diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Analysis/ConstantFolding.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm/lib/Analysis/ConstantFolding.cpp')
-rw-r--r-- | contrib/llvm/lib/Analysis/ConstantFolding.cpp | 2546 |
1 files changed, 0 insertions, 2546 deletions
diff --git a/contrib/llvm/lib/Analysis/ConstantFolding.cpp b/contrib/llvm/lib/Analysis/ConstantFolding.cpp deleted file mode 100644 index 20231ca78b45..000000000000 --- a/contrib/llvm/lib/Analysis/ConstantFolding.cpp +++ /dev/null @@ -1,2546 +0,0 @@ -//===-- ConstantFolding.cpp - Fold instructions into constants ------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file defines routines for folding instructions into constants. -// -// Also, to supplement the basic IR ConstantExpr simplifications, -// this file defines some additional folding routines that can make use of -// DataLayout information. These functions cannot go in IR due to library -// dependency issues. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/ADT/APFloat.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/Config/config.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MathExtras.h" -#include <cassert> -#include <cerrno> -#include <cfenv> -#include <cmath> -#include <cstddef> -#include <cstdint> - -using namespace llvm; - -namespace { - -//===----------------------------------------------------------------------===// -// Constant Folding internal helper functions -//===----------------------------------------------------------------------===// - -static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, - Constant *C, Type *SrcEltTy, - unsigned NumSrcElts, - const DataLayout &DL) { - // Now that we know that the input value is a vector of integers, just shift - // and insert them into our result. - unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); - for (unsigned i = 0; i != NumSrcElts; ++i) { - Constant *Element; - if (DL.isLittleEndian()) - Element = C->getAggregateElement(NumSrcElts - i - 1); - else - Element = C->getAggregateElement(i); - - if (Element && isa<UndefValue>(Element)) { - Result <<= BitShift; - continue; - } - - auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); - if (!ElementCI) - return ConstantExpr::getBitCast(C, DestTy); - - Result <<= BitShift; - Result |= ElementCI->getValue().zextOrSelf(Result.getBitWidth()); - } - - return nullptr; -} - -/// Constant fold bitcast, symbolically evaluating it with DataLayout. -/// This always returns a non-null constant, but it may be a -/// ConstantExpr if unfoldable. -Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { - // Catch the obvious splat cases. - if (C->isNullValue() && !DestTy->isX86_MMXTy()) - return Constant::getNullValue(DestTy); - if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() && - !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types! - return Constant::getAllOnesValue(DestTy); - - if (auto *VTy = dyn_cast<VectorType>(C->getType())) { - // Handle a vector->scalar integer/fp cast. - if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { - unsigned NumSrcElts = VTy->getNumElements(); - Type *SrcEltTy = VTy->getElementType(); - - // If the vector is a vector of floating point, convert it to vector of int - // to simplify things. - if (SrcEltTy->isFloatingPointTy()) { - unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); - Type *SrcIVTy = - VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts); - // Ask IR to do the conversion now that #elts line up. - C = ConstantExpr::getBitCast(C, SrcIVTy); - } - - APInt Result(DL.getTypeSizeInBits(DestTy), 0); - if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, - SrcEltTy, NumSrcElts, DL)) - return CE; - - if (isa<IntegerType>(DestTy)) - return ConstantInt::get(DestTy, Result); - - APFloat FP(DestTy->getFltSemantics(), Result); - return ConstantFP::get(DestTy->getContext(), FP); - } - } - - // The code below only handles casts to vectors currently. - auto *DestVTy = dyn_cast<VectorType>(DestTy); - if (!DestVTy) - return ConstantExpr::getBitCast(C, DestTy); - - // If this is a scalar -> vector cast, convert the input into a <1 x scalar> - // vector so the code below can handle it uniformly. - if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { - Constant *Ops = C; // don't take the address of C! - return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); - } - - // If this is a bitcast from constant vector -> vector, fold it. - if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) - return ConstantExpr::getBitCast(C, DestTy); - - // If the element types match, IR can fold it. - unsigned NumDstElt = DestVTy->getNumElements(); - unsigned NumSrcElt = C->getType()->getVectorNumElements(); - if (NumDstElt == NumSrcElt) - return ConstantExpr::getBitCast(C, DestTy); - - Type *SrcEltTy = C->getType()->getVectorElementType(); - Type *DstEltTy = DestVTy->getElementType(); - - // Otherwise, we're changing the number of elements in a vector, which - // requires endianness information to do the right thing. For example, - // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) - // folds to (little endian): - // <4 x i32> <i32 0, i32 0, i32 1, i32 0> - // and to (big endian): - // <4 x i32> <i32 0, i32 0, i32 0, i32 1> - - // First thing is first. We only want to think about integer here, so if - // we have something in FP form, recast it as integer. - if (DstEltTy->isFloatingPointTy()) { - // Fold to an vector of integers with same size as our FP type. - unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); - Type *DestIVTy = - VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt); - // Recursively handle this integer conversion, if possible. - C = FoldBitCast(C, DestIVTy, DL); - - // Finally, IR can handle this now that #elts line up. - return ConstantExpr::getBitCast(C, DestTy); - } - - // Okay, we know the destination is integer, if the input is FP, convert - // it to integer first. - if (SrcEltTy->isFloatingPointTy()) { - unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); - Type *SrcIVTy = - VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt); - // Ask IR to do the conversion now that #elts line up. - C = ConstantExpr::getBitCast(C, SrcIVTy); - // If IR wasn't able to fold it, bail out. - if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. - !isa<ConstantDataVector>(C)) - return C; - } - - // Now we know that the input and output vectors are both integer vectors - // of the same size, and that their #elements is not the same. Do the - // conversion here, which depends on whether the input or output has - // more elements. - bool isLittleEndian = DL.isLittleEndian(); - - SmallVector<Constant*, 32> Result; - if (NumDstElt < NumSrcElt) { - // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) - Constant *Zero = Constant::getNullValue(DstEltTy); - unsigned Ratio = NumSrcElt/NumDstElt; - unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); - unsigned SrcElt = 0; - for (unsigned i = 0; i != NumDstElt; ++i) { - // Build each element of the result. - Constant *Elt = Zero; - unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); - for (unsigned j = 0; j != Ratio; ++j) { - Constant *Src = C->getAggregateElement(SrcElt++); - if (Src && isa<UndefValue>(Src)) - Src = Constant::getNullValue(C->getType()->getVectorElementType()); - else - Src = dyn_cast_or_null<ConstantInt>(Src); - if (!Src) // Reject constantexpr elements. - return ConstantExpr::getBitCast(C, DestTy); - - // Zero extend the element to the right size. - Src = ConstantExpr::getZExt(Src, Elt->getType()); - - // Shift it to the right place, depending on endianness. - Src = ConstantExpr::getShl(Src, - ConstantInt::get(Src->getType(), ShiftAmt)); - ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; - - // Mix it in. - Elt = ConstantExpr::getOr(Elt, Src); - } - Result.push_back(Elt); - } - return ConstantVector::get(Result); - } - - // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) - unsigned Ratio = NumDstElt/NumSrcElt; - unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); - - // Loop over each source value, expanding into multiple results. - for (unsigned i = 0; i != NumSrcElt; ++i) { - auto *Element = C->getAggregateElement(i); - - if (!Element) // Reject constantexpr elements. - return ConstantExpr::getBitCast(C, DestTy); - - if (isa<UndefValue>(Element)) { - // Correctly Propagate undef values. - Result.append(Ratio, UndefValue::get(DstEltTy)); - continue; - } - - auto *Src = dyn_cast<ConstantInt>(Element); - if (!Src) - return ConstantExpr::getBitCast(C, DestTy); - - unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); - for (unsigned j = 0; j != Ratio; ++j) { - // Shift the piece of the value into the right place, depending on - // endianness. - Constant *Elt = ConstantExpr::getLShr(Src, - ConstantInt::get(Src->getType(), ShiftAmt)); - ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; - - // Truncate the element to an integer with the same pointer size and - // convert the element back to a pointer using a inttoptr. - if (DstEltTy->isPointerTy()) { - IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize); - Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy); - Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy)); - continue; - } - - // Truncate and remember this piece. - Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); - } - } - - return ConstantVector::get(Result); -} - -} // end anonymous namespace - -/// If this constant is a constant offset from a global, return the global and -/// the constant. Because of constantexprs, this function is recursive. -bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, - APInt &Offset, const DataLayout &DL) { - // Trivial case, constant is the global. - if ((GV = dyn_cast<GlobalValue>(C))) { - unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); - Offset = APInt(BitWidth, 0); - return true; - } - - // Otherwise, if this isn't a constant expr, bail out. - auto *CE = dyn_cast<ConstantExpr>(C); - if (!CE) return false; - - // Look through ptr->int and ptr->ptr casts. - if (CE->getOpcode() == Instruction::PtrToInt || - CE->getOpcode() == Instruction::BitCast) - return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL); - - // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) - auto *GEP = dyn_cast<GEPOperator>(CE); - if (!GEP) - return false; - - unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); - APInt TmpOffset(BitWidth, 0); - - // If the base isn't a global+constant, we aren't either. - if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL)) - return false; - - // Otherwise, add any offset that our operands provide. - if (!GEP->accumulateConstantOffset(DL, TmpOffset)) - return false; - - Offset = TmpOffset; - return true; -} - -Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, - const DataLayout &DL) { - do { - Type *SrcTy = C->getType(); - - // If the type sizes are the same and a cast is legal, just directly - // cast the constant. - if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) { - Instruction::CastOps Cast = Instruction::BitCast; - // If we are going from a pointer to int or vice versa, we spell the cast - // differently. - if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) - Cast = Instruction::IntToPtr; - else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) - Cast = Instruction::PtrToInt; - - if (CastInst::castIsValid(Cast, C, DestTy)) - return ConstantExpr::getCast(Cast, C, DestTy); - } - - // If this isn't an aggregate type, there is nothing we can do to drill down - // and find a bitcastable constant. - if (!SrcTy->isAggregateType()) - return nullptr; - - // We're simulating a load through a pointer that was bitcast to point to - // a different type, so we can try to walk down through the initial - // elements of an aggregate to see if some part of the aggregate is - // castable to implement the "load" semantic model. - if (SrcTy->isStructTy()) { - // Struct types might have leading zero-length elements like [0 x i32], - // which are certainly not what we are looking for, so skip them. - unsigned Elem = 0; - Constant *ElemC; - do { - ElemC = C->getAggregateElement(Elem++); - } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()) == 0); - C = ElemC; - } else { - C = C->getAggregateElement(0u); - } - } while (C); - - return nullptr; -} - -namespace { - -/// Recursive helper to read bits out of global. C is the constant being copied -/// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy -/// results into and BytesLeft is the number of bytes left in -/// the CurPtr buffer. DL is the DataLayout. -bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, - unsigned BytesLeft, const DataLayout &DL) { - assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && - "Out of range access"); - - // If this element is zero or undefined, we can just return since *CurPtr is - // zero initialized. - if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) - return true; - - if (auto *CI = dyn_cast<ConstantInt>(C)) { - if (CI->getBitWidth() > 64 || - (CI->getBitWidth() & 7) != 0) - return false; - - uint64_t Val = CI->getZExtValue(); - unsigned IntBytes = unsigned(CI->getBitWidth()/8); - - for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { - int n = ByteOffset; - if (!DL.isLittleEndian()) - n = IntBytes - n - 1; - CurPtr[i] = (unsigned char)(Val >> (n * 8)); - ++ByteOffset; - } - return true; - } - - if (auto *CFP = dyn_cast<ConstantFP>(C)) { - if (CFP->getType()->isDoubleTy()) { - C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); - return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); - } - if (CFP->getType()->isFloatTy()){ - C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); - return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); - } - if (CFP->getType()->isHalfTy()){ - C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); - return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); - } - return false; - } - - if (auto *CS = dyn_cast<ConstantStruct>(C)) { - const StructLayout *SL = DL.getStructLayout(CS->getType()); - unsigned Index = SL->getElementContainingOffset(ByteOffset); - uint64_t CurEltOffset = SL->getElementOffset(Index); - ByteOffset -= CurEltOffset; - - while (true) { - // If the element access is to the element itself and not to tail padding, - // read the bytes from the element. - uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); - - if (ByteOffset < EltSize && - !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, - BytesLeft, DL)) - return false; - - ++Index; - - // Check to see if we read from the last struct element, if so we're done. - if (Index == CS->getType()->getNumElements()) - return true; - - // If we read all of the bytes we needed from this element we're done. - uint64_t NextEltOffset = SL->getElementOffset(Index); - - if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) - return true; - - // Move to the next element of the struct. - CurPtr += NextEltOffset - CurEltOffset - ByteOffset; - BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; - ByteOffset = 0; - CurEltOffset = NextEltOffset; - } - // not reached. - } - - if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || - isa<ConstantDataSequential>(C)) { - Type *EltTy = C->getType()->getSequentialElementType(); - uint64_t EltSize = DL.getTypeAllocSize(EltTy); - uint64_t Index = ByteOffset / EltSize; - uint64_t Offset = ByteOffset - Index * EltSize; - uint64_t NumElts; - if (auto *AT = dyn_cast<ArrayType>(C->getType())) - NumElts = AT->getNumElements(); - else - NumElts = C->getType()->getVectorNumElements(); - - for (; Index != NumElts; ++Index) { - if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, - BytesLeft, DL)) - return false; - - uint64_t BytesWritten = EltSize - Offset; - assert(BytesWritten <= EltSize && "Not indexing into this element?"); - if (BytesWritten >= BytesLeft) - return true; - - Offset = 0; - BytesLeft -= BytesWritten; - CurPtr += BytesWritten; - } - return true; - } - - if (auto *CE = dyn_cast<ConstantExpr>(C)) { - if (CE->getOpcode() == Instruction::IntToPtr && - CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { - return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, - BytesLeft, DL); - } - } - - // Otherwise, unknown initializer type. - return false; -} - -Constant *FoldReinterpretLoadFromConstPtr(Constant *C, Type *LoadTy, - const DataLayout &DL) { - auto *PTy = cast<PointerType>(C->getType()); - auto *IntType = dyn_cast<IntegerType>(LoadTy); - - // If this isn't an integer load we can't fold it directly. - if (!IntType) { - unsigned AS = PTy->getAddressSpace(); - - // If this is a float/double load, we can try folding it as an int32/64 load - // and then bitcast the result. This can be useful for union cases. Note - // that address spaces don't matter here since we're not going to result in - // an actual new load. - Type *MapTy; - if (LoadTy->isHalfTy()) - MapTy = Type::getInt16Ty(C->getContext()); - else if (LoadTy->isFloatTy()) - MapTy = Type::getInt32Ty(C->getContext()); - else if (LoadTy->isDoubleTy()) - MapTy = Type::getInt64Ty(C->getContext()); - else if (LoadTy->isVectorTy()) { - MapTy = PointerType::getIntNTy(C->getContext(), - DL.getTypeSizeInBits(LoadTy)); - } else - return nullptr; - - C = FoldBitCast(C, MapTy->getPointerTo(AS), DL); - if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, MapTy, DL)) - return FoldBitCast(Res, LoadTy, DL); - return nullptr; - } - - unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; - if (BytesLoaded > 32 || BytesLoaded == 0) - return nullptr; - - GlobalValue *GVal; - APInt OffsetAI; - if (!IsConstantOffsetFromGlobal(C, GVal, OffsetAI, DL)) - return nullptr; - - auto *GV = dyn_cast<GlobalVariable>(GVal); - if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || - !GV->getInitializer()->getType()->isSized()) - return nullptr; - - int64_t Offset = OffsetAI.getSExtValue(); - int64_t InitializerSize = DL.getTypeAllocSize(GV->getInitializer()->getType()); - - // If we're not accessing anything in this constant, the result is undefined. - if (Offset + BytesLoaded <= 0) - return UndefValue::get(IntType); - - // If we're not accessing anything in this constant, the result is undefined. - if (Offset >= InitializerSize) - return UndefValue::get(IntType); - - unsigned char RawBytes[32] = {0}; - unsigned char *CurPtr = RawBytes; - unsigned BytesLeft = BytesLoaded; - - // If we're loading off the beginning of the global, some bytes may be valid. - if (Offset < 0) { - CurPtr += -Offset; - BytesLeft += Offset; - Offset = 0; - } - - if (!ReadDataFromGlobal(GV->getInitializer(), Offset, CurPtr, BytesLeft, DL)) - return nullptr; - - APInt ResultVal = APInt(IntType->getBitWidth(), 0); - if (DL.isLittleEndian()) { - ResultVal = RawBytes[BytesLoaded - 1]; - for (unsigned i = 1; i != BytesLoaded; ++i) { - ResultVal <<= 8; - ResultVal |= RawBytes[BytesLoaded - 1 - i]; - } - } else { - ResultVal = RawBytes[0]; - for (unsigned i = 1; i != BytesLoaded; ++i) { - ResultVal <<= 8; - ResultVal |= RawBytes[i]; - } - } - - return ConstantInt::get(IntType->getContext(), ResultVal); -} - -Constant *ConstantFoldLoadThroughBitcastExpr(ConstantExpr *CE, Type *DestTy, - const DataLayout &DL) { - auto *SrcPtr = CE->getOperand(0); - auto *SrcPtrTy = dyn_cast<PointerType>(SrcPtr->getType()); - if (!SrcPtrTy) - return nullptr; - Type *SrcTy = SrcPtrTy->getPointerElementType(); - - Constant *C = ConstantFoldLoadFromConstPtr(SrcPtr, SrcTy, DL); - if (!C) - return nullptr; - - return llvm::ConstantFoldLoadThroughBitcast(C, DestTy, DL); -} - -} // end anonymous namespace - -Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, - const DataLayout &DL) { - // First, try the easy cases: - if (auto *GV = dyn_cast<GlobalVariable>(C)) - if (GV->isConstant() && GV->hasDefinitiveInitializer()) - return GV->getInitializer(); - - if (auto *GA = dyn_cast<GlobalAlias>(C)) - if (GA->getAliasee() && !GA->isInterposable()) - return ConstantFoldLoadFromConstPtr(GA->getAliasee(), Ty, DL); - - // If the loaded value isn't a constant expr, we can't handle it. - auto *CE = dyn_cast<ConstantExpr>(C); - if (!CE) - return nullptr; - - if (CE->getOpcode() == Instruction::GetElementPtr) { - if (auto *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) { - if (GV->isConstant() && GV->hasDefinitiveInitializer()) { - if (Constant *V = - ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE)) - return V; - } - } - } - - if (CE->getOpcode() == Instruction::BitCast) - if (Constant *LoadedC = ConstantFoldLoadThroughBitcastExpr(CE, Ty, DL)) - return LoadedC; - - // Instead of loading constant c string, use corresponding integer value - // directly if string length is small enough. - StringRef Str; - if (getConstantStringInfo(CE, Str) && !Str.empty()) { - size_t StrLen = Str.size(); - unsigned NumBits = Ty->getPrimitiveSizeInBits(); - // Replace load with immediate integer if the result is an integer or fp - // value. - if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 && - (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) { - APInt StrVal(NumBits, 0); - APInt SingleChar(NumBits, 0); - if (DL.isLittleEndian()) { - for (unsigned char C : reverse(Str.bytes())) { - SingleChar = static_cast<uint64_t>(C); - StrVal = (StrVal << 8) | SingleChar; - } - } else { - for (unsigned char C : Str.bytes()) { - SingleChar = static_cast<uint64_t>(C); - StrVal = (StrVal << 8) | SingleChar; - } - // Append NULL at the end. - SingleChar = 0; - StrVal = (StrVal << 8) | SingleChar; - } - - Constant *Res = ConstantInt::get(CE->getContext(), StrVal); - if (Ty->isFloatingPointTy()) - Res = ConstantExpr::getBitCast(Res, Ty); - return Res; - } - } - - // If this load comes from anywhere in a constant global, and if the global - // is all undef or zero, we know what it loads. - if (auto *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) { - if (GV->isConstant() && GV->hasDefinitiveInitializer()) { - if (GV->getInitializer()->isNullValue()) - return Constant::getNullValue(Ty); - if (isa<UndefValue>(GV->getInitializer())) - return UndefValue::get(Ty); - } - } - - // Try hard to fold loads from bitcasted strange and non-type-safe things. - return FoldReinterpretLoadFromConstPtr(CE, Ty, DL); -} - -namespace { - -Constant *ConstantFoldLoadInst(const LoadInst *LI, const DataLayout &DL) { - if (LI->isVolatile()) return nullptr; - - if (auto *C = dyn_cast<Constant>(LI->getOperand(0))) - return ConstantFoldLoadFromConstPtr(C, LI->getType(), DL); - - return nullptr; -} - -/// One of Op0/Op1 is a constant expression. -/// Attempt to symbolically evaluate the result of a binary operator merging -/// these together. If target data info is available, it is provided as DL, -/// otherwise DL is null. -Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, - const DataLayout &DL) { - // SROA - - // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. - // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute - // bits. - - if (Opc == Instruction::And) { - KnownBits Known0 = computeKnownBits(Op0, DL); - KnownBits Known1 = computeKnownBits(Op1, DL); - if ((Known1.One | Known0.Zero).isAllOnesValue()) { - // All the bits of Op0 that the 'and' could be masking are already zero. - return Op0; - } - if ((Known0.One | Known1.Zero).isAllOnesValue()) { - // All the bits of Op1 that the 'and' could be masking are already zero. - return Op1; - } - - Known0.Zero |= Known1.Zero; - Known0.One &= Known1.One; - if (Known0.isConstant()) - return ConstantInt::get(Op0->getType(), Known0.getConstant()); - } - - // If the constant expr is something like &A[123] - &A[4].f, fold this into a - // constant. This happens frequently when iterating over a global array. - if (Opc == Instruction::Sub) { - GlobalValue *GV1, *GV2; - APInt Offs1, Offs2; - - if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) - if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { - unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); - - // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. - // PtrToInt may change the bitwidth so we have convert to the right size - // first. - return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - - Offs2.zextOrTrunc(OpSize)); - } - } - - return nullptr; -} - -/// If array indices are not pointer-sized integers, explicitly cast them so -/// that they aren't implicitly casted by the getelementptr. -Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, - Type *ResultTy, Optional<unsigned> InRangeIndex, - const DataLayout &DL, const TargetLibraryInfo *TLI) { - Type *IntPtrTy = DL.getIntPtrType(ResultTy); - Type *IntPtrScalarTy = IntPtrTy->getScalarType(); - - bool Any = false; - SmallVector<Constant*, 32> NewIdxs; - for (unsigned i = 1, e = Ops.size(); i != e; ++i) { - if ((i == 1 || - !isa<StructType>(GetElementPtrInst::getIndexedType( - SrcElemTy, Ops.slice(1, i - 1)))) && - Ops[i]->getType()->getScalarType() != IntPtrScalarTy) { - Any = true; - Type *NewType = Ops[i]->getType()->isVectorTy() - ? IntPtrTy - : IntPtrTy->getScalarType(); - NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i], - true, - NewType, - true), - Ops[i], NewType)); - } else - NewIdxs.push_back(Ops[i]); - } - - if (!Any) - return nullptr; - - Constant *C = ConstantExpr::getGetElementPtr( - SrcElemTy, Ops[0], NewIdxs, /*InBounds=*/false, InRangeIndex); - if (Constant *Folded = ConstantFoldConstant(C, DL, TLI)) - C = Folded; - - return C; -} - -/// Strip the pointer casts, but preserve the address space information. -Constant* StripPtrCastKeepAS(Constant* Ptr, Type *&ElemTy) { - assert(Ptr->getType()->isPointerTy() && "Not a pointer type"); - auto *OldPtrTy = cast<PointerType>(Ptr->getType()); - Ptr = Ptr->stripPointerCasts(); - auto *NewPtrTy = cast<PointerType>(Ptr->getType()); - - ElemTy = NewPtrTy->getPointerElementType(); - - // Preserve the address space number of the pointer. - if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) { - NewPtrTy = ElemTy->getPointerTo(OldPtrTy->getAddressSpace()); - Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy); - } - return Ptr; -} - -/// If we can symbolically evaluate the GEP constant expression, do so. -Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, - ArrayRef<Constant *> Ops, - const DataLayout &DL, - const TargetLibraryInfo *TLI) { - const GEPOperator *InnermostGEP = GEP; - bool InBounds = GEP->isInBounds(); - - Type *SrcElemTy = GEP->getSourceElementType(); - Type *ResElemTy = GEP->getResultElementType(); - Type *ResTy = GEP->getType(); - if (!SrcElemTy->isSized()) - return nullptr; - - if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, - GEP->getInRangeIndex(), DL, TLI)) - return C; - - Constant *Ptr = Ops[0]; - if (!Ptr->getType()->isPointerTy()) - return nullptr; - - Type *IntPtrTy = DL.getIntPtrType(Ptr->getType()); - - // If this is a constant expr gep that is effectively computing an - // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' - for (unsigned i = 1, e = Ops.size(); i != e; ++i) - if (!isa<ConstantInt>(Ops[i])) { - - // If this is "gep i8* Ptr, (sub 0, V)", fold this as: - // "inttoptr (sub (ptrtoint Ptr), V)" - if (Ops.size() == 2 && ResElemTy->isIntegerTy(8)) { - auto *CE = dyn_cast<ConstantExpr>(Ops[1]); - assert((!CE || CE->getType() == IntPtrTy) && - "CastGEPIndices didn't canonicalize index types!"); - if (CE && CE->getOpcode() == Instruction::Sub && - CE->getOperand(0)->isNullValue()) { - Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType()); - Res = ConstantExpr::getSub(Res, CE->getOperand(1)); - Res = ConstantExpr::getIntToPtr(Res, ResTy); - if (auto *FoldedRes = ConstantFoldConstant(Res, DL, TLI)) - Res = FoldedRes; - return Res; - } - } - return nullptr; - } - - unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy); - APInt Offset = - APInt(BitWidth, - DL.getIndexedOffsetInType( - SrcElemTy, - makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1))); - Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); - - // If this is a GEP of a GEP, fold it all into a single GEP. - while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { - InnermostGEP = GEP; - InBounds &= GEP->isInBounds(); - - SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end()); - - // Do not try the incorporate the sub-GEP if some index is not a number. - bool AllConstantInt = true; - for (Value *NestedOp : NestedOps) - if (!isa<ConstantInt>(NestedOp)) { - AllConstantInt = false; - break; - } - if (!AllConstantInt) - break; - - Ptr = cast<Constant>(GEP->getOperand(0)); - SrcElemTy = GEP->getSourceElementType(); - Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); - Ptr = StripPtrCastKeepAS(Ptr, SrcElemTy); - } - - // If the base value for this address is a literal integer value, fold the - // getelementptr to the resulting integer value casted to the pointer type. - APInt BasePtr(BitWidth, 0); - if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { - if (CE->getOpcode() == Instruction::IntToPtr) { - if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) - BasePtr = Base->getValue().zextOrTrunc(BitWidth); - } - } - - auto *PTy = cast<PointerType>(Ptr->getType()); - if ((Ptr->isNullValue() || BasePtr != 0) && - !DL.isNonIntegralPointerType(PTy)) { - Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); - return ConstantExpr::getIntToPtr(C, ResTy); - } - - // Otherwise form a regular getelementptr. Recompute the indices so that - // we eliminate over-indexing of the notional static type array bounds. - // This makes it easy to determine if the getelementptr is "inbounds". - // Also, this helps GlobalOpt do SROA on GlobalVariables. - Type *Ty = PTy; - SmallVector<Constant *, 32> NewIdxs; - - do { - if (!Ty->isStructTy()) { - if (Ty->isPointerTy()) { - // The only pointer indexing we'll do is on the first index of the GEP. - if (!NewIdxs.empty()) - break; - - Ty = SrcElemTy; - - // Only handle pointers to sized types, not pointers to functions. - if (!Ty->isSized()) - return nullptr; - } else if (auto *ATy = dyn_cast<SequentialType>(Ty)) { - Ty = ATy->getElementType(); - } else { - // We've reached some non-indexable type. - break; - } - - // Determine which element of the array the offset points into. - APInt ElemSize(BitWidth, DL.getTypeAllocSize(Ty)); - if (ElemSize == 0) { - // The element size is 0. This may be [0 x Ty]*, so just use a zero - // index for this level and proceed to the next level to see if it can - // accommodate the offset. - NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0)); - } else { - // The element size is non-zero divide the offset by the element - // size (rounding down), to compute the index at this level. - bool Overflow; - APInt NewIdx = Offset.sdiv_ov(ElemSize, Overflow); - if (Overflow) - break; - Offset -= NewIdx * ElemSize; - NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx)); - } - } else { - auto *STy = cast<StructType>(Ty); - // If we end up with an offset that isn't valid for this struct type, we - // can't re-form this GEP in a regular form, so bail out. The pointer - // operand likely went through casts that are necessary to make the GEP - // sensible. - const StructLayout &SL = *DL.getStructLayout(STy); - if (Offset.isNegative() || Offset.uge(SL.getSizeInBytes())) - break; - - // Determine which field of the struct the offset points into. The - // getZExtValue is fine as we've already ensured that the offset is - // within the range representable by the StructLayout API. - unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); - NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), - ElIdx)); - Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); - Ty = STy->getTypeAtIndex(ElIdx); - } - } while (Ty != ResElemTy); - - // If we haven't used up the entire offset by descending the static - // type, then the offset is pointing into the middle of an indivisible - // member, so we can't simplify it. - if (Offset != 0) - return nullptr; - - // Preserve the inrange index from the innermost GEP if possible. We must - // have calculated the same indices up to and including the inrange index. - Optional<unsigned> InRangeIndex; - if (Optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) - if (SrcElemTy == InnermostGEP->getSourceElementType() && - NewIdxs.size() > *LastIRIndex) { - InRangeIndex = LastIRIndex; - for (unsigned I = 0; I <= *LastIRIndex; ++I) - if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) - return nullptr; - } - - // Create a GEP. - Constant *C = ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, - InBounds, InRangeIndex); - assert(C->getType()->getPointerElementType() == Ty && - "Computed GetElementPtr has unexpected type!"); - - // If we ended up indexing a member with a type that doesn't match - // the type of what the original indices indexed, add a cast. - if (Ty != ResElemTy) - C = FoldBitCast(C, ResTy, DL); - - return C; -} - -/// Attempt to constant fold an instruction with the -/// specified opcode and operands. If successful, the constant result is -/// returned, if not, null is returned. Note that this function can fail when -/// attempting to fold instructions like loads and stores, which have no -/// constant expression form. -Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, - ArrayRef<Constant *> Ops, - const DataLayout &DL, - const TargetLibraryInfo *TLI) { - Type *DestTy = InstOrCE->getType(); - - if (Instruction::isUnaryOp(Opcode)) - return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); - - if (Instruction::isBinaryOp(Opcode)) - return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); - - if (Instruction::isCast(Opcode)) - return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); - - if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { - if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) - return C; - - return ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), Ops[0], - Ops.slice(1), GEP->isInBounds(), - GEP->getInRangeIndex()); - } - - if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) - return CE->getWithOperands(Ops); - - switch (Opcode) { - default: return nullptr; - case Instruction::ICmp: - case Instruction::FCmp: llvm_unreachable("Invalid for compares"); - case Instruction::Call: - if (auto *F = dyn_cast<Function>(Ops.back())) { - const auto *Call = cast<CallBase>(InstOrCE); - if (canConstantFoldCallTo(Call, F)) - return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); - } - return nullptr; - case Instruction::Select: - return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); - case Instruction::ExtractElement: - return ConstantExpr::getExtractElement(Ops[0], Ops[1]); - case Instruction::ExtractValue: - return ConstantExpr::getExtractValue( - Ops[0], dyn_cast<ExtractValueInst>(InstOrCE)->getIndices()); - case Instruction::InsertElement: - return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); - case Instruction::ShuffleVector: - return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); - } -} - -} // end anonymous namespace - -//===----------------------------------------------------------------------===// -// Constant Folding public APIs -//===----------------------------------------------------------------------===// - -namespace { - -Constant * -ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, - const TargetLibraryInfo *TLI, - SmallDenseMap<Constant *, Constant *> &FoldedOps) { - if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) - return nullptr; - - SmallVector<Constant *, 8> Ops; - for (const Use &NewU : C->operands()) { - auto *NewC = cast<Constant>(&NewU); - // Recursively fold the ConstantExpr's operands. If we have already folded - // a ConstantExpr, we don't have to process it again. - if (isa<ConstantVector>(NewC) || isa<ConstantExpr>(NewC)) { - auto It = FoldedOps.find(NewC); - if (It == FoldedOps.end()) { - if (auto *FoldedC = - ConstantFoldConstantImpl(NewC, DL, TLI, FoldedOps)) { - FoldedOps.insert({NewC, FoldedC}); - NewC = FoldedC; - } else { - FoldedOps.insert({NewC, NewC}); - } - } else { - NewC = It->second; - } - } - Ops.push_back(NewC); - } - - if (auto *CE = dyn_cast<ConstantExpr>(C)) { - if (CE->isCompare()) - return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], - DL, TLI); - - return ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI); - } - - assert(isa<ConstantVector>(C)); - return ConstantVector::get(Ops); -} - -} // end anonymous namespace - -Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, - const TargetLibraryInfo *TLI) { - // Handle PHI nodes quickly here... - if (auto *PN = dyn_cast<PHINode>(I)) { - Constant *CommonValue = nullptr; - - SmallDenseMap<Constant *, Constant *> FoldedOps; - for (Value *Incoming : PN->incoming_values()) { - // If the incoming value is undef then skip it. Note that while we could - // skip the value if it is equal to the phi node itself we choose not to - // because that would break the rule that constant folding only applies if - // all operands are constants. - if (isa<UndefValue>(Incoming)) - continue; - // If the incoming value is not a constant, then give up. - auto *C = dyn_cast<Constant>(Incoming); - if (!C) - return nullptr; - // Fold the PHI's operands. - if (auto *FoldedC = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps)) - C = FoldedC; - // If the incoming value is a different constant to - // the one we saw previously, then give up. - if (CommonValue && C != CommonValue) - return nullptr; - CommonValue = C; - } - - // If we reach here, all incoming values are the same constant or undef. - return CommonValue ? CommonValue : UndefValue::get(PN->getType()); - } - - // Scan the operand list, checking to see if they are all constants, if so, - // hand off to ConstantFoldInstOperandsImpl. - if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) - return nullptr; - - SmallDenseMap<Constant *, Constant *> FoldedOps; - SmallVector<Constant *, 8> Ops; - for (const Use &OpU : I->operands()) { - auto *Op = cast<Constant>(&OpU); - // Fold the Instruction's operands. - if (auto *FoldedOp = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps)) - Op = FoldedOp; - - Ops.push_back(Op); - } - - if (const auto *CI = dyn_cast<CmpInst>(I)) - return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1], - DL, TLI); - - if (const auto *LI = dyn_cast<LoadInst>(I)) - return ConstantFoldLoadInst(LI, DL); - - if (auto *IVI = dyn_cast<InsertValueInst>(I)) { - return ConstantExpr::getInsertValue( - cast<Constant>(IVI->getAggregateOperand()), - cast<Constant>(IVI->getInsertedValueOperand()), - IVI->getIndices()); - } - - if (auto *EVI = dyn_cast<ExtractValueInst>(I)) { - return ConstantExpr::getExtractValue( - cast<Constant>(EVI->getAggregateOperand()), - EVI->getIndices()); - } - - return ConstantFoldInstOperands(I, Ops, DL, TLI); -} - -Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, - const TargetLibraryInfo *TLI) { - SmallDenseMap<Constant *, Constant *> FoldedOps; - return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); -} - -Constant *llvm::ConstantFoldInstOperands(Instruction *I, - ArrayRef<Constant *> Ops, - const DataLayout &DL, - const TargetLibraryInfo *TLI) { - return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); -} - -Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, - Constant *Ops0, Constant *Ops1, - const DataLayout &DL, - const TargetLibraryInfo *TLI) { - // fold: icmp (inttoptr x), null -> icmp x, 0 - // fold: icmp null, (inttoptr x) -> icmp 0, x - // fold: icmp (ptrtoint x), 0 -> icmp x, null - // fold: icmp 0, (ptrtoint x) -> icmp null, x - // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y - // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y - // - // FIXME: The following comment is out of data and the DataLayout is here now. - // ConstantExpr::getCompare cannot do this, because it doesn't have DL - // around to know if bit truncation is happening. - if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { - if (Ops1->isNullValue()) { - if (CE0->getOpcode() == Instruction::IntToPtr) { - Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); - // Convert the integer value to the right size to ensure we get the - // proper extension or truncation. - Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), - IntPtrTy, false); - Constant *Null = Constant::getNullValue(C->getType()); - return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); - } - - // Only do this transformation if the int is intptrty in size, otherwise - // there is a truncation or extension that we aren't modeling. - if (CE0->getOpcode() == Instruction::PtrToInt) { - Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); - if (CE0->getType() == IntPtrTy) { - Constant *C = CE0->getOperand(0); - Constant *Null = Constant::getNullValue(C->getType()); - return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); - } - } - } - - if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { - if (CE0->getOpcode() == CE1->getOpcode()) { - if (CE0->getOpcode() == Instruction::IntToPtr) { - Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); - - // Convert the integer value to the right size to ensure we get the - // proper extension or truncation. - Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), - IntPtrTy, false); - Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), - IntPtrTy, false); - return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); - } - - // Only do this transformation if the int is intptrty in size, otherwise - // there is a truncation or extension that we aren't modeling. - if (CE0->getOpcode() == Instruction::PtrToInt) { - Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); - if (CE0->getType() == IntPtrTy && - CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { - return ConstantFoldCompareInstOperands( - Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); - } - } - } - } - - // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0) - // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0) - if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) && - CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) { - Constant *LHS = ConstantFoldCompareInstOperands( - Predicate, CE0->getOperand(0), Ops1, DL, TLI); - Constant *RHS = ConstantFoldCompareInstOperands( - Predicate, CE0->getOperand(1), Ops1, DL, TLI); - unsigned OpC = - Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or; - return ConstantFoldBinaryOpOperands(OpC, LHS, RHS, DL); - } - } else if (isa<ConstantExpr>(Ops1)) { - // If RHS is a constant expression, but the left side isn't, swap the - // operands and try again. - Predicate = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)Predicate); - return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); - } - - return ConstantExpr::getCompare(Predicate, Ops0, Ops1); -} - -Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, - const DataLayout &DL) { - assert(Instruction::isUnaryOp(Opcode)); - - return ConstantExpr::get(Opcode, Op); -} - -Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, - Constant *RHS, - const DataLayout &DL) { - assert(Instruction::isBinaryOp(Opcode)); - if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) - if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) - return C; - - return ConstantExpr::get(Opcode, LHS, RHS); -} - -Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, - Type *DestTy, const DataLayout &DL) { - assert(Instruction::isCast(Opcode)); - switch (Opcode) { - default: - llvm_unreachable("Missing case"); - case Instruction::PtrToInt: - // If the input is a inttoptr, eliminate the pair. This requires knowing - // the width of a pointer, so it can't be done in ConstantExpr::getCast. - if (auto *CE = dyn_cast<ConstantExpr>(C)) { - if (CE->getOpcode() == Instruction::IntToPtr) { - Constant *Input = CE->getOperand(0); - unsigned InWidth = Input->getType()->getScalarSizeInBits(); - unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType()); - if (PtrWidth < InWidth) { - Constant *Mask = - ConstantInt::get(CE->getContext(), - APInt::getLowBitsSet(InWidth, PtrWidth)); - Input = ConstantExpr::getAnd(Input, Mask); - } - // Do a zext or trunc to get to the dest size. - return ConstantExpr::getIntegerCast(Input, DestTy, false); - } - } - return ConstantExpr::getCast(Opcode, C, DestTy); - case Instruction::IntToPtr: - // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if - // the int size is >= the ptr size and the address spaces are the same. - // This requires knowing the width of a pointer, so it can't be done in - // ConstantExpr::getCast. - if (auto *CE = dyn_cast<ConstantExpr>(C)) { - if (CE->getOpcode() == Instruction::PtrToInt) { - Constant *SrcPtr = CE->getOperand(0); - unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); - unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); - - if (MidIntSize >= SrcPtrSize) { - unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); - if (SrcAS == DestTy->getPointerAddressSpace()) - return FoldBitCast(CE->getOperand(0), DestTy, DL); - } - } - } - - return ConstantExpr::getCast(Opcode, C, DestTy); - case Instruction::Trunc: - case Instruction::ZExt: - case Instruction::SExt: - case Instruction::FPTrunc: - case Instruction::FPExt: - case Instruction::UIToFP: - case Instruction::SIToFP: - case Instruction::FPToUI: - case Instruction::FPToSI: - case Instruction::AddrSpaceCast: - return ConstantExpr::getCast(Opcode, C, DestTy); - case Instruction::BitCast: - return FoldBitCast(C, DestTy, DL); - } -} - -Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C, - ConstantExpr *CE) { - if (!CE->getOperand(1)->isNullValue()) - return nullptr; // Do not allow stepping over the value! - - // Loop over all of the operands, tracking down which value we are - // addressing. - for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) { - C = C->getAggregateElement(CE->getOperand(i)); - if (!C) - return nullptr; - } - return C; -} - -Constant * -llvm::ConstantFoldLoadThroughGEPIndices(Constant *C, - ArrayRef<Constant *> Indices) { - // Loop over all of the operands, tracking down which value we are - // addressing. - for (Constant *Index : Indices) { - C = C->getAggregateElement(Index); - if (!C) - return nullptr; - } - return C; -} - -//===----------------------------------------------------------------------===// -// Constant Folding for Calls -// - -bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { - if (Call->isNoBuiltin() || Call->isStrictFP()) - return false; - switch (F->getIntrinsicID()) { - case Intrinsic::fabs: - case Intrinsic::minnum: - case Intrinsic::maxnum: - case Intrinsic::minimum: - case Intrinsic::maximum: - case Intrinsic::log: - case Intrinsic::log2: - case Intrinsic::log10: - case Intrinsic::exp: - case Intrinsic::exp2: - case Intrinsic::floor: - case Intrinsic::ceil: - case Intrinsic::sqrt: - case Intrinsic::sin: - case Intrinsic::cos: - case Intrinsic::trunc: - case Intrinsic::rint: - case Intrinsic::nearbyint: - case Intrinsic::pow: - case Intrinsic::powi: - case Intrinsic::bswap: - case Intrinsic::ctpop: - case Intrinsic::ctlz: - case Intrinsic::cttz: - case Intrinsic::fshl: - case Intrinsic::fshr: - case Intrinsic::fma: - case Intrinsic::fmuladd: - case Intrinsic::copysign: - case Intrinsic::launder_invariant_group: - case Intrinsic::strip_invariant_group: - case Intrinsic::round: - case Intrinsic::masked_load: - case Intrinsic::sadd_with_overflow: - case Intrinsic::uadd_with_overflow: - case Intrinsic::ssub_with_overflow: - case Intrinsic::usub_with_overflow: - case Intrinsic::smul_with_overflow: - case Intrinsic::umul_with_overflow: - case Intrinsic::sadd_sat: - case Intrinsic::uadd_sat: - case Intrinsic::ssub_sat: - case Intrinsic::usub_sat: - case Intrinsic::smul_fix: - case Intrinsic::smul_fix_sat: - case Intrinsic::convert_from_fp16: - case Intrinsic::convert_to_fp16: - case Intrinsic::bitreverse: - case Intrinsic::x86_sse_cvtss2si: - case Intrinsic::x86_sse_cvtss2si64: - case Intrinsic::x86_sse_cvttss2si: - case Intrinsic::x86_sse_cvttss2si64: - case Intrinsic::x86_sse2_cvtsd2si: - case Intrinsic::x86_sse2_cvtsd2si64: - case Intrinsic::x86_sse2_cvttsd2si: - case Intrinsic::x86_sse2_cvttsd2si64: - case Intrinsic::x86_avx512_vcvtss2si32: - case Intrinsic::x86_avx512_vcvtss2si64: - case Intrinsic::x86_avx512_cvttss2si: - case Intrinsic::x86_avx512_cvttss2si64: - case Intrinsic::x86_avx512_vcvtsd2si32: - case Intrinsic::x86_avx512_vcvtsd2si64: - case Intrinsic::x86_avx512_cvttsd2si: - case Intrinsic::x86_avx512_cvttsd2si64: - case Intrinsic::x86_avx512_vcvtss2usi32: - case Intrinsic::x86_avx512_vcvtss2usi64: - case Intrinsic::x86_avx512_cvttss2usi: - case Intrinsic::x86_avx512_cvttss2usi64: - case Intrinsic::x86_avx512_vcvtsd2usi32: - case Intrinsic::x86_avx512_vcvtsd2usi64: - case Intrinsic::x86_avx512_cvttsd2usi: - case Intrinsic::x86_avx512_cvttsd2usi64: - case Intrinsic::is_constant: - return true; - default: - return false; - case Intrinsic::not_intrinsic: break; - } - - if (!F->hasName()) - return false; - StringRef Name = F->getName(); - - // In these cases, the check of the length is required. We don't want to - // return true for a name like "cos\0blah" which strcmp would return equal to - // "cos", but has length 8. - switch (Name[0]) { - default: - return false; - case 'a': - return Name == "acos" || Name == "asin" || Name == "atan" || - Name == "atan2" || Name == "acosf" || Name == "asinf" || - Name == "atanf" || Name == "atan2f"; - case 'c': - return Name == "ceil" || Name == "cos" || Name == "cosh" || - Name == "ceilf" || Name == "cosf" || Name == "coshf"; - case 'e': - return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f"; - case 'f': - return Name == "fabs" || Name == "floor" || Name == "fmod" || - Name == "fabsf" || Name == "floorf" || Name == "fmodf"; - case 'l': - return Name == "log" || Name == "log10" || Name == "logf" || - Name == "log10f"; - case 'p': - return Name == "pow" || Name == "powf"; - case 'r': - return Name == "round" || Name == "roundf"; - case 's': - return Name == "sin" || Name == "sinh" || Name == "sqrt" || - Name == "sinf" || Name == "sinhf" || Name == "sqrtf"; - case 't': - return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf"; - case '_': - - // Check for various function names that get used for the math functions - // when the header files are preprocessed with the macro - // __FINITE_MATH_ONLY__ enabled. - // The '12' here is the length of the shortest name that can match. - // We need to check the size before looking at Name[1] and Name[2] - // so we may as well check a limit that will eliminate mismatches. - if (Name.size() < 12 || Name[1] != '_') - return false; - switch (Name[2]) { - default: - return false; - case 'a': - return Name == "__acos_finite" || Name == "__acosf_finite" || - Name == "__asin_finite" || Name == "__asinf_finite" || - Name == "__atan2_finite" || Name == "__atan2f_finite"; - case 'c': - return Name == "__cosh_finite" || Name == "__coshf_finite"; - case 'e': - return Name == "__exp_finite" || Name == "__expf_finite" || - Name == "__exp2_finite" || Name == "__exp2f_finite"; - case 'l': - return Name == "__log_finite" || Name == "__logf_finite" || - Name == "__log10_finite" || Name == "__log10f_finite"; - case 'p': - return Name == "__pow_finite" || Name == "__powf_finite"; - case 's': - return Name == "__sinh_finite" || Name == "__sinhf_finite"; - } - } -} - -namespace { - -Constant *GetConstantFoldFPValue(double V, Type *Ty) { - if (Ty->isHalfTy() || Ty->isFloatTy()) { - APFloat APF(V); - bool unused; - APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); - return ConstantFP::get(Ty->getContext(), APF); - } - if (Ty->isDoubleTy()) - return ConstantFP::get(Ty->getContext(), APFloat(V)); - llvm_unreachable("Can only constant fold half/float/double"); -} - -/// Clear the floating-point exception state. -inline void llvm_fenv_clearexcept() { -#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT - feclearexcept(FE_ALL_EXCEPT); -#endif - errno = 0; -} - -/// Test if a floating-point exception was raised. -inline bool llvm_fenv_testexcept() { - int errno_val = errno; - if (errno_val == ERANGE || errno_val == EDOM) - return true; -#if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT - if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) - return true; -#endif - return false; -} - -Constant *ConstantFoldFP(double (*NativeFP)(double), double V, Type *Ty) { - llvm_fenv_clearexcept(); - V = NativeFP(V); - if (llvm_fenv_testexcept()) { - llvm_fenv_clearexcept(); - return nullptr; - } - - return GetConstantFoldFPValue(V, Ty); -} - -Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), double V, - double W, Type *Ty) { - llvm_fenv_clearexcept(); - V = NativeFP(V, W); - if (llvm_fenv_testexcept()) { - llvm_fenv_clearexcept(); - return nullptr; - } - - return GetConstantFoldFPValue(V, Ty); -} - -/// Attempt to fold an SSE floating point to integer conversion of a constant -/// floating point. If roundTowardZero is false, the default IEEE rounding is -/// used (toward nearest, ties to even). This matches the behavior of the -/// non-truncating SSE instructions in the default rounding mode. The desired -/// integer type Ty is used to select how many bits are available for the -/// result. Returns null if the conversion cannot be performed, otherwise -/// returns the Constant value resulting from the conversion. -Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, - Type *Ty, bool IsSigned) { - // All of these conversion intrinsics form an integer of at most 64bits. - unsigned ResultWidth = Ty->getIntegerBitWidth(); - assert(ResultWidth <= 64 && - "Can only constant fold conversions to 64 and 32 bit ints"); - - uint64_t UIntVal; - bool isExact = false; - APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero - : APFloat::rmNearestTiesToEven; - APFloat::opStatus status = - Val.convertToInteger(makeMutableArrayRef(UIntVal), ResultWidth, - IsSigned, mode, &isExact); - if (status != APFloat::opOK && - (!roundTowardZero || status != APFloat::opInexact)) - return nullptr; - return ConstantInt::get(Ty, UIntVal, IsSigned); -} - -double getValueAsDouble(ConstantFP *Op) { - Type *Ty = Op->getType(); - - if (Ty->isFloatTy()) - return Op->getValueAPF().convertToFloat(); - - if (Ty->isDoubleTy()) - return Op->getValueAPF().convertToDouble(); - - bool unused; - APFloat APF = Op->getValueAPF(); - APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); - return APF.convertToDouble(); -} - -static bool isManifestConstant(const Constant *c) { - if (isa<ConstantData>(c)) { - return true; - } else if (isa<ConstantAggregate>(c) || isa<ConstantExpr>(c)) { - for (const Value *subc : c->operand_values()) { - if (!isManifestConstant(cast<Constant>(subc))) - return false; - } - return true; - } - return false; -} - -static bool getConstIntOrUndef(Value *Op, const APInt *&C) { - if (auto *CI = dyn_cast<ConstantInt>(Op)) { - C = &CI->getValue(); - return true; - } - if (isa<UndefValue>(Op)) { - C = nullptr; - return true; - } - return false; -} - -static Constant *ConstantFoldScalarCall1(StringRef Name, - Intrinsic::ID IntrinsicID, - Type *Ty, - ArrayRef<Constant *> Operands, - const TargetLibraryInfo *TLI, - const CallBase *Call) { - assert(Operands.size() == 1 && "Wrong number of operands."); - - if (IntrinsicID == Intrinsic::is_constant) { - // We know we have a "Constant" argument. But we want to only - // return true for manifest constants, not those that depend on - // constants with unknowable values, e.g. GlobalValue or BlockAddress. - if (isManifestConstant(Operands[0])) - return ConstantInt::getTrue(Ty->getContext()); - return nullptr; - } - if (isa<UndefValue>(Operands[0])) { - // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. - // ctpop() is between 0 and bitwidth, pick 0 for undef. - if (IntrinsicID == Intrinsic::cos || - IntrinsicID == Intrinsic::ctpop) - return Constant::getNullValue(Ty); - if (IntrinsicID == Intrinsic::bswap || - IntrinsicID == Intrinsic::bitreverse || - IntrinsicID == Intrinsic::launder_invariant_group || - IntrinsicID == Intrinsic::strip_invariant_group) - return Operands[0]; - } - - if (isa<ConstantPointerNull>(Operands[0])) { - // launder(null) == null == strip(null) iff in addrspace 0 - if (IntrinsicID == Intrinsic::launder_invariant_group || - IntrinsicID == Intrinsic::strip_invariant_group) { - // If instruction is not yet put in a basic block (e.g. when cloning - // a function during inlining), Call's caller may not be available. - // So check Call's BB first before querying Call->getCaller. - const Function *Caller = - Call->getParent() ? Call->getCaller() : nullptr; - if (Caller && - !NullPointerIsDefined( - Caller, Operands[0]->getType()->getPointerAddressSpace())) { - return Operands[0]; - } - return nullptr; - } - } - - if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { - if (IntrinsicID == Intrinsic::convert_to_fp16) { - APFloat Val(Op->getValueAPF()); - - bool lost = false; - Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); - - return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); - } - - if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) - return nullptr; - - if (IntrinsicID == Intrinsic::round) { - APFloat V = Op->getValueAPF(); - V.roundToIntegral(APFloat::rmNearestTiesToAway); - return ConstantFP::get(Ty->getContext(), V); - } - - if (IntrinsicID == Intrinsic::floor) { - APFloat V = Op->getValueAPF(); - V.roundToIntegral(APFloat::rmTowardNegative); - return ConstantFP::get(Ty->getContext(), V); - } - - if (IntrinsicID == Intrinsic::ceil) { - APFloat V = Op->getValueAPF(); - V.roundToIntegral(APFloat::rmTowardPositive); - return ConstantFP::get(Ty->getContext(), V); - } - - if (IntrinsicID == Intrinsic::trunc) { - APFloat V = Op->getValueAPF(); - V.roundToIntegral(APFloat::rmTowardZero); - return ConstantFP::get(Ty->getContext(), V); - } - - if (IntrinsicID == Intrinsic::rint) { - APFloat V = Op->getValueAPF(); - V.roundToIntegral(APFloat::rmNearestTiesToEven); - return ConstantFP::get(Ty->getContext(), V); - } - - if (IntrinsicID == Intrinsic::nearbyint) { - APFloat V = Op->getValueAPF(); - V.roundToIntegral(APFloat::rmNearestTiesToEven); - return ConstantFP::get(Ty->getContext(), V); - } - - /// We only fold functions with finite arguments. Folding NaN and inf is - /// likely to be aborted with an exception anyway, and some host libms - /// have known errors raising exceptions. - if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity()) - return nullptr; - - /// Currently APFloat versions of these functions do not exist, so we use - /// the host native double versions. Float versions are not called - /// directly but for all these it is true (float)(f((double)arg)) == - /// f(arg). Long double not supported yet. - double V = getValueAsDouble(Op); - - switch (IntrinsicID) { - default: break; - case Intrinsic::fabs: - return ConstantFoldFP(fabs, V, Ty); - case Intrinsic::log2: - return ConstantFoldFP(Log2, V, Ty); - case Intrinsic::log: - return ConstantFoldFP(log, V, Ty); - case Intrinsic::log10: - return ConstantFoldFP(log10, V, Ty); - case Intrinsic::exp: - return ConstantFoldFP(exp, V, Ty); - case Intrinsic::exp2: - return ConstantFoldFP(exp2, V, Ty); - case Intrinsic::sin: - return ConstantFoldFP(sin, V, Ty); - case Intrinsic::cos: - return ConstantFoldFP(cos, V, Ty); - case Intrinsic::sqrt: - return ConstantFoldFP(sqrt, V, Ty); - } - - if (!TLI) - return nullptr; - - char NameKeyChar = Name[0]; - if (Name[0] == '_' && Name.size() > 2 && Name[1] == '_') - NameKeyChar = Name[2]; - - switch (NameKeyChar) { - case 'a': - if ((Name == "acos" && TLI->has(LibFunc_acos)) || - (Name == "acosf" && TLI->has(LibFunc_acosf)) || - (Name == "__acos_finite" && TLI->has(LibFunc_acos_finite)) || - (Name == "__acosf_finite" && TLI->has(LibFunc_acosf_finite))) - return ConstantFoldFP(acos, V, Ty); - else if ((Name == "asin" && TLI->has(LibFunc_asin)) || - (Name == "asinf" && TLI->has(LibFunc_asinf)) || - (Name == "__asin_finite" && TLI->has(LibFunc_asin_finite)) || - (Name == "__asinf_finite" && TLI->has(LibFunc_asinf_finite))) - return ConstantFoldFP(asin, V, Ty); - else if ((Name == "atan" && TLI->has(LibFunc_atan)) || - (Name == "atanf" && TLI->has(LibFunc_atanf))) - return ConstantFoldFP(atan, V, Ty); - break; - case 'c': - if ((Name == "ceil" && TLI->has(LibFunc_ceil)) || - (Name == "ceilf" && TLI->has(LibFunc_ceilf))) - return ConstantFoldFP(ceil, V, Ty); - else if ((Name == "cos" && TLI->has(LibFunc_cos)) || - (Name == "cosf" && TLI->has(LibFunc_cosf))) - return ConstantFoldFP(cos, V, Ty); - else if ((Name == "cosh" && TLI->has(LibFunc_cosh)) || - (Name == "coshf" && TLI->has(LibFunc_coshf)) || - (Name == "__cosh_finite" && TLI->has(LibFunc_cosh_finite)) || - (Name == "__coshf_finite" && TLI->has(LibFunc_coshf_finite))) - return ConstantFoldFP(cosh, V, Ty); - break; - case 'e': - if ((Name == "exp" && TLI->has(LibFunc_exp)) || - (Name == "expf" && TLI->has(LibFunc_expf)) || - (Name == "__exp_finite" && TLI->has(LibFunc_exp_finite)) || - (Name == "__expf_finite" && TLI->has(LibFunc_expf_finite))) - return ConstantFoldFP(exp, V, Ty); - if ((Name == "exp2" && TLI->has(LibFunc_exp2)) || - (Name == "exp2f" && TLI->has(LibFunc_exp2f)) || - (Name == "__exp2_finite" && TLI->has(LibFunc_exp2_finite)) || - (Name == "__exp2f_finite" && TLI->has(LibFunc_exp2f_finite))) - // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a - // C99 library. - return ConstantFoldBinaryFP(pow, 2.0, V, Ty); - break; - case 'f': - if ((Name == "fabs" && TLI->has(LibFunc_fabs)) || - (Name == "fabsf" && TLI->has(LibFunc_fabsf))) - return ConstantFoldFP(fabs, V, Ty); - else if ((Name == "floor" && TLI->has(LibFunc_floor)) || - (Name == "floorf" && TLI->has(LibFunc_floorf))) - return ConstantFoldFP(floor, V, Ty); - break; - case 'l': - if ((Name == "log" && V > 0 && TLI->has(LibFunc_log)) || - (Name == "logf" && V > 0 && TLI->has(LibFunc_logf)) || - (Name == "__log_finite" && V > 0 && - TLI->has(LibFunc_log_finite)) || - (Name == "__logf_finite" && V > 0 && - TLI->has(LibFunc_logf_finite))) - return ConstantFoldFP(log, V, Ty); - else if ((Name == "log10" && V > 0 && TLI->has(LibFunc_log10)) || - (Name == "log10f" && V > 0 && TLI->has(LibFunc_log10f)) || - (Name == "__log10_finite" && V > 0 && - TLI->has(LibFunc_log10_finite)) || - (Name == "__log10f_finite" && V > 0 && - TLI->has(LibFunc_log10f_finite))) - return ConstantFoldFP(log10, V, Ty); - break; - case 'r': - if ((Name == "round" && TLI->has(LibFunc_round)) || - (Name == "roundf" && TLI->has(LibFunc_roundf))) - return ConstantFoldFP(round, V, Ty); - break; - case 's': - if ((Name == "sin" && TLI->has(LibFunc_sin)) || - (Name == "sinf" && TLI->has(LibFunc_sinf))) - return ConstantFoldFP(sin, V, Ty); - else if ((Name == "sinh" && TLI->has(LibFunc_sinh)) || - (Name == "sinhf" && TLI->has(LibFunc_sinhf)) || - (Name == "__sinh_finite" && TLI->has(LibFunc_sinh_finite)) || - (Name == "__sinhf_finite" && TLI->has(LibFunc_sinhf_finite))) - return ConstantFoldFP(sinh, V, Ty); - else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc_sqrt)) || - (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc_sqrtf))) - return ConstantFoldFP(sqrt, V, Ty); - break; - case 't': - if ((Name == "tan" && TLI->has(LibFunc_tan)) || - (Name == "tanf" && TLI->has(LibFunc_tanf))) - return ConstantFoldFP(tan, V, Ty); - else if ((Name == "tanh" && TLI->has(LibFunc_tanh)) || - (Name == "tanhf" && TLI->has(LibFunc_tanhf))) - return ConstantFoldFP(tanh, V, Ty); - break; - default: - break; - } - return nullptr; - } - - if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { - switch (IntrinsicID) { - case Intrinsic::bswap: - return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); - case Intrinsic::ctpop: - return ConstantInt::get(Ty, Op->getValue().countPopulation()); - case Intrinsic::bitreverse: - return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); - case Intrinsic::convert_from_fp16: { - APFloat Val(APFloat::IEEEhalf(), Op->getValue()); - - bool lost = false; - APFloat::opStatus status = Val.convert( - Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); - - // Conversion is always precise. - (void)status; - assert(status == APFloat::opOK && !lost && - "Precision lost during fp16 constfolding"); - - return ConstantFP::get(Ty->getContext(), Val); - } - default: - return nullptr; - } - } - - // Support ConstantVector in case we have an Undef in the top. - if (isa<ConstantVector>(Operands[0]) || - isa<ConstantDataVector>(Operands[0])) { - auto *Op = cast<Constant>(Operands[0]); - switch (IntrinsicID) { - default: break; - case Intrinsic::x86_sse_cvtss2si: - case Intrinsic::x86_sse_cvtss2si64: - case Intrinsic::x86_sse2_cvtsd2si: - case Intrinsic::x86_sse2_cvtsd2si64: - if (ConstantFP *FPOp = - dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) - return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), - /*roundTowardZero=*/false, Ty, - /*IsSigned*/true); - break; - case Intrinsic::x86_sse_cvttss2si: - case Intrinsic::x86_sse_cvttss2si64: - case Intrinsic::x86_sse2_cvttsd2si: - case Intrinsic::x86_sse2_cvttsd2si64: - if (ConstantFP *FPOp = - dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) - return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), - /*roundTowardZero=*/true, Ty, - /*IsSigned*/true); - break; - } - } - - return nullptr; -} - -static Constant *ConstantFoldScalarCall2(StringRef Name, - Intrinsic::ID IntrinsicID, - Type *Ty, - ArrayRef<Constant *> Operands, - const TargetLibraryInfo *TLI, - const CallBase *Call) { - assert(Operands.size() == 2 && "Wrong number of operands."); - - if (auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { - if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) - return nullptr; - double Op1V = getValueAsDouble(Op1); - - if (auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { - if (Op2->getType() != Op1->getType()) - return nullptr; - - double Op2V = getValueAsDouble(Op2); - if (IntrinsicID == Intrinsic::pow) { - return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); - } - if (IntrinsicID == Intrinsic::copysign) { - APFloat V1 = Op1->getValueAPF(); - const APFloat &V2 = Op2->getValueAPF(); - V1.copySign(V2); - return ConstantFP::get(Ty->getContext(), V1); - } - - if (IntrinsicID == Intrinsic::minnum) { - const APFloat &C1 = Op1->getValueAPF(); - const APFloat &C2 = Op2->getValueAPF(); - return ConstantFP::get(Ty->getContext(), minnum(C1, C2)); - } - - if (IntrinsicID == Intrinsic::maxnum) { - const APFloat &C1 = Op1->getValueAPF(); - const APFloat &C2 = Op2->getValueAPF(); - return ConstantFP::get(Ty->getContext(), maxnum(C1, C2)); - } - - if (IntrinsicID == Intrinsic::minimum) { - const APFloat &C1 = Op1->getValueAPF(); - const APFloat &C2 = Op2->getValueAPF(); - return ConstantFP::get(Ty->getContext(), minimum(C1, C2)); - } - - if (IntrinsicID == Intrinsic::maximum) { - const APFloat &C1 = Op1->getValueAPF(); - const APFloat &C2 = Op2->getValueAPF(); - return ConstantFP::get(Ty->getContext(), maximum(C1, C2)); - } - - if (!TLI) - return nullptr; - if ((Name == "pow" && TLI->has(LibFunc_pow)) || - (Name == "powf" && TLI->has(LibFunc_powf)) || - (Name == "__pow_finite" && TLI->has(LibFunc_pow_finite)) || - (Name == "__powf_finite" && TLI->has(LibFunc_powf_finite))) - return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); - if ((Name == "fmod" && TLI->has(LibFunc_fmod)) || - (Name == "fmodf" && TLI->has(LibFunc_fmodf))) - return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty); - if ((Name == "atan2" && TLI->has(LibFunc_atan2)) || - (Name == "atan2f" && TLI->has(LibFunc_atan2f)) || - (Name == "__atan2_finite" && TLI->has(LibFunc_atan2_finite)) || - (Name == "__atan2f_finite" && TLI->has(LibFunc_atan2f_finite))) - return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); - } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { - if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) - return ConstantFP::get(Ty->getContext(), - APFloat((float)std::pow((float)Op1V, - (int)Op2C->getZExtValue()))); - if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) - return ConstantFP::get(Ty->getContext(), - APFloat((float)std::pow((float)Op1V, - (int)Op2C->getZExtValue()))); - if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) - return ConstantFP::get(Ty->getContext(), - APFloat((double)std::pow((double)Op1V, - (int)Op2C->getZExtValue()))); - } - return nullptr; - } - - if (Operands[0]->getType()->isIntegerTy() && - Operands[1]->getType()->isIntegerTy()) { - const APInt *C0, *C1; - if (!getConstIntOrUndef(Operands[0], C0) || - !getConstIntOrUndef(Operands[1], C1)) - return nullptr; - - switch (IntrinsicID) { - default: break; - case Intrinsic::smul_with_overflow: - case Intrinsic::umul_with_overflow: - // Even if both operands are undef, we cannot fold muls to undef - // in the general case. For example, on i2 there are no inputs - // that would produce { i2 -1, i1 true } as the result. - if (!C0 || !C1) - return Constant::getNullValue(Ty); - LLVM_FALLTHROUGH; - case Intrinsic::sadd_with_overflow: - case Intrinsic::uadd_with_overflow: - case Intrinsic::ssub_with_overflow: - case Intrinsic::usub_with_overflow: { - if (!C0 || !C1) - return UndefValue::get(Ty); - - APInt Res; - bool Overflow; - switch (IntrinsicID) { - default: llvm_unreachable("Invalid case"); - case Intrinsic::sadd_with_overflow: - Res = C0->sadd_ov(*C1, Overflow); - break; - case Intrinsic::uadd_with_overflow: - Res = C0->uadd_ov(*C1, Overflow); - break; - case Intrinsic::ssub_with_overflow: - Res = C0->ssub_ov(*C1, Overflow); - break; - case Intrinsic::usub_with_overflow: - Res = C0->usub_ov(*C1, Overflow); - break; - case Intrinsic::smul_with_overflow: - Res = C0->smul_ov(*C1, Overflow); - break; - case Intrinsic::umul_with_overflow: - Res = C0->umul_ov(*C1, Overflow); - break; - } - Constant *Ops[] = { - ConstantInt::get(Ty->getContext(), Res), - ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) - }; - return ConstantStruct::get(cast<StructType>(Ty), Ops); - } - case Intrinsic::uadd_sat: - case Intrinsic::sadd_sat: - if (!C0 && !C1) - return UndefValue::get(Ty); - if (!C0 || !C1) - return Constant::getAllOnesValue(Ty); - if (IntrinsicID == Intrinsic::uadd_sat) - return ConstantInt::get(Ty, C0->uadd_sat(*C1)); - else - return ConstantInt::get(Ty, C0->sadd_sat(*C1)); - case Intrinsic::usub_sat: - case Intrinsic::ssub_sat: - if (!C0 && !C1) - return UndefValue::get(Ty); - if (!C0 || !C1) - return Constant::getNullValue(Ty); - if (IntrinsicID == Intrinsic::usub_sat) - return ConstantInt::get(Ty, C0->usub_sat(*C1)); - else - return ConstantInt::get(Ty, C0->ssub_sat(*C1)); - case Intrinsic::cttz: - case Intrinsic::ctlz: - assert(C1 && "Must be constant int"); - - // cttz(0, 1) and ctlz(0, 1) are undef. - if (C1->isOneValue() && (!C0 || C0->isNullValue())) - return UndefValue::get(Ty); - if (!C0) - return Constant::getNullValue(Ty); - if (IntrinsicID == Intrinsic::cttz) - return ConstantInt::get(Ty, C0->countTrailingZeros()); - else - return ConstantInt::get(Ty, C0->countLeadingZeros()); - } - - return nullptr; - } - - // Support ConstantVector in case we have an Undef in the top. - if ((isa<ConstantVector>(Operands[0]) || - isa<ConstantDataVector>(Operands[0])) && - // Check for default rounding mode. - // FIXME: Support other rounding modes? - isa<ConstantInt>(Operands[1]) && - cast<ConstantInt>(Operands[1])->getValue() == 4) { - auto *Op = cast<Constant>(Operands[0]); - switch (IntrinsicID) { - default: break; - case Intrinsic::x86_avx512_vcvtss2si32: - case Intrinsic::x86_avx512_vcvtss2si64: - case Intrinsic::x86_avx512_vcvtsd2si32: - case Intrinsic::x86_avx512_vcvtsd2si64: - if (ConstantFP *FPOp = - dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) - return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), - /*roundTowardZero=*/false, Ty, - /*IsSigned*/true); - break; - case Intrinsic::x86_avx512_vcvtss2usi32: - case Intrinsic::x86_avx512_vcvtss2usi64: - case Intrinsic::x86_avx512_vcvtsd2usi32: - case Intrinsic::x86_avx512_vcvtsd2usi64: - if (ConstantFP *FPOp = - dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) - return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), - /*roundTowardZero=*/false, Ty, - /*IsSigned*/false); - break; - case Intrinsic::x86_avx512_cvttss2si: - case Intrinsic::x86_avx512_cvttss2si64: - case Intrinsic::x86_avx512_cvttsd2si: - case Intrinsic::x86_avx512_cvttsd2si64: - if (ConstantFP *FPOp = - dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) - return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), - /*roundTowardZero=*/true, Ty, - /*IsSigned*/true); - break; - case Intrinsic::x86_avx512_cvttss2usi: - case Intrinsic::x86_avx512_cvttss2usi64: - case Intrinsic::x86_avx512_cvttsd2usi: - case Intrinsic::x86_avx512_cvttsd2usi64: - if (ConstantFP *FPOp = - dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) - return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), - /*roundTowardZero=*/true, Ty, - /*IsSigned*/false); - break; - } - } - return nullptr; -} - -static Constant *ConstantFoldScalarCall3(StringRef Name, - Intrinsic::ID IntrinsicID, - Type *Ty, - ArrayRef<Constant *> Operands, - const TargetLibraryInfo *TLI, - const CallBase *Call) { - assert(Operands.size() == 3 && "Wrong number of operands."); - - if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { - if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { - if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { - switch (IntrinsicID) { - default: break; - case Intrinsic::fma: - case Intrinsic::fmuladd: { - APFloat V = Op1->getValueAPF(); - APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(), - Op3->getValueAPF(), - APFloat::rmNearestTiesToEven); - if (s != APFloat::opInvalidOp) - return ConstantFP::get(Ty->getContext(), V); - - return nullptr; - } - } - } - } - } - - if (const auto *Op1 = dyn_cast<ConstantInt>(Operands[0])) { - if (const auto *Op2 = dyn_cast<ConstantInt>(Operands[1])) { - if (const auto *Op3 = dyn_cast<ConstantInt>(Operands[2])) { - switch (IntrinsicID) { - default: break; - case Intrinsic::smul_fix: - case Intrinsic::smul_fix_sat: { - // This code performs rounding towards negative infinity in case the - // result cannot be represented exactly for the given scale. Targets - // that do care about rounding should use a target hook for specifying - // how rounding should be done, and provide their own folding to be - // consistent with rounding. This is the same approach as used by - // DAGTypeLegalizer::ExpandIntRes_MULFIX. - APInt Lhs = Op1->getValue(); - APInt Rhs = Op2->getValue(); - unsigned Scale = Op3->getValue().getZExtValue(); - unsigned Width = Lhs.getBitWidth(); - assert(Scale < Width && "Illegal scale."); - unsigned ExtendedWidth = Width * 2; - APInt Product = (Lhs.sextOrSelf(ExtendedWidth) * - Rhs.sextOrSelf(ExtendedWidth)).ashr(Scale); - if (IntrinsicID == Intrinsic::smul_fix_sat) { - APInt MaxValue = - APInt::getSignedMaxValue(Width).sextOrSelf(ExtendedWidth); - APInt MinValue = - APInt::getSignedMinValue(Width).sextOrSelf(ExtendedWidth); - Product = APIntOps::smin(Product, MaxValue); - Product = APIntOps::smax(Product, MinValue); - } - return ConstantInt::get(Ty->getContext(), - Product.sextOrTrunc(Width)); - } - } - } - } - } - - if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { - const APInt *C0, *C1, *C2; - if (!getConstIntOrUndef(Operands[0], C0) || - !getConstIntOrUndef(Operands[1], C1) || - !getConstIntOrUndef(Operands[2], C2)) - return nullptr; - - bool IsRight = IntrinsicID == Intrinsic::fshr; - if (!C2) - return Operands[IsRight ? 1 : 0]; - if (!C0 && !C1) - return UndefValue::get(Ty); - - // The shift amount is interpreted as modulo the bitwidth. If the shift - // amount is effectively 0, avoid UB due to oversized inverse shift below. - unsigned BitWidth = C2->getBitWidth(); - unsigned ShAmt = C2->urem(BitWidth); - if (!ShAmt) - return Operands[IsRight ? 1 : 0]; - - // (C0 << ShlAmt) | (C1 >> LshrAmt) - unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; - unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; - if (!C0) - return ConstantInt::get(Ty, C1->lshr(LshrAmt)); - if (!C1) - return ConstantInt::get(Ty, C0->shl(ShlAmt)); - return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); - } - - return nullptr; -} - -static Constant *ConstantFoldScalarCall(StringRef Name, - Intrinsic::ID IntrinsicID, - Type *Ty, - ArrayRef<Constant *> Operands, - const TargetLibraryInfo *TLI, - const CallBase *Call) { - if (Operands.size() == 1) - return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); - - if (Operands.size() == 2) - return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); - - if (Operands.size() == 3) - return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); - - return nullptr; -} - -static Constant *ConstantFoldVectorCall(StringRef Name, - Intrinsic::ID IntrinsicID, - VectorType *VTy, - ArrayRef<Constant *> Operands, - const DataLayout &DL, - const TargetLibraryInfo *TLI, - const CallBase *Call) { - SmallVector<Constant *, 4> Result(VTy->getNumElements()); - SmallVector<Constant *, 4> Lane(Operands.size()); - Type *Ty = VTy->getElementType(); - - if (IntrinsicID == Intrinsic::masked_load) { - auto *SrcPtr = Operands[0]; - auto *Mask = Operands[2]; - auto *Passthru = Operands[3]; - - Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, VTy, DL); - - SmallVector<Constant *, 32> NewElements; - for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { - auto *MaskElt = Mask->getAggregateElement(I); - if (!MaskElt) - break; - auto *PassthruElt = Passthru->getAggregateElement(I); - auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; - if (isa<UndefValue>(MaskElt)) { - if (PassthruElt) - NewElements.push_back(PassthruElt); - else if (VecElt) - NewElements.push_back(VecElt); - else - return nullptr; - } - if (MaskElt->isNullValue()) { - if (!PassthruElt) - return nullptr; - NewElements.push_back(PassthruElt); - } else if (MaskElt->isOneValue()) { - if (!VecElt) - return nullptr; - NewElements.push_back(VecElt); - } else { - return nullptr; - } - } - if (NewElements.size() != VTy->getNumElements()) - return nullptr; - return ConstantVector::get(NewElements); - } - - for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { - // Gather a column of constants. - for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { - // Some intrinsics use a scalar type for certain arguments. - if (hasVectorInstrinsicScalarOpd(IntrinsicID, J)) { - Lane[J] = Operands[J]; - continue; - } - - Constant *Agg = Operands[J]->getAggregateElement(I); - if (!Agg) - return nullptr; - - Lane[J] = Agg; - } - - // Use the regular scalar folding to simplify this column. - Constant *Folded = - ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); - if (!Folded) - return nullptr; - Result[I] = Folded; - } - - return ConstantVector::get(Result); -} - -} // end anonymous namespace - -Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, - ArrayRef<Constant *> Operands, - const TargetLibraryInfo *TLI) { - if (Call->isNoBuiltin() || Call->isStrictFP()) - return nullptr; - if (!F->hasName()) - return nullptr; - StringRef Name = F->getName(); - - Type *Ty = F->getReturnType(); - - if (auto *VTy = dyn_cast<VectorType>(Ty)) - return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, - F->getParent()->getDataLayout(), TLI, Call); - - return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI, - Call); -} - -bool llvm::isMathLibCallNoop(const CallBase *Call, - const TargetLibraryInfo *TLI) { - // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap - // (and to some extent ConstantFoldScalarCall). - if (Call->isNoBuiltin() || Call->isStrictFP()) - return false; - Function *F = Call->getCalledFunction(); - if (!F) - return false; - - LibFunc Func; - if (!TLI || !TLI->getLibFunc(*F, Func)) - return false; - - if (Call->getNumArgOperands() == 1) { - if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { - const APFloat &Op = OpC->getValueAPF(); - switch (Func) { - case LibFunc_logl: - case LibFunc_log: - case LibFunc_logf: - case LibFunc_log2l: - case LibFunc_log2: - case LibFunc_log2f: - case LibFunc_log10l: - case LibFunc_log10: - case LibFunc_log10f: - return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); - - case LibFunc_expl: - case LibFunc_exp: - case LibFunc_expf: - // FIXME: These boundaries are slightly conservative. - if (OpC->getType()->isDoubleTy()) - return Op.compare(APFloat(-745.0)) != APFloat::cmpLessThan && - Op.compare(APFloat(709.0)) != APFloat::cmpGreaterThan; - if (OpC->getType()->isFloatTy()) - return Op.compare(APFloat(-103.0f)) != APFloat::cmpLessThan && - Op.compare(APFloat(88.0f)) != APFloat::cmpGreaterThan; - break; - - case LibFunc_exp2l: - case LibFunc_exp2: - case LibFunc_exp2f: - // FIXME: These boundaries are slightly conservative. - if (OpC->getType()->isDoubleTy()) - return Op.compare(APFloat(-1074.0)) != APFloat::cmpLessThan && - Op.compare(APFloat(1023.0)) != APFloat::cmpGreaterThan; - if (OpC->getType()->isFloatTy()) - return Op.compare(APFloat(-149.0f)) != APFloat::cmpLessThan && - Op.compare(APFloat(127.0f)) != APFloat::cmpGreaterThan; - break; - - case LibFunc_sinl: - case LibFunc_sin: - case LibFunc_sinf: - case LibFunc_cosl: - case LibFunc_cos: - case LibFunc_cosf: - return !Op.isInfinity(); - - case LibFunc_tanl: - case LibFunc_tan: - case LibFunc_tanf: { - // FIXME: Stop using the host math library. - // FIXME: The computation isn't done in the right precision. - Type *Ty = OpC->getType(); - if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { - double OpV = getValueAsDouble(OpC); - return ConstantFoldFP(tan, OpV, Ty) != nullptr; - } - break; - } - - case LibFunc_asinl: - case LibFunc_asin: - case LibFunc_asinf: - case LibFunc_acosl: - case LibFunc_acos: - case LibFunc_acosf: - return Op.compare(APFloat(Op.getSemantics(), "-1")) != - APFloat::cmpLessThan && - Op.compare(APFloat(Op.getSemantics(), "1")) != - APFloat::cmpGreaterThan; - - case LibFunc_sinh: - case LibFunc_cosh: - case LibFunc_sinhf: - case LibFunc_coshf: - case LibFunc_sinhl: - case LibFunc_coshl: - // FIXME: These boundaries are slightly conservative. - if (OpC->getType()->isDoubleTy()) - return Op.compare(APFloat(-710.0)) != APFloat::cmpLessThan && - Op.compare(APFloat(710.0)) != APFloat::cmpGreaterThan; - if (OpC->getType()->isFloatTy()) - return Op.compare(APFloat(-89.0f)) != APFloat::cmpLessThan && - Op.compare(APFloat(89.0f)) != APFloat::cmpGreaterThan; - break; - - case LibFunc_sqrtl: - case LibFunc_sqrt: - case LibFunc_sqrtf: - return Op.isNaN() || Op.isZero() || !Op.isNegative(); - - // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, - // maybe others? - default: - break; - } - } - } - - if (Call->getNumArgOperands() == 2) { - ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); - ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); - if (Op0C && Op1C) { - const APFloat &Op0 = Op0C->getValueAPF(); - const APFloat &Op1 = Op1C->getValueAPF(); - - switch (Func) { - case LibFunc_powl: - case LibFunc_pow: - case LibFunc_powf: { - // FIXME: Stop using the host math library. - // FIXME: The computation isn't done in the right precision. - Type *Ty = Op0C->getType(); - if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { - if (Ty == Op1C->getType()) { - double Op0V = getValueAsDouble(Op0C); - double Op1V = getValueAsDouble(Op1C); - return ConstantFoldBinaryFP(pow, Op0V, Op1V, Ty) != nullptr; - } - } - break; - } - - case LibFunc_fmodl: - case LibFunc_fmod: - case LibFunc_fmodf: - return Op0.isNaN() || Op1.isNaN() || - (!Op0.isInfinity() && !Op1.isZero()); - - default: - break; - } - } - } - - return false; -} |