diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp | 1561 |
1 files changed, 1561 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp new file mode 100644 index 000000000000..9a42365adc1b --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp @@ -0,0 +1,1561 @@ +//===- LoopInterchange.cpp - Loop interchange pass-------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This Pass handles loop interchange transform. +// This pass interchanges loops to provide a more cache-friendly memory access +// patterns. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/DependenceAnalysis.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include <cassert> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "loop-interchange" + +STATISTIC(LoopsInterchanged, "Number of loops interchanged"); + +static cl::opt<int> LoopInterchangeCostThreshold( + "loop-interchange-threshold", cl::init(0), cl::Hidden, + cl::desc("Interchange if you gain more than this number")); + +namespace { + +using LoopVector = SmallVector<Loop *, 8>; + +// TODO: Check if we can use a sparse matrix here. +using CharMatrix = std::vector<std::vector<char>>; + +} // end anonymous namespace + +// Maximum number of dependencies that can be handled in the dependency matrix. +static const unsigned MaxMemInstrCount = 100; + +// Maximum loop depth supported. +static const unsigned MaxLoopNestDepth = 10; + +#ifdef DUMP_DEP_MATRICIES +static void printDepMatrix(CharMatrix &DepMatrix) { + for (auto &Row : DepMatrix) { + for (auto D : Row) + LLVM_DEBUG(dbgs() << D << " "); + LLVM_DEBUG(dbgs() << "\n"); + } +} +#endif + +static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, + Loop *L, DependenceInfo *DI) { + using ValueVector = SmallVector<Value *, 16>; + + ValueVector MemInstr; + + // For each block. + for (BasicBlock *BB : L->blocks()) { + // Scan the BB and collect legal loads and stores. + for (Instruction &I : *BB) { + if (!isa<Instruction>(I)) + return false; + if (auto *Ld = dyn_cast<LoadInst>(&I)) { + if (!Ld->isSimple()) + return false; + MemInstr.push_back(&I); + } else if (auto *St = dyn_cast<StoreInst>(&I)) { + if (!St->isSimple()) + return false; + MemInstr.push_back(&I); + } + } + } + + LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() + << " Loads and Stores to analyze\n"); + + ValueVector::iterator I, IE, J, JE; + + for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { + for (J = I, JE = MemInstr.end(); J != JE; ++J) { + std::vector<char> Dep; + Instruction *Src = cast<Instruction>(*I); + Instruction *Dst = cast<Instruction>(*J); + if (Src == Dst) + continue; + // Ignore Input dependencies. + if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) + continue; + // Track Output, Flow, and Anti dependencies. + if (auto D = DI->depends(Src, Dst, true)) { + assert(D->isOrdered() && "Expected an output, flow or anti dep."); + LLVM_DEBUG(StringRef DepType = + D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; + dbgs() << "Found " << DepType + << " dependency between Src and Dst\n" + << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); + unsigned Levels = D->getLevels(); + char Direction; + for (unsigned II = 1; II <= Levels; ++II) { + const SCEV *Distance = D->getDistance(II); + const SCEVConstant *SCEVConst = + dyn_cast_or_null<SCEVConstant>(Distance); + if (SCEVConst) { + const ConstantInt *CI = SCEVConst->getValue(); + if (CI->isNegative()) + Direction = '<'; + else if (CI->isZero()) + Direction = '='; + else + Direction = '>'; + Dep.push_back(Direction); + } else if (D->isScalar(II)) { + Direction = 'S'; + Dep.push_back(Direction); + } else { + unsigned Dir = D->getDirection(II); + if (Dir == Dependence::DVEntry::LT || + Dir == Dependence::DVEntry::LE) + Direction = '<'; + else if (Dir == Dependence::DVEntry::GT || + Dir == Dependence::DVEntry::GE) + Direction = '>'; + else if (Dir == Dependence::DVEntry::EQ) + Direction = '='; + else + Direction = '*'; + Dep.push_back(Direction); + } + } + while (Dep.size() != Level) { + Dep.push_back('I'); + } + + DepMatrix.push_back(Dep); + if (DepMatrix.size() > MaxMemInstrCount) { + LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount + << " dependencies inside loop\n"); + return false; + } + } + } + } + + return true; +} + +// A loop is moved from index 'from' to an index 'to'. Update the Dependence +// matrix by exchanging the two columns. +static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, + unsigned ToIndx) { + unsigned numRows = DepMatrix.size(); + for (unsigned i = 0; i < numRows; ++i) { + char TmpVal = DepMatrix[i][ToIndx]; + DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; + DepMatrix[i][FromIndx] = TmpVal; + } +} + +// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is +// '>' +static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, + unsigned Column) { + for (unsigned i = 0; i <= Column; ++i) { + if (DepMatrix[Row][i] == '<') + return false; + if (DepMatrix[Row][i] == '>') + return true; + } + // All dependencies were '=','S' or 'I' + return false; +} + +// Checks if no dependence exist in the dependency matrix in Row before Column. +static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, + unsigned Column) { + for (unsigned i = 0; i < Column; ++i) { + if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && + DepMatrix[Row][i] != 'I') + return false; + } + return true; +} + +static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, + unsigned OuterLoopId, char InnerDep, + char OuterDep) { + if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) + return false; + + if (InnerDep == OuterDep) + return true; + + // It is legal to interchange if and only if after interchange no row has a + // '>' direction as the leftmost non-'='. + + if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') + return true; + + if (InnerDep == '<') + return true; + + if (InnerDep == '>') { + // If OuterLoopId represents outermost loop then interchanging will make the + // 1st dependency as '>' + if (OuterLoopId == 0) + return false; + + // If all dependencies before OuterloopId are '=','S'or 'I'. Then + // interchanging will result in this row having an outermost non '=' + // dependency of '>' + if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) + return true; + } + + return