aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp717
1 files changed, 717 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp
new file mode 100644
index 000000000000..2b3d5e0ce9b7
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/LoopLoadElimination.cpp
@@ -0,0 +1,717 @@
+//===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implement a loop-aware load elimination pass.
+//
+// It uses LoopAccessAnalysis to identify loop-carried dependences with a
+// distance of one between stores and loads. These form the candidates for the
+// transformation. The source value of each store then propagated to the user
+// of the corresponding load. This makes the load dead.
+//
+// The pass can also version the loop and add memchecks in order to prove that
+// may-aliasing stores can't change the value in memory before it's read by the
+// load.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/LoopLoadElimination.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/BlockFrequencyInfo.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
+#include "llvm/Analysis/LoopAccessAnalysis.h"
+#include "llvm/Analysis/LoopAnalysisManager.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/ProfileSummaryInfo.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils.h"
+#include "llvm/Transforms/Utils/LoopVersioning.h"
+#include "llvm/Transforms/Utils/SizeOpts.h"
+#include <algorithm>
+#include <cassert>
+#include <forward_list>
+#include <set>
+#include <tuple>
+#include <utility>
+
+using namespace llvm;
+
+#define LLE_OPTION "loop-load-elim"
+#define DEBUG_TYPE LLE_OPTION
+
+static cl::opt<unsigned> CheckPerElim(
+ "runtime-check-per-loop-load-elim", cl::Hidden,
+ cl::desc("Max number of memchecks allowed per eliminated load on average"),
+ cl::init(1));
+
+static cl::opt<unsigned> LoadElimSCEVCheckThreshold(
+ "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden,
+ cl::desc("The maximum number of SCEV checks allowed for Loop "
+ "Load Elimination"));
+
+STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
+
+namespace {
+
+/// Represent a store-to-forwarding candidate.
+struct StoreToLoadForwardingCandidate {
+ LoadInst *Load;
+ StoreInst *Store;
+
+ StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
+ : Load(Load), Store(Store) {}
+
+ /// Return true if the dependence from the store to the load has a
+ /// distance of one. E.g. A[i+1] = A[i]
+ bool isDependenceDistanceOfOne(PredicatedScalarEvolution &PSE,
+ Loop *L) const {
+ Value *LoadPtr = Load->getPointerOperand();
+ Value *StorePtr = Store->getPointerOperand();
+ Type *LoadPtrType = LoadPtr->getType();
+ Type *LoadType = LoadPtrType->getPointerElementType();
+
+ assert(LoadPtrType->getPointerAddressSpace() ==
+ StorePtr->getType()->getPointerAddressSpace() &&
+ LoadType == StorePtr->getType()->getPointerElementType() &&
+ "Should be a known dependence");
+
+ // Currently we only support accesses with unit stride. FIXME: we should be
+ // able to handle non unit stirde as well as long as the stride is equal to
+ // the dependence distance.
+ if (getPtrStride(PSE, LoadPtr, L) != 1 ||
+ getPtrStride(PSE, StorePtr, L) != 1)
+ return false;
+
+ auto &DL = Load->getParent()->getModule()->getDataLayout();
+ unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
+
+ auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(LoadPtr));
+ auto *StorePtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(StorePtr));
+
+ // We don't need to check non-wrapping here because forward/backward
+ // dependence wouldn't be valid if these weren't monotonic accesses.
+ auto *Dist = cast<SCEVConstant>(
+ PSE.getSE()->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
+ const APInt &Val = Dist->getAPInt();
+ return Val == TypeByteSize;
+ }
+
+ Value *getLoadPtr() const { return Load->getPointerOperand(); }
+
+#ifndef NDEBUG
+ friend raw_ostream &operator<<(raw_ostream &OS,
+ const StoreToLoadForwardingCandidate &Cand) {
+ OS << *Cand.Store << " -->\n";
+ OS.indent(2) << *Cand.Load << "\n";
+ return OS;
+ }
+#endif
+};
+
+} // end anonymous namespace
+
+/// Check if the store dominates all latches, so as long as there is no
+/// intervening store this value will be loaded in the next iteration.
+static bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
+ DominatorTree *DT) {
+ SmallVector<BasicBlock *, 8> Latches;
+ L->getLoopLatches(Latches);
+ return llvm::all_of(Latches, [&](const BasicBlock *Latch) {
+ return DT->dominates(StoreBlock, Latch);
+ });
+}
+
+/// Return true if the load is not executed on all paths in the loop.
