aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp1561
1 files changed, 1561 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp
new file mode 100644
index 000000000000..9a42365adc1b
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopInterchange.cpp
@@ -0,0 +1,1561 @@
+//===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This Pass handles loop interchange transform.
+// This pass interchanges loops to provide a more cache-friendly memory access
+// patterns.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/DependenceAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include <cassert>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-interchange"
+
+STATISTIC(LoopsInterchanged, "Number of loops interchanged");
+
+static cl::opt<int> LoopInterchangeCostThreshold(
+ "loop-interchange-threshold", cl::init(0), cl::Hidden,
+ cl::desc("Interchange if you gain more than this number"));
+
+namespace {
+
+using LoopVector = SmallVector<Loop *, 8>;
+
+// TODO: Check if we can use a sparse matrix here.
+using CharMatrix = std::vector<std::vector<char>>;
+
+} // end anonymous namespace
+
+// Maximum number of dependencies that can be handled in the dependency matrix.
+static const unsigned MaxMemInstrCount = 100;
+
+// Maximum loop depth supported.
+static const unsigned MaxLoopNestDepth = 10;
+
+#ifdef DUMP_DEP_MATRICIES
+static void printDepMatrix(CharMatrix &DepMatrix) {
+ for (auto &Row : DepMatrix) {
+ for (auto D : Row)
+ LLVM_DEBUG(dbgs() << D << " ");
+ LLVM_DEBUG(dbgs() << "\n");
+ }
+}
+#endif
+
+static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
+ Loop *L, DependenceInfo *DI) {
+ using ValueVector = SmallVector<Value *, 16>;
+
+ ValueVector MemInstr;
+
+ // For each block.
+ for (BasicBlock *BB : L->blocks()) {
+ // Scan the BB and collect legal loads and stores.
+ for (Instruction &I : *BB) {
+ if (!isa<Instruction>(I))
+ return false;
+ if (auto *Ld = dyn_cast<LoadInst>(&I)) {
+ if (!Ld->isSimple())
+ return false;
+ MemInstr.push_back(&I);
+ } else if (auto *St = dyn_cast<StoreInst>(&I)) {
+ if (!St->isSimple())
+ return false;
+ MemInstr.push_back(&I);
+ }
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
+ << " Loads and Stores to analyze\n");
+
+ ValueVector::iterator I, IE, J, JE;
+
+ for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
+ for (J = I, JE = MemInstr.end(); J != JE; ++J) {
+ std::vector<char> Dep;
+ Instruction *Src = cast<Instruction>(*I);
+ Instruction *Dst = cast<Instruction>(*J);
+ if (Src == Dst)
+ continue;
+ // Ignore Input dependencies.
+ if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
+ continue;
+ // Track Output, Flow, and Anti dependencies.
+ if (auto D = DI->depends(Src, Dst, true)) {
+ assert(D->isOrdered() && "Expected an output, flow or anti dep.");
+ LLVM_DEBUG(StringRef DepType =
+ D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
+ dbgs() << "Found " << DepType
+ << " dependency between Src and Dst\n"
+ << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
+ unsigned Levels = D->getLevels();
+ char Direction;
+ for (unsigned II = 1; II <= Levels; ++II) {
+ const SCEV *Distance = D->getDistance(II);
+ const SCEVConstant *SCEVConst =
+ dyn_cast_or_null<SCEVConstant>(Distance);
+ if (SCEVConst) {
+ const ConstantInt *CI = SCEVConst->getValue();
+ if (CI->isNegative())
+ Direction = '<';
+ else if (CI->isZero())
+ Direction = '=';
+ else
+ Direction = '>';
+ Dep.push_back(Direction);
+ } else if (D->isScalar(II)) {
+ Direction = 'S';
+ Dep.push_back(Direction);
+ } else {
+ unsigned Dir = D->getDirection(II);
+ if (Dir == Dependence::DVEntry::LT ||
+ Dir == Dependence::DVEntry::LE)
+ Direction = '<';
+ else if (Dir == Dependence::DVEntry::GT ||
+ Dir == Dependence::DVEntry::GE)
+ Direction = '>';
+ else if (Dir == Dependence::DVEntry::EQ)
+ Direction = '=';
+ else
+ Direction = '*';
+ Dep.push_back(Direction);
+ }
+ }
+ while (Dep.size() != Level) {
+ Dep.push_back('I');
+ }
+
+ DepMatrix.push_back(Dep);
+ if (DepMatrix.size() > MaxMemInstrCount) {
+ LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
+ << " dependencies inside loop\n");
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+// A loop is moved from index 'from' to an index 'to'. Update the Dependence
+// matrix by exchanging the two columns.
+static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
+ unsigned ToIndx) {
+ unsigned numRows = DepMatrix.size();
+ for (unsigned i = 0; i < numRows; ++i) {
+ char TmpVal = DepMatrix[i][ToIndx];
+ DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
+ DepMatrix[i][FromIndx] = TmpVal;
+ }
+}
+
+// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
+// '>'
+static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
+ unsigned Column) {
+ for (unsigned i = 0; i <= Column; ++i) {
+ if (DepMatrix[Row][i] == '<')
+ return false;
+ if (DepMatrix[Row][i] == '>')
+ return true;
+ }
+ // All dependencies were '=','S' or 'I'
+ return false;
+}
+
+// Checks if no dependence exist in the dependency matrix in Row before Column.
+static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
+ unsigned Column) {
+ for (unsigned i = 0; i < Column; ++i) {
+ if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
+ DepMatrix[Row][i] != 'I')
+ return false;
+ }
+ return true;
+}
+
+static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
+ unsigned OuterLoopId, char InnerDep,
+ char OuterDep) {
+ if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
+ return false;
+
+ if (InnerDep == OuterDep)
+ return true;
+
+ // It is legal to interchange if and only if after interchange no row has a
+ // '>' direction as the leftmost non-'='.
