aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp2989
1 files changed, 2989 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
new file mode 100644
index 000000000000..aeac6f548b32
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp
@@ -0,0 +1,2989 @@
+///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Sequence.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/GuardUtils.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopAnalysisManager.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/Utils/Local.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GenericDomTree.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <cassert>
+#include <iterator>
+#include <numeric>
+#include <utility>
+
+#define DEBUG_TYPE "simple-loop-unswitch"
+
+using namespace llvm;
+
+STATISTIC(NumBranches, "Number of branches unswitched");
+STATISTIC(NumSwitches, "Number of switches unswitched");
+STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
+STATISTIC(NumTrivial, "Number of unswitches that are trivial");
+STATISTIC(
+ NumCostMultiplierSkipped,
+ "Number of unswitch candidates that had their cost multiplier skipped");
+
+static cl::opt<bool> EnableNonTrivialUnswitch(
+ "enable-nontrivial-unswitch", cl::init(false), cl::Hidden,
+ cl::desc("Forcibly enables non-trivial loop unswitching rather than "
+ "following the configuration passed into the pass."));
+
+static cl::opt<int>
+ UnswitchThreshold("unswitch-threshold", cl::init(50), cl::Hidden,
+ cl::desc("The cost threshold for unswitching a loop."));
+
+static cl::opt<bool> EnableUnswitchCostMultiplier(
+ "enable-unswitch-cost-multiplier", cl::init(true), cl::Hidden,
+ cl::desc("Enable unswitch cost multiplier that prohibits exponential "
+ "explosion in nontrivial unswitch."));
+static cl::opt<int> UnswitchSiblingsToplevelDiv(
+ "unswitch-siblings-toplevel-div", cl::init(2), cl::Hidden,
+ cl::desc("Toplevel siblings divisor for cost multiplier."));
+static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
+ "unswitch-num-initial-unscaled-candidates", cl::init(8), cl::Hidden,
+ cl::desc("Number of unswitch candidates that are ignored when calculating "
+ "cost multiplier."));
+static cl::opt<bool> UnswitchGuards(
+ "simple-loop-unswitch-guards", cl::init(true), cl::Hidden,
+ cl::desc("If enabled, simple loop unswitching will also consider "
+ "llvm.experimental.guard intrinsics as unswitch candidates."));
+
+/// Collect all of the loop invariant input values transitively used by the
+/// homogeneous instruction graph from a given root.
+///
+/// This essentially walks from a root recursively through loop variant operands
+/// which have the exact same opcode and finds all inputs which are loop
+/// invariant. For some operations these can be re-associated and unswitched out
+/// of the loop entirely.
+static TinyPtrVector<Value *>
+collectHomogenousInstGraphLoopInvariants(Loop &L, Instruction &Root,
+ LoopInfo &LI) {
+ assert(!L.isLoopInvariant(&Root) &&
+ "Only need to walk the graph if root itself is not invariant.");
+ TinyPtrVector<Value *> Invariants;
+
+ // Build a worklist and recurse through operators collecting invariants.
+ SmallVector<Instruction *, 4> Worklist;
+ SmallPtrSet<Instruction *, 8> Visited;
+ Worklist.push_back(&Root);
+ Visited.insert(&Root);
+ do {
+ Instruction &I = *Worklist.pop_back_val();
+ for (Value *OpV : I.operand_values()) {
+ // Skip constants as unswitching isn't interesting for them.
+ if (isa<Constant>(OpV))
+ continue;
+
+ // Add it to our result if loop invariant.
+ if (L.isLoopInvariant(OpV)) {
+ Invariants.push_back(OpV);
+ continue;
+ }
+
+ // If not an instruction with the same opcode, nothing we can do.
+ Instruction *OpI = dyn_cast<Instruction>(OpV);
+ if (!OpI || OpI->getOpcode() != Root.getOpcode())
+ continue;
+
+ // Visit this operand.
+ if (Visited.insert(OpI).second)
+ Worklist.push_back(OpI);
+ }
+ } while (!Worklist.empty());
+
+ return Invariants;
+}
+
+static void replaceLoopInvariantUses(Loop &L, Value *Invariant,
+ Constant &Replacement) {
+ assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
+
+ // Replace uses of LIC in the loop with the given constant.
+ for (auto UI = Invariant->use_begin(), UE = Invariant->use_end(); UI != UE;) {
+ // Grab the use and walk past it so we can clobber it in the use list.
+ Use *U = &*UI++;
+ Instruction *UserI = dyn_cast<Instruction>(U->getUser());
+
+ // Replace this use within the loop body.
+ if (UserI && L.contains(UserI))
+ U->set(&Replacement);
+ }
+}
+
+/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
+/// incoming values along this edge.
+static bool areLoopExitPHIsLoopInvariant(Loop &L, BasicBlock &ExitingBB,
+ BasicBlock &ExitBB) {
+ for (Instruction &I : ExitBB) {
+ auto *PN = dyn_cast<PHINode>(&I);
+ if (!PN)
+ // No more PHIs to check.
+ return true;
+
+ // If the incoming value for this edge isn't loop invariant the unswitch
+ // won't be trivial.
+ if (!L.isLoopInvariant(PN->getIncomingValueForBlock(&ExitingBB)))
+ return false;
+ }
+ llvm_unreachable("Basic blocks should never be empty!");
+}
+
+/// Insert code to test a set of loop invariant values, and conditionally branch
+/// on them.
+static void buildPartialUnswitchConditionalBranch(BasicBlock &BB,
+ ArrayRef<Value *> Invariants,
+ bool Direction,
+ BasicBlock &UnswitchedSucc,
+ BasicBlock &NormalSucc) {
+ IRBuilder<> IRB(&BB);
+
+ Value *Cond = Direction ? IRB.CreateOr(Invariants) :
+ IRB.CreateAnd(Invariants);
+ IRB.CreateCondBr(Cond, Direction ? &UnswitchedSucc : &NormalSucc,
+ Direction ? &NormalSucc : &UnswitchedSucc);
+}
+
+/// Rewrite the PHI nodes in an unswitched loop exit basic block.
+///
+/// Requires that the loop exit and unswitched basic block are the same, and
+/// that the exiting block was a unique predecessor of that block. Rewrites the
+/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
+/// PHI nodes from the old preheader that now contains the unswitched
+/// terminator.
+static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
+ BasicBlock &OldExitingBB,
+ BasicBlock &OldPH) {
+ for (PHINode &PN : UnswitchedBB.phis()) {
+ // When the loop exit is directly unswitched we just need to update the
+ // incoming basic block. We loop to handle weird cases with repeated
+ // incoming blocks, but expect to typically only have one operand here.
+ for (auto i : seq<int>(0, PN.getNumOperands())) {
+ assert(PN.getIncomingBlock(i) == &OldExitingBB &&
+ "Found incoming block different from unique predecessor!");
+ PN.setIncomingBlock(i, &OldPH);
+ }
+ }
+}
+
+/// Rewrite the PHI nodes in the loop exit basic block and the split off
+/// unswitched block.
+///
+/// Because the exit block remains an exit from the loop, this rewrites the
+/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
+/// nodes into the unswitched basic block to select between the value in the
+/// old preheader and the loop exit.
+static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
+ BasicBlock &UnswitchedBB,
+ BasicBlock &OldExitingBB,
+ BasicBlock &OldPH,
+ bool FullUnswitch) {
+ assert(&ExitBB != &UnswitchedBB &&
+ "Must have different loop exit and unswitched blocks!");
+ Instruction *InsertPt = &*UnswitchedBB.begin();
+ for (PHINode &PN : ExitBB.phis()) {
+ auto *NewPN = PHINode::Create(PN.getType(), /*NumReservedValues*/ 2,
+ PN.getName() + ".split", InsertPt);
+
+ // Walk backwards over the old PHI node's inputs to minimize the cost of
+ // removing each one. We have to do this weird loop manually so that we
+ // create the same number of new incoming edges in the new PHI as we expect
+ // each case-based edge to be included in the unswitched switch in some
+ // cases.
+ // FIXME: This is really, really gross. It would be much cleaner if LLVM
+ // allowed us to create a single entry for a predecessor block without
+ // having separate entries for each "edge" even though these edges are
+ // required to produce identical results.
+ for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
+ if (PN.getIncomingBlock(i) != &OldExitingBB)
+ continue;
+
+ Value *Incoming = PN.getIncomingValue(i);
+ if (FullUnswitch)
+ // No more edge from the old exiting block to the exit block.
+ PN.removeIncomingValue(i);
+
+ NewPN->addIncoming(Incoming, &OldPH);
+ }
+
+ // Now replace the old PHI with the new one and wire the old one in as an
+ // input to the new one.
+ PN.replaceAllUsesWith(NewPN);
+ NewPN->addIncoming(&PN, &ExitBB);
+ }
+}
+
+/// Hoist the current loop up to the innermost loop containing a remaining exit.
+///
+/// Because we've removed an exit from the loop, we may have changed the set of
+/// loops reachable and need to move the current loop up the loop nest or even
+/// to an entirely separate nest.
+static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
+ DominatorTree &DT, LoopInfo &LI,
+ MemorySSAUpdater *MSSAU) {
+ // If the loop is already at the top level, we can't hoist it anywhere.
+ Loop *OldParentL = L.getParentLoop();
+ if (!OldParentL)
+ return;
+
+ SmallVector<BasicBlock *, 4> Exits;
+ L.getExitBlocks(Exits);
+ Loop *NewParentL = nullptr;
+ for (auto *ExitBB : Exits)
+ if (Loop *ExitL = LI.getLoopFor(ExitBB))
+ if (!NewParentL || NewParentL->contains(ExitL))
+ NewParentL = ExitL;
+
+ if (NewParentL == OldParentL)
+ return;
+
+ // The new parent loop (if different) should always contain the old one.
+ if (NewParentL)
+ assert(NewParentL->contains(OldParentL) &&
+ "Can only hoist this loop up the nest!");
+
+ // The preheader will need to move with the body of this loop. However,
+ // because it isn't in this loop we also need to update the primary loop map.
+ assert(OldParentL == LI.getLoopFor(&Preheader) &&
+ "Parent loop of this loop should contain this loop's preheader!");
+ LI.changeLoopFor(&Preheader, NewParentL);
+
+ // Remove this loop from its old parent.
+ OldParentL->removeChildLoop(&L);
+
+ // Add the loop either to the new parent or as a top-level loop.
+ if (NewParentL)
+ NewParentL->addChildLoop(&L);
+ else
+ LI.addTopLevelLoop(&L);
+
+ // Remove this loops blocks from the old parent and every other loop up the
+ // nest until reaching the new parent. Also update all of these
+ // no-longer-containing loops to reflect the nesting change.
+ for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
+ OldContainingL = OldContainingL->getParentLoop()) {
+ llvm::erase_if(OldContainingL->getBlocksVector(),
+ [&](const BasicBlock *BB) {
+ return BB == &Preheader || L.contains(BB);
+ });
+
+ OldContainingL->getBlocksSet().erase(&Preheader);
+ for (BasicBlock *BB : L.blocks())
+ OldContainingL->getBlocksSet().erase(BB);
+
+ // Because we just hoisted a loop out of this one, we have essentially
+ // created new exit paths from it. That means we need to form LCSSA PHI
+ // nodes for values used in the no-longer-nested loop.
+ formLCSSA(*OldContainingL, DT, &LI, nullptr);
+
+ // We shouldn't need to form dedicated exits because the exit introduced
+ // here is the (just split by unswitching) preheader. However, after trivial
+ // unswitching it is possible to get new non-dedicated exits out of parent
+ // loop so let's conservatively form dedicated exit blocks and figure out
+ // if we can optimize later.
+ formDedicatedExitBlocks(OldContainingL, &DT, &LI, MSSAU,
+ /*PreserveLCSSA*/ true);
+ }
+}
+
+/// Unswitch a trivial branch if the condition is loop invariant.
+///
+/// This routine should only be called when loop code leading to the branch has
+/// been validated as trivial (no side effects). This routine checks if the
+/// condition is invariant and one of the successors is a loop exit. This
+/// allows us to unswitch without duplicating the loop, making it trivial.
+///
+/// If this routine fails to unswitch the branch it returns false.
+///
+/// If the branch can be unswitched, this routine splits the preheader and
+/// hoists the branch above that split. Preserves loop simplified form
+/// (splitting the exit block as necessary). It simplifies the branch within
+/// the loop to an unconditional branch but doesn't remove it entirely. Further
+/// cleanup can be done with some simplify-cfg like pass.
+///
+/// If `SE` is not null, it will be updated based on the potential loop SCEVs
+/// invalidated by this.
+static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
+ LoopInfo &LI, ScalarEvolution *SE,
+ MemorySSAUpdater *MSSAU) {
+ assert(BI.isConditional() && "Can only unswitch a conditional branch!");
+ LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
+
+ // The loop invariant values that we want to unswitch.
+ TinyPtrVector<Value *> Invariants;
+
+ // When true, we're fully unswitching the branch rather than just unswitching
+ // some input conditions to the branch.
+ bool FullUnswitch = false;
+
+ if (L.isLoopInvariant(BI.getCondition())) {
+ Invariants.push_back(BI.getCondition());
+ FullUnswitch = true;
+ } else {
+ if (auto *CondInst = dyn_cast<Instruction>(BI.getCondition()))
+ Invariants = collectHomogenousInstGraphLoopInvariants(L, *CondInst, LI);
+ if (Invariants.empty())
+ // Couldn't find invariant inputs!
+ return false;
+ }
+
+ // Check that one of the branch's successors exits, and which one.
+ bool ExitDirection = true;
+ int LoopExitSuccIdx = 0;
+ auto *LoopExitBB = BI.getSuccessor(0);
+ if (L.contains(LoopExitBB)) {
+ ExitDirection = false;
+ LoopExitSuccIdx = 1;
+ LoopExitBB = BI.getSuccessor(1);
+ if (L.contains(LoopExitBB))
+ return false;
+ }
+ auto *ContinueBB = BI.getSuccessor(1 - LoopExitSuccIdx);
+ auto *ParentBB = BI.getParent();
+ if (!areLoopExitPHIsLoopInvariant(L, *ParentBB, *LoopExitBB))
+ return false;
+
+ // When unswitching only part of the branch's condition, we need the exit
+ // block to be reached directly from the partially unswitched input. This can
+ // be done when the exit block is along the true edge and the branch condition
+ // is a graph of `or` operations, or the exit block is along the false edge
+ // and the condition is a graph of `and` operations.
+ if (!FullUnswitch) {
+ if (ExitDirection) {
+ if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::Or)
+ return false;
+ } else {
+ if (cast<Instruction>(BI.getCondition())->getOpcode() != Instruction::And)
+ return false;
+ }
+ }
+
+ LLVM_DEBUG({
+ dbgs() << " unswitching trivial invariant conditions for: " << BI
+ << "\n";
+ for (Value *Invariant : Invariants) {
+ dbgs() << " " << *Invariant << " == true";
+ if (Invariant != Invariants.back())
+ dbgs() << " ||";
+ dbgs() << "\n";
+ }
+ });
+
+ // If we have scalar evolutions, we need to invalidate them including this
+ // loop and the loop containing the exit block.
