aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/CodeGen/MachinePipeliner.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachinePipeliner.cpp')
-rw-r--r--contrib/llvm/lib/CodeGen/MachinePipeliner.cpp4088
1 files changed, 0 insertions, 4088 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp b/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp
deleted file mode 100644
index 54df522d371a..000000000000
--- a/contrib/llvm/lib/CodeGen/MachinePipeliner.cpp
+++ /dev/null
@@ -1,4088 +0,0 @@
-//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
-//
-// This SMS implementation is a target-independent back-end pass. When enabled,
-// the pass runs just prior to the register allocation pass, while the machine
-// IR is in SSA form. If software pipelining is successful, then the original
-// loop is replaced by the optimized loop. The optimized loop contains one or
-// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
-// the instructions cannot be scheduled in a given MII, we increase the MII by
-// one and try again.
-//
-// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
-// represent loop carried dependences in the DAG as order edges to the Phi
-// nodes. We also perform several passes over the DAG to eliminate unnecessary
-// edges that inhibit the ability to pipeline. The implementation uses the
-// DFAPacketizer class to compute the minimum initiation interval and the check
-// where an instruction may be inserted in the pipelined schedule.
-//
-// In order for the SMS pass to work, several target specific hooks need to be
-// implemented to get information about the loop structure and to rewrite
-// instructions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/PriorityQueue.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/CodeGen/DFAPacketizer.h"
-#include "llvm/CodeGen/LiveIntervals.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineDominators.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachinePipeliner.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/RegisterPressure.h"
-#include "llvm/CodeGen/ScheduleDAG.h"
-#include "llvm/CodeGen/ScheduleDAGMutation.h"
-#include "llvm/CodeGen/TargetOpcodes.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/Function.h"
-#include "llvm/MC/LaneBitmask.h"
-#include "llvm/MC/MCInstrDesc.h"
-#include "llvm/MC/MCInstrItineraries.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <climits>
-#include <cstdint>
-#include <deque>
-#include <functional>
-#include <iterator>
-#include <map>
-#include <memory>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "pipeliner"
-
-STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
-STATISTIC(NumPipelined, "Number of loops software pipelined");
-STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
-STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
-STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
-STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
-STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
-STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
-STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
-STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
-STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
-
-/// A command line option to turn software pipelining on or off.
-static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
- cl::ZeroOrMore,
- cl::desc("Enable Software Pipelining"));
-
-/// A command line option to enable SWP at -Os.
-static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
- cl::desc("Enable SWP at Os."), cl::Hidden,
- cl::init(false));
-
-/// A command line argument to limit minimum initial interval for pipelining.
-static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
- cl::desc("Size limit for the MII."),
- cl::Hidden, cl::init(27));
-
-/// A command line argument to limit the number of stages in the pipeline.
-static cl::opt<int>
- SwpMaxStages("pipeliner-max-stages",
- cl::desc("Maximum stages allowed in the generated scheduled."),
- cl::Hidden, cl::init(3));
-
-/// A command line option to disable the pruning of chain dependences due to
-/// an unrelated Phi.
-static cl::opt<bool>
- SwpPruneDeps("pipeliner-prune-deps",
- cl::desc("Prune dependences between unrelated Phi nodes."),
- cl::Hidden, cl::init(true));
-
-/// A command line option to disable the pruning of loop carried order
-/// dependences.
-static cl::opt<bool>
- SwpPruneLoopCarried("pipeliner-prune-loop-carried",
- cl::desc("Prune loop carried order dependences."),
- cl::Hidden, cl::init(true));
-
-#ifndef NDEBUG
-static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
-#endif
-
-static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
- cl::ReallyHidden, cl::init(false),
- cl::ZeroOrMore, cl::desc("Ignore RecMII"));
-
-static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
- cl::init(false));
-static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
- cl::init(false));
-
-namespace llvm {
-
-// A command line option to enable the CopyToPhi DAG mutation.
-cl::opt<bool>
- SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
- cl::init(true), cl::ZeroOrMore,
- cl::desc("Enable CopyToPhi DAG Mutation"));
-
-} // end namespace llvm
-
-unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
-char MachinePipeliner::ID = 0;
-#ifndef NDEBUG
-int MachinePipeliner::NumTries = 0;
-#endif
-char &llvm::MachinePipelinerID = MachinePipeliner::ID;
-
-INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
- "Modulo Software Pipelining", false, false)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
-INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
-INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
-INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
- "Modulo Software Pipelining", false, false)
-
-/// The "main" function for implementing Swing Modulo Scheduling.
-bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
- if (skipFunction(mf.getFunction()))
- return false;
-
- if (!EnableSWP)
- return false;
-
- if (mf.getFunction().getAttributes().hasAttribute(
- AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
- !EnableSWPOptSize.getPosition())
- return false;
-
- if (!mf.getSubtarget().enableMachinePipeliner())
- return false;
-
- // Cannot pipeline loops without instruction itineraries if we are using
- // DFA for the pipeliner.
- if (mf.getSubtarget().useDFAforSMS() &&
- (!mf.getSubtarget().getInstrItineraryData() ||
- mf.getSubtarget().getInstrItineraryData()->isEmpty()))
- return false;
-
- MF = &mf;
- MLI = &getAnalysis<MachineLoopInfo>();
- MDT = &getAnalysis<MachineDominatorTree>();
- TII = MF->getSubtarget().getInstrInfo();
- RegClassInfo.runOnMachineFunction(*MF);
-
- for (auto &L : *MLI)
- scheduleLoop(*L);
-
- return false;
-}
-
-/// Attempt to perform the SMS algorithm on the specified loop. This function is
-/// the main entry point for the algorithm. The function identifies candidate
-/// loops, calculates the minimum initiation interval, and attempts to schedule
-/// the loop.
-bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
- bool Changed = false;
- for (auto &InnerLoop : L)
- Changed |= scheduleLoop(*InnerLoop);
-
-#ifndef NDEBUG
- // Stop trying after reaching the limit (if any).
- int Limit = SwpLoopLimit;
- if (Limit >= 0) {
- if (NumTries >= SwpLoopLimit)
- return Changed;
- NumTries++;
- }
-#endif
-
- setPragmaPipelineOptions(L);
- if (!canPipelineLoop(L)) {
- LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
- return Changed;
- }
-
- ++NumTrytoPipeline;
-
- Changed = swingModuloScheduler(L);
-
- return Changed;
-}
-
-void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
- MachineBasicBlock *LBLK = L.getTopBlock();
-
- if (LBLK == nullptr)
- return;
-
- const BasicBlock *BBLK = LBLK->getBasicBlock();
- if (BBLK == nullptr)
- return;
-
- const Instruction *TI = BBLK->getTerminator();
- if (TI == nullptr)
- return;
-
- MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
- if (LoopID == nullptr)
- return;
-
- assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop");
-
- for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
-
- if (MD == nullptr)
- continue;
-
- MDString *S = dyn_cast<MDString>(MD->getOperand(0));
-
- if (S == nullptr)
- continue;
-
- if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
- assert(MD->getNumOperands() == 2 &&
- "Pipeline initiation interval hint metadata should have two operands.");
- II_setByPragma =
- mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
- assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
- } else if (S->getString() == "llvm.loop.pipeline.disable") {
- disabledByPragma = true;
- }
- }
-}
-
-/// Return true if the loop can be software pipelined. The algorithm is
-/// restricted to loops with a single basic block. Make sure that the
-/// branch in the loop can be analyzed.
-bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
- if (L.getNumBlocks() != 1)
- return false;
-
- if (disabledByPragma)
- return false;
-
- // Check if the branch can't be understood because we can't do pipelining
- // if that's the case.
- LI.TBB = nullptr;
- LI.FBB = nullptr;
- LI.BrCond.clear();
- if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
- LLVM_DEBUG(
- dbgs() << "Unable to analyzeBranch, can NOT pipeline current Loop\n");
- NumFailBranch++;
- return false;
- }
-
- LI.LoopInductionVar = nullptr;
- LI.LoopCompare = nullptr;
- if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) {
- LLVM_DEBUG(
- dbgs() << "Unable to analyzeLoop, can NOT pipeline current Loop\n");
- NumFailLoop++;
- return false;
- }
-
- if (!L.getLoopPreheader()) {
- LLVM_DEBUG(
- dbgs() << "Preheader not found, can NOT pipeline current Loop\n");
- NumFailPreheader++;
- return false;
- }
-
- // Remove any subregisters from inputs to phi nodes.
- preprocessPhiNodes(*L.getHeader());
- return true;
-}
-
-void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
- MachineRegisterInfo &MRI = MF->getRegInfo();
- SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
-
- for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
- MachineOperand &DefOp = PI.getOperand(0);
- assert(DefOp.getSubReg() == 0);
- auto *RC = MRI.getRegClass(DefOp.getReg());
-
- for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
- MachineOperand &RegOp = PI.getOperand(i);
- if (RegOp.getSubReg() == 0)
- continue;
-
- // If the operand uses a subregister, replace it with a new register
- // without subregisters, and generate a copy to the new register.
- unsigned NewReg = MRI.createVirtualRegister(RC);
- MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
- MachineBasicBlock::iterator At = PredB.getFirstTerminator();
- const DebugLoc &DL = PredB.findDebugLoc(At);
- auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
- .addReg(RegOp.getReg(), getRegState(RegOp),
- RegOp.getSubReg());
- Slots.insertMachineInstrInMaps(*Copy);
- RegOp.setReg(NewReg);
- RegOp.setSubReg(0);
- }
- }
-}
-
-/// The SMS algorithm consists of the following main steps:
-/// 1. Computation and analysis of the dependence graph.
-/// 2. Ordering of the nodes (instructions).
-/// 3. Attempt to Schedule the loop.
-bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
- assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
-
- SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
- II_setByPragma);
-
- MachineBasicBlock *MBB = L.getHeader();
- // The kernel should not include any terminator instructions. These
- // will be added back later.
- SMS.startBlock(MBB);
-
- // Compute the number of 'real' instructions in the basic block by
- // ignoring terminators.
- unsigned size = MBB->size();
- for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
- E = MBB->instr_end();
- I != E; ++I, --size)
- ;
-
- SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
- SMS.schedule();
- SMS.exitRegion();
-
- SMS.finishBlock();
- return SMS.hasNewSchedule();
-}
-
-void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
- if (II_setByPragma > 0)
- MII = II_setByPragma;
- else
- MII = std::max(ResMII, RecMII);
-}
-
-void SwingSchedulerDAG::setMAX_II() {
- if (II_setByPragma > 0)
- MAX_II = II_setByPragma;
- else
- MAX_II = MII + 10;
-}
-
-/// We override the schedule function in ScheduleDAGInstrs to implement the
-/// scheduling part of the Swing Modulo Scheduling algorithm.
-void SwingSchedulerDAG::schedule() {
- AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
- buildSchedGraph(AA);
- addLoopCarriedDependences(AA);
- updatePhiDependences();
- Topo.InitDAGTopologicalSorting();
- changeDependences();
- postprocessDAG();
- LLVM_DEBUG(dump());
-
- NodeSetType NodeSets;
- findCircuits(NodeSets);
- NodeSetType Circuits = NodeSets;
-
- // Calculate the MII.
- unsigned ResMII = calculateResMII();
- unsigned RecMII = calculateRecMII(NodeSets);
-
- fuseRecs(NodeSets);
-
- // This flag is used for testing and can cause correctness problems.
- if (SwpIgnoreRecMII)
- RecMII = 0;
-
- setMII(ResMII, RecMII);
- setMAX_II();
-
- LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
- << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
-
- // Can't schedule a loop without a valid MII.
- if (MII == 0) {
- LLVM_DEBUG(
- dbgs()
- << "0 is not a valid Minimal Initiation Interval, can NOT schedule\n");
- NumFailZeroMII++;
- return;
- }
-
- // Don't pipeline large loops.
- if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
- LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
- << ", we don't pipleline large loops\n");
- NumFailLargeMaxMII++;
- return;
- }
-
- computeNodeFunctions(NodeSets);
-
- registerPressureFilter(NodeSets);
-
- colocateNodeSets(NodeSets);
-
- checkNodeSets(NodeSets);
-
- LLVM_DEBUG({
- for (auto &I : NodeSets) {
- dbgs() << " Rec NodeSet ";
- I.dump();
- }
- });
-
- llvm::stable_sort(NodeSets, std::greater<NodeSet>());
-
- groupRemainingNodes(NodeSets);
-
- removeDuplicateNodes(NodeSets);
-
- LLVM_DEBUG({
- for (auto &I : NodeSets) {
- dbgs() << " NodeSet ";
- I.dump();
- }
- });
-
- computeNodeOrder(NodeSets);
-
- // check for node order issues
- checkValidNodeOrder(Circuits);
-
- SMSchedule Schedule(Pass.MF);
- Scheduled = schedulePipeline(Schedule);
-
- if (!Scheduled){
- LLVM_DEBUG(dbgs() << "No schedule found, return\n");
- NumFailNoSchedule++;
- return;
- }
-
- unsigned numStages = Schedule.getMaxStageCount();
- // No need to generate pipeline if there are no overlapped iterations.
- if (numStages == 0) {
- LLVM_DEBUG(
- dbgs() << "No overlapped iterations, no need to generate pipeline\n");
- NumFailZeroStage++;
- return;
- }
- // Check that the maximum stage count is less than user-defined limit.
- if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
- LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
- << " : too many stages, abort\n");
- NumFailLargeMaxStage++;
- return;
- }
-
- generatePipelinedLoop(Schedule);
- ++NumPipelined;
-}
-
-/// Clean up after the software pipeliner runs.
-void SwingSchedulerDAG::finishBlock() {
- for (MachineInstr *I : NewMIs)
- MF.DeleteMachineInstr(I);
- NewMIs.clear();
-
- // Call the superclass.
- ScheduleDAGInstrs::finishBlock();
-}
-
-/// Return the register values for the operands of a Phi instruction.
-/// This function assume the instruction is a Phi.