+
+ if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
+ return true;
+
+ if (InnerDep == '<')
+ return true;
+
+ if (InnerDep == '>') {
+ // If OuterLoopId represents outermost loop then interchanging will make the
+ // 1st dependency as '>'
+ if (OuterLoopId == 0)
+ return false;
+
+ // If all dependencies before OuterloopId are '=','S'or 'I'. Then
+ // interchanging will result in this row having an outermost non '='
+ // dependency of '>'
+ if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
+ return true;
+ }
+
+ return false;
+}
+
+// Checks if it is legal to interchange 2 loops.
+// [Theorem] A permutation of the loops in a perfect nest is legal if and only
+// if the direction matrix, after the same permutation is applied to its
+// columns, has no ">" direction as the leftmost non-"=" direction in any row.
+static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
+ unsigned InnerLoopId,
+ unsigned OuterLoopId) {
+ unsigned NumRows = DepMatrix.size();
+ // For each row check if it is valid to interchange.
+ for (unsigned Row = 0; Row < NumRows; ++Row) {
+ char InnerDep = DepMatrix[Row][InnerLoopId];
+ char OuterDep = DepMatrix[Row][OuterLoopId];
+ if (InnerDep == '*' || OuterDep == '*')
+ return false;
+ if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
+ return false;
+ }
+ return true;
+}
+
+static LoopVector populateWorklist(Loop &L) {
+ LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
+ << L.getHeader()->getParent()->getName() << " Loop: %"
+ << L.getHeader()->getName() << '\n');
+ LoopVector LoopList;
+ Loop *CurrentLoop = &L;
+ const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
+ while (!Vec->empty()) {
+ // The current loop has multiple subloops in it hence it is not tightly
+ // nested.
+ // Discard all loops above it added into Worklist.
+ if (Vec->size() != 1)
+ return {};
+
+ LoopList.push_back(CurrentLoop);
+ CurrentLoop = Vec->front();
+ Vec = &CurrentLoop->getSubLoops();
+ }
+ LoopList.push_back(CurrentLoop);
+ return LoopList;
+}
+
+static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
+ PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
+ if (InnerIndexVar)
+ return InnerIndexVar;
+ if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
+ return nullptr;
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PhiVar = cast<PHINode>(I);
+ Type *PhiTy = PhiVar->getType();
+ if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
+ !PhiTy->isPointerTy())
+ return nullptr;
+ const SCEVAddRecExpr *AddRec =
+ dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
+ if (!AddRec || !AddRec->isAffine())
+ continue;
+ const SCEV *Step = AddRec->getStepRecurrence(*SE);
+ if (!isa<SCEVConstant>(Step))
+ continue;
+ // Found the induction variable.
+ // FIXME: Handle loops with more than one induction variable. Note that,
+ // currently, legality makes sure we have only one induction variable.
+ return PhiVar;
+ }
+ return nullptr;
+}
+
+namespace {
+
+/// LoopInterchangeLegality checks if it is legal to interchange the loop.
+class LoopInterchangeLegality {
+public:
+ LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
+ OptimizationRemarkEmitter *ORE)
+ : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
+
+ /// Check if the loops can be interchanged.
+ bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
+ CharMatrix &DepMatrix);
+
+ /// Check if the loop structure is understood. We do not handle triangular
+ /// loops for now.
+ bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
+
+ bool currentLimitations();
+
+ const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
+ return OuterInnerReductions;
+ }
+
+private:
+ bool tightlyNested(Loop *Outer, Loop *Inner);
+ bool containsUnsafeInstructions(BasicBlock *BB);
+
+ /// Discover induction and reduction PHIs in the header of \p L. Induction
+ /// PHIs are added to \p Inductions, reductions are added to
+ /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
+ /// to be passed as \p InnerLoop.
+ bool findInductionAndReductions(Loop *L,
+ SmallVector<PHINode *, 8> &Inductions,
+ Loop *InnerLoop);
+
+ Loop *OuterLoop;
+ Loop *InnerLoop;
+
+ ScalarEvolution *SE;
+
+ /// Interface to emit optimization remarks.
+ OptimizationRemarkEmitter *ORE;
+
+ /// Set of reduction PHIs taking part of a reduction across the inner and
+ /// outer loop.
+ SmallPtrSet<PHINode *, 4> OuterInnerReductions;
+};
+
+/// LoopInterchangeProfitability checks if it is profitable to interchange the
+/// loop.
+class LoopInterchangeProfitability {
+public:
+ LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
+ OptimizationRemarkEmitter *ORE)
+ : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
+
+ /// Check if the loop interchange is profitable.
+ bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
+ CharMatrix &DepMatrix);
+
+private:
+ int getInstrOrderCost();
+
+ Loop *OuterLoop;
+ Loop *InnerLoop;
+
+ /// Scev analysis.
+ ScalarEvolution *SE;
+
+ /// Interface to emit optimization remarks.
+ OptimizationRemarkEmitter *ORE;
+};
+
+/// LoopInterchangeTransform interchanges the loop.
+class LoopInterchangeTransform {
+public:
+ LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
+ LoopInfo *LI, DominatorTree *DT,
+ BasicBlock *LoopNestExit,
+ const LoopInterchangeLegality &LIL)
+ : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
+ LoopExit(LoopNestExit), LIL(LIL) {}
+
+ /// Interchange OuterLoop and InnerLoop.