+ if (SE) {
+ if (Loop *ExitL = LI.getLoopFor(LoopExitBB))
+ SE->forgetLoop(ExitL);
+ else
+ // Forget the entire nest as this exits the entire nest.
+ SE->forgetTopmostLoop(&L);
+ }
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // Split the preheader, so that we know that there is a safe place to insert
+ // the conditional branch. We will change the preheader to have a conditional
+ // branch on LoopCond.
+ BasicBlock *OldPH = L.getLoopPreheader();
+ BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
+
+ // Now that we have a place to insert the conditional branch, create a place
+ // to branch to: this is the exit block out of the loop that we are
+ // unswitching. We need to split this if there are other loop predecessors.
+ // Because the loop is in simplified form, *any* other predecessor is enough.
+ BasicBlock *UnswitchedBB;
+ if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
+ assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
+ "A branch's parent isn't a predecessor!");
+ UnswitchedBB = LoopExitBB;
+ } else {
+ UnswitchedBB =
+ SplitBlock(LoopExitBB, &LoopExitBB->front(), &DT, &LI, MSSAU);
+ }
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // Actually move the invariant uses into the unswitched position. If possible,
+ // we do this by moving the instructions, but when doing partial unswitching
+ // we do it by building a new merge of the values in the unswitched position.
+ OldPH->getTerminator()->eraseFromParent();
+ if (FullUnswitch) {
+ // If fully unswitching, we can use the existing branch instruction.
+ // Splice it into the old PH to gate reaching the new preheader and re-point
+ // its successors.
+ OldPH->getInstList().splice(OldPH->end(), BI.getParent()->getInstList(),
+ BI);
+ if (MSSAU) {
+ // Temporarily clone the terminator, to make MSSA update cheaper by
+ // separating "insert edge" updates from "remove edge" ones.
+ ParentBB->getInstList().push_back(BI.clone());
+ } else {
+ // Create a new unconditional branch that will continue the loop as a new
+ // terminator.
+ BranchInst::Create(ContinueBB, ParentBB);
+ }
+ BI.setSuccessor(LoopExitSuccIdx, UnswitchedBB);
+ BI.setSuccessor(1 - LoopExitSuccIdx, NewPH);
+ } else {
+ // Only unswitching a subset of inputs to the condition, so we will need to
+ // build a new branch that merges the invariant inputs.
+ if (ExitDirection)
+ assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
+ Instruction::Or &&
+ "Must have an `or` of `i1`s for the condition!");
+ else
+ assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
+ Instruction::And &&
+ "Must have an `and` of `i1`s for the condition!");
+ buildPartialUnswitchConditionalBranch(*OldPH, Invariants, ExitDirection,
+ *UnswitchedBB, *NewPH);
+ }
+
+ // Update the dominator tree with the added edge.
+ DT.insertEdge(OldPH, UnswitchedBB);
+
+ // After the dominator tree was updated with the added edge, update MemorySSA
+ // if available.
+ if (MSSAU) {
+ SmallVector<CFGUpdate, 1> Updates;
+ Updates.push_back({cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
+ MSSAU->applyInsertUpdates(Updates, DT);
+ }
+
+ // Finish updating dominator tree and memory ssa for full unswitch.
+ if (FullUnswitch) {
+ if (MSSAU) {
+ // Remove the cloned branch instruction.
+ ParentBB->getTerminator()->eraseFromParent();
+ // Create unconditional branch now.
+ BranchInst::Create(ContinueBB, ParentBB);
+ MSSAU->removeEdge(ParentBB, LoopExitBB);
+ }
+ DT.deleteEdge(ParentBB, LoopExitBB);
+ }
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // Rewrite the relevant PHI nodes.
+ if (UnswitchedBB == LoopExitBB)
+ rewritePHINodesForUnswitchedExitBlock(*UnswitchedBB, *ParentBB, *OldPH);
+ else
+ rewritePHINodesForExitAndUnswitchedBlocks(*LoopExitBB, *UnswitchedBB,
+ *ParentBB, *OldPH, FullUnswitch);
+
+ // The constant we can replace all of our invariants with inside the loop
+ // body. If any of the invariants have a value other than this the loop won't
+ // be entered.
+ ConstantInt *Replacement = ExitDirection
+ ? ConstantInt::getFalse(BI.getContext())
+ : ConstantInt::getTrue(BI.getContext());
+
+ // Since this is an i1 condition we can also trivially replace uses of it
+ // within the loop with a constant.
+ for (Value *Invariant : Invariants)
+ replaceLoopInvariantUses(L, Invariant, *Replacement);
+
+ // If this was full unswitching, we may have changed the nesting relationship
+ // for this loop so hoist it to its correct parent if needed.
+ if (FullUnswitch)
+ hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
+ ++NumTrivial;
+ ++NumBranches;
+ return true;
+}
+
+/// Unswitch a trivial switch if the condition is loop invariant.
+///
+/// This routine should only be called when loop code leading to the switch has
+/// been validated as trivial (no side effects). This routine checks if the
+/// condition is invariant and that at least one of the successors is a loop
+/// exit. This allows us to unswitch without duplicating the loop, making it
+/// trivial.
+///
+/// If this routine fails to unswitch the switch it returns false.
+///
+/// If the switch can be unswitched, this routine splits the preheader and
+/// copies the switch above that split. If the default case is one of the
+/// exiting cases, it copies the non-exiting cases and points them at the new
+/// preheader. If the default case is not exiting, it copies the exiting cases
+/// and points the default at the preheader. It preserves loop simplified form
+/// (splitting the exit blocks as necessary). It simplifies the switch within
+/// the loop by removing now-dead cases. If the default case is one of those
+/// unswitched, it replaces its destination with a new basic block containing
+/// only unreachable. Such basic blocks, while technically loop exits, are not
+/// considered for unswitching so this is a stable transform and the same
+/// switch will not be revisited. If after unswitching there is only a single
+/// in-loop successor, the switch is further simplified to an unconditional
+/// branch. Still more cleanup can be done with some simplify-cfg like pass.
+///
+/// If `SE` is not null, it will be updated based on the potential loop SCEVs
+/// invalidated by this.
+static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
+ LoopInfo &LI, ScalarEvolution *SE,
+ MemorySSAUpdater *MSSAU) {
+ LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
+ Value *LoopCond = SI.getCondition();
+
+ // If this isn't switching on an invariant condition, we can't unswitch it.
+ if (!L.isLoopInvariant(LoopCond))
+ return false;
+
+ auto *ParentBB = SI.getParent();
+
+ SmallVector<int, 4> ExitCaseIndices;
+ for (auto Case : SI.cases()) {
+ auto *SuccBB = Case.getCaseSuccessor();
+ if (!L.contains(SuccBB) &&
+ areLoopExitPHIsLoopInvariant(L, *ParentBB, *SuccBB))
+ ExitCaseIndices.push_back(Case.getCaseIndex());
+ }
+ BasicBlock *DefaultExitBB = nullptr;
+ SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
+ SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, 0);
+ if (!L.contains(SI.getDefaultDest()) &&
+ areLoopExitPHIsLoopInvariant(L, *ParentBB, *SI.getDefaultDest()) &&
+ !isa<UnreachableInst>(SI.getDefaultDest()->getTerminator())) {
+ DefaultExitBB = SI.getDefaultDest();
+ } else if (ExitCaseIndices.empty())
+ return false;
+
+ LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // We may need to invalidate SCEVs for the outermost loop reached by any of
+ // the exits.
+ Loop *OuterL = &L;
+
+ if (DefaultExitBB) {
+ // Clear out the default destination temporarily to allow accurate
+ // predecessor lists to be examined below.
+ SI.setDefaultDest(nullptr);
+ // Check the loop containing this exit.
+ Loop *ExitL = LI.getLoopFor(DefaultExitBB);
+ if (!ExitL || ExitL->contains(OuterL))
+ OuterL = ExitL;
+ }
+
+ // Store the exit cases into a separate data structure and remove them from
+ // the switch.
+ SmallVector<std::tuple<ConstantInt *, BasicBlock *,
+ SwitchInstProfUpdateWrapper::CaseWeightOpt>,
+ 4> ExitCases;
+ ExitCases.reserve(ExitCaseIndices.size());
+ SwitchInstProfUpdateWrapper SIW(SI);
+ // We walk the case indices backwards so that we remove the last case first
+ // and don't disrupt the earlier indices.
+ for (unsigned Index : reverse(ExitCaseIndices)) {
+ auto CaseI = SI.case_begin() + Index;
+ // Compute the outer loop from this exit.
+ Loop *ExitL = LI.getLoopFor(CaseI->getCaseSuccessor());
+ if (!ExitL || ExitL->contains(OuterL))
+ OuterL = ExitL;
+ // Save the value of this case.
+ auto W = SIW.getSuccessorWeight(CaseI->getSuccessorIndex());
+ ExitCases.emplace_back(CaseI->getCaseValue(), CaseI->getCaseSuccessor(), W);
+ // Delete the unswitched cases.
+ SIW.removeCase(CaseI);
+ }
+
+ if (SE) {
+ if (OuterL)
+ SE->forgetLoop(OuterL);
+ else
+ SE->forgetTopmostLoop(&L);
+ }
+
+ // Check if after this all of the remaining cases point at the same
+ // successor.
+ BasicBlock *CommonSuccBB = nullptr;
+ if (SI.getNumCases() > 0 &&
+ std::all_of(std::next(SI.case_begin()), SI.case_end(),
+ [&SI](const SwitchInst::CaseHandle &Case) {
+ return Case.getCaseSuccessor() ==
+ SI.case_begin()->getCaseSuccessor();
+ }))
+ CommonSuccBB = SI.case_begin()->getCaseSuccessor();
+ if (!DefaultExitBB) {
+ // If we're not unswitching the default, we need it to match any cases to
+ // have a common successor or if we have no cases it is the common
+ // successor.
+ if (SI.getNumCases() == 0)
+ CommonSuccBB = SI.getDefaultDest();
+ else if (SI.getDefaultDest() != CommonSuccBB)
+ CommonSuccBB = nullptr;
+ }
+
+ // Split the preheader, so that we know that there is a safe place to insert
+ // the switch.
+ BasicBlock *OldPH = L.getLoopPreheader();
+ BasicBlock *NewPH = SplitEdge(OldPH, L.getHeader(), &DT, &LI, MSSAU);
+ OldPH->getTerminator()->eraseFromParent();
+
+ // Now add the unswitched switch.
+ auto *NewSI = SwitchInst::Create(LoopCond, NewPH, ExitCases.size(), OldPH);
+ SwitchInstProfUpdateWrapper NewSIW(*NewSI);
+
+ // Rewrite the IR for the unswitched basic blocks. This requires two steps.
+ // First, we split any exit blocks with remaining in-loop predecessors. Then
+ // we update the PHIs in one of two ways depending on if there was a split.
+ // We walk in reverse so that we split in the same order as the cases
+ // appeared. This is purely for convenience of reading the resulting IR, but
+ // it doesn't cost anything really.
+ SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
+ SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
+ // Handle the default exit if necessary.
+ // FIXME: It'd be great if we could merge this with the loop below but LLVM's
+ // ranges aren't quite powerful enough yet.
+ if (DefaultExitBB) {
+ if (pred_empty(DefaultExitBB)) {
+ UnswitchedExitBBs.insert(DefaultExitBB);
+ rewritePHINodesForUnswitchedExitBlock(*DefaultExitBB, *ParentBB, *OldPH);
+ } else {
+ auto *SplitBB =
+ SplitBlock(DefaultExitBB, &DefaultExitBB->front(), &DT, &LI, MSSAU);
+ rewritePHINodesForExitAndUnswitchedBlocks(*DefaultExitBB, *SplitBB,
+ *ParentBB, *OldPH,
+ /*FullUnswitch*/ true);
+ DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
+ }
+ }
+ // Note that we must use a reference in the for loop so that we update the
+ // container.
+ for (auto &ExitCase : reverse(ExitCases)) {
+ // Grab a reference to the exit block in the pair so that we can update it.
+ BasicBlock *ExitBB = std::get<1>(ExitCase);
+
+ // If this case is the last edge into the exit block, we can simply reuse it
+ // as it will no longer be a loop exit. No mapping necessary.
+ if (pred_empty(ExitBB)) {
+ // Only rewrite once.
+ if (UnswitchedExitBBs.insert(ExitBB).second)
+ rewritePHINodesForUnswitchedExitBlock(*ExitBB, *ParentBB, *OldPH);
+ continue;
+ }
+
+ // Otherwise we need to split the exit block so that we retain an exit
+ // block from the loop and a target for the unswitched condition.
+ BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
+ if (!SplitExitBB) {
+ // If this is the first time we see this, do the split and remember it.
+ SplitExitBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
+ rewritePHINodesForExitAndUnswitchedBlocks(*ExitBB, *SplitExitBB,
+ *ParentBB, *OldPH,
+ /*FullUnswitch*/ true);
+ }
+ // Update the case pair to point to the split block.
+ std::get<1>(ExitCase) = SplitExitBB;
+ }
+
+ // Now add the unswitched cases. We do this in reverse order as we built them
+ // in reverse order.
+ for (auto &ExitCase : reverse(ExitCases)) {
+ ConstantInt *CaseVal = std::get<0>(ExitCase);
+ BasicBlock *UnswitchedBB = std::get<1>(ExitCase);
+
+ NewSIW.addCase(CaseVal, UnswitchedBB, std::get<2>(ExitCase));
+ }
+
+ // If the default was unswitched, re-point it and add explicit cases for
+ // entering the loop.
+ if (DefaultExitBB) {
+ NewSIW->setDefaultDest(DefaultExitBB);
+ NewSIW.setSuccessorWeight(0, DefaultCaseWeight);
+
+ // We removed all the exit cases, so we just copy the cases to the
+ // unswitched switch.
+ for (const auto &Case : SI.cases())
+ NewSIW.addCase(Case.getCaseValue(), NewPH,
+ SIW.getSuccessorWeight(Case.getSuccessorIndex()));
+ } else if (DefaultCaseWeight) {
+ // We have to set branch weight of the default case.
+ uint64_t SW = *DefaultCaseWeight;
+ for (const auto &Case : SI.cases()) {
+ auto W = SIW.getSuccessorWeight(Case.getSuccessorIndex());
+ assert(W &&
+ "case weight must be defined as default case weight is defined");
+ SW += *W;
+ }
+ NewSIW.setSuccessorWeight(0, SW);
+ }
+
+ // If we ended up with a common successor for every path through the switch
+ // after unswitching, rewrite it to an unconditional branch to make it easy
+ // to recognize. Otherwise we potentially have to recognize the default case
+ // pointing at unreachable and other complexity.