-static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
- unsigned &InitVal, unsigned &LoopVal) {
- assert(Phi.isPHI() && "Expecting a Phi.");
-
- InitVal = 0;
- LoopVal = 0;
- for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
- if (Phi.getOperand(i + 1).getMBB() != Loop)
- InitVal = Phi.getOperand(i).getReg();
- else
- LoopVal = Phi.getOperand(i).getReg();
-
- assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
-}
-
-/// Return the Phi register value that comes from the incoming block.
-static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
- for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
- if (Phi.getOperand(i + 1).getMBB() != LoopBB)
- return Phi.getOperand(i).getReg();
- return 0;
-}
-
-/// Return the Phi register value that comes the loop block.
-static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
- for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
- if (Phi.getOperand(i + 1).getMBB() == LoopBB)
- return Phi.getOperand(i).getReg();
- return 0;
-}
-
-/// Return true if SUb can be reached from SUa following the chain edges.
-static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
- SmallPtrSet<SUnit *, 8> Visited;
- SmallVector<SUnit *, 8> Worklist;
- Worklist.push_back(SUa);
- while (!Worklist.empty()) {
- const SUnit *SU = Worklist.pop_back_val();
- for (auto &SI : SU->Succs) {
- SUnit *SuccSU = SI.getSUnit();
- if (SI.getKind() == SDep::Order) {
- if (Visited.count(SuccSU))
- continue;
- if (SuccSU == SUb)
- return true;
- Worklist.push_back(SuccSU);
- Visited.insert(SuccSU);
- }
- }
- }
- return false;
-}
-
-/// Return true if the instruction causes a chain between memory
-/// references before and after it.
-static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
- return MI.isCall() || MI.mayRaiseFPException() ||
- MI.hasUnmodeledSideEffects() ||
- (MI.hasOrderedMemoryRef() &&
- (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
-}
-
-/// Return the underlying objects for the memory references of an instruction.
-/// This function calls the code in ValueTracking, but first checks that the
-/// instruction has a memory operand.
-static void getUnderlyingObjects(const MachineInstr *MI,
- SmallVectorImpl<const Value *> &Objs,
- const DataLayout &DL) {
- if (!MI->hasOneMemOperand())
- return;
- MachineMemOperand *MM = *MI->memoperands_begin();
- if (!MM->getValue())
- return;
- GetUnderlyingObjects(MM->getValue(), Objs, DL);
- for (const Value *V : Objs) {
- if (!isIdentifiedObject(V)) {
- Objs.clear();
- return;
- }
- Objs.push_back(V);
- }
-}
-
-/// Add a chain edge between a load and store if the store can be an
-/// alias of the load on a subsequent iteration, i.e., a loop carried
-/// dependence. This code is very similar to the code in ScheduleDAGInstrs
-/// but that code doesn't create loop carried dependences.
-void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
- MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
- Value *UnknownValue =
- UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
- for (auto &SU : SUnits) {
- MachineInstr &MI = *SU.getInstr();
- if (isDependenceBarrier(MI, AA))
- PendingLoads.clear();
- else if (MI.mayLoad()) {
- SmallVector<const Value *, 4> Objs;
- getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
- if (Objs.empty())
- Objs.push_back(UnknownValue);
- for (auto V : Objs) {
- SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
- SUs.push_back(&SU);
- }
- } else if (MI.mayStore()) {
- SmallVector<const Value *, 4> Objs;
- getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
- if (Objs.empty())
- Objs.push_back(UnknownValue);
- for (auto V : Objs) {
- MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
- PendingLoads.find(V);
- if (I == PendingLoads.end())
- continue;
- for (auto Load : I->second) {
- if (isSuccOrder(Load, &SU))
- continue;
- MachineInstr &LdMI = *Load->getInstr();
- // First, perform the cheaper check that compares the base register.
- // If they are the same and the load offset is less than the store
- // offset, then mark the dependence as loop carried potentially.
- const MachineOperand *BaseOp1, *BaseOp2;
- int64_t Offset1, Offset2;
- if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, TRI) &&
- TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, TRI)) {
- if (BaseOp1->isIdenticalTo(*BaseOp2) &&
- (int)Offset1 < (int)Offset2) {
- assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
- "What happened to the chain edge?");
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- }
- // Second, the more expensive check that uses alias analysis on the
- // base registers. If they alias, and the load offset is less than
- // the store offset, the mark the dependence as loop carried.
- if (!AA) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
- MachineMemOperand *MMO2 = *MI.memoperands_begin();
- if (!MMO1->getValue() || !MMO2->getValue()) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- if (MMO1->getValue() == MMO2->getValue() &&
- MMO1->getOffset() <= MMO2->getOffset()) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- AliasResult AAResult = AA->alias(
- MemoryLocation(MMO1->getValue(), LocationSize::unknown(),
- MMO1->getAAInfo()),
- MemoryLocation(MMO2->getValue(), LocationSize::unknown(),
- MMO2->getAAInfo()));
-
- if (AAResult != NoAlias) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- }
- }
- }
- }
- }
-}
-
-/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
-/// processes dependences for PHIs. This function adds true dependences
-/// from a PHI to a use, and a loop carried dependence from the use to the
-/// PHI. The loop carried dependence is represented as an anti dependence
-/// edge. This function also removes chain dependences between unrelated
-/// PHIs.
-void SwingSchedulerDAG::updatePhiDependences() {
- SmallVector<SDep, 4> RemoveDeps;
- const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
-
- // Iterate over each DAG node.
- for (SUnit &I : SUnits) {
- RemoveDeps.clear();
- // Set to true if the instruction has an operand defined by a Phi.
- unsigned HasPhiUse = 0;
- unsigned HasPhiDef = 0;
- MachineInstr *MI = I.getInstr();
- // Iterate over each operand, and we process the definitions.
- for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
- MOE = MI->operands_end();
- MOI != MOE; ++MOI) {
- if (!MOI->isReg())
- continue;
- unsigned Reg = MOI->getReg();
- if (MOI->isDef()) {
- // If the register is used by a Phi, then create an anti dependence.
- for (MachineRegisterInfo::use_instr_iterator
- UI = MRI.use_instr_begin(Reg),
- UE = MRI.use_instr_end();
- UI != UE; ++UI) {
- MachineInstr *UseMI = &*UI;
- SUnit *SU = getSUnit(UseMI);
- if (SU != nullptr && UseMI->isPHI()) {
- if (!MI->isPHI()) {
- SDep Dep(SU, SDep::Anti, Reg);
- Dep.setLatency(1);
- I.addPred(Dep);
- } else {
- HasPhiDef = Reg;
- // Add a chain edge to a dependent Phi that isn't an existing
- // predecessor.
- if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
- I.addPred(SDep(SU, SDep::Barrier));
- }
- }
- }
- } else if (MOI->isUse()) {
- // If the register is defined by a Phi, then create a true dependence.
- MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
- if (DefMI == nullptr)
- continue;
- SUnit *SU = getSUnit(DefMI);
- if (SU != nullptr && DefMI->isPHI()) {
- if (!MI->isPHI()) {
- SDep Dep(SU, SDep::Data, Reg);
- Dep.setLatency(0);
- ST.adjustSchedDependency(SU, &I, Dep);
- I.addPred(Dep);
- } else {
- HasPhiUse = Reg;
- // Add a chain edge to a dependent Phi that isn't an existing
- // predecessor.
- if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
- I.addPred(SDep(SU, SDep::Barrier));
- }
- }
- }
- }
- // Remove order dependences from an unrelated Phi.
- if (!SwpPruneDeps)
- continue;
- for (auto &PI : I.Preds) {
- MachineInstr *PMI = PI.getSUnit()->getInstr();
- if (PMI->isPHI() && PI.getKind() == SDep::Order) {
- if (I.getInstr()->isPHI()) {
- if (PMI->getOperand(0).getReg() == HasPhiUse)
- continue;
- if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
- continue;
- }
- RemoveDeps.push_back(PI);
- }
- }
- for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
- I.removePred(RemoveDeps[i]);
- }
-}
-
-/// Iterate over each DAG node and see if we can change any dependences
-/// in order to reduce the recurrence MII.
-void SwingSchedulerDAG::changeDependences() {
- // See if an instruction can use a value from the previous iteration.
- // If so, we update the base and offset of the instruction and change
- // the dependences.
- for (SUnit &I : SUnits) {
- unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
- int64_t NewOffset = 0;
- if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
- NewOffset))
- continue;
-
- // Get the MI and SUnit for the instruction that defines the original base.
- unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
- MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
- if (!DefMI)
- continue;
- SUnit *DefSU = getSUnit(DefMI);
- if (!DefSU)
- continue;
- // Get the MI and SUnit for the instruction that defins the new base.
- MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
- if (!LastMI)
- continue;
- SUnit *LastSU = getSUnit(LastMI);
- if (!LastSU)
- continue;
-
- if (Topo.IsReachable(&I, LastSU))
- continue;
-
- // Remove the dependence. The value now depends on a prior iteration.
- SmallVector<SDep, 4> Deps;
- for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
- ++P)
- if (P->getSUnit() == DefSU)
- Deps.push_back(*P);
- for (int i = 0, e = Deps.size(); i != e; i++) {
- Topo.RemovePred(&I, Deps[i].getSUnit());
- I.removePred(Deps[i]);
- }
- // Remove the chain dependence between the instructions.
- Deps.clear();
- for (auto &P : LastSU->Preds)
- if (P.getSUnit() == &I && P.getKind() == SDep::Order)
- Deps.push_back(P);
- for (int i = 0, e = Deps.size(); i != e; i++) {
- Topo.RemovePred(LastSU, Deps[i].getSUnit());
- LastSU->removePred(Deps[i]);
- }
-
- // Add a dependence between the new instruction and the instruction
- // that defines the new base.
- SDep Dep(&I, SDep::Anti, NewBase);
- Topo.AddPred(LastSU, &I);
- LastSU->addPred(Dep);
-
- // Remember the base and offset information so that we can update the
- // instruction during code generation.
- InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
- }
-}
-
-namespace {
-
-// FuncUnitSorter - Comparison operator used to sort instructions by
-// the number of functional unit choices.
-struct FuncUnitSorter {
- const InstrItineraryData *InstrItins;
- const MCSubtargetInfo *STI;
- DenseMap<unsigned, unsigned> Resources;
-
- FuncUnitSorter(const TargetSubtargetInfo &TSI)
- : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
-
- // Compute the number of functional unit alternatives needed
- // at each stage, and take the minimum value. We prioritize the
- // instructions by the least number of choices first.
- unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
- unsigned SchedClass = Inst->getDesc().getSchedClass();
- unsigned min = UINT_MAX;
- if (InstrItins && !InstrItins->isEmpty()) {
- for (const InstrStage &IS :
- make_range(InstrItins->beginStage(SchedClass),
- InstrItins->endStage(SchedClass))) {
- unsigned funcUnits = IS.getUnits();
- unsigned numAlternatives = countPopulation(funcUnits);
- if (numAlternatives < min) {
- min = numAlternatives;
- F = funcUnits;
- }
- }
- return min;
- }
- if (STI && STI->getSchedModel().hasInstrSchedModel()) {
- const MCSchedClassDesc *SCDesc =
- STI->getSchedModel().getSchedClassDesc(SchedClass);
- if (!SCDesc->isValid())
- // No valid Schedule Class Desc for schedClass, should be
- // Pseudo/PostRAPseudo
- return min;
-
- for (const MCWriteProcResEntry &PRE :
- make_range(STI->getWriteProcResBegin(SCDesc),
- STI->getWriteProcResEnd(SCDesc))) {
- if (!PRE.Cycles)
- continue;
- const MCProcResourceDesc *ProcResource =
- STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
- unsigned NumUnits = ProcResource->NumUnits;
- if (NumUnits < min) {
- min = NumUnits;
- F = PRE.ProcResourceIdx;
- }
- }
- return min;
- }
- llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
- }
-
- // Compute the critical resources needed by the instruction. This
- // function records the functional units needed by instructions that
- // must use only one functional unit. We use this as a tie breaker
- // for computing the resource MII. The instrutions that require
- // the same, highly used, functional unit have high priority.
- void calcCriticalResources(MachineInstr &MI) {
- unsigned SchedClass = MI.getDesc().getSchedClass();
- if (InstrItins && !InstrItins->isEmpty()) {
- for (const InstrStage &IS :
- make_range(InstrItins->beginStage(SchedClass),
- InstrItins->endStage(SchedClass))) {
- unsigned FuncUnits = IS.getUnits();
- if (countPopulation(FuncUnits) == 1)
- Resources[FuncUnits]++;
- }
- return;
- }
- if (STI && STI->getSchedModel().hasInstrSchedModel()) {
- const MCSchedClassDesc *SCDesc =
- STI->getSchedModel().getSchedClassDesc(SchedClass);
- if (!SCDesc->isValid())
- // No valid Schedule Class Desc for schedClass, should be
- // Pseudo/PostRAPseudo
- return;
-
- for (const MCWriteProcResEntry &PRE :
- make_range(STI->getWriteProcResBegin(SCDesc),
- STI->getWriteProcResEnd(SCDesc))) {
- if (!PRE.Cycles)
- continue;
- Resources[PRE.ProcResourceIdx]++;
- }
- return;
- }
- llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
- }
-
- /// Return true if IS1 has less priority than IS2.
- bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
- unsigned F1 = 0, F2 = 0;
- unsigned MFUs1 = minFuncUnits(IS1, F1);
- unsigned MFUs2 = minFuncUnits(IS2, F2);
- if (MFUs1 == 1 && MFUs2 == 1)
- return Resources.lookup(F1) < Resources.lookup(F2);
- return MFUs1 > MFUs2;
- }
-};
-
-} // end anonymous namespace
-
-/// Calculate the resource constrained minimum initiation interval for the
-/// specified loop. We use the DFA to model the resources needed for
-/// each instruction, and we ignore dependences. A different DFA is created
-/// for each cycle that is required. When adding a new instruction, we attempt
-/// to add it to each existing DFA, until a legal space is found. If the
-/// instruction cannot be reserved in an existing DFA, we create a new one.