false; +} + +// Checks if it is legal to interchange 2 loops. +// [Theorem] A permutation of the loops in a perfect nest is legal if and only +// if the direction matrix, after the same permutation is applied to its +// columns, has no ">" direction as the leftmost non-"=" direction in any row. +static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, + unsigned InnerLoopId, + unsigned OuterLoopId) { + unsigned NumRows = DepMatrix.size(); + // For each row check if it is valid to interchange. + for (unsigned Row = 0; Row < NumRows; ++Row) { + char InnerDep = DepMatrix[Row][InnerLoopId]; + char OuterDep = DepMatrix[Row][OuterLoopId]; + if (InnerDep == '*' || OuterDep == '*') + return false; + if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) + return false; + } + return true; +} + +static LoopVector populateWorklist(Loop &L) { + LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " + << L.getHeader()->getParent()->getName() << " Loop: %" + << L.getHeader()->getName() << '\n'); + LoopVector LoopList; + Loop *CurrentLoop = &L; + const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); + while (!Vec->empty()) { + // The current loop has multiple subloops in it hence it is not tightly + // nested. + // Discard all loops above it added into Worklist. + if (Vec->size() != 1) + return {}; + + LoopList.push_back(CurrentLoop); + CurrentLoop = Vec->front(); + Vec = &CurrentLoop->getSubLoops(); + } + LoopList.push_back(CurrentLoop); + return LoopList; +} + +static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { + PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); + if (InnerIndexVar) + return InnerIndexVar; + if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) + return nullptr; + for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { + PHINode *PhiVar = cast<PHINode>(I); + Type *PhiTy = PhiVar->getType(); + if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && + !PhiTy->isPointerTy()) + return nullptr; + const SCEVAddRecExpr *AddRec = + dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); + if (!AddRec || !AddRec->isAffine()) + continue; + const SCEV *Step = AddRec->getStepRecurrence(*SE); + if (!isa<SCEVConstant>(Step)) + continue; + // Found the induction variable. + // FIXME: Handle loops with more than one induction variable. Note that, + // currently, legality makes sure we have only one induction variable. + return PhiVar; + } + return nullptr; +} + +namespace { + +/// LoopInterchangeLegality checks if it is legal to interchange the loop. +class LoopInterchangeLegality { +public: + LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, + OptimizationRemarkEmitter *ORE) + : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} + + /// Check if the loops can be interchanged. + bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, + CharMatrix &DepMatrix); + + /// Check if the loop structure is understood. We do not handle triangular + /// loops for now. + bool isLoopStructureUnderstood(PHINode *InnerInductionVar); + + bool currentLimitations(); + + const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { + return OuterInnerReductions; + } + +private: + bool tightlyNested(Loop *Outer, Loop *Inner); + bool containsUnsafeInstructions(BasicBlock *BB); + + /// Discover induction and reduction PHIs in the header of \p L. Induction + /// PHIs are added to \p Inductions, reductions are added to + /// OuterInnerReductions. When the outer loop is passed, the inner loop needs + /// to be passed as \p InnerLoop. + bool findInductionAndReductions(Loop *L, + SmallVector<PHINode *, 8> &Inductions, + Loop *InnerLoop); + + Loop *OuterLoop; + Loop *InnerLoop; + + ScalarEvolution *SE; + + /// Interface to emit optimization remarks. + OptimizationRemarkEmitter *ORE; + + /// Set of reduction PHIs taking part of a reduction across the inner and + /// outer loop. + SmallPtrSet<PHINode *, 4> OuterInnerReductions; +}; + +/// LoopInterchangeProfitability checks if it is profitable to interchange the +/// loop. +class LoopInterchangeProfitability { +public: + LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, + OptimizationRemarkEmitter *ORE) + : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} + + /// Check if the loop interchange is profitable. + bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, + CharMatrix &DepMatrix); + +private: + int getInstrOrderCost(); + + Loop *OuterLoop; + Loop *InnerLoop; + + /// Scev analysis. + ScalarEvolution *SE; + + /// Interface to emit optimization remarks. + OptimizationRemarkEmitter *ORE; +}; + +/// LoopInterchangeTransform interchanges the loop. +class LoopInterchangeTransform { +public: + LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, + LoopInfo *LI, DominatorTree *DT, + BasicBlock *LoopNestExit, + const LoopInterchangeLegality &LIL) + : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), + LoopExit(LoopNestExit), LIL(LIL) {} + + /// Interchange OuterLoop and InnerLoop. + bool transform(); + void restructureLoops(Loop *NewInner, Loop *NewOuter, + BasicBlock *OrigInnerPreHeader, + BasicBlock *OrigOuterPreHeader); + void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); + +private: + void splitInnerLoopLatch(Instruction *); + void splitInnerLoopHeader(); + bool adjustLoopLinks(); + void adjustLoopPreheaders(); + bool adjustLoopBranches(); + + Loop *OuterLoop; + Loop *InnerLoop; + + /// Scev analysis. + ScalarEvolution *SE; + + LoopInfo *LI; + DominatorTree *DT; + BasicBlock *LoopExit; + + const LoopInterchangeLegality &LIL; +}; + +// Main LoopInterchange Pass. +struct LoopInterchange : public LoopPass { + static char ID; + ScalarEvolution *SE = nullptr; + LoopInfo *LI = nullptr; + DependenceInfo *DI = nullptr; + DominatorTree *DT = nullptr; + + /// Interface to emit optimization remarks. + OptimizationRemarkEmitter *ORE; + + LoopInterchange() : LoopPass(ID) { + initializeLoopInterchangePass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<DependenceAnalysisWrapperPass>(); + AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); + + getLoopAnalysisUsage(AU); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM) override { + if (skipLoop(L) || L->getParentLoop()) + return false; + + SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); + + return