+ bool transform();
+ void restructureLoops(Loop *NewInner, Loop *NewOuter,
+ BasicBlock *OrigInnerPreHeader,
+ BasicBlock *OrigOuterPreHeader);
+ void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
+
+private:
+ void splitInnerLoopLatch(Instruction *);
+ void splitInnerLoopHeader();
+ bool adjustLoopLinks();
+ void adjustLoopPreheaders();
+ bool adjustLoopBranches();
+
+ Loop *OuterLoop;
+ Loop *InnerLoop;
+
+ /// Scev analysis.
+ ScalarEvolution *SE;
+
+ LoopInfo *LI;
+ DominatorTree *DT;
+ BasicBlock *LoopExit;
+
+ const LoopInterchangeLegality &LIL;
+};
+
+// Main LoopInterchange Pass.
+struct LoopInterchange : public LoopPass {
+ static char ID;
+ ScalarEvolution *SE = nullptr;
+ LoopInfo *LI = nullptr;
+ DependenceInfo *DI = nullptr;
+ DominatorTree *DT = nullptr;
+
+ /// Interface to emit optimization remarks.
+ OptimizationRemarkEmitter *ORE;
+
+ LoopInterchange() : LoopPass(ID) {
+ initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DependenceAnalysisWrapperPass>();
+ AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
+
+ getLoopAnalysisUsage(AU);
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override {
+ if (skipLoop(L) || L->getParentLoop())
+ return false;
+
+ SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
+
+ return processLoopList(populateWorklist(*L));
+ }
+
+ bool isComputableLoopNest(LoopVector LoopList) {
+ for (Loop *L : LoopList) {
+ const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
+ if (ExitCountOuter == SE->getCouldNotCompute()) {
+ LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
+ return false;
+ }
+ if (L->getNumBackEdges() != 1) {
+ LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
+ return false;
+ }
+ if (!L->getExitingBlock()) {
+ LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
+ return false;
+ }
+ }
+ return true;
+ }
+
+ unsigned selectLoopForInterchange(const LoopVector &LoopList) {
+ // TODO: Add a better heuristic to select the loop to be interchanged based
+ // on the dependence matrix. Currently we select the innermost loop.
+ return LoopList.size() - 1;
+ }
+
+ bool processLoopList(LoopVector LoopList) {
+ bool Changed = false;
+ unsigned LoopNestDepth = LoopList.size();
+ if (LoopNestDepth < 2) {
+ LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
+ return false;
+ }
+ if (LoopNestDepth > MaxLoopNestDepth) {
+ LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
+ << MaxLoopNestDepth << "\n");
+ return false;
+ }
+ if (!isComputableLoopNest(LoopList)) {
+ LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
+ << "\n");
+
+ CharMatrix DependencyMatrix;
+ Loop *OuterMostLoop = *(LoopList.begin());
+ if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
+ OuterMostLoop, DI)) {
+ LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
+ return false;
+ }
+#ifdef DUMP_DEP_MATRICIES
+ LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
+ printDepMatrix(DependencyMatrix);
+#endif
+
+ // Get the Outermost loop exit.
+ BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
+ if (!LoopNestExit) {
+ LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
+ return false;
+ }
+
+ unsigned SelecLoopId = selectLoopForInterchange(LoopList);
+ // Move the selected loop outwards to the best possible position.
+ for (unsigned i = SelecLoopId; i > 0; i--) {
+ bool Interchanged =
+ processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
+ if (!Interchanged)
+ return Changed;
+ // Loops interchanged reflect the same in LoopList
+ std::swap(LoopList[i - 1], LoopList[i]);
+
+ // Update the DependencyMatrix
+ interChangeDependencies(DependencyMatrix, i, i - 1);
+#ifdef DUMP_DEP_MATRICIES
+ LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
+ printDepMatrix(DependencyMatrix);
+#endif
+ Changed |= Interchanged;
+ }
+ return Changed;
+ }
+
+ bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
+ unsigned OuterLoopId, BasicBlock *LoopNestExit,
+ std::vector<std::vector<char>> &DependencyMatrix) {
+ LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
+ << " and OuterLoopId = " << OuterLoopId << "\n");
+ Loop *InnerLoop = LoopList[InnerLoopId];
+ Loop *OuterLoop = LoopList[OuterLoopId];
+
+ LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
+ if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
+ LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
+ return false;
+ }
+ LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
+ LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
+ if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
+ LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
+ return false;
+ }
+
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "Interchanged",
+ InnerLoop->getStartLoc(),
+ InnerLoop->getHeader())
+ << "Loop interchanged with enclosing loop.";
+ });
+
+ LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
+ LIL);
+ LIT.transform();
+ LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
+ LoopsInterchanged++;
+ return true;
+ }
+};
+
+} // end anonymous namespace
+
+bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
+ return any_of(*BB, [](const Instruction &I) {
+ return I.mayHaveSideEffects() || I.mayReadFromMemory();
+ });
+}
+
+bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
+ BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+ BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
+
+ LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
+
+ // A perfectly nested loop will not have any branch in between the outer and
+ // inner block i.e. outer header will branch to either inner preheader and
+ // outerloop latch.
+ BranchInst *OuterLoopHeaderBI =
+ dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
+ if (!OuterLoopHeaderBI)
+ return false;
+
+ for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
+ if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
+ Succ != OuterLoopLatch)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
+ // We do not have any basic block in between now make sure the outer header
+ // and outer loop latch doesn't contain any unsafe instructions.
+ if (containsUnsafeInstructions(OuterLoopHeader) ||
+ containsUnsafeInstructions(OuterLoopLatch))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
+ // We have a perfect loop nest.