+ if (CommonSuccBB) {
+ BasicBlock *BB = SI.getParent();
+ // We may have had multiple edges to this common successor block, so remove
+ // them as predecessors. We skip the first one, either the default or the
+ // actual first case.
+ bool SkippedFirst = DefaultExitBB == nullptr;
+ for (auto Case : SI.cases()) {
+ assert(Case.getCaseSuccessor() == CommonSuccBB &&
+ "Non-common successor!");
+ (void)Case;
+ if (!SkippedFirst) {
+ SkippedFirst = true;
+ continue;
+ }
+ CommonSuccBB->removePredecessor(BB,
+ /*KeepOneInputPHIs*/ true);
+ }
+ // Now nuke the switch and replace it with a direct branch.
+ SIW.eraseFromParent();
+ BranchInst::Create(CommonSuccBB, BB);
+ } else if (DefaultExitBB) {
+ assert(SI.getNumCases() > 0 &&
+ "If we had no cases we'd have a common successor!");
+ // Move the last case to the default successor. This is valid as if the
+ // default got unswitched it cannot be reached. This has the advantage of
+ // being simple and keeping the number of edges from this switch to
+ // successors the same, and avoiding any PHI update complexity.
+ auto LastCaseI = std::prev(SI.case_end());
+
+ SI.setDefaultDest(LastCaseI->getCaseSuccessor());
+ SIW.setSuccessorWeight(
+ 0, SIW.getSuccessorWeight(LastCaseI->getSuccessorIndex()));
+ SIW.removeCase(LastCaseI);
+ }
+
+ // Walk the unswitched exit blocks and the unswitched split blocks and update
+ // the dominator tree based on the CFG edits. While we are walking unordered
+ // containers here, the API for applyUpdates takes an unordered list of
+ // updates and requires them to not contain duplicates.
+ SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
+ for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
+ DTUpdates.push_back({DT.Delete, ParentBB, UnswitchedExitBB});
+ DTUpdates.push_back({DT.Insert, OldPH, UnswitchedExitBB});
+ }
+ for (auto SplitUnswitchedPair : SplitExitBBMap) {
+ DTUpdates.push_back({DT.Delete, ParentBB, SplitUnswitchedPair.first});
+ DTUpdates.push_back({DT.Insert, OldPH, SplitUnswitchedPair.second});
+ }
+ DT.applyUpdates(DTUpdates);
+
+ if (MSSAU) {
+ MSSAU->applyUpdates(DTUpdates, DT);
+ if (VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ }
+
+ assert(DT.verify(DominatorTree::VerificationLevel::Fast));
+
+ // We may have changed the nesting relationship for this loop so hoist it to
+ // its correct parent if needed.
+ hoistLoopToNewParent(L, *NewPH, DT, LI, MSSAU);
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ ++NumTrivial;
+ ++NumSwitches;
+ LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
+ return true;
+}
+
+/// This routine scans the loop to find a branch or switch which occurs before
+/// any side effects occur. These can potentially be unswitched without
+/// duplicating the loop. If a branch or switch is successfully unswitched the
+/// scanning continues to see if subsequent branches or switches have become
+/// trivial. Once all trivial candidates have been unswitched, this routine
+/// returns.
+///
+/// The return value indicates whether anything was unswitched (and therefore
+/// changed).
+///
+/// If `SE` is not null, it will be updated based on the potential loop SCEVs
+/// invalidated by this.
+static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
+ LoopInfo &LI, ScalarEvolution *SE,
+ MemorySSAUpdater *MSSAU) {
+ bool Changed = false;
+
+ // If loop header has only one reachable successor we should keep looking for
+ // trivial condition candidates in the successor as well. An alternative is
+ // to constant fold conditions and merge successors into loop header (then we
+ // only need to check header's terminator). The reason for not doing this in
+ // LoopUnswitch pass is that it could potentially break LoopPassManager's
+ // invariants. Folding dead branches could either eliminate the current loop
+ // or make other loops unreachable. LCSSA form might also not be preserved
+ // after deleting branches. The following code keeps traversing loop header's
+ // successors until it finds the trivial condition candidate (condition that
+ // is not a constant). Since unswitching generates branches with constant
+ // conditions, this scenario could be very common in practice.
+ BasicBlock *CurrentBB = L.getHeader();
+ SmallPtrSet<BasicBlock *, 8> Visited;
+ Visited.insert(CurrentBB);
+ do {
+ // Check if there are any side-effecting instructions (e.g. stores, calls,
+ // volatile loads) in the part of the loop that the code *would* execute
+ // without unswitching.
+ if (MSSAU) // Possible early exit with MSSA
+ if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(CurrentBB))
+ if (!isa<MemoryPhi>(*Defs->begin()) || (++Defs->begin() != Defs->end()))
+ return Changed;
+ if (llvm::any_of(*CurrentBB,
+ [](Instruction &I) { return I.mayHaveSideEffects(); }))
+ return Changed;
+
+ Instruction *CurrentTerm = CurrentBB->getTerminator();
+
+ if (auto *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
+ // Don't bother trying to unswitch past a switch with a constant
+ // condition. This should be removed prior to running this pass by
+ // simplify-cfg.
+ if (isa<Constant>(SI->getCondition()))
+ return Changed;
+
+ if (!unswitchTrivialSwitch(L, *SI, DT, LI, SE, MSSAU))
+ // Couldn't unswitch this one so we're done.
+ return Changed;
+
+ // Mark that we managed to unswitch something.
+ Changed = true;
+
+ // If unswitching turned the terminator into an unconditional branch then
+ // we can continue. The unswitching logic specifically works to fold any
+ // cases it can into an unconditional branch to make it easier to
+ // recognize here.
+ auto *BI = dyn_cast<BranchInst>(CurrentBB->getTerminator());
+ if (!BI || BI->isConditional())
+ return Changed;
+
+ CurrentBB = BI->getSuccessor(0);
+ continue;
+ }
+
+ auto *BI = dyn_cast<BranchInst>(CurrentTerm);
+ if (!BI)
+ // We do not understand other terminator instructions.
+ return Changed;
+
+ // Don't bother trying to unswitch past an unconditional branch or a branch
+ // with a constant value. These should be removed by simplify-cfg prior to
+ // running this pass.
+ if (!BI->isConditional() || isa<Constant>(BI->getCondition()))
+ return Changed;
+
+ // Found a trivial condition candidate: non-foldable conditional branch. If
+ // we fail to unswitch this, we can't do anything else that is trivial.
+ if (!unswitchTrivialBranch(L, *BI, DT, LI, SE, MSSAU))
+ return Changed;
+
+ // Mark that we managed to unswitch something.
+ Changed = true;
+
+ // If we only unswitched some of the conditions feeding the branch, we won't
+ // have collapsed it to a single successor.
+ BI = cast<BranchInst>(CurrentBB->getTerminator());
+ if (BI->isConditional())
+ return Changed;
+
+ // Follow the newly unconditional branch into its successor.
+ CurrentBB = BI->getSuccessor(0);
+
+ // When continuing, if we exit the loop or reach a previous visited block,
+ // then we can not reach any trivial condition candidates (unfoldable
+ // branch instructions or switch instructions) and no unswitch can happen.
+ } while (L.contains(CurrentBB) && Visited.insert(CurrentBB).second);
+
+ return Changed;
+}
+
+/// Build the cloned blocks for an unswitched copy of the given loop.
+///
+/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
+/// after the split block (`SplitBB`) that will be used to select between the
+/// cloned and original loop.
+///
+/// This routine handles cloning all of the necessary loop blocks and exit
+/// blocks including rewriting their instructions and the relevant PHI nodes.
+/// Any loop blocks or exit blocks which are dominated by a different successor
+/// than the one for this clone of the loop blocks can be trivially skipped. We
+/// use the `DominatingSucc` map to determine whether a block satisfies that
+/// property with a simple map lookup.
+///
+/// It also correctly creates the unconditional branch in the cloned
+/// unswitched parent block to only point at the unswitched successor.
+///
+/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
+/// block splitting is correctly reflected in `LoopInfo`, essentially all of
+/// the cloned blocks (and their loops) are left without full `LoopInfo`
+/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
+/// blocks to them but doesn't create the cloned `DominatorTree` structure and
+/// instead the caller must recompute an accurate DT. It *does* correctly
+/// update the `AssumptionCache` provided in `AC`.
+static BasicBlock *buildClonedLoopBlocks(
+ Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
+ ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
+ BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
+ const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
+ ValueToValueMapTy &VMap,
+ SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
+ DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
+ SmallVector<BasicBlock *, 4> NewBlocks;
+ NewBlocks.reserve(L.getNumBlocks() + ExitBlocks.size());
+
+ // We will need to clone a bunch of blocks, wrap up the clone operation in
+ // a helper.
+ auto CloneBlock = [&](BasicBlock *OldBB) {
+ // Clone the basic block and insert it before the new preheader.
+ BasicBlock *NewBB = CloneBasicBlock(OldBB, VMap, ".us", OldBB->getParent());
+ NewBB->moveBefore(LoopPH);
+
+ // Record this block and the mapping.
+ NewBlocks.push_back(NewBB);
+ VMap[OldBB] = NewBB;
+
+ return NewBB;
+ };
+
+ // We skip cloning blocks when they have a dominating succ that is not the
+ // succ we are cloning for.
+ auto SkipBlock = [&](BasicBlock *BB) {
+ auto It = DominatingSucc.find(BB);
+ return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
+ };
+
+ // First, clone the preheader.
+ auto *ClonedPH = CloneBlock(LoopPH);
+
+ // Then clone all the loop blocks, skipping the ones that aren't necessary.
+ for (auto *LoopBB : L.blocks())
+ if (!SkipBlock(LoopBB))
+ CloneBlock(LoopBB);
+
+ // Split all the loop exit edges so that when we clone the exit blocks, if
+ // any of the exit blocks are *also* a preheader for some other loop, we
+ // don't create multiple predecessors entering the loop header.
+ for (auto *ExitBB : ExitBlocks) {
+ if (SkipBlock(ExitBB))
+ continue;
+
+ // When we are going to clone an exit, we don't need to clone all the
+ // instructions in the exit block and we want to ensure we have an easy
+ // place to merge the CFG, so split the exit first. This is always safe to
+ // do because there cannot be any non-loop predecessors of a loop exit in
+ // loop simplified form.
+ auto *MergeBB = SplitBlock(ExitBB, &ExitBB->front(), &DT, &LI, MSSAU);
+
+ // Rearrange the names to make it easier to write test cases by having the
+ // exit block carry the suffix rather than the merge block carrying the
+ // suffix.
+ MergeBB->takeName(ExitBB);
+ ExitBB->setName(Twine(MergeBB->getName()) + ".split");
+
+ // Now clone the original exit block.
+ auto *ClonedExitBB = CloneBlock(ExitBB);
+ assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
+ "Exit block should have been split to have one successor!");
+ assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
+ "Cloned exit block has the wrong successor!");
+
+ // Remap any cloned instructions and create a merge phi node for them.
+ for (auto ZippedInsts : llvm::zip_first(
+ llvm::make_range(ExitBB->begin(), std::prev(ExitBB->end())),
+ llvm::make_range(ClonedExitBB->begin(),
+ std::prev(ClonedExitBB->end())))) {
+ Instruction &I = std::get<0>(ZippedInsts);
+ Instruction &ClonedI = std::get<1>(ZippedInsts);
+
+ // The only instructions in the exit block should be PHI nodes and
+ // potentially a landing pad.
+ assert(
+ (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
+ "Bad instruction in exit block!");
+ // We should have a value map between the instruction and its clone.
+ assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
+
+ auto *MergePN =
+ PHINode::Create(I.getType(), /*NumReservedValues*/ 2, ".us-phi",
+ &*MergeBB->getFirstInsertionPt());
+ I.replaceAllUsesWith(MergePN);
+ MergePN->addIncoming(&I, ExitBB);
+ MergePN->addIncoming(&ClonedI, ClonedExitBB);
+ }
+ }
+
+ // Rewrite the instructions in the cloned blocks to refer to the instructions
+ // in the cloned blocks. We have to do this as a second pass so that we have
+ // everything available. Also, we have inserted new instructions which may
+ // include assume intrinsics, so we update the assumption cache while
+ // processing this.
+ for (auto *ClonedBB : NewBlocks)
+ for (Instruction &I : *ClonedBB) {
+ RemapInstruction(&I, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
+ if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ if (II->getIntrinsicID() == Intrinsic::assume)
+ AC.registerAssumption(II);
+ }
+
+ // Update any PHI nodes in the cloned successors of the skipped blocks to not
+ // have spurious incoming values.
+ for (auto *LoopBB : L.blocks())
+ if (SkipBlock(LoopBB))
+ for (auto *SuccBB : successors(LoopBB))
+ if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB)))
+ for (PHINode &PN : ClonedSuccBB->phis())
+ PN.removeIncomingValue(LoopBB, /*DeletePHIIfEmpty*/ false);
+
+ // Remove the cloned parent as a predecessor of any successor we ended up
+ // cloning other than the unswitched one.
+ auto *ClonedParentBB = cast<BasicBlock>(VMap.lookup(ParentBB));
+ for (auto *SuccBB : successors(ParentBB)) {
+ if (SuccBB == UnswitchedSuccBB)
+ continue;
+
+ auto *ClonedSuccBB = cast_or_null<BasicBlock>(VMap.lookup(SuccBB));
+ if (!ClonedSuccBB)
+ continue;
+
+ ClonedSuccBB->removePredecessor(ClonedParentBB,
+ /*KeepOneInputPHIs*/ true);
+ }
+
+ // Replace the cloned branch with an unconditional branch to the cloned
+ // unswitched successor.
+ auto *ClonedSuccBB = cast<BasicBlock>(VMap.lookup(UnswitchedSuccBB));
+ ClonedParentBB->getTerminator()->eraseFromParent();
+ BranchInst::Create(ClonedSuccBB, ClonedParentBB);
+
+ // If there are duplicate entries in the PHI nodes because of multiple edges
+ // to the unswitched successor, we need to nuke all but one as we replaced it
+ // with a direct branch.
+ for (PHINode &PN : ClonedSuccBB->phis()) {
+ bool Found = false;
+ // Loop over the incoming operands backwards so we can easily delete as we
+ // go without invalidating the index.
+ for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
+ if (PN.getIncomingBlock(i) != ClonedParentBB)
+ continue;
+ if (!Found) {
+ Found = true;
+ continue;
+ }
+ PN.removeIncomingValue(i, /*DeletePHIIfEmpty*/ false);
+ }
+ }
+
+ // Record the domtree updates for the new blocks.
+ SmallPtrSet<BasicBlock *, 4> SuccSet;
+ for (auto *ClonedBB : NewBlocks) {
+ for (auto *SuccBB : successors(ClonedBB))
+ if (SuccSet.insert(SuccBB).second)
+ DTUpdates.push_back({DominatorTree::Insert, ClonedBB, SuccBB});
+ SuccSet.clear();
+ }
+
+ return ClonedPH;
+}
+
+/// Recursively clone the specified loop and all of its children.