-unsigned SwingSchedulerDAG::calculateResMII() {
-
- LLVM_DEBUG(dbgs() << "calculateResMII:\n");
- SmallVector<ResourceManager*, 8> Resources;
- MachineBasicBlock *MBB = Loop.getHeader();
- Resources.push_back(new ResourceManager(&MF.getSubtarget()));
-
- // Sort the instructions by the number of available choices for scheduling,
- // least to most. Use the number of critical resources as the tie breaker.
- FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
- for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
- E = MBB->getFirstTerminator();
- I != E; ++I)
- FUS.calcCriticalResources(*I);
- PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
- FuncUnitOrder(FUS);
-
- for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
- E = MBB->getFirstTerminator();
- I != E; ++I)
- FuncUnitOrder.push(&*I);
-
- while (!FuncUnitOrder.empty()) {
- MachineInstr *MI = FuncUnitOrder.top();
- FuncUnitOrder.pop();
- if (TII->isZeroCost(MI->getOpcode()))
- continue;
- // Attempt to reserve the instruction in an existing DFA. At least one
- // DFA is needed for each cycle.
- unsigned NumCycles = getSUnit(MI)->Latency;
- unsigned ReservedCycles = 0;
- SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
- SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
- LLVM_DEBUG({
- dbgs() << "Trying to reserve resource for " << NumCycles
- << " cycles for \n";
- MI->dump();
- });
- for (unsigned C = 0; C < NumCycles; ++C)
- while (RI != RE) {
- if ((*RI)->canReserveResources(*MI)) {
- (*RI)->reserveResources(*MI);
- ++ReservedCycles;
- break;
- }
- RI++;
- }
- LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
- << ", NumCycles:" << NumCycles << "\n");
- // Add new DFAs, if needed, to reserve resources.
- for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
- LLVM_DEBUG(if (SwpDebugResource) dbgs()
- << "NewResource created to reserve resources"
- << "\n");
- ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
- assert(NewResource->canReserveResources(*MI) && "Reserve error.");
- NewResource->reserveResources(*MI);
- Resources.push_back(NewResource);
- }
- }
- int Resmii = Resources.size();
- LLVM_DEBUG(dbgs() << "Retrun Res MII:" << Resmii << "\n");
- // Delete the memory for each of the DFAs that were created earlier.
- for (ResourceManager *RI : Resources) {
- ResourceManager *D = RI;
- delete D;
- }
- Resources.clear();
- return Resmii;
-}
-
-/// Calculate the recurrence-constrainted minimum initiation interval.
-/// Iterate over each circuit. Compute the delay(c) and distance(c)
-/// for each circuit. The II needs to satisfy the inequality
-/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
-/// II that satisfies the inequality, and the RecMII is the maximum
-/// of those values.
-unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
- unsigned RecMII = 0;
-
- for (NodeSet &Nodes : NodeSets) {
- if (Nodes.empty())
- continue;
-
- unsigned Delay = Nodes.getLatency();
- unsigned Distance = 1;
-
- // ii = ceil(delay / distance)
- unsigned CurMII = (Delay + Distance - 1) / Distance;
- Nodes.setRecMII(CurMII);
- if (CurMII > RecMII)
- RecMII = CurMII;
- }
-
- return RecMII;
-}
-
-/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
-/// but we do this to find the circuits, and then change them back.
-static void swapAntiDependences(std::vector<SUnit> &SUnits) {
- SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
- for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
- SUnit *SU = &SUnits[i];
- for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
- IP != EP; ++IP) {
- if (IP->getKind() != SDep::Anti)
- continue;
- DepsAdded.push_back(std::make_pair(SU, *IP));
- }
- }
- for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
- E = DepsAdded.end();
- I != E; ++I) {
- // Remove this anti dependency and add one in the reverse direction.
- SUnit *SU = I->first;
- SDep &D = I->second;
- SUnit *TargetSU = D.getSUnit();
- unsigned Reg = D.getReg();
- unsigned Lat = D.getLatency();
- SU->removePred(D);
- SDep Dep(SU, SDep::Anti, Reg);
- Dep.setLatency(Lat);
- TargetSU->addPred(Dep);
- }
-}
-
-/// Create the adjacency structure of the nodes in the graph.
-void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
- SwingSchedulerDAG *DAG) {
- BitVector Added(SUnits.size());
- DenseMap<int, int> OutputDeps;
- for (int i = 0, e = SUnits.size(); i != e; ++i) {
- Added.reset();
- // Add any successor to the adjacency matrix and exclude duplicates.
- for (auto &SI : SUnits[i].Succs) {
- // Only create a back-edge on the first and last nodes of a dependence
- // chain. This records any chains and adds them later.
- if (SI.getKind() == SDep::Output) {
- int N = SI.getSUnit()->NodeNum;
- int BackEdge = i;
- auto Dep = OutputDeps.find(BackEdge);
- if (Dep != OutputDeps.end()) {
- BackEdge = Dep->second;
- OutputDeps.erase(Dep);
- }
- OutputDeps[N] = BackEdge;
- }
- // Do not process a boundary node, an artificial node.
- // A back-edge is processed only if it goes to a Phi.
- if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
- (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
- continue;
- int N = SI.getSUnit()->NodeNum;
- if (!Added.test(N)) {
- AdjK[i].push_back(N);
- Added.set(N);
- }
- }
- // A chain edge between a store and a load is treated as a back-edge in the
- // adjacency matrix.
- for (auto &PI : SUnits[i].Preds) {
- if (!SUnits[i].getInstr()->mayStore() ||
- !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
- continue;
- if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
- int N = PI.getSUnit()->NodeNum;
- if (!Added.test(N)) {
- AdjK[i].push_back(N);
- Added.set(N);
- }
- }
- }
- }
- // Add back-edges in the adjacency matrix for the output dependences.
- for (auto &OD : OutputDeps)
- if (!Added.test(OD.second)) {
- AdjK[OD.first].push_back(OD.second);
- Added.set(OD.second);
- }
-}
-
-/// Identify an elementary circuit in the dependence graph starting at the
-/// specified node.
-bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
- bool HasBackedge) {
- SUnit *SV = &SUnits[V];
- bool F = false;
- Stack.insert(SV);
- Blocked.set(V);
-
- for (auto W : AdjK[V]) {
- if (NumPaths > MaxPaths)
- break;
- if (W < S)
- continue;
- if (W == S) {
- if (!HasBackedge)
- NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
- F = true;
- ++NumPaths;
- break;
- } else if (!Blocked.test(W)) {
- if (circuit(W, S, NodeSets,
- Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
- F = true;
- }
- }
-
- if (F)
- unblock(V);
- else {
- for (auto W : AdjK[V]) {
- if (W < S)
- continue;
- if (B[W].count(SV) == 0)
- B[W].insert(SV);
- }
- }
- Stack.pop_back();
- return F;
-}
-
-/// Unblock a node in the circuit finding algorithm.
-void SwingSchedulerDAG::Circuits::unblock(int U) {
- Blocked.reset(U);
- SmallPtrSet<SUnit *, 4> &BU = B[U];
- while (!BU.empty()) {
- SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
- assert(SI != BU.end() && "Invalid B set.");
- SUnit *W = *SI;
- BU.erase(W);
- if (Blocked.test(W->NodeNum))
- unblock(W->NodeNum);
- }
-}
-
-/// Identify all the elementary circuits in the dependence graph using
-/// Johnson's circuit algorithm.
-void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
- // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
- // but we do this to find the circuits, and then change them back.
- swapAntiDependences(SUnits);
-
- Circuits Cir(SUnits, Topo);
- // Create the adjacency structure.
- Cir.createAdjacencyStructure(this);
- for (int i = 0, e = SUnits.size(); i != e; ++i) {
- Cir.reset();
- Cir.circuit(i, i, NodeSets);
- }
-
- // Change the dependences back so that we've created a DAG again.
- swapAntiDependences(SUnits);
-}
-
-// Create artificial dependencies between the source of COPY/REG_SEQUENCE that
-// is loop-carried to the USE in next iteration. This will help pipeliner avoid
-// additional copies that are needed across iterations. An artificial dependence
-// edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
-
-// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
-// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
-// PHI-------True-Dep------> USEOfPhi
-
-// The mutation creates
-// USEOfPHI -------Artificial-Dep---> SRCOfCopy
-
-// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
-// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
-// late to avoid additional copies across iterations. The possible scheduling
-// order would be
-// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
-
-void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
- for (SUnit &SU : DAG->SUnits) {
- // Find the COPY/REG_SEQUENCE instruction.
- if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
- continue;
-
- // Record the loop carried PHIs.
- SmallVector<SUnit *, 4> PHISUs;
- // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
- SmallVector<SUnit *, 4> SrcSUs;
-
- for (auto &Dep : SU.Preds) {
- SUnit *TmpSU = Dep.getSUnit();
- MachineInstr *TmpMI = TmpSU->getInstr();
- SDep::Kind DepKind = Dep.getKind();
- // Save the loop carried PHI.
- if (DepKind == SDep::Anti && TmpMI->isPHI())
- PHISUs.push_back(TmpSU);
- // Save the source of COPY/REG_SEQUENCE.
- // If the source has no pre-decessors, we will end up creating cycles.
- else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
- SrcSUs.push_back(TmpSU);
- }
-
- if (PHISUs.size() == 0 || SrcSUs.size() == 0)
- continue;
-
- // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
- // SUnit to the container.
- SmallVector<SUnit *, 8> UseSUs;
- for (auto I = PHISUs.begin(); I != PHISUs.end(); ++I) {
- for (auto &Dep : (*I)->Succs) {
- if (Dep.getKind() != SDep::Data)
- continue;
-
- SUnit *TmpSU = Dep.getSUnit();
- MachineInstr *TmpMI = TmpSU->getInstr();
- if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
- PHISUs.push_back(TmpSU);
- continue;
- }
- UseSUs.push_back(TmpSU);
- }
- }
-
- if (UseSUs.size() == 0)
- continue;
-
- SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
- // Add the artificial dependencies if it does not form a cycle.
- for (auto I : UseSUs) {
- for (auto Src : SrcSUs) {
- if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
- Src->addPred(SDep(I, SDep::Artificial));
- SDAG->Topo.AddPred(Src, I);
- }
- }
- }
- }
-}
-
-/// Return true for DAG nodes that we ignore when computing the cost functions.
-/// We ignore the back-edge recurrence in order to avoid unbounded recursion
-/// in the calculation of the ASAP, ALAP, etc functions.
-static bool ignoreDependence(const SDep &D, bool isPred) {
- if (D.isArtificial())
- return true;
- return D.getKind() == SDep::Anti && isPred;
-}
-
-/// Compute several functions need to order the nodes for scheduling.
-/// ASAP - Earliest time to schedule a node.
-/// ALAP - Latest time to schedule a node.
-/// MOV - Mobility function, difference between ALAP and ASAP.
-/// D - Depth of each node.
-/// H - Height of each node.
-void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
- ScheduleInfo.resize(SUnits.size());
-
- LLVM_DEBUG({
- for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
- E = Topo.end();
- I != E; ++I) {
- const SUnit &SU = SUnits[*I];
- dumpNode(SU);
- }
- });
-
- int maxASAP = 0;
- // Compute ASAP and ZeroLatencyDepth.
- for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
- E = Topo.end();
- I != E; ++I) {
- int asap = 0;
- int zeroLatencyDepth = 0;
- SUnit *SU = &SUnits[*I];
- for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
- EP = SU->Preds.end();
- IP != EP; ++IP) {
- SUnit *pred = IP->getSUnit();
- if (IP->getLatency() == 0)
- zeroLatencyDepth =
- std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
- if (ignoreDependence(*IP, true))
- continue;
- asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
- getDistance(pred, SU, *IP) * MII));
- }
- maxASAP = std::max(maxASAP, asap);
- ScheduleInfo[*I].ASAP = asap;
- ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
- }
-
- // Compute ALAP, ZeroLatencyHeight, and MOV.
- for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
- E = Topo.rend();
- I != E; ++I) {
- int alap = maxASAP;
- int zeroLatencyHeight = 0;
- SUnit *SU = &SUnits[*I];
- for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
- ES = SU->Succs.end();
- IS != ES; ++IS) {
- SUnit *succ = IS->getSUnit();
- if (IS->getLatency() == 0)
- zeroLatencyHeight =
- std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
- if (ignoreDependence(*IS, true))
- continue;
- alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
- getDistance(SU, succ, *IS) * MII));
- }
-
- ScheduleInfo[*I].ALAP = alap;
- ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
- }
-
- // After computing the node functions, compute the summary for each node set.
- for (NodeSet &I : NodeSets)
- I.computeNodeSetInfo(this);
-
- LLVM_DEBUG({
- for (unsigned i = 0; i < SUnits.size(); i++) {
- dbgs() << "\tNode " << i << ":\n";
- dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
- dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
- dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
- dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
- dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
- dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
- dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
- }
- });
-}
-
-/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
-/// as the predecessors of the elements of NodeOrder that are not also in
-/// NodeOrder.
-static bool pred_L(SetVector<SUnit *> &NodeOrder,
- SmallSetVector<SUnit *, 8> &Preds,
- const NodeSet *S = nullptr) {
- Preds.clear();
- for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
- I != E; ++I) {
- for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
- PI != PE; ++PI) {
- if (S && S->count(PI->getSUnit()) == 0)
- continue;
- if (ignoreDependence(*PI, true))
- continue;
- if (NodeOrder.count(PI->getSUnit()) == 0)
- Preds.insert(PI->getSUnit());
- }
- // Back-edges are predecessors with an anti-dependence.
- for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
- ES = (*I)->Succs.end();
- IS != ES; ++IS) {
- if (IS->getKind() != SDep::Anti)
- continue;
- if (S && S->count(IS->getSUnit()) == 0)
- continue;
- if (NodeOrder.count(IS->getSUnit()) == 0)
- Preds.insert(IS->getSUnit());
- }
- }
- return !Preds.empty();
-}
-
-/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
-/// as the successors of the elements of NodeOrder that are not also in
-/// NodeOrder.
