // block to spare deduplicating it later.
+
+ DenseMap<Function *, Value *> tableKernelIndexCache;
+ auto getTableKernelIndex = [&](Function *F) -> Value * {
+ if (tableKernelIndexCache.count(F) == 0) {
+ LLVMContext &Ctx = M.getContext();
+ FunctionType *FTy = FunctionType::get(Type::getInt32Ty(Ctx), {});
+ Function *Decl =
+ Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
+
+ BasicBlock::iterator it =
+ F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
+ Instruction &i = *it;
+ Builder.SetInsertPoint(&i);
+
+ tableKernelIndexCache[F] = Builder.CreateCall(FTy, Decl, {});
+ }
+
+ return tableKernelIndexCache[F];
+ };
+
+ for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
+ auto *GV = ModuleScopeVariables[Index];
+
+ for (Use &U : make_early_inc_range(GV->uses())) {
+ auto *I = dyn_cast<Instruction>(U.getUser());
+ if (!I)
+ continue;
+
+ Value *tableKernelIndex = getTableKernelIndex(I->getFunction());
+
+ // So if the phi uses this value multiple times, what does this look
+ // like?
+ if (auto *Phi = dyn_cast<PHINode>(I)) {
+ BasicBlock *BB = Phi->getIncomingBlock(U);
+ Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
+ } else {
+ Builder.SetInsertPoint(I);
+ }
+
+ Value *GEPIdx[3] = {
+ ConstantInt::get(I32, 0),
+ tableKernelIndex,
+ ConstantInt::get(I32, Index),
+ };
+
+ Value *Address = Builder.CreateInBoundsGEP(
+ LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
+
+ Value *loaded = Builder.CreateLoad(I32, Address);
+
+ Value *replacement =
+ Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
+
+ U.set(replacement);
+ }
+ }
+ }
+
+ static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
+ Module &M, LDSUsesInfoTy &LDSUsesInfo,
+ DenseSet<GlobalVariable *> const &VariableSet) {
+
+ DenseSet<Function *> KernelSet;
+
+ if (VariableSet.empty()) return KernelSet;
+
+ for (Function &Func : M.functions()) {
+ if (Func.isDeclaration() || !isKernelLDS(&Func))
+ continue;
+ for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
+ if (VariableSet.contains(GV)) {
+ KernelSet.insert(&Func);
+ break;
+ }
+ }
+ }
+
+ return KernelSet;
+ }
+
+ static GlobalVariable *
+ chooseBestVariableForModuleStrategy(const DataLayout &DL,
+ VariableFunctionMap &LDSVars) {
+ // Find the global variable with the most indirect uses from kernels
+
+ struct CandidateTy {
+ GlobalVariable *GV = nullptr;
+ size_t UserCount = 0;
+ size_t Size = 0;
+
+ CandidateTy() = default;
+
+ CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
+ : GV(GV), UserCount(UserCount), Size(AllocSize) {}
+
+ bool operator<(const CandidateTy &Other) const {
+ // Fewer users makes module scope variable less attractive
+ if (UserCount < Other.UserCount) {
+ return true;
+ }
+ if (UserCount > Other.UserCount) {
+ return false;
+ }
+
+ // Bigger makes module scope variable less attractive
+ if (Size < Other.Size) {
+ return false;
+ }
+
+ if (Size > Other.Size) {
+ return true;
+ }
+
+ // Arbitrary but consistent
+ return GV->getName() < Other.GV->getName();
+ }
+ };
+
+ CandidateTy MostUsed;
+
+ for (auto &K : LDSVars) {
+ GlobalVariable *GV = K.first;
+ if (K.second.size() <= 1) {
+ // A variable reachable by only one kernel is best lowered with kernel
+ // strategy
+ continue;
+ }
+ CandidateTy Candidate(GV, K.second.size(),
+ DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
+ if (MostUsed < Candidate)
+ MostUsed = Candidate;
+ }
+
+ return MostUsed.GV;
+ }
+
bool runOnModule(Module &M) override {
LLVMContext &Ctx = M.getContext();
CallGraph CG = CallGraph(M);
bool Changed = superAlignLDSGlobals(M);
- // Move variables used by functions into amdgcn.module.lds
- std::vector<GlobalVariable *> ModuleScopeVariables =
- AMDGPU::findVariablesToLower(M, nullptr);
- if (!ModuleScopeVariables.empty()) {
- std::string VarName = "llvm.amdgcn.module.lds";
+ Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
- GlobalVariable *SGV;
- DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
- std::tie(SGV, LDSVarsToConstantGEP) =
- createLDSVariableReplacement(M, VarName, ModuleScopeVariables);
+ Changed = true; // todo: narrow this down
- appendToCompilerUsed(
- M, {static_cast<GlobalValue *>(
- ConstantExpr::getPointerBitCastOrAddrSpaceCast(
- cast<Constant>(SGV), Type::getInt8PtrTy(Ctx)))});
+ // For each kernel, what variables does it access directly or through
+ // callees
+ LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
- removeFromUsedLists(M, ModuleScopeVariables);
- replaceLDSVariablesWithStruct(M, ModuleScopeVariables, SGV,
- LDSVarsToConstantGEP,
- [](Use &) { return true; });
+ // For each variable accessed through callees, which kernels access it
+ VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
+ for (auto &K : LDSUsesInfo.indirect_access) {
+ Function *F = K.first;
+ assert(isKernelLDS(F));
+ for (GlobalVariable *GV : K.second) {
+ LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
+ }
+ }
- // This ensures the variable is allocated when called functions access it.
- // It also lets other passes, specifically PromoteAlloca, accurately
- // calculate how much LDS will be used by the kernel after lowering.
+ // Partition variables into the different strategies
+ DenseSet<GlobalVariable *> ModuleScopeVariables;
+ DenseSet<GlobalVariable *> TableLookupVariables;
+ DenseSet<GlobalVariable *> KernelAccessVariables;
- IRBuilder<> Builder(Ctx);
- for (Function &Func : M.functions()) {
- if (!Func.isDeclaration() && AMDGPU::isKernelCC(&Func)) {
- const CallGraphNode *N = CG[&Func];
- const bool CalleesRequireModuleLDS = N->size() > 0;
-
- if (CalleesRequireModuleLDS) {
- // If a function this kernel might call requires module LDS,
- // annotate the kernel to let later passes know it will allocate
- // this structure, even if not apparent from the IR.
- markUsedByKernel(Builder, &Func, SGV);
+ {
+ GlobalVariable *HybridModuleRoot =
+ LoweringKindLoc != LoweringKind::hybrid
+ ? nullptr
+ : chooseBestVariableForModuleStrategy(
+ M.getDataLayout(),
+ LDSToKernelsThatNeedToAccessItIndirectly);
+
+ DenseSet<Function *> const EmptySet;
+ DenseSet<Function *> const &HybridModuleRootKernels =
+ HybridModuleRoot
+ ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
+ : EmptySet;
+
+ for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
+ // Each iteration of this loop assigns exactly one global variable to
+ // exactly one of the implementation strategies.
+
+ GlobalVariable *GV = K.first;
+ assert(AMDGPU::isLDSVariableToLower(*GV));
+ assert(K.second.size() != 0);
+
+ switch (LoweringKindLoc) {
+ case LoweringKind::module:
+ ModuleScopeVariables.insert(GV);
+ break;
+
+ case LoweringKind::table:
+ TableLookupVariables.insert(GV);
+ break;
+
+ case LoweringKind::kernel:
+ if (K.second.size() == 1) {
+ KernelAccessVariables.insert(GV);
} else {
- // However if we are certain this kernel cannot call a function that
- // requires module LDS, annotate the kernel so the backend can elide
- // the allocation without repeating callgraph walks.
- Func.addFnAttr("amdgpu-elide-module-lds");
+ report_fatal_error(
+ "cannot lower LDS '" + GV->getName() +
+ "' to kernel access as it is reachable from multiple kernels");
}
+ break;
+
+ case LoweringKind::hybrid: {
+ if (GV == HybridModuleRoot) {
+ assert(K.second.size() != 1);
+ ModuleScopeVariables.insert(GV);
+ } else if (K.second.size() == 1) {
+ KernelAccessVariables.insert(GV);
+ } else if (set_is_subset(K.second, HybridModuleRootKernels)) {
+ ModuleScopeVariables.insert(GV);
+ } else {
+ TableLookupVariables.insert(GV);
+ }
+ break;
+ }
}
}
- Changed = true;
+ assert(ModuleScopeVariables.size() + TableLookupVariables.size() +
+ KernelAccessVariables.size() ==
+ LDSToKernelsThatNeedToAccessItIndirectly.size());
+ } // Variables have now been partitioned into the three lowering strategies.