processLoopList(populateWorklist(*L)); + } + + bool isComputableLoopNest(LoopVector LoopList) { + for (Loop *L : LoopList) { + const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); + if (ExitCountOuter == SE->getCouldNotCompute()) { + LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); + return false; + } + if (L->getNumBackEdges() != 1) { + LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); + return false; + } + if (!L->getExitingBlock()) { + LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); + return false; + } + } + return true; + } + + unsigned selectLoopForInterchange(const LoopVector &LoopList) { + // TODO: Add a better heuristic to select the loop to be interchanged based + // on the dependence matrix. Currently we select the innermost loop. + return LoopList.size() - 1; + } + + bool processLoopList(LoopVector LoopList) { + bool Changed = false; + unsigned LoopNestDepth = LoopList.size(); + if (LoopNestDepth < 2) { + LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); + return false; + } + if (LoopNestDepth > MaxLoopNestDepth) { + LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " + << MaxLoopNestDepth << "\n"); + return false; + } + if (!isComputableLoopNest(LoopList)) { + LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); + return false; + } + + LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth + << "\n"); + + CharMatrix DependencyMatrix; + Loop *OuterMostLoop = *(LoopList.begin()); + if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, + OuterMostLoop, DI)) { + LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); + return false; + } +#ifdef DUMP_DEP_MATRICIES + LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); + printDepMatrix(DependencyMatrix); +#endif + + // Get the Outermost loop exit. + BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); + if (!LoopNestExit) { + LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); + return false; + } + + unsigned SelecLoopId = selectLoopForInterchange(LoopList); + // Move the selected loop outwards to the best possible position. + for (unsigned i = SelecLoopId; i > 0; i--) { + bool Interchanged = + processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); + if (!Interchanged) + return Changed; + // Loops interchanged reflect the same in LoopList + std::swap(LoopList[i - 1], LoopList[i]); + + // Update the DependencyMatrix + interChangeDependencies(DependencyMatrix, i, i - 1); +#ifdef DUMP_DEP_MATRICIES + LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); + printDepMatrix(DependencyMatrix); +#endif + Changed |= Interchanged; + } + return Changed; + } + + bool processLoop(LoopVector LoopList, unsigned InnerLoopId, + unsigned OuterLoopId, BasicBlock *LoopNestExit, + std::vector<std::vector<char>> &DependencyMatrix) { + LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId + << " and OuterLoopId = " << OuterLoopId << "\n"); + Loop *InnerLoop = LoopList[InnerLoopId]; + Loop *OuterLoop = LoopList[OuterLoopId]; + + LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); + if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { + LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); + return false; + } + LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); + LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); + if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { + LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); + return false; + } + + ORE->emit([&]() { + return OptimizationRemark(DEBUG_TYPE, "Interchanged", + InnerLoop->getStartLoc(), + InnerLoop->getHeader()) + << "Loop interchanged with enclosing loop."; + }); + + LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, + LIL); + LIT.transform(); + LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); + LoopsInterchanged++; + return true; + } +}; + +} // end anonymous namespace + +bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { + return any_of(*BB, [](const Instruction &I) { + return I.mayHaveSideEffects() || I.mayReadFromMemory(); + }); +} + +bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { + BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); + BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); + BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); + + LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); + + // A perfectly nested loop will not have any branch in between the outer and + // inner block i.e. outer header will branch to either inner preheader and + // outerloop latch. + BranchInst *OuterLoopHeaderBI = + dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); + if (!OuterLoopHeaderBI) + return false; + + for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) + if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && + Succ != OuterLoopLatch) + return false; + + LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); + // We do not have any basic block in between now make sure the outer header + // and outer loop latch doesn't contain any unsafe instructions. + if (containsUnsafeInstructions(OuterLoopHeader) || + containsUnsafeInstructions(OuterLoopLatch)) + return false; + + LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); + // We have a perfect loop nest. + return true; +} + +bool LoopInterchangeLegality::isLoopStructureUnderstood( + PHINode *InnerInduction) { + unsigned Num = InnerInduction->getNumOperands(); + BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); + for (unsigned i = 0; i < Num; ++i) { + Value *Val = InnerInduction->getOperand(i); + if (isa<Constant>(Val)) + continue; + Instruction *I = dyn_cast<Instruction>(Val); + if (!I) + return false; + // TODO: Handle triangular loops. + // e.g. for(int i=0;i<N;i++) + // for(int j=i;j<N;j++) + unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); + if (InnerInduction->getIncomingBlock(IncomBlockIndx) == + InnerLoopPreheader && + !OuterLoop->isLoopInvariant(I)) { + return false; + } + } + return true; +} + +// If SV is a LCSSA PHI node with a single incoming value, return the incoming +// value. +static Value *followLCSSA(Value *SV) { + PHINode *PHI = dyn_cast<PHINode>(SV); + if (!PHI) + return SV; + + if (PHI->getNumIncomingValues() != 1) + return SV; + return followLCSSA(PHI->getIncomingValue(0)); +} + +// Check