+static bool isLoadConditional(LoadInst *Load, Loop *L) {
+ return Load->getParent() != L->getHeader();
+}
+
+namespace {
+
+/// The per-loop class that does most of the work.
+class LoadEliminationForLoop {
+public:
+ LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
+ DominatorTree *DT, BlockFrequencyInfo *BFI,
+ ProfileSummaryInfo* PSI)
+ : L(L), LI(LI), LAI(LAI), DT(DT), BFI(BFI), PSI(PSI), PSE(LAI.getPSE()) {}
+
+ /// Look through the loop-carried and loop-independent dependences in
+ /// this loop and find store->load dependences.
+ ///
+ /// Note that no candidate is returned if LAA has failed to analyze the loop
+ /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
+ std::forward_list<StoreToLoadForwardingCandidate>
+ findStoreToLoadDependences(const LoopAccessInfo &LAI) {
+ std::forward_list<StoreToLoadForwardingCandidate> Candidates;
+
+ const auto *Deps = LAI.getDepChecker().getDependences();
+ if (!Deps)
+ return Candidates;
+
+ // Find store->load dependences (consequently true dep). Both lexically
+ // forward and backward dependences qualify. Disqualify loads that have
+ // other unknown dependences.
+
+ SmallPtrSet<Instruction *, 4> LoadsWithUnknownDepedence;
+
+ for (const auto &Dep : *Deps) {
+ Instruction *Source = Dep.getSource(LAI);
+ Instruction *Destination = Dep.getDestination(LAI);
+
+ if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
+ if (isa<LoadInst>(Source))
+ LoadsWithUnknownDepedence.insert(Source);
+ if (isa<LoadInst>(Destination))
+ LoadsWithUnknownDepedence.insert(Destination);
+ continue;
+ }
+
+ if (Dep.isBackward())
+ // Note that the designations source and destination follow the program
+ // order, i.e. source is always first. (The direction is given by the
+ // DepType.)
+ std::swap(Source, Destination);
+ else
+ assert(Dep.isForward() && "Needs to be a forward dependence");
+
+ auto *Store = dyn_cast<StoreInst>(Source);
+ if (!Store)
+ continue;
+ auto *Load = dyn_cast<LoadInst>(Destination);
+ if (!Load)
+ continue;
+
+ // Only progagate the value if they are of the same type.
+ if (Store->getPointerOperandType() != Load->getPointerOperandType())
+ continue;
+
+ Candidates.emplace_front(Load, Store);
+ }
+
+ if (!LoadsWithUnknownDepedence.empty())
+ Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
+ return LoadsWithUnknownDepedence.count(C.Load);
+ });
+
+ return Candidates;
+ }
+
+ /// Return the index of the instruction according to program order.
+ unsigned getInstrIndex(Instruction *Inst) {
+ auto I = InstOrder.find(Inst);
+ assert(I != InstOrder.end() && "No index for instruction");
+ return I->second;
+ }
+
+ /// If a load has multiple candidates associated (i.e. different
+ /// stores), it means that it could be forwarding from multiple stores
+ /// depending on control flow. Remove these candidates.
+ ///
+ /// Here, we rely on LAA to include the relevant loop-independent dependences.
+ /// LAA is known to omit these in the very simple case when the read and the
+ /// write within an alias set always takes place using the *same* pointer.
+ ///
+ /// However, we know that this is not the case here, i.e. we can rely on LAA
+ /// to provide us with loop-independent dependences for the cases we're
+ /// interested. Consider the case for example where a loop-independent
+ /// dependece S1->S2 invalidates the forwarding S3->S2.
+ ///
+ /// A[i] = ... (S1)
+ /// ... = A[i] (S2)
+ /// A[i+1] = ... (S3)
+ ///
+ /// LAA will perform dependence analysis here because there are two
+ /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
+ void removeDependencesFromMultipleStores(
+ std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
+ // If Store is nullptr it means that we have multiple stores forwarding to
+ // this store.
+ using LoadToSingleCandT =
+ DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>;
+ LoadToSingleCandT LoadToSingleCand;
+
+ for (const auto &Cand : Candidates) {
+ bool NewElt;
+ LoadToSingleCandT::iterator Iter;
+
+ std::tie(Iter, NewElt) =
+ LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
+ if (!NewElt) {
+ const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
+ // Already multiple stores forward to this load.
+ if (OtherCand == nullptr)
+ continue;
+
+ // Handle the very basic case when the two stores are in the same block
+ // so deciding which one forwards is easy. The later one forwards as
+ // long as they both have a dependence distance of one to the load.