+
+ // If the kernel accesses a variable that is going to be stored in the
+ // module instance through a call then that kernel needs to allocate the
+ // module instance
+ DenseSet<Function *> KernelsThatAllocateModuleLDS =
+ kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
+ ModuleScopeVariables);
+ DenseSet<Function *> KernelsThatAllocateTableLDS =
+ kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
+ TableLookupVariables);
+
+ if (!ModuleScopeVariables.empty()) {
+ LDSVariableReplacement ModuleScopeReplacement =
+ createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
+ ModuleScopeVariables);
+
+ appendToCompilerUsed(M,
+ {static_cast<GlobalValue *>(
+ ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+ cast<Constant>(ModuleScopeReplacement.SGV),
+ Type::getInt8PtrTy(Ctx)))});
+
+ // historic
+ removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
+
+ // Replace all uses of module scope variable from non-kernel functions
+ replaceLDSVariablesWithStruct(
+ M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
+ Instruction *I = dyn_cast<Instruction>(U.getUser());
+ if (!I) {
+ return false;
+ }
+ Function *F = I->getFunction();
+ return !isKernelLDS(F);
+ });
+
+ // Replace uses of module scope variable from kernel functions that
+ // allocate the module scope variable, otherwise leave them unchanged
+ // Record on each kernel whether the module scope global is used by it
+
+ LLVMContext &Ctx = M.getContext();
+ IRBuilder<> Builder(Ctx);
+
+ for (Function &Func : M.functions()) {
+ if (Func.isDeclaration() || !isKernelLDS(&Func))
+ continue;
+
+ if (KernelsThatAllocateModuleLDS.contains(&Func)) {
+ replaceLDSVariablesWithStruct(
+ M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
+ Instruction *I = dyn_cast<Instruction>(U.getUser());
+ if (!I) {
+ return false;
+ }
+ Function *F = I->getFunction();
+ return F == &Func;
+ });
+
+ markUsedByKernel(Builder, &Func, ModuleScopeReplacement.SGV);
+
+ } else {
+ Func.addFnAttr("amdgpu-elide-module-lds");
+ }
+ }
}
- // Move variables used by kernels into per-kernel instances
- for (Function &F : M.functions()) {
- if (F.isDeclaration())
+ // Create a struct for each kernel for the non-module-scope variables
+ DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
+ for (Function &Func : M.functions()) {
+ if (Func.isDeclaration() || !isKernelLDS(&Func))
continue;
- // Only lower compute kernels' LDS.
- if (!AMDGPU::isKernel(F.getCallingConv()))
+ DenseSet<GlobalVariable *> KernelUsedVariables;
+ for (auto &v : LDSUsesInfo.direct_access[&Func]) {
+ KernelUsedVariables.insert(v);
+ }
+ for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
+ KernelUsedVariables.insert(v);
+ }
+
+ // Variables allocated in module lds must all resolve to that struct,
+ // not to the per-kernel instance.
+ if (KernelsThatAllocateModuleLDS.contains(&Func)) {
+ for (GlobalVariable *v : ModuleScopeVariables) {
+ KernelUsedVariables.erase(v);
+ }
+ }
+
+ if (KernelUsedVariables.empty()) {
+ // Either used no LDS, or all the LDS it used was also in module
continue;
+ }
- std::vector<GlobalVariable *> KernelUsedVariables =
- AMDGPU::findVariablesToLower(M, &F);
+ // The association between kernel function and LDS struct is done by
+ // symbol name, which only works if the function in question has a
+ // name This is not expected to be a problem in practice as kernels
+ // are called by name making anonymous ones (which are named by the
+ // backend) difficult to use. This does mean that llvm test cases need
+ // to name the kernels.
+ if (!Func.hasName()) {
+ report_fatal_error("Anonymous kernels cannot use LDS variables");
+ }
- // Replace all constant uses with instructions if they belong to the
- // current kernel. Unnecessary, removing will cause test churn.