+ return true;
+}
+
+bool LoopInterchangeLegality::isLoopStructureUnderstood(
+ PHINode *InnerInduction) {
+ unsigned Num = InnerInduction->getNumOperands();
+ BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
+ for (unsigned i = 0; i < Num; ++i) {
+ Value *Val = InnerInduction->getOperand(i);
+ if (isa<Constant>(Val))
+ continue;
+ Instruction *I = dyn_cast<Instruction>(Val);
+ if (!I)
+ return false;
+ // TODO: Handle triangular loops.
+ // e.g. for(int i=0;i<N;i++)
+ // for(int j=i;j<N;j++)
+ unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
+ if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
+ InnerLoopPreheader &&
+ !OuterLoop->isLoopInvariant(I)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+// If SV is a LCSSA PHI node with a single incoming value, return the incoming
+// value.
+static Value *followLCSSA(Value *SV) {
+ PHINode *PHI = dyn_cast<PHINode>(SV);
+ if (!PHI)
+ return SV;
+
+ if (PHI->getNumIncomingValues() != 1)
+ return SV;
+ return followLCSSA(PHI->getIncomingValue(0));
+}
+
+// Check V's users to see if it is involved in a reduction in L.
+static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
+ for (Value *User : V->users()) {
+ if (PHINode *PHI = dyn_cast<PHINode>(User)) {
+ if (PHI->getNumIncomingValues() == 1)
+ continue;
+ RecurrenceDescriptor RD;
+ if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
+ return PHI;
+ return nullptr;
+ }
+ }
+
+ return nullptr;
+}
+
+bool LoopInterchangeLegality::findInductionAndReductions(
+ Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
+ if (!L->getLoopLatch() || !L->getLoopPredecessor())
+ return false;
+ for (PHINode &PHI : L->getHeader()->phis()) {
+ RecurrenceDescriptor RD;
+ InductionDescriptor ID;
+ if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
+ Inductions.push_back(&PHI);
+ else {
+ // PHIs in inner loops need to be part of a reduction in the outer loop,
+ // discovered when checking the PHIs of the outer loop earlier.
+ if (!InnerLoop) {
+ if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end()) {
+ LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
+ "across the outer loop.\n");
+ return false;
+ }
+ } else {
+ assert(PHI.getNumIncomingValues() == 2 &&
+ "Phis in loop header should have exactly 2 incoming values");
+ // Check if we have a PHI node in the outer loop that has a reduction
+ // result from the inner loop as an incoming value.
+ Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
+ PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
+ if (!InnerRedPhi ||
+ !llvm::any_of(InnerRedPhi->incoming_values(),
+ [&PHI](Value *V) { return V == &PHI; })) {
+ LLVM_DEBUG(
+ dbgs()
+ << "Failed to recognize PHI as an induction or reduction.\n");
+ return false;
+ }
+ OuterInnerReductions.insert(&PHI);
+ OuterInnerReductions.insert(InnerRedPhi);
+ }
+ }
+ }
+ return true;
+}
+
+static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
+ for (PHINode &PHI : Block->phis()) {
+ // Reduction lcssa phi will have only 1 incoming block that from loop latch.
+ if (PHI.getNumIncomingValues() > 1)
+ return false;
+ Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0));
+ if (!Ins)
+ return false;
+ // Incoming value for lcssa phi's in outer loop exit can only be inner loop
+ // exits lcssa phi else it would not be tightly nested.
+ if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
+ return false;
+ }
+ return true;
+}
+
+// This function indicates the current limitations in the transform as a result
+// of which we do not proceed.
+bool LoopInterchangeLegality::currentLimitations() {
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+ BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
+
+ // transform currently expects the loop latches to also be the exiting
+ // blocks.
+ if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
+ OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
+ !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
+ !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
+ LLVM_DEBUG(
+ dbgs() << "Loops where the latch is not the exiting block are not"
+ << " supported currently.\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
+ OuterLoop->getStartLoc(),
+ OuterLoop->getHeader())
+ << "Loops where the latch is not the exiting block cannot be"
+ " interchange currently.";
+ });
+ return true;
+ }
+
+ PHINode *InnerInductionVar;
+ SmallVector<PHINode *, 8> Inductions;
+ if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
+ LLVM_DEBUG(
+ dbgs() << "Only outer loops with induction or reduction PHI nodes "
+ << "are supported currently.\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
+ OuterLoop->getStartLoc(),
+ OuterLoop->getHeader())
+ << "Only outer loops with induction or reduction PHI nodes can be"
+ " interchanged currently.";
+ });
+ return true;
+ }
+
+ // TODO: Currently we handle only loops with 1 induction variable.
+ if (Inductions.size() != 1) {
+ LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
+ << "supported currently.\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
+ OuterLoop->getStartLoc(),
+ OuterLoop->getHeader())
+ << "Only outer loops with 1 induction variable can be "
+ "interchanged currently.";
+ });
+ return true;
+ }
+
+ Inductions.clear();
+ if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
+ LLVM_DEBUG(
+ dbgs() << "Only inner loops with induction or reduction PHI nodes "
+ << "are supported currently.\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
+ InnerLoop->getStartLoc(),
+ InnerLoop->getHeader())
+ << "Only inner loops with induction or reduction PHI nodes can be"
+ " interchange currently.";
+ });
+ return true;
+ }
+
+ // TODO: Currently we handle only loops with 1 induction variable.
+ if (Inductions.size() != 1) {
+ LLVM_DEBUG(
+ dbgs() << "We currently only support loops with 1 induction variable."
+ << "Failed to interchange due to current limitation\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
+ InnerLoop->getStartLoc(),
+ InnerLoop->getHeader())
+ << "Only inner loops with 1 induction variable can be "
+ "interchanged currently.";
+ });
+ return true;
+ }
+ InnerInductionVar = Inductions.pop_back_val();
+
+ // TODO: Triangular loops are not handled for now.