-static bool succ_L(SetVector<SUnit *> &NodeOrder,
- SmallSetVector<SUnit *, 8> &Succs,
- const NodeSet *S = nullptr) {
- Succs.clear();
- for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
- I != E; ++I) {
- for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
- SI != SE; ++SI) {
- if (S && S->count(SI->getSUnit()) == 0)
- continue;
- if (ignoreDependence(*SI, false))
- continue;
- if (NodeOrder.count(SI->getSUnit()) == 0)
- Succs.insert(SI->getSUnit());
- }
- for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
- PE = (*I)->Preds.end();
- PI != PE; ++PI) {
- if (PI->getKind() != SDep::Anti)
- continue;
- if (S && S->count(PI->getSUnit()) == 0)
- continue;
- if (NodeOrder.count(PI->getSUnit()) == 0)
- Succs.insert(PI->getSUnit());
- }
- }
- return !Succs.empty();
-}
-
-/// Return true if there is a path from the specified node to any of the nodes
-/// in DestNodes. Keep track and return the nodes in any path.
-static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
- SetVector<SUnit *> &DestNodes,
- SetVector<SUnit *> &Exclude,
- SmallPtrSet<SUnit *, 8> &Visited) {
- if (Cur->isBoundaryNode())
- return false;
- if (Exclude.count(Cur) != 0)
- return false;
- if (DestNodes.count(Cur) != 0)
- return true;
- if (!Visited.insert(Cur).second)
- return Path.count(Cur) != 0;
- bool FoundPath = false;
- for (auto &SI : Cur->Succs)
- FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
- for (auto &PI : Cur->Preds)
- if (PI.getKind() == SDep::Anti)
- FoundPath |=
- computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
- if (FoundPath)
- Path.insert(Cur);
- return FoundPath;
-}
-
-/// Return true if Set1 is a subset of Set2.
-template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
- for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
- if (Set2.count(*I) == 0)
- return false;
- return true;
-}
-
-/// Compute the live-out registers for the instructions in a node-set.
-/// The live-out registers are those that are defined in the node-set,
-/// but not used. Except for use operands of Phis.
-static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
- NodeSet &NS) {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- MachineRegisterInfo &MRI = MF.getRegInfo();
- SmallVector<RegisterMaskPair, 8> LiveOutRegs;
- SmallSet<unsigned, 4> Uses;
- for (SUnit *SU : NS) {
- const MachineInstr *MI = SU->getInstr();
- if (MI->isPHI())
- continue;
- for (const MachineOperand &MO : MI->operands())
- if (MO.isReg() && MO.isUse()) {
- unsigned Reg = MO.getReg();
- if (TargetRegisterInfo::isVirtualRegister(Reg))
- Uses.insert(Reg);
- else if (MRI.isAllocatable(Reg))
- for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
- Uses.insert(*Units);
- }
- }
- for (SUnit *SU : NS)
- for (const MachineOperand &MO : SU->getInstr()->operands())
- if (MO.isReg() && MO.isDef() && !MO.isDead()) {
- unsigned Reg = MO.getReg();
- if (TargetRegisterInfo::isVirtualRegister(Reg)) {
- if (!Uses.count(Reg))
- LiveOutRegs.push_back(RegisterMaskPair(Reg,
- LaneBitmask::getNone()));
- } else if (MRI.isAllocatable(Reg)) {
- for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
- if (!Uses.count(*Units))
- LiveOutRegs.push_back(RegisterMaskPair(*Units,
- LaneBitmask::getNone()));
- }
- }
- RPTracker.addLiveRegs(LiveOutRegs);
-}
-
-/// A heuristic to filter nodes in recurrent node-sets if the register
-/// pressure of a set is too high.
-void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
- for (auto &NS : NodeSets) {
- // Skip small node-sets since they won't cause register pressure problems.
- if (NS.size() <= 2)
- continue;
- IntervalPressure RecRegPressure;
- RegPressureTracker RecRPTracker(RecRegPressure);
- RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
- computeLiveOuts(MF, RecRPTracker, NS);
- RecRPTracker.closeBottom();
-
- std::vector<SUnit *> SUnits(NS.begin(), NS.end());
- llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
- return A->NodeNum > B->NodeNum;
- });
-
- for (auto &SU : SUnits) {
- // Since we're computing the register pressure for a subset of the
- // instructions in a block, we need to set the tracker for each
- // instruction in the node-set. The tracker is set to the instruction
- // just after the one we're interested in.
- MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
- RecRPTracker.setPos(std::next(CurInstI));
-
- RegPressureDelta RPDelta;
- ArrayRef<PressureChange> CriticalPSets;
- RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
- CriticalPSets,
- RecRegPressure.MaxSetPressure);
- if (RPDelta.Excess.isValid()) {
- LLVM_DEBUG(
- dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
- << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
- << ":" << RPDelta.Excess.getUnitInc());
- NS.setExceedPressure(SU);
- break;
- }
- RecRPTracker.recede();
- }
- }
-}
-
-/// A heuristic to colocate node sets that have the same set of
-/// successors.
-void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
- unsigned Colocate = 0;
- for (int i = 0, e = NodeSets.size(); i < e; ++i) {
- NodeSet &N1 = NodeSets[i];
- SmallSetVector<SUnit *, 8> S1;
- if (N1.empty() || !succ_L(N1, S1))
- continue;
- for (int j = i + 1; j < e; ++j) {
- NodeSet &N2 = NodeSets[j];
- if (N1.compareRecMII(N2) != 0)
- continue;
- SmallSetVector<SUnit *, 8> S2;
- if (N2.empty() || !succ_L(N2, S2))
- continue;
- if (isSubset(S1, S2) && S1.size() == S2.size()) {
- N1.setColocate(++Colocate);
- N2.setColocate(Colocate);
- break;
- }
- }
- }
-}
-
-/// Check if the existing node-sets are profitable. If not, then ignore the
-/// recurrent node-sets, and attempt to schedule all nodes together. This is
-/// a heuristic. If the MII is large and all the recurrent node-sets are small,
-/// then it's best to try to schedule all instructions together instead of
-/// starting with the recurrent node-sets.
-void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
- // Look for loops with a large MII.
- if (MII < 17)
- return;
- // Check if the node-set contains only a simple add recurrence.
- for (auto &NS : NodeSets) {
- if (NS.getRecMII() > 2)
- return;
- if (NS.getMaxDepth() > MII)
- return;
- }
- NodeSets.clear();
- LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
- return;
-}
-
-/// Add the nodes that do not belong to a recurrence set into groups
-/// based upon connected componenets.
-void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
- SetVector<SUnit *> NodesAdded;
- SmallPtrSet<SUnit *, 8> Visited;
- // Add the nodes that are on a path between the previous node sets and
- // the current node set.
- for (NodeSet &I : NodeSets) {
- SmallSetVector<SUnit *, 8> N;
- // Add the nodes from the current node set to the previous node set.
- if (succ_L(I, N)) {
- SetVector<SUnit *> Path;
- for (SUnit *NI : N) {
- Visited.clear();
- computePath(NI, Path, NodesAdded, I, Visited);
- }
- if (!Path.empty())
- I.insert(Path.begin(), Path.end());
- }
- // Add the nodes from the previous node set to the current node set.
- N.clear();
- if (succ_L(NodesAdded, N)) {
- SetVector<SUnit *> Path;
- for (SUnit *NI : N) {
- Visited.clear();
- computePath(NI, Path, I, NodesAdded, Visited);
- }
- if (!Path.empty())
- I.insert(Path.begin(), Path.end());
- }
- NodesAdded.insert(I.begin(), I.end());
- }
-
- // Create a new node set with the connected nodes of any successor of a node
- // in a recurrent set.
- NodeSet NewSet;
- SmallSetVector<SUnit *, 8> N;
- if (succ_L(NodesAdded, N))
- for (SUnit *I : N)
- addConnectedNodes(I, NewSet, NodesAdded);
- if (!NewSet.empty())
- NodeSets.push_back(NewSet);
-
- // Create a new node set with the connected nodes of any predecessor of a node
- // in a recurrent set.
- NewSet.clear();
- if (pred_L(NodesAdded, N))
- for (SUnit *I : N)
- addConnectedNodes(I, NewSet, NodesAdded);
- if (!NewSet.empty())
- NodeSets.push_back(NewSet);
-
- // Create new nodes sets with the connected nodes any remaining node that
- // has no predecessor.
- for (unsigned i = 0; i < SUnits.size(); ++i) {
- SUnit *SU = &SUnits[i];
- if (NodesAdded.count(SU) == 0) {
- NewSet.clear();
- addConnectedNodes(SU, NewSet, NodesAdded);
- if (!NewSet.empty())
- NodeSets.push_back(NewSet);
- }
- }
-}
-
-/// Add the node to the set, and add all of its connected nodes to the set.
-void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
- SetVector<SUnit *> &NodesAdded) {
- NewSet.insert(SU);
- NodesAdded.insert(SU);
- for (auto &SI : SU->Succs) {
- SUnit *Successor = SI.getSUnit();
- if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
- addConnectedNodes(Successor, NewSet, NodesAdded);
- }
- for (auto &PI : SU->Preds) {
- SUnit *Predecessor = PI.getSUnit();
- if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
- addConnectedNodes(Predecessor, NewSet, NodesAdded);
- }
-}
-
-/// Return true if Set1 contains elements in Set2. The elements in common
-/// are returned in a different container.
-static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
- SmallSetVector<SUnit *, 8> &Result) {
- Result.clear();
- for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
- SUnit *SU = Set1[i];
- if (Set2.count(SU) != 0)
- Result.insert(SU);
- }
- return !Result.empty();
-}
-
-/// Merge the recurrence node sets that have the same initial node.
-void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
- for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
- ++I) {
- NodeSet &NI = *I;
- for (NodeSetType::iterator J = I + 1; J != E;) {
- NodeSet &NJ = *J;
- if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
- if (NJ.compareRecMII(NI) > 0)
- NI.setRecMII(NJ.getRecMII());
- for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
- ++NII)
- I->insert(*NII);
- NodeSets.erase(J);
- E = NodeSets.end();
- } else {
- ++J;
- }
- }
- }
-}
-
-/// Remove nodes that have been scheduled in previous NodeSets.
-void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
- for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
- ++I)
- for (NodeSetType::iterator J = I + 1; J != E;) {
- J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
-
- if (J->empty()) {
- NodeSets.erase(J);
- E = NodeSets.end();
- } else {
- ++J;
- }
- }
-}
-
-/// Compute an ordered list of the dependence graph nodes, which
-/// indicates the order that the nodes will be scheduled. This is a
-/// two-level algorithm. First, a partial order is created, which
-/// consists of a list of sets ordered from highest to lowest priority.
-void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
- SmallSetVector<SUnit *, 8> R;
- NodeOrder.clear();
-
- for (auto &Nodes : NodeSets) {
- LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
- OrderKind Order;
- SmallSetVector<SUnit *, 8> N;
- if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
- R.insert(N.begin(), N.end());
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
- } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
- R.insert(N.begin(), N.end());
- Order = TopDown;
- LLVM_DEBUG(dbgs() << " Top down (succs) ");
- } else if (isIntersect(N, Nodes, R)) {
- // If some of the successors are in the existing node-set, then use the
- // top-down ordering.
- Order = TopDown;
- LLVM_DEBUG(dbgs() << " Top down (intersect) ");
- } else if (NodeSets.size() == 1) {
- for (auto &N : Nodes)
- if (N->Succs.size() == 0)
- R.insert(N);
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << " Bottom up (all) ");
- } else {
- // Find the node with the highest ASAP.
- SUnit *maxASAP = nullptr;
- for (SUnit *SU : Nodes) {
- if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
- (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
- maxASAP = SU;
- }
- R.insert(maxASAP);
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << " Bottom up (default) ");
- }
-
- while (!R.empty()) {
- if (Order == TopDown) {
- // Choose the node with the maximum height. If more than one, choose
- // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
- // choose the node with the lowest MOV.
- while (!R.empty()) {
- SUnit *maxHeight = nullptr;
- for (SUnit *I : R) {
- if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
- maxHeight = I;
- else if (getHeight(I) == getHeight(maxHeight) &&
- getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
- maxHeight = I;
- else if (getHeight(I) == getHeight(maxHeight) &&
- getZeroLatencyHeight(I) ==
- getZeroLatencyHeight(maxHeight) &&
- getMOV(I) < getMOV(maxHeight))
- maxHeight = I;
- }
- NodeOrder.insert(maxHeight);
- LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
- R.remove(maxHeight);
- for (const auto &I : maxHeight->Succs) {
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
- if (NodeOrder.count(I.getSUnit()) != 0)
- continue;
- if (ignoreDependence(I, false))
- continue;
- R.insert(I.getSUnit());
- }
- // Back-edges are predecessors with an anti-dependence.
- for (const auto &I : maxHeight->Preds) {
- if (I.getKind() != SDep::Anti)
- continue;
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
- if (NodeOrder.count(I.getSUnit()) != 0)
- continue;
- R.insert(I.getSUnit());
- }
- }
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
- SmallSetVector<SUnit *, 8> N;
- if (pred_L(NodeOrder, N, &Nodes))
- R.insert(N.begin(), N.end());
- } else {
- // Choose the node with the maximum depth. If more than one, choose
- // the node with the maximum ZeroLatencyDepth. If still more than one,
- // choose the node with the lowest MOV.
- while (!R.empty()) {
- SUnit *maxDepth = nullptr;
- for (SUnit *I : R) {
- if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
- maxDepth = I;
- else if (getDepth(I) == getDepth(maxDepth) &&
- getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
- maxDepth = I;
- else if (getDepth(I) == getDepth(maxDepth) &&
- getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
- getMOV(I) < getMOV(maxDepth))
- maxDepth = I;
- }
- NodeOrder.insert(maxDepth);
- LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
- R.remove(maxDepth);
- if (Nodes.isExceedSU(maxDepth)) {
- Order = TopDown;
- R.clear();
- R.insert(Nodes.getNode(0));
- break;
- }
- for (const auto &I : maxDepth->Preds) {
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
- if (NodeOrder.count(I.getSUnit()) != 0)
- continue;
- R.insert(I.getSUnit());
- }
- // Back-edges are predecessors with an anti-dependence.