V's users to see if it is involved in a reduction in L. +static PHINode *findInnerReductionPhi(Loop *L, Value *V) { + for (Value *User : V->users()) { + if (PHINode *PHI = dyn_cast<PHINode>(User)) { + if (PHI->getNumIncomingValues() == 1) + continue; + RecurrenceDescriptor RD; + if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) + return PHI; + return nullptr; + } + } + + return nullptr; +} + +bool LoopInterchangeLegality::findInductionAndReductions( + Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { + if (!L->getLoopLatch() || !L->getLoopPredecessor()) + return false; + for (PHINode &PHI : L->getHeader()->phis()) { + RecurrenceDescriptor RD; + InductionDescriptor ID; + if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) + Inductions.push_back(&PHI); + else { + // PHIs in inner loops need to be part of a reduction in the outer loop, + // discovered when checking the PHIs of the outer loop earlier. + if (!InnerLoop) { + if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end()) { + LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " + "across the outer loop.\n"); + return false; + } + } else { + assert(PHI.getNumIncomingValues() == 2 && + "Phis in loop header should have exactly 2 incoming values"); + // Check if we have a PHI node in the outer loop that has a reduction + // result from the inner loop as an incoming value. + Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); + PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); + if (!InnerRedPhi || + !llvm::any_of(InnerRedPhi->incoming_values(), + [&PHI](Value *V) { return V == &PHI; })) { + LLVM_DEBUG( + dbgs() + << "Failed to recognize PHI as an induction or reduction.\n"); + return false; + } + OuterInnerReductions.insert(&PHI); + OuterInnerReductions.insert(InnerRedPhi); + } + } + } + return true; +} + +static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) { + for (PHINode &PHI : Block->phis()) { + // Reduction lcssa phi will have only 1 incoming block that from loop latch. + if (PHI.getNumIncomingValues() > 1) + return false; + Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0)); + if (!Ins) + return false; + // Incoming value for lcssa phi's in outer loop exit can only be inner loop + // exits lcssa phi else it would not be tightly nested. + if (!isa<PHINode>(Ins) && isOuterLoopExitBlock) + return false; + } + return true; +} + +// This function indicates the current limitations in the transform as a result +// of which we do not proceed. +bool LoopInterchangeLegality::currentLimitations() { + BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); + BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); + + // transform currently expects the loop latches to also be the exiting + // blocks. + if (InnerLoop->getExitingBlock() != InnerLoopLatch || + OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || + !isa<BranchInst>(InnerLoopLatch->getTerminator()) || + !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { + LLVM_DEBUG( + dbgs() << "Loops where the latch is not the exiting block are not" + << " supported currently.\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", + OuterLoop->getStartLoc(), + OuterLoop->getHeader()) + << "Loops where the latch is not the exiting block cannot be" + " interchange currently."; + }); + return true; + } + + PHINode *InnerInductionVar; + SmallVector<PHINode *, 8> Inductions; + if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { + LLVM_DEBUG( + dbgs() << "Only outer loops with induction or reduction PHI nodes " + << "are supported currently.\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", + OuterLoop->getStartLoc(), + OuterLoop->getHeader()) + << "Only outer loops with induction or reduction PHI nodes can be" + " interchanged currently."; + }); + return true; + } + + // TODO: Currently we handle only loops with 1 induction variable. + if (Inductions.size() != 1) { + LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " + << "supported currently.\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", + OuterLoop->getStartLoc(), + OuterLoop->getHeader()) + << "Only outer loops with 1 induction variable can be " + "interchanged currently."; + }); + return true; + } + + Inductions.clear(); + if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { + LLVM_DEBUG( + dbgs() << "Only inner loops with induction or reduction PHI nodes " + << "are supported currently.\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", + InnerLoop->getStartLoc(), + InnerLoop->getHeader()) + << "Only inner loops with induction or reduction PHI nodes can be" + " interchange currently."; + }); + return true; + } + + // TODO: Currently we handle only loops with 1 induction variable. + if (Inductions.size() != 1) { + LLVM_DEBUG( + dbgs() << "We currently only support loops with 1 induction variable." + << "Failed to interchange due to current limitation\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", + InnerLoop->getStartLoc(), + InnerLoop->getHeader()) + << "Only inner loops with 1 induction variable can be " + "interchanged currently."; + }); + return true; + } + InnerInductionVar = Inductions.pop_back_val(); + + // TODO: Triangular loops are not handled for now. + if (!isLoopStructureUnderstood(InnerInductionVar)) { + LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", + InnerLoop->getStartLoc(), + InnerLoop->getHeader()) + << "Inner loop structure not understood currently."; + }); + return true; + } + + // TODO: We only handle LCSSA PHI's corresponding to reduction for now. + BasicBlock *InnerExit = InnerLoop->getExitBlock(); + if (!containsSafePHI(InnerExit, false)) { + LLVM_DEBUG( + dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner", + InnerLoop->getStartLoc(), + InnerLoop->getHeader()) + << "Only inner loops with LCSSA PHIs can be interchange " + "currently."; + }); + return true; + } + + // TODO: Current limitation: Since we split the inner loop latch at the point + // were induction variable is incremented (induction.next); We cannot have + // more than 1 user of induction.next since it would result in broken code + // after split. + // e.g. + // for(i=0;i<N;i++) { + // for(j = 0;j<M;j++) { + // A[j+1][i+2] = A[j][i]+k; + // } + // } + Instruction *InnerIndexVarInc = nullptr; + if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) + InnerIndexVarInc = + dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); + else + InnerIndexVarInc = + dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); + + if (!InnerIndexVarInc) { + LLVM_DEBUG( + dbgs() << "Did not find an instruction to increment the induction " + << "variable.