+ if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
+ Cand.isDependenceDistanceOfOne(PSE, L) &&
+ OtherCand->isDependenceDistanceOfOne(PSE, L)) {
+ // They are in the same block, the later one will forward to the load.
+ if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
+ OtherCand = &Cand;
+ } else
+ OtherCand = nullptr;
+ }
+ }
+
+ Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
+ if (LoadToSingleCand[Cand.Load] != &Cand) {
+ LLVM_DEBUG(
+ dbgs() << "Removing from candidates: \n"
+ << Cand
+ << " The load may have multiple stores forwarding to "
+ << "it\n");
+ return true;
+ }
+ return false;
+ });
+ }
+
+ /// Given two pointers operations by their RuntimePointerChecking
+ /// indices, return true if they require an alias check.
+ ///
+ /// We need a check if one is a pointer for a candidate load and the other is
+ /// a pointer for a possibly intervening store.
+ bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
+ const SmallPtrSet<Value *, 4> &PtrsWrittenOnFwdingPath,
+ const std::set<Value *> &CandLoadPtrs) {
+ Value *Ptr1 =
+ LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
+ Value *Ptr2 =
+ LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
+ return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
+ (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
+ }
+
+ /// Return pointers that are possibly written to on the path from a
+ /// forwarding store to a load.
+ ///
+ /// These pointers need to be alias-checked against the forwarding candidates.
+ SmallPtrSet<Value *, 4> findPointersWrittenOnForwardingPath(
+ const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
+ // From FirstStore to LastLoad neither of the elimination candidate loads
+ // should overlap with any of the stores.
+ //
+ // E.g.:
+ //
+ // st1 C[i]
+ // ld1 B[i] <-------,
+ // ld0 A[i] <----, | * LastLoad
+ // ... | |
+ // st2 E[i] | |
+ // st3 B[i+1] -- | -' * FirstStore
+ // st0 A[i+1] ---'
+ // st4 D[i]
+ //
+ // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
+ // ld0.
+
+ LoadInst *LastLoad =
+ std::max_element(Candidates.begin(), Candidates.end(),
+ [&](const StoreToLoadForwardingCandidate &A,
+ const StoreToLoadForwardingCandidate &B) {
+ return getInstrIndex(A.Load) < getInstrIndex(B.Load);
+ })
+ ->Load;
+ StoreInst *FirstStore =
+ std::min_element(Candidates.begin(), Candidates.end(),
+ [&](const StoreToLoadForwardingCandidate &A,
+ const StoreToLoadForwardingCandidate &B) {
+ return getInstrIndex(A.Store) <
+ getInstrIndex(B.Store);
+ })
+ ->Store;
+
+ // We're looking for stores after the first forwarding store until the end
+ // of the loop, then from the beginning of the loop until the last
+ // forwarded-to load. Collect the pointer for the stores.
+ SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath;
+
+ auto InsertStorePtr = [&](Instruction *I) {
+ if (auto *S = dyn_cast<StoreInst>(I))
+ PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
+ };
+ const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
+ std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
+ MemInstrs.end(), InsertStorePtr);
+ std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
+ InsertStorePtr);
+
+ return PtrsWrittenOnFwdingPath;
+ }
+
+ /// Determine the pointer alias checks to prove that there are no
+ /// intervening stores.
+ SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
+ const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
+
+ SmallPtrSet<Value *, 4> PtrsWrittenOnFwdingPath =
+ findPointersWrittenOnForwardingPath(Candidates);
+
+ // Collect the pointers of the candidate loads.
+ // FIXME: SmallPtrSet does not work with std::inserter.
+ std::set<Value *> CandLoadPtrs;
+ transform(Candidates,
+ std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
+ std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
+
+ const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
+ SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
+
+ copy_if(AllChecks, std::back_inserter(Checks),
+ [&](const RuntimePointerChecking::PointerCheck &Check) {
+ for (auto PtrIdx1 : Check.first->Members)
+ for (auto PtrIdx2 : Check.second->Members)
+ if (needsChecking(PtrIdx1, PtrIdx2, PtrsWrittenOnFwdingPath,
+ CandLoadPtrs))
+ return true;
+ return false;
+ });
+
+ LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size()
+ << "):\n");
+ LLVM_DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
+
+ return Checks;
+ }
+
+ /// Perform the transformation for a candidate.