- for (const auto &I : maxDepth->Succs) {
- if (I.getKind() != SDep::Anti)
- continue;
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
- if (NodeOrder.count(I.getSUnit()) != 0)
- continue;
- R.insert(I.getSUnit());
- }
- }
- Order = TopDown;
- LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
- SmallSetVector<SUnit *, 8> N;
- if (succ_L(NodeOrder, N, &Nodes))
- R.insert(N.begin(), N.end());
- }
- }
- LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
- }
-
- LLVM_DEBUG({
- dbgs() << "Node order: ";
- for (SUnit *I : NodeOrder)
- dbgs() << " " << I->NodeNum << " ";
- dbgs() << "\n";
- });
-}
-
-/// Process the nodes in the computed order and create the pipelined schedule
-/// of the instructions, if possible. Return true if a schedule is found.
-bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
-
- if (NodeOrder.empty()){
- LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
- return false;
- }
-
- bool scheduleFound = false;
- unsigned II = 0;
- // Keep increasing II until a valid schedule is found.
- for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
- Schedule.reset();
- Schedule.setInitiationInterval(II);
- LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
-
- SetVector<SUnit *>::iterator NI = NodeOrder.begin();
- SetVector<SUnit *>::iterator NE = NodeOrder.end();
- do {
- SUnit *SU = *NI;
-
- // Compute the schedule time for the instruction, which is based
- // upon the scheduled time for any predecessors/successors.
- int EarlyStart = INT_MIN;
- int LateStart = INT_MAX;
- // These values are set when the size of the schedule window is limited
- // due to chain dependences.
- int SchedEnd = INT_MAX;
- int SchedStart = INT_MIN;
- Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
- II, this);
- LLVM_DEBUG({
- dbgs() << "\n";
- dbgs() << "Inst (" << SU->NodeNum << ") ";
- SU->getInstr()->dump();
- dbgs() << "\n";
- });
- LLVM_DEBUG({
- dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
- LateStart, SchedEnd, SchedStart);
- });
-
- if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
- SchedStart > LateStart)
- scheduleFound = false;
- else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
- SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
- scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
- } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
- SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
- scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
- } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
- SchedEnd =
- std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
- // When scheduling a Phi it is better to start at the late cycle and go
- // backwards. The default order may insert the Phi too far away from
- // its first dependence.
- if (SU->getInstr()->isPHI())
- scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
- else
- scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
- } else {
- int FirstCycle = Schedule.getFirstCycle();
- scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
- FirstCycle + getASAP(SU) + II - 1, II);
- }
- // Even if we find a schedule, make sure the schedule doesn't exceed the
- // allowable number of stages. We keep trying if this happens.
- if (scheduleFound)
- if (SwpMaxStages > -1 &&
- Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
- scheduleFound = false;
-
- LLVM_DEBUG({
- if (!scheduleFound)
- dbgs() << "\tCan't schedule\n";
- });
- } while (++NI != NE && scheduleFound);
-
- // If a schedule is found, check if it is a valid schedule too.
- if (scheduleFound)
- scheduleFound = Schedule.isValidSchedule(this);
- }
-
- LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
- << ")\n");
-
- if (scheduleFound)
- Schedule.finalizeSchedule(this);
- else
- Schedule.reset();
-
- return scheduleFound && Schedule.getMaxStageCount() > 0;
-}
-
-/// Given a schedule for the loop, generate a new version of the loop,
-/// and replace the old version. This function generates a prolog
-/// that contains the initial iterations in the pipeline, and kernel
-/// loop, and the epilogue that contains the code for the final
-/// iterations.
-void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
- // Create a new basic block for the kernel and add it to the CFG.
- MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
-
- unsigned MaxStageCount = Schedule.getMaxStageCount();
-
- // Remember the registers that are used in different stages. The index is
- // the iteration, or stage, that the instruction is scheduled in. This is
- // a map between register names in the original block and the names created
- // in each stage of the pipelined loop.
- ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
- InstrMapTy InstrMap;
-
- SmallVector<MachineBasicBlock *, 4> PrologBBs;
-
- MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
- assert(PreheaderBB != nullptr &&
- "Need to add code to handle loops w/o preheader");
- // Generate the prolog instructions that set up the pipeline.
- generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
- MF.insert(BB->getIterator(), KernelBB);
-
- // Rearrange the instructions to generate the new, pipelined loop,
- // and update register names as needed.
- for (int Cycle = Schedule.getFirstCycle(),
- LastCycle = Schedule.getFinalCycle();
- Cycle <= LastCycle; ++Cycle) {
- std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
- // This inner loop schedules each instruction in the cycle.
- for (SUnit *CI : CycleInstrs) {
- if (CI->getInstr()->isPHI())
- continue;
- unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
- MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
- updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
- KernelBB->push_back(NewMI);
- InstrMap[NewMI] = CI->getInstr();
- }
- }
-
- // Copy any terminator instructions to the new kernel, and update
- // names as needed.
- for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
- E = BB->instr_end();
- I != E; ++I) {
- MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
- updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
- KernelBB->push_back(NewMI);
- InstrMap[NewMI] = &*I;
- }
-
- KernelBB->transferSuccessors(BB);
- KernelBB->replaceSuccessor(BB, KernelBB);
-
- generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
- VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
- generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
- InstrMap, MaxStageCount, MaxStageCount, false);
-
- LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
-
- SmallVector<MachineBasicBlock *, 4> EpilogBBs;
- // Generate the epilog instructions to complete the pipeline.
- generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
- PrologBBs);
-
- // We need this step because the register allocation doesn't handle some
- // situations well, so we insert copies to help out.
- splitLifetimes(KernelBB, EpilogBBs, Schedule);
-
- // Remove dead instructions due to loop induction variables.
- removeDeadInstructions(KernelBB, EpilogBBs);
-
- // Add branches between prolog and epilog blocks.
- addBranches(*PreheaderBB, PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
-
- // Remove the original loop since it's no longer referenced.
- for (auto &I : *BB)
- LIS.RemoveMachineInstrFromMaps(I);
- BB->clear();
- BB->eraseFromParent();
-
- delete[] VRMap;
-}
-
-/// Generate the pipeline prolog code.
-void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
- MachineBasicBlock *KernelBB,
- ValueMapTy *VRMap,
- MBBVectorTy &PrologBBs) {
- MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
- assert(PreheaderBB != nullptr &&
- "Need to add code to handle loops w/o preheader");
- MachineBasicBlock *PredBB = PreheaderBB;
- InstrMapTy InstrMap;
-
- // Generate a basic block for each stage, not including the last stage,
- // which will be generated in the kernel. Each basic block may contain
- // instructions from multiple stages/iterations.
- for (unsigned i = 0; i < LastStage; ++i) {
- // Create and insert the prolog basic block prior to the original loop
- // basic block. The original loop is removed later.
- MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
- PrologBBs.push_back(NewBB);
- MF.insert(BB->getIterator(), NewBB);
- NewBB->transferSuccessors(PredBB);
- PredBB->addSuccessor(NewBB);
- PredBB = NewBB;
-
- // Generate instructions for each appropriate stage. Process instructions
- // in original program order.
- for (int StageNum = i; StageNum >= 0; --StageNum) {
- for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
- BBE = BB->getFirstTerminator();
- BBI != BBE; ++BBI) {
- if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
- if (BBI->isPHI())
- continue;
- MachineInstr *NewMI =
- cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
- updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
- VRMap);
- NewBB->push_back(NewMI);
- InstrMap[NewMI] = &*BBI;
- }
- }
- }
- rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
- LLVM_DEBUG({
- dbgs() << "prolog:\n";
- NewBB->dump();
- });
- }
-
- PredBB->replaceSuccessor(BB, KernelBB);
-
- // Check if we need to remove the branch from the preheader to the original
- // loop, and replace it with a branch to the new loop.
- unsigned numBranches = TII->removeBranch(*PreheaderBB);
- if (numBranches) {
- SmallVector<MachineOperand, 0> Cond;
- TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
- }
-}
-
-/// Generate the pipeline epilog code. The epilog code finishes the iterations
-/// that were started in either the prolog or the kernel. We create a basic
-/// block for each stage that needs to complete.
-void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
- MachineBasicBlock *KernelBB,
- ValueMapTy *VRMap,
- MBBVectorTy &EpilogBBs,
- MBBVectorTy &PrologBBs) {
- // We need to change the branch from the kernel to the first epilog block, so
- // this call to analyze branch uses the kernel rather than the original BB.
- MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
- SmallVector<MachineOperand, 4> Cond;
- bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
- assert(!checkBranch && "generateEpilog must be able to analyze the branch");
- if (checkBranch)
- return;
-
- MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
- if (*LoopExitI == KernelBB)
- ++LoopExitI;
- assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
- MachineBasicBlock *LoopExitBB = *LoopExitI;
-
- MachineBasicBlock *PredBB = KernelBB;
- MachineBasicBlock *EpilogStart = LoopExitBB;
- InstrMapTy InstrMap;
-
- // Generate a basic block for each stage, not including the last stage,
- // which was generated for the kernel. Each basic block may contain
- // instructions from multiple stages/iterations.
- int EpilogStage = LastStage + 1;
- for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
- MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
- EpilogBBs.push_back(NewBB);
- MF.insert(BB->getIterator(), NewBB);
-
- PredBB->replaceSuccessor(LoopExitBB, NewBB);
- NewBB->addSuccessor(LoopExitBB);
-
- if (EpilogStart == LoopExitBB)
- EpilogStart = NewBB;
-
- // Add instructions to the epilog depending on the current block.
- // Process instructions in original program order.
- for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
- for (auto &BBI : *BB) {
- if (BBI.isPHI())
- continue;
- MachineInstr *In = &BBI;
- if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
- // Instructions with memoperands in the epilog are updated with
- // conservative values.
- MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
- updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
- NewBB->push_back(NewMI);
- InstrMap[NewMI] = In;
- }
- }
- }
- generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
- VRMap, InstrMap, LastStage, EpilogStage, i == 1);
- generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
- InstrMap, LastStage, EpilogStage, i == 1);
- PredBB = NewBB;
-
- LLVM_DEBUG({
- dbgs() << "epilog:\n";
- NewBB->dump();
- });
- }
-
- // Fix any Phi nodes in the loop exit block.
- for (MachineInstr &MI : *LoopExitBB) {
- if (!MI.isPHI())
- break;
- for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
- MachineOperand &MO = MI.getOperand(i);
- if (MO.getMBB() == BB)
- MO.setMBB(PredBB);
- }
- }
-
- // Create a branch to the new epilog from the kernel.
- // Remove the original branch and add a new branch to the epilog.
- TII->removeBranch(*KernelBB);
- TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
- // Add a branch to the loop exit.
- if (EpilogBBs.size() > 0) {
- MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
- SmallVector<MachineOperand, 4> Cond1;
- TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
- }
-}
-
-/// Replace all uses of FromReg that appear outside the specified
-/// basic block with ToReg.
-static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
- MachineBasicBlock *MBB,
- MachineRegisterInfo &MRI,
- LiveIntervals &LIS) {
- for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
- E = MRI.use_end();
- I != E;) {
- MachineOperand &O = *I;
- ++I;
- if (O.getParent()->getParent() != MBB)
- O.setReg(ToReg);
- }
- if (!LIS.hasInterval(ToReg))
- LIS.createEmptyInterval(ToReg);
-}
-
-/// Return true if the register has a use that occurs outside the
-/// specified loop.
-static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
- MachineRegisterInfo &MRI) {
- for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
- E = MRI.use_end();
- I != E; ++I)
- if (I->getParent()->getParent() != BB)
- return true;
- return false;
-}
-
-/// Generate Phis for the specific block in the generated pipelined code.
-/// This function looks at the Phis from the original code to guide the
-/// creation of new Phis.
-void SwingSchedulerDAG::generateExistingPhis(
- MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
- MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
- InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
- bool IsLast) {
- // Compute the stage number for the initial value of the Phi, which
- // comes from the prolog. The prolog to use depends on to which kernel/
- // epilog that we're adding the Phi.
- unsigned PrologStage = 0;
- unsigned PrevStage = 0;
- bool InKernel = (LastStageNum == CurStageNum);
- if (InKernel) {
- PrologStage = LastStageNum - 1;
- PrevStage = CurStageNum;
- } else {
- PrologStage = LastStageNum - (CurStageNum - LastStageNum);
- PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
- }
-
- for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
- BBE = BB->getFirstNonPHI();
- BBI != BBE; ++BBI) {
- unsigned Def = BBI->getOperand(0).getReg();
-
- unsigned InitVal = 0;
- unsigned LoopVal = 0;
- getPhiRegs(*BBI, BB, InitVal, LoopVal);
-
- unsigned PhiOp1 = 0;
- // The Phi value from the loop body typically is defined in the loop, but
- // not always. So, we need to check if the value is defined in the loop.
- unsigned PhiOp2 = LoopVal;
- if (VRMap[LastStageNum].count(LoopVal))
- PhiOp2 = VRMap[LastStageNum][LoopVal];
-
- int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
- int LoopValStage =
- Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
- unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
- if (NumStages == 0) {
- // We don't need to generate a Phi anymore, but we need to rename any uses
- // of the Phi value.
- unsigned NewReg = VRMap[PrevStage][LoopVal];
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
- Def, InitVal, NewReg);
- if (VRMap[CurStageNum].count(LoopVal))
- VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
- }
- // Adjust the number of Phis needed depending on the number of prologs left,
- // and the distance from where the Phi is first scheduled. The number of
- // Phis cannot exceed the number of prolog stages. Each stage can
- // potentially define two values.
- unsigned MaxPhis = PrologStage + 2;
- if (!InKernel && (int)PrologStage <= LoopValStage)
- MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
- unsigned NumPhis = std::min(NumStages, MaxPhis);
-
- unsigned NewReg = 0;
- unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
- // In the epilog, we may need to look back one stage to get the correct
- // Phi name because the epilog and prolog blocks execute the same stage.
- // The correct name is from the previous block only when the Phi has
- // been completely scheduled prior to the epilog, and Phi value is not
- // needed in multiple stages.