\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", + InnerLoop->getStartLoc(), + InnerLoop->getHeader()) + << "The inner loop does not increment the induction variable."; + }); + return true; + } + + // Since we split the inner loop latch on this induction variable. Make sure + // we do not have any instruction between the induction variable and branch + // instruction. + + bool FoundInduction = false; + for (const Instruction &I : + llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { + if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || + isa<ZExtInst>(I)) + continue; + + // We found an instruction. If this is not induction variable then it is not + // safe to split this loop latch. + if (!I.isIdenticalTo(InnerIndexVarInc)) { + LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " + << "variable increment and branch.\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed( + DEBUG_TYPE, "UnsupportedInsBetweenInduction", + InnerLoop->getStartLoc(), InnerLoop->getHeader()) + << "Found unsupported instruction between induction variable " + "increment and branch."; + }); + return true; + } + + FoundInduction = true; + break; + } + // The loop latch ended and we didn't find the induction variable return as + // current limitation. + if (!FoundInduction) { + LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", + InnerLoop->getStartLoc(), + InnerLoop->getHeader()) + << "Did not find the induction variable."; + }); + return true; + } + return false; +} + +// We currently support LCSSA PHI nodes in the outer loop exit, if their +// incoming values do not come from the outer loop latch or if the +// outer loop latch has a single predecessor. In that case, the value will +// be available if both the inner and outer loop conditions are true, which +// will still be true after interchanging. If we have multiple predecessor, +// that may not be the case, e.g. because the outer loop latch may be executed +// if the inner loop is not executed. +static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { + BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); + for (PHINode &PHI : LoopNestExit->phis()) { + // FIXME: We currently are not able to detect floating point reductions + // and have to use floating point PHIs as a proxy to prevent + // interchanging in the presence of floating point reductions. + if (PHI.getType()->isFloatingPointTy()) + return false; + for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { + Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); + if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) + continue; + + // The incoming value is defined in the outer loop latch. Currently we + // only support that in case the outer loop latch has a single predecessor. + // This guarantees that the outer loop latch is executed if and only if + // the inner loop is executed (because tightlyNested() guarantees that the + // outer loop header only branches to the inner loop or the outer loop + // latch). + // FIXME: We could weaken this logic and allow multiple predecessors, + // if the values are produced outside the loop latch. We would need + // additional logic to update the PHI nodes in the exit block as + // well. + if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) + return false; + } + } + return true; +} + +bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, + unsigned OuterLoopId, + CharMatrix &DepMatrix) { + if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { + LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId + << " and OuterLoopId = " << OuterLoopId + << " due to dependence\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", + InnerLoop->getStartLoc(), + InnerLoop->getHeader()) + << "Cannot interchange loops due to dependences."; + }); + return false; + } + // Check if outer and inner loop contain legal instructions only. + for (auto *BB : OuterLoop->blocks()) + for (Instruction &I : BB->instructionsWithoutDebug()) + if (CallInst *CI = dyn_cast<CallInst>(&I)) { + // readnone functions do not prevent interchanging. + if (CI->doesNotReadMemory()) + continue; + LLVM_DEBUG( + dbgs() << "Loops with call instructions cannot be interchanged " + << "safely."); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", + CI->getDebugLoc(), + CI->getParent()) + << "Cannot interchange loops due to call instruction."; + }); + + return false; + } + + // TODO: The loops could not be interchanged due to current limitations in the + // transform module. + if (currentLimitations()) { + LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); + return false; + } + + // Check if the loops are tightly nested. + if (!tightlyNested(OuterLoop, InnerLoop)) { + LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", + InnerLoop->getStartLoc(), + InnerLoop->getHeader()) + << "Cannot interchange loops because they are not tightly " + "nested."; + }); + return false; + } + + if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) { + LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", + OuterLoop->getStartLoc(), + OuterLoop->getHeader()) + << "Found unsupported PHI node in loop exit."; + }); + return false; + } + + return true; +} + +int LoopInterchangeProfitability::getInstrOrderCost() { + unsigned GoodOrder, BadOrder; + BadOrder = GoodOrder = 0; + for (BasicBlock *BB : InnerLoop->blocks()) { + for (Instruction &Ins : *BB) { + if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { + unsigned NumOp = GEP->getNumOperands(); + bool FoundInnerInduction = false; + bool FoundOuterInduction = false; + for (unsigned i = 0; i < NumOp; ++i) { + const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); + if (!AR) + continue; + + // If we find the inner induction after an outer induction e.g. + // for(int i=0;i<N;i++) + // for(int j=0;j<N;j++) + // A[i][j] = A[i-1][j-1]+k; + // then it is a good order. + if (AR->getLoop() == InnerLoop) { + // We found an