aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Analysis/ConstantFolding.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Analysis/ConstantFolding.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm/lib/Analysis/ConstantFolding.cpp')
-rw-r--r--contrib/llvm/lib/Analysis/ConstantFolding.cpp2546
1 files changed, 0 insertions, 2546 deletions
diff --git a/contrib/llvm/lib/Analysis/ConstantFolding.cpp b/contrib/llvm/lib/Analysis/ConstantFolding.cpp
deleted file mode 100644
index 20231ca78b45..000000000000
--- a/contrib/llvm/lib/Analysis/ConstantFolding.cpp
+++ /dev/null
@@ -1,2546 +0,0 @@
-//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines routines for folding instructions into constants.
-//
-// Also, to supplement the basic IR ConstantExpr simplifications,
-// this file defines some additional folding routines that can make use of
-// DataLayout information. These functions cannot go in IR due to library
-// dependency issues.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/ADT/APFloat.h"
-#include "llvm/ADT/APInt.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/Config/config.h"
-#include "llvm/IR/Constant.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/GlobalValue.h"
-#include "llvm/IR/GlobalVariable.h"
-#include "llvm/IR/InstrTypes.h"
-#include "llvm/IR/Instruction.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/Operator.h"
-#include "llvm/IR/Type.h"
-#include "llvm/IR/Value.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/KnownBits.h"
-#include "llvm/Support/MathExtras.h"
-#include <cassert>
-#include <cerrno>
-#include <cfenv>
-#include <cmath>
-#include <cstddef>
-#include <cstdint>
-
-using namespace llvm;
-
-namespace {
-
-//===----------------------------------------------------------------------===//
-// Constant Folding internal helper functions
-//===----------------------------------------------------------------------===//
-
-static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy,
- Constant *C, Type *SrcEltTy,
- unsigned NumSrcElts,
- const DataLayout &DL) {
- // Now that we know that the input value is a vector of integers, just shift
- // and insert them into our result.
- unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy);
- for (unsigned i = 0; i != NumSrcElts; ++i) {
- Constant *Element;
- if (DL.isLittleEndian())
- Element = C->getAggregateElement(NumSrcElts - i - 1);
- else
- Element = C->getAggregateElement(i);
-
- if (Element && isa<UndefValue>(Element)) {
- Result <<= BitShift;
- continue;
- }
-
- auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
- if (!ElementCI)
- return ConstantExpr::getBitCast(C, DestTy);
-
- Result <<= BitShift;
- Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth());
- }
-
- return nullptr;
-}
-
-/// Constant fold bitcast, symbolically evaluating it with DataLayout.
-/// This always returns a non-null constant, but it may be a
-/// ConstantExpr if unfoldable.
-Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
- // Catch the obvious splat cases.
- if (C->isNullValue() && !DestTy->isX86_MMXTy())
- return Constant::getNullValue(DestTy);
- if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
- !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
- return Constant::getAllOnesValue(DestTy);
-
- if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
- // Handle a vector->scalar integer/fp cast.
- if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) {
- unsigned NumSrcElts = VTy->getNumElements();
- Type *SrcEltTy = VTy->getElementType();
-
- // If the vector is a vector of floating point, convert it to vector of int
- // to simplify things.
- if (SrcEltTy->isFloatingPointTy()) {
- unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- Type *SrcIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
- // Ask IR to do the conversion now that #elts line up.
- C = ConstantExpr::getBitCast(C, SrcIVTy);
- }
-
- APInt Result(DL.getTypeSizeInBits(DestTy), 0);
- if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C,
- SrcEltTy, NumSrcElts, DL))
- return CE;
-
- if (isa<IntegerType>(DestTy))
- return ConstantInt::get(DestTy, Result);
-
- APFloat FP(DestTy->getFltSemantics(), Result);
- return ConstantFP::get(DestTy->getContext(), FP);
- }
- }
-
- // The code below only handles casts to vectors currently.
- auto *DestVTy = dyn_cast<VectorType>(DestTy);
- if (!DestVTy)
- return ConstantExpr::getBitCast(C, DestTy);
-
- // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
- // vector so the code below can handle it uniformly.
- if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
- Constant *Ops = C; // don't take the address of C!
- return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
- }
-
- // If this is a bitcast from constant vector -> vector, fold it.
- if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
- return ConstantExpr::getBitCast(C, DestTy);
-
- // If the element types match, IR can fold it.
- unsigned NumDstElt = DestVTy->getNumElements();
- unsigned NumSrcElt = C->getType()->getVectorNumElements();
- if (NumDstElt == NumSrcElt)
- return ConstantExpr::getBitCast(C, DestTy);
-
- Type *SrcEltTy = C->getType()->getVectorElementType();
- Type *DstEltTy = DestVTy->getElementType();
-
- // Otherwise, we're changing the number of elements in a vector, which
- // requires endianness information to do the right thing. For example,
- // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- // folds to (little endian):
- // <4 x i32> <i32 0, i32 0, i32 1, i32 0>
- // and to (big endian):
- // <4 x i32> <i32 0, i32 0, i32 0, i32 1>
-
- // First thing is first. We only want to think about integer here, so if
- // we have something in FP form, recast it as integer.
- if (DstEltTy->isFloatingPointTy()) {
- // Fold to an vector of integers with same size as our FP type.
- unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
- Type *DestIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
- // Recursively handle this integer conversion, if possible.
- C = FoldBitCast(C, DestIVTy, DL);
-
- // Finally, IR can handle this now that #elts line up.
- return ConstantExpr::getBitCast(C, DestTy);
- }
-
- // Okay, we know the destination is integer, if the input is FP, convert
- // it to integer first.
- if (SrcEltTy->isFloatingPointTy()) {
- unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
- Type *SrcIVTy =
- VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
- // Ask IR to do the conversion now that #elts line up.
- C = ConstantExpr::getBitCast(C, SrcIVTy);
- // If IR wasn't able to fold it, bail out.
- if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector.
- !isa<ConstantDataVector>(C))
- return C;
- }
-
- // Now we know that the input and output vectors are both integer vectors
- // of the same size, and that their #elements is not the same. Do the
- // conversion here, which depends on whether the input or output has
- // more elements.
- bool isLittleEndian = DL.isLittleEndian();
-
- SmallVector<Constant*, 32> Result;
- if (NumDstElt < NumSrcElt) {
- // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
- Constant *Zero = Constant::getNullValue(DstEltTy);
- unsigned Ratio = NumSrcElt/NumDstElt;
- unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
- unsigned SrcElt = 0;
- for (unsigned i = 0; i != NumDstElt; ++i) {
- // Build each element of the result.
- Constant *Elt = Zero;
- unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- Constant *Src = C->getAggregateElement(SrcElt++);
- if (Src && isa<UndefValue>(Src))
- Src = Constant::getNullValue(C->getType()->getVectorElementType());
- else
- Src = dyn_cast_or_null<ConstantInt>(Src);
- if (!Src) // Reject constantexpr elements.
- return ConstantExpr::getBitCast(C, DestTy);
-
- // Zero extend the element to the right size.
- Src = ConstantExpr::getZExt(Src, Elt->getType());
-
- // Shift it to the right place, depending on endianness.
- Src = ConstantExpr::getShl(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
-
- // Mix it in.
- Elt = ConstantExpr::getOr(Elt, Src);
- }
- Result.push_back(Elt);
- }
- return ConstantVector::get(Result);
- }
-
- // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
- unsigned Ratio = NumDstElt/NumSrcElt;
- unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
-
- // Loop over each source value, expanding into multiple results.
- for (unsigned i = 0; i != NumSrcElt; ++i) {
- auto *Element = C->getAggregateElement(i);
-
- if (!Element) // Reject constantexpr elements.
- return ConstantExpr::getBitCast(C, DestTy);
-
- if (isa<UndefValue>(Element)) {
- // Correctly Propagate undef values.
- Result.append(Ratio, UndefValue::get(DstEltTy));
- continue;
- }
-
- auto *Src = dyn_cast<ConstantInt>(Element);
- if (!Src)
- return ConstantExpr::getBitCast(C, DestTy);
-
- unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
- for (unsigned j = 0; j != Ratio; ++j) {
- // Shift the piece of the value into the right place, depending on
- // endianness.
- Constant *Elt = ConstantExpr::getLShr(Src,
- ConstantInt::get(Src->getType(), ShiftAmt));
- ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
-
- // Truncate the element to an integer with the same pointer size and
- // convert the element back to a pointer using a inttoptr.
- if (DstEltTy->isPointerTy()) {
- IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
- Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
- Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
- continue;
- }
-
- // Truncate and remember this piece.
- Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
- }
- }
-
- return ConstantVector::get(Result);
-}
-
-} // end anonymous namespace
-
-/// If this constant is a constant offset from a global, return the global and
-/// the constant. Because of constantexprs, this function is recursive.
-bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
- APInt &Offset, const DataLayout &DL) {
- // Trivial case, constant is the global.
- if ((GV = dyn_cast<GlobalValue>(C))) {
- unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType());
- Offset = APInt(BitWidth, 0);
- return true;
- }
-
- // Otherwise, if this isn't a constant expr, bail out.
- auto *CE = dyn_cast<ConstantExpr>(C);
- if (!CE) return false;
-
- // Look through ptr->int and ptr->ptr casts.
- if (CE->getOpcode() == Instruction::PtrToInt ||
- CE->getOpcode() == Instruction::BitCast)
- return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
-
- // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
- auto *GEP = dyn_cast<GEPOperator>(CE);
- if (!GEP)
- return false;
-
- unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
- APInt TmpOffset(BitWidth, 0);
-
- // If the base isn't a global+constant, we aren't either.
- if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
- return false;
-
- // Otherwise, add any offset that our operands provide.
- if (!GEP->accumulateConstantOffset(DL, TmpOffset))
- return false;
-
- Offset = TmpOffset;
- return true;
-}
-
-Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy,
- const DataLayout &DL) {
- do {
- Type *SrcTy = C->getType();
-
- // If the type sizes are the same and a cast is legal, just directly
- // cast the constant.