+///
+/// The target parent loop for the clone should be provided, or can be null if
+/// the clone is a top-level loop. While cloning, all the blocks are mapped
+/// with the provided value map. The entire original loop must be present in
+/// the value map. The cloned loop is returned.
+static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
+ const ValueToValueMapTy &VMap, LoopInfo &LI) {
+ auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
+ assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
+ ClonedL.reserveBlocks(OrigL.getNumBlocks());
+ for (auto *BB : OrigL.blocks()) {
+ auto *ClonedBB = cast<BasicBlock>(VMap.lookup(BB));
+ ClonedL.addBlockEntry(ClonedBB);
+ if (LI.getLoopFor(BB) == &OrigL)
+ LI.changeLoopFor(ClonedBB, &ClonedL);
+ }
+ };
+
+ // We specially handle the first loop because it may get cloned into
+ // a different parent and because we most commonly are cloning leaf loops.
+ Loop *ClonedRootL = LI.AllocateLoop();
+ if (RootParentL)
+ RootParentL->addChildLoop(ClonedRootL);
+ else
+ LI.addTopLevelLoop(ClonedRootL);
+ AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
+
+ if (OrigRootL.empty())
+ return ClonedRootL;
+
+ // If we have a nest, we can quickly clone the entire loop nest using an
+ // iterative approach because it is a tree. We keep the cloned parent in the
+ // data structure to avoid repeatedly querying through a map to find it.
+ SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
+ // Build up the loops to clone in reverse order as we'll clone them from the
+ // back.
+ for (Loop *ChildL : llvm::reverse(OrigRootL))
+ LoopsToClone.push_back({ClonedRootL, ChildL});
+ do {
+ Loop *ClonedParentL, *L;
+ std::tie(ClonedParentL, L) = LoopsToClone.pop_back_val();
+ Loop *ClonedL = LI.AllocateLoop();
+ ClonedParentL->addChildLoop(ClonedL);
+ AddClonedBlocksToLoop(*L, *ClonedL);
+ for (Loop *ChildL : llvm::reverse(*L))
+ LoopsToClone.push_back({ClonedL, ChildL});
+ } while (!LoopsToClone.empty());
+
+ return ClonedRootL;
+}
+
+/// Build the cloned loops of an original loop from unswitching.
+///
+/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
+/// operation. We need to re-verify that there even is a loop (as the backedge
+/// may not have been cloned), and even if there are remaining backedges the
+/// backedge set may be different. However, we know that each child loop is
+/// undisturbed, we only need to find where to place each child loop within
+/// either any parent loop or within a cloned version of the original loop.
+///
+/// Because child loops may end up cloned outside of any cloned version of the
+/// original loop, multiple cloned sibling loops may be created. All of them
+/// are returned so that the newly introduced loop nest roots can be
+/// identified.
+static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
+ const ValueToValueMapTy &VMap, LoopInfo &LI,
+ SmallVectorImpl<Loop *> &NonChildClonedLoops) {
+ Loop *ClonedL = nullptr;
+
+ auto *OrigPH = OrigL.getLoopPreheader();
+ auto *OrigHeader = OrigL.getHeader();
+
+ auto *ClonedPH = cast<BasicBlock>(VMap.lookup(OrigPH));
+ auto *ClonedHeader = cast<BasicBlock>(VMap.lookup(OrigHeader));
+
+ // We need to know the loops of the cloned exit blocks to even compute the
+ // accurate parent loop. If we only clone exits to some parent of the
+ // original parent, we want to clone into that outer loop. We also keep track
+ // of the loops that our cloned exit blocks participate in.
+ Loop *ParentL = nullptr;
+ SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
+ SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
+ ClonedExitsInLoops.reserve(ExitBlocks.size());
+ for (auto *ExitBB : ExitBlocks)
+ if (auto *ClonedExitBB = cast_or_null<BasicBlock>(VMap.lookup(ExitBB)))
+ if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
+ ExitLoopMap[ClonedExitBB] = ExitL;
+ ClonedExitsInLoops.push_back(ClonedExitBB);
+ if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
+ ParentL = ExitL;
+ }
+ assert((!ParentL || ParentL == OrigL.getParentLoop() ||
+ ParentL->contains(OrigL.getParentLoop())) &&
+ "The computed parent loop should always contain (or be) the parent of "
+ "the original loop.");
+
+ // We build the set of blocks dominated by the cloned header from the set of
+ // cloned blocks out of the original loop. While not all of these will
+ // necessarily be in the cloned loop, it is enough to establish that they
+ // aren't in unreachable cycles, etc.
+ SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
+ for (auto *BB : OrigL.blocks())
+ if (auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB)))
+ ClonedLoopBlocks.insert(ClonedBB);
+
+ // Rebuild the set of blocks that will end up in the cloned loop. We may have
+ // skipped cloning some region of this loop which can in turn skip some of
+ // the backedges so we have to rebuild the blocks in the loop based on the
+ // backedges that remain after cloning.
+ SmallVector<BasicBlock *, 16> Worklist;
+ SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
+ for (auto *Pred : predecessors(ClonedHeader)) {
+ // The only possible non-loop header predecessor is the preheader because
+ // we know we cloned the loop in simplified form.
+ if (Pred == ClonedPH)
+ continue;
+
+ // Because the loop was in simplified form, the only non-loop predecessor
+ // should be the preheader.
+ assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
+ "header other than the preheader "
+ "that is not part of the loop!");
+
+ // Insert this block into the loop set and on the first visit (and if it
+ // isn't the header we're currently walking) put it into the worklist to
+ // recurse through.
+ if (BlocksInClonedLoop.insert(Pred).second && Pred != ClonedHeader)
+ Worklist.push_back(Pred);
+ }
+
+ // If we had any backedges then there *is* a cloned loop. Put the header into
+ // the loop set and then walk the worklist backwards to find all the blocks
+ // that remain within the loop after cloning.
+ if (!BlocksInClonedLoop.empty()) {
+ BlocksInClonedLoop.insert(ClonedHeader);
+
+ while (!Worklist.empty()) {
+ BasicBlock *BB = Worklist.pop_back_val();
+ assert(BlocksInClonedLoop.count(BB) &&
+ "Didn't put block into the loop set!");
+
+ // Insert any predecessors that are in the possible set into the cloned
+ // set, and if the insert is successful, add them to the worklist. Note
+ // that we filter on the blocks that are definitely reachable via the
+ // backedge to the loop header so we may prune out dead code within the
+ // cloned loop.
+ for (auto *Pred : predecessors(BB))
+ if (ClonedLoopBlocks.count(Pred) &&
+ BlocksInClonedLoop.insert(Pred).second)
+ Worklist.push_back(Pred);
+ }
+
+ ClonedL = LI.AllocateLoop();
+ if (ParentL) {
+ ParentL->addBasicBlockToLoop(ClonedPH, LI);
+ ParentL->addChildLoop(ClonedL);
+ } else {
+ LI.addTopLevelLoop(ClonedL);
+ }
+ NonChildClonedLoops.push_back(ClonedL);
+
+ ClonedL->reserveBlocks(BlocksInClonedLoop.size());
+ // We don't want to just add the cloned loop blocks based on how we
+ // discovered them. The original order of blocks was carefully built in
+ // a way that doesn't rely on predecessor ordering. Rather than re-invent
+ // that logic, we just re-walk the original blocks (and those of the child
+ // loops) and filter them as we add them into the cloned loop.
+ for (auto *BB : OrigL.blocks()) {
+ auto *ClonedBB = cast_or_null<BasicBlock>(VMap.lookup(BB));
+ if (!ClonedBB || !BlocksInClonedLoop.count(ClonedBB))
+ continue;
+
+ // Directly add the blocks that are only in this loop.
+ if (LI.getLoopFor(BB) == &OrigL) {
+ ClonedL->addBasicBlockToLoop(ClonedBB, LI);
+ continue;
+ }
+
+ // We want to manually add it to this loop and parents.
+ // Registering it with LoopInfo will happen when we clone the top
+ // loop for this block.
+ for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
+ PL->addBlockEntry(ClonedBB);
+ }
+
+ // Now add each child loop whose header remains within the cloned loop. All
+ // of the blocks within the loop must satisfy the same constraints as the
+ // header so once we pass the header checks we can just clone the entire
+ // child loop nest.
+ for (Loop *ChildL : OrigL) {
+ auto *ClonedChildHeader =
+ cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
+ if (!ClonedChildHeader || !BlocksInClonedLoop.count(ClonedChildHeader))
+ continue;
+
+#ifndef NDEBUG
+ // We should never have a cloned child loop header but fail to have
+ // all of the blocks for that child loop.
+ for (auto *ChildLoopBB : ChildL->blocks())
+ assert(BlocksInClonedLoop.count(
+ cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
+ "Child cloned loop has a header within the cloned outer "
+ "loop but not all of its blocks!");
+#endif
+
+ cloneLoopNest(*ChildL, ClonedL, VMap, LI);
+ }
+ }
+
+ // Now that we've handled all the components of the original loop that were
+ // cloned into a new loop, we still need to handle anything from the original
+ // loop that wasn't in a cloned loop.
+
+ // Figure out what blocks are left to place within any loop nest containing
+ // the unswitched loop. If we never formed a loop, the cloned PH is one of
+ // them.
+ SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
+ if (BlocksInClonedLoop.empty())
+ UnloopedBlockSet.insert(ClonedPH);
+ for (auto *ClonedBB : ClonedLoopBlocks)
+ if (!BlocksInClonedLoop.count(ClonedBB))
+ UnloopedBlockSet.insert(ClonedBB);
+
+ // Copy the cloned exits and sort them in ascending loop depth, we'll work
+ // backwards across these to process them inside out. The order shouldn't
+ // matter as we're just trying to build up the map from inside-out; we use
+ // the map in a more stably ordered way below.
+ auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
+ llvm::sort(OrderedClonedExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
+ return ExitLoopMap.lookup(LHS)->getLoopDepth() <
+ ExitLoopMap.lookup(RHS)->getLoopDepth();
+ });
+
+ // Populate the existing ExitLoopMap with everything reachable from each
+ // exit, starting from the inner most exit.
+ while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
+ assert(Worklist.empty() && "Didn't clear worklist!");
+
+ BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
+ Loop *ExitL = ExitLoopMap.lookup(ExitBB);
+
+ // Walk the CFG back until we hit the cloned PH adding everything reachable
+ // and in the unlooped set to this exit block's loop.
+ Worklist.push_back(ExitBB);
+ do {
+ BasicBlock *BB = Worklist.pop_back_val();
+ // We can stop recursing at the cloned preheader (if we get there).
+ if (BB == ClonedPH)
+ continue;
+
+ for (BasicBlock *PredBB : predecessors(BB)) {
+ // If this pred has already been moved to our set or is part of some
+ // (inner) loop, no update needed.
+ if (!UnloopedBlockSet.erase(PredBB)) {
+ assert(
+ (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
+ "Predecessor not mapped to a loop!");
+ continue;
+ }
+
+ // We just insert into the loop set here. We'll add these blocks to the
+ // exit loop after we build up the set in an order that doesn't rely on
+ // predecessor order (which in turn relies on use list order).
+ bool Inserted = ExitLoopMap.insert({PredBB, ExitL}).second;
+ (void)Inserted;
+ assert(Inserted && "Should only visit an unlooped block once!");
+
+ // And recurse through to its predecessors.
+ Worklist.push_back(PredBB);
+ }
+ } while (!Worklist.empty());
+ }
+
+ // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
+ // blocks to their outer loops, walk the cloned blocks and the cloned exits
+ // in their original order adding them to the correct loop.
+
+ // We need a stable insertion order. We use the order of the original loop
+ // order and map into the correct parent loop.
+ for (auto *BB : llvm::concat<BasicBlock *const>(
+ makeArrayRef(ClonedPH), ClonedLoopBlocks, ClonedExitsInLoops))
+ if (Loop *OuterL = ExitLoopMap.lookup(BB))
+ OuterL->addBasicBlockToLoop(BB, LI);
+
+#ifndef NDEBUG
+ for (auto &BBAndL : ExitLoopMap) {
+ auto *BB = BBAndL.first;
+ auto *OuterL = BBAndL.second;
+ assert(LI.getLoopFor(BB) == OuterL &&
+ "Failed to put all blocks into outer loops!");
+ }
+#endif
+
+ // Now that all the blocks are placed into the correct containing loop in the
+ // absence of child loops, find all the potentially cloned child loops and
+ // clone them into whatever outer loop we placed their header into.
+ for (Loop *ChildL : OrigL) {
+ auto *ClonedChildHeader =
+ cast_or_null<BasicBlock>(VMap.lookup(ChildL->getHeader()));
+ if (!ClonedChildHeader || BlocksInClonedLoop.count(ClonedChildHeader))
+ continue;
+
+#ifndef NDEBUG
+ for (auto *ChildLoopBB : ChildL->blocks())
+ assert(VMap.count(ChildLoopBB) &&
+ "Cloned a child loop header but not all of that loops blocks!");
+#endif
+
+ NonChildClonedLoops.push_back(cloneLoopNest(
+ *ChildL, ExitLoopMap.lookup(ClonedChildHeader), VMap, LI));
+ }
+}
+
+static void
+deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
+ ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
+ DominatorTree &DT, MemorySSAUpdater *MSSAU) {
+ // Find all the dead clones, and remove them from their successors.
+ SmallVector<BasicBlock *, 16> DeadBlocks;
+ for (BasicBlock *BB : llvm::concat<BasicBlock *const>(L.blocks(), ExitBlocks))
+ for (auto &VMap : VMaps)
+ if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(VMap->lookup(BB)))
+ if (!DT.isReachableFromEntry(ClonedBB)) {
+ for (BasicBlock *SuccBB : successors(ClonedBB))
+ SuccBB->removePredecessor(ClonedBB);
+ DeadBlocks.push_back(ClonedBB);
+ }
+
+ // Remove all MemorySSA in the dead blocks
+ if (MSSAU) {
+ SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
+ DeadBlocks.end());
+ MSSAU->removeBlocks(DeadBlockSet);
+ }
+
+ // Drop any remaining references to break cycles.
+ for (BasicBlock *BB : DeadBlocks)
+ BB->dropAllReferences();
+ // Erase them from the IR.
+ for (BasicBlock *BB : DeadBlocks)
+ BB->eraseFromParent();
+}
+
+static void deleteDeadBlocksFromLoop(Loop &L,
+ SmallVectorImpl<BasicBlock *> &ExitBlocks,
+ DominatorTree &DT, LoopInfo &LI,
+ MemorySSAUpdater *MSSAU) {
+ // Find all the dead blocks tied to this loop, and remove them from their
+ // successors.
+ SmallSetVector<BasicBlock *, 8> DeadBlockSet;
+
+ // Start with loop/exit blocks and get a transitive closure of reachable dead
+ // blocks.
+ SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
+ ExitBlocks.end());
+ DeathCandidates.append(L.blocks().begin(), L.blocks().end());
+ while (!DeathCandidates.empty()) {
+ auto *BB = DeathCandidates.pop_back_val();
+ if (!DeadBlockSet.count(BB) && !DT.isReachableFromEntry(BB)) {
+ for (BasicBlock *SuccBB : successors(BB)) {
+ SuccBB->removePredecessor(BB);
+ DeathCandidates.push_back(SuccBB);
+ }
+ DeadBlockSet.insert(BB);
+ }
+ }
+
+ // Remove all MemorySSA in the dead blocks
+ if (MSSAU)
+ MSSAU->removeBlocks(DeadBlockSet);
+
+ // Filter out the dead blocks from the exit blocks list so that it can be
+ // used in the caller.
+ llvm::erase_if(ExitBlocks,
+ [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
+
+ // Walk from this loop up through its parents removing all of the dead blocks.
+ for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
+ for (auto *BB : DeadBlockSet)
+ ParentL->getBlocksSet().erase(BB);
+ llvm::erase_if(ParentL->getBlocksVector(),
+ [&](BasicBlock *BB) { return DeadBlockSet.count(BB); });
+ }
+
+ // Now delete the dead child loops. This raw delete will clear them
+ // recursively.
+ llvm::erase_if(L.getSubLoopsVector(), [&](Loop *ChildL) {
+ if (!DeadBlockSet.count(ChildL->getHeader()))
+ return false;
+
+ assert(llvm::all_of(ChildL->blocks(),
+ [&](BasicBlock *ChildBB) {
+ return DeadBlockSet.count(ChildBB);
+ }) &&
+ "If the child loop header is dead all blocks in the child loop must "
+ "be dead as well!");
+ LI.destroy(ChildL);
+ return true;
+ });
+
+ // Remove the loop mappings for the dead blocks and drop all the references
+ // from these blocks to others to handle cyclic references as we start
+ // deleting the blocks themselves.
+ for (auto *BB : DeadBlockSet) {
+ // Check that the dominator tree has already been updated.
+ assert(!DT.getNode(BB) && "Should already have cleared domtree!");
+ LI.changeLoopFor(BB, nullptr);
+ BB->dropAllReferences();
+ }
+
+ // Actually delete the blocks now that they've been fully unhooked from the
+ // IR.
+ for (auto *BB : DeadBlockSet)
+ BB->eraseFromParent();
+}
+
+/// Recompute the set of blocks in a loop after unswitching.
+///
+/// This walks from the original headers predecessors to rebuild the loop. We
+/// take advantage of the fact that new blocks can't have been added, and so we
+/// filter by the original loop's blocks. This also handles potentially
+/// unreachable code that we don't want to explore but might be found examining
+/// the predecessors of the header.
+///
+/// If the original loop is no longer a loop, this will return an empty set. If
+/// it remains a loop, all the blocks within it will be added to the set
+/// (including those blocks in inner loops).
+static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
+ LoopInfo &LI) {
+ SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
+
+ auto *PH = L.getLoopPreheader();
+ auto *Header = L.getHeader();
+
+ // A worklist to use while walking backwards from the header.
+ SmallVector<BasicBlock *, 16> Worklist;
+
+ // First walk the predecessors of the header to find the backedges. This will
+ // form the basis of our walk.
+ for (auto *Pred : predecessors(Header)) {
+ // Skip the preheader.
+ if (Pred == PH)
+ continue;
+
+ // Because the loop was in simplified form, the only non-loop predecessor
+ // is the preheader.
+ assert(L.contains(Pred) && "Found a predecessor of the loop header other "
+ "than the preheader that is not part of the "
+ "loop!");
+
+ // Insert this block into the loop set and on the first visit and, if it
+ // isn't the header we're currently walking, put it into the worklist to
+ // recurse through.
+ if (LoopBlockSet.insert(Pred).second && Pred != Header)
+ Worklist.push_back(Pred);
+ }
+
+ // If no backedges were found, we're done.
+ if (LoopBlockSet.empty())
+ return LoopBlockSet;
+
+ // We found backedges, recurse through them to identify the loop blocks.
+ while (!Worklist.empty()) {
+ BasicBlock *BB = Worklist.pop_back_val();
+ assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
+
+ // No need to walk past the header.
+ if (BB == Header)
+ continue;
+
+ // Because we know the inner loop structure remains valid we can use the
+ // loop structure to jump immediately across the entire nested loop.
+ // Further, because it is in loop simplified form, we can directly jump
+ // to its preheader afterward.
+ if (Loop *InnerL = LI.getLoopFor(BB))
+ if (InnerL != &L) {
+ assert(L.contains(InnerL) &&
+ "Should not reach a loop *outside* this loop!");
+ // The preheader is the only possible predecessor of the loop so
+ // insert it into the set and check whether it was already handled.
+ auto *InnerPH = InnerL->getLoopPreheader();
+ assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
+ "but not contain the inner loop "
+ "preheader!");
+ if (!LoopBlockSet.insert(InnerPH).second)
+ // The only way to reach the preheader is through the loop body
+ // itself so if it has been visited the loop is already handled.
+ continue;
+
+ // Insert all of the blocks (other than those already present) into
+ // the loop set. We expect at least the block that led us to find the
+ // inner loop to be in the block set, but we may also have other loop
+ // blocks if they were already enqueued as predecessors of some other
+ // outer loop block.
+ for (auto *InnerBB : InnerL->blocks()) {
+ if (InnerBB == BB) {
+ assert(LoopBlockSet.count(InnerBB) &&
+ "Block should already be in the set!");
+ continue;
+ }
+
+ LoopBlockSet.insert(InnerBB);
+ }
+
+ // Add the preheader to the worklist so we will continue past the
+ // loop body.
+ Worklist.push_back(InnerPH);
+ continue;
+ }
+
+ // Insert any predecessors that were in the original loop into the new
+ // set, and if the insert is successful, add them to the worklist.
+ for (auto *Pred : predecessors(BB))
+ if (L.contains(Pred) && LoopBlockSet.insert(Pred).second)
+ Worklist.push_back(Pred);
+ }
+
+ assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
+
+ // We've found all the blocks participating in the loop, return our completed
+ // set.
+ return LoopBlockSet;
+}
+
+/// Rebuild a loop after unswitching removes some subset of blocks and edges.
+///
+/// The removal may have removed some child loops entirely but cannot have
+/// disturbed any remaining child loops. However, they may need to be hoisted
+/// to the parent loop (or to be top-level loops). The original loop may be
+/// completely removed.
+///
+/// The sibling loops resulting from this update are returned. If the original
+/// loop remains a valid loop, it will be the first entry in this list with all
+/// of the newly sibling loops following it.
+///
+/// Returns true if the loop remains a loop after unswitching, and false if it
+/// is no longer a loop after unswitching (and should not continue to be
+/// referenced).
+static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
+ LoopInfo &LI,
+ SmallVectorImpl<Loop *> &HoistedLoops) {
+ auto *PH = L.getLoopPreheader();
+
+ // Compute the actual parent loop from the exit blocks. Because we may have
+ // pruned some exits the loop may be different from the original parent.
+ Loop *ParentL = nullptr;
+ SmallVector<Loop *, 4> ExitLoops;
+ SmallVector<BasicBlock *, 4> ExitsInLoops;
+ ExitsInLoops.reserve(ExitBlocks.size());
+ for (auto *ExitBB : ExitBlocks)
+ if (Loop *ExitL = LI.getLoopFor(ExitBB)) {
+ ExitLoops.push_back(ExitL);
+ ExitsInLoops.push_back(ExitBB);
+ if (!ParentL || (ParentL != ExitL && ParentL->contains(ExitL)))
+ ParentL = ExitL;
+ }
+
+ // Recompute the blocks participating in this loop. This may be empty if it
+ // is no longer a loop.
+ auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
+
+ // If we still have a loop, we need to re-set the loop's parent as the exit
+ // block set changing may have moved it within the loop nest. Note that this
+ // can only happen when this loop has a parent as it can only hoist the loop
+ // *up* the nest.
+ if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
+ // Remove this loop's (original) blocks from all of the intervening loops.
+ for (Loop *IL = L.getParentLoop(); IL != ParentL;
+ IL = IL->getParentLoop()) {
+ IL->getBlocksSet().erase(PH);
+ for (auto *BB : L.blocks())
+ IL->getBlocksSet().erase(BB);
+ llvm::erase_if(IL->getBlocksVector(), [&](BasicBlock *BB) {
+ return BB == PH || L.contains(BB);
+ });
+ }
+
+ LI.changeLoopFor(PH, ParentL);
+ L.getParentLoop()->removeChildLoop(&L);
+ if (ParentL)
+ ParentL->addChildLoop(&L);
+ else
+ LI.addTopLevelLoop(&L);
+ }
+
+ // Now we update all the blocks which are no longer within the loop.
+ auto &Blocks = L.getBlocksVector();
+ auto BlocksSplitI =
+ LoopBlockSet.empty()
+ ? Blocks.begin()
+ : std::stable_partition(
+ Blocks.begin(), Blocks.end(),
+ [&](BasicBlock *BB) { return LoopBlockSet.count(BB); });
+
+ // Before we erase the list of unlooped blocks, build a set of them.
+ SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
+ if (LoopBlockSet.empty())
+ UnloopedBlocks.insert(PH);
+
+ // Now erase these blocks from the loop.
+ for (auto *BB : make_range(BlocksSplitI, Blocks.end()))
+ L.getBlocksSet().erase(BB);
+ Blocks.erase(BlocksSplitI, Blocks.end());
+
+ // Sort the exits in ascending loop depth, we'll work backwards across these
+ // to process them inside out.
+ llvm::stable_sort(ExitsInLoops, [&](BasicBlock *LHS, BasicBlock *RHS) {
+ return LI.getLoopDepth(LHS) < LI.getLoopDepth(RHS);
+ });
+
+ // We'll build up a set for each exit loop.
+ SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
+ Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
+
+ auto RemoveUnloopedBlocksFromLoop =
+ [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
+ for (auto *BB : UnloopedBlocks)
+ L.getBlocksSet().erase(BB);
+ llvm::erase_if(L.getBlocksVector(), [&](BasicBlock *BB) {
+ return UnloopedBlocks.count(BB);
+ });
+ };
+
+ SmallVector<BasicBlock *, 16> Worklist;
+ while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
+ assert(Worklist.empty() && "Didn't clear worklist!");
+ assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
+
+ // Grab the next exit block, in decreasing loop depth order.
+ BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
+ Loop &ExitL = *LI.getLoopFor(ExitBB);
+ assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
+
+ // Erase all of the unlooped blocks from the loops between the previous
+ // exit loop and this exit loop. This works because the ExitInLoops list is
+ // sorted in increasing order of loop depth and thus we visit loops in
+ // decreasing order of loop depth.
+ for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
+ RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
+
+ // Walk the CFG back until we hit the cloned PH adding everything reachable
+ // and in the unlooped set to this exit block's loop.
+ Worklist.push_back(ExitBB);
+ do {
+ BasicBlock *BB = Worklist.pop_back_val();
+ // We can stop recursing at the cloned preheader (if we get there).
+ if (BB == PH)
+ continue;
+
+ for (BasicBlock *PredBB : predecessors(BB)) {
+ // If this pred has already been moved to our set or is part of some
+ // (inner) loop, no update needed.
+ if (!UnloopedBlocks.erase(PredBB)) {
+ assert((NewExitLoopBlocks.count(PredBB) ||
+ ExitL.contains(LI.getLoopFor(PredBB))) &&
+ "Predecessor not in a nested loop (or already visited)!");
+ continue;
+ }
+
+ // We just insert into the loop set here. We'll add these blocks to the
+ // exit loop after we build up the set in a deterministic order rather
+ // than the predecessor-influenced visit order.
+ bool Inserted = NewExitLoopBlocks.insert(PredBB).second;
+ (void)Inserted;
+ assert(Inserted && "Should only visit an unlooped block once!");
+
+ // And recurse through to its predecessors.
+ Worklist.push_back(PredBB);
+ }
+ } while (!Worklist.empty());
+
+ // If blocks in this exit loop were directly part of the original loop (as
+ // opposed to a child loop) update the map to point to this exit loop. This
+ // just updates a map and so the fact that the order is unstable is fine.
+ for (auto *BB : NewExitLoopBlocks)
+ if (Loop *BBL = LI.getLoopFor(BB))
+ if (BBL == &L || !L.contains(BBL))
+ LI.changeLoopFor(BB, &ExitL);
+
+ // We will remove the remaining unlooped blocks from this loop in the next
+ // iteration or below.
+ NewExitLoopBlocks.clear();
+ }
+
+ // Any remaining unlooped blocks are no longer part of any loop unless they
+ // are part of some child loop.
+ for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
+ RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
+ for (auto *BB : UnloopedBlocks)
+ if (Loop *BBL = LI.getLoopFor(BB))
+ if (BBL == &L || !L.contains(BBL))
+ LI.changeLoopFor(BB, nullptr);
+
+ // Sink all the child loops whose headers are no longer in the loop set to
+ // the parent (or to be top level loops). We reach into the loop and directly
+ // update its subloop vector to make this batch update efficient.
+ auto &SubLoops = L.getSubLoopsVector();
+ auto SubLoopsSplitI =
+ LoopBlockSet.empty()
+ ? SubLoops.begin()
+ : std::stable_partition(
+ SubLoops.begin(), SubLoops.end(), [&](Loop *SubL) {
+ return LoopBlockSet.count(SubL->getHeader());
+ });
+ for (auto *HoistedL : make_range(SubLoopsSplitI, SubLoops.end())) {
+ HoistedLoops.push_back(HoistedL);
+ HoistedL->setParentLoop(nullptr);
+
+ // To compute the new parent of this hoisted loop we look at where we
+ // placed the preheader above. We can't lookup the header itself because we
+ // retained the mapping from the header to the hoisted loop. But the
+ // preheader and header should have the exact same new parent computed
+ // based on the set of exit blocks from the original loop as the preheader
+ // is a predecessor of the header and so reached in the reverse walk. And
+ // because the loops were all in simplified form the preheader of the
+ // hoisted loop can't be part of some *other* loop.
+ if (auto *NewParentL = LI.getLoopFor(HoistedL->getLoopPreheader()))
+ NewParentL->addChildLoop(HoistedL);
+ else
+ LI.addTopLevelLoop(HoistedL);
+ }
+ SubLoops.erase(SubLoopsSplitI, SubLoops.end());
+
+ // Actually delete the loop if nothing remained within it.
+ if (Blocks.empty()) {
+ assert(SubLoops.empty() &&
+ "Failed to remove all subloops from the original loop!");
+ if (Loop *ParentL = L.getParentLoop())
+ ParentL->removeChildLoop(llvm::find(*ParentL, &L));
+ else
+ LI.removeLoop(llvm::find(LI, &L));
+ LI.destroy(&L);
+ return false;
+ }
+
+ return true;
+}
+
+/// Helper to visit a dominator subtree, invoking a callable on each node.
+///
+/// Returning false at any point will stop walking past that node of the tree.