InnerLoop induction after OuterLoop induction. It is + // a good order. + FoundInnerInduction = true; + if (FoundOuterInduction) { + GoodOrder++; + break; + } + } + // If we find the outer induction after an inner induction e.g. + // for(int i=0;i<N;i++) + // for(int j=0;j<N;j++) + // A[j][i] = A[j-1][i-1]+k; + // then it is a bad order. + if (AR->getLoop() == OuterLoop) { + // We found an OuterLoop induction after InnerLoop induction. It is + // a bad order. + FoundOuterInduction = true; + if (FoundInnerInduction) { + BadOrder++; + break; + } + } + } + } + } + } + return GoodOrder - BadOrder; +} + +static bool isProfitableForVectorization(unsigned InnerLoopId, + unsigned OuterLoopId, + CharMatrix &DepMatrix) { + // TODO: Improve this heuristic to catch more cases. + // If the inner loop is loop independent or doesn't carry any dependency it is + // profitable to move this to outer position. + for (auto &Row : DepMatrix) { + if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') + return false; + // TODO: We need to improve this heuristic. + if (Row[OuterLoopId] != '=') + return false; + } + // If outer loop has dependence and inner loop is loop independent then it is + // profitable to interchange to enable parallelism. + // If there are no dependences, interchanging will not improve anything. + return !DepMatrix.empty(); +} + +bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, + unsigned OuterLoopId, + CharMatrix &DepMatrix) { + // TODO: Add better profitability checks. + // e.g + // 1) Construct dependency matrix and move the one with no loop carried dep + // inside to enable vectorization. + + // This is rough cost estimation algorithm. It counts the good and bad order + // of induction variables in the instruction and allows reordering if number + // of bad orders is more than good. + int Cost = getInstrOrderCost(); + LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); + if (Cost < -LoopInterchangeCostThreshold) + return true; + + // It is not profitable as per current cache profitability model. But check if + // we can move this loop outside to improve parallelism. + if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) + return true; + + ORE->emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", + InnerLoop->getStartLoc(), + InnerLoop->getHeader()) + << "Interchanging loops is too costly (cost=" + << ore::NV("Cost", Cost) << ", threshold=" + << ore::NV("Threshold", LoopInterchangeCostThreshold) + << ") and it does not improve parallelism."; + }); + return false; +} + +void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, + Loop *InnerLoop) { + for (Loop *L : *OuterLoop) + if (L == InnerLoop) { + OuterLoop->removeChildLoop(L); + return; + } + llvm_unreachable("Couldn't find loop"); +} + +/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the +/// new inner and outer loop after interchanging: NewInner is the original +/// outer loop and NewOuter is the original inner loop. +/// +/// Before interchanging, we have the following structure +/// Outer preheader +// Outer header +// Inner preheader +// Inner header +// Inner body +// Inner latch +// outer bbs +// Outer latch +// +// After interchanging: +// Inner preheader +// Inner header +// Outer preheader +// Outer header +// Inner body +// outer bbs +// Outer latch +// Inner latch +void LoopInterchangeTransform::restructureLoops( + Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, + BasicBlock *OrigOuterPreHeader) { + Loop *OuterLoopParent = OuterLoop->getParentLoop(); + // The original inner loop preheader moves from the new inner loop to + // the parent loop, if there is one. + NewInner->removeBlockFromLoop(OrigInnerPreHeader); + LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); + + // Switch the loop levels. + if (OuterLoopParent) { + // Remove the loop from its parent loop. + removeChildLoop(OuterLoopParent, NewInner); + removeChildLoop(NewInner, NewOuter); + OuterLoopParent->addChildLoop(NewOuter); + } else { + removeChildLoop(NewInner, NewOuter); + LI->changeTopLevelLoop(NewInner, NewOuter); + } + while (!NewOuter->empty()) + NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); + NewOuter->addChildLoop(NewInner); + + // BBs from the original inner loop. + SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); + + // Add BBs from the original outer loop to the original inner loop (excluding + // BBs already in inner loop) + for (BasicBlock *BB : NewInner->blocks()) + if (LI->getLoopFor(BB) == NewInner) + NewOuter->addBlockEntry(BB); + + // Now remove inner loop header and latch from the new inner loop and move + // other BBs (the loop body) to the new inner loop. + BasicBlock *OuterHeader = NewOuter->getHeader(); + BasicBlock *OuterLatch = NewOuter->getLoopLatch(); + for (BasicBlock *BB : OrigInnerBBs) { + // Nothing will change for BBs in child loops. + if (LI->getLoopFor(BB) != NewOuter) + continue; + // Remove the new outer loop header and latch from the new inner loop. + if (BB == OuterHeader || BB == OuterLatch) + NewInner->removeBlockFromLoop(BB); + else + LI->changeLoopFor(BB, NewInner); + } + + // The preheader of the original outer loop becomes part of the new + // outer loop. + NewOuter->addBlockEntry(OrigOuterPreHeader); + LI->changeLoopFor(OrigOuterPreHeader, NewOuter); + + // Tell SE that we move the loops around. + SE->forgetLoop(NewOuter); + SE->forgetLoop(NewInner); +} + +bool LoopInterchangeTransform::transform() { + bool Transformed = false; + Instruction *InnerIndexVar; + + if (InnerLoop->getSubLoops().empty()) { + BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); + LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n"); + PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); + if (!InductionPHI) { + LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); + return false; + } + + if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) + InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); + else + InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); + + // Ensure that InductionPHI is the first Phi node. + if (&InductionPHI->getParent()->front() != InductionPHI) + InductionPHI->moveBefore(&InductionPHI->getParent()->front()); + + // Split at the place were the induction variable is + // incremented/decremented. + // TODO: This splitting logic may not work always. Fix this. + splitInnerLoopLatch(InnerIndexVar); + LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n"); + + // Splits the inner loops phi nodes out into a separate basic block. + BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); + SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); + LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); + } + + Transformed |= adjustLoopLinks(); + if (!Transformed) { + LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); + return false; + } + + return true; +} + +void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) { + SplitBlock(InnerLoop->getLoopLatch(), Inc, DT, LI); +} + +/// \brief Move all instructions except the terminator from FromBB right before +/// InsertBefore +static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { + auto &ToList = InsertBefore->getParent()->getInstList(); + auto &FromList = FromBB->getInstList(); + + ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), + FromBB->getTerminator()->getIterator()); +} + +/// Update BI to jump to NewBB instead of OldBB. Records updates to +/// the dominator tree in DTUpdates, if DT should be preserved. +static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, + BasicBlock *NewBB, + std::vector<DominatorTree::UpdateType> &DTUpdates) { + assert(llvm::count_if(successors(BI), + [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 && + "BI must jump to OldBB at most once."); + for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) { + if (BI->getSuccessor(i) == OldBB) { + BI->setSuccessor(i, NewBB); + + DTUpdates.push_back( + {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); + DTUpdates.push_back( + {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); + break; + } + } +} + +// Move Lcssa PHIs to the right place. +static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, + BasicBlock *InnerLatch, BasicBlock *OuterHeader, + BasicBlock *OuterLatch, BasicBlock *OuterExit) { + + // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are + // defined either in the header or latch. Those blocks will become header and + // latch of the new outer loop, and the only possible users can PHI nodes + // in the exit block of the loop nest or the outer loop header (reduction + // PHIs, in that case, the incoming value must be defined in the inner loop + // header). We can just substitute the user with the incoming value and remove + // the PHI. + for (PHINode &P : make_early_inc_range(InnerExit->phis())) { + assert(P.getNumIncomingValues() == 1 && + "Only loops with a single exit are supported!"); + + // Incoming values are guaranteed be instructions currently. + auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); + // Skip phis with incoming values from the inner loop body, excluding the + // header and latch. + if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) + continue; + + assert(all_of(P.users(), + [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { + return (cast<PHINode>(U)->getParent() == OuterHeader && + IncI->getParent() == InnerHeader) || + cast<PHINode>(U)->getParent() == OuterExit; + }) && + "Can only replace phis iff the uses are in the loop nest exit or " + "the incoming value is defined in the inner header (it will " + "dominate all loop blocks after interchanging)"); + P.replaceAllUsesWith(IncI); + P.eraseFromParent(); + } + + SmallVector<PHINode *, 8> LcssaInnerExit; + for (PHINode &P : InnerExit->phis()) + LcssaInnerExit.push_back(&P); + + SmallVector<PHINode *, 8> LcssaInnerLatch; + for (PHINode &P : InnerLatch->phis()) + LcssaInnerLatch.push_back(&P); + + // Lcssa PHIs for values used outside the inner loop are in InnerExit. + // If a PHI node has users outside of InnerExit, it has a use outside the + // interchanged loop and we have to preserve it. We move these to + // InnerLatch, which will become the new exit block for the innermost + // loop after interchanging. + for (PHINode *P : LcssaInnerExit) + P->moveBefore(InnerLatch->getFirstNonPHI()); + + // If the inner loop latch contains LCSSA PHIs, those come from a child loop + // and we have to move them to the new inner latch. + for (PHINode *P : LcssaInnerLatch) + P->moveBefore(InnerExit->getFirstNonPHI()); + + // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have + // incoming values from the outer latch or header, we have to add a new PHI + // in the inner loop latch, which became the exit block of the outer loop, + // after interchanging. + if (OuterExit) { + for (PHINode &P : OuterExit->phis()) { + if (P.getNumIncomingValues() != 1) + continue; + // Skip Phis with incoming values not defined in the outer loop's header + // and latch. Also skip incoming phis defined in the latch. Those should + // already have been updated. + auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); + if (!I || ((I->getParent() != OuterLatch || isa<PHINode>(I)) && + I->getParent() != OuterHeader)) + continue; + + PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); + NewPhi->setIncomingValue(0, P.getIncomingValue(0)); + NewPhi->setIncomingBlock(0, OuterLatch); + NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); + P.setIncomingValue(0, NewPhi); + } + } + + // Now adjust the incoming blocks for the LCSSA PHIs. + // For PHIs moved from Inner's exit block, we need to replace Inner's latch + // with the new latch. + InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); +} + +bool LoopInterchangeTransform::adjustLoopBranches() { + LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); + std::vector<DominatorTree::UpdateType> DTUpdates; + + BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); + BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); + + assert(OuterLoopPreHeader != OuterLoop->getHeader() && + InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && + InnerLoopPreHeader && "Guaranteed by loop-simplify form"); + // Ensure that both preheaders do not contain PHI nodes and have single + // predecessors. This allows us to move them easily. We use + // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing + // preheaders do not satisfy those conditions. + if (isa<PHINode>(OuterLoopPreHeader->begin()) || + !OuterLoopPreHeader->getUniquePredecessor()) + OuterLoopPreHeader = + InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); + if (InnerLoopPreHeader == OuterLoop->getHeader()) + InnerLoopPreHeader = + InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); + + // Adjust the loop preheader + BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); + BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); + BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); + BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); + BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); + BasicBlock *InnerLoopLatchPredecessor = + InnerLoopLatch->getUniquePredecessor(); + BasicBlock *InnerLoopLatchSuccessor; + BasicBlock *OuterLoopLatchSuccessor; + + BranchInst *OuterLoopLatchBI = + dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); + BranchInst *InnerLoopLatchBI = + dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); + BranchInst *OuterLoopHeaderBI = + dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); + BranchInst *InnerLoopHeaderBI = + dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); + + if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || + !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || + !InnerLoopHeaderBI) + return false; + + BranchInst *InnerLoopLatchPredecessorBI = + dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); + BranchInst *OuterLoopPredecessorBI = + dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); + + if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) + return false; + BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); + if (!InnerLoopHeaderSuccessor) + return false; + + // Adjust Loop Preheader and headers + updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, + InnerLoopPreHeader, DTUpdates); + updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates); + updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, + InnerLoopHeaderSuccessor, DTUpdates); + + // Adjust reduction PHI's now that the incoming block has changed. + InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, + OuterLoopHeader); + + updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, + OuterLoopPreHeader, DTUpdates); + + // -------------Adjust loop latches----------- + if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) + InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); + else + InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); + + updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, + InnerLoopLatchSuccessor, DTUpdates); + + + if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) + OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); + else + OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); + + updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, + OuterLoopLatchSuccessor, DTUpdates); + updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, + DTUpdates); + + DT->applyUpdates(DTUpdates); + restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, + OuterLoopPreHeader); + + moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, + OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock()); + // For PHIs in the exit block of the outer loop, outer's latch has been + // replaced by Inners'. + OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); + + // Now update the reduction PHIs in the inner and outer loop headers. + SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; + for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1)) + InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); + for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1)) + OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); + + auto &OuterInnerReductions = LIL.getOuterInnerReductions(); + (void)OuterInnerReductions; + + // Now move the remaining reduction PHIs from outer to inner loop header and + // vice versa. The PHI nodes must be part of a reduction across the inner and + // outer loop and all the remains to do is and updating the incoming blocks. + for (PHINode *PHI : OuterLoopPHIs) { + PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); + assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() && + "Expected a reduction PHI node"); + } + for (PHINode *PHI : InnerLoopPHIs) { + PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); + assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() && + "Expected a reduction PHI node"); + } + + // Update the incoming blocks for moved PHI nodes. + OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); + OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); + InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); + InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); + + return true; +} + +void LoopInterchangeTransform::adjustLoopPreheaders() { + // We have interchanged the preheaders so we need to interchange the data in + // the preheader as well. + // This is because the content of inner preheader was previously executed + // inside the outer loop. + BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); + BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); + BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); + BranchInst *InnerTermBI = + cast<BranchInst>(InnerLoopPreHeader->getTerminator()); + + // These instructions should now be executed inside the loop. + // Move instruction into a new block after outer header. + moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator()); + // These instructions were not executed previously in the loop so move them to + // the older inner loop preheader. + moveBBContents(OuterLoopPreHeader, InnerTermBI); +} + +bool LoopInterchangeTransform::adjustLoopLinks() { + // Adjust all branches in the inner and outer loop. + bool Changed = adjustLoopBranches(); + if (Changed) + adjustLoopPreheaders(); + return Changed; +} + +char LoopInterchange::ID = 0; + +INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange", + "Interchanges loops for cache reuse", false, false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) +INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) + +INITIALIZE_PASS_END(LoopInterchange, "loop-interchange", + "Interchanges loops for cache reuse", false, false) + +Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); } |