- if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
- Instruction::CastOps Cast = Instruction::BitCast;
- // If we are going from a pointer to int or vice versa, we spell the cast
- // differently.
- if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
- Cast = Instruction::IntToPtr;
- else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
- Cast = Instruction::PtrToInt;
-
- if (CastInst::castIsValid(Cast, C, DestTy))
- return ConstantExpr::getCast(Cast, C, DestTy);
- }
-
- // If this isn't an aggregate type, there is nothing we can do to drill down
- // and find a bitcastable constant.
- if (!SrcTy->isAggregateType())
- return nullptr;
-
- // We're simulating a load through a pointer that was bitcast to point to
- // a different type, so we can try to walk down through the initial
- // elements of an aggregate to see if some part of the aggregate is
- // castable to implement the "load" semantic model.
- if (SrcTy->isStructTy()) {
- // Struct types might have leading zero-length elements like [0 x i32],
- // which are certainly not what we are looking for, so skip them.
- unsigned Elem = 0;
- Constant *ElemC;
- do {
- ElemC = C->getAggregateElement(Elem++);
- } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0);
- C = ElemC;
- } else {
- C = C->getAggregateElement(0u);
- }
- } while (C);
-
- return nullptr;
-}
-
-namespace {
-
-/// Recursive helper to read bits out of global. C is the constant being copied
-/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
-/// results into and BytesLeft is the number of bytes left in
-/// the CurPtr buffer. DL is the DataLayout.
-bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr,
- unsigned BytesLeft, const DataLayout &DL) {
- assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
- "Out of range access");
-
- // If this element is zero or undefined, we can just return since *CurPtr is
- // zero initialized.
- if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
- return true;
-
- if (auto *CI = dyn_cast<ConstantInt>(C)) {
- if (CI->getBitWidth() > 64 ||
- (CI->getBitWidth() & 7) != 0)
- return false;
-
- uint64_t Val = CI->getZExtValue();
- unsigned IntBytes = unsigned(CI->getBitWidth()/8);
-
- for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
- int n = ByteOffset;
- if (!DL.isLittleEndian())
- n = IntBytes - n - 1;
- CurPtr[i] = (unsigned char)(Val >> (n * 8));
- ++ByteOffset;
- }
- return true;
- }
-
- if (auto *CFP = dyn_cast<ConstantFP>(C)) {
- if (CFP->getType()->isDoubleTy()) {
- C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
- }
- if (CFP->getType()->isFloatTy()){
- C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
- }
- if (CFP->getType()->isHalfTy()){
- C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
- return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
- }
- return false;
- }
-
- if (auto *CS = dyn_cast<ConstantStruct>(C)) {
- const StructLayout *SL = DL.getStructLayout(CS->getType());
- unsigned Index = SL->getElementContainingOffset(ByteOffset);
- uint64_t CurEltOffset = SL->getElementOffset(Index);
- ByteOffset -= CurEltOffset;
-
- while (true) {
- // If the element access is to the element itself and not to tail padding,
- // read the bytes from the element.
- uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
-
- if (ByteOffset < EltSize &&
- !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
- BytesLeft, DL))
- return false;
-
- ++Index;
-
- // Check to see if we read from the last struct element, if so we're done.
- if (Index == CS->getType()->getNumElements())
- return true;
-
- // If we read all of the bytes we needed from this element we're done.
- uint64_t NextEltOffset = SL->getElementOffset(Index);
-
- if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
- return true;
-
- // Move to the next element of the struct.
- CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
- BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
- ByteOffset = 0;
- CurEltOffset = NextEltOffset;
- }
- // not reached.
- }
-
- if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
- isa<ConstantDataSequential>(C)) {
- Type *EltTy = C->getType()->getSequentialElementType();
- uint64_t EltSize = DL.getTypeAllocSize(EltTy);
- uint64_t Index = ByteOffset / EltSize;
- uint64_t Offset = ByteOffset - Index * EltSize;
- uint64_t NumElts;
- if (auto *AT = dyn_cast<ArrayType>(C->getType()))
- NumElts = AT->getNumElements();
- else
- NumElts = C->getType()->getVectorNumElements();
-
- for (; Index != NumElts; ++Index) {
- if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
- BytesLeft, DL))
- return false;
-
- uint64_t BytesWritten = EltSize - Offset;
- assert(BytesWritten <= EltSize && "Not indexing into this element?");
- if (BytesWritten >= BytesLeft)
- return true;
-
- Offset = 0;
- BytesLeft -= BytesWritten;
- CurPtr += BytesWritten;
- }
- return true;
- }
-
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->getOpcode() == Instruction::IntToPtr &&
- CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
- return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
- BytesLeft, DL);
- }
- }
-
- // Otherwise, unknown initializer type.
- return false;
-}
-
-Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy,
- const DataLayout &DL) {
- auto *PTy = cast<PointerType>(C->getType());
- auto *IntType = dyn_cast<IntegerType>(LoadTy);
-
- // If this isn't an integer load we can't fold it directly.
- if (!IntType) {
- unsigned AS = PTy->getAddressSpace();
-
- // If this is a float/double load, we can try folding it as an int32/64 load
- // and then bitcast the result. This can be useful for union cases. Note
- // that address spaces don't matter here since we're not going to result in
- // an actual new load.
- Type *MapTy;
- if (LoadTy->isHalfTy())
- MapTy = Type::getInt16Ty(C->getContext());
- else if (LoadTy->isFloatTy())
- MapTy = Type::getInt32Ty(C->getContext());
- else if (LoadTy->isDoubleTy())
- MapTy = Type::getInt64Ty(C->getContext());
- else if (LoadTy->isVectorTy()) {
- MapTy = PointerType::getIntNTy(C->getContext(),
- DL.getTypeSizeInBits(LoadTy));
- } else
- return nullptr;
-
- C = FoldBitCast(C, MapTy->getPointerTo(AS), DL);
- if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL))
- return FoldBitCast(Res, LoadTy, DL);
- return nullptr;
- }
-
- unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
- if (BytesLoaded > 32 || BytesLoaded == 0)
- return nullptr;
-
- GlobalValue *GVal;
- APInt OffsetAI;
- if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL))
- return nullptr;
-
- auto *GV = dyn_cast<GlobalVariable>(GVal);
- if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
- !GV->getInitializer()->getType()->isSized())
- return nullptr;
-
- int64_t Offset = OffsetAI.getSExtValue();
- int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType());
-
- // If we're not accessing anything in this constant, the result is undefined.
- if (Offset + BytesLoaded <= 0)
- return UndefValue::get(IntType);
-
- // If we're not accessing anything in this constant, the result is undefined.
- if (Offset >= InitializerSize)
- return UndefValue::get(IntType);
-
- unsigned char RawBytes[32] = {0};
- unsigned char *CurPtr = RawBytes;
- unsigned BytesLeft = BytesLoaded;
-
- // If we're loading off the beginning of the global, some bytes may be valid.
- if (Offset < 0) {
- CurPtr += -Offset;
- BytesLeft += Offset;
- Offset = 0;
- }
-
- if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL))
- return nullptr;
-
- APInt ResultVal = APInt(IntType->getBitWidth(), 0);
- if (DL.isLittleEndian()) {
- ResultVal = RawBytes[BytesLoaded - 1];
- for (unsigned i = 1; i != BytesLoaded; ++i) {
- ResultVal <<= 8;
- ResultVal |= RawBytes[BytesLoaded - 1 - i];
- }
- } else {
- ResultVal = RawBytes[0];
- for (unsigned i = 1; i != BytesLoaded; ++i) {
- ResultVal <<= 8;
- ResultVal |= RawBytes[i];
- }
- }
-
- return ConstantInt::get(IntType->getContext(), ResultVal);
-}
-
-Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy,
- const DataLayout &DL) {
- auto *SrcPtr = CE->getOperand(0);
- auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType());
- if (!SrcPtrTy)
- return nullptr;
- Type *SrcTy = SrcPtrTy->getPointerElementType();
-
- Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL);
- if (!C)
- return nullptr;
-
- return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL);
-}
-
-} // end anonymous namespace
-
-Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty,
- const DataLayout &DL) {
- // First, try the easy cases:
- if (auto *GV = dyn_cast<GlobalVariable>(C))
- if (GV->isConstant() && GV->hasDefinitiveInitializer())
- return GV->getInitializer();
-
- if (auto *GA = dyn_cast<GlobalAlias>(C))
- if (GA->getAliasee() && !GA->isInterposable())
- return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL);
-
- // If the loaded value isn't a constant expr, we can't handle it.
- auto *CE = dyn_cast<ConstantExpr>(C);
- if (!CE)
- return nullptr;
-
- if (CE->getOpcode() == Instruction::GetElementPtr) {
- if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
- if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
- if (Constant *V =
- ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
- return V;
- }
- }
- }
-
- if (CE->getOpcode() == Instruction::BitCast)
- if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL))
- return LoadedC;
-
- // Instead of loading constant c string, use corresponding integer value
- // directly if string length is small enough.
- StringRef Str;
- if (getConstantStringInfo(CE, Str) && !Str.empty()) {
- size_t StrLen = Str.size();
- unsigned NumBits = Ty->getPrimitiveSizeInBits();
- // Replace load with immediate integer if the result is an integer or fp
- // value.
- if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
- (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
- APInt StrVal(NumBits, 0);
- APInt SingleChar(NumBits, 0);
- if (DL.isLittleEndian()) {
- for (unsigned char C : reverse(Str.bytes())) {
- SingleChar = static_cast<uint64_t>(C);
- StrVal = (StrVal << 8) | SingleChar;
- }
- } else {
- for (unsigned char C : Str.bytes()) {
- SingleChar = static_cast<uint64_t>(C);
- StrVal = (StrVal << 8) | SingleChar;
- }
- // Append NULL at the end.