- for (size_t I = 0; I < KernelUsedVariables.size(); I++) {
- GlobalVariable *GV = KernelUsedVariables[I];
- for (User *U : make_early_inc_range(GV->users())) {
- if (ConstantExpr *C = dyn_cast<ConstantExpr>(U))
- AMDGPU::replaceConstantUsesInFunction(C, &F);
+ std::string VarName =
+ (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
+
+ auto Replacement =
+ createLDSVariableReplacement(M, VarName, KernelUsedVariables);
+
+ // remove preserves existing codegen
+ removeLocalVarsFromUsedLists(M, KernelUsedVariables);
+ KernelToReplacement[&Func] = Replacement;
+
+ // Rewrite uses within kernel to the new struct
+ replaceLDSVariablesWithStruct(
+ M, KernelUsedVariables, Replacement, [&Func](Use &U) {
+ Instruction *I = dyn_cast<Instruction>(U.getUser());
+ return I && I->getFunction() == &Func;
+ });
+ }
+
+ // Lower zero cost accesses to the kernel instances just created
+ for (auto &GV : KernelAccessVariables) {
+ auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
+ assert(funcs.size() == 1); // Only one kernel can access it
+ LDSVariableReplacement Replacement =
+ KernelToReplacement[*(funcs.begin())];
+
+ DenseSet<GlobalVariable *> Vec;
+ Vec.insert(GV);
+
+ replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
+ return isa<Instruction>(U.getUser());
+ });
+ }
+
+ if (!KernelsThatAllocateTableLDS.empty()) {
+ // Collect the kernels that allocate table lookup LDS
+ std::vector<Function *> OrderedKernels;
+ {
+ for (Function &Func : M.functions()) {
+ if (Func.isDeclaration())
+ continue;
+ if (!isKernelLDS(&Func))
+ continue;
+
+ if (KernelsThatAllocateTableLDS.contains(&Func)) {
+ assert(Func.hasName()); // else fatal error earlier
+ OrderedKernels.push_back(&Func);
+ }
+ }
+
+ // Put them in an arbitrary but reproducible order
+ llvm::sort(OrderedKernels.begin(), OrderedKernels.end(),
+ [](const Function *lhs, const Function *rhs) -> bool {
+ return lhs->getName() < rhs->getName();
+ });
+
+ // Annotate the kernels with their order in this vector
+ LLVMContext &Ctx = M.getContext();
+ IRBuilder<> Builder(Ctx);
+
+ if (OrderedKernels.size() > UINT32_MAX) {
+ // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
+ report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
+ }
+
+ for (size_t i = 0; i < OrderedKernels.size(); i++) {
+ Metadata *AttrMDArgs[1] = {
+ ConstantAsMetadata::get(Builder.getInt32(i)),
+ };
+ OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
+ MDNode::get(Ctx, AttrMDArgs));
+
+ markUsedByKernel(Builder, OrderedKernels[i],
+ KernelToReplacement[OrderedKernels[i]].SGV);
}
- GV->removeDeadConstantUsers();
- }
-
- if (!KernelUsedVariables.empty()) {
- std::string VarName =
- (Twine("llvm.amdgcn.kernel.") + F.getName() + ".lds").str();
- GlobalVariable *SGV;
- DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
- std::tie(SGV, LDSVarsToConstantGEP) =
- createLDSVariableReplacement(M, VarName, KernelUsedVariables);
-
- removeFromUsedLists(M, KernelUsedVariables);
- replaceLDSVariablesWithStruct(
- M, KernelUsedVariables, SGV, LDSVarsToConstantGEP, [&F](Use &U) {
- Instruction *I = dyn_cast<Instruction>(U.getUser());
- return I && I->getFunction() == &F;
- });
- Changed = true;
}
+
+ // The order must be consistent between lookup table and accesses to
+ // lookup table
+ std::vector<GlobalVariable *> TableLookupVariablesOrdered(
+ TableLookupVariables.begin(), TableLookupVariables.end());
+ llvm::sort(TableLookupVariablesOrdered.begin(),
+ TableLookupVariablesOrdered.end(),
+ [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
+ return lhs->getName() < rhs->getName();
+ });
+
+ GlobalVariable *LookupTable = buildLookupTable(
+ M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
+ replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
+ LookupTable);
}
+ for (auto &GV : make_early_inc_range(M.globals()))