- int StageDiff = 0;
- if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
- NumPhis == 1)
- StageDiff = 1;
- // Adjust the computations below when the phi and the loop definition
- // are scheduled in different stages.
- if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
- StageDiff = StageScheduled - LoopValStage;
- for (unsigned np = 0; np < NumPhis; ++np) {
- // If the Phi hasn't been scheduled, then use the initial Phi operand
- // value. Otherwise, use the scheduled version of the instruction. This
- // is a little complicated when a Phi references another Phi.
- if (np > PrologStage || StageScheduled >= (int)LastStageNum)
- PhiOp1 = InitVal;
- // Check if the Phi has already been scheduled in a prolog stage.
- else if (PrologStage >= AccessStage + StageDiff + np &&
- VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
- PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
- // Check if the Phi has already been scheduled, but the loop instruction
- // is either another Phi, or doesn't occur in the loop.
- else if (PrologStage >= AccessStage + StageDiff + np) {
- // If the Phi references another Phi, we need to examine the other
- // Phi to get the correct value.
- PhiOp1 = LoopVal;
- MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
- int Indirects = 1;
- while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
- int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
- if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
- PhiOp1 = getInitPhiReg(*InstOp1, BB);
- else
- PhiOp1 = getLoopPhiReg(*InstOp1, BB);
- InstOp1 = MRI.getVRegDef(PhiOp1);
- int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
- int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
- if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
- VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
- PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
- break;
- }
- ++Indirects;
- }
- } else
- PhiOp1 = InitVal;
- // If this references a generated Phi in the kernel, get the Phi operand
- // from the incoming block.
- if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
- if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
- PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
-
- MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
- bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
- // In the epilog, a map lookup is needed to get the value from the kernel,
- // or previous epilog block. How is does this depends on if the
- // instruction is scheduled in the previous block.
- if (!InKernel) {
- int StageDiffAdj = 0;
- if (LoopValStage != -1 && StageScheduled > LoopValStage)
- StageDiffAdj = StageScheduled - LoopValStage;
- // Use the loop value defined in the kernel, unless the kernel
- // contains the last definition of the Phi.
- if (np == 0 && PrevStage == LastStageNum &&
- (StageScheduled != 0 || LoopValStage != 0) &&
- VRMap[PrevStage - StageDiffAdj].count(LoopVal))
- PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
- // Use the value defined by the Phi. We add one because we switch
- // from looking at the loop value to the Phi definition.
- else if (np > 0 && PrevStage == LastStageNum &&
- VRMap[PrevStage - np + 1].count(Def))
- PhiOp2 = VRMap[PrevStage - np + 1][Def];
- // Use the loop value defined in the kernel.
- else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
- VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
- PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
- // Use the value defined by the Phi, unless we're generating the first
- // epilog and the Phi refers to a Phi in a different stage.
- else if (VRMap[PrevStage - np].count(Def) &&
- (!LoopDefIsPhi || (PrevStage != LastStageNum) || (LoopValStage == StageScheduled)))
- PhiOp2 = VRMap[PrevStage - np][Def];
- }
-
- // Check if we can reuse an existing Phi. This occurs when a Phi
- // references another Phi, and the other Phi is scheduled in an
- // earlier stage. We can try to reuse an existing Phi up until the last
- // stage of the current Phi.
- if (LoopDefIsPhi) {
- if (static_cast<int>(PrologStage - np) >= StageScheduled) {
- int LVNumStages = Schedule.getStagesForPhi(LoopVal);
- int StageDiff = (StageScheduled - LoopValStage);
- LVNumStages -= StageDiff;
- // Make sure the loop value Phi has been processed already.
- if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
- NewReg = PhiOp2;
- unsigned ReuseStage = CurStageNum;
- if (Schedule.isLoopCarried(this, *PhiInst))
- ReuseStage -= LVNumStages;
- // Check if the Phi to reuse has been generated yet. If not, then
- // there is nothing to reuse.
- if (VRMap[ReuseStage - np].count(LoopVal)) {
- NewReg = VRMap[ReuseStage - np][LoopVal];
-
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
- &*BBI, Def, NewReg);
- // Update the map with the new Phi name.
- VRMap[CurStageNum - np][Def] = NewReg;
- PhiOp2 = NewReg;
- if (VRMap[LastStageNum - np - 1].count(LoopVal))
- PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
-
- if (IsLast && np == NumPhis - 1)
- replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
- continue;
- }
- }
- }
- if (InKernel && StageDiff > 0 &&
- VRMap[CurStageNum - StageDiff - np].count(LoopVal))
- PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
- }
-
- const TargetRegisterClass *RC = MRI.getRegClass(Def);
- NewReg = MRI.createVirtualRegister(RC);
-
- MachineInstrBuilder NewPhi =
- BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
- TII->get(TargetOpcode::PHI), NewReg);
- NewPhi.addReg(PhiOp1).addMBB(BB1);
- NewPhi.addReg(PhiOp2).addMBB(BB2);
- if (np == 0)
- InstrMap[NewPhi] = &*BBI;
-
- // We define the Phis after creating the new pipelined code, so
- // we need to rename the Phi values in scheduled instructions.
-
- unsigned PrevReg = 0;
- if (InKernel && VRMap[PrevStage - np].count(LoopVal))
- PrevReg = VRMap[PrevStage - np][LoopVal];
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
- Def, NewReg, PrevReg);
- // If the Phi has been scheduled, use the new name for rewriting.
- if (VRMap[CurStageNum - np].count(Def)) {
- unsigned R = VRMap[CurStageNum - np][Def];
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
- R, NewReg);
- }
-
- // Check if we need to rename any uses that occurs after the loop. The
- // register to replace depends on whether the Phi is scheduled in the
- // epilog.
- if (IsLast && np == NumPhis - 1)
- replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
-
- // In the kernel, a dependent Phi uses the value from this Phi.
- if (InKernel)
- PhiOp2 = NewReg;
-
- // Update the map with the new Phi name.
- VRMap[CurStageNum - np][Def] = NewReg;
- }
-
- while (NumPhis++ < NumStages) {
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
- &*BBI, Def, NewReg, 0);
- }
-
- // Check if we need to rename a Phi that has been eliminated due to
- // scheduling.
- if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
- replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
- }
-}
-
-/// Generate Phis for the specified block in the generated pipelined code.
-/// These are new Phis needed because the definition is scheduled after the
-/// use in the pipelined sequence.
-void SwingSchedulerDAG::generatePhis(
- MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
- MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
- InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
- bool IsLast) {
- // Compute the stage number that contains the initial Phi value, and
- // the Phi from the previous stage.
- unsigned PrologStage = 0;
- unsigned PrevStage = 0;
- unsigned StageDiff = CurStageNum - LastStageNum;
- bool InKernel = (StageDiff == 0);
- if (InKernel) {
- PrologStage = LastStageNum - 1;
- PrevStage = CurStageNum;
- } else {
- PrologStage = LastStageNum - StageDiff;
- PrevStage = LastStageNum + StageDiff - 1;
- }
-
- for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
- BBE = BB->instr_end();
- BBI != BBE; ++BBI) {
- for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = BBI->getOperand(i);
- if (!MO.isReg() || !MO.isDef() ||
- !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
- continue;
-
- int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
- assert(StageScheduled != -1 && "Expecting scheduled instruction.");
- unsigned Def = MO.getReg();
- unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
- // An instruction scheduled in stage 0 and is used after the loop
- // requires a phi in the epilog for the last definition from either
- // the kernel or prolog.
- if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
- hasUseAfterLoop(Def, BB, MRI))
- NumPhis = 1;
- if (!InKernel && (unsigned)StageScheduled > PrologStage)
- continue;
-
- unsigned PhiOp2 = VRMap[PrevStage][Def];
- if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
- if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
- PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
- // The number of Phis can't exceed the number of prolog stages. The
- // prolog stage number is zero based.
- if (NumPhis > PrologStage + 1 - StageScheduled)
- NumPhis = PrologStage + 1 - StageScheduled;
- for (unsigned np = 0; np < NumPhis; ++np) {
- unsigned PhiOp1 = VRMap[PrologStage][Def];
- if (np <= PrologStage)
- PhiOp1 = VRMap[PrologStage - np][Def];
- if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
- if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
- PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
- if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
- PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
- }
- if (!InKernel)
- PhiOp2 = VRMap[PrevStage - np][Def];
-
- const TargetRegisterClass *RC = MRI.getRegClass(Def);
- unsigned NewReg = MRI.createVirtualRegister(RC);
-
- MachineInstrBuilder NewPhi =
- BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
- TII->get(TargetOpcode::PHI), NewReg);
- NewPhi.addReg(PhiOp1).addMBB(BB1);
- NewPhi.addReg(PhiOp2).addMBB(BB2);
- if (np == 0)
- InstrMap[NewPhi] = &*BBI;
-
- // Rewrite uses and update the map. The actions depend upon whether
- // we generating code for the kernel or epilog blocks.
- if (InKernel) {
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
- &*BBI, PhiOp1, NewReg);
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
- &*BBI, PhiOp2, NewReg);
-
- PhiOp2 = NewReg;
- VRMap[PrevStage - np - 1][Def] = NewReg;
- } else {
- VRMap[CurStageNum - np][Def] = NewReg;
- if (np == NumPhis - 1)
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
- &*BBI, Def, NewReg);
- }
- if (IsLast && np == NumPhis - 1)
- replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
- }
- }
- }
-}
-
-/// Remove instructions that generate values with no uses.
-/// Typically, these are induction variable operations that generate values
-/// used in the loop itself. A dead instruction has a definition with
-/// no uses, or uses that occur in the original loop only.
-void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
- MBBVectorTy &EpilogBBs) {
- // For each epilog block, check that the value defined by each instruction
- // is used. If not, delete it.
- for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
- MBE = EpilogBBs.rend();
- MBB != MBE; ++MBB)
- for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
- ME = (*MBB)->instr_rend();
- MI != ME;) {
- // From DeadMachineInstructionElem. Don't delete inline assembly.
- if (MI->isInlineAsm()) {
- ++MI;
- continue;
- }
- bool SawStore = false;
- // Check if it's safe to remove the instruction due to side effects.
- // We can, and want to, remove Phis here.
- if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
- ++MI;
- continue;
- }
- bool used = true;
- for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
- MOE = MI->operands_end();
- MOI != MOE; ++MOI) {
- if (!MOI->isReg() || !MOI->isDef())
- continue;
- unsigned reg = MOI->getReg();
- // Assume physical registers are used, unless they are marked dead.
- if (TargetRegisterInfo::isPhysicalRegister(reg)) {
- used = !MOI->isDead();
- if (used)
- break;
- continue;
- }
- unsigned realUses = 0;
- for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
- EI = MRI.use_end();
- UI != EI; ++UI) {
- // Check if there are any uses that occur only in the original
- // loop. If so, that's not a real use.
- if (UI->getParent()->getParent() != BB) {
- realUses++;
- used = true;
- break;
- }
- }
- if (realUses > 0)
- break;
- used = false;
- }
- if (!used) {
- LIS.RemoveMachineInstrFromMaps(*MI);
- MI++->eraseFromParent();
- continue;
- }
- ++MI;
- }
- // In the kernel block, check if we can remove a Phi that generates a value
- // used in an instruction removed in the epilog block.
- for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
- BBE = KernelBB->getFirstNonPHI();
- BBI != BBE;) {
- MachineInstr *MI = &*BBI;
- ++BBI;
- unsigned reg = MI->getOperand(0).getReg();
- if (MRI.use_begin(reg) == MRI.use_end()) {
- LIS.RemoveMachineInstrFromMaps(*MI);
- MI->eraseFromParent();
- }
- }
-}
-
-/// For loop carried definitions, we split the lifetime of a virtual register
-/// that has uses past the definition in the next iteration. A copy with a new
-/// virtual register is inserted before the definition, which helps with
-/// generating a better register assignment.
-///
-/// v1 = phi(a, v2) v1 = phi(a, v2)
-/// v2 = phi(b, v3) v2 = phi(b, v3)
-/// v3 = .. v4 = copy v1
-/// .. = V1 v3 = ..
-/// .. = v4
-void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
- MBBVectorTy &EpilogBBs,
- SMSchedule &Schedule) {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- for (auto &PHI : KernelBB->phis()) {
- unsigned Def = PHI.getOperand(0).getReg();
- // Check for any Phi definition that used as an operand of another Phi
- // in the same block.
- for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
- E = MRI.use_instr_end();
- I != E; ++I) {
- if (I->isPHI() && I->getParent() == KernelBB) {
- // Get the loop carried definition.
- unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
- if (!LCDef)
- continue;
- MachineInstr *MI = MRI.getVRegDef(LCDef);
- if (!MI || MI->getParent() != KernelBB || MI->isPHI())
- continue;
- // Search through the rest of the block looking for uses of the Phi
- // definition. If one occurs, then split the lifetime.
- unsigned SplitReg = 0;
- for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
- KernelBB->instr_end()))
- if (BBJ.readsRegister(Def)) {
- // We split the lifetime when we find the first use.
- if (SplitReg == 0) {
- SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
- BuildMI(*KernelBB, MI, MI->getDebugLoc(),
- TII->get(TargetOpcode::COPY), SplitReg)
- .addReg(Def);
- }
- BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
- }
- if (!SplitReg)
- continue;
- // Search through each of the epilog blocks for any uses to be renamed.
- for (auto &Epilog : EpilogBBs)
- for (auto &I : *Epilog)
- if (I.readsRegister(Def))
- I.substituteRegister(Def, SplitReg, 0, *TRI);
- break;
- }
- }
- }
-}
-
-/// Remove the incoming block from the Phis in a basic block.
-static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
- for (MachineInstr &MI : *BB) {
- if (!MI.isPHI())
- break;
- for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
- if (MI.getOperand(i + 1).getMBB() == Incoming) {
- MI.RemoveOperand(i + 1);
- MI.RemoveOperand(i);
- break;
- }
- }
-}
-
-/// Create branches from each prolog basic block to the appropriate epilog
-/// block. These edges are needed if the loop ends before reaching the
-/// kernel.