+ void
+ propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
+ SCEVExpander &SEE) {
+ // loop:
+ // %x = load %gep_i
+ // = ... %x
+ // store %y, %gep_i_plus_1
+ //
+ // =>
+ //
+ // ph:
+ // %x.initial = load %gep_0
+ // loop:
+ // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
+ // %x = load %gep_i <---- now dead
+ // = ... %x.storeforward
+ // store %y, %gep_i_plus_1
+
+ Value *Ptr = Cand.Load->getPointerOperand();
+ auto *PtrSCEV = cast<SCEVAddRecExpr>(PSE.getSCEV(Ptr));
+ auto *PH = L->getLoopPreheader();
+ Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
+ PH->getTerminator());
+ Value *Initial = new LoadInst(
+ Cand.Load->getType(), InitialPtr, "load_initial",
+ /* isVolatile */ false, Cand.Load->getAlignment(), PH->getTerminator());
+
+ PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
+ &L->getHeader()->front());
+ PHI->addIncoming(Initial, PH);
+ PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
+
+ Cand.Load->replaceAllUsesWith(PHI);
+ }
+
+ /// Top-level driver for each loop: find store->load forwarding
+ /// candidates, add run-time checks and perform transformation.
+ bool processLoop() {
+ LLVM_DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
+ << "\" checking " << *L << "\n");
+
+ // Look for store-to-load forwarding cases across the
+ // backedge. E.g.:
+ //
+ // loop:
+ // %x = load %gep_i
+ // = ... %x
+ // store %y, %gep_i_plus_1
+ //
+ // =>
+ //
+ // ph:
+ // %x.initial = load %gep_0
+ // loop:
+ // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
+ // %x = load %gep_i <---- now dead
+ // = ... %x.storeforward
+ // store %y, %gep_i_plus_1
+
+ // First start with store->load dependences.
+ auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
+ if (StoreToLoadDependences.empty())
+ return false;
+
+ // Generate an index for each load and store according to the original
+ // program order. This will be used later.
+ InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
+
+ // To keep things simple for now, remove those where the load is potentially
+ // fed by multiple stores.
+ removeDependencesFromMultipleStores(StoreToLoadDependences);
+ if (StoreToLoadDependences.empty())
+ return false;
+
+ // Filter the candidates further.
+ SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
+ unsigned NumForwarding = 0;
+ for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
+ LLVM_DEBUG(dbgs() << "Candidate " << Cand);
+
+ // Make sure that the stored values is available everywhere in the loop in
+ // the next iteration.
+ if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
+ continue;
+
+ // If the load is conditional we can't hoist its 0-iteration instance to
+ // the preheader because that would make it unconditional. Thus we would
+ // access a memory location that the original loop did not access.
+ if (isLoadConditional(Cand.Load, L))
+ continue;
+
+ // Check whether the SCEV difference is the same as the induction step,
+ // thus we load the value in the next iteration.
+ if (!Cand.isDependenceDistanceOfOne(PSE, L))
+ continue;
+
+ ++NumForwarding;
+ LLVM_DEBUG(
+ dbgs()
+ << NumForwarding
+ << ". Valid store-to-load forwarding across the loop backedge\n");
+ Candidates.push_back(Cand);
+ }
+ if (Candidates.empty())
+ return false;
+
+ // Check intervening may-alias stores. These need runtime checks for alias
+ // disambiguation.
+ SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
+ collectMemchecks(Candidates);
+
+ // Too many checks are likely to outweigh the benefits of forwarding.
+ if (Checks.size() > Candidates.size() * CheckPerElim) {
+ LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
+ return false;
+ }
+
+ if (LAI.getPSE().getUnionPredicate().getComplexity() >
+ LoadElimSCEVCheckThreshold) {
+ LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
+ return false;
+ }
+
+ if (!Checks.empty() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) {
+ if (LAI.hasConvergentOp()) {
+ LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
+ "convergent calls\n");
+ return false;
+ }
+
+ auto *HeaderBB = L->getHeader();
+ auto *F = HeaderBB->getParent();
+ bool OptForSize = F->hasOptSize() ||
+ llvm::shouldOptimizeForSize(HeaderBB, PSI, BFI);
+ if (OptForSize) {
+ LLVM_DEBUG(
+ dbgs() << "Versioning is needed but not allowed when optimizing "
+ "for size.\n");
+ return false;
+ }
+
+ if (!L->isLoopSimplifyForm()) {
+ LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
+ return false;
+ }
+
+ // Point of no-return, start the transformation. First, version the loop
+ // if necessary.