+ if (!isLoopStructureUnderstood(InnerInductionVar)) {
+ LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
+ InnerLoop->getStartLoc(),
+ InnerLoop->getHeader())
+ << "Inner loop structure not understood currently.";
+ });
+ return true;
+ }
+
+ // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
+ BasicBlock *InnerExit = InnerLoop->getExitBlock();
+ if (!containsSafePHI(InnerExit, false)) {
+ LLVM_DEBUG(
+ dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
+ InnerLoop->getStartLoc(),
+ InnerLoop->getHeader())
+ << "Only inner loops with LCSSA PHIs can be interchange "
+ "currently.";
+ });
+ return true;
+ }
+
+ // TODO: Current limitation: Since we split the inner loop latch at the point
+ // were induction variable is incremented (induction.next); We cannot have
+ // more than 1 user of induction.next since it would result in broken code
+ // after split.
+ // e.g.
+ // for(i=0;i<N;i++) {
+ // for(j = 0;j<M;j++) {
+ // A[j+1][i+2] = A[j][i]+k;
+ // }
+ // }
+ Instruction *InnerIndexVarInc = nullptr;
+ if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
+ InnerIndexVarInc =
+ dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
+ else
+ InnerIndexVarInc =
+ dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
+
+ if (!InnerIndexVarInc) {
+ LLVM_DEBUG(
+ dbgs() << "Did not find an instruction to increment the induction "
+ << "variable.\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
+ InnerLoop->getStartLoc(),
+ InnerLoop->getHeader())
+ << "The inner loop does not increment the induction variable.";
+ });
+ return true;
+ }
+
+ // Since we split the inner loop latch on this induction variable. Make sure
+ // we do not have any instruction between the induction variable and branch
+ // instruction.
+
+ bool FoundInduction = false;
+ for (const Instruction &I :
+ llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
+ if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
+ isa<ZExtInst>(I))
+ continue;
+
+ // We found an instruction. If this is not induction variable then it is not
+ // safe to split this loop latch.
+ if (!I.isIdenticalTo(InnerIndexVarInc)) {
+ LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
+ << "variable increment and branch.\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(
+ DEBUG_TYPE, "UnsupportedInsBetweenInduction",
+ InnerLoop->getStartLoc(), InnerLoop->getHeader())
+ << "Found unsupported instruction between induction variable "
+ "increment and branch.";
+ });
+ return true;
+ }
+
+ FoundInduction = true;
+ break;
+ }
+ // The loop latch ended and we didn't find the induction variable return as
+ // current limitation.
+ if (!FoundInduction) {
+ LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
+ InnerLoop->getStartLoc(),
+ InnerLoop->getHeader())
+ << "Did not find the induction variable.";
+ });
+ return true;
+ }
+ return false;
+}
+
+// We currently support LCSSA PHI nodes in the outer loop exit, if their
+// incoming values do not come from the outer loop latch or if the
+// outer loop latch has a single predecessor. In that case, the value will
+// be available if both the inner and outer loop conditions are true, which
+// will still be true after interchanging. If we have multiple predecessor,
+// that may not be the case, e.g. because the outer loop latch may be executed
+// if the inner loop is not executed.
+static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
+ BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
+ for (PHINode &PHI : LoopNestExit->phis()) {
+ // FIXME: We currently are not able to detect floating point reductions
+ // and have to use floating point PHIs as a proxy to prevent
+ // interchanging in the presence of floating point reductions.
+ if (PHI.getType()->isFloatingPointTy())
+ return false;
+ for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
+ Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
+ if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
+ continue;
+
+ // The incoming value is defined in the outer loop latch. Currently we
+ // only support that in case the outer loop latch has a single predecessor.
+ // This guarantees that the outer loop latch is executed if and only if
+ // the inner loop is executed (because tightlyNested() guarantees that the
+ // outer loop header only branches to the inner loop or the outer loop
+ // latch).
+ // FIXME: We could weaken this logic and allow multiple predecessors,
+ // if the values are produced outside the loop latch. We would need
+ // additional logic to update the PHI nodes in the exit block as
+ // well.
+ if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
+ return false;
+ }
+ }
+ return true;
+}
+
+bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
+ unsigned OuterLoopId,
+ CharMatrix &DepMatrix) {
+ if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
+ LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
+ << " and OuterLoopId = " << OuterLoopId
+ << " due to dependence\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
+ InnerLoop->getStartLoc(),
+ InnerLoop->getHeader())
+ << "Cannot interchange loops due to dependences.";
+ });
+ return false;
+ }
+ // Check if outer and inner loop contain legal instructions only.
+ for (auto *BB : OuterLoop->blocks())
+ for (Instruction &I : BB->instructionsWithoutDebug())
+ if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ // readnone functions do not prevent interchanging.
+ if (CI->doesNotReadMemory())
+ continue;
+ LLVM_DEBUG(
+ dbgs() << "Loops with call instructions cannot be interchanged "
+ << "safely.");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
+ CI->getDebugLoc(),
+ CI->getParent())
+ << "Cannot interchange loops due to call instruction.";
+ });
+
+ return false;
+ }
+
+ // TODO: The loops could not be interchanged due to current limitations in the
+ // transform module.
+ if (currentLimitations()) {
+ LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
+ return false;
+ }
+
+ // Check if the loops are tightly nested.