-void SwingSchedulerDAG::addBranches(MachineBasicBlock &PreheaderBB,
- MBBVectorTy &PrologBBs,
- MachineBasicBlock *KernelBB,
- MBBVectorTy &EpilogBBs,
- SMSchedule &Schedule, ValueMapTy *VRMap) {
- assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
- MachineInstr *IndVar = Pass.LI.LoopInductionVar;
- MachineInstr *Cmp = Pass.LI.LoopCompare;
- MachineBasicBlock *LastPro = KernelBB;
- MachineBasicBlock *LastEpi = KernelBB;
-
- // Start from the blocks connected to the kernel and work "out"
- // to the first prolog and the last epilog blocks.
- SmallVector<MachineInstr *, 4> PrevInsts;
- unsigned MaxIter = PrologBBs.size() - 1;
- unsigned LC = UINT_MAX;
- unsigned LCMin = UINT_MAX;
- for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
- // Add branches to the prolog that go to the corresponding
- // epilog, and the fall-thru prolog/kernel block.
- MachineBasicBlock *Prolog = PrologBBs[j];
- MachineBasicBlock *Epilog = EpilogBBs[i];
- // We've executed one iteration, so decrement the loop count and check for
- // the loop end.
- SmallVector<MachineOperand, 4> Cond;
- // Check if the LOOP0 has already been removed. If so, then there is no need
- // to reduce the trip count.
- if (LC != 0)
- LC = TII->reduceLoopCount(*Prolog, PreheaderBB, IndVar, *Cmp, Cond,
- PrevInsts, j, MaxIter);
-
- // Record the value of the first trip count, which is used to determine if
- // branches and blocks can be removed for constant trip counts.
- if (LCMin == UINT_MAX)
- LCMin = LC;
-
- unsigned numAdded = 0;
- if (TargetRegisterInfo::isVirtualRegister(LC)) {
- Prolog->addSuccessor(Epilog);
- numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
- } else if (j >= LCMin) {
- Prolog->addSuccessor(Epilog);
- Prolog->removeSuccessor(LastPro);
- LastEpi->removeSuccessor(Epilog);
- numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
- removePhis(Epilog, LastEpi);
- // Remove the blocks that are no longer referenced.
- if (LastPro != LastEpi) {
- LastEpi->clear();
- LastEpi->eraseFromParent();
- }
- LastPro->clear();
- LastPro->eraseFromParent();
- } else {
- numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
- removePhis(Epilog, Prolog);
- }
- LastPro = Prolog;
- LastEpi = Epilog;
- for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
- E = Prolog->instr_rend();
- I != E && numAdded > 0; ++I, --numAdded)
- updateInstruction(&*I, false, j, 0, Schedule, VRMap);
- }
-}
-
-/// Return true if we can compute the amount the instruction changes
-/// during each iteration. Set Delta to the amount of the change.
-bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- const MachineOperand *BaseOp;
- int64_t Offset;
- if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
- return false;
-
- if (!BaseOp->isReg())
- return false;
-
- unsigned BaseReg = BaseOp->getReg();
-
- MachineRegisterInfo &MRI = MF.getRegInfo();
- // Check if there is a Phi. If so, get the definition in the loop.
- MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
- if (BaseDef && BaseDef->isPHI()) {
- BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
- BaseDef = MRI.getVRegDef(BaseReg);
- }
- if (!BaseDef)
- return false;
-
- int D = 0;
- if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
- return false;
-
- Delta = D;
- return true;
-}
-
-/// Update the memory operand with a new offset when the pipeliner
-/// generates a new copy of the instruction that refers to a
-/// different memory location.
-void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
- MachineInstr &OldMI, unsigned Num) {
- if (Num == 0)
- return;
- // If the instruction has memory operands, then adjust the offset
- // when the instruction appears in different stages.
- if (NewMI.memoperands_empty())
- return;
- SmallVector<MachineMemOperand *, 2> NewMMOs;
- for (MachineMemOperand *MMO : NewMI.memoperands()) {
- // TODO: Figure out whether isAtomic is really necessary (see D57601).
- if (MMO->isVolatile() || MMO->isAtomic() ||
- (MMO->isInvariant() && MMO->isDereferenceable()) ||
- (!MMO->getValue())) {
- NewMMOs.push_back(MMO);
- continue;
- }
- unsigned Delta;
- if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
- int64_t AdjOffset = Delta * Num;
- NewMMOs.push_back(
- MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
- } else {
- NewMMOs.push_back(
- MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
- }
- }
- NewMI.setMemRefs(MF, NewMMOs);
-}
-
-/// Clone the instruction for the new pipelined loop and update the
-/// memory operands, if needed.
-MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
- unsigned CurStageNum,
- unsigned InstStageNum) {
- MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
- // Check for tied operands in inline asm instructions. This should be handled
- // elsewhere, but I'm not sure of the best solution.
- if (OldMI->isInlineAsm())
- for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
- const auto &MO = OldMI->getOperand(i);
- if (MO.isReg() && MO.isUse())
- break;
- unsigned UseIdx;
- if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
- NewMI->tieOperands(i, UseIdx);
- }
- updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
- return NewMI;
-}
-
-/// Clone the instruction for the new pipelined loop. If needed, this
-/// function updates the instruction using the values saved in the
-/// InstrChanges structure.
-MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
- unsigned CurStageNum,
- unsigned InstStageNum,
- SMSchedule &Schedule) {
- MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
- DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
- InstrChanges.find(getSUnit(OldMI));
- if (It != InstrChanges.end()) {
- std::pair<unsigned, int64_t> RegAndOffset = It->second;
- unsigned BasePos, OffsetPos;
- if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
- return nullptr;
- int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
- MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
- if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
- NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
- NewMI->getOperand(OffsetPos).setImm(NewOffset);
- }
- updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
- return NewMI;
-}
-
-/// Update the machine instruction with new virtual registers. This
-/// function may change the defintions and/or uses.
-void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
- unsigned CurStageNum,
- unsigned InstrStageNum,
- SMSchedule &Schedule,
- ValueMapTy *VRMap) {
- for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
- MachineOperand &MO = NewMI->getOperand(i);
- if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
- continue;
- unsigned reg = MO.getReg();
- if (MO.isDef()) {
- // Create a new virtual register for the definition.
- const TargetRegisterClass *RC = MRI.getRegClass(reg);
- unsigned NewReg = MRI.createVirtualRegister(RC);
- MO.setReg(NewReg);
- VRMap[CurStageNum][reg] = NewReg;
- if (LastDef)
- replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
- } else if (MO.isUse()) {
- MachineInstr *Def = MRI.getVRegDef(reg);
- // Compute the stage that contains the last definition for instruction.
- int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
- unsigned StageNum = CurStageNum;
- if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
- // Compute the difference in stages between the defintion and the use.
- unsigned StageDiff = (InstrStageNum - DefStageNum);
- // Make an adjustment to get the last definition.
- StageNum -= StageDiff;
- }
- if (VRMap[StageNum].count(reg))
- MO.setReg(VRMap[StageNum][reg]);
- }
- }
-}
-
-/// Return the instruction in the loop that defines the register.
-/// If the definition is a Phi, then follow the Phi operand to
-/// the instruction in the loop.
-MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
- SmallPtrSet<MachineInstr *, 8> Visited;
- MachineInstr *Def = MRI.getVRegDef(Reg);
- while (Def->isPHI()) {
- if (!Visited.insert(Def).second)
- break;
- for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
- if (Def->getOperand(i + 1).getMBB() == BB) {
- Def = MRI.getVRegDef(Def->getOperand(i).getReg());
- break;
- }
- }
- return Def;
-}
-
-/// Return the new name for the value from the previous stage.
-unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
- unsigned LoopVal, unsigned LoopStage,
- ValueMapTy *VRMap,
- MachineBasicBlock *BB) {
- unsigned PrevVal = 0;
- if (StageNum > PhiStage) {
- MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
- if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
- // The name is defined in the previous stage.
- PrevVal = VRMap[StageNum - 1][LoopVal];
- else if (VRMap[StageNum].count(LoopVal))
- // The previous name is defined in the current stage when the instruction
- // order is swapped.
- PrevVal = VRMap[StageNum][LoopVal];
- else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
- // The loop value hasn't yet been scheduled.
- PrevVal = LoopVal;
- else if (StageNum == PhiStage + 1)
- // The loop value is another phi, which has not been scheduled.
- PrevVal = getInitPhiReg(*LoopInst, BB);
- else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
- // The loop value is another phi, which has been scheduled.
- PrevVal =
- getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
- LoopStage, VRMap, BB);
- }
- return PrevVal;
-}
-
-/// Rewrite the Phi values in the specified block to use the mappings
-/// from the initial operand. Once the Phi is scheduled, we switch
-/// to using the loop value instead of the Phi value, so those names
-/// do not need to be rewritten.
-void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
- unsigned StageNum,
- SMSchedule &Schedule,
- ValueMapTy *VRMap,
- InstrMapTy &InstrMap) {
- for (auto &PHI : BB->phis()) {
- unsigned InitVal = 0;
- unsigned LoopVal = 0;
- getPhiRegs(PHI, BB, InitVal, LoopVal);
- unsigned PhiDef = PHI.getOperand(0).getReg();
-
- unsigned PhiStage =
- (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
- unsigned LoopStage =
- (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
- unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
- if (NumPhis > StageNum)
- NumPhis = StageNum;
- for (unsigned np = 0; np <= NumPhis; ++np) {
- unsigned NewVal =
- getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
- if (!NewVal)
- NewVal = InitVal;
- rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
- PhiDef, NewVal);
- }
- }
-}
-
-/// Rewrite a previously scheduled instruction to use the register value
-/// from the new instruction. Make sure the instruction occurs in the
-/// basic block, and we don't change the uses in the new instruction.
-void SwingSchedulerDAG::rewriteScheduledInstr(
- MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
- unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
- unsigned NewReg, unsigned PrevReg) {
- bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
- int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
- // Rewrite uses that have been scheduled already to use the new
- // Phi register.
- for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
- EI = MRI.use_end();
- UI != EI;) {
- MachineOperand &UseOp = *UI;
- MachineInstr *UseMI = UseOp.getParent();
- ++UI;
- if (UseMI->getParent() != BB)
- continue;
- if (UseMI->isPHI()) {
- if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
- continue;
- if (getLoopPhiReg(*UseMI, BB) != OldReg)
- continue;
- }
- InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
- assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
- SUnit *OrigMISU = getSUnit(OrigInstr->second);
- int StageSched = Schedule.stageScheduled(OrigMISU);
- int CycleSched = Schedule.cycleScheduled(OrigMISU);
- unsigned ReplaceReg = 0;
- // This is the stage for the scheduled instruction.
- if (StagePhi == StageSched && Phi->isPHI()) {
- int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
- if (PrevReg && InProlog)
- ReplaceReg = PrevReg;
- else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
- (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
- ReplaceReg = PrevReg;
- else
- ReplaceReg = NewReg;
- }
- // The scheduled instruction occurs before the scheduled Phi, and the
- // Phi is not loop carried.
- if (!InProlog && StagePhi + 1 == StageSched &&
- !Schedule.isLoopCarried(this, *Phi))
- ReplaceReg = NewReg;
- if (StagePhi > StageSched && Phi->isPHI())
- ReplaceReg = NewReg;
- if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
- ReplaceReg = NewReg;
- if (ReplaceReg) {
- MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
- UseOp.setReg(ReplaceReg);
- }
- }
-}
-
-/// Check if we can change the instruction to use an offset value from the
-/// previous iteration. If so, return true and set the base and offset values
-/// so that we can rewrite the load, if necessary.
-/// v1 = Phi(v0, v3)
-/// v2 = load v1, 0
-/// v3 = post_store v1, 4, x
-/// This function enables the load to be rewritten as v2 = load v3, 4.
-bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
- unsigned &BasePos,
- unsigned &OffsetPos,
- unsigned &NewBase,
- int64_t &Offset) {
- // Get the load instruction.
- if (TII->isPostIncrement(*MI))
- return false;
- unsigned BasePosLd, OffsetPosLd;
- if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
- return false;
- unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
-
- // Look for the Phi instruction.
- MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
- MachineInstr *Phi = MRI.getVRegDef(BaseReg);
- if (!Phi || !Phi->isPHI())
- return false;
- // Get the register defined in the loop block.
- unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
- if (!PrevReg)
- return false;
-
- // Check for the post-increment load/store instruction.
- MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
- if (!PrevDef || PrevDef == MI)
- return false;
-
- if (!TII->isPostIncrement(*PrevDef))
- return false;
-
- unsigned BasePos1 = 0, OffsetPos1 = 0;
- if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
- return false;
-
- // Make sure that the instructions do not access the same memory location in
- // the next iteration.
- int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
- int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
- MachineInstr *NewMI = MF.CloneMachineInstr(MI);
- NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
- bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
- MF.DeleteMachineInstr(NewMI);
- if (!Disjoint)
- return false;
-
- // Set the return value once we determine that we return true.
- BasePos = BasePosLd;
- OffsetPos = OffsetPosLd;
- NewBase = PrevReg;
- Offset = StoreOffset;
- return true;
-}
-
-/// Apply changes to the instruction if needed. The changes are need
-/// to improve the scheduling and depend up on the final schedule.
-void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
- SMSchedule &Schedule) {
- SUnit *SU = getSUnit(MI);
- DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
- InstrChanges.find(SU);
- if (It != InstrChanges.end()) {
- std::pair<unsigned, int64_t> RegAndOffset = It->second;
- unsigned BasePos, OffsetPos;
- if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
- return;
- unsigned BaseReg = MI->getOperand(BasePos).getReg();
- MachineInstr *LoopDef = findDefInLoop(BaseReg);
- int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
- int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
- int BaseStageNum = Schedule.stageScheduled(SU);
- int BaseCycleNum = Schedule.cycleScheduled(SU);
- if (BaseStageNum < DefStageNum) {
- MachineInstr *NewMI = MF.CloneMachineInstr(MI);
- int OffsetDiff = DefStageNum - BaseStageNum;
- if (DefCycleNum < BaseCycleNum) {
- NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
- if (OffsetDiff > 0)
- --OffsetDiff;
- }
- int64_t NewOffset =
- MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
- NewMI->getOperand(OffsetPos).setImm(NewOffset);
- SU->setInstr(NewMI);
- MISUnitMap[NewMI] = SU;
- NewMIs.insert(NewMI);
- }
- }
-}
-
-/// Return true for an order or output dependence that is loop carried
-/// potentially. A dependence is loop carried if the destination defines a valu
-/// that may be used or defined by the source in a subsequent iteration.
-bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
- bool isSucc) {
- if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
- Dep.isArtificial())
- return false;
-
- if (!SwpPruneLoopCarried)
- return true;
-
- if (Dep.getKind() == SDep::Output)
- return true;
-
- MachineInstr *SI = Source->getInstr();
- MachineInstr *DI = Dep.getSUnit()->getInstr();
- if (!isSucc)
- std::swap(SI, DI);
- assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
-
- // Assume ordered loads and stores may have a loop carried dependence.
- if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
- SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
- SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
- return true;
-
- // Only chain dependences between a load and store can be loop carried.
- if (!DI->mayStore() || !SI->mayLoad())
- return false;
-
- unsigned DeltaS, DeltaD;
- if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
- return true;
-
- const MachineOperand *BaseOpS, *BaseOpD;
- int64_t OffsetS, OffsetD;
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, TRI) ||
- !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, TRI))
- return true;
-
- if (!BaseOpS->isIdenticalTo(*BaseOpD))
- return true;
-
- // Check that the base register is incremented by a constant value for each
- // iteration.
- MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
- if (!Def || !Def->isPHI())
- return true;
- unsigned InitVal = 0;
- unsigned LoopVal = 0;
- getPhiRegs(*Def, BB, InitVal, LoopVal);
- MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
- int D = 0;
- if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
- return true;
-
- uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
- uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
-
- // This is the main test, which checks the offset values and the loop
- // increment value to determine if the accesses may be loop carried.
- if (AccessSizeS == MemoryLocation::UnknownSize ||
- AccessSizeD == MemoryLocation::UnknownSize)
- return true;
-
- if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
- return true;
-
- return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
-}
-
-void SwingSchedulerDAG::postprocessDAG() {
- for (auto &M : Mutations)
- M->apply(this);
-}
-
-/// Try to schedule the node at the specified StartCycle and continue
-/// until the node is schedule or the EndCycle is reached. This function
-/// returns true if the node is scheduled. This routine may search either
-/// forward or backward for a place to insert the instruction based upon
-/// the relative values of StartCycle and EndCycle.
-bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
- bool forward = true;
- LLVM_DEBUG({
- dbgs() << "Trying to insert node between " << StartCycle << " and "
- << EndCycle << " II: " << II << "\n";
- });
- if (StartCycle > EndCycle)
- forward = false;
-
- // The terminating condition depends on the direction.
- int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
- for (int curCycle = StartCycle; curCycle != termCycle;
- forward ? ++curCycle : --curCycle) {
-
- // Add the already scheduled instructions at the specified cycle to the
- // DFA.
- ProcItinResources.clearResources();
- for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
- checkCycle <= LastCycle; checkCycle += II) {
- std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
-
- for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
- E = cycleInstrs.end();
- I != E; ++I) {
- if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
- continue;
- assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&
- "These instructions have already been scheduled.");
- ProcItinResources.reserveResources(*(*I)->getInstr());
- }
- }
- if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
- ProcItinResources.canReserveResources(*SU->getInstr())) {
- LLVM_DEBUG({
- dbgs() << "\tinsert at cycle " << curCycle << " ";
- SU->getInstr()->dump();
- });
-
- ScheduledInstrs[curCycle].push_back(SU);
- InstrToCycle.insert(std::make_pair(SU, curCycle));
- if (curCycle > LastCycle)
- LastCycle = curCycle;
- if (curCycle < FirstCycle)
- FirstCycle = curCycle;
- return true;
- }
- LLVM_DEBUG({
- dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
- SU->getInstr()->dump();
- });
- }
- return false;
-}
-
-// Return the cycle of the earliest scheduled instruction in the chain.
-int SMSchedule::earliestCycleInChain(const SDep &Dep) {
- SmallPtrSet<SUnit *, 8> Visited;
- SmallVector<SDep, 8> Worklist;
- Worklist.push_back(Dep);
- int EarlyCycle = INT_MAX;
- while (!Worklist.empty()) {
- const SDep &Cur = Worklist.pop_back_val();
- SUnit *PrevSU = Cur.getSUnit();
- if (Visited.count(PrevSU))
- continue;
- std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
- if (it == InstrToCycle.end())
- continue;
- EarlyCycle = std::min(EarlyCycle, it->second);
- for (const auto &PI : PrevSU->Preds)
- if (PI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
- Worklist.push_back(PI);
- Visited.insert(PrevSU);
- }
- return EarlyCycle;
-}
-
-// Return the cycle of the latest scheduled instruction in the chain.
-int SMSchedule::latestCycleInChain(const SDep &Dep) {
- SmallPtrSet<SUnit *, 8> Visited;
- SmallVector<SDep, 8> Worklist;
- Worklist.push_back(Dep);
- int LateCycle = INT_MIN;
- while (!Worklist.empty()) {
- const SDep &Cur = Worklist.pop_back_val();
- SUnit *SuccSU = Cur.getSUnit();
- if (Visited.count(SuccSU))
- continue;
- std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
- if (it == InstrToCycle.end())
- continue;
- LateCycle = std::max(LateCycle, it->second);
- for (const auto &SI : SuccSU->Succs)
- if (SI.getKind() == SDep::Order || Dep.getKind() == SDep::Output)
- Worklist.push_back(SI);
- Visited.insert(SuccSU);
- }
- return LateCycle;
-}
-
-/// If an instruction has a use that spans multiple iterations, then
-/// return true. These instructions are characterized by having a back-ege
-/// to a Phi, which contains a reference to another Phi.
-static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
- for (auto &P : SU->Preds)
- if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
- for (auto &S : P.getSUnit()->Succs)
- if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
- return P.getSUnit();
- return nullptr;
-}
-
-/// Compute the scheduling start slot for the instruction. The start slot
-/// depends on any predecessor or successor nodes scheduled already.
-void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
- int *MinEnd, int *MaxStart, int II,
- SwingSchedulerDAG *DAG) {
- // Iterate over each instruction that has been scheduled already. The start
- // slot computation depends on whether the previously scheduled instruction
- // is a predecessor or successor of the specified instruction.
- for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
-
- // Iterate over each instruction in the current cycle.
- for (SUnit *I : getInstructions(cycle)) {
- // Because we're processing a DAG for the dependences, we recognize
- // the back-edge in recurrences by anti dependences.
- for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
- const SDep &Dep = SU->Preds[i];
- if (Dep.getSUnit() == I) {
- if (!DAG->isBackedge(SU, Dep)) {
- int EarlyStart = cycle + Dep.getLatency() -
- DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
- *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
- if (DAG->isLoopCarriedDep(SU, Dep, false)) {
- int End = earliestCycleInChain(Dep) + (II - 1);
- *MinEnd = std::min(*MinEnd, End);
- }
- } else {
- int LateStart = cycle - Dep.getLatency() +
- DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
- *MinLateStart = std::min(*MinLateStart, LateStart);
- }
- }
- // For instruction that requires multiple iterations, make sure that
- // the dependent instruction is not scheduled past the definition.
- SUnit *BE = multipleIterations(I, DAG);
- if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
- !SU->isPred(I))
- *MinLateStart = std::min(*MinLateStart, cycle);
- }
- for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
- if (SU->Succs[i].getSUnit() == I) {
- const SDep &Dep = SU->Succs[i];
- if (!DAG->isBackedge(SU, Dep)) {
- int LateStart = cycle - Dep.getLatency() +
- DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
- *MinLateStart = std::min(*MinLateStart, LateStart);
- if (DAG->isLoopCarriedDep(SU, Dep)) {
- int Start = latestCycleInChain(Dep) + 1 - II;
- *MaxStart = std::max(*MaxStart, Start);
- }
- } else {
- int EarlyStart = cycle + Dep.getLatency() -
- DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
- *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
- }
- }
- }
- }
- }
-}
-
-/// Order the instructions within a cycle so that the definitions occur
-/// before the uses. Returns true if the instruction is added to the start
-/// of the list, or false if added to the end.
-void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
- std::deque<SUnit *> &Insts) {
- MachineInstr *MI = SU->getInstr();
- bool OrderBeforeUse = false;
- bool OrderAfterDef = false;
- bool OrderBeforeDef = false;
- unsigned MoveDef = 0;
- unsigned MoveUse = 0;
- int StageInst1 = stageScheduled(SU);
-
- unsigned Pos = 0;
- for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
- ++I, ++Pos) {
- for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
- continue;
-
- unsigned Reg = MO.getReg();
- unsigned BasePos, OffsetPos;
- if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
- if (MI->getOperand(BasePos).getReg() == Reg)
- if (unsigned NewReg = SSD->getInstrBaseReg(SU))
- Reg = NewReg;
- bool Reads, Writes;
- std::tie(Reads, Writes) =
- (*I)->getInstr()->readsWritesVirtualRegister(Reg);
- if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
- // Add the instruction after the scheduled instruction.
- OrderAfterDef = true;
- MoveDef = Pos;
- } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
- if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- } else {
- OrderAfterDef = true;
- MoveDef = Pos;
- }
- } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- if (MoveUse != 0) {
- OrderAfterDef = true;
- MoveDef = Pos - 1;
- }
- } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
- // Add the instruction before the scheduled instruction.
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
- isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
- if (MoveUse == 0) {
- OrderBeforeDef = true;
- MoveUse = Pos;
- }
- }
- }
- // Check for order dependences between instructions. Make sure the source
- // is ordered before the destination.
- for (auto &S : SU->Succs) {
- if (S.getSUnit() != *I)
- continue;
- if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
- OrderBeforeUse = true;
- if (Pos < MoveUse)
- MoveUse = Pos;
- }
- // We did not handle HW dependences in previous for loop,
- // and we normally set Latency = 0 for Anti deps,
- // so may have nodes in same cycle with Anti denpendent on HW regs.
- else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
- OrderBeforeUse = true;
- if ((MoveUse == 0) || (Pos < MoveUse))
- MoveUse = Pos;
- }
- }
- for (auto &P : SU->Preds) {
- if (P.getSUnit() != *I)
- continue;
- if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
- OrderAfterDef = true;
- MoveDef = Pos;
- }
- }
- }
-
- // A circular dependence.
- if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
- OrderBeforeUse = false;
-
- // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
- // to a loop-carried dependence.
- if (OrderBeforeDef)
- OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
-
- // The uncommon case when the instruction order needs to be updated because
- // there is both a use and def.
- if (OrderBeforeUse && OrderAfterDef) {
- SUnit *UseSU = Insts.at(MoveUse);
- SUnit *DefSU = Insts.at(MoveDef);
- if (MoveUse > MoveDef) {
- Insts.erase(Insts.begin() + MoveUse);
- Insts.erase(Insts.begin() + MoveDef);
- } else {
- Insts.erase(Insts.begin() + MoveDef);
- Insts.erase(Insts.begin() + MoveUse);
- }
- orderDependence(SSD, UseSU, Insts);
- orderDependence(SSD, SU, Insts);
- orderDependence(SSD, DefSU, Insts);
- return;
- }
- // Put the new instruction first if there is a use in the list. Otherwise,
- // put it at the end of the list.
- if (OrderBeforeUse)
- Insts.push_front(SU);
- else
- Insts.push_back(SU);
-}
-
-/// Return true if the scheduled Phi has a loop carried operand.
-bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
- if (!Phi.isPHI())
- return false;
- assert(Phi.isPHI() && "Expecting a Phi.");
- SUnit *DefSU = SSD->getSUnit(&Phi);
- unsigned DefCycle = cycleScheduled(DefSU);
- int DefStage = stageScheduled(DefSU);
-
- unsigned InitVal = 0;
- unsigned LoopVal = 0;
- getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
- SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
- if (!UseSU)
- return true;
- if (UseSU->getInstr()->isPHI())
- return true;
- unsigned LoopCycle = cycleScheduled(UseSU);
- int LoopStage = stageScheduled(UseSU);
- return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
-}
-
-/// Return true if the instruction is a definition that is loop carried
-/// and defines the use on the next iteration.
-/// v1 = phi(v2, v3)
-/// (Def) v3 = op v1
-/// (MO) = v1
-/// If MO appears before Def, then then v1 and v3 may get assigned to the same
-/// register.
-bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
- MachineInstr *Def, MachineOperand &MO) {
- if (!MO.isReg())
- return false;
- if (Def->isPHI())
- return false;
- MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
- if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
- return false;
- if (!isLoopCarried(SSD, *Phi))
- return false;
- unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
- for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
- MachineOperand &DMO = Def->getOperand(i);
- if (!DMO.isReg() || !DMO.isDef())
- continue;
- if (DMO.getReg() == LoopReg)
- return true;
- }
- return false;
-}
-
-// Check if the generated schedule is valid. This function checks if
-// an instruction that uses a physical register is scheduled in a
-// different stage than the definition. The pipeliner does not handle
-// physical register values that may cross a basic block boundary.
-bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
- for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
- SUnit &SU = SSD->SUnits[i];
- if (!SU.hasPhysRegDefs)
- continue;
- int StageDef = stageScheduled(&SU);
- assert(StageDef != -1 && "Instruction should have been scheduled.");
- for (auto &SI : SU.Succs)
- if (SI.isAssignedRegDep())
- if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
- if (stageScheduled(SI.getSUnit()) != StageDef)
- return false;
- }
- return true;
-}
-
-/// A property of the node order in swing-modulo-scheduling is
-/// that for nodes outside circuits the following holds:
-/// none of them is scheduled after both a successor and a
-/// predecessor.
-/// The method below checks whether the property is met.
-/// If not, debug information is printed and statistics information updated.
-/// Note that we do not