+template <typename CallableT>
+void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
+ SmallVector<DomTreeNode *, 4> DomWorklist;
+ DomWorklist.push_back(DT[BB]);
+#ifndef NDEBUG
+ SmallPtrSet<DomTreeNode *, 4> Visited;
+ Visited.insert(DT[BB]);
+#endif
+ do {
+ DomTreeNode *N = DomWorklist.pop_back_val();
+
+ // Visit this node.
+ if (!Callable(N->getBlock()))
+ continue;
+
+ // Accumulate the child nodes.
+ for (DomTreeNode *ChildN : *N) {
+ assert(Visited.insert(ChildN).second &&
+ "Cannot visit a node twice when walking a tree!");
+ DomWorklist.push_back(ChildN);
+ }
+ } while (!DomWorklist.empty());
+}
+
+static void unswitchNontrivialInvariants(
+ Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
+ SmallVectorImpl<BasicBlock *> &ExitBlocks, DominatorTree &DT, LoopInfo &LI,
+ AssumptionCache &AC, function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
+ ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
+ auto *ParentBB = TI.getParent();
+ BranchInst *BI = dyn_cast<BranchInst>(&TI);
+ SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(&TI);
+
+ // We can only unswitch switches, conditional branches with an invariant
+ // condition, or combining invariant conditions with an instruction.
+ assert((SI || BI->isConditional()) &&
+ "Can only unswitch switches and conditional branch!");
+ bool FullUnswitch = SI || BI->getCondition() == Invariants[0];
+ if (FullUnswitch)
+ assert(Invariants.size() == 1 &&
+ "Cannot have other invariants with full unswitching!");
+ else
+ assert(isa<Instruction>(BI->getCondition()) &&
+ "Partial unswitching requires an instruction as the condition!");
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // Constant and BBs tracking the cloned and continuing successor. When we are
+ // unswitching the entire condition, this can just be trivially chosen to
+ // unswitch towards `true`. However, when we are unswitching a set of
+ // invariants combined with `and` or `or`, the combining operation determines
+ // the best direction to unswitch: we want to unswitch the direction that will
+ // collapse the branch.
+ bool Direction = true;
+ int ClonedSucc = 0;
+ if (!FullUnswitch) {
+ if (cast<Instruction>(BI->getCondition())->getOpcode() != Instruction::Or) {
+ assert(cast<Instruction>(BI->getCondition())->getOpcode() ==
+ Instruction::And &&
+ "Only `or` and `and` instructions can combine invariants being "
+ "unswitched.");
+ Direction = false;
+ ClonedSucc = 1;
+ }
+ }
+
+ BasicBlock *RetainedSuccBB =
+ BI ? BI->getSuccessor(1 - ClonedSucc) : SI->getDefaultDest();
+ SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
+ if (BI)
+ UnswitchedSuccBBs.insert(BI->getSuccessor(ClonedSucc));
+ else
+ for (auto Case : SI->cases())
+ if (Case.getCaseSuccessor() != RetainedSuccBB)
+ UnswitchedSuccBBs.insert(Case.getCaseSuccessor());
+
+ assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
+ "Should not unswitch the same successor we are retaining!");
+
+ // The branch should be in this exact loop. Any inner loop's invariant branch
+ // should be handled by unswitching that inner loop. The caller of this
+ // routine should filter out any candidates that remain (but were skipped for
+ // whatever reason).
+ assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
+
+ // Compute the parent loop now before we start hacking on things.
+ Loop *ParentL = L.getParentLoop();
+ // Get blocks in RPO order for MSSA update, before changing the CFG.
+ LoopBlocksRPO LBRPO(&L);
+ if (MSSAU)
+ LBRPO.perform(&LI);
+
+ // Compute the outer-most loop containing one of our exit blocks. This is the
+ // furthest up our loopnest which can be mutated, which we will use below to
+ // update things.
+ Loop *OuterExitL = &L;
+ for (auto *ExitBB : ExitBlocks) {
+ Loop *NewOuterExitL = LI.getLoopFor(ExitBB);
+ if (!NewOuterExitL) {
+ // We exited the entire nest with this block, so we're done.
+ OuterExitL = nullptr;
+ break;
+ }
+ if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(OuterExitL))
+ OuterExitL = NewOuterExitL;
+ }
+
+ // At this point, we're definitely going to unswitch something so invalidate
+ // any cached information in ScalarEvolution for the outer most loop
+ // containing an exit block and all nested loops.
+ if (SE) {
+ if (OuterExitL)
+ SE->forgetLoop(OuterExitL);
+ else
+ SE->forgetTopmostLoop(&L);
+ }
+
+ // If the edge from this terminator to a successor dominates that successor,
+ // store a map from each block in its dominator subtree to it. This lets us
+ // tell when cloning for a particular successor if a block is dominated by
+ // some *other* successor with a single data structure. We use this to
+ // significantly reduce cloning.
+ SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
+ for (auto *SuccBB : llvm::concat<BasicBlock *const>(
+ makeArrayRef(RetainedSuccBB), UnswitchedSuccBBs))
+ if (SuccBB->getUniquePredecessor() ||
+ llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
+ return PredBB == ParentBB || DT.dominates(SuccBB, PredBB);
+ }))
+ visitDomSubTree(DT, SuccBB, [&](BasicBlock *BB) {
+ DominatingSucc[BB] = SuccBB;
+ return true;
+ });
+
+ // Split the preheader, so that we know that there is a safe place to insert
+ // the conditional branch. We will change the preheader to have a conditional
+ // branch on LoopCond. The original preheader will become the split point
+ // between the unswitched versions, and we will have a new preheader for the
+ // original loop.
+ BasicBlock *SplitBB = L.getLoopPreheader();
+ BasicBlock *LoopPH = SplitEdge(SplitBB, L.getHeader(), &DT, &LI, MSSAU);
+
+ // Keep track of the dominator tree updates needed.
+ SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
+
+ // Clone the loop for each unswitched successor.
+ SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
+ VMaps.reserve(UnswitchedSuccBBs.size());
+ SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
+ for (auto *SuccBB : UnswitchedSuccBBs) {
+ VMaps.emplace_back(new ValueToValueMapTy());
+ ClonedPHs[SuccBB] = buildClonedLoopBlocks(
+ L, LoopPH, SplitBB, ExitBlocks, ParentBB, SuccBB, RetainedSuccBB,
+ DominatingSucc, *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU);
+ }
+
+ // The stitching of the branched code back together depends on whether we're
+ // doing full unswitching or not with the exception that we always want to
+ // nuke the initial terminator placed in the split block.
+ SplitBB->getTerminator()->eraseFromParent();
+ if (FullUnswitch) {
+ // Splice the terminator from the original loop and rewrite its
+ // successors.
+ SplitBB->getInstList().splice(SplitBB->end(), ParentBB->getInstList(), TI);
+
+ // Keep a clone of the terminator for MSSA updates.
+ Instruction *NewTI = TI.clone();
+ ParentBB->getInstList().push_back(NewTI);
+
+ // First wire up the moved terminator to the preheaders.
+ if (BI) {
+ BasicBlock *ClonedPH = ClonedPHs.begin()->second;
+ BI->setSuccessor(ClonedSucc, ClonedPH);
+ BI->setSuccessor(1 - ClonedSucc, LoopPH);
+ DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
+ } else {
+ assert(SI && "Must either be a branch or switch!");
+
+ // Walk the cases and directly update their successors.
+ assert(SI->getDefaultDest() == RetainedSuccBB &&
+ "Not retaining default successor!");
+ SI->setDefaultDest(LoopPH);
+ for (auto &Case : SI->cases())
+ if (Case.getCaseSuccessor() == RetainedSuccBB)
+ Case.setSuccessor(LoopPH);
+ else
+ Case.setSuccessor(ClonedPHs.find(Case.getCaseSuccessor())->second);
+
+ // We need to use the set to populate domtree updates as even when there
+ // are multiple cases pointing at the same successor we only want to
+ // remove and insert one edge in the domtree.
+ for (BasicBlock *SuccBB : UnswitchedSuccBBs)
+ DTUpdates.push_back(
+ {DominatorTree::Insert, SplitBB, ClonedPHs.find(SuccBB)->second});
+ }
+
+ if (MSSAU) {
+ DT.applyUpdates(DTUpdates);
+ DTUpdates.clear();
+
+ // Remove all but one edge to the retained block and all unswitched
+ // blocks. This is to avoid having duplicate entries in the cloned Phis,
+ // when we know we only keep a single edge for each case.
+ MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, RetainedSuccBB);
+ for (BasicBlock *SuccBB : UnswitchedSuccBBs)
+ MSSAU->removeDuplicatePhiEdgesBetween(ParentBB, SuccBB);
+
+ for (auto &VMap : VMaps)
+ MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, *VMap,
+ /*IgnoreIncomingWithNoClones=*/true);
+ MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
+
+ // Remove all edges to unswitched blocks.
+ for (BasicBlock *SuccBB : UnswitchedSuccBBs)
+ MSSAU->removeEdge(ParentBB, SuccBB);
+ }
+
+ // Now unhook the successor relationship as we'll be replacing
+ // the terminator with a direct branch. This is much simpler for branches
+ // than switches so we handle those first.
+ if (BI) {
+ // Remove the parent as a predecessor of the unswitched successor.
+ assert(UnswitchedSuccBBs.size() == 1 &&
+ "Only one possible unswitched block for a branch!");
+ BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
+ UnswitchedSuccBB->removePredecessor(ParentBB,
+ /*KeepOneInputPHIs*/ true);
+ DTUpdates.push_back({DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
+ } else {
+ // Note that we actually want to remove the parent block as a predecessor
+ // of *every* case successor. The case successor is either unswitched,
+ // completely eliminating an edge from the parent to that successor, or it
+ // is a duplicate edge to the retained successor as the retained successor
+ // is always the default successor and as we'll replace this with a direct
+ // branch we no longer need the duplicate entries in the PHI nodes.
+ SwitchInst *NewSI = cast<SwitchInst>(NewTI);
+ assert(NewSI->getDefaultDest() == RetainedSuccBB &&
+ "Not retaining default successor!");
+ for (auto &Case : NewSI->cases())
+ Case.getCaseSuccessor()->removePredecessor(
+ ParentBB,
+ /*KeepOneInputPHIs*/ true);
+
+ // We need to use the set to populate domtree updates as even when there
+ // are multiple cases pointing at the same successor we only want to
+ // remove and insert one edge in the domtree.
+ for (BasicBlock *SuccBB : UnswitchedSuccBBs)
+ DTUpdates.push_back({DominatorTree::Delete, ParentBB, SuccBB});
+ }
+
+ // After MSSAU update, remove the cloned terminator instruction NewTI.
+ ParentBB->getTerminator()->eraseFromParent();
+
+ // Create a new unconditional branch to the continuing block (as opposed to
+ // the one cloned).
+ BranchInst::Create(RetainedSuccBB, ParentBB);
+ } else {
+ assert(BI && "Only branches have partial unswitching.");
+ assert(UnswitchedSuccBBs.size() == 1 &&
+ "Only one possible unswitched block for a branch!");
+ BasicBlock *ClonedPH = ClonedPHs.begin()->second;
+ // When doing a partial unswitch, we have to do a bit more work to build up
+ // the branch in the split block.
+ buildPartialUnswitchConditionalBranch(*SplitBB, Invariants, Direction,
+ *ClonedPH, *LoopPH);
+ DTUpdates.push_back({DominatorTree::Insert, SplitBB, ClonedPH});
+ }
+
+ // Apply the updates accumulated above to get an up-to-date dominator tree.
+ DT.applyUpdates(DTUpdates);
+ if (!FullUnswitch && MSSAU) {
+ // Update MSSA for partial unswitch, after DT update.
+ SmallVector<CFGUpdate, 1> Updates;
+ Updates.push_back(
+ {cfg::UpdateKind::Insert, SplitBB, ClonedPHs.begin()->second});
+ MSSAU->applyInsertUpdates(Updates, DT);
+ }
+
+ // Now that we have an accurate dominator tree, first delete the dead cloned
+ // blocks so that we can accurately build any cloned loops. It is important to
+ // not delete the blocks from the original loop yet because we still want to
+ // reference the original loop to understand the cloned loop's structure.
+ deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
+
+ // Build the cloned loop structure itself. This may be substantially
+ // different from the original structure due to the simplified CFG. This also
+ // handles inserting all the cloned blocks into the correct loops.
+ SmallVector<Loop *, 4> NonChildClonedLoops;
+ for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
+ buildClonedLoops(L, ExitBlocks, *VMap, LI, NonChildClonedLoops);
+
+ // Now that our cloned loops have been built, we can update the original loop.
+ // First we delete the dead blocks from it and then we rebuild the loop
+ // structure taking these deletions into account.
+ deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU);
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ SmallVector<Loop *, 4> HoistedLoops;
+ bool IsStillLoop = rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops);
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // This transformation has a high risk of corrupting the dominator tree, and
+ // the below steps to rebuild loop structures will result in hard to debug
+ // errors in that case so verify that the dominator tree is sane first.
+ // FIXME: Remove this when the bugs stop showing up and rely on existing
+ // verification steps.
+ assert(DT.verify(DominatorTree::VerificationLevel::Fast));
+
+ if (BI) {
+ // If we unswitched a branch which collapses the condition to a known
+ // constant we want to replace all the uses of the invariants within both
+ // the original and cloned blocks. We do this here so that we can use the
+ // now updated dominator tree to identify which side the users are on.
+ assert(UnswitchedSuccBBs.size() == 1 &&
+ "Only one possible unswitched block for a branch!");
+ BasicBlock *ClonedPH = ClonedPHs.begin()->second;
+
+ // When considering multiple partially-unswitched invariants
+ // we cant just go replace them with constants in both branches.
+ //
+ // For 'AND' we infer that true branch ("continue") means true
+ // for each invariant operand.
+ // For 'OR' we can infer that false branch ("continue") means false
+ // for each invariant operand.
+ // So it happens that for multiple-partial case we dont replace
+ // in the unswitched branch.
+ bool ReplaceUnswitched = FullUnswitch || (Invariants.size() == 1);
+
+ ConstantInt *UnswitchedReplacement =
+ Direction ? ConstantInt::getTrue(BI->getContext())
+ : ConstantInt::getFalse(BI->getContext());
+ ConstantInt *ContinueReplacement =
+ Direction ? ConstantInt::getFalse(BI->getContext())
+ : ConstantInt::getTrue(BI->getContext());
+ for (Value *Invariant : Invariants)
+ for (auto UI = Invariant->use_begin(), UE = Invariant->use_end();
+ UI != UE;) {
+ // Grab the use and walk past it so we can clobber it in the use list.
+ Use *U = &*UI++;
+ Instruction *UserI = dyn_cast<Instruction>(U->getUser());
+ if (!UserI)
+ continue;
+
+ // Replace it with the 'continue' side if in the main loop body, and the
+ // unswitched if in the cloned blocks.