+ if (!tightlyNested(OuterLoop, InnerLoop)) {
+ LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
+ InnerLoop->getStartLoc(),
+ InnerLoop->getHeader())
+ << "Cannot interchange loops because they are not tightly "
+ "nested.";
+ });
+ return false;
+ }
+
+ if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
+ LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
+ OuterLoop->getStartLoc(),
+ OuterLoop->getHeader())
+ << "Found unsupported PHI node in loop exit.";
+ });
+ return false;
+ }
+
+ return true;
+}
+
+int LoopInterchangeProfitability::getInstrOrderCost() {
+ unsigned GoodOrder, BadOrder;
+ BadOrder = GoodOrder = 0;
+ for (BasicBlock *BB : InnerLoop->blocks()) {
+ for (Instruction &Ins : *BB) {
+ if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
+ unsigned NumOp = GEP->getNumOperands();
+ bool FoundInnerInduction = false;
+ bool FoundOuterInduction = false;
+ for (unsigned i = 0; i < NumOp; ++i) {
+ const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
+ if (!AR)
+ continue;
+
+ // If we find the inner induction after an outer induction e.g.
+ // for(int i=0;i<N;i++)
+ // for(int j=0;j<N;j++)
+ // A[i][j] = A[i-1][j-1]+k;
+ // then it is a good order.
+ if (AR->getLoop() == InnerLoop) {
+ // We found an InnerLoop induction after OuterLoop induction. It is
+ // a good order.
+ FoundInnerInduction = true;
+ if (FoundOuterInduction) {
+ GoodOrder++;
+ break;
+ }
+ }
+ // If we find the outer induction after an inner induction e.g.
+ // for(int i=0;i<N;i++)
+ // for(int j=0;j<N;j++)
+ // A[j][i] = A[j-1][i-1]+k;
+ // then it is a bad order.
+ if (AR->getLoop() == OuterLoop) {
+ // We found an OuterLoop induction after InnerLoop induction. It is
+ // a bad order.
+ FoundOuterInduction = true;
+ if (FoundInnerInduction) {
+ BadOrder++;
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+ return GoodOrder - BadOrder;
+}
+
+static bool isProfitableForVectorization(unsigned InnerLoopId,
+ unsigned OuterLoopId,
+ CharMatrix &DepMatrix) {
+ // TODO: Improve this heuristic to catch more cases.
+ // If the inner loop is loop independent or doesn't carry any dependency it is
+ // profitable to move this to outer position.
+ for (auto &Row : DepMatrix) {
+ if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
+ return false;
+ // TODO: We need to improve this heuristic.
+ if (Row[OuterLoopId] != '=')
+ return false;
+ }
+ // If outer loop has dependence and inner loop is loop independent then it is
+ // profitable to interchange to enable parallelism.
+ // If there are no dependences, interchanging will not improve anything.
+ return !DepMatrix.empty();
+}
+
+bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
+ unsigned OuterLoopId,
+ CharMatrix &DepMatrix) {
+ // TODO: Add better profitability checks.
+ // e.g
+ // 1) Construct dependency matrix and move the one with no loop carried dep
+ // inside to enable vectorization.
+
+ // This is rough cost estimation algorithm. It counts the good and bad order
+ // of induction variables in the instruction and allows reordering if number
+ // of bad orders is more than good.
+ int Cost = getInstrOrderCost();
+ LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
+ if (Cost < -LoopInterchangeCostThreshold)
+ return true;
+
+ // It is not profitable as per current cache profitability model. But check if
+ // we can move this loop outside to improve parallelism.
+ if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
+ return true;
+
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
+ InnerLoop->getStartLoc(),
+ InnerLoop->getHeader())
+ << "Interchanging loops is too costly (cost="
+ << ore::NV("Cost", Cost) << ", threshold="
+ << ore::NV("Threshold", LoopInterchangeCostThreshold)
+ << ") and it does not improve parallelism.";
+ });
+ return false;
+}
+
+void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
+ Loop *InnerLoop) {
+ for (Loop *L : *OuterLoop)
+ if (L == InnerLoop) {
+ OuterLoop->removeChildLoop(L);
+ return;
+ }
+ llvm_unreachable("Couldn't find loop");
+}
+
+/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
+/// new inner and outer loop after interchanging: NewInner is the original
+/// outer loop and NewOuter is the original inner loop.
+///
+/// Before interchanging, we have the following structure
+/// Outer preheader
+// Outer header
+// Inner preheader
+// Inner header
+// Inner body
+// Inner latch
+// outer bbs
+// Outer latch
+//
+// After interchanging:
+// Inner preheader
+// Inner header
+// Outer preheader
+// Outer header
+// Inner body
+// outer bbs
+// Outer latch
+// Inner latch
+void LoopInterchangeTransform::restructureLoops(
+ Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
+ BasicBlock *OrigOuterPreHeader) {
+ Loop *OuterLoopParent = OuterLoop->getParentLoop();
+ // The original inner loop preheader moves from the new inner loop to
+ // the parent loop, if there is one.
+ NewInner->removeBlockFromLoop(OrigInnerPreHeader);
+ LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
+
+ // Switch the loop levels.
+ if (OuterLoopParent) {
+ // Remove the loop from its parent loop.
+ removeChildLoop(OuterLoopParent, NewInner);
+ removeChildLoop(NewInner, NewOuter);
+ OuterLoopParent->addChildLoop(NewOuter);
+ } else {
+ removeChildLoop(NewInner, NewOuter);
+ LI->changeTopLevelLoop(NewInner, NewOuter);
+ }
+ while (!NewOuter->empty())
+ NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
+ NewOuter->addChildLoop(NewInner);
+
+ // BBs from the original inner loop.
+ SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
+
+ // Add BBs from the original outer loop to the original inner loop (excluding
+ // BBs already in inner loop)
+ for (BasicBlock *BB : NewInner->blocks())
+ if (LI->getLoopFor(BB) == NewInner)
+ NewOuter->addBlockEntry(BB);
+
+ // Now remove inner loop header and latch from the new inner loop and move
+ // other BBs (the loop body) to the new inner loop.