- SingleChar = 0;
- StrVal = (StrVal << 8) | SingleChar;
- }
-
- Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
- if (Ty->isFloatingPointTy())
- Res = ConstantExpr::getBitCast(Res, Ty);
- return Res;
- }
- }
-
- // If this load comes from anywhere in a constant global, and if the global
- // is all undef or zero, we know what it loads.
- if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
- if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
- if (GV->getInitializer()->isNullValue())
- return Constant::getNullValue(Ty);
- if (isa<UndefValue>(GV->getInitializer()))
- return UndefValue::get(Ty);
- }
- }
-
- // Try hard to fold loads from bitcasted strange and non-type-safe things.
- return FoldReinterpretLoadFromConstPtr(CE, Ty, DL);
-}
-
-namespace {
-
-Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) {
- if (LI->isVolatile()) return nullptr;
-
- if (auto *C = dyn_cast<Constant>(LI->getOperand(0)))
- return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL);
-
- return nullptr;
-}
-
-/// One of Op0/Op1 is a constant expression.
-/// Attempt to symbolically evaluate the result of a binary operator merging
-/// these together. If target data info is available, it is provided as DL,
-/// otherwise DL is null.
-Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1,
- const DataLayout &DL) {
- // SROA
-
- // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
- // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
- // bits.
-
- if (Opc == Instruction::And) {
- KnownBits Known0 = computeKnownBits(Op0, DL);
- KnownBits Known1 = computeKnownBits(Op1, DL);
- if ((Known1.One | Known0.Zero).isAllOnesValue()) {
- // All the bits of Op0 that the 'and' could be masking are already zero.
- return Op0;
- }
- if ((Known0.One | Known1.Zero).isAllOnesValue()) {
- // All the bits of Op1 that the 'and' could be masking are already zero.
- return Op1;
- }
-
- Known0.Zero |= Known1.Zero;
- Known0.One &= Known1.One;
- if (Known0.isConstant())
- return ConstantInt::get(Op0->getType(), Known0.getConstant());
- }
-
- // If the constant expr is something like &A[123] - &A[4].f, fold this into a
- // constant. This happens frequently when iterating over a global array.
- if (Opc == Instruction::Sub) {
- GlobalValue *GV1, *GV2;
- APInt Offs1, Offs2;
-
- if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
- if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
- unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
-
- // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
- // PtrToInt may change the bitwidth so we have convert to the right size
- // first.
- return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
- Offs2.zextOrTrunc(OpSize));
- }
- }
-
- return nullptr;
-}
-
-/// If array indices are not pointer-sized integers, explicitly cast them so
-/// that they aren't implicitly casted by the getelementptr.
-Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops,
- Type *ResultTy, Optional<unsigned> InRangeIndex,
- const DataLayout &DL, const TargetLibraryInfo *TLI) {
- Type *IntPtrTy = DL.getIntPtrType(ResultTy);
- Type *IntPtrScalarTy = IntPtrTy->getScalarType();
-
- bool Any = false;
- SmallVector<Constant*, 32> NewIdxs;
- for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
- if ((i == 1 ||
- !isa<StructType>(GetElementPtrInst::getIndexedType(
- SrcElemTy, Ops.slice(1, i - 1)))) &&
- Ops[i]->getType()->getScalarType() != IntPtrScalarTy) {
- Any = true;
- Type *NewType = Ops[i]->getType()->isVectorTy()
- ? IntPtrTy
- : IntPtrTy->getScalarType();
- NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
- true,
- NewType,
- true),
- Ops[i], NewType));
- } else
- NewIdxs.push_back(Ops[i]);
- }
-
- if (!Any)
- return nullptr;
-
- Constant *C = ConstantExpr::getGetElementPtr(
- SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex);
- if (Constant *Folded = ConstantFoldConstant(C, DL, TLI))
- C = Folded;
-
- return C;
-}
-
-/// Strip the pointer casts, but preserve the address space information.
-Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) {
- assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
- auto *OldPtrTy = cast<PointerType>(Ptr->getType());
- Ptr = Ptr->stripPointerCasts();
- auto *NewPtrTy = cast<PointerType>(Ptr->getType());
-
- ElemTy = NewPtrTy->getPointerElementType();
-
- // Preserve the address space number of the pointer.
- if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
- NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace());
- Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
- }
- return Ptr;
-}
-
-/// If we can symbolically evaluate the GEP constant expression, do so.
-Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP,
- ArrayRef<Constant *> Ops,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- const GEPOperator *InnermostGEP = GEP;
- bool InBounds = GEP->isInBounds();
-
- Type *SrcElemTy = GEP->getSourceElementType();
- Type *ResElemTy = GEP->getResultElementType();
- Type *ResTy = GEP->getType();
- if (!SrcElemTy->isSized())
- return nullptr;
-
- if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy,
- GEP->getInRangeIndex(), DL, TLI))
- return C;
-
- Constant *Ptr = Ops[0];
- if (!Ptr->getType()->isPointerTy())
- return nullptr;
-
- Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
-
- // If this is a constant expr gep that is effectively computing an
- // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
- for (unsigned i = 1, e = Ops.size(); i != e; ++i)
- if (!isa<ConstantInt>(Ops[i])) {
-
- // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
- // "inttoptr (sub (ptrtoint Ptr), V)"
- if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) {
- auto *CE = dyn_cast<ConstantExpr>(Ops[1]);
- assert((!CE || CE->getType() == IntPtrTy) &&
- "CastGEPIndices didn't canonicalize index types!");
- if (CE && CE->getOpcode() == Instruction::Sub &&
- CE->getOperand(0)->isNullValue()) {
- Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
- Res = ConstantExpr::getSub(Res, CE->getOperand(1));
- Res = ConstantExpr::getIntToPtr(Res, ResTy);
- if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI))
- Res = FoldedRes;
- return Res;
- }
- }
- return nullptr;
- }
-
- unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
- APInt Offset =
- APInt(BitWidth,
- DL.getIndexedOffsetInType(
- SrcElemTy,
- makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
- Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
-
- // If this is a GEP of a GEP, fold it all into a single GEP.
- while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
- InnermostGEP = GEP;
- InBounds &= GEP->isInBounds();
-
- SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
-
- // Do not try the incorporate the sub-GEP if some index is not a number.
- bool AllConstantInt = true;
- for (Value *NestedOp : NestedOps)
- if (!isa<ConstantInt>(NestedOp)) {
- AllConstantInt = false;
- break;
- }
- if (!AllConstantInt)
- break;
-
- Ptr = cast<Constant>(GEP->getOperand(0));
- SrcElemTy = GEP->getSourceElementType();
- Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps));
- Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy);
- }
-
- // If the base value for this address is a literal integer value, fold the
- // getelementptr to the resulting integer value casted to the pointer type.
- APInt BasePtr(BitWidth, 0);
- if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) {
- if (CE->getOpcode() == Instruction::IntToPtr) {
- if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
- BasePtr = Base->getValue().zextOrTrunc(BitWidth);
- }
- }
-
- auto *PTy = cast<PointerType>(Ptr->getType());
- if ((Ptr->isNullValue() || BasePtr != 0) &&
- !DL.isNonIntegralPointerType(PTy)) {
- Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
- return ConstantExpr::getIntToPtr(C, ResTy);
- }
-
- // Otherwise form a regular getelementptr. Recompute the indices so that
- // we eliminate over-indexing of the notional static type array bounds.
- // This makes it easy to determine if the getelementptr is "inbounds".
- // Also, this helps GlobalOpt do SROA on GlobalVariables.
- Type *Ty = PTy;
- SmallVector<Constant *, 32> NewIdxs;
-
- do {
- if (!Ty->isStructTy()) {
- if (Ty->isPointerTy()) {
- // The only pointer indexing we'll do is on the first index of the GEP.
- if (!NewIdxs.empty())
- break;
-
- Ty = SrcElemTy;
-
- // Only handle pointers to sized types, not pointers to functions.
- if (!Ty->isSized())
- return nullptr;
- } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) {
- Ty = ATy->getElementType();
- } else {
- // We've reached some non-indexable type.
- break;
- }
-
- // Determine which element of the array the offset points into.
- APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty));
- if (ElemSize == 0) {
- // The element size is 0. This may be [0 x Ty]*, so just use a zero
- // index for this level and proceed to the next level to see if it can
- // accommodate the offset.
- NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
- } else {
- // The element size is non-zero divide the offset by the element
- // size (rounding down), to compute the index at this level.
- bool Overflow;
- APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow);
- if (Overflow)
- break;
- Offset -= NewIdx * ElemSize;
- NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
- }
- } else {
- auto *STy = cast<StructType>(Ty);
- // If we end up with an offset that isn't valid for this struct type, we
- // can't re-form this GEP in a regular form, so bail out. The pointer
- // operand likely went through casts that are necessary to make the GEP
- // sensible.
- const StructLayout &SL = *DL.getStructLayout(STy);
- if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes()))
- break;
-
- // Determine which field of the struct the offset points into. The
- // getZExtValue is fine as we've already ensured that the offset is
- // within the range representable by the StructLayout API.
- unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
- NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
- ElIdx));
- Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
- Ty = STy->getTypeAtIndex(ElIdx);
- }
- } while (Ty != ResElemTy);
-
- // If we haven't used up the entire offset by descending the static
- // type, then the offset is pointing into the middle of an indivisible
- // member, so we can't simplify it.
- if (Offset != 0)
- return nullptr;
-
- // Preserve the inrange index from the innermost GEP if possible. We must
- // have calculated the same indices up to and including the inrange index.
- Optional<unsigned> InRangeIndex;
- if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex())
- if (SrcElemTy == InnermostGEP->getSourceElementType() &&
- NewIdxs.size() > *LastIRIndex) {
- InRangeIndex = LastIRIndex;
- for (unsigned I = 0; I <= *LastIRIndex; ++I)
- if (NewIdxs[I] != InnermostGEP->getOperand(I + 1))
- return nullptr;
- }
-
- // Create a GEP.
- Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs,
- InBounds, InRangeIndex);
- assert(C->getType()->getPointerElementType() == Ty &&
- "Computed GetElementPtr has unexpected type!");
-
- // If we ended up indexing a member with a type that doesn't match
- // the type of what the original indices indexed, add a cast.
- if (Ty != ResElemTy)
- C = FoldBitCast(C, ResTy, DL);
-
- return C;
-}
-
-/// Attempt to constant fold an instruction with the
-/// specified opcode and operands. If successful, the constant result is
-/// returned, if not, null is returned. Note that this function can fail when
-/// attempting to fold instructions like loads and stores, which have no
-/// constant expression form.
-Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode,
- ArrayRef<Constant *> Ops,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- Type *DestTy = InstOrCE->getType();
-
- if (Instruction::isUnaryOp(Opcode))
- return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL);
-
- if (Instruction::isBinaryOp(Opcode))
- return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL);
-
- if (Instruction::isCast(Opcode))
- return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL);
-
- if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) {
- if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI))
- return C;
-
- return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0],
- Ops.slice(1), GEP->isInBounds(),
- GEP->getInRangeIndex());
- }
-
- if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE))
- return CE->getWithOperands(Ops);
-
- switch (Opcode) {
- default: return nullptr;
- case Instruction::ICmp:
- case Instruction::FCmp: llvm_unreachable("Invalid for compares");
- case Instruction::Call:
- if (auto *F = dyn_cast<Function>(Ops.back())) {
- const auto *Call = cast<CallBase>(InstOrCE);
- if (canConstantFoldCallTo(Call, F))
- return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI);
- }
- return nullptr;
- case Instruction::Select:
- return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
- case Instruction::ExtractElement:
- return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
- case Instruction::ExtractValue:
- return ConstantExpr::getExtractValue(
- Ops[0], dyn_cast<ExtractValueInst>(InstOrCE)->getIndices());
- case Instruction::InsertElement:
- return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
- case Instruction::ShuffleVector:
- return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
- }
-}
-
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// Constant Folding public APIs
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-Constant *
-ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- SmallDenseMap<Constant *, Constant *> &FoldedOps) {
- if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C))
- return nullptr;
-
- SmallVector<Constant *, 8> Ops;
- for (const Use &NewU : C->operands()) {
- auto *NewC = cast<Constant>(&NewU);
- // Recursively fold the ConstantExpr's operands. If we have already folded
- // a ConstantExpr, we don't have to process it again.
- if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) {
- auto It = FoldedOps.find(NewC);
- if (It == FoldedOps.end()) {
- if (auto *FoldedC =
- ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) {
- FoldedOps.insert({NewC, FoldedC});
- NewC = FoldedC;
- } else {
- FoldedOps.insert({NewC, NewC});
- }
- } else {
- NewC = It->second;
- }
- }
- Ops.push_back(NewC);
- }
-
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->isCompare())
- return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
- DL, TLI);
-
- return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI);
- }
-
- assert(isa<ConstantVector>(C));
- return ConstantVector::get(Ops);
-}
-
-} // end anonymous namespace
-
-Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- // Handle PHI nodes quickly here...
- if (auto *PN = dyn_cast<PHINode>(I)) {
- Constant *CommonValue = nullptr;
-
- SmallDenseMap<Constant *, Constant *> FoldedOps;
- for (Value *Incoming : PN->incoming_values()) {
- // If the incoming value is undef then skip it. Note that while we could
- // skip the value if it is equal to the phi node itself we choose not to
- // because that would break the rule that constant folding only applies if
- // all operands are constants.
- if (isa<UndefValue>(Incoming))
- continue;
- // If the incoming value is not a constant, then give up.
- auto *C = dyn_cast<Constant>(Incoming);
- if (!C)
- return nullptr;
- // Fold the PHI's operands.
- if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps))
- C = FoldedC;
- // If the incoming value is a different constant to
- // the one we saw previously, then give up.
- if (CommonValue && C != CommonValue)
- return nullptr;
- CommonValue = C;
- }
-
- // If we reach here, all incoming values are the same constant or undef.
- return CommonValue ? CommonValue : UndefValue::get(PN->getType());
- }
-
- // Scan the operand list, checking to see if they are all constants, if so,
- // hand off to ConstantFoldInstOperandsImpl.
- if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); }))
- return nullptr;
-
- SmallDenseMap<Constant *, Constant *> FoldedOps;
- SmallVector<Constant *, 8> Ops;
- for (const Use &OpU : I->operands()) {
- auto *Op = cast<Constant>(&OpU);
- // Fold the Instruction's operands.
- if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps))
- Op = FoldedOp;
-
- Ops.push_back(Op);
- }
-
- if (const auto *CI = dyn_cast<CmpInst>(I))
- return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
- DL, TLI);
-
- if (const auto *LI = dyn_cast<LoadInst>(I))
- return ConstantFoldLoadInst(LI, DL);
-
- if (auto *IVI = dyn_cast<InsertValueInst>(I)) {
- return ConstantExpr::getInsertValue(
- cast<Constant>(IVI->getAggregateOperand()),
- cast<Constant>(IVI->getInsertedValueOperand()),
- IVI->getIndices());
- }
-
- if (auto *EVI = dyn_cast<ExtractValueInst>(I)) {
- return ConstantExpr::getExtractValue(
- cast<Constant>(EVI->getAggregateOperand()),
- EVI->getIndices());
- }
-
- return ConstantFoldInstOperands(I, Ops, DL, TLI);
-}
-
-Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- SmallDenseMap<Constant *, Constant *> FoldedOps;
- return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps);
-}
-
-Constant *llvm::ConstantFoldInstOperands(Instruction *I,
- ArrayRef<Constant *> Ops,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI);
-}
-
-Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
- Constant *Ops0, Constant *Ops1,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI) {
- // fold: icmp (inttoptr x), null -> icmp x, 0
- // fold: icmp null, (inttoptr x) -> icmp 0, x
- // fold: icmp (ptrtoint x), 0 -> icmp x, null
- // fold: icmp 0, (ptrtoint x) -> icmp null, x
- // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
- // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
- //
- // FIXME: The following comment is out of data and the DataLayout is here now.
- // ConstantExpr::getCompare cannot do this, because it doesn't have DL
- // around to know if bit truncation is happening.
- if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
- if (Ops1->isNullValue()) {
- if (CE0->getOpcode() == Instruction::IntToPtr) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
- // Convert the integer value to the right size to ensure we get the
- // proper extension or truncation.
- Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
- IntPtrTy, false);
- Constant *Null = Constant::getNullValue(C->getType());
- return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
- }
-
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if (CE0->getOpcode() == Instruction::PtrToInt) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
- if (CE0->getType() == IntPtrTy) {
- Constant *C = CE0->getOperand(0);
- Constant *Null = Constant::getNullValue(C->getType());
- return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
- }
- }
- }
-
- if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
- if (CE0->getOpcode() == CE1->getOpcode()) {
- if (CE0->getOpcode() == Instruction::IntToPtr) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
-
- // Convert the integer value to the right size to ensure we get the
- // proper extension or truncation.
- Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
- IntPtrTy, false);
- Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
- IntPtrTy, false);
- return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
- }
-
- // Only do this transformation if the int is intptrty in size, otherwise
- // there is a truncation or extension that we aren't modeling.
- if (CE0->getOpcode() == Instruction::PtrToInt) {
- Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
- if (CE0->getType() == IntPtrTy &&
- CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
- return ConstantFoldCompareInstOperands(
- Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
- }
- }
- }
- }
-
- // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
- // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
- if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
- CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
- Constant *LHS = ConstantFoldCompareInstOperands(
- Predicate, CE0->getOperand(0), Ops1, DL, TLI);
- Constant *RHS = ConstantFoldCompareInstOperands(
- Predicate, CE0->getOperand(1), Ops1, DL, TLI);
- unsigned OpC =
- Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
- return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL);
- }
- } else if (isa<ConstantExpr>(Ops1)) {
- // If RHS is a constant expression, but the left side isn't, swap the
- // operands and try again.
- Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate);
- return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI);
- }
-
- return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
-}
-
-Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op,
- const DataLayout &DL) {
- assert(Instruction::isUnaryOp(Opcode));
-
- return ConstantExpr::get(Opcode, Op);
-}
-
-Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS,
- Constant *RHS,
- const DataLayout &DL) {
- assert(Instruction::isBinaryOp(Opcode));
- if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS))
- if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL))
- return C;
-
- return ConstantExpr::get(Opcode, LHS, RHS);
-}
-
-Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C,
- Type *DestTy, const DataLayout &DL) {
- assert(Instruction::isCast(Opcode));
- switch (Opcode) {
- default:
- llvm_unreachable("Missing case");
- case Instruction::PtrToInt:
- // If the input is a inttoptr, eliminate the pair. This requires knowing
- // the width of a pointer, so it can't be done in ConstantExpr::getCast.
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->getOpcode() == Instruction::IntToPtr) {
- Constant *Input = CE->getOperand(0);
- unsigned InWidth = Input->getType()->getScalarSizeInBits();
- unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
- if (PtrWidth < InWidth) {
- Constant *Mask =
- ConstantInt::get(CE->getContext(),
- APInt::getLowBitsSet(InWidth, PtrWidth));
- Input = ConstantExpr::getAnd(Input, Mask);
- }
- // Do a zext or trunc to get to the dest size.
- return ConstantExpr::getIntegerCast(Input, DestTy, false);
- }
- }
- return ConstantExpr::getCast(Opcode, C, DestTy);
- case Instruction::IntToPtr:
- // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
- // the int size is >= the ptr size and the address spaces are the same.
- // This requires knowing the width of a pointer, so it can't be done in
- // ConstantExpr::getCast.
- if (auto *CE = dyn_cast<ConstantExpr>(C)) {
- if (CE->getOpcode() == Instruction::PtrToInt) {
- Constant *SrcPtr = CE->getOperand(0);
- unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
- unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
-
- if (MidIntSize >= SrcPtrSize) {
- unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
- if (SrcAS == DestTy->getPointerAddressSpace())
- return FoldBitCast(CE->getOperand(0), DestTy, DL);
- }
- }
- }
-
- return ConstantExpr::getCast(Opcode, C, DestTy);
- case Instruction::Trunc:
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPTrunc:
- case Instruction::FPExt:
- case Instruction::UIToFP:
- case Instruction::SIToFP:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::AddrSpaceCast:
- return ConstantExpr::getCast(Opcode, C, DestTy);
- case Instruction::BitCast:
- return FoldBitCast(C, DestTy, DL);
- }
-}
-
-Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
- ConstantExpr *CE) {
- if (!CE->getOperand(1)->isNullValue())
- return nullptr; // Do not allow stepping over the value!
-
- // Loop over all of the operands, tracking down which value we are
- // addressing.
- for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
- C = C->getAggregateElement(CE->getOperand(i));
- if (!C)
- return nullptr;
- }
- return C;
-}
-
-Constant *
-llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
- ArrayRef<Constant *> Indices) {
- // Loop over all of the operands, tracking down which value we are
- // addressing.
- for (Constant *Index : Indices) {
- C = C->getAggregateElement(Index);
- if (!C)
- return nullptr;
- }
- return C;
-}
-
-//===----------------------------------------------------------------------===//
-// Constant Folding for Calls
-//
-
-bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) {
- if (Call->isNoBuiltin() || Call->isStrictFP())
- return false;
- switch (F->getIntrinsicID()) {
- case Intrinsic::fabs:
- case Intrinsic::minnum:
- case Intrinsic::maxnum:
- case Intrinsic::minimum:
- case Intrinsic::maximum:
- case Intrinsic::log:
- case Intrinsic::log2:
- case Intrinsic::log10:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::sqrt:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::pow:
- case Intrinsic::powi:
- case Intrinsic::bswap:
- case Intrinsic::ctpop:
- case Intrinsic::ctlz:
- case Intrinsic::cttz:
- case Intrinsic::fshl:
- case Intrinsic::fshr:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- case Intrinsic::copysign:
- case Intrinsic::launder_invariant_group:
- case Intrinsic::strip_invariant_group:
- case Intrinsic::round:
- case Intrinsic::masked_load:
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow:
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- case Intrinsic::sadd_sat:
- case Intrinsic::uadd_sat:
- case Intrinsic::ssub_sat:
- case Intrinsic::usub_sat:
- case Intrinsic::smul_fix:
- case Intrinsic::smul_fix_sat:
- case Intrinsic::convert_from_fp16:
- case Intrinsic::convert_to_fp16:
- case Intrinsic::bitreverse:
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse_cvttss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse2_cvttsd2si64:
- case Intrinsic::x86_avx512_vcvtss2si32:
- case Intrinsic::x86_avx512_vcvtss2si64:
- case Intrinsic::x86_avx512_cvttss2si:
- case Intrinsic::x86_avx512_cvttss2si64:
- case Intrinsic::x86_avx512_vcvtsd2si32:
- case Intrinsic::x86_avx512_vcvtsd2si64:
- case Intrinsic::x86_avx512_cvttsd2si:
- case Intrinsic::x86_avx512_cvttsd2si64:
- case Intrinsic::x86_avx512_vcvtss2usi32:
- case Intrinsic::x86_avx512_vcvtss2usi64:
- case Intrinsic::x86_avx512_cvttss2usi:
- case Intrinsic::x86_avx512_cvttss2usi64:
- case Intrinsic::x86_avx512_vcvtsd2usi32:
- case Intrinsic::x86_avx512_vcvtsd2usi64:
- case Intrinsic::x86_avx512_cvttsd2usi:
- case Intrinsic::x86_avx512_cvttsd2usi64:
- case Intrinsic::is_constant:
- return true;
- default:
- return false;
- case Intrinsic::not_intrinsic: break;
- }
-
- if (!F->hasName())
- return false;
- StringRef Name = F->getName();
-
- // In these cases, the check of the length is required. We don't want to
- // return true for a name like "cos\0blah" which strcmp would return equal to
- // "cos", but has length 8.
- switch (Name[0]) {
- default:
- return false;
- case 'a':
- return Name == "acos" || Name == "asin" || Name == "atan" ||
- Name == "atan2" || Name == "acosf" || Name == "asinf" ||
- Name == "atanf" || Name == "atan2f";
- case 'c':
- return Name == "ceil" || Name == "cos" || Name == "cosh" ||
- Name == "ceilf" || Name == "cosf" || Name == "coshf";
- case 'e':
- return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f";
- case 'f':
- return Name == "fabs" || Name == "floor" || Name == "fmod" ||
- Name == "fabsf" || Name == "floorf" || Name == "fmodf";
- case 'l':
- return Name == "log" || Name == "log10" || Name == "logf" ||
- Name == "log10f";
- case 'p':
- return Name == "pow" || Name == "powf";
- case 'r':
- return Name == "round" || Name == "roundf";
- case 's':
- return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
- Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
- case 't':
- return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
- case '_':
-
- // Check for various function names that get used for the math functions
- // when the header files are preprocessed with the macro
- // __FINITE_MATH_ONLY__ enabled.
- // The '12' here is the length of the shortest name that can match.
- // We need to check the size before looking at Name[1] and Name[2]
- // so we may as well check a limit that will eliminate mismatches.
- if (Name.size() < 12 || Name[1] != '_')
- return false;
- switch (Name[2]) {
- default:
- return false;
- case 'a':
- return Name == "__acos_finite" || Name == "__acosf_finite" ||
- Name == "__asin_finite" || Name == "__asinf_finite" ||
- Name == "__atan2_finite" || Name == "__atan2f_finite";
- case 'c':
- return Name == "__cosh_finite" || Name == "__coshf_finite";
- case 'e':
- return Name == "__exp_finite" || Name == "__expf_finite" ||
- Name == "__exp2_finite" || Name == "__exp2f_finite";
- case 'l':
- return Name == "__log_finite" || Name == "__logf_finite" ||
- Name == "__log10_finite" || Name == "__log10f_finite";
- case 'p':
- return Name == "__pow_finite" || Name == "__powf_finite";
- case 's':
- return Name == "__sinh_finite" || Name == "__sinhf_finite";
- }
- }
-}
-
-namespace {
-
-Constant *GetConstantFoldFPValue(double V, Type *Ty) {
- if (Ty->isHalfTy() || Ty->isFloatTy()) {
- APFloat APF(V);
- bool unused;
- APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused);
- return ConstantFP::get(Ty->getContext(), APF);
- }
- if (Ty->isDoubleTy())
- return ConstantFP::get(Ty->getContext(), APFloat(V));
- llvm_unreachable("Can only constant fold half/float/double");
-}
-
-/// Clear the floating-point exception state.
-inline void llvm_fenv_clearexcept() {
-#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
- feclearexcept(FE_ALL_EXCEPT);
-#endif
- errno = 0;
-}
-
-/// Test if a floating-point exception was raised.
-inline bool llvm_fenv_testexcept() {
- int errno_val = errno;
- if (errno_val == ERANGE || errno_val == EDOM)
- return true;
-#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
- if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
- return true;
-#endif
- return false;
-}
-
-Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) {
- llvm_fenv_clearexcept();
- V = NativeFP(V);
- if (llvm_fenv_testexcept()) {
- llvm_fenv_clearexcept();
- return nullptr;
- }
-
- return GetConstantFoldFPValue(V, Ty);
-}
-
-Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V,
- double W, Type *Ty) {
- llvm_fenv_clearexcept();
- V = NativeFP(V, W);
- if (llvm_fenv_testexcept()) {
- llvm_fenv_clearexcept();
- return nullptr;
- }
-
- return GetConstantFoldFPValue(V, Ty);
-}
-
-/// Attempt to fold an SSE floating point to integer conversion of a constant
-/// floating point. If roundTowardZero is false, the default IEEE rounding is
-/// used (toward nearest, ties to even). This matches the behavior of the
-/// non-truncating SSE instructions in the default rounding mode. The desired
-/// integer type Ty is used to select how many bits are available for the
-/// result. Returns null if the conversion cannot be performed, otherwise
-/// returns the Constant value resulting from the conversion.
-Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero,
- Type *Ty, bool IsSigned) {
- // All of these conversion intrinsics form an integer of at most 64bits.
- unsigned ResultWidth = Ty->getIntegerBitWidth();
- assert(ResultWidth <= 64 &&
- "Can only constant fold conversions to 64 and 32 bit ints");
-
- uint64_t UIntVal;
- bool isExact = false;
- APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
- : APFloat::rmNearestTiesToEven;
- APFloat::opStatus status =
- Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth,
- IsSigned, mode, &isExact);
- if (status != APFloat::opOK &&
- (!roundTowardZero || status != APFloat::opInexact))
- return nullptr;
- return ConstantInt::get(Ty, UIntVal, IsSigned);
-}
-
-double getValueAsDouble(ConstantFP *Op) {
- Type *Ty = Op->getType();
-
- if (Ty->isFloatTy())
- return Op->getValueAPF().convertToFloat();
-
- if (Ty->isDoubleTy())
- return Op->getValueAPF().convertToDouble();
-
- bool unused;
- APFloat APF = Op->getValueAPF();
- APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused);
- return APF.convertToDouble();
-}
-
-static bool isManifestConstant(const Constant *c) {
- if (isa<ConstantData>(c)) {
- return true;
- } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) {
- for (const Value *subc : c->operand_values()) {
- if (!isManifestConstant(cast<Constant>(subc)))
- return false;
- }
- return true;
- }
- return false;
-}
-
-static bool getConstIntOrUndef(Value *Op, const APInt *&C) {
- if (auto *CI = dyn_cast<ConstantInt>(Op)) {
- C = &CI->getValue();
- return true;
- }
- if (isa<UndefValue>(Op)) {
- C = nullptr;
- return true;
- }
- return false;
-}
-
-static Constant *ConstantFoldScalarCall1(StringRef Name,
- Intrinsic::ID IntrinsicID,
- Type *Ty,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI,
- const CallBase *Call) {
- assert(Operands.size() == 1 && "Wrong number of operands.");
-
- if (IntrinsicID == Intrinsic::is_constant) {
- // We know we have a "Constant" argument. But we want to only
- // return true for manifest constants, not those that depend on
- // constants with unknowable values, e.g. GlobalValue or BlockAddress.
- if (isManifestConstant(Operands[0]))
- return ConstantInt::getTrue(Ty->getContext());
- return nullptr;
- }
- if (isa<UndefValue>(Operands[0])) {
- // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN.
- // ctpop() is between 0 and bitwidth, pick 0 for undef.
- if (IntrinsicID == Intrinsic::cos ||
- IntrinsicID == Intrinsic::ctpop)
- return Constant::getNullValue(Ty);
- if (IntrinsicID == Intrinsic::bswap ||
- IntrinsicID == Intrinsic::bitreverse ||
- IntrinsicID == Intrinsic::launder_invariant_group ||
- IntrinsicID == Intrinsic::strip_invariant_group)
- return Operands[0];
- }
-
- if (isa<ConstantPointerNull>(Operands[0])) {
- // launder(null) == null == strip(null) iff in addrspace 0
- if (IntrinsicID == Intrinsic::launder_invariant_group ||
- IntrinsicID == Intrinsic::strip_invariant_group) {
- // If instruction is not yet put in a basic block (e.g. when cloning
- // a function during inlining), Call's caller may not be available.
- // So check Call's BB first before querying Call->getCaller.
- const Function *Caller =
- Call->getParent() ? Call->getCaller() : nullptr;
- if (Caller &&
- !NullPointerIsDefined(
- Caller, Operands[0]->getType()->getPointerAddressSpace())) {
- return Operands[0];
- }
- return nullptr;
- }
- }
-
- if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) {
- if (IntrinsicID == Intrinsic::convert_to_fp16) {
- APFloat Val(Op->getValueAPF());
-
- bool lost = false;
- Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost);
-
- return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
- }
-
- if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
- return nullptr;
-
- if (IntrinsicID == Intrinsic::round) {
- APFloat V = Op->getValueAPF();
- V.roundToIntegral(APFloat::rmNearestTiesToAway);
- return ConstantFP::get(Ty->getContext(), V);
- }
-
- if (IntrinsicID == Intrinsic::floor) {
- APFloat V = Op->getValueAPF();
- V.roundToIntegral(APFloat::rmTowardNegative);
- return ConstantFP::get(Ty->getContext(), V);
- }
-
- if (IntrinsicID == Intrinsic::ceil) {
- APFloat V = Op->getValueAPF();
- V.roundToIntegral(APFloat::rmTowardPositive);
- return ConstantFP::get(Ty->getContext(), V);
- }
-
- if (IntrinsicID == Intrinsic::trunc) {
- APFloat V = Op->getValueAPF();
- V.roundToIntegral(APFloat::rmTowardZero);
- return ConstantFP::get(Ty->getContext(), V);
- }
-
- if (IntrinsicID == Intrinsic::rint) {
- APFloat V = Op->getValueAPF();
- V.roundToIntegral(APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Ty->getContext(), V);
- }
-
- if (IntrinsicID == Intrinsic::nearbyint) {
- APFloat V = Op->getValueAPF();
- V.roundToIntegral(APFloat::rmNearestTiesToEven);
- return ConstantFP::get(Ty->getContext(), V);
- }
-
- /// We only fold functions with finite arguments. Folding NaN and inf is
- /// likely to be aborted with an exception anyway, and some host libms
- /// have known errors raising exceptions.
- if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
- return nullptr;
-
- /// Currently APFloat versions of these functions do not exist, so we use
- /// the host native double versions. Float versions are not called
- /// directly but for all these it is true (float)(f((double)arg)) ==
- /// f(arg). Long double not supported yet.
- double V = getValueAsDouble(Op);
-
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::fabs:
- return ConstantFoldFP(fabs, V, Ty);
- case Intrinsic::log2:
- return ConstantFoldFP(Log2, V, Ty);
- case Intrinsic::log:
- return ConstantFoldFP(log, V, Ty);
- case Intrinsic::log10:
- return ConstantFoldFP(log10, V, Ty);
- case Intrinsic::exp:
- return ConstantFoldFP(exp, V, Ty);
- case Intrinsic::exp2:
- return ConstantFoldFP(exp2, V, Ty);
- case Intrinsic::sin:
- return ConstantFoldFP(sin, V, Ty);
- case Intrinsic::cos:
- return ConstantFoldFP(cos, V, Ty);
- case Intrinsic::sqrt:
- return ConstantFoldFP(sqrt, V, Ty);
- }
-
- if (!TLI)
- return nullptr;
-
- char NameKeyChar = Name[0];
- if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_')
- NameKeyChar = Name[2];
-
- switch (NameKeyChar) {
- case 'a':
- if ((Name == "acos" && TLI->has(LibFunc_acos)) ||
- (Name == "acosf" && TLI->has(LibFunc_acosf)) ||
- (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) ||
- (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite)))
- return ConstantFoldFP(acos, V, Ty);
- else if ((Name == "asin" && TLI->has(LibFunc_asin)) ||
- (Name == "asinf" && TLI->has(LibFunc_asinf)) ||
- (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) ||
- (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite)))
- return ConstantFoldFP(asin, V, Ty);
- else if ((Name == "atan" && TLI->has(LibFunc_atan)) ||
- (Name == "atanf" && TLI->has(LibFunc_atanf)))
- return ConstantFoldFP(atan, V, Ty);
- break;
- case 'c':
- if ((Name == "ceil" && TLI->has(LibFunc_ceil)) ||
- (Name == "ceilf" && TLI->has(LibFunc_ceilf)))
- return ConstantFoldFP(ceil, V, Ty);
- else if ((Name == "cos" && TLI->has(LibFunc_cos)) ||
- (Name == "cosf" && TLI->has(LibFunc_cosf)))
- return ConstantFoldFP(cos, V, Ty);
- else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) ||
- (Name == "coshf" && TLI->has(LibFunc_coshf)) ||
- (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) ||
- (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite)))
- return ConstantFoldFP(cosh, V, Ty);
- break;
- case 'e':
- if ((Name == "exp" && TLI->has(LibFunc_exp)) ||
- (Name == "expf" && TLI->has(LibFunc_expf)) ||
- (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) ||
- (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite)))
- return ConstantFoldFP(exp, V, Ty);
- if ((Name == "exp2" && TLI->has(LibFunc_exp2)) ||
- (Name == "exp2f" && TLI->has(LibFunc_exp2f)) ||
- (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) ||
- (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite)))
- // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
- // C99 library.
- return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
- break;
- case 'f':
- if ((Name == "fabs" && TLI->has(LibFunc_fabs)) ||
- (Name == "fabsf" && TLI->has(LibFunc_fabsf)))
- return ConstantFoldFP(fabs, V, Ty);
- else if ((Name == "floor" && TLI->has(LibFunc_floor)) ||
- (Name == "floorf" && TLI->has(LibFunc_floorf)))
- return ConstantFoldFP(floor, V, Ty);
- break;
- case 'l':
- if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) ||
- (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) ||
- (Name == "__log_finite" && V > 0 &&
- TLI->has(LibFunc_log_finite)) ||
- (Name == "__logf_finite" && V > 0 &&
- TLI->has(LibFunc_logf_finite)))
- return ConstantFoldFP(log, V, Ty);
- else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) ||
- (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) ||
- (Name == "__log10_finite" && V > 0 &&
- TLI->has(LibFunc_log10_finite)) ||
- (Name == "__log10f_finite" && V > 0 &&
- TLI->has(LibFunc_log10f_finite)))
- return ConstantFoldFP(log10, V, Ty);
- break;
- case 'r':
- if ((Name == "round" && TLI->has(LibFunc_round)) ||
- (Name == "roundf" && TLI->has(LibFunc_roundf)))
- return ConstantFoldFP(round, V, Ty);
- break;
- case 's':
- if ((Name == "sin" && TLI->has(LibFunc_sin)) ||
- (Name == "sinf" && TLI->has(LibFunc_sinf)))
- return ConstantFoldFP(sin, V, Ty);
- else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) ||
- (Name == "sinhf" && TLI->has(LibFunc_sinhf)) ||
- (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) ||
- (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite)))
- return ConstantFoldFP(sinh, V, Ty);
- else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) ||
- (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf)))
- return ConstantFoldFP(sqrt, V, Ty);
- break;
- case 't':
- if ((Name == "tan" && TLI->has(LibFunc_tan)) ||
- (Name == "tanf" && TLI->has(LibFunc_tanf)))
- return ConstantFoldFP(tan, V, Ty);
- else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) ||
- (Name == "tanhf" && TLI->has(LibFunc_tanhf)))
- return ConstantFoldFP(tanh, V, Ty);
- break;
- default:
- break;
- }
- return nullptr;
- }
-
- if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) {
- switch (IntrinsicID) {
- case Intrinsic::bswap:
- return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
- case Intrinsic::ctpop:
- return ConstantInt::get(Ty, Op->getValue().countPopulation());
- case Intrinsic::bitreverse:
- return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits());
- case Intrinsic::convert_from_fp16: {
- APFloat Val(APFloat::IEEEhalf(), Op->getValue());
-
- bool lost = false;
- APFloat::opStatus status = Val.convert(
- Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
-
- // Conversion is always precise.
- (void)status;
- assert(status == APFloat::opOK && !lost &&
- "Precision lost during fp16 constfolding");
-
- return ConstantFP::get(Ty->getContext(), Val);
- }
- default:
- return nullptr;
- }
- }
-
- // Support ConstantVector in case we have an Undef in the top.
- if (isa<ConstantVector>(Operands[0]) ||
- isa<ConstantDataVector>(Operands[0])) {
- auto *Op = cast<Constant>(Operands[0]);
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::x86_sse_cvtss2si:
- case Intrinsic::x86_sse_cvtss2si64:
- case Intrinsic::x86_sse2_cvtsd2si:
- case Intrinsic::x86_sse2_cvtsd2si64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/false, Ty,
- /*IsSigned*/true);
- break;
- case Intrinsic::x86_sse_cvttss2si:
- case Intrinsic::x86_sse_cvttss2si64:
- case Intrinsic::x86_sse2_cvttsd2si:
- case Intrinsic::x86_sse2_cvttsd2si64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/true, Ty,
- /*IsSigned*/true);
- break;
- }
- }
-
- return nullptr;
-}
-
-static Constant *ConstantFoldScalarCall2(StringRef Name,
- Intrinsic::ID IntrinsicID,
- Type *Ty,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI,
- const CallBase *Call) {
- assert(Operands.size() == 2 && "Wrong number of operands.");
-
- if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
- return nullptr;
- double Op1V = getValueAsDouble(Op1);
-
- if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
- if (Op2->getType() != Op1->getType())
- return nullptr;
-
- double Op2V = getValueAsDouble(Op2);
- if (IntrinsicID == Intrinsic::pow) {
- return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
- }
- if (IntrinsicID == Intrinsic::copysign) {
- APFloat V1 = Op1->getValueAPF();
- const APFloat &V2 = Op2->getValueAPF();
- V1.copySign(V2);
- return ConstantFP::get(Ty->getContext(), V1);
- }
-
- if (IntrinsicID == Intrinsic::minnum) {
- const APFloat &C1 = Op1->getValueAPF();
- const APFloat &C2 = Op2->getValueAPF();
- return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
- }
-
- if (IntrinsicID == Intrinsic::maxnum) {
- const APFloat &C1 = Op1->getValueAPF();
- const APFloat &C2 = Op2->getValueAPF();
- return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
- }
-
- if (IntrinsicID == Intrinsic::minimum) {
- const APFloat &C1 = Op1->getValueAPF();
- const APFloat &C2 = Op2->getValueAPF();
- return ConstantFP::get(Ty->getContext(), minimum(C1, C2));
- }
-
- if (IntrinsicID == Intrinsic::maximum) {
- const APFloat &C1 = Op1->getValueAPF();
- const APFloat &C2 = Op2->getValueAPF();
- return ConstantFP::get(Ty->getContext(), maximum(C1, C2));
- }
-
- if (!TLI)
- return nullptr;
- if ((Name == "pow" && TLI->has(LibFunc_pow)) ||
- (Name == "powf" && TLI->has(LibFunc_powf)) ||
- (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) ||
- (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite)))
- return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
- if ((Name == "fmod" && TLI->has(LibFunc_fmod)) ||
- (Name == "fmodf" && TLI->has(LibFunc_fmodf)))
- return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
- if ((Name == "atan2" && TLI->has(LibFunc_atan2)) ||
- (Name == "atan2f" && TLI->has(LibFunc_atan2f)) ||
- (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) ||
- (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite)))
- return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
- } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
- if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
- return ConstantFP::get(Ty->getContext(),
- APFloat((float)std::pow((float)Op1V,
- (int)Op2C->getZExtValue())));
- if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
- return ConstantFP::get(Ty->getContext(),
- APFloat((float)std::pow((float)Op1V,
- (int)Op2C->getZExtValue())));
- if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
- return ConstantFP::get(Ty->getContext(),
- APFloat((double)std::pow((double)Op1V,
- (int)Op2C->getZExtValue())));
- }
- return nullptr;
- }
-
- if (Operands[0]->getType()->isIntegerTy() &&
- Operands[1]->getType()->isIntegerTy()) {
- const APInt *C0, *C1;
- if (!getConstIntOrUndef(Operands[0], C0) ||
- !getConstIntOrUndef(Operands[1], C1))
- return nullptr;
-
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::smul_with_overflow:
- case Intrinsic::umul_with_overflow:
- // Even if both operands are undef, we cannot fold muls to undef
- // in the general case. For example, on i2 there are no inputs
- // that would produce { i2 -1, i1 true } as the result.
- if (!C0 || !C1)
- return Constant::getNullValue(Ty);
- LLVM_FALLTHROUGH;
- case Intrinsic::sadd_with_overflow:
- case Intrinsic::uadd_with_overflow:
- case Intrinsic::ssub_with_overflow:
- case Intrinsic::usub_with_overflow: {
- if (!C0 || !C1)
- return UndefValue::get(Ty);
-
- APInt Res;
- bool Overflow;
- switch (IntrinsicID) {
- default: llvm_unreachable("Invalid case");
- case Intrinsic::sadd_with_overflow:
- Res = C0->sadd_ov(*C1, Overflow);
- break;
- case Intrinsic::uadd_with_overflow:
- Res = C0->uadd_ov(*C1, Overflow);
- break;
- case Intrinsic::ssub_with_overflow:
- Res = C0->ssub_ov(*C1, Overflow);
- break;
- case Intrinsic::usub_with_overflow:
- Res = C0->usub_ov(*C1, Overflow);
- break;
- case Intrinsic::smul_with_overflow:
- Res = C0->smul_ov(*C1, Overflow);
- break;
- case Intrinsic::umul_with_overflow:
- Res = C0->umul_ov(*C1, Overflow);
- break;
- }
- Constant *Ops[] = {
- ConstantInt::get(Ty->getContext(), Res),
- ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
- };
- return ConstantStruct::get(cast<StructType>(Ty), Ops);
- }
- case Intrinsic::uadd_sat:
- case Intrinsic::sadd_sat:
- if (!C0 && !C1)
- return UndefValue::get(Ty);
- if (!C0 || !C1)
- return Constant::getAllOnesValue(Ty);
- if (IntrinsicID == Intrinsic::uadd_sat)
- return ConstantInt::get(Ty, C0->uadd_sat(*C1));
- else
- return ConstantInt::get(Ty, C0->sadd_sat(*C1));
- case Intrinsic::usub_sat:
- case Intrinsic::ssub_sat:
- if (!C0 && !C1)
- return UndefValue::get(Ty);
- if (!C0 || !C1)
- return Constant::getNullValue(Ty);
- if (IntrinsicID == Intrinsic::usub_sat)
- return ConstantInt::get(Ty, C0->usub_sat(*C1));
- else
- return ConstantInt::get(Ty, C0->ssub_sat(*C1));
- case Intrinsic::cttz:
- case Intrinsic::ctlz:
- assert(C1 && "Must be constant int");
-
- // cttz(0, 1) and ctlz(0, 1) are undef.
- if (C1->isOneValue() && (!C0 || C0->isNullValue()))
- return UndefValue::get(Ty);
- if (!C0)
- return Constant::getNullValue(Ty);
- if (IntrinsicID == Intrinsic::cttz)
- return ConstantInt::get(Ty, C0->countTrailingZeros());
- else
- return ConstantInt::get(Ty, C0->countLeadingZeros());
- }
-
- return nullptr;
- }
-
- // Support ConstantVector in case we have an Undef in the top.
- if ((isa<ConstantVector>(Operands[0]) ||
- isa<ConstantDataVector>(Operands[0])) &&
- // Check for default rounding mode.
- // FIXME: Support other rounding modes?
- isa<ConstantInt>(Operands[1]) &&
- cast<ConstantInt>(Operands[1])->getValue() == 4) {
- auto *Op = cast<Constant>(Operands[0]);
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::x86_avx512_vcvtss2si32:
- case Intrinsic::x86_avx512_vcvtss2si64:
- case Intrinsic::x86_avx512_vcvtsd2si32:
- case Intrinsic::x86_avx512_vcvtsd2si64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/false, Ty,
- /*IsSigned*/true);
- break;
- case Intrinsic::x86_avx512_vcvtss2usi32:
- case Intrinsic::x86_avx512_vcvtss2usi64:
- case Intrinsic::x86_avx512_vcvtsd2usi32:
- case Intrinsic::x86_avx512_vcvtsd2usi64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/false, Ty,
- /*IsSigned*/false);
- break;
- case Intrinsic::x86_avx512_cvttss2si:
- case Intrinsic::x86_avx512_cvttss2si64:
- case Intrinsic::x86_avx512_cvttsd2si:
- case Intrinsic::x86_avx512_cvttsd2si64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/true, Ty,
- /*IsSigned*/true);
- break;
- case Intrinsic::x86_avx512_cvttss2usi:
- case Intrinsic::x86_avx512_cvttss2usi64:
- case Intrinsic::x86_avx512_cvttsd2usi:
- case Intrinsic::x86_avx512_cvttsd2usi64:
- if (ConstantFP *FPOp =
- dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
- return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(),
- /*roundTowardZero=*/true, Ty,
- /*IsSigned*/false);
- break;
- }
- }
- return nullptr;
-}
-
-static Constant *ConstantFoldScalarCall3(StringRef Name,
- Intrinsic::ID IntrinsicID,
- Type *Ty,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI,
- const CallBase *Call) {
- assert(Operands.size() == 3 && "Wrong number of operands.");
-
- if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
- if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
- if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::fma:
- case Intrinsic::fmuladd: {
- APFloat V = Op1->getValueAPF();
- APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
- Op3->getValueAPF(),
- APFloat::rmNearestTiesToEven);
- if (s != APFloat::opInvalidOp)
- return ConstantFP::get(Ty->getContext(), V);
-
- return nullptr;
- }
- }
- }
- }
- }
-
- if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
- if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
- if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) {
- switch (IntrinsicID) {
- default: break;
- case Intrinsic::smul_fix:
- case Intrinsic::smul_fix_sat: {
- // This code performs rounding towards negative infinity in case the
- // result cannot be represented exactly for the given scale. Targets
- // that do care about rounding should use a target hook for specifying
- // how rounding should be done, and provide their own folding to be
- // consistent with rounding. This is the same approach as used by
- // DAGTypeLegalizer::ExpandIntRes_MULFIX.
- APInt Lhs = Op1->getValue();
- APInt Rhs = Op2->getValue();
- unsigned Scale = Op3->getValue().getZExtValue();
- unsigned Width = Lhs.getBitWidth();
- assert(Scale < Width && "Illegal scale.");
- unsigned ExtendedWidth = Width * 2;
- APInt Product = (Lhs.sextOrSelf(ExtendedWidth) *
- Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale);
- if (IntrinsicID == Intrinsic::smul_fix_sat) {
- APInt MaxValue =
- APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth);
- APInt MinValue =
- APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth);
- Product = APIntOps::smin(Product, MaxValue);
- Product = APIntOps::smax(Product, MinValue);
- }
- return ConstantInt::get(Ty->getContext(),
- Product.sextOrTrunc(Width));
- }
- }
- }
- }
- }
-
- if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) {
- const APInt *C0, *C1, *C2;
- if (!getConstIntOrUndef(Operands[0], C0) ||
- !getConstIntOrUndef(Operands[1], C1) ||
- !getConstIntOrUndef(Operands[2], C2))
- return nullptr;
-
- bool IsRight = IntrinsicID == Intrinsic::fshr;
- if (!C2)
- return Operands[IsRight ? 1 : 0];
- if (!C0 && !C1)
- return UndefValue::get(Ty);
-
- // The shift amount is interpreted as modulo the bitwidth. If the shift
- // amount is effectively 0, avoid UB due to oversized inverse shift below.
- unsigned BitWidth = C2->getBitWidth();
- unsigned ShAmt = C2->urem(BitWidth);
- if (!ShAmt)
- return Operands[IsRight ? 1 : 0];
-
- // (C0 << ShlAmt) | (C1 >> LshrAmt)
- unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt;
- unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt;
- if (!C0)
- return ConstantInt::get(Ty, C1->lshr(LshrAmt));
- if (!C1)
- return ConstantInt::get(Ty, C0->shl(ShlAmt));
- return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt));
- }
-
- return nullptr;
-}
-
-static Constant *ConstantFoldScalarCall(StringRef Name,
- Intrinsic::ID IntrinsicID,
- Type *Ty,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI,
- const CallBase *Call) {
- if (Operands.size() == 1)
- return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call);
-
- if (Operands.size() == 2)
- return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call);
-
- if (Operands.size() == 3)
- return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call);
-
- return nullptr;
-}
-
-static Constant *ConstantFoldVectorCall(StringRef Name,
- Intrinsic::ID IntrinsicID,
- VectorType *VTy,
- ArrayRef<Constant *> Operands,
- const DataLayout &DL,
- const TargetLibraryInfo *TLI,
- const CallBase *Call) {
- SmallVector<Constant *, 4> Result(VTy->getNumElements());
- SmallVector<Constant *, 4> Lane(Operands.size());
- Type *Ty = VTy->getElementType();
-
- if (IntrinsicID == Intrinsic::masked_load) {
- auto *SrcPtr = Operands[0];
- auto *Mask = Operands[2];
- auto *Passthru = Operands[3];
-
- Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL);
-
- SmallVector<Constant *, 32> NewElements;
- for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
- auto *MaskElt = Mask->getAggregateElement(I);
- if (!MaskElt)
- break;
- auto *PassthruElt = Passthru->getAggregateElement(I);
- auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr;
- if (isa<UndefValue>(MaskElt)) {
- if (PassthruElt)
- NewElements.push_back(PassthruElt);
- else if (VecElt)
- NewElements.push_back(VecElt);
- else
- return nullptr;
- }
- if (MaskElt->isNullValue()) {
- if (!PassthruElt)
- return nullptr;
- NewElements.push_back(PassthruElt);
- } else if (MaskElt->isOneValue()) {
- if (!VecElt)
- return nullptr;
- NewElements.push_back(VecElt);
- } else {
- return nullptr;
- }
- }
- if (NewElements.size() != VTy->getNumElements())
- return nullptr;
- return ConstantVector::get(NewElements);
- }
-
- for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
- // Gather a column of constants.
- for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
- // Some intrinsics use a scalar type for certain arguments.
- if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) {
- Lane[J] = Operands[J];
- continue;
- }
-
- Constant *Agg = Operands[J]->getAggregateElement(I);
- if (!Agg)
- return nullptr;
-
- Lane[J] = Agg;
- }
-
- // Use the regular scalar folding to simplify this column.
- Constant *Folded =
- ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call);
- if (!Folded)
- return nullptr;
- Result[I] = Folded;
- }
-
- return ConstantVector::get(Result);
-}
-
-} // end anonymous namespace
-
-Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F,
- ArrayRef<Constant *> Operands,
- const TargetLibraryInfo *TLI) {
- if (Call->isNoBuiltin() || Call->isStrictFP())
- return nullptr;
- if (!F->hasName())
- return nullptr;
- StringRef Name = F->getName();
-
- Type *Ty = F->getReturnType();
-
- if (auto *VTy = dyn_cast<VectorType>(Ty))
- return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands,
- F->getParent()->getDataLayout(), TLI, Call);
-
- return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI,
- Call);
-}
-
-bool llvm::isMathLibCallNoop(const CallBase *Call,
- const TargetLibraryInfo *TLI) {
- // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap
- // (and to some extent ConstantFoldScalarCall).
- if (Call->isNoBuiltin() || Call->isStrictFP())
- return false;
- Function *F = Call->getCalledFunction();
- if (!F)
- return false;
-
- LibFunc Func;
- if (!TLI || !TLI->getLibFunc(*F, Func))
- return false;
-
- if (Call->getNumArgOperands() == 1) {
- if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) {
- const APFloat &Op = OpC->getValueAPF();
- switch (Func) {
- case LibFunc_logl:
- case LibFunc_log:
- case LibFunc_logf:
- case LibFunc_log2l:
- case LibFunc_log2:
- case LibFunc_log2f:
- case LibFunc_log10l:
- case LibFunc_log10:
- case LibFunc_log10f:
- return Op.isNaN() || (!Op.isZero() && !Op.isNegative());
-
- case LibFunc_expl:
- case LibFunc_exp:
- case LibFunc_expf:
- // FIXME: These boundaries are slightly conservative.
- if (OpC->getType()->isDoubleTy())
- return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan &&
- Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan;
- if (OpC->getType()->isFloatTy())
- return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan &&
- Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan;
- break;
-
- case LibFunc_exp2l:
- case LibFunc_exp2:
- case LibFunc_exp2f:
- // FIXME: These boundaries are slightly conservative.
- if (OpC->getType()->isDoubleTy())
- return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan &&
- Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan;
- if (OpC->getType()->isFloatTy())
- return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan &&
- Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan;
- break;
-
- case LibFunc_sinl:
- case LibFunc_sin:
- case LibFunc_sinf:
- case LibFunc_cosl:
- case LibFunc_cos:
- case LibFunc_cosf:
- return !Op.isInfinity();
-
- case LibFunc_tanl:
- case LibFunc_tan:
- case LibFunc_tanf: {
- // FIXME: Stop using the host math library.
- // FIXME: The computation isn't done in the right precision.
- Type *Ty = OpC->getType();
- if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
- double OpV = getValueAsDouble(OpC);
- return ConstantFoldFP(tan, OpV, Ty) != nullptr;
- }
- break;
- }
-
- case LibFunc_asinl:
- case LibFunc_asin:
- case LibFunc_asinf:
- case LibFunc_acosl:
- case LibFunc_acos:
- case LibFunc_acosf:
- return Op.compare(APFloat(Op.getSemantics(), "-1")) !=
- APFloat::cmpLessThan &&
- Op.compare(APFloat(Op.getSemantics(), "1")) !=
- APFloat::cmpGreaterThan;
-
- case LibFunc_sinh:
- case LibFunc_cosh:
- case LibFunc_sinhf:
- case LibFunc_coshf:
- case LibFunc_sinhl:
- case LibFunc_coshl:
- // FIXME: These boundaries are slightly conservative.
- if (OpC->getType()->isDoubleTy())
- return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan &&
- Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan;
- if (OpC->getType()->isFloatTy())
- return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan &&
- Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan;
- break;
-
- case LibFunc_sqrtl:
- case LibFunc_sqrt:
- case LibFunc_sqrtf:
- return Op.isNaN() || Op.isZero() || !Op.isNegative();
-
- // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p,
- // maybe others?
- default:
- break;
- }
- }
- }
-
- if (Call->getNumArgOperands() == 2) {
- ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0));
- ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1));
- if (Op0C && Op1C) {
- const APFloat &Op0 = Op0C->getValueAPF();
- const APFloat &Op1 = Op1C->getValueAPF();
-
- switch (Func) {
- case LibFunc_powl:
- case LibFunc_pow:
- case LibFunc_powf: {
- // FIXME: Stop using the host math library.
- // FIXME: The computation isn't done in the right precision.
- Type *Ty = Op0C->getType();
- if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) {
- if (Ty == Op1C->getType()) {
- double Op0V = getValueAsDouble(Op0C);
- double Op1V = getValueAsDouble(Op1C);
- return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr;
- }
- }
- break;
- }
-
- case LibFunc_fmodl:
- case LibFunc_fmod:
- case LibFunc_fmodf:
- return Op0.isNaN() || Op1.isNaN() ||
- (!Op0.isInfinity() && !Op1.isZero());
-
- default:
- break;
- }
- }
- }
-
- return false;
-}