+ if (AMDGPU::isLDSVariableToLower(GV)) {
+
+ // probably want to remove from used lists
+ GV.removeDeadConstantUsers();
+ if (GV.use_empty())
+ GV.eraseFromParent();
+ }
+
return Changed;
}
@@ -293,10 +999,9 @@ private:
return Changed;
}
- std::tuple<GlobalVariable *, DenseMap<GlobalVariable *, Constant *>>
- createLDSVariableReplacement(
+ static LDSVariableReplacement createLDSVariableReplacement(
Module &M, std::string VarName,
- std::vector<GlobalVariable *> const &LDSVarsToTransform) {
+ DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
// Create a struct instance containing LDSVarsToTransform and map from those
// variables to ConstantExprGEP
// Variables may be introduced to meet alignment requirements. No aliasing
@@ -308,10 +1013,22 @@ private:
SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
LayoutFields.reserve(LDSVarsToTransform.size());
- for (GlobalVariable *GV : LDSVarsToTransform) {
- OptimizedStructLayoutField F(GV, DL.getTypeAllocSize(GV->getValueType()),
- AMDGPU::getAlign(DL, GV));
- LayoutFields.emplace_back(F);
+ {
+ // The order of fields in this struct depends on the order of
+ // varables in the argument which varies when changing how they
+ // are identified, leading to spurious test breakage.
+ std::vector<GlobalVariable *> Sorted(LDSVarsToTransform.begin(),
+ LDSVarsToTransform.end());
+ llvm::sort(Sorted.begin(), Sorted.end(),
+ [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
+ return lhs->getName() < rhs->getName();
+ });
+ for (GlobalVariable *GV : Sorted) {
+ OptimizedStructLayoutField F(GV,
+ DL.getTypeAllocSize(GV->getValueType()),
+ AMDGPU::getAlign(DL, GV));
+ LayoutFields.emplace_back(F);
+ }
}
performOptimizedStructLayout(LayoutFields);
@@ -358,8 +1075,7 @@ private:
StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
- Align StructAlign =
- AMDGPU::getAlign(DL, LocalVars[0]);
+ Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
GlobalVariable *SGV = new GlobalVariable(
M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
@@ -386,13 +1102,21 @@ private:
template <typename PredicateTy>
void replaceLDSVariablesWithStruct(
- Module &M, std::vector<GlobalVariable *> const &LDSVarsToTransform,
- GlobalVariable *SGV,
- DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP,
- PredicateTy Predicate) {
+ Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
+ LDSVariableReplacement Replacement, PredicateTy Predicate) {
LLVMContext &Ctx = M.getContext();
const DataLayout &DL = M.getDataLayout();
+ // A hack... we need to insert the aliasing info in a predictable order for
+ // lit tests. Would like to have them in a stable order already, ideally the
+ // same order they get allocated, which might mean an ordered set container
+ std::vector<GlobalVariable *> LDSVarsToTransform(
+ LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end());
+ llvm::sort(LDSVarsToTransform.begin(), LDSVarsToTransform.end(),
+ [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
+ return lhs->getName() < rhs->getName();
+ });
+
// Create alias.scope and their lists. Each field in the new structure
// does not alias with all other fields.
SmallVector<MDNode *> AliasScopes;
@@ -413,18 +1137,16 @@ private:
// field of the instance that will be allocated by AMDGPUMachineFunction
for (size_t I = 0; I < NumberVars; I++) {
GlobalVariable *GV = LDSVarsToTransform[I];
- Constant *GEP = LDSVarsToConstantGEP[GV];
+ Constant *GEP = Replacement.LDSVarsToConstantGEP[GV];
GV->replaceUsesWithIf(GEP, Predicate);
- if (GV->use_empty()) {
- GV->eraseFromParent();
- }
APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
uint64_t Offset = APOff.getZExtValue();
- Align A = commonAlignment(SGV->getAlign().valueOrOne(), Offset);
+ Align A =
+ commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
if (I)
NoAliasList[I - 1] = AliasScopes[I - 1];