+ if (DT.dominates(LoopPH, UserI->getParent()))
+ U->set(ContinueReplacement);
+ else if (ReplaceUnswitched &&
+ DT.dominates(ClonedPH, UserI->getParent()))
+ U->set(UnswitchedReplacement);
+ }
+ }
+
+ // We can change which blocks are exit blocks of all the cloned sibling
+ // loops, the current loop, and any parent loops which shared exit blocks
+ // with the current loop. As a consequence, we need to re-form LCSSA for
+ // them. But we shouldn't need to re-form LCSSA for any child loops.
+ // FIXME: This could be made more efficient by tracking which exit blocks are
+ // new, and focusing on them, but that isn't likely to be necessary.
+ //
+ // In order to reasonably rebuild LCSSA we need to walk inside-out across the
+ // loop nest and update every loop that could have had its exits changed. We
+ // also need to cover any intervening loops. We add all of these loops to
+ // a list and sort them by loop depth to achieve this without updating
+ // unnecessary loops.
+ auto UpdateLoop = [&](Loop &UpdateL) {
+#ifndef NDEBUG
+ UpdateL.verifyLoop();
+ for (Loop *ChildL : UpdateL) {
+ ChildL->verifyLoop();
+ assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
+ "Perturbed a child loop's LCSSA form!");
+ }
+#endif
+ // First build LCSSA for this loop so that we can preserve it when
+ // forming dedicated exits. We don't want to perturb some other loop's
+ // LCSSA while doing that CFG edit.
+ formLCSSA(UpdateL, DT, &LI, nullptr);
+
+ // For loops reached by this loop's original exit blocks we may
+ // introduced new, non-dedicated exits. At least try to re-form dedicated
+ // exits for these loops. This may fail if they couldn't have dedicated
+ // exits to start with.
+ formDedicatedExitBlocks(&UpdateL, &DT, &LI, MSSAU, /*PreserveLCSSA*/ true);
+ };
+
+ // For non-child cloned loops and hoisted loops, we just need to update LCSSA
+ // and we can do it in any order as they don't nest relative to each other.
+ //
+ // Also check if any of the loops we have updated have become top-level loops
+ // as that will necessitate widening the outer loop scope.
+ for (Loop *UpdatedL :
+ llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops)) {
+ UpdateLoop(*UpdatedL);
+ if (!UpdatedL->getParentLoop())
+ OuterExitL = nullptr;
+ }
+ if (IsStillLoop) {
+ UpdateLoop(L);
+ if (!L.getParentLoop())
+ OuterExitL = nullptr;
+ }
+
+ // If the original loop had exit blocks, walk up through the outer most loop
+ // of those exit blocks to update LCSSA and form updated dedicated exits.
+ if (OuterExitL != &L)
+ for (Loop *OuterL = ParentL; OuterL != OuterExitL;
+ OuterL = OuterL->getParentLoop())
+ UpdateLoop(*OuterL);
+
+#ifndef NDEBUG
+ // Verify the entire loop structure to catch any incorrect updates before we
+ // progress in the pass pipeline.
+ LI.verify(DT);
+#endif
+
+ // Now that we've unswitched something, make callbacks to report the changes.
+ // For that we need to merge together the updated loops and the cloned loops
+ // and check whether the original loop survived.
+ SmallVector<Loop *, 4> SibLoops;
+ for (Loop *UpdatedL : llvm::concat<Loop *>(NonChildClonedLoops, HoistedLoops))
+ if (UpdatedL->getParentLoop() == ParentL)
+ SibLoops.push_back(UpdatedL);
+ UnswitchCB(IsStillLoop, SibLoops);
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ if (BI)
+ ++NumBranches;
+ else
+ ++NumSwitches;
+}
+
+/// Recursively compute the cost of a dominator subtree based on the per-block
+/// cost map provided.
+///
+/// The recursive computation is memozied into the provided DT-indexed cost map
+/// to allow querying it for most nodes in the domtree without it becoming
+/// quadratic.
+static int
+computeDomSubtreeCost(DomTreeNode &N,
+ const SmallDenseMap<BasicBlock *, int, 4> &BBCostMap,
+ SmallDenseMap<DomTreeNode *, int, 4> &DTCostMap) {
+ // Don't accumulate cost (or recurse through) blocks not in our block cost
+ // map and thus not part of the duplication cost being considered.
+ auto BBCostIt = BBCostMap.find(N.getBlock());
+ if (BBCostIt == BBCostMap.end())
+ return 0;
+
+ // Lookup this node to see if we already computed its cost.
+ auto DTCostIt = DTCostMap.find(&N);
+ if (DTCostIt != DTCostMap.end())
+ return DTCostIt->second;
+
+ // If not, we have to compute it. We can't use insert above and update
+ // because computing the cost may insert more things into the map.
+ int Cost = std::accumulate(
+ N.begin(), N.end(), BBCostIt->second, [&](int Sum, DomTreeNode *ChildN) {
+ return Sum + computeDomSubtreeCost(*ChildN, BBCostMap, DTCostMap);
+ });
+ bool Inserted = DTCostMap.insert({&N, Cost}).second;
+ (void)Inserted;
+ assert(Inserted && "Should not insert a node while visiting children!");
+ return Cost;
+}
+
+/// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
+/// making the following replacement:
+///
+/// --code before guard--
+/// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
+/// --code after guard--
+///
+/// into
+///
+/// --code before guard--
+/// br i1 %cond, label %guarded, label %deopt
+///
+/// guarded:
+/// --code after guard--
+///
+/// deopt:
+/// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
+/// unreachable
+///
+/// It also makes all relevant DT and LI updates, so that all structures are in
+/// valid state after this transform.
+static BranchInst *
+turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
+ SmallVectorImpl<BasicBlock *> &ExitBlocks,
+ DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU) {
+ SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
+ LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
+ BasicBlock *CheckBB = GI->getParent();
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // Remove all CheckBB's successors from DomTree. A block can be seen among
+ // successors more than once, but for DomTree it should be added only once.
+ SmallPtrSet<BasicBlock *, 4> Successors;
+ for (auto *Succ : successors(CheckBB))
+ if (Successors.insert(Succ).second)
+ DTUpdates.push_back({DominatorTree::Delete, CheckBB, Succ});
+
+ Instruction *DeoptBlockTerm =
+ SplitBlockAndInsertIfThen(GI->getArgOperand(0), GI, true);
+ BranchInst *CheckBI = cast<BranchInst>(CheckBB->getTerminator());
+ // SplitBlockAndInsertIfThen inserts control flow that branches to
+ // DeoptBlockTerm if the condition is true. We want the opposite.
+ CheckBI->swapSuccessors();
+
+ BasicBlock *GuardedBlock = CheckBI->getSuccessor(0);
+ GuardedBlock->setName("guarded");
+ CheckBI->getSuccessor(1)->setName("deopt");
+ BasicBlock *DeoptBlock = CheckBI->getSuccessor(1);
+
+ // We now have a new exit block.
+ ExitBlocks.push_back(CheckBI->getSuccessor(1));
+
+ if (MSSAU)
+ MSSAU->moveAllAfterSpliceBlocks(CheckBB, GuardedBlock, GI);
+
+ GI->moveBefore(DeoptBlockTerm);
+ GI->setArgOperand(0, ConstantInt::getFalse(GI->getContext()));
+
+ // Add new successors of CheckBB into DomTree.
+ for (auto *Succ : successors(CheckBB))
+ DTUpdates.push_back({DominatorTree::Insert, CheckBB, Succ});
+
+ // Now the blocks that used to be CheckBB's successors are GuardedBlock's
+ // successors.
+ for (auto *Succ : Successors)
+ DTUpdates.push_back({DominatorTree::Insert, GuardedBlock, Succ});
+
+ // Make proper changes to DT.
+ DT.applyUpdates(DTUpdates);
+ // Inform LI of a new loop block.
+ L.addBasicBlockToLoop(GuardedBlock, LI);
+
+ if (MSSAU) {
+ MemoryDef *MD = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(GI));
+ MSSAU->moveToPlace(MD, DeoptBlock, MemorySSA::End);
+ if (VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ }
+
+ ++NumGuards;
+ return CheckBI;
+}
+
+/// Cost multiplier is a way to limit potentially exponential behavior
+/// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
+/// candidates available. Also accounting for the number of "sibling" loops with
+/// the idea to account for previous unswitches that already happened on this
+/// cluster of loops. There was an attempt to keep this formula simple,
+/// just enough to limit the worst case behavior. Even if it is not that simple
+/// now it is still not an attempt to provide a detailed heuristic size
+/// prediction.
+///
+/// TODO: Make a proper accounting of "explosion" effect for all kinds of
+/// unswitch candidates, making adequate predictions instead of wild guesses.
+/// That requires knowing not just the number of "remaining" candidates but
+/// also costs of unswitching for each of these candidates.
+static int calculateUnswitchCostMultiplier(
+ Instruction &TI, Loop &L, LoopInfo &LI, DominatorTree &DT,
+ ArrayRef<std::pair<Instruction *, TinyPtrVector<Value *>>>
+ UnswitchCandidates) {
+
+ // Guards and other exiting conditions do not contribute to exponential
+ // explosion as soon as they dominate the latch (otherwise there might be
+ // another path to the latch remaining that does not allow to eliminate the
+ // loop copy on unswitch).
+ BasicBlock *Latch = L.getLoopLatch();
+ BasicBlock *CondBlock = TI.getParent();
+ if (DT.dominates(CondBlock, Latch) &&
+ (isGuard(&TI) ||
+ llvm::count_if(successors(&TI), [&L](BasicBlock *SuccBB) {
+ return L.contains(SuccBB);
+ }) <= 1)) {
+ NumCostMultiplierSkipped++;
+ return 1;
+ }
+
+ auto *ParentL = L.getParentLoop();
+ int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
+ : std::distance(LI.begin(), LI.end()));
+ // Count amount of clones that all the candidates might cause during
+ // unswitching. Branch/guard counts as 1, switch counts as log2 of its cases.
+ int UnswitchedClones = 0;
+ for (auto Candidate : UnswitchCandidates) {
+ Instruction *CI = Candidate.first;
+ BasicBlock *CondBlock = CI->getParent();
+ bool SkipExitingSuccessors = DT.dominates(CondBlock, Latch);
+ if (isGuard(CI)) {
+ if (!SkipExitingSuccessors)
+ UnswitchedClones++;
+ continue;
+ }
+ int NonExitingSuccessors = llvm::count_if(
+ successors(CondBlock), [SkipExitingSuccessors, &L](BasicBlock *SuccBB) {
+ return !SkipExitingSuccessors || L.contains(SuccBB);
+ });
+ UnswitchedClones += Log2_32(NonExitingSuccessors);
+ }
+
+ // Ignore up to the "unscaled candidates" number of unswitch candidates
+ // when calculating the power-of-two scaling of the cost. The main idea
+ // with this control is to allow a small number of unswitches to happen
+ // and rely more on siblings multiplier (see below) when the number
+ // of candidates is small.
+ unsigned ClonesPower =
+ std::max(UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, 0);
+
+ // Allowing top-level loops to spread a bit more than nested ones.
+ int SiblingsMultiplier =
+ std::max((ParentL ? SiblingsCount
+ : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
+ 1);
+ // Compute the cost multiplier in a way that won't overflow by saturating
+ // at an upper bound.
+ int CostMultiplier;
+ if (ClonesPower > Log2_32(UnswitchThreshold) ||
+ SiblingsMultiplier > UnswitchThreshold)
+ CostMultiplier = UnswitchThreshold;
+ else
+ CostMultiplier = std::min(SiblingsMultiplier * (1 << ClonesPower),
+ (int)UnswitchThreshold);
+
+ LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
+ << " (siblings " << SiblingsMultiplier << " * clones "
+ << (1 << ClonesPower) << ")"
+ << " for unswitch candidate: " << TI << "\n");
+ return CostMultiplier;
+}
+
+static bool
+unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
+ AssumptionCache &AC, TargetTransformInfo &TTI,
+ function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
+ ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
+ // Collect all invariant conditions within this loop (as opposed to an inner
+ // loop which would be handled when visiting that inner loop).
+ SmallVector<std::pair<Instruction *, TinyPtrVector<Value *>>, 4>
+ UnswitchCandidates;
+
+ // Whether or not we should also collect guards in the loop.
+ bool CollectGuards = false;
+ if (UnswitchGuards) {
+ auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
+ Intrinsic::getName(Intrinsic::experimental_guard));
+ if (GuardDecl && !GuardDecl->use_empty())
+ CollectGuards = true;
+ }
+
+ for (auto *BB : L.blocks()) {
+ if (LI.getLoopFor(BB) != &L)
+ continue;
+
+ if (CollectGuards)
+ for (auto &I : *BB)
+ if (isGuard(&I)) {
+ auto *Cond = cast<IntrinsicInst>(&I)->getArgOperand(0);
+ // TODO: Support AND, OR conditions and partial unswitching.
+ if (!isa<Constant>(Cond) && L.isLoopInvariant(Cond))
+ UnswitchCandidates.push_back({&I, {Cond}});
+ }
+
+ if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+ // We can only consider fully loop-invariant switch conditions as we need
+ // to completely eliminate the switch after unswitching.
+ if (!isa<Constant>(SI->getCondition()) &&
+ L.isLoopInvariant(SI->getCondition()) && !BB->getUniqueSuccessor())
+ UnswitchCandidates.push_back({SI, {SI->getCondition()}});
+ continue;
+ }
+
+ auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!BI || !BI->isConditional() || isa<Constant>(BI->getCondition()) ||
+ BI->getSuccessor(0) == BI->getSuccessor(1))
+ continue;
+
+ if (L.isLoopInvariant(BI->getCondition())) {
+ UnswitchCandidates.push_back({BI, {BI->getCondition()}});
+ continue;
+ }
+
+ Instruction &CondI = *cast<Instruction>(BI->getCondition());
+ if (CondI.getOpcode() != Instruction::And &&
+ CondI.getOpcode() != Instruction::Or)
+ continue;
+
+ TinyPtrVector<Value *> Invariants =
+ collectHomogenousInstGraphLoopInvariants(L, CondI, LI);
+ if (Invariants.empty())
+ continue;
+
+ UnswitchCandidates.push_back({BI, std::move(Invariants)});
+ }
+
+ // If we didn't find any candidates, we're done.
+ if (UnswitchCandidates.empty())
+ return false;
+
+ // Check if there are irreducible CFG cycles in this loop. If so, we cannot
+ // easily unswitch non-trivial edges out of the loop. Doing so might turn the
+ // irreducible control flow into reducible control flow and introduce new
+ // loops "out of thin air". If we ever discover important use cases for doing
+ // this, we can add support to loop unswitch, but it is a lot of complexity
+ // for what seems little or no real world benefit.
+ LoopBlocksRPO RPOT(&L);
+ RPOT.perform(&LI);
+ if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
+ return false;
+
+ SmallVector<BasicBlock *, 4> ExitBlocks;
+ L.getUniqueExitBlocks(ExitBlocks);
+
+ // We cannot unswitch if exit blocks contain a cleanuppad instruction as we
+ // don't know how to split those exit blocks.
+ // FIXME: We should teach SplitBlock to handle this and remove this
+ // restriction.
+ for (auto *ExitBB : ExitBlocks)
+ if (isa<CleanupPadInst>(ExitBB->getFirstNonPHI())) {
+ dbgs() << "Cannot unswitch because of cleanuppad in exit block\n";
+ return false;
+ }
+
+ LLVM_DEBUG(
+ dbgs() << "Considering " << UnswitchCandidates.size()
+ << " non-trivial loop invariant conditions for unswitching.\n");
+
+ // Given that unswitching these terminators will require duplicating parts of
+ // the loop, so we need to be able to model that cost. Compute the ephemeral
+ // values and set up a data structure to hold per-BB costs. We cache each
+ // block's cost so that we don't recompute this when considering different
+ // subsets of the loop for duplication during unswitching.
+ SmallPtrSet<const Value *, 4> EphValues;
+ CodeMetrics::collectEphemeralValues(&L, &AC, EphValues);
+ SmallDenseMap<BasicBlock *, int, 4> BBCostMap;
+
+ // Compute the cost of each block, as well as the total loop cost. Also, bail
+ // out if we see instructions which are incompatible with loop unswitching
+ // (convergent, noduplicate, or cross-basic-block tokens).
+ // FIXME: We might be able to safely handle some of these in non-duplicated
+ // regions.
+ int LoopCost = 0;
+ for (auto *BB : L.blocks()) {
+ int Cost = 0;
+ for (auto &I : *BB) {
+ if (EphValues.count(&I))
+ continue;
+
+ if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
+ return false;
+ if (auto CS = CallSite(&I))
+ if (CS.isConvergent() || CS.cannotDuplicate())
+ return false;
+
+ Cost += TTI.getUserCost(&I);
+ }
+ assert(Cost >= 0 && "Must not have negative costs!");
+ LoopCost += Cost;
+ assert(LoopCost >= 0 && "Must not have negative loop costs!");
+ BBCostMap[BB] = Cost;
+ }
+ LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
+
+ // Now we find the best candidate by searching for the one with the following
+ // properties in order:
+ //
+ // 1) An unswitching cost below the threshold
+ // 2) The smallest number of duplicated unswitch candidates (to avoid
+ // creating redundant subsequent unswitching)
+ // 3) The smallest cost after unswitching.
+ //
+ // We prioritize reducing fanout of unswitch candidates provided the cost
+ // remains below the threshold because this has a multiplicative effect.
+ //
+ // This requires memoizing each dominator subtree to avoid redundant work.
+ //
+ // FIXME: Need to actually do the number of candidates part above.
+ SmallDenseMap<DomTreeNode *, int, 4> DTCostMap;
+ // Given a terminator which might be unswitched, computes the non-duplicated
+ // cost for that terminator.
+ auto ComputeUnswitchedCost = [&](Instruction &TI, bool FullUnswitch) {
+ BasicBlock &BB = *TI.getParent();
+ SmallPtrSet<BasicBlock *, 4> Visited;
+
+ int Cost = LoopCost;
+ for (BasicBlock *SuccBB : successors(&BB)) {
+ // Don't count successors more than once.
+ if (!Visited.insert(SuccBB).second)
+ continue;
+
+ // If this is a partial unswitch candidate, then it must be a conditional
+ // branch with a condition of either `or` or `and`. In that case, one of
+ // the successors is necessarily duplicated, so don't even try to remove
+ // its cost.
+ if (!FullUnswitch) {
+ auto &BI = cast<BranchInst>(TI);
+ if (cast<Instruction>(BI.getCondition())->getOpcode() ==
+ Instruction::And) {
+ if (SuccBB == BI.getSuccessor(1))
+ continue;
+ } else {
+ assert(cast<Instruction>(BI.getCondition())->getOpcode() ==
+ Instruction::Or &&
+ "Only `and` and `or` conditions can result in a partial "
+ "unswitch!");
+ if (SuccBB == BI.getSuccessor(0))
+ continue;
+ }
+ }
+
+ // This successor's domtree will not need to be duplicated after
+ // unswitching if the edge to the successor dominates it (and thus the
+ // entire tree). This essentially means there is no other path into this
+ // subtree and so it will end up live in only one clone of the loop.
+ if (SuccBB->getUniquePredecessor() ||
+ llvm::all_of(predecessors(SuccBB), [&](BasicBlock *PredBB) {
+ return PredBB == &BB || DT.dominates(SuccBB, PredBB);
+ })) {
+ Cost -= computeDomSubtreeCost(*DT[SuccBB], BBCostMap, DTCostMap);
+ assert(Cost >= 0 &&
+ "Non-duplicated cost should never exceed total loop cost!");
+ }
+ }
+
+ // Now scale the cost by the number of unique successors minus one. We
+ // subtract one because there is already at least one copy of the entire
+ // loop. This is computing the new cost of unswitching a condition.
+ // Note that guards always have 2 unique successors that are implicit and
+ // will be materialized if we decide to unswitch it.
+ int SuccessorsCount = isGuard(&TI) ? 2 : Visited.size();
+ assert(SuccessorsCount > 1 &&
+ "Cannot unswitch a condition without multiple distinct successors!");
+ return Cost * (SuccessorsCount - 1);
+ };
+ Instruction *BestUnswitchTI = nullptr;
+ int BestUnswitchCost;
+ ArrayRef<Value *> BestUnswitchInvariants;
+ for (auto &TerminatorAndInvariants : UnswitchCandidates) {
+ Instruction &TI = *TerminatorAndInvariants.first;
+ ArrayRef<Value *> Invariants = TerminatorAndInvariants.second;
+ BranchInst *BI = dyn_cast<BranchInst>(&TI);
+ int CandidateCost = ComputeUnswitchedCost(
+ TI, /*FullUnswitch*/ !BI || (Invariants.size() == 1 &&
+ Invariants[0] == BI->getCondition()));
+ // Calculate cost multiplier which is a tool to limit potentially
+ // exponential behavior of loop-unswitch.
+ if (EnableUnswitchCostMultiplier) {
+ int CostMultiplier =
+ calculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
+ assert(
+ (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
+ "cost multiplier needs to be in the range of 1..UnswitchThreshold");
+ CandidateCost *= CostMultiplier;
+ LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
+ << " (multiplier: " << CostMultiplier << ")"
+ << " for unswitch candidate: " << TI << "\n");
+ } else {
+ LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
+ << " for unswitch candidate: " << TI << "\n");
+ }
+
+ if (!BestUnswitchTI || CandidateCost < BestUnswitchCost) {
+ BestUnswitchTI = &TI;
+ BestUnswitchCost = CandidateCost;
+ BestUnswitchInvariants = Invariants;
+ }
+ }
+
+ if (BestUnswitchCost >= UnswitchThreshold) {
+ LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: "
+ << BestUnswitchCost << "\n");
+ return false;
+ }
+
+ // If the best candidate is a guard, turn it into a branch.
+ if (isGuard(BestUnswitchTI))
+ BestUnswitchTI = turnGuardIntoBranch(cast<IntrinsicInst>(BestUnswitchTI), L,
+ ExitBlocks, DT, LI, MSSAU);
+
+ LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = "
+ << BestUnswitchCost << ") terminator: " << *BestUnswitchTI
+ << "\n");
+ unswitchNontrivialInvariants(L, *BestUnswitchTI, BestUnswitchInvariants,
+ ExitBlocks, DT, LI, AC, UnswitchCB, SE, MSSAU);
+ return true;
+}
+
+/// Unswitch control flow predicated on loop invariant conditions.
+///
+/// This first hoists all branches or switches which are trivial (IE, do not
+/// require duplicating any part of the loop) out of the loop body. It then
+/// looks at other loop invariant control flows and tries to unswitch those as
+/// well by cloning the loop if the result is small enough.
+///
+/// The `DT`, `LI`, `AC`, `TTI` parameters are required analyses that are also
+/// updated based on the unswitch.
+/// The `MSSA` analysis is also updated if valid (i.e. its use is enabled).
+///
+/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
+/// true, we will attempt to do non-trivial unswitching as well as trivial
+/// unswitching.
+///
+/// The `UnswitchCB` callback provided will be run after unswitching is
+/// complete, with the first parameter set to `true` if the provided loop
+/// remains a loop, and a list of new sibling loops created.
+///
+/// If `SE` is non-null, we will update that analysis based on the unswitching
+/// done.
+static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
+ AssumptionCache &AC, TargetTransformInfo &TTI,
+ bool NonTrivial,
+ function_ref<void(bool, ArrayRef<Loop *>)> UnswitchCB,
+ ScalarEvolution *SE, MemorySSAUpdater *MSSAU) {
+ assert(L.isRecursivelyLCSSAForm(DT, LI) &&
+ "Loops must be in LCSSA form before unswitching.");
+ bool Changed = false;
+
+ // Must be in loop simplified form: we need a preheader and dedicated exits.
+ if (!L.isLoopSimplifyForm())
+ return false;
+
+ // Try trivial unswitch first before loop over other basic blocks in the loop.
+ if (unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
+ // If we unswitched successfully we will want to clean up the loop before
+ // processing it further so just mark it as unswitched and return.
+ UnswitchCB(/*CurrentLoopValid*/ true, {});
+ return true;
+ }
+
+ // If we're not doing non-trivial unswitching, we're done. We both accept
+ // a parameter but also check a local flag that can be used for testing
+ // a debugging.
+ if (!NonTrivial && !EnableNonTrivialUnswitch)
+ return false;
+
+ // For non-trivial unswitching, because it often creates new loops, we rely on
+ // the pass manager to iterate on the loops rather than trying to immediately
+ // reach a fixed point. There is no substantial advantage to iterating
+ // internally, and if any of the new loops are simplified enough to contain
+ // trivial unswitching we want to prefer those.
+
+ // Try to unswitch the best invariant condition. We prefer this full unswitch to
+ // a partial unswitch when possible below the threshold.
+ if (unswitchBestCondition(L, DT, LI, AC, TTI, UnswitchCB, SE, MSSAU))
+ return true;
+
+ // No other opportunities to unswitch.
+ return Changed;
+}
+
+PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR,
+ LPMUpdater &U) {
+ Function &F = *L.getHeader()->getParent();
+ (void)F;
+
+ LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
+ << "\n");
+
+ // Save the current loop name in a variable so that we can report it even
+ // after it has been deleted.
+ std::string LoopName = L.getName();
+
+ auto UnswitchCB = [&L, &U, &LoopName](bool CurrentLoopValid,
+ ArrayRef<Loop *> NewLoops) {
+ // If we did a non-trivial unswitch, we have added new (cloned) loops.
+ if (!NewLoops.empty())
+ U.addSiblingLoops(NewLoops);
+
+ // If the current loop remains valid, we should revisit it to catch any
+ // other unswitch opportunities. Otherwise, we need to mark it as deleted.
+ if (CurrentLoopValid)
+ U.revisitCurrentLoop();
+ else
+ U.markLoopAsDeleted(L, LoopName);
+ };
+
+ Optional<MemorySSAUpdater> MSSAU;
+ if (AR.MSSA) {
+ MSSAU = MemorySSAUpdater(AR.MSSA);
+ if (VerifyMemorySSA)
+ AR.MSSA->verifyMemorySSA();
+ }
+ if (!unswitchLoop(L, AR.DT, AR.LI, AR.AC, AR.TTI, NonTrivial, UnswitchCB,
+ &AR.SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr))
+ return PreservedAnalyses::all();
+
+ if (AR.MSSA && VerifyMemorySSA)
+ AR.MSSA->verifyMemorySSA();
+
+ // Historically this pass has had issues with the dominator tree so verify it
+ // in asserts builds.
+ assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
+
+ auto PA = getLoopPassPreservedAnalyses();
+ if (EnableMSSALoopDependency)
+ PA.preserve<MemorySSAAnalysis>();
+ return PA;
+}
+
+namespace {
+
+class SimpleLoopUnswitchLegacyPass : public LoopPass {
+ bool NonTrivial;
+
+public:
+ static char ID; // Pass ID, replacement for typeid
+
+ explicit SimpleLoopUnswitchLegacyPass(bool NonTrivial = false)
+ : LoopPass(ID), NonTrivial(NonTrivial) {
+ initializeSimpleLoopUnswitchLegacyPassPass(
+ *PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ if (EnableMSSALoopDependency) {
+ AU.addRequired<MemorySSAWrapperPass>();
+ AU.addPreserved<MemorySSAWrapperPass>();
+ }
+ getLoopAnalysisUsage(AU);
+ }
+};
+
+} // end anonymous namespace
+
+bool SimpleLoopUnswitchLegacyPass::runOnLoop(Loop *L, LPPassManager &LPM) {
+ if (skipLoop(L))
+ return false;
+
+ Function &F = *L->getHeader()->getParent();
+
+ LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << *L
+ << "\n");
+
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+ MemorySSA *MSSA = nullptr;
+ Optional<MemorySSAUpdater> MSSAU;
+ if (EnableMSSALoopDependency) {
+ MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
+ MSSAU = MemorySSAUpdater(MSSA);
+ }
+
+ auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
+ auto *SE = SEWP ? &SEWP->getSE() : nullptr;
+
+ auto UnswitchCB = [&L, &LPM](bool CurrentLoopValid,
+ ArrayRef<Loop *> NewLoops) {
+ // If we did a non-trivial unswitch, we have added new (cloned) loops.
+ for (auto *NewL : NewLoops)
+ LPM.addLoop(*NewL);
+
+ // If the current loop remains valid, re-add it to the queue. This is
+ // a little wasteful as we'll finish processing the current loop as well,
+ // but it is the best we can do in the old PM.
+ if (CurrentLoopValid)
+ LPM.addLoop(*L);
+ else
+ LPM.markLoopAsDeleted(*L);
+ };
+
+ if (MSSA && VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+
+ bool Changed = unswitchLoop(*L, DT, LI, AC, TTI, NonTrivial, UnswitchCB, SE,
+ MSSAU.hasValue() ? MSSAU.getPointer() : nullptr);
+
+ if (MSSA && VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+
+ // If anything was unswitched, also clear any cached information about this
+ // loop.
+ LPM.deleteSimpleAnalysisLoop(L);
+
+ // Historically this pass has had issues with the dominator tree so verify it
+ // in asserts builds.
+ assert(DT.verify(DominatorTree::VerificationLevel::Fast));
+
+ return Changed;
+}
+
+char SimpleLoopUnswitchLegacyPass::ID = 0;
+INITIALIZE_PASS_BEGIN(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
+ "Simple unswitch loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_END(SimpleLoopUnswitchLegacyPass, "simple-loop-unswitch",
+ "Simple unswitch loops", false, false)
+
+Pass *llvm::createSimpleLoopUnswitchLegacyPass(bool NonTrivial) {
+ return new SimpleLoopUnswitchLegacyPass(NonTrivial);
+}