+
+ LoopVersioning LV(LAI, L, LI, DT, PSE.getSE(), false);
+ LV.setAliasChecks(std::move(Checks));
+ LV.setSCEVChecks(LAI.getPSE().getUnionPredicate());
+ LV.versionLoop();
+ }
+
+ // Next, propagate the value stored by the store to the users of the load.
+ // Also for the first iteration, generate the initial value of the load.
+ SCEVExpander SEE(*PSE.getSE(), L->getHeader()->getModule()->getDataLayout(),
+ "storeforward");
+ for (const auto &Cand : Candidates)
+ propagateStoredValueToLoadUsers(Cand, SEE);
+ NumLoopLoadEliminted += NumForwarding;
+
+ return true;
+ }
+
+private:
+ Loop *L;
+
+ /// Maps the load/store instructions to their index according to
+ /// program order.
+ DenseMap<Instruction *, unsigned> InstOrder;
+
+ // Analyses used.
+ LoopInfo *LI;
+ const LoopAccessInfo &LAI;
+ DominatorTree *DT;
+ BlockFrequencyInfo *BFI;
+ ProfileSummaryInfo *PSI;
+ PredicatedScalarEvolution PSE;
+};
+
+} // end anonymous namespace
+
+static bool
+eliminateLoadsAcrossLoops(Function &F, LoopInfo &LI, DominatorTree &DT,
+ BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
+ function_ref<const LoopAccessInfo &(Loop &)> GetLAI) {
+ // Build up a worklist of inner-loops to transform to avoid iterator
+ // invalidation.
+ // FIXME: This logic comes from other passes that actually change the loop
+ // nest structure. It isn't clear this is necessary (or useful) for a pass
+ // which merely optimizes the use of loads in a loop.
+ SmallVector<Loop *, 8> Worklist;
+
+ for (Loop *TopLevelLoop : LI)
+ for (Loop *L : depth_first(TopLevelLoop))
+ // We only handle inner-most loops.
+ if (L->empty())
+ Worklist.push_back(L);
+
+ // Now walk the identified inner loops.
+ bool Changed = false;
+ for (Loop *L : Worklist) {
+ // The actual work is performed by LoadEliminationForLoop.
+ LoadEliminationForLoop LEL(L, &LI, GetLAI(*L), &DT, BFI, PSI);
+ Changed |= LEL.processLoop();
+ }
+ return Changed;
+}
+
+namespace {
+
+/// The pass. Most of the work is delegated to the per-loop
+/// LoadEliminationForLoop class.
+class LoopLoadElimination : public FunctionPass {
+public:
+ static char ID;
+
+ LoopLoadElimination() : FunctionPass(ID) {
+ initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+
+ auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto &LAA = getAnalysis<LoopAccessLegacyAnalysis>();
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
+ auto *BFI = (PSI && PSI->hasProfileSummary()) ?
+ &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
+ nullptr;
+
+ // Process each loop nest in the function.
+ return eliminateLoadsAcrossLoops(
+ F, LI, DT, BFI, PSI,
+ [&LAA](Loop &L) -> const LoopAccessInfo & { return LAA.getInfo(&L); });
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addRequired<LoopAccessLegacyAnalysis>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.addRequired<ProfileSummaryInfoWrapperPass>();
+ LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
+ }
+};
+
+} // end anonymous namespace
+
+char LoopLoadElimination::ID;
+
+static const char LLE_name[] = "Loop Load Elimination";
+
+INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
+INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
+INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
+
+FunctionPass *llvm::createLoopLoadEliminationPass() {
+ return new LoopLoadElimination();
+}
+
+PreservedAnalyses LoopLoadEliminationPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
+ auto &LI = AM.getResult<LoopAnalysis>(F);
+ auto &TTI = AM.getResult<TargetIRAnalysis>(F);
+ auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
+ auto &AA = AM.getResult<AAManager>(F);
+ auto &AC = AM.getResult<AssumptionAnalysis>(F);
+ auto &MAM = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
+ auto *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
+ auto *BFI = (PSI && PSI->hasProfileSummary()) ?
+ &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
+ MemorySSA *MSSA = EnableMSSALoopDependency
+ ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA()
+ : nullptr;
+
+ auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
+ bool Changed = eliminateLoadsAcrossLoops(
+ F, LI, DT, BFI, PSI, [&](Loop &L) -> const LoopAccessInfo & {
+ LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, MSSA};
+ return LAM.getResult<LoopAccessAnalysis>(L, AR);
+ });
+
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ return PA;
+}