+ BasicBlock *OuterHeader = NewOuter->getHeader();
+ BasicBlock *OuterLatch = NewOuter->getLoopLatch();
+ for (BasicBlock *BB : OrigInnerBBs) {
+ // Nothing will change for BBs in child loops.
+ if (LI->getLoopFor(BB) != NewOuter)
+ continue;
+ // Remove the new outer loop header and latch from the new inner loop.
+ if (BB == OuterHeader || BB == OuterLatch)
+ NewInner->removeBlockFromLoop(BB);
+ else
+ LI->changeLoopFor(BB, NewInner);
+ }
+
+ // The preheader of the original outer loop becomes part of the new
+ // outer loop.
+ NewOuter->addBlockEntry(OrigOuterPreHeader);
+ LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
+
+ // Tell SE that we move the loops around.
+ SE->forgetLoop(NewOuter);
+ SE->forgetLoop(NewInner);
+}
+
+bool LoopInterchangeTransform::transform() {
+ bool Transformed = false;
+ Instruction *InnerIndexVar;
+
+ if (InnerLoop->getSubLoops().empty()) {
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+ LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n");
+ PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
+ if (!InductionPHI) {
+ LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
+ return false;
+ }
+
+ if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
+ InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
+ else
+ InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
+
+ // Ensure that InductionPHI is the first Phi node.
+ if (&InductionPHI->getParent()->front() != InductionPHI)
+ InductionPHI->moveBefore(&InductionPHI->getParent()->front());
+
+ // Split at the place were the induction variable is
+ // incremented/decremented.
+ // TODO: This splitting logic may not work always. Fix this.
+ splitInnerLoopLatch(InnerIndexVar);
+ LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n");
+
+ // Splits the inner loops phi nodes out into a separate basic block.
+ BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
+ SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
+ LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
+ }
+
+ Transformed |= adjustLoopLinks();
+ if (!Transformed) {
+ LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
+ return false;
+ }
+
+ return true;
+}
+
+void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
+ SplitBlock(InnerLoop->getLoopLatch(), Inc, DT, LI);
+}
+
+/// \brief Move all instructions except the terminator from FromBB right before
+/// InsertBefore
+static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
+ auto &ToList = InsertBefore->getParent()->getInstList();
+ auto &FromList = FromBB->getInstList();
+
+ ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
+ FromBB->getTerminator()->getIterator());
+}
+
+/// Update BI to jump to NewBB instead of OldBB. Records updates to
+/// the dominator tree in DTUpdates, if DT should be preserved.
+static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
+ BasicBlock *NewBB,
+ std::vector<DominatorTree::UpdateType> &DTUpdates) {
+ assert(llvm::count_if(successors(BI),
+ [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
+ "BI must jump to OldBB at most once.");
+ for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
+ if (BI->getSuccessor(i) == OldBB) {
+ BI->setSuccessor(i, NewBB);
+
+ DTUpdates.push_back(
+ {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
+ DTUpdates.push_back(
+ {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
+ break;
+ }
+ }
+}
+
+// Move Lcssa PHIs to the right place.
+static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
+ BasicBlock *InnerLatch, BasicBlock *OuterHeader,
+ BasicBlock *OuterLatch, BasicBlock *OuterExit) {
+
+ // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
+ // defined either in the header or latch. Those blocks will become header and
+ // latch of the new outer loop, and the only possible users can PHI nodes
+ // in the exit block of the loop nest or the outer loop header (reduction
+ // PHIs, in that case, the incoming value must be defined in the inner loop
+ // header). We can just substitute the user with the incoming value and remove
+ // the PHI.
+ for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
+ assert(P.getNumIncomingValues() == 1 &&
+ "Only loops with a single exit are supported!");
+
+ // Incoming values are guaranteed be instructions currently.
+ auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
+ // Skip phis with incoming values from the inner loop body, excluding the
+ // header and latch.
+ if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
+ continue;
+
+ assert(all_of(P.users(),
+ [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
+ return (cast<PHINode>(U)->getParent() == OuterHeader &&
+ IncI->getParent() == InnerHeader) ||
+ cast<PHINode>(U)->getParent() == OuterExit;
+ }) &&
+ "Can only replace phis iff the uses are in the loop nest exit or "
+ "the incoming value is defined in the inner header (it will "
+ "dominate all loop blocks after interchanging)");
+ P.replaceAllUsesWith(IncI);
+ P.eraseFromParent();
+ }
+
+ SmallVector<PHINode *, 8> LcssaInnerExit;
+ for (PHINode &P : InnerExit->phis())
+ LcssaInnerExit.push_back(&P);
+
+ SmallVector<PHINode *, 8> LcssaInnerLatch;
+ for (PHINode &P : InnerLatch->phis())
+ LcssaInnerLatch.push_back(&P);
+
+ // Lcssa PHIs for values used outside the inner loop are in InnerExit.
+ // If a PHI node has users outside of InnerExit, it has a use outside the
+ // interchanged loop and we have to preserve it. We move these to
+ // InnerLatch, which will become the new exit block for the innermost
+ // loop after interchanging.
+ for (PHINode *P : LcssaInnerExit)
+ P->moveBefore(InnerLatch->getFirstNonPHI());
+
+ // If the inner loop latch contains LCSSA PHIs, those come from a child loop
+ // and we have to move them to the new inner latch.
+ for (PHINode *P : LcssaInnerLatch)
+ P->moveBefore(InnerExit->getFirstNonPHI());
+
+ // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
+ // incoming values from the outer latch or header, we have to add a new PHI
+ // in the inner loop latch, which became the exit block of the outer loop,
+ // after interchanging.
+ if (OuterExit) {
+ for (PHINode &P : OuterExit->phis()) {
+ if (P.getNumIncomingValues() != 1)
+ continue;
+ // Skip Phis with incoming values not defined in the outer loop's header
+ // and latch. Also skip incoming phis defined in the latch. Those should
+ // already have been updated.
+ auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
+ if (!I || ((I->getParent() != OuterLatch || isa<PHINode>(I)) &&
+ I->getParent() != OuterHeader))
+ continue;
+
+ PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
+ NewPhi->setIncomingValue(0, P.getIncomingValue(0));
+ NewPhi->setIncomingBlock(0, OuterLatch);
+ NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
+ P.setIncomingValue(0, NewPhi);
+ }
+ }
+
+ // Now adjust the incoming blocks for the LCSSA PHIs.
+ // For PHIs moved from Inner's exit block, we need to replace Inner's latch
+ // with the new latch.
+ InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
+}
+
+bool LoopInterchangeTransform::adjustLoopBranches() {
+ LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
+ std::vector<DominatorTree::UpdateType> DTUpdates;
+
+ BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+
+ assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
+ InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
+ InnerLoopPreHeader && "Guaranteed by loop-simplify form");
+ // Ensure that both preheaders do not contain PHI nodes and have single
+ // predecessors. This allows us to move them easily. We use
+ // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
+ // preheaders do not satisfy those conditions.
+ if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
+ !OuterLoopPreHeader->getUniquePredecessor())
+ OuterLoopPreHeader =
+ InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
+ if (InnerLoopPreHeader == OuterLoop->getHeader())
+ InnerLoopPreHeader =
+ InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
+
+ // Adjust the loop preheader
+ BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
+ BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
+ BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
+ BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
+ BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
+ BasicBlock *InnerLoopLatchPredecessor =
+ InnerLoopLatch->getUniquePredecessor();
+ BasicBlock *InnerLoopLatchSuccessor;
+ BasicBlock *OuterLoopLatchSuccessor;
+
+ BranchInst *OuterLoopLatchBI =
+ dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
+ BranchInst *InnerLoopLatchBI =
+ dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
+ BranchInst *OuterLoopHeaderBI =
+ dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
+ BranchInst *InnerLoopHeaderBI =
+ dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
+
+ if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
+ !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
+ !InnerLoopHeaderBI)
+ return false;
+
+ BranchInst *InnerLoopLatchPredecessorBI =
+ dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
+ BranchInst *OuterLoopPredecessorBI =
+ dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
+
+ if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
+ return false;
+ BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
+ if (!InnerLoopHeaderSuccessor)
+ return false;
+
+ // Adjust Loop Preheader and headers
+ updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
+ InnerLoopPreHeader, DTUpdates);
+ updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
+ updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
+ InnerLoopHeaderSuccessor, DTUpdates);
+
+ // Adjust reduction PHI's now that the incoming block has changed.
+ InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
+ OuterLoopHeader);
+
+ updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
+ OuterLoopPreHeader, DTUpdates);
+
+ // -------------Adjust loop latches-----------
+ if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
+ InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
+ else
+ InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
+
+ updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
+ InnerLoopLatchSuccessor, DTUpdates);
+
+
+ if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
+ OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
+ else
+ OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
+
+ updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
+ OuterLoopLatchSuccessor, DTUpdates);
+ updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
+ DTUpdates);
+
+ DT->applyUpdates(DTUpdates);
+ restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
+ OuterLoopPreHeader);
+
+ moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
+ OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock());
+ // For PHIs in the exit block of the outer loop, outer's latch has been
+ // replaced by Inners'.
+ OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
+
+ // Now update the reduction PHIs in the inner and outer loop headers.
+ SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
+ for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
+ InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
+ for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
+ OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
+
+ auto &OuterInnerReductions = LIL.getOuterInnerReductions();
+ (void)OuterInnerReductions;
+
+ // Now move the remaining reduction PHIs from outer to inner loop header and
+ // vice versa. The PHI nodes must be part of a reduction across the inner and
+ // outer loop and all the remains to do is and updating the incoming blocks.
+ for (PHINode *PHI : OuterLoopPHIs) {
+ PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
+ assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() &&
+ "Expected a reduction PHI node");
+ }
+ for (PHINode *PHI : InnerLoopPHIs) {
+ PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
+ assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() &&
+ "Expected a reduction PHI node");
+ }
+
+ // Update the incoming blocks for moved PHI nodes.
+ OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
+ OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
+ InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
+ InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
+
+ return true;
+}
+
+void LoopInterchangeTransform::adjustLoopPreheaders() {
+ // We have interchanged the preheaders so we need to interchange the data in
+ // the preheader as well.
+ // This is because the content of inner preheader was previously executed
+ // inside the outer loop.
+ BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
+ BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
+ BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
+ BranchInst *InnerTermBI =
+ cast<BranchInst>(InnerLoopPreHeader->getTerminator());
+
+ // These instructions should now be executed inside the loop.
+ // Move instruction into a new block after outer header.
+ moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
+ // These instructions were not executed previously in the loop so move them to
+ // the older inner loop preheader.
+ moveBBContents(OuterLoopPreHeader, InnerTermBI);
+}
+
+bool LoopInterchangeTransform::adjustLoopLinks() {
+ // Adjust all branches in the inner and outer loop.
+ bool Changed = adjustLoopBranches();
+ if (Changed)
+ adjustLoopPreheaders();
+ return Changed;
+}
+
+char LoopInterchange::ID = 0;
+
+INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
+ "Interchanges loops for cache reuse", false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
+
+INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
+ "Interchanges loops for cache reuse", false, false)
+
+Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }