diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/CodeGen/MachinePipeliner.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachinePipeliner.cpp')
-rw-r--r-- | contrib/llvm/lib/CodeGen/MachinePipeliner.cpp | 4088 |
1 files changed, 0 insertions, 4088 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp b/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp deleted file mode 100644 index 54df522d371a..000000000000 --- a/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp +++ /dev/null @@ -1,4088 +0,0 @@ -//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. -// -// This SMS implementation is a target-independent back-end pass. When enabled, -// the pass runs just prior to the register allocation pass, while the machine -// IR is in SSA form. If software pipelining is successful, then the original -// loop is replaced by the optimized loop. The optimized loop contains one or -// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If -// the instructions cannot be scheduled in a given MII, we increase the MII by -// one and try again. -// -// The SMS implementation is an extension of the ScheduleDAGInstrs class. We -// represent loop carried dependences in the DAG as order edges to the Phi -// nodes. We also perform several passes over the DAG to eliminate unnecessary -// edges that inhibit the ability to pipeline. The implementation uses the -// DFAPacketizer class to compute the minimum initiation interval and the check -// where an instruction may be inserted in the pipelined schedule. -// -// In order for the SMS pass to work, several target specific hooks need to be -// implemented to get information about the loop structure and to rewrite -// instructions. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/PriorityQueue.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/CodeGen/DFAPacketizer.h" -#include "llvm/CodeGen/LiveIntervals.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineDominators.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineLoopInfo.h" -#include "llvm/CodeGen/MachineMemOperand.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/MachinePipeliner.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/RegisterPressure.h" -#include "llvm/CodeGen/ScheduleDAG.h" -#include "llvm/CodeGen/ScheduleDAGMutation.h" -#include "llvm/CodeGen/TargetOpcodes.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/Function.h" -#include "llvm/MC/LaneBitmask.h" -#include "llvm/MC/MCInstrDesc.h" -#include "llvm/MC/MCInstrItineraries.h" -#include "llvm/MC/MCRegisterInfo.h" -#include "llvm/Pass.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <climits> -#include <cstdint> -#include <deque> -#include <functional> -#include <iterator> -#include <map> -#include <memory> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "pipeliner" - -STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); -STATISTIC(NumPipelined, "Number of loops software pipelined"); -STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); -STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); -STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); -STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); -STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); -STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); -STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); -STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); -STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); - -/// A command line option to turn software pipelining on or off. -static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), - cl::ZeroOrMore, - cl::desc("Enable Software Pipelining")); - -/// A command line option to enable SWP at -Os. -static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", - cl::desc("Enable SWP at Os."), cl::Hidden, - cl::init(false)); - -/// A command line argument to limit minimum initial interval for pipelining. -static cl::opt<int> SwpMaxMii("pipeliner-max-mii", - cl::desc("Size limit for the MII."), - cl::Hidden, cl::init(27)); - -/// A command line argument to limit the number of stages in the pipeline. -static cl::opt<int> - SwpMaxStages("pipeliner-max-stages", - cl::desc("Maximum stages allowed in the generated scheduled."), - cl::Hidden, cl::init(3)); - -/// A command line option to disable the pruning of chain dependences due to -/// an unrelated Phi. -static cl::opt<bool> - SwpPruneDeps("pipeliner-prune-deps", - cl::desc("Prune dependences between unrelated Phi nodes."), - cl::Hidden, cl::init(true)); - -/// A command line option to disable the pruning of loop carried order -/// dependences. -static cl::opt<bool> - SwpPruneLoopCarried("pipeliner-prune-loop-carried", - cl::desc("Prune loop carried order dependences."), - cl::Hidden, cl::init(true)); - -#ifndef NDEBUG -static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); -#endif - -static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", - cl::ReallyHidden, cl::init(false), - cl::ZeroOrMore, cl::desc("Ignore RecMII")); - -static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, - cl::init(false)); -static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, - cl::init(false)); - -namespace llvm { - -// A command line option to enable the CopyToPhi DAG mutation. -cl::opt<bool> - SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, - cl::init(true), cl::ZeroOrMore, - cl::desc("Enable CopyToPhi DAG Mutation")); - -} // end namespace llvm - -unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; -char MachinePipeliner::ID = 0; -#ifndef NDEBUG -int MachinePipeliner::NumTries = 0; -#endif -char &llvm::MachinePipelinerID = MachinePipeliner::ID; - -INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, - "Modulo Software Pipelining", false, false) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) -INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) -INITIALIZE_PASS_DEPENDENCY(LiveIntervals) -INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, - "Modulo Software Pipelining", false, false) - -/// The "main" function for implementing Swing Modulo Scheduling. -bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { - if (skipFunction(mf.getFunction())) - return false; - - if (!EnableSWP) - return false; - - if (mf.getFunction().getAttributes().hasAttribute( - AttributeList::FunctionIndex, Attribute::OptimizeForSize) && - !EnableSWPOptSize.getPosition()) - return false; - - if (!mf.getSubtarget().enableMachinePipeliner()) - return false; - - // Cannot pipeline loops without instruction itineraries if we are using - // DFA for the pipeliner. - if (mf.getSubtarget().useDFAforSMS() && - (!mf.getSubtarget().getInstrItineraryData() || - mf.getSubtarget().getInstrItineraryData()->isEmpty())) - return false; - - MF = &mf; - MLI = &getAnalysis<MachineLoopInfo>(); - MDT = &getAnalysis<MachineDominatorTree>(); - TII = MF->getSubtarget().getInstrInfo(); - RegClassInfo.runOnMachineFunction(*MF); - - for (auto &L : *MLI) - scheduleLoop(*L); - - return false; -} - -/// Attempt to perform the SMS algorithm on the specified loop. This function is -/// the main entry point for the algorithm. The function identifies candidate -/// loops, calculates the minimum initiation interval, and attempts to schedule -/// the loop. -bool MachinePipeliner::scheduleLoop(MachineLoop &L) { - bool Changed = false; - for (auto &InnerLoop : L) - Changed |= scheduleLoop(*InnerLoop); - -#ifndef NDEBUG - // Stop trying after reaching the limit (if any). - int Limit = SwpLoopLimit; - if (Limit >= 0) { - if (NumTries >= SwpLoopLimit) - return Changed; - NumTries++; - } -#endif - - setPragmaPipelineOptions(L); - if (!canPipelineLoop(L)) { - LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); - return Changed; - } - - ++NumTrytoPipeline; - - Changed = swingModuloScheduler(L); - - return Changed; -} - -void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { - MachineBasicBlock *LBLK = L.getTopBlock(); - - if (LBLK == nullptr) - return; - - const BasicBlock *BBLK = LBLK->getBasicBlock(); - if (BBLK == nullptr) - return; - - const Instruction *TI = BBLK->getTerminator(); - if (TI == nullptr) - return; - - MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); - if (LoopID == nullptr) - return; - - assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); - assert(LoopID->getOperand(0) == LoopID && "invalid loop"); - - for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { - MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); - - if (MD == nullptr) - continue; - - MDString *S = dyn_cast<MDString>(MD->getOperand(0)); - - if (S == nullptr) - continue; - - if (S->getString() == "llvm.loop.pipeline.initiationinterval") { - assert(MD->getNumOperands() == 2 && - "Pipeline initiation interval hint metadata should have two operands."); - II_setByPragma = - mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); - assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); - } else if (S->getString() == "llvm.loop.pipeline.disable") { - disabledByPragma = true; - } - } -} - -/// Return true if the loop can be software pipelined. The algorithm is -/// restricted to loops with a single basic block. Make sure that the -/// branch in the loop can be analyzed. -bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { - if (L.getNumBlocks() != 1) - return false; - - if (disabledByPragma) - return false; - - // Check if the branch can't be understood because we can't do pipelining - // if that's the case. - LI.TBB = nullptr; - LI.FBB = nullptr; - LI.BrCond.clear(); - if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { - LLVM_DEBUG( - dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n"); - NumFailBranch++; - return false; - } - - LI.LoopInductionVar = nullptr; - LI.LoopCompare = nullptr; - if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) { - LLVM_DEBUG( - dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n"); - NumFailLoop++; - return false; - } - - if (!L.getLoopPreheader()) { - LLVM_DEBUG( - dbgs() << "Preheader not found, can NOT pipeline current Loop\n"); - NumFailPreheader++; - return false; - } - - // Remove any subregisters from inputs to phi nodes. - preprocessPhiNodes(*L.getHeader()); - return true; -} - -void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { - MachineRegisterInfo &MRI = MF->getRegInfo(); - SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); - - for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { - MachineOperand &DefOp = PI.getOperand(0); - assert(DefOp.getSubReg() == 0); - auto *RC = MRI.getRegClass(DefOp.getReg()); - - for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { - MachineOperand &RegOp = PI.getOperand(i); - if (RegOp.getSubReg() == 0) - continue; - - // If the operand uses a subregister, replace it with a new register - // without subregisters, and generate a copy to the new register. - unsigned NewReg = MRI.createVirtualRegister(RC); - MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); - MachineBasicBlock::iterator At = PredB.getFirstTerminator(); - const DebugLoc &DL = PredB.findDebugLoc(At); - auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) - .addReg(RegOp.getReg(), getRegState(RegOp), - RegOp.getSubReg()); - Slots.insertMachineInstrInMaps(*Copy); - RegOp.setReg(NewReg); - RegOp.setSubReg(0); - } - } -} - -/// The SMS algorithm consists of the following main steps: -/// 1. Computation and analysis of the dependence graph. -/// 2. Ordering of the nodes (instructions). -/// 3. Attempt to Schedule the loop. -bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { - assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); - - SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, - II_setByPragma); - - MachineBasicBlock *MBB = L.getHeader(); - // The kernel should not include any terminator instructions. These - // will be added back later. - SMS.startBlock(MBB); - - // Compute the number of 'real' instructions in the basic block by - // ignoring terminators. - unsigned size = MBB->size(); - for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), - E = MBB->instr_end(); - I != E; ++I, --size) - ; - - SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); - SMS.schedule(); - SMS.exitRegion(); - - SMS.finishBlock(); - return SMS.hasNewSchedule(); -} - -void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { - if (II_setByPragma > 0) - MII = II_setByPragma; - else - MII = std::max(ResMII, RecMII); -} - -void SwingSchedulerDAG::setMAX_II() { - if (II_setByPragma > 0) - MAX_II = II_setByPragma; - else - MAX_II = MII + 10; -} - -/// We override the schedule function in ScheduleDAGInstrs to implement the -/// scheduling part of the Swing Modulo Scheduling algorithm. -void SwingSchedulerDAG::schedule() { - AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); - buildSchedGraph(AA); - addLoopCarriedDependences(AA); - updatePhiDependences(); - Topo.InitDAGTopologicalSorting(); - changeDependences(); - postprocessDAG(); - LLVM_DEBUG(dump()); - - NodeSetType NodeSets; - findCircuits(NodeSets); - NodeSetType Circuits = NodeSets; - - // Calculate the MII. - unsigned ResMII = calculateResMII(); - unsigned RecMII = calculateRecMII(NodeSets); - - fuseRecs(NodeSets); - - // This flag is used for testing and can cause correctness problems. - if (SwpIgnoreRecMII) - RecMII = 0; - - setMII(ResMII, RecMII); - setMAX_II(); - - LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II - << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); - - // Can't schedule a loop without a valid MII. - if (MII == 0) { - LLVM_DEBUG( - dbgs() - << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n"); - NumFailZeroMII++; - return; - } - - // Don't pipeline large loops. - if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { - LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii - << ", we don't pipleline large loops\n"); - NumFailLargeMaxMII++; - return; - } - - computeNodeFunctions(NodeSets); - - registerPressureFilter(NodeSets); - - colocateNodeSets(NodeSets); - - checkNodeSets(NodeSets); - - LLVM_DEBUG({ - for (auto &I : NodeSets) { - dbgs() << " Rec NodeSet "; - I.dump(); - } - }); - - llvm::stable_sort(NodeSets, std::greater<NodeSet>()); - - groupRemainingNodes(NodeSets); - - removeDuplicateNodes(NodeSets); - - LLVM_DEBUG({ - for (auto &I : NodeSets) { - dbgs() << " NodeSet "; - I.dump(); - } - }); - - computeNodeOrder(NodeSets); - - // check for node order issues - checkValidNodeOrder(Circuits); - - SMSchedule Schedule(Pass.MF); - Scheduled = schedulePipeline(Schedule); - - if (!Scheduled){ - LLVM_DEBUG(dbgs() << "No schedule found, return\n"); - NumFailNoSchedule++; - return; - } - - unsigned numStages = Schedule.getMaxStageCount(); - // No need to generate pipeline if there are no overlapped iterations. - if (numStages == 0) { - LLVM_DEBUG( - dbgs() << "No overlapped iterations, no need to generate pipeline\n"); - NumFailZeroStage++; - return; - } - // Check that the maximum stage count is less than user-defined limit. - if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { - LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages - << " : too many stages, abort\n"); - NumFailLargeMaxStage++; - return; - } - - generatePipelinedLoop(Schedule); - ++NumPipelined; -} - -/// Clean up after the software pipeliner runs. -void SwingSchedulerDAG::finishBlock() { - for (MachineInstr *I : NewMIs) - MF.DeleteMachineInstr(I); - NewMIs.clear(); - - // Call the superclass. - ScheduleDAGInstrs::finishBlock(); -} - -/// Return the register values for the operands of a Phi instruction. -/// This function assume the instruction is a Phi. -static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, - unsigned &InitVal, unsigned &LoopVal) { - assert(Phi.isPHI() && "Expecting a Phi."); - - InitVal = 0; - LoopVal = 0; - for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) - if (Phi.getOperand(i + 1).getMBB() != Loop) - InitVal = Phi.getOperand(i).getReg(); - else - LoopVal = Phi.getOperand(i).getReg(); - - assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); -} - -/// Return the Phi register value that comes from the incoming block. -static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { - for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) - if (Phi.getOperand(i + 1).getMBB() != LoopBB) - return Phi.getOperand(i).getReg(); - return 0; -} - -/// Return the Phi register value that comes the loop block. -static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { - for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) - if (Phi.getOperand(i + 1).getMBB() == LoopBB) - return Phi.getOperand(i).getReg(); - return 0; -} - -/// Return true if SUb can be reached from SUa following the chain edges. -static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { - SmallPtrSet<SUnit *, 8> Visited; - SmallVector<SUnit *, 8> Worklist; - Worklist.push_back(SUa); - while (!Worklist.empty()) { - const SUnit *SU = Worklist.pop_back_val(); - for (auto &SI : SU->Succs) { - SUnit *SuccSU = SI.getSUnit(); - if (SI.getKind() == SDep::Order) { - if (Visited.count(SuccSU)) - continue; - if (SuccSU == SUb) - return true; - Worklist.push_back(SuccSU); - Visited.insert(SuccSU); - } - } - } - return false; -} - -/// Return true if the instruction causes a chain between memory -/// references before and after it. -static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { - return MI.isCall() || MI.mayRaiseFPException() || - MI.hasUnmodeledSideEffects() || - (MI.hasOrderedMemoryRef() && - (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); -} - -/// Return the underlying objects for the memory references of an instruction. -/// This function calls the code in ValueTracking, but first checks that the -/// instruction has a memory operand. -static void getUnderlyingObjects(const MachineInstr *MI, - SmallVectorImpl<const Value *> &Objs, - const DataLayout &DL) { - if (!MI->hasOneMemOperand()) - return; - MachineMemOperand *MM = *MI->memoperands_begin(); - if (!MM->getValue()) - return; - GetUnderlyingObjects(MM->getValue(), Objs, DL); - for (const Value *V : Objs) { - if (!isIdentifiedObject(V)) { - Objs.clear(); - return; - } - Objs.push_back(V); - } -} - -/// Add a chain edge between a load and store if the store can be an -/// alias of the load on a subsequent iteration, i.e., a loop carried -/// dependence. This code is very similar to the code in ScheduleDAGInstrs -/// but that code doesn't create loop carried dependences. -void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { - MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; - Value *UnknownValue = - UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); - for (auto &SU : SUnits) { - MachineInstr &MI = *SU.getInstr(); - if (isDependenceBarrier(MI, AA)) - PendingLoads.clear(); - else if (MI.mayLoad()) { - SmallVector<const Value *, 4> Objs; - getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); - if (Objs.empty()) - Objs.push_back(UnknownValue); - for (auto V : Objs) { - SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; - SUs.push_back(&SU); - } - } else if (MI.mayStore()) { - SmallVector<const Value *, 4> Objs; - getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); - if (Objs.empty()) - Objs.push_back(UnknownValue); - for (auto V : Objs) { - MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = - PendingLoads.find(V); - if (I == PendingLoads.end()) - continue; - for (auto Load : I->second) { - if (isSuccOrder(Load, &SU)) - continue; - MachineInstr &LdMI = *Load->getInstr(); - // First, perform the cheaper check that compares the base register. - // If they are the same and the load offset is less than the store - // offset, then mark the dependence as loop carried potentially. - const MachineOperand *BaseOp1, *BaseOp2; - int64_t Offset1, Offset2; - if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) && - TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) { - if (BaseOp1->isIdenticalTo(*BaseOp2) && - (int)Offset1 < (int)Offset2) { - assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && - "What happened to the chain edge?"); - SDep Dep(Load, SDep::Barrier); - Dep.setLatency(1); - SU.addPred(Dep); - continue; - } - } - // Second, the more expensive check that uses alias analysis on the - // base registers. If they alias, and the load offset is less than - // the store offset, the mark the dependence as loop carried. - if (!AA) { - SDep Dep(Load, SDep::Barrier); - Dep.setLatency(1); - SU.addPred(Dep); - continue; - } - MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); - MachineMemOperand *MMO2 = *MI.memoperands_begin(); - if (!MMO1->getValue() || !MMO2->getValue()) { - SDep Dep(Load, SDep::Barrier); - Dep.setLatency(1); - SU.addPred(Dep); - continue; - } - if (MMO1->getValue() == MMO2->getValue() && - MMO1->getOffset() <= MMO2->getOffset()) { - SDep Dep(Load, SDep::Barrier); - Dep.setLatency(1); - SU.addPred(Dep); - continue; - } - AliasResult AAResult = AA->alias( - MemoryLocation(MMO1->getValue(), LocationSize::unknown(), - MMO1->getAAInfo()), - MemoryLocation(MMO2->getValue(), LocationSize::unknown(), - MMO2->getAAInfo())); - - if (AAResult != NoAlias) { - SDep Dep(Load, SDep::Barrier); - Dep.setLatency(1); - SU.addPred(Dep); - } - } - } - } - } -} - -/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer -/// processes dependences for PHIs. This function adds true dependences -/// from a PHI to a use, and a loop carried dependence from the use to the -/// PHI. The loop carried dependence is represented as an anti dependence -/// edge. This function also removes chain dependences between unrelated -/// PHIs. -void SwingSchedulerDAG::updatePhiDependences() { - SmallVector<SDep, 4> RemoveDeps; - const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); - - // Iterate over each DAG node. - for (SUnit &I : SUnits) { - RemoveDeps.clear(); - // Set to true if the instruction has an operand defined by a Phi. - unsigned HasPhiUse = 0; - unsigned HasPhiDef = 0; - MachineInstr *MI = I.getInstr(); - // Iterate over each operand, and we process the definitions. - for (MachineInstr::mop_iterator MOI = MI->operands_begin(), - MOE = MI->operands_end(); - MOI != MOE; ++MOI) { - if (!MOI->isReg()) - continue; - unsigned Reg = MOI->getReg(); - if (MOI->isDef()) { - // If the register is used by a Phi, then create an anti dependence. - for (MachineRegisterInfo::use_instr_iterator - UI = MRI.use_instr_begin(Reg), - UE = MRI.use_instr_end(); - UI != UE; ++UI) { - MachineInstr *UseMI = &*UI; - SUnit *SU = getSUnit(UseMI); - if (SU != nullptr && UseMI->isPHI()) { - if (!MI->isPHI()) { - SDep Dep(SU, SDep::Anti, Reg); - Dep.setLatency(1); - I.addPred(Dep); - } else { - HasPhiDef = Reg; - // Add a chain edge to a dependent Phi that isn't an existing - // predecessor. - if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) - I.addPred(SDep(SU, SDep::Barrier)); - } - } - } - } else if (MOI->isUse()) { - // If the register is defined by a Phi, then create a true dependence. - MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); - if (DefMI == nullptr) - continue; - SUnit *SU = getSUnit(DefMI); - if (SU != nullptr && DefMI->isPHI()) { - if (!MI->isPHI()) { - SDep Dep(SU, SDep::Data, Reg); - Dep.setLatency(0); - ST.adjustSchedDependency(SU, &I, Dep); - I.addPred(Dep); - } else { - HasPhiUse = Reg; - // Add a chain edge to a dependent Phi that isn't an existing - // predecessor. - if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) - I.addPred(SDep(SU, SDep::Barrier)); - } - } - } - } - // Remove order dependences from an unrelated Phi. - if (!SwpPruneDeps) - continue; - for (auto &PI : I.Preds) { - MachineInstr *PMI = PI.getSUnit()->getInstr(); - if (PMI->isPHI() && PI.getKind() == SDep::Order) { - if (I.getInstr()->isPHI()) { - if (PMI->getOperand(0).getReg() == HasPhiUse) - continue; - if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) - continue; - } - RemoveDeps.push_back(PI); - } - } - for (int i = 0, e = RemoveDeps.size(); i != e; ++i) - I.removePred(RemoveDeps[i]); - } -} - -/// Iterate over each DAG node and see if we can change any dependences -/// in order to reduce the recurrence MII. -void SwingSchedulerDAG::changeDependences() { - // See if an instruction can use a value from the previous iteration. - // If so, we update the base and offset of the instruction and change - // the dependences. - for (SUnit &I : SUnits) { - unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; - int64_t NewOffset = 0; - if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, - NewOffset)) - continue; - - // Get the MI and SUnit for the instruction that defines the original base. - unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); - MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); - if (!DefMI) - continue; - SUnit *DefSU = getSUnit(DefMI); - if (!DefSU) - continue; - // Get the MI and SUnit for the instruction that defins the new base. - MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); - if (!LastMI) - continue; - SUnit *LastSU = getSUnit(LastMI); - if (!LastSU) - continue; - - if (Topo.IsReachable(&I, LastSU)) - continue; - - // Remove the dependence. The value now depends on a prior iteration. - SmallVector<SDep, 4> Deps; - for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; - ++P) - if (P->getSUnit() == DefSU) - Deps.push_back(*P); - for (int i = 0, e = Deps.size(); i != e; i++) { - Topo.RemovePred(&I, Deps[i].getSUnit()); - I.removePred(Deps[i]); - } - // Remove the chain dependence between the instructions. - Deps.clear(); - for (auto &P : LastSU->Preds) - if (P.getSUnit() == &I && P.getKind() == SDep::Order) - Deps.push_back(P); - for (int i = 0, e = Deps.size(); i != e; i++) { - Topo.RemovePred(LastSU, Deps[i].getSUnit()); - LastSU->removePred(Deps[i]); - } - - // Add a dependence between the new instruction and the instruction - // that defines the new base. - SDep Dep(&I, SDep::Anti, NewBase); - Topo.AddPred(LastSU, &I); - LastSU->addPred(Dep); - - // Remember the base and offset information so that we can update the - // instruction during code generation. - InstrChanges[&I] = std::make_pair(NewBase, NewOffset); - } -} - -namespace { - -// FuncUnitSorter - Comparison operator used to sort instructions by -// the number of functional unit choices. -struct FuncUnitSorter { - const InstrItineraryData *InstrItins; - const MCSubtargetInfo *STI; - DenseMap<unsigned, unsigned> Resources; - - FuncUnitSorter(const TargetSubtargetInfo &TSI) - : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} - - // Compute the number of functional unit alternatives needed - // at each stage, and take the minimum value. We prioritize the - // instructions by the least number of choices first. - unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { - unsigned SchedClass = Inst->getDesc().getSchedClass(); - unsigned min = UINT_MAX; - if (InstrItins && !InstrItins->isEmpty()) { - for (const InstrStage &IS : - make_range(InstrItins->beginStage(SchedClass), - InstrItins->endStage(SchedClass))) { - unsigned funcUnits = IS.getUnits(); - unsigned numAlternatives = countPopulation(funcUnits); - if (numAlternatives < min) { - min = numAlternatives; - F = funcUnits; - } - } - return min; - } - if (STI && STI->getSchedModel().hasInstrSchedModel()) { - const MCSchedClassDesc *SCDesc = - STI->getSchedModel().getSchedClassDesc(SchedClass); - if (!SCDesc->isValid()) - // No valid Schedule Class Desc for schedClass, should be - // Pseudo/PostRAPseudo - return min; - - for (const MCWriteProcResEntry &PRE : - make_range(STI->getWriteProcResBegin(SCDesc), - STI->getWriteProcResEnd(SCDesc))) { - if (!PRE.Cycles) - continue; - const MCProcResourceDesc *ProcResource = - STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); - unsigned NumUnits = ProcResource->NumUnits; - if (NumUnits < min) { - min = NumUnits; - F = PRE.ProcResourceIdx; - } - } - return min; - } - llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); - } - - // Compute the critical resources needed by the instruction. This - // function records the functional units needed by instructions that - // must use only one functional unit. We use this as a tie breaker - // for computing the resource MII. The instrutions that require - // the same, highly used, functional unit have high priority. - void calcCriticalResources(MachineInstr &MI) { - unsigned SchedClass = MI.getDesc().getSchedClass(); - if (InstrItins && !InstrItins->isEmpty()) { - for (const InstrStage &IS : - make_range(InstrItins->beginStage(SchedClass), - InstrItins->endStage(SchedClass))) { - unsigned FuncUnits = IS.getUnits(); - if (countPopulation(FuncUnits) == 1) - Resources[FuncUnits]++; - } - return; - } - if (STI && STI->getSchedModel().hasInstrSchedModel()) { - const MCSchedClassDesc *SCDesc = - STI->getSchedModel().getSchedClassDesc(SchedClass); - if (!SCDesc->isValid()) - // No valid Schedule Class Desc for schedClass, should be - // Pseudo/PostRAPseudo - return; - - for (const MCWriteProcResEntry &PRE : - make_range(STI->getWriteProcResBegin(SCDesc), - STI->getWriteProcResEnd(SCDesc))) { - if (!PRE.Cycles) - continue; - Resources[PRE.ProcResourceIdx]++; - } - return; - } - llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); - } - - /// Return true if IS1 has less priority than IS2. - bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { - unsigned F1 = 0, F2 = 0; - unsigned MFUs1 = minFuncUnits(IS1, F1); - unsigned MFUs2 = minFuncUnits(IS2, F2); - if (MFUs1 == 1 && MFUs2 == 1) - return Resources.lookup(F1) < Resources.lookup(F2); - return MFUs1 > MFUs2; - } -}; - -} // end anonymous namespace - -/// Calculate the resource constrained minimum initiation interval for the -/// specified loop. We use the DFA to model the resources needed for -/// each instruction, and we ignore dependences. A different DFA is created -/// for each cycle that is required. When adding a new instruction, we attempt -/// to add it to each existing DFA, until a legal space is found. If the -/// instruction cannot be reserved in an existing DFA, we create a new one. -unsigned SwingSchedulerDAG::calculateResMII() { - - LLVM_DEBUG(dbgs() << "calculateResMII:\n"); - SmallVector<ResourceManager*, 8> Resources; - MachineBasicBlock *MBB = Loop.getHeader(); - Resources.push_back(new ResourceManager(&MF.getSubtarget())); - - // Sort the instructions by the number of available choices for scheduling, - // least to most. Use the number of critical resources as the tie breaker. - FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); - for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), - E = MBB->getFirstTerminator(); - I != E; ++I) - FUS.calcCriticalResources(*I); - PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> - FuncUnitOrder(FUS); - - for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), - E = MBB->getFirstTerminator(); - I != E; ++I) - FuncUnitOrder.push(&*I); - - while (!FuncUnitOrder.empty()) { - MachineInstr *MI = FuncUnitOrder.top(); - FuncUnitOrder.pop(); - if (TII->isZeroCost(MI->getOpcode())) - continue; - // Attempt to reserve the instruction in an existing DFA. At least one - // DFA is needed for each cycle. - unsigned NumCycles = getSUnit(MI)->Latency; - unsigned ReservedCycles = 0; - SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); - SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); - LLVM_DEBUG({ - dbgs() << "Trying to reserve resource for " << NumCycles - << " cycles for \n"; - MI->dump(); - }); - for (unsigned C = 0; C < NumCycles; ++C) - while (RI != RE) { - if ((*RI)->canReserveResources(*MI)) { - (*RI)->reserveResources(*MI); - ++ReservedCycles; - break; - } - RI++; - } - LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles - << ", NumCycles:" << NumCycles << "\n"); - // Add new DFAs, if needed, to reserve resources. - for (unsigned C = ReservedCycles; C < NumCycles; ++C) { - LLVM_DEBUG(if (SwpDebugResource) dbgs() - << "NewResource created to reserve resources" - << "\n"); - ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); - assert(NewResource->canReserveResources(*MI) && "Reserve error."); - NewResource->reserveResources(*MI); - Resources.push_back(NewResource); - } - } - int Resmii = Resources.size(); - LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n"); - // Delete the memory for each of the DFAs that were created earlier. - for (ResourceManager *RI : Resources) { - ResourceManager *D = RI; - delete D; - } - Resources.clear(); - return Resmii; -} - -/// Calculate the recurrence-constrainted minimum initiation interval. -/// Iterate over each circuit. Compute the delay(c) and distance(c) -/// for each circuit. The II needs to satisfy the inequality -/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest -/// II that satisfies the inequality, and the RecMII is the maximum -/// of those values. -unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { - unsigned RecMII = 0; - - for (NodeSet &Nodes : NodeSets) { - if (Nodes.empty()) - continue; - - unsigned Delay = Nodes.getLatency(); - unsigned Distance = 1; - - // ii = ceil(delay / distance) - unsigned CurMII = (Delay + Distance - 1) / Distance; - Nodes.setRecMII(CurMII); - if (CurMII > RecMII) - RecMII = CurMII; - } - - return RecMII; -} - -/// Swap all the anti dependences in the DAG. That means it is no longer a DAG, -/// but we do this to find the circuits, and then change them back. -static void swapAntiDependences(std::vector<SUnit> &SUnits) { - SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; - for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { - SUnit *SU = &SUnits[i]; - for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); - IP != EP; ++IP) { - if (IP->getKind() != SDep::Anti) - continue; - DepsAdded.push_back(std::make_pair(SU, *IP)); - } - } - for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), - E = DepsAdded.end(); - I != E; ++I) { - // Remove this anti dependency and add one in the reverse direction. - SUnit *SU = I->first; - SDep &D = I->second; - SUnit *TargetSU = D.getSUnit(); - unsigned Reg = D.getReg(); - unsigned Lat = D.getLatency(); - SU->removePred(D); - SDep Dep(SU, SDep::Anti, Reg); - Dep.setLatency(Lat); - TargetSU->addPred(Dep); - } -} - -/// Create the adjacency structure of the nodes in the graph. -void SwingSchedulerDAG::Circuits::createAdjacencyStructure( - SwingSchedulerDAG *DAG) { - BitVector Added(SUnits.size()); - DenseMap<int, int> OutputDeps; - for (int i = 0, e = SUnits.size(); i != e; ++i) { - Added.reset(); - // Add any successor to the adjacency matrix and exclude duplicates. - for (auto &SI : SUnits[i].Succs) { - // Only create a back-edge on the first and last nodes of a dependence - // chain. This records any chains and adds them later. - if (SI.getKind() == SDep::Output) { - int N = SI.getSUnit()->NodeNum; - int BackEdge = i; - auto Dep = OutputDeps.find(BackEdge); - if (Dep != OutputDeps.end()) { - BackEdge = Dep->second; - OutputDeps.erase(Dep); - } - OutputDeps[N] = BackEdge; - } - // Do not process a boundary node, an artificial node. - // A back-edge is processed only if it goes to a Phi. - if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || - (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) - continue; - int N = SI.getSUnit()->NodeNum; - if (!Added.test(N)) { - AdjK[i].push_back(N); - Added.set(N); - } - } - // A chain edge between a store and a load is treated as a back-edge in the - // adjacency matrix. - for (auto &PI : SUnits[i].Preds) { - if (!SUnits[i].getInstr()->mayStore() || - !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) - continue; - if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { - int N = PI.getSUnit()->NodeNum; - if (!Added.test(N)) { - AdjK[i].push_back(N); - Added.set(N); - } - } - } - } - // Add back-edges in the adjacency matrix for the output dependences. - for (auto &OD : OutputDeps) - if (!Added.test(OD.second)) { - AdjK[OD.first].push_back(OD.second); - Added.set(OD.second); - } -} - -/// Identify an elementary circuit in the dependence graph starting at the -/// specified node. -bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, - bool HasBackedge) { - SUnit *SV = &SUnits[V]; - bool F = false; - Stack.insert(SV); - Blocked.set(V); - - for (auto W : AdjK[V]) { - if (NumPaths > MaxPaths) - break; - if (W < S) - continue; - if (W == S) { - if (!HasBackedge) - NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); - F = true; - ++NumPaths; - break; - } else if (!Blocked.test(W)) { - if (circuit(W, S, NodeSets, - Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) - F = true; - } - } - - if (F) - unblock(V); - else { - for (auto W : AdjK[V]) { - if (W < S) - continue; - if (B[W].count(SV) == 0) - B[W].insert(SV); - } - } - Stack.pop_back(); - return F; -} - -/// Unblock a node in the circuit finding algorithm. -void SwingSchedulerDAG::Circuits::unblock(int U) { - Blocked.reset(U); - SmallPtrSet<SUnit *, 4> &BU = B[U]; - while (!BU.empty()) { - SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); - assert(SI != BU.end() && "Invalid B set."); - SUnit *W = *SI; - BU.erase(W); - if (Blocked.test(W->NodeNum)) - unblock(W->NodeNum); - } -} - -/// Identify all the elementary circuits in the dependence graph using -/// Johnson's circuit algorithm. -void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { - // Swap all the anti dependences in the DAG. That means it is no longer a DAG, - // but we do this to find the circuits, and then change them back. - swapAntiDependences(SUnits); - - Circuits Cir(SUnits, Topo); - // Create the adjacency structure. - Cir.createAdjacencyStructure(this); - for (int i = 0, e = SUnits.size(); i != e; ++i) { - Cir.reset(); - Cir.circuit(i, i, NodeSets); - } - - // Change the dependences back so that we've created a DAG again. - swapAntiDependences(SUnits); -} - -// Create artificial dependencies between the source of COPY/REG_SEQUENCE that -// is loop-carried to the USE in next iteration. This will help pipeliner avoid -// additional copies that are needed across iterations. An artificial dependence -// edge is added from USE to SOURCE of COPY/REG_SEQUENCE. - -// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) -// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE -// PHI-------True-Dep------> USEOfPhi - -// The mutation creates -// USEOfPHI -------Artificial-Dep---> SRCOfCopy - -// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy -// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled -// late to avoid additional copies across iterations. The possible scheduling -// order would be -// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. - -void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { - for (SUnit &SU : DAG->SUnits) { - // Find the COPY/REG_SEQUENCE instruction. - if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) - continue; - - // Record the loop carried PHIs. - SmallVector<SUnit *, 4> PHISUs; - // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. - SmallVector<SUnit *, 4> SrcSUs; - - for (auto &Dep : SU.Preds) { - SUnit *TmpSU = Dep.getSUnit(); - MachineInstr *TmpMI = TmpSU->getInstr(); - SDep::Kind DepKind = Dep.getKind(); - // Save the loop carried PHI. - if (DepKind == SDep::Anti && TmpMI->isPHI()) - PHISUs.push_back(TmpSU); - // Save the source of COPY/REG_SEQUENCE. - // If the source has no pre-decessors, we will end up creating cycles. - else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) - SrcSUs.push_back(TmpSU); - } - - if (PHISUs.size() == 0 || SrcSUs.size() == 0) - continue; - - // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this - // SUnit to the container. - SmallVector<SUnit *, 8> UseSUs; - for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) { - for (auto &Dep : (*I)->Succs) { - if (Dep.getKind() != SDep::Data) - continue; - - SUnit *TmpSU = Dep.getSUnit(); - MachineInstr *TmpMI = TmpSU->getInstr(); - if (TmpMI->isPHI() || TmpMI->isRegSequence()) { - PHISUs.push_back(TmpSU); - continue; - } - UseSUs.push_back(TmpSU); - } - } - - if (UseSUs.size() == 0) - continue; - - SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); - // Add the artificial dependencies if it does not form a cycle. - for (auto I : UseSUs) { - for (auto Src : SrcSUs) { - if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { - Src->addPred(SDep(I, SDep::Artificial)); - SDAG->Topo.AddPred(Src, I); - } - } - } - } -} - -/// Return true for DAG nodes that we ignore when computing the cost functions. -/// We ignore the back-edge recurrence in order to avoid unbounded recursion -/// in the calculation of the ASAP, ALAP, etc functions. -static bool ignoreDependence(const SDep &D, bool isPred) { - if (D.isArtificial()) - return true; - return D.getKind() == SDep::Anti && isPred; -} - -/// Compute several functions need to order the nodes for scheduling. -/// ASAP - Earliest time to schedule a node. -/// ALAP - Latest time to schedule a node. -/// MOV - Mobility function, difference between ALAP and ASAP. -/// D - Depth of each node. -/// H - Height of each node. -void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { - ScheduleInfo.resize(SUnits.size()); - - LLVM_DEBUG({ - for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), - E = Topo.end(); - I != E; ++I) { - const SUnit &SU = SUnits[*I]; - dumpNode(SU); - } - }); - - int maxASAP = 0; - // Compute ASAP and ZeroLatencyDepth. - for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), - E = Topo.end(); - I != E; ++I) { - int asap = 0; - int zeroLatencyDepth = 0; - SUnit *SU = &SUnits[*I]; - for (SUnit::const_pred_iterator IP = SU->Preds.begin(), - EP = SU->Preds.end(); - IP != EP; ++IP) { - SUnit *pred = IP->getSUnit(); - if (IP->getLatency() == 0) - zeroLatencyDepth = - std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); - if (ignoreDependence(*IP, true)) - continue; - asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - - getDistance(pred, SU, *IP) * MII)); - } - maxASAP = std::max(maxASAP, asap); - ScheduleInfo[*I].ASAP = asap; - ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; - } - - // Compute ALAP, ZeroLatencyHeight, and MOV. - for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), - E = Topo.rend(); - I != E; ++I) { - int alap = maxASAP; - int zeroLatencyHeight = 0; - SUnit *SU = &SUnits[*I]; - for (SUnit::const_succ_iterator IS = SU->Succs.begin(), - ES = SU->Succs.end(); - IS != ES; ++IS) { - SUnit *succ = IS->getSUnit(); - if (IS->getLatency() == 0) - zeroLatencyHeight = - std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); - if (ignoreDependence(*IS, true)) - continue; - alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + - getDistance(SU, succ, *IS) * MII)); - } - - ScheduleInfo[*I].ALAP = alap; - ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; - } - - // After computing the node functions, compute the summary for each node set. - for (NodeSet &I : NodeSets) - I.computeNodeSetInfo(this); - - LLVM_DEBUG({ - for (unsigned i = 0; i < SUnits.size(); i++) { - dbgs() << "\tNode " << i << ":\n"; - dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; - dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; - dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; - dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; - dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; - dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; - dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; - } - }); -} - -/// Compute the Pred_L(O) set, as defined in the paper. The set is defined -/// as the predecessors of the elements of NodeOrder that are not also in -/// NodeOrder. -static bool pred_L(SetVector<SUnit *> &NodeOrder, - SmallSetVector<SUnit *, 8> &Preds, - const NodeSet *S = nullptr) { - Preds.clear(); - for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); - I != E; ++I) { - for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); - PI != PE; ++PI) { - if (S && S->count(PI->getSUnit()) == 0) - continue; - if (ignoreDependence(*PI, true)) - continue; - if (NodeOrder.count(PI->getSUnit()) == 0) - Preds.insert(PI->getSUnit()); - } - // Back-edges are predecessors with an anti-dependence. - for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), - ES = (*I)->Succs.end(); - IS != ES; ++IS) { - if (IS->getKind() != SDep::Anti) - continue; - if (S && S->count(IS->getSUnit()) == 0) - continue; - if (NodeOrder.count(IS->getSUnit()) == 0) - Preds.insert(IS->getSUnit()); - } - } - return !Preds.empty(); -} - -/// Compute the Succ_L(O) set, as defined in the paper. The set is defined -/// as the successors of the elements of NodeOrder that are not also in -/// NodeOrder. -static bool succ_L(SetVector<SUnit *> &NodeOrder, - SmallSetVector<SUnit *, 8> &Succs, - const NodeSet *S = nullptr) { - Succs.clear(); - for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); - I != E; ++I) { - for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); - SI != SE; ++SI) { - if (S && S->count(SI->getSUnit()) == 0) - continue; - if (ignoreDependence(*SI, false)) - continue; - if (NodeOrder.count(SI->getSUnit()) == 0) - Succs.insert(SI->getSUnit()); - } - for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), - PE = (*I)->Preds.end(); - PI != PE; ++PI) { - if (PI->getKind() != SDep::Anti) - continue; - if (S && S->count(PI->getSUnit()) == 0) - continue; - if (NodeOrder.count(PI->getSUnit()) == 0) - Succs.insert(PI->getSUnit()); - } - } - return !Succs.empty(); -} - -/// Return true if there is a path from the specified node to any of the nodes -/// in DestNodes. Keep track and return the nodes in any path. -static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, - SetVector<SUnit *> &DestNodes, - SetVector<SUnit *> &Exclude, - SmallPtrSet<SUnit *, 8> &Visited) { - if (Cur->isBoundaryNode()) - return false; - if (Exclude.count(Cur) != 0) - return false; - if (DestNodes.count(Cur) != 0) - return true; - if (!Visited.insert(Cur).second) - return Path.count(Cur) != 0; - bool FoundPath = false; - for (auto &SI : Cur->Succs) - FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); - for (auto &PI : Cur->Preds) - if (PI.getKind() == SDep::Anti) - FoundPath |= - computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); - if (FoundPath) - Path.insert(Cur); - return FoundPath; -} - -/// Return true if Set1 is a subset of Set2. -template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { - for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) - if (Set2.count(*I) == 0) - return false; - return true; -} - -/// Compute the live-out registers for the instructions in a node-set. -/// The live-out registers are those that are defined in the node-set, -/// but not used. Except for use operands of Phis. -static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, - NodeSet &NS) { - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - MachineRegisterInfo &MRI = MF.getRegInfo(); - SmallVector<RegisterMaskPair, 8> LiveOutRegs; - SmallSet<unsigned, 4> Uses; - for (SUnit *SU : NS) { - const MachineInstr *MI = SU->getInstr(); - if (MI->isPHI()) - continue; - for (const MachineOperand &MO : MI->operands()) - if (MO.isReg() && MO.isUse()) { - unsigned Reg = MO.getReg(); - if (TargetRegisterInfo::isVirtualRegister(Reg)) - Uses.insert(Reg); - else if (MRI.isAllocatable(Reg)) - for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) - Uses.insert(*Units); - } - } - for (SUnit *SU : NS) - for (const MachineOperand &MO : SU->getInstr()->operands()) - if (MO.isReg() && MO.isDef() && !MO.isDead()) { - unsigned Reg = MO.getReg(); - if (TargetRegisterInfo::isVirtualRegister(Reg)) { - if (!Uses.count(Reg)) - LiveOutRegs.push_back(RegisterMaskPair(Reg, - LaneBitmask::getNone())); - } else if (MRI.isAllocatable(Reg)) { - for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) - if (!Uses.count(*Units)) - LiveOutRegs.push_back(RegisterMaskPair(*Units, - LaneBitmask::getNone())); - } - } - RPTracker.addLiveRegs(LiveOutRegs); -} - -/// A heuristic to filter nodes in recurrent node-sets if the register -/// pressure of a set is too high. -void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { - for (auto &NS : NodeSets) { - // Skip small node-sets since they won't cause register pressure problems. - if (NS.size() <= 2) - continue; - IntervalPressure RecRegPressure; - RegPressureTracker RecRPTracker(RecRegPressure); - RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); - computeLiveOuts(MF, RecRPTracker, NS); - RecRPTracker.closeBottom(); - - std::vector<SUnit *> SUnits(NS.begin(), NS.end()); - llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { - return A->NodeNum > B->NodeNum; - }); - - for (auto &SU : SUnits) { - // Since we're computing the register pressure for a subset of the - // instructions in a block, we need to set the tracker for each - // instruction in the node-set. The tracker is set to the instruction - // just after the one we're interested in. - MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); - RecRPTracker.setPos(std::next(CurInstI)); - - RegPressureDelta RPDelta; - ArrayRef<PressureChange> CriticalPSets; - RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, - CriticalPSets, - RecRegPressure.MaxSetPressure); - if (RPDelta.Excess.isValid()) { - LLVM_DEBUG( - dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " - << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) - << ":" << RPDelta.Excess.getUnitInc()); - NS.setExceedPressure(SU); - break; - } - RecRPTracker.recede(); - } - } -} - -/// A heuristic to colocate node sets that have the same set of -/// successors. -void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { - unsigned Colocate = 0; - for (int i = 0, e = NodeSets.size(); i < e; ++i) { - NodeSet &N1 = NodeSets[i]; - SmallSetVector<SUnit *, 8> S1; - if (N1.empty() || !succ_L(N1, S1)) - continue; - for (int j = i + 1; j < e; ++j) { - NodeSet &N2 = NodeSets[j]; - if (N1.compareRecMII(N2) != 0) - continue; - SmallSetVector<SUnit *, 8> S2; - if (N2.empty() || !succ_L(N2, S2)) - continue; - if (isSubset(S1, S2) && S1.size() == S2.size()) { - N1.setColocate(++Colocate); - N2.setColocate(Colocate); - break; - } - } - } -} - -/// Check if the existing node-sets are profitable. If not, then ignore the -/// recurrent node-sets, and attempt to schedule all nodes together. This is -/// a heuristic. If the MII is large and all the recurrent node-sets are small, -/// then it's best to try to schedule all instructions together instead of -/// starting with the recurrent node-sets. -void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { - // Look for loops with a large MII. - if (MII < 17) - return; - // Check if the node-set contains only a simple add recurrence. - for (auto &NS : NodeSets) { - if (NS.getRecMII() > 2) - return; - if (NS.getMaxDepth() > MII) - return; - } - NodeSets.clear(); - LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); - return; -} - -/// Add the nodes that do not belong to a recurrence set into groups -/// based upon connected componenets. -void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { - SetVector<SUnit *> NodesAdded; - SmallPtrSet<SUnit *, 8> Visited; - // Add the nodes that are on a path between the previous node sets and - // the current node set. - for (NodeSet &I : NodeSets) { - SmallSetVector<SUnit *, 8> N; - // Add the nodes from the current node set to the previous node set. - if (succ_L(I, N)) { - SetVector<SUnit *> Path; - for (SUnit *NI : N) { - Visited.clear(); - computePath(NI, Path, NodesAdded, I, Visited); - } - if (!Path.empty()) - I.insert(Path.begin(), Path.end()); - } - // Add the nodes from the previous node set to the current node set. - N.clear(); - if (succ_L(NodesAdded, N)) { - SetVector<SUnit *> Path; - for (SUnit *NI : N) { - Visited.clear(); - computePath(NI, Path, I, NodesAdded, Visited); - } - if (!Path.empty()) - I.insert(Path.begin(), Path.end()); - } - NodesAdded.insert(I.begin(), I.end()); - } - - // Create a new node set with the connected nodes of any successor of a node - // in a recurrent set. - NodeSet NewSet; - SmallSetVector<SUnit *, 8> N; - if (succ_L(NodesAdded, N)) - for (SUnit *I : N) - addConnectedNodes(I, NewSet, NodesAdded); - if (!NewSet.empty()) - NodeSets.push_back(NewSet); - - // Create a new node set with the connected nodes of any predecessor of a node - // in a recurrent set. - NewSet.clear(); - if (pred_L(NodesAdded, N)) - for (SUnit *I : N) - addConnectedNodes(I, NewSet, NodesAdded); - if (!NewSet.empty()) - NodeSets.push_back(NewSet); - - // Create new nodes sets with the connected nodes any remaining node that - // has no predecessor. - for (unsigned i = 0; i < SUnits.size(); ++i) { - SUnit *SU = &SUnits[i]; - if (NodesAdded.count(SU) == 0) { - NewSet.clear(); - addConnectedNodes(SU, NewSet, NodesAdded); - if (!NewSet.empty()) - NodeSets.push_back(NewSet); - } - } -} - -/// Add the node to the set, and add all of its connected nodes to the set. -void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, - SetVector<SUnit *> &NodesAdded) { - NewSet.insert(SU); - NodesAdded.insert(SU); - for (auto &SI : SU->Succs) { - SUnit *Successor = SI.getSUnit(); - if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) - addConnectedNodes(Successor, NewSet, NodesAdded); - } - for (auto &PI : SU->Preds) { - SUnit *Predecessor = PI.getSUnit(); - if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) - addConnectedNodes(Predecessor, NewSet, NodesAdded); - } -} - -/// Return true if Set1 contains elements in Set2. The elements in common -/// are returned in a different container. -static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, - SmallSetVector<SUnit *, 8> &Result) { - Result.clear(); - for (unsigned i = 0, e = Set1.size(); i != e; ++i) { - SUnit *SU = Set1[i]; - if (Set2.count(SU) != 0) - Result.insert(SU); - } - return !Result.empty(); -} - -/// Merge the recurrence node sets that have the same initial node. -void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { - for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; - ++I) { - NodeSet &NI = *I; - for (NodeSetType::iterator J = I + 1; J != E;) { - NodeSet &NJ = *J; - if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { - if (NJ.compareRecMII(NI) > 0) - NI.setRecMII(NJ.getRecMII()); - for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; - ++NII) - I->insert(*NII); - NodeSets.erase(J); - E = NodeSets.end(); - } else { - ++J; - } - } - } -} - -/// Remove nodes that have been scheduled in previous NodeSets. -void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { - for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; - ++I) - for (NodeSetType::iterator J = I + 1; J != E;) { - J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); - - if (J->empty()) { - NodeSets.erase(J); - E = NodeSets.end(); - } else { - ++J; - } - } -} - -/// Compute an ordered list of the dependence graph nodes, which -/// indicates the order that the nodes will be scheduled. This is a -/// two-level algorithm. First, a partial order is created, which -/// consists of a list of sets ordered from highest to lowest priority. -void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { - SmallSetVector<SUnit *, 8> R; - NodeOrder.clear(); - - for (auto &Nodes : NodeSets) { - LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); - OrderKind Order; - SmallSetVector<SUnit *, 8> N; - if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { - R.insert(N.begin(), N.end()); - Order = BottomUp; - LLVM_DEBUG(dbgs() << " Bottom up (preds) "); - } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { - R.insert(N.begin(), N.end()); - Order = TopDown; - LLVM_DEBUG(dbgs() << " Top down (succs) "); - } else if (isIntersect(N, Nodes, R)) { - // If some of the successors are in the existing node-set, then use the - // top-down ordering. - Order = TopDown; - LLVM_DEBUG(dbgs() << " Top down (intersect) "); - } else if (NodeSets.size() == 1) { - for (auto &N : Nodes) - if (N->Succs.size() == 0) - R.insert(N); - Order = BottomUp; - LLVM_DEBUG(dbgs() << " Bottom up (all) "); - } else { - // Find the node with the highest ASAP. - SUnit *maxASAP = nullptr; - for (SUnit *SU : Nodes) { - if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || - (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) - maxASAP = SU; - } - R.insert(maxASAP); - Order = BottomUp; - LLVM_DEBUG(dbgs() << " Bottom up (default) "); - } - - while (!R.empty()) { - if (Order == TopDown) { - // Choose the node with the maximum height. If more than one, choose - // the node wiTH the maximum ZeroLatencyHeight. If still more than one, - // choose the node with the lowest MOV. - while (!R.empty()) { - SUnit *maxHeight = nullptr; - for (SUnit *I : R) { - if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) - maxHeight = I; - else if (getHeight(I) == getHeight(maxHeight) && - getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) - maxHeight = I; - else if (getHeight(I) == getHeight(maxHeight) && - getZeroLatencyHeight(I) == - getZeroLatencyHeight(maxHeight) && - getMOV(I) < getMOV(maxHeight)) - maxHeight = I; - } - NodeOrder.insert(maxHeight); - LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); - R.remove(maxHeight); - for (const auto &I : maxHeight->Succs) { - if (Nodes.count(I.getSUnit()) == 0) - continue; - if (NodeOrder.count(I.getSUnit()) != 0) - continue; - if (ignoreDependence(I, false)) - continue; - R.insert(I.getSUnit()); - } - // Back-edges are predecessors with an anti-dependence. - for (const auto &I : maxHeight->Preds) { - if (I.getKind() != SDep::Anti) - continue; - if (Nodes.count(I.getSUnit()) == 0) - continue; - if (NodeOrder.count(I.getSUnit()) != 0) - continue; - R.insert(I.getSUnit()); - } - } - Order = BottomUp; - LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); - SmallSetVector<SUnit *, 8> N; - if (pred_L(NodeOrder, N, &Nodes)) - R.insert(N.begin(), N.end()); - } else { - // Choose the node with the maximum depth. If more than one, choose - // the node with the maximum ZeroLatencyDepth. If still more than one, - // choose the node with the lowest MOV. - while (!R.empty()) { - SUnit *maxDepth = nullptr; - for (SUnit *I : R) { - if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) - maxDepth = I; - else if (getDepth(I) == getDepth(maxDepth) && - getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) - maxDepth = I; - else if (getDepth(I) == getDepth(maxDepth) && - getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && - getMOV(I) < getMOV(maxDepth)) - maxDepth = I; - } - NodeOrder.insert(maxDepth); - LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); - R.remove(maxDepth); - if (Nodes.isExceedSU(maxDepth)) { - Order = TopDown; - R.clear(); - R.insert(Nodes.getNode(0)); - break; - } - for (const auto &I : maxDepth->Preds) { - if (Nodes.count(I.getSUnit()) == 0) - continue; - if (NodeOrder.count(I.getSUnit()) != 0) - continue; - R.insert(I.getSUnit()); - } - // Back-edges are predecessors with an anti-dependence. - for (const auto &I : maxDepth->Succs) { - if (I.getKind() != SDep::Anti) - continue; - if (Nodes.count(I.getSUnit()) == 0) - continue; - if (NodeOrder.count(I.getSUnit()) != 0) - continue; - R.insert(I.getSUnit()); - } - } - Order = TopDown; - LLVM_DEBUG(dbgs() << "\n Switching order to top down "); - SmallSetVector<SUnit *, 8> N; - if (succ_L(NodeOrder, N, &Nodes)) - R.insert(N.begin(), N.end()); - } - } - LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); - } - - LLVM_DEBUG({ - dbgs() << "Node order: "; - for (SUnit *I : NodeOrder) - dbgs() << " " << I->NodeNum << " "; - dbgs() << "\n"; - }); -} - -/// Process the nodes in the computed order and create the pipelined schedule -/// of the instructions, if possible. Return true if a schedule is found. -bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { - - if (NodeOrder.empty()){ - LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); - return false; - } - - bool scheduleFound = false; - unsigned II = 0; - // Keep increasing II until a valid schedule is found. - for (II = MII; II <= MAX_II && !scheduleFound; ++II) { - Schedule.reset(); - Schedule.setInitiationInterval(II); - LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); - - SetVector<SUnit *>::iterator NI = NodeOrder.begin(); - SetVector<SUnit *>::iterator NE = NodeOrder.end(); - do { - SUnit *SU = *NI; - - // Compute the schedule time for the instruction, which is based - // upon the scheduled time for any predecessors/successors. - int EarlyStart = INT_MIN; - int LateStart = INT_MAX; - // These values are set when the size of the schedule window is limited - // due to chain dependences. - int SchedEnd = INT_MAX; - int SchedStart = INT_MIN; - Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, - II, this); - LLVM_DEBUG({ - dbgs() << "\n"; - dbgs() << "Inst (" << SU->NodeNum << ") "; - SU->getInstr()->dump(); - dbgs() << "\n"; - }); - LLVM_DEBUG({ - dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, - LateStart, SchedEnd, SchedStart); - }); - - if (EarlyStart > LateStart || SchedEnd < EarlyStart || - SchedStart > LateStart) - scheduleFound = false; - else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { - SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); - scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); - } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { - SchedStart = std::max(SchedStart, LateStart - (int)II + 1); - scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); - } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { - SchedEnd = - std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); - // When scheduling a Phi it is better to start at the late cycle and go - // backwards. The default order may insert the Phi too far away from - // its first dependence. - if (SU->getInstr()->isPHI()) - scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); - else - scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); - } else { - int FirstCycle = Schedule.getFirstCycle(); - scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), - FirstCycle + getASAP(SU) + II - 1, II); - } - // Even if we find a schedule, make sure the schedule doesn't exceed the - // allowable number of stages. We keep trying if this happens. - if (scheduleFound) - if (SwpMaxStages > -1 && - Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) - scheduleFound = false; - - LLVM_DEBUG({ - if (!scheduleFound) - dbgs() << "\tCan't schedule\n"; - }); - } while (++NI != NE && scheduleFound); - - // If a schedule is found, check if it is a valid schedule too. - if (scheduleFound) - scheduleFound = Schedule.isValidSchedule(this); - } - - LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II - << ")\n"); - - if (scheduleFound) - Schedule.finalizeSchedule(this); - else - Schedule.reset(); - - return scheduleFound && Schedule.getMaxStageCount() > 0; -} - -/// Given a schedule for the loop, generate a new version of the loop, -/// and replace the old version. This function generates a prolog -/// that contains the initial iterations in the pipeline, and kernel -/// loop, and the epilogue that contains the code for the final -/// iterations. -void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { - // Create a new basic block for the kernel and add it to the CFG. - MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); - - unsigned MaxStageCount = Schedule.getMaxStageCount(); - - // Remember the registers that are used in different stages. The index is - // the iteration, or stage, that the instruction is scheduled in. This is - // a map between register names in the original block and the names created - // in each stage of the pipelined loop. - ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; - InstrMapTy InstrMap; - - SmallVector<MachineBasicBlock *, 4> PrologBBs; - - MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); - assert(PreheaderBB != nullptr && - "Need to add code to handle loops w/o preheader"); - // Generate the prolog instructions that set up the pipeline. - generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); - MF.insert(BB->getIterator(), KernelBB); - - // Rearrange the instructions to generate the new, pipelined loop, - // and update register names as needed. - for (int Cycle = Schedule.getFirstCycle(), - LastCycle = Schedule.getFinalCycle(); - Cycle <= LastCycle; ++Cycle) { - std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); - // This inner loop schedules each instruction in the cycle. - for (SUnit *CI : CycleInstrs) { - if (CI->getInstr()->isPHI()) - continue; - unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); - MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); - updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); - KernelBB->push_back(NewMI); - InstrMap[NewMI] = CI->getInstr(); - } - } - - // Copy any terminator instructions to the new kernel, and update - // names as needed. - for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), - E = BB->instr_end(); - I != E; ++I) { - MachineInstr *NewMI = MF.CloneMachineInstr(&*I); - updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); - KernelBB->push_back(NewMI); - InstrMap[NewMI] = &*I; - } - - KernelBB->transferSuccessors(BB); - KernelBB->replaceSuccessor(BB, KernelBB); - - generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, - VRMap, InstrMap, MaxStageCount, MaxStageCount, false); - generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, - InstrMap, MaxStageCount, MaxStageCount, false); - - LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump();); - - SmallVector<MachineBasicBlock *, 4> EpilogBBs; - // Generate the epilog instructions to complete the pipeline. - generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, - PrologBBs); - - // We need this step because the register allocation doesn't handle some - // situations well, so we insert copies to help out. - splitLifetimes(KernelBB, EpilogBBs, Schedule); - - // Remove dead instructions due to loop induction variables. - removeDeadInstructions(KernelBB, EpilogBBs); - - // Add branches between prolog and epilog blocks. - addBranches(*PreheaderBB, PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); - - // Remove the original loop since it's no longer referenced. - for (auto &I : *BB) - LIS.RemoveMachineInstrFromMaps(I); - BB->clear(); - BB->eraseFromParent(); - - delete[] VRMap; -} - -/// Generate the pipeline prolog code. -void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, - MachineBasicBlock *KernelBB, - ValueMapTy *VRMap, - MBBVectorTy &PrologBBs) { - MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); - assert(PreheaderBB != nullptr && - "Need to add code to handle loops w/o preheader"); - MachineBasicBlock *PredBB = PreheaderBB; - InstrMapTy InstrMap; - - // Generate a basic block for each stage, not including the last stage, - // which will be generated in the kernel. Each basic block may contain - // instructions from multiple stages/iterations. - for (unsigned i = 0; i < LastStage; ++i) { - // Create and insert the prolog basic block prior to the original loop - // basic block. The original loop is removed later. - MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); - PrologBBs.push_back(NewBB); - MF.insert(BB->getIterator(), NewBB); - NewBB->transferSuccessors(PredBB); - PredBB->addSuccessor(NewBB); - PredBB = NewBB; - - // Generate instructions for each appropriate stage. Process instructions - // in original program order. - for (int StageNum = i; StageNum >= 0; --StageNum) { - for (MachineBasicBlock::iterator BBI = BB->instr_begin(), - BBE = BB->getFirstTerminator(); - BBI != BBE; ++BBI) { - if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { - if (BBI->isPHI()) - continue; - MachineInstr *NewMI = - cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); - updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, - VRMap); - NewBB->push_back(NewMI); - InstrMap[NewMI] = &*BBI; - } - } - } - rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); - LLVM_DEBUG({ - dbgs() << "prolog:\n"; - NewBB->dump(); - }); - } - - PredBB->replaceSuccessor(BB, KernelBB); - - // Check if we need to remove the branch from the preheader to the original - // loop, and replace it with a branch to the new loop. - unsigned numBranches = TII->removeBranch(*PreheaderBB); - if (numBranches) { - SmallVector<MachineOperand, 0> Cond; - TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc()); - } -} - -/// Generate the pipeline epilog code. The epilog code finishes the iterations -/// that were started in either the prolog or the kernel. We create a basic -/// block for each stage that needs to complete. -void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, - MachineBasicBlock *KernelBB, - ValueMapTy *VRMap, - MBBVectorTy &EpilogBBs, - MBBVectorTy &PrologBBs) { - // We need to change the branch from the kernel to the first epilog block, so - // this call to analyze branch uses the kernel rather than the original BB. - MachineBasicBlock *TBB = nullptr, *FBB = nullptr; - SmallVector<MachineOperand, 4> Cond; - bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); - assert(!checkBranch && "generateEpilog must be able to analyze the branch"); - if (checkBranch) - return; - - MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); - if (*LoopExitI == KernelBB) - ++LoopExitI; - assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); - MachineBasicBlock *LoopExitBB = *LoopExitI; - - MachineBasicBlock *PredBB = KernelBB; - MachineBasicBlock *EpilogStart = LoopExitBB; - InstrMapTy InstrMap; - - // Generate a basic block for each stage, not including the last stage, - // which was generated for the kernel. Each basic block may contain - // instructions from multiple stages/iterations. - int EpilogStage = LastStage + 1; - for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { - MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); - EpilogBBs.push_back(NewBB); - MF.insert(BB->getIterator(), NewBB); - - PredBB->replaceSuccessor(LoopExitBB, NewBB); - NewBB->addSuccessor(LoopExitBB); - - if (EpilogStart == LoopExitBB) - EpilogStart = NewBB; - - // Add instructions to the epilog depending on the current block. - // Process instructions in original program order. - for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { - for (auto &BBI : *BB) { - if (BBI.isPHI()) - continue; - MachineInstr *In = &BBI; - if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { - // Instructions with memoperands in the epilog are updated with - // conservative values. - MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0); - updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); - NewBB->push_back(NewMI); - InstrMap[NewMI] = In; - } - } - } - generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, - VRMap, InstrMap, LastStage, EpilogStage, i == 1); - generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, - InstrMap, LastStage, EpilogStage, i == 1); - PredBB = NewBB; - - LLVM_DEBUG({ - dbgs() << "epilog:\n"; - NewBB->dump(); - }); - } - - // Fix any Phi nodes in the loop exit block. - for (MachineInstr &MI : *LoopExitBB) { - if (!MI.isPHI()) - break; - for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { - MachineOperand &MO = MI.getOperand(i); - if (MO.getMBB() == BB) - MO.setMBB(PredBB); - } - } - - // Create a branch to the new epilog from the kernel. - // Remove the original branch and add a new branch to the epilog. - TII->removeBranch(*KernelBB); - TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); - // Add a branch to the loop exit. - if (EpilogBBs.size() > 0) { - MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); - SmallVector<MachineOperand, 4> Cond1; - TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc()); - } -} - -/// Replace all uses of FromReg that appear outside the specified -/// basic block with ToReg. -static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, - MachineBasicBlock *MBB, - MachineRegisterInfo &MRI, - LiveIntervals &LIS) { - for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), - E = MRI.use_end(); - I != E;) { - MachineOperand &O = *I; - ++I; - if (O.getParent()->getParent() != MBB) - O.setReg(ToReg); - } - if (!LIS.hasInterval(ToReg)) - LIS.createEmptyInterval(ToReg); -} - -/// Return true if the register has a use that occurs outside the -/// specified loop. -static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, - MachineRegisterInfo &MRI) { - for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), - E = MRI.use_end(); - I != E; ++I) - if (I->getParent()->getParent() != BB) - return true; - return false; -} - -/// Generate Phis for the specific block in the generated pipelined code. -/// This function looks at the Phis from the original code to guide the -/// creation of new Phis. -void SwingSchedulerDAG::generateExistingPhis( - MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, - MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, - InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, - bool IsLast) { - // Compute the stage number for the initial value of the Phi, which - // comes from the prolog. The prolog to use depends on to which kernel/ - // epilog that we're adding the Phi. - unsigned PrologStage = 0; - unsigned PrevStage = 0; - bool InKernel = (LastStageNum == CurStageNum); - if (InKernel) { - PrologStage = LastStageNum - 1; - PrevStage = CurStageNum; - } else { - PrologStage = LastStageNum - (CurStageNum - LastStageNum); - PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; - } - - for (MachineBasicBlock::iterator BBI = BB->instr_begin(), - BBE = BB->getFirstNonPHI(); - BBI != BBE; ++BBI) { - unsigned Def = BBI->getOperand(0).getReg(); - - unsigned InitVal = 0; - unsigned LoopVal = 0; - getPhiRegs(*BBI, BB, InitVal, LoopVal); - - unsigned PhiOp1 = 0; - // The Phi value from the loop body typically is defined in the loop, but - // not always. So, we need to check if the value is defined in the loop. - unsigned PhiOp2 = LoopVal; - if (VRMap[LastStageNum].count(LoopVal)) - PhiOp2 = VRMap[LastStageNum][LoopVal]; - - int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); - int LoopValStage = - Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); - unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); - if (NumStages == 0) { - // We don't need to generate a Phi anymore, but we need to rename any uses - // of the Phi value. - unsigned NewReg = VRMap[PrevStage][LoopVal]; - rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, - Def, InitVal, NewReg); - if (VRMap[CurStageNum].count(LoopVal)) - VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; - } - // Adjust the number of Phis needed depending on the number of prologs left, - // and the distance from where the Phi is first scheduled. The number of - // Phis cannot exceed the number of prolog stages. Each stage can - // potentially define two values. - unsigned MaxPhis = PrologStage + 2; - if (!InKernel && (int)PrologStage <= LoopValStage) - MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1); - unsigned NumPhis = std::min(NumStages, MaxPhis); - - unsigned NewReg = 0; - unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; - // In the epilog, we may need to look back one stage to get the correct - // Phi name because the epilog and prolog blocks execute the same stage. - // The correct name is from the previous block only when the Phi has - // been completely scheduled prior to the epilog, and Phi value is not - // needed in multiple stages. - int StageDiff = 0; - if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && - NumPhis == 1) - StageDiff = 1; - // Adjust the computations below when the phi and the loop definition - // are scheduled in different stages. - if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) - StageDiff = StageScheduled - LoopValStage; - for (unsigned np = 0; np < NumPhis; ++np) { - // If the Phi hasn't been scheduled, then use the initial Phi operand - // value. Otherwise, use the scheduled version of the instruction. This - // is a little complicated when a Phi references another Phi. - if (np > PrologStage || StageScheduled >= (int)LastStageNum) - PhiOp1 = InitVal; - // Check if the Phi has already been scheduled in a prolog stage. - else if (PrologStage >= AccessStage + StageDiff + np && - VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) - PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; - // Check if the Phi has already been scheduled, but the loop instruction - // is either another Phi, or doesn't occur in the loop. - else if (PrologStage >= AccessStage + StageDiff + np) { - // If the Phi references another Phi, we need to examine the other - // Phi to get the correct value. - PhiOp1 = LoopVal; - MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); - int Indirects = 1; - while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { - int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); - if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) - PhiOp1 = getInitPhiReg(*InstOp1, BB); - else - PhiOp1 = getLoopPhiReg(*InstOp1, BB); - InstOp1 = MRI.getVRegDef(PhiOp1); - int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); - int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); - if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && - VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { - PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; - break; - } - ++Indirects; - } - } else - PhiOp1 = InitVal; - // If this references a generated Phi in the kernel, get the Phi operand - // from the incoming block. - if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) - if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) - PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); - - MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); - bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); - // In the epilog, a map lookup is needed to get the value from the kernel, - // or previous epilog block. How is does this depends on if the - // instruction is scheduled in the previous block. - if (!InKernel) { - int StageDiffAdj = 0; - if (LoopValStage != -1 && StageScheduled > LoopValStage) - StageDiffAdj = StageScheduled - LoopValStage; - // Use the loop value defined in the kernel, unless the kernel - // contains the last definition of the Phi. - if (np == 0 && PrevStage == LastStageNum && - (StageScheduled != 0 || LoopValStage != 0) && - VRMap[PrevStage - StageDiffAdj].count(LoopVal)) - PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; - // Use the value defined by the Phi. We add one because we switch - // from looking at the loop value to the Phi definition. - else if (np > 0 && PrevStage == LastStageNum && - VRMap[PrevStage - np + 1].count(Def)) - PhiOp2 = VRMap[PrevStage - np + 1][Def]; - // Use the loop value defined in the kernel. - else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && - VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) - PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; - // Use the value defined by the Phi, unless we're generating the first - // epilog and the Phi refers to a Phi in a different stage. - else if (VRMap[PrevStage - np].count(Def) && - (!LoopDefIsPhi || (PrevStage != LastStageNum) || (LoopValStage == StageScheduled))) - PhiOp2 = VRMap[PrevStage - np][Def]; - } - - // Check if we can reuse an existing Phi. This occurs when a Phi - // references another Phi, and the other Phi is scheduled in an - // earlier stage. We can try to reuse an existing Phi up until the last - // stage of the current Phi. - if (LoopDefIsPhi) { - if (static_cast<int>(PrologStage - np) >= StageScheduled) { - int LVNumStages = Schedule.getStagesForPhi(LoopVal); - int StageDiff = (StageScheduled - LoopValStage); - LVNumStages -= StageDiff; - // Make sure the loop value Phi has been processed already. - if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) { - NewReg = PhiOp2; - unsigned ReuseStage = CurStageNum; - if (Schedule.isLoopCarried(this, *PhiInst)) - ReuseStage -= LVNumStages; - // Check if the Phi to reuse has been generated yet. If not, then - // there is nothing to reuse. - if (VRMap[ReuseStage - np].count(LoopVal)) { - NewReg = VRMap[ReuseStage - np][LoopVal]; - - rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, - &*BBI, Def, NewReg); - // Update the map with the new Phi name. - VRMap[CurStageNum - np][Def] = NewReg; - PhiOp2 = NewReg; - if (VRMap[LastStageNum - np - 1].count(LoopVal)) - PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; - - if (IsLast && np == NumPhis - 1) - replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); - continue; - } - } - } - if (InKernel && StageDiff > 0 && - VRMap[CurStageNum - StageDiff - np].count(LoopVal)) - PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; - } - - const TargetRegisterClass *RC = MRI.getRegClass(Def); - NewReg = MRI.createVirtualRegister(RC); - - MachineInstrBuilder NewPhi = - BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), - TII->get(TargetOpcode::PHI), NewReg); - NewPhi.addReg(PhiOp1).addMBB(BB1); - NewPhi.addReg(PhiOp2).addMBB(BB2); - if (np == 0) - InstrMap[NewPhi] = &*BBI; - - // We define the Phis after creating the new pipelined code, so - // we need to rename the Phi values in scheduled instructions. - - unsigned PrevReg = 0; - if (InKernel && VRMap[PrevStage - np].count(LoopVal)) - PrevReg = VRMap[PrevStage - np][LoopVal]; - rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, - Def, NewReg, PrevReg); - // If the Phi has been scheduled, use the new name for rewriting. - if (VRMap[CurStageNum - np].count(Def)) { - unsigned R = VRMap[CurStageNum - np][Def]; - rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, - R, NewReg); - } - - // Check if we need to rename any uses that occurs after the loop. The - // register to replace depends on whether the Phi is scheduled in the - // epilog. - if (IsLast && np == NumPhis - 1) - replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); - - // In the kernel, a dependent Phi uses the value from this Phi. - if (InKernel) - PhiOp2 = NewReg; - - // Update the map with the new Phi name. - VRMap[CurStageNum - np][Def] = NewReg; - } - - while (NumPhis++ < NumStages) { - rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, - &*BBI, Def, NewReg, 0); - } - - // Check if we need to rename a Phi that has been eliminated due to - // scheduling. - if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) - replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); - } -} - -/// Generate Phis for the specified block in the generated pipelined code. -/// These are new Phis needed because the definition is scheduled after the -/// use in the pipelined sequence. -void SwingSchedulerDAG::generatePhis( - MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, - MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, - InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, - bool IsLast) { - // Compute the stage number that contains the initial Phi value, and - // the Phi from the previous stage. - unsigned PrologStage = 0; - unsigned PrevStage = 0; - unsigned StageDiff = CurStageNum - LastStageNum; - bool InKernel = (StageDiff == 0); - if (InKernel) { - PrologStage = LastStageNum - 1; - PrevStage = CurStageNum; - } else { - PrologStage = LastStageNum - StageDiff; - PrevStage = LastStageNum + StageDiff - 1; - } - - for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), - BBE = BB->instr_end(); - BBI != BBE; ++BBI) { - for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = BBI->getOperand(i); - if (!MO.isReg() || !MO.isDef() || - !TargetRegisterInfo::isVirtualRegister(MO.getReg())) - continue; - - int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); - assert(StageScheduled != -1 && "Expecting scheduled instruction."); - unsigned Def = MO.getReg(); - unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); - // An instruction scheduled in stage 0 and is used after the loop - // requires a phi in the epilog for the last definition from either - // the kernel or prolog. - if (!InKernel && NumPhis == 0 && StageScheduled == 0 && - hasUseAfterLoop(Def, BB, MRI)) - NumPhis = 1; - if (!InKernel && (unsigned)StageScheduled > PrologStage) - continue; - - unsigned PhiOp2 = VRMap[PrevStage][Def]; - if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) - if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) - PhiOp2 = getLoopPhiReg(*InstOp2, BB2); - // The number of Phis can't exceed the number of prolog stages. The - // prolog stage number is zero based. - if (NumPhis > PrologStage + 1 - StageScheduled) - NumPhis = PrologStage + 1 - StageScheduled; - for (unsigned np = 0; np < NumPhis; ++np) { - unsigned PhiOp1 = VRMap[PrologStage][Def]; - if (np <= PrologStage) - PhiOp1 = VRMap[PrologStage - np][Def]; - if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { - if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) - PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); - if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) - PhiOp1 = getInitPhiReg(*InstOp1, NewBB); - } - if (!InKernel) - PhiOp2 = VRMap[PrevStage - np][Def]; - - const TargetRegisterClass *RC = MRI.getRegClass(Def); - unsigned NewReg = MRI.createVirtualRegister(RC); - - MachineInstrBuilder NewPhi = - BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), - TII->get(TargetOpcode::PHI), NewReg); - NewPhi.addReg(PhiOp1).addMBB(BB1); - NewPhi.addReg(PhiOp2).addMBB(BB2); - if (np == 0) - InstrMap[NewPhi] = &*BBI; - - // Rewrite uses and update the map. The actions depend upon whether - // we generating code for the kernel or epilog blocks. - if (InKernel) { - rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, - &*BBI, PhiOp1, NewReg); - rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, - &*BBI, PhiOp2, NewReg); - - PhiOp2 = NewReg; - VRMap[PrevStage - np - 1][Def] = NewReg; - } else { - VRMap[CurStageNum - np][Def] = NewReg; - if (np == NumPhis - 1) - rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, - &*BBI, Def, NewReg); - } - if (IsLast && np == NumPhis - 1) - replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); - } - } - } -} - -/// Remove instructions that generate values with no uses. -/// Typically, these are induction variable operations that generate values -/// used in the loop itself. A dead instruction has a definition with -/// no uses, or uses that occur in the original loop only. -void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, - MBBVectorTy &EpilogBBs) { - // For each epilog block, check that the value defined by each instruction - // is used. If not, delete it. - for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), - MBE = EpilogBBs.rend(); - MBB != MBE; ++MBB) - for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), - ME = (*MBB)->instr_rend(); - MI != ME;) { - // From DeadMachineInstructionElem. Don't delete inline assembly. - if (MI->isInlineAsm()) { - ++MI; - continue; - } - bool SawStore = false; - // Check if it's safe to remove the instruction due to side effects. - // We can, and want to, remove Phis here. - if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { - ++MI; - continue; - } - bool used = true; - for (MachineInstr::mop_iterator MOI = MI->operands_begin(), - MOE = MI->operands_end(); - MOI != MOE; ++MOI) { - if (!MOI->isReg() || !MOI->isDef()) - continue; - unsigned reg = MOI->getReg(); - // Assume physical registers are used, unless they are marked dead. - if (TargetRegisterInfo::isPhysicalRegister(reg)) { - used = !MOI->isDead(); - if (used) - break; - continue; - } - unsigned realUses = 0; - for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), - EI = MRI.use_end(); - UI != EI; ++UI) { - // Check if there are any uses that occur only in the original - // loop. If so, that's not a real use. - if (UI->getParent()->getParent() != BB) { - realUses++; - used = true; - break; - } - } - if (realUses > 0) - break; - used = false; - } - if (!used) { - LIS.RemoveMachineInstrFromMaps(*MI); - MI++->eraseFromParent(); - continue; - } - ++MI; - } - // In the kernel block, check if we can remove a Phi that generates a value - // used in an instruction removed in the epilog block. - for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), - BBE = KernelBB->getFirstNonPHI(); - BBI != BBE;) { - MachineInstr *MI = &*BBI; - ++BBI; - unsigned reg = MI->getOperand(0).getReg(); - if (MRI.use_begin(reg) == MRI.use_end()) { - LIS.RemoveMachineInstrFromMaps(*MI); - MI->eraseFromParent(); - } - } -} - -/// For loop carried definitions, we split the lifetime of a virtual register -/// that has uses past the definition in the next iteration. A copy with a new -/// virtual register is inserted before the definition, which helps with -/// generating a better register assignment. -/// -/// v1 = phi(a, v2) v1 = phi(a, v2) -/// v2 = phi(b, v3) v2 = phi(b, v3) -/// v3 = .. v4 = copy v1 -/// .. = V1 v3 = .. -/// .. = v4 -void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, - MBBVectorTy &EpilogBBs, - SMSchedule &Schedule) { - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - for (auto &PHI : KernelBB->phis()) { - unsigned Def = PHI.getOperand(0).getReg(); - // Check for any Phi definition that used as an operand of another Phi - // in the same block. - for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), - E = MRI.use_instr_end(); - I != E; ++I) { - if (I->isPHI() && I->getParent() == KernelBB) { - // Get the loop carried definition. - unsigned LCDef = getLoopPhiReg(PHI, KernelBB); - if (!LCDef) - continue; - MachineInstr *MI = MRI.getVRegDef(LCDef); - if (!MI || MI->getParent() != KernelBB || MI->isPHI()) - continue; - // Search through the rest of the block looking for uses of the Phi - // definition. If one occurs, then split the lifetime. - unsigned SplitReg = 0; - for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), - KernelBB->instr_end())) - if (BBJ.readsRegister(Def)) { - // We split the lifetime when we find the first use. - if (SplitReg == 0) { - SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); - BuildMI(*KernelBB, MI, MI->getDebugLoc(), - TII->get(TargetOpcode::COPY), SplitReg) - .addReg(Def); - } - BBJ.substituteRegister(Def, SplitReg, 0, *TRI); - } - if (!SplitReg) - continue; - // Search through each of the epilog blocks for any uses to be renamed. - for (auto &Epilog : EpilogBBs) - for (auto &I : *Epilog) - if (I.readsRegister(Def)) - I.substituteRegister(Def, SplitReg, 0, *TRI); - break; - } - } - } -} - -/// Remove the incoming block from the Phis in a basic block. -static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { - for (MachineInstr &MI : *BB) { - if (!MI.isPHI()) - break; - for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) - if (MI.getOperand(i + 1).getMBB() == Incoming) { - MI.RemoveOperand(i + 1); - MI.RemoveOperand(i); - break; - } - } -} - -/// Create branches from each prolog basic block to the appropriate epilog -/// block. These edges are needed if the loop ends before reaching the -/// kernel. -void SwingSchedulerDAG::addBranches(MachineBasicBlock &PreheaderBB, - MBBVectorTy &PrologBBs, - MachineBasicBlock *KernelBB, - MBBVectorTy &EpilogBBs, - SMSchedule &Schedule, ValueMapTy *VRMap) { - assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); - MachineInstr *IndVar = Pass.LI.LoopInductionVar; - MachineInstr *Cmp = Pass.LI.LoopCompare; - MachineBasicBlock *LastPro = KernelBB; - MachineBasicBlock *LastEpi = KernelBB; - - // Start from the blocks connected to the kernel and work "out" - // to the first prolog and the last epilog blocks. - SmallVector<MachineInstr *, 4> PrevInsts; - unsigned MaxIter = PrologBBs.size() - 1; - unsigned LC = UINT_MAX; - unsigned LCMin = UINT_MAX; - for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { - // Add branches to the prolog that go to the corresponding - // epilog, and the fall-thru prolog/kernel block. - MachineBasicBlock *Prolog = PrologBBs[j]; - MachineBasicBlock *Epilog = EpilogBBs[i]; - // We've executed one iteration, so decrement the loop count and check for - // the loop end. - SmallVector<MachineOperand, 4> Cond; - // Check if the LOOP0 has already been removed. If so, then there is no need - // to reduce the trip count. - if (LC != 0) - LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond, - PrevInsts, j, MaxIter); - - // Record the value of the first trip count, which is used to determine if - // branches and blocks can be removed for constant trip counts. - if (LCMin == UINT_MAX) - LCMin = LC; - - unsigned numAdded = 0; - if (TargetRegisterInfo::isVirtualRegister(LC)) { - Prolog->addSuccessor(Epilog); - numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); - } else if (j >= LCMin) { - Prolog->addSuccessor(Epilog); - Prolog->removeSuccessor(LastPro); - LastEpi->removeSuccessor(Epilog); - numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc()); - removePhis(Epilog, LastEpi); - // Remove the blocks that are no longer referenced. - if (LastPro != LastEpi) { - LastEpi->clear(); - LastEpi->eraseFromParent(); - } - LastPro->clear(); - LastPro->eraseFromParent(); - } else { - numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc()); - removePhis(Epilog, Prolog); - } - LastPro = Prolog; - LastEpi = Epilog; - for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), - E = Prolog->instr_rend(); - I != E && numAdded > 0; ++I, --numAdded) - updateInstruction(&*I, false, j, 0, Schedule, VRMap); - } -} - -/// Return true if we can compute the amount the instruction changes -/// during each iteration. Set Delta to the amount of the change. -bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - const MachineOperand *BaseOp; - int64_t Offset; - if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) - return false; - - if (!BaseOp->isReg()) - return false; - - unsigned BaseReg = BaseOp->getReg(); - - MachineRegisterInfo &MRI = MF.getRegInfo(); - // Check if there is a Phi. If so, get the definition in the loop. - MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); - if (BaseDef && BaseDef->isPHI()) { - BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); - BaseDef = MRI.getVRegDef(BaseReg); - } - if (!BaseDef) - return false; - - int D = 0; - if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) - return false; - - Delta = D; - return true; -} - -/// Update the memory operand with a new offset when the pipeliner -/// generates a new copy of the instruction that refers to a -/// different memory location. -void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, - MachineInstr &OldMI, unsigned Num) { - if (Num == 0) - return; - // If the instruction has memory operands, then adjust the offset - // when the instruction appears in different stages. - if (NewMI.memoperands_empty()) - return; - SmallVector<MachineMemOperand *, 2> NewMMOs; - for (MachineMemOperand *MMO : NewMI.memoperands()) { - // TODO: Figure out whether isAtomic is really necessary (see D57601). - if (MMO->isVolatile() || MMO->isAtomic() || - (MMO->isInvariant() && MMO->isDereferenceable()) || - (!MMO->getValue())) { - NewMMOs.push_back(MMO); - continue; - } - unsigned Delta; - if (Num != UINT_MAX && computeDelta(OldMI, Delta)) { - int64_t AdjOffset = Delta * Num; - NewMMOs.push_back( - MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize())); - } else { - NewMMOs.push_back( - MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize)); - } - } - NewMI.setMemRefs(MF, NewMMOs); -} - -/// Clone the instruction for the new pipelined loop and update the -/// memory operands, if needed. -MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, - unsigned CurStageNum, - unsigned InstStageNum) { - MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); - // Check for tied operands in inline asm instructions. This should be handled - // elsewhere, but I'm not sure of the best solution. - if (OldMI->isInlineAsm()) - for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { - const auto &MO = OldMI->getOperand(i); - if (MO.isReg() && MO.isUse()) - break; - unsigned UseIdx; - if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) - NewMI->tieOperands(i, UseIdx); - } - updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); - return NewMI; -} - -/// Clone the instruction for the new pipelined loop. If needed, this -/// function updates the instruction using the values saved in the -/// InstrChanges structure. -MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, - unsigned CurStageNum, - unsigned InstStageNum, - SMSchedule &Schedule) { - MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); - DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = - InstrChanges.find(getSUnit(OldMI)); - if (It != InstrChanges.end()) { - std::pair<unsigned, int64_t> RegAndOffset = It->second; - unsigned BasePos, OffsetPos; - if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos)) - return nullptr; - int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); - MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); - if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) - NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); - NewMI->getOperand(OffsetPos).setImm(NewOffset); - } - updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); - return NewMI; -} - -/// Update the machine instruction with new virtual registers. This -/// function may change the defintions and/or uses. -void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, - unsigned CurStageNum, - unsigned InstrStageNum, - SMSchedule &Schedule, - ValueMapTy *VRMap) { - for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { - MachineOperand &MO = NewMI->getOperand(i); - if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) - continue; - unsigned reg = MO.getReg(); - if (MO.isDef()) { - // Create a new virtual register for the definition. - const TargetRegisterClass *RC = MRI.getRegClass(reg); - unsigned NewReg = MRI.createVirtualRegister(RC); - MO.setReg(NewReg); - VRMap[CurStageNum][reg] = NewReg; - if (LastDef) - replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); - } else if (MO.isUse()) { - MachineInstr *Def = MRI.getVRegDef(reg); - // Compute the stage that contains the last definition for instruction. - int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); - unsigned StageNum = CurStageNum; - if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { - // Compute the difference in stages between the defintion and the use. - unsigned StageDiff = (InstrStageNum - DefStageNum); - // Make an adjustment to get the last definition. - StageNum -= StageDiff; - } - if (VRMap[StageNum].count(reg)) - MO.setReg(VRMap[StageNum][reg]); - } - } -} - -/// Return the instruction in the loop that defines the register. -/// If the definition is a Phi, then follow the Phi operand to -/// the instruction in the loop. -MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { - SmallPtrSet<MachineInstr *, 8> Visited; - MachineInstr *Def = MRI.getVRegDef(Reg); - while (Def->isPHI()) { - if (!Visited.insert(Def).second) - break; - for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) - if (Def->getOperand(i + 1).getMBB() == BB) { - Def = MRI.getVRegDef(Def->getOperand(i).getReg()); - break; - } - } - return Def; -} - -/// Return the new name for the value from the previous stage. -unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, - unsigned LoopVal, unsigned LoopStage, - ValueMapTy *VRMap, - MachineBasicBlock *BB) { - unsigned PrevVal = 0; - if (StageNum > PhiStage) { - MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); - if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) - // The name is defined in the previous stage. - PrevVal = VRMap[StageNum - 1][LoopVal]; - else if (VRMap[StageNum].count(LoopVal)) - // The previous name is defined in the current stage when the instruction - // order is swapped. - PrevVal = VRMap[StageNum][LoopVal]; - else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) - // The loop value hasn't yet been scheduled. - PrevVal = LoopVal; - else if (StageNum == PhiStage + 1) - // The loop value is another phi, which has not been scheduled. - PrevVal = getInitPhiReg(*LoopInst, BB); - else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) - // The loop value is another phi, which has been scheduled. - PrevVal = - getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), - LoopStage, VRMap, BB); - } - return PrevVal; -} - -/// Rewrite the Phi values in the specified block to use the mappings -/// from the initial operand. Once the Phi is scheduled, we switch -/// to using the loop value instead of the Phi value, so those names -/// do not need to be rewritten. -void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, - unsigned StageNum, - SMSchedule &Schedule, - ValueMapTy *VRMap, - InstrMapTy &InstrMap) { - for (auto &PHI : BB->phis()) { - unsigned InitVal = 0; - unsigned LoopVal = 0; - getPhiRegs(PHI, BB, InitVal, LoopVal); - unsigned PhiDef = PHI.getOperand(0).getReg(); - - unsigned PhiStage = - (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); - unsigned LoopStage = - (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); - unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); - if (NumPhis > StageNum) - NumPhis = StageNum; - for (unsigned np = 0; np <= NumPhis; ++np) { - unsigned NewVal = - getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); - if (!NewVal) - NewVal = InitVal; - rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI, - PhiDef, NewVal); - } - } -} - -/// Rewrite a previously scheduled instruction to use the register value -/// from the new instruction. Make sure the instruction occurs in the -/// basic block, and we don't change the uses in the new instruction. -void SwingSchedulerDAG::rewriteScheduledInstr( - MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, - unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, - unsigned NewReg, unsigned PrevReg) { - bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); - int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; - // Rewrite uses that have been scheduled already to use the new - // Phi register. - for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), - EI = MRI.use_end(); - UI != EI;) { - MachineOperand &UseOp = *UI; - MachineInstr *UseMI = UseOp.getParent(); - ++UI; - if (UseMI->getParent() != BB) - continue; - if (UseMI->isPHI()) { - if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) - continue; - if (getLoopPhiReg(*UseMI, BB) != OldReg) - continue; - } - InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); - assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); - SUnit *OrigMISU = getSUnit(OrigInstr->second); - int StageSched = Schedule.stageScheduled(OrigMISU); - int CycleSched = Schedule.cycleScheduled(OrigMISU); - unsigned ReplaceReg = 0; - // This is the stage for the scheduled instruction. - if (StagePhi == StageSched && Phi->isPHI()) { - int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); - if (PrevReg && InProlog) - ReplaceReg = PrevReg; - else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && - (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) - ReplaceReg = PrevReg; - else - ReplaceReg = NewReg; - } - // The scheduled instruction occurs before the scheduled Phi, and the - // Phi is not loop carried. - if (!InProlog && StagePhi + 1 == StageSched && - !Schedule.isLoopCarried(this, *Phi)) - ReplaceReg = NewReg; - if (StagePhi > StageSched && Phi->isPHI()) - ReplaceReg = NewReg; - if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) - ReplaceReg = NewReg; - if (ReplaceReg) { - MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); - UseOp.setReg(ReplaceReg); - } - } -} - -/// Check if we can change the instruction to use an offset value from the -/// previous iteration. If so, return true and set the base and offset values -/// so that we can rewrite the load, if necessary. -/// v1 = Phi(v0, v3) -/// v2 = load v1, 0 -/// v3 = post_store v1, 4, x -/// This function enables the load to be rewritten as v2 = load v3, 4. -bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, - unsigned &BasePos, - unsigned &OffsetPos, - unsigned &NewBase, - int64_t &Offset) { - // Get the load instruction. - if (TII->isPostIncrement(*MI)) - return false; - unsigned BasePosLd, OffsetPosLd; - if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) - return false; - unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); - - // Look for the Phi instruction. - MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); - MachineInstr *Phi = MRI.getVRegDef(BaseReg); - if (!Phi || !Phi->isPHI()) - return false; - // Get the register defined in the loop block. - unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); - if (!PrevReg) - return false; - - // Check for the post-increment load/store instruction. - MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); - if (!PrevDef || PrevDef == MI) - return false; - - if (!TII->isPostIncrement(*PrevDef)) - return false; - - unsigned BasePos1 = 0, OffsetPos1 = 0; - if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) - return false; - - // Make sure that the instructions do not access the same memory location in - // the next iteration. - int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); - int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); - MachineInstr *NewMI = MF.CloneMachineInstr(MI); - NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); - bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); - MF.DeleteMachineInstr(NewMI); - if (!Disjoint) - return false; - - // Set the return value once we determine that we return true. - BasePos = BasePosLd; - OffsetPos = OffsetPosLd; - NewBase = PrevReg; - Offset = StoreOffset; - return true; -} - -/// Apply changes to the instruction if needed. The changes are need -/// to improve the scheduling and depend up on the final schedule. -void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, - SMSchedule &Schedule) { - SUnit *SU = getSUnit(MI); - DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = - InstrChanges.find(SU); - if (It != InstrChanges.end()) { - std::pair<unsigned, int64_t> RegAndOffset = It->second; - unsigned BasePos, OffsetPos; - if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) - return; - unsigned BaseReg = MI->getOperand(BasePos).getReg(); - MachineInstr *LoopDef = findDefInLoop(BaseReg); - int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); - int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); - int BaseStageNum = Schedule.stageScheduled(SU); - int BaseCycleNum = Schedule.cycleScheduled(SU); - if (BaseStageNum < DefStageNum) { - MachineInstr *NewMI = MF.CloneMachineInstr(MI); - int OffsetDiff = DefStageNum - BaseStageNum; - if (DefCycleNum < BaseCycleNum) { - NewMI->getOperand(BasePos).setReg(RegAndOffset.first); - if (OffsetDiff > 0) - --OffsetDiff; - } - int64_t NewOffset = - MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; - NewMI->getOperand(OffsetPos).setImm(NewOffset); - SU->setInstr(NewMI); - MISUnitMap[NewMI] = SU; - NewMIs.insert(NewMI); - } - } -} - -/// Return true for an order or output dependence that is loop carried -/// potentially. A dependence is loop carried if the destination defines a valu -/// that may be used or defined by the source in a subsequent iteration. -bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, - bool isSucc) { - if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || - Dep.isArtificial()) - return false; - - if (!SwpPruneLoopCarried) - return true; - - if (Dep.getKind() == SDep::Output) - return true; - - MachineInstr *SI = Source->getInstr(); - MachineInstr *DI = Dep.getSUnit()->getInstr(); - if (!isSucc) - std::swap(SI, DI); - assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); - - // Assume ordered loads and stores may have a loop carried dependence. - if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || - SI->mayRaiseFPException() || DI->mayRaiseFPException() || - SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) - return true; - - // Only chain dependences between a load and store can be loop carried. - if (!DI->mayStore() || !SI->mayLoad()) - return false; - - unsigned DeltaS, DeltaD; - if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) - return true; - - const MachineOperand *BaseOpS, *BaseOpD; - int64_t OffsetS, OffsetD; - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) || - !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI)) - return true; - - if (!BaseOpS->isIdenticalTo(*BaseOpD)) - return true; - - // Check that the base register is incremented by a constant value for each - // iteration. - MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); - if (!Def || !Def->isPHI()) - return true; - unsigned InitVal = 0; - unsigned LoopVal = 0; - getPhiRegs(*Def, BB, InitVal, LoopVal); - MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); - int D = 0; - if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) - return true; - - uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); - uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); - - // This is the main test, which checks the offset values and the loop - // increment value to determine if the accesses may be loop carried. - if (AccessSizeS == MemoryLocation::UnknownSize || - AccessSizeD == MemoryLocation::UnknownSize) - return true; - - if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) - return true; - - return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); -} - -void SwingSchedulerDAG::postprocessDAG() { - for (auto &M : Mutations) - M->apply(this); -} - -/// Try to schedule the node at the specified StartCycle and continue -/// until the node is schedule or the EndCycle is reached. This function -/// returns true if the node is scheduled. This routine may search either -/// forward or backward for a place to insert the instruction based upon -/// the relative values of StartCycle and EndCycle. -bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { - bool forward = true; - LLVM_DEBUG({ - dbgs() << "Trying to insert node between " << StartCycle << " and " - << EndCycle << " II: " << II << "\n"; - }); - if (StartCycle > EndCycle) - forward = false; - - // The terminating condition depends on the direction. - int termCycle = forward ? EndCycle + 1 : EndCycle - 1; - for (int curCycle = StartCycle; curCycle != termCycle; - forward ? ++curCycle : --curCycle) { - - // Add the already scheduled instructions at the specified cycle to the - // DFA. - ProcItinResources.clearResources(); - for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); - checkCycle <= LastCycle; checkCycle += II) { - std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; - - for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), - E = cycleInstrs.end(); - I != E; ++I) { - if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) - continue; - assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && - "These instructions have already been scheduled."); - ProcItinResources.reserveResources(*(*I)->getInstr()); - } - } - if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || - ProcItinResources.canReserveResources(*SU->getInstr())) { - LLVM_DEBUG({ - dbgs() << "\tinsert at cycle " << curCycle << " "; - SU->getInstr()->dump(); - }); - - ScheduledInstrs[curCycle].push_back(SU); - InstrToCycle.insert(std::make_pair(SU, curCycle)); - if (curCycle > LastCycle) - LastCycle = curCycle; - if (curCycle < FirstCycle) - FirstCycle = curCycle; - return true; - } - LLVM_DEBUG({ - dbgs() << "\tfailed to insert at cycle " << curCycle << " "; - SU->getInstr()->dump(); - }); - } - return false; -} - -// Return the cycle of the earliest scheduled instruction in the chain. -int SMSchedule::earliestCycleInChain(const SDep &Dep) { - SmallPtrSet<SUnit *, 8> Visited; - SmallVector<SDep, 8> Worklist; - Worklist.push_back(Dep); - int EarlyCycle = INT_MAX; - while (!Worklist.empty()) { - const SDep &Cur = Worklist.pop_back_val(); - SUnit *PrevSU = Cur.getSUnit(); - if (Visited.count(PrevSU)) - continue; - std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); - if (it == InstrToCycle.end()) - continue; - EarlyCycle = std::min(EarlyCycle, it->second); - for (const auto &PI : PrevSU->Preds) - if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) - Worklist.push_back(PI); - Visited.insert(PrevSU); - } - return EarlyCycle; -} - -// Return the cycle of the latest scheduled instruction in the chain. -int SMSchedule::latestCycleInChain(const SDep &Dep) { - SmallPtrSet<SUnit *, 8> Visited; - SmallVector<SDep, 8> Worklist; - Worklist.push_back(Dep); - int LateCycle = INT_MIN; - while (!Worklist.empty()) { - const SDep &Cur = Worklist.pop_back_val(); - SUnit *SuccSU = Cur.getSUnit(); - if (Visited.count(SuccSU)) - continue; - std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); - if (it == InstrToCycle.end()) - continue; - LateCycle = std::max(LateCycle, it->second); - for (const auto &SI : SuccSU->Succs) - if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output) - Worklist.push_back(SI); - Visited.insert(SuccSU); - } - return LateCycle; -} - -/// If an instruction has a use that spans multiple iterations, then -/// return true. These instructions are characterized by having a back-ege -/// to a Phi, which contains a reference to another Phi. -static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { - for (auto &P : SU->Preds) - if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) - for (auto &S : P.getSUnit()->Succs) - if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) - return P.getSUnit(); - return nullptr; -} - -/// Compute the scheduling start slot for the instruction. The start slot -/// depends on any predecessor or successor nodes scheduled already. -void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, - int *MinEnd, int *MaxStart, int II, - SwingSchedulerDAG *DAG) { - // Iterate over each instruction that has been scheduled already. The start - // slot computation depends on whether the previously scheduled instruction - // is a predecessor or successor of the specified instruction. - for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { - - // Iterate over each instruction in the current cycle. - for (SUnit *I : getInstructions(cycle)) { - // Because we're processing a DAG for the dependences, we recognize - // the back-edge in recurrences by anti dependences. - for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { - const SDep &Dep = SU->Preds[i]; - if (Dep.getSUnit() == I) { - if (!DAG->isBackedge(SU, Dep)) { - int EarlyStart = cycle + Dep.getLatency() - - DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; - *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); - if (DAG->isLoopCarriedDep(SU, Dep, false)) { - int End = earliestCycleInChain(Dep) + (II - 1); - *MinEnd = std::min(*MinEnd, End); - } - } else { - int LateStart = cycle - Dep.getLatency() + - DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; - *MinLateStart = std::min(*MinLateStart, LateStart); - } - } - // For instruction that requires multiple iterations, make sure that - // the dependent instruction is not scheduled past the definition. - SUnit *BE = multipleIterations(I, DAG); - if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && - !SU->isPred(I)) - *MinLateStart = std::min(*MinLateStart, cycle); - } - for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { - if (SU->Succs[i].getSUnit() == I) { - const SDep &Dep = SU->Succs[i]; - if (!DAG->isBackedge(SU, Dep)) { - int LateStart = cycle - Dep.getLatency() + - DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; - *MinLateStart = std::min(*MinLateStart, LateStart); - if (DAG->isLoopCarriedDep(SU, Dep)) { - int Start = latestCycleInChain(Dep) + 1 - II; - *MaxStart = std::max(*MaxStart, Start); - } - } else { - int EarlyStart = cycle + Dep.getLatency() - - DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; - *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); - } - } - } - } - } -} - -/// Order the instructions within a cycle so that the definitions occur -/// before the uses. Returns true if the instruction is added to the start -/// of the list, or false if added to the end. -void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, - std::deque<SUnit *> &Insts) { - MachineInstr *MI = SU->getInstr(); - bool OrderBeforeUse = false; - bool OrderAfterDef = false; - bool OrderBeforeDef = false; - unsigned MoveDef = 0; - unsigned MoveUse = 0; - int StageInst1 = stageScheduled(SU); - - unsigned Pos = 0; - for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; - ++I, ++Pos) { - for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { - MachineOperand &MO = MI->getOperand(i); - if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) - continue; - - unsigned Reg = MO.getReg(); - unsigned BasePos, OffsetPos; - if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) - if (MI->getOperand(BasePos).getReg() == Reg) - if (unsigned NewReg = SSD->getInstrBaseReg(SU)) - Reg = NewReg; - bool Reads, Writes; - std::tie(Reads, Writes) = - (*I)->getInstr()->readsWritesVirtualRegister(Reg); - if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { - OrderBeforeUse = true; - if (MoveUse == 0) - MoveUse = Pos; - } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { - // Add the instruction after the scheduled instruction. - OrderAfterDef = true; - MoveDef = Pos; - } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { - if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { - OrderBeforeUse = true; - if (MoveUse == 0) - MoveUse = Pos; - } else { - OrderAfterDef = true; - MoveDef = Pos; - } - } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { - OrderBeforeUse = true; - if (MoveUse == 0) - MoveUse = Pos; - if (MoveUse != 0) { - OrderAfterDef = true; - MoveDef = Pos - 1; - } - } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { - // Add the instruction before the scheduled instruction. - OrderBeforeUse = true; - if (MoveUse == 0) - MoveUse = Pos; - } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && - isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { - if (MoveUse == 0) { - OrderBeforeDef = true; - MoveUse = Pos; - } - } - } - // Check for order dependences between instructions. Make sure the source - // is ordered before the destination. - for (auto &S : SU->Succs) { - if (S.getSUnit() != *I) - continue; - if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { - OrderBeforeUse = true; - if (Pos < MoveUse) - MoveUse = Pos; - } - // We did not handle HW dependences in previous for loop, - // and we normally set Latency = 0 for Anti deps, - // so may have nodes in same cycle with Anti denpendent on HW regs. - else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { - OrderBeforeUse = true; - if ((MoveUse == 0) || (Pos < MoveUse)) - MoveUse = Pos; - } - } - for (auto &P : SU->Preds) { - if (P.getSUnit() != *I) - continue; - if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { - OrderAfterDef = true; - MoveDef = Pos; - } - } - } - - // A circular dependence. - if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) - OrderBeforeUse = false; - - // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due - // to a loop-carried dependence. - if (OrderBeforeDef) - OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); - - // The uncommon case when the instruction order needs to be updated because - // there is both a use and def. - if (OrderBeforeUse && OrderAfterDef) { - SUnit *UseSU = Insts.at(MoveUse); - SUnit *DefSU = Insts.at(MoveDef); - if (MoveUse > MoveDef) { - Insts.erase(Insts.begin() + MoveUse); - Insts.erase(Insts.begin() + MoveDef); - } else { - Insts.erase(Insts.begin() + MoveDef); - Insts.erase(Insts.begin() + MoveUse); - } - orderDependence(SSD, UseSU, Insts); - orderDependence(SSD, SU, Insts); - orderDependence(SSD, DefSU, Insts); - return; - } - // Put the new instruction first if there is a use in the list. Otherwise, - // put it at the end of the list. - if (OrderBeforeUse) - Insts.push_front(SU); - else - Insts.push_back(SU); -} - -/// Return true if the scheduled Phi has a loop carried operand. -bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { - if (!Phi.isPHI()) - return false; - assert(Phi.isPHI() && "Expecting a Phi."); - SUnit *DefSU = SSD->getSUnit(&Phi); - unsigned DefCycle = cycleScheduled(DefSU); - int DefStage = stageScheduled(DefSU); - - unsigned InitVal = 0; - unsigned LoopVal = 0; - getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); - SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); - if (!UseSU) - return true; - if (UseSU->getInstr()->isPHI()) - return true; - unsigned LoopCycle = cycleScheduled(UseSU); - int LoopStage = stageScheduled(UseSU); - return (LoopCycle > DefCycle) || (LoopStage <= DefStage); -} - -/// Return true if the instruction is a definition that is loop carried -/// and defines the use on the next iteration. -/// v1 = phi(v2, v3) -/// (Def) v3 = op v1 -/// (MO) = v1 -/// If MO appears before Def, then then v1 and v3 may get assigned to the same -/// register. -bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, - MachineInstr *Def, MachineOperand &MO) { - if (!MO.isReg()) - return false; - if (Def->isPHI()) - return false; - MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); - if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) - return false; - if (!isLoopCarried(SSD, *Phi)) - return false; - unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); - for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { - MachineOperand &DMO = Def->getOperand(i); - if (!DMO.isReg() || !DMO.isDef()) - continue; - if (DMO.getReg() == LoopReg) - return true; - } - return false; -} - -// Check if the generated schedule is valid. This function checks if -// an instruction that uses a physical register is scheduled in a -// different stage than the definition. The pipeliner does not handle -// physical register values that may cross a basic block boundary. -bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { - for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { - SUnit &SU = SSD->SUnits[i]; - if (!SU.hasPhysRegDefs) - continue; - int StageDef = stageScheduled(&SU); - assert(StageDef != -1 && "Instruction should have been scheduled."); - for (auto &SI : SU.Succs) - if (SI.isAssignedRegDep()) - if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg())) - if (stageScheduled(SI.getSUnit()) != StageDef) - return false; - } - return true; -} - -/// A property of the node order in swing-modulo-scheduling is -/// that for nodes outside circuits the following holds: -/// none of them is scheduled after both a successor and a -/// predecessor. -/// The method below checks whether the property is met. -/// If not, debug information is printed and statistics information updated. -/// Note that we do not use an assert statement. -/// The reason is that although an invalid node oder may prevent -/// the pipeliner from finding a pipelined schedule for arbitrary II, -/// it does not lead to the generation of incorrect code. -void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { - - // a sorted vector that maps each SUnit to its index in the NodeOrder - typedef std::pair<SUnit *, unsigned> UnitIndex; - std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); - - for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) - Indices.push_back(std::make_pair(NodeOrder[i], i)); - - auto CompareKey = [](UnitIndex i1, UnitIndex i2) { - return std::get<0>(i1) < std::get<0>(i2); - }; - - // sort, so that we can perform a binary search - llvm::sort(Indices, CompareKey); - - bool Valid = true; - (void)Valid; - // for each SUnit in the NodeOrder, check whether - // it appears after both a successor and a predecessor - // of the SUnit. If this is the case, and the SUnit - // is not part of circuit, then the NodeOrder is not - // valid. - for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { - SUnit *SU = NodeOrder[i]; - unsigned Index = i; - - bool PredBefore = false; - bool SuccBefore = false; - - SUnit *Succ; - SUnit *Pred; - (void)Succ; - (void)Pred; - - for (SDep &PredEdge : SU->Preds) { - SUnit *PredSU = PredEdge.getSUnit(); - unsigned PredIndex = std::get<1>( - *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); - if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { - PredBefore = true; - Pred = PredSU; - break; - } - } - - for (SDep &SuccEdge : SU->Succs) { - SUnit *SuccSU = SuccEdge.getSUnit(); - // Do not process a boundary node, it was not included in NodeOrder, - // hence not in Indices either, call to std::lower_bound() below will - // return Indices.end(). - if (SuccSU->isBoundaryNode()) - continue; - unsigned SuccIndex = std::get<1>( - *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); - if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { - SuccBefore = true; - Succ = SuccSU; - break; - } - } - - if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { - // instructions in circuits are allowed to be scheduled - // after both a successor and predecessor. - bool InCircuit = llvm::any_of( - Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); - if (InCircuit) - LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); - else { - Valid = false; - NumNodeOrderIssues++; - LLVM_DEBUG(dbgs() << "Predecessor ";); - } - LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum - << " are scheduled before node " << SU->NodeNum - << "\n";); - } - } - - LLVM_DEBUG({ - if (!Valid) - dbgs() << "Invalid node order found!\n"; - }); -} - -/// Attempt to fix the degenerate cases when the instruction serialization -/// causes the register lifetimes to overlap. For example, -/// p' = store_pi(p, b) -/// = load p, offset -/// In this case p and p' overlap, which means that two registers are needed. -/// Instead, this function changes the load to use p' and updates the offset. -void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { - unsigned OverlapReg = 0; - unsigned NewBaseReg = 0; - for (SUnit *SU : Instrs) { - MachineInstr *MI = SU->getInstr(); - for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { - const MachineOperand &MO = MI->getOperand(i); - // Look for an instruction that uses p. The instruction occurs in the - // same cycle but occurs later in the serialized order. - if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { - // Check that the instruction appears in the InstrChanges structure, - // which contains instructions that can have the offset updated. - DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = - InstrChanges.find(SU); - if (It != InstrChanges.end()) { - unsigned BasePos, OffsetPos; - // Update the base register and adjust the offset. - if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { - MachineInstr *NewMI = MF.CloneMachineInstr(MI); - NewMI->getOperand(BasePos).setReg(NewBaseReg); - int64_t NewOffset = - MI->getOperand(OffsetPos).getImm() - It->second.second; - NewMI->getOperand(OffsetPos).setImm(NewOffset); - SU->setInstr(NewMI); - MISUnitMap[NewMI] = SU; - NewMIs.insert(NewMI); - } - } - OverlapReg = 0; - NewBaseReg = 0; - break; - } - // Look for an instruction of the form p' = op(p), which uses and defines - // two virtual registers that get allocated to the same physical register. - unsigned TiedUseIdx = 0; - if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { - // OverlapReg is p in the example above. - OverlapReg = MI->getOperand(TiedUseIdx).getReg(); - // NewBaseReg is p' in the example above. - NewBaseReg = MI->getOperand(i).getReg(); - break; - } - } - } -} - -/// After the schedule has been formed, call this function to combine -/// the instructions from the different stages/cycles. That is, this -/// function creates a schedule that represents a single iteration. -void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { - // Move all instructions to the first stage from later stages. - for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { - for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; - ++stage) { - std::deque<SUnit *> &cycleInstrs = - ScheduledInstrs[cycle + (stage * InitiationInterval)]; - for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), - E = cycleInstrs.rend(); - I != E; ++I) - ScheduledInstrs[cycle].push_front(*I); - } - } - // Iterate over the definitions in each instruction, and compute the - // stage difference for each use. Keep the maximum value. - for (auto &I : InstrToCycle) { - int DefStage = stageScheduled(I.first); - MachineInstr *MI = I.first->getInstr(); - for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { - MachineOperand &Op = MI->getOperand(i); - if (!Op.isReg() || !Op.isDef()) - continue; - - unsigned Reg = Op.getReg(); - unsigned MaxDiff = 0; - bool PhiIsSwapped = false; - for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), - EI = MRI.use_end(); - UI != EI; ++UI) { - MachineOperand &UseOp = *UI; - MachineInstr *UseMI = UseOp.getParent(); - SUnit *SUnitUse = SSD->getSUnit(UseMI); - int UseStage = stageScheduled(SUnitUse); - unsigned Diff = 0; - if (UseStage != -1 && UseStage >= DefStage) - Diff = UseStage - DefStage; - if (MI->isPHI()) { - if (isLoopCarried(SSD, *MI)) - ++Diff; - else - PhiIsSwapped = true; - } - MaxDiff = std::max(Diff, MaxDiff); - } - RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); - } - } - - // Erase all the elements in the later stages. Only one iteration should - // remain in the scheduled list, and it contains all the instructions. - for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) - ScheduledInstrs.erase(cycle); - - // Change the registers in instruction as specified in the InstrChanges - // map. We need to use the new registers to create the correct order. - for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { - SUnit *SU = &SSD->SUnits[i]; - SSD->applyInstrChange(SU->getInstr(), *this); - } - - // Reorder the instructions in each cycle to fix and improve the - // generated code. - for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { - std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; - std::deque<SUnit *> newOrderPhi; - for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { - SUnit *SU = cycleInstrs[i]; - if (SU->getInstr()->isPHI()) - newOrderPhi.push_back(SU); - } - std::deque<SUnit *> newOrderI; - for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { - SUnit *SU = cycleInstrs[i]; - if (!SU->getInstr()->isPHI()) - orderDependence(SSD, SU, newOrderI); - } - // Replace the old order with the new order. - cycleInstrs.swap(newOrderPhi); - cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); - SSD->fixupRegisterOverlaps(cycleInstrs); - } - - LLVM_DEBUG(dump();); -} - -void NodeSet::print(raw_ostream &os) const { - os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV - << " depth " << MaxDepth << " col " << Colocate << "\n"; - for (const auto &I : Nodes) - os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); - os << "\n"; -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -/// Print the schedule information to the given output. -void SMSchedule::print(raw_ostream &os) const { - // Iterate over each cycle. - for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { - // Iterate over each instruction in the cycle. - const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); - for (SUnit *CI : cycleInstrs->second) { - os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; - os << "(" << CI->NodeNum << ") "; - CI->getInstr()->print(os); - os << "\n"; - } - } -} - -/// Utility function used for debugging to print the schedule. -LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } -LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } - -#endif - -void ResourceManager::initProcResourceVectors( - const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { - unsigned ProcResourceID = 0; - - // We currently limit the resource kinds to 64 and below so that we can use - // uint64_t for Masks - assert(SM.getNumProcResourceKinds() < 64 && - "Too many kinds of resources, unsupported"); - // Create a unique bitmask for every processor resource unit. - // Skip resource at index 0, since it always references 'InvalidUnit'. - Masks.resize(SM.getNumProcResourceKinds()); - for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { - const MCProcResourceDesc &Desc = *SM.getProcResource(I); - if (Desc.SubUnitsIdxBegin) - continue; - Masks[I] = 1ULL << ProcResourceID; - ProcResourceID++; - } - // Create a unique bitmask for every processor resource group. - for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { - const MCProcResourceDesc &Desc = *SM.getProcResource(I); - if (!Desc.SubUnitsIdxBegin) - continue; - Masks[I] = 1ULL << ProcResourceID; - for (unsigned U = 0; U < Desc.NumUnits; ++U) - Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; - ProcResourceID++; - } - LLVM_DEBUG({ - if (SwpShowResMask) { - dbgs() << "ProcResourceDesc:\n"; - for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { - const MCProcResourceDesc *ProcResource = SM.getProcResource(I); - dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", - ProcResource->Name, I, Masks[I], - ProcResource->NumUnits); - } - dbgs() << " -----------------\n"; - } - }); -} - -bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { - - LLVM_DEBUG({ - if (SwpDebugResource) - dbgs() << "canReserveResources:\n"; - }); - if (UseDFA) - return DFAResources->canReserveResources(MID); - - unsigned InsnClass = MID->getSchedClass(); - const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); - if (!SCDesc->isValid()) { - LLVM_DEBUG({ - dbgs() << "No valid Schedule Class Desc for schedClass!\n"; - dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; - }); - return true; - } - - const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); - const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); - for (; I != E; ++I) { - if (!I->Cycles) - continue; - const MCProcResourceDesc *ProcResource = - SM.getProcResource(I->ProcResourceIdx); - unsigned NumUnits = ProcResource->NumUnits; - LLVM_DEBUG({ - if (SwpDebugResource) - dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", - ProcResource->Name, I->ProcResourceIdx, - ProcResourceCount[I->ProcResourceIdx], NumUnits, - I->Cycles); - }); - if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) - return false; - } - LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); - return true; -} - -void ResourceManager::reserveResources(const MCInstrDesc *MID) { - LLVM_DEBUG({ - if (SwpDebugResource) - dbgs() << "reserveResources:\n"; - }); - if (UseDFA) - return DFAResources->reserveResources(MID); - - unsigned InsnClass = MID->getSchedClass(); - const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); - if (!SCDesc->isValid()) { - LLVM_DEBUG({ - dbgs() << "No valid Schedule Class Desc for schedClass!\n"; - dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; - }); - return; - } - for (const MCWriteProcResEntry &PRE : - make_range(STI->getWriteProcResBegin(SCDesc), - STI->getWriteProcResEnd(SCDesc))) { - if (!PRE.Cycles) - continue; - ++ProcResourceCount[PRE.ProcResourceIdx]; - LLVM_DEBUG({ - if (SwpDebugResource) { - const MCProcResourceDesc *ProcResource = - SM.getProcResource(PRE.ProcResourceIdx); - dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", - ProcResource->Name, PRE.ProcResourceIdx, - ProcResourceCount[PRE.ProcResourceIdx], - ProcResource->NumUnits, PRE.Cycles); - } - }); - } - LLVM_DEBUG({ - if (SwpDebugResource) - dbgs() << "reserveResources: done!\n\n"; - }); -} - -bool ResourceManager::canReserveResources(const MachineInstr &MI) const { - return canReserveResources(&MI.getDesc()); -} - -void ResourceManager::reserveResources(const MachineInstr &MI) { - return reserveResources(&MI.getDesc()); -} - -void ResourceManager::clearResources() { - if (UseDFA) - return DFAResources->clearResources(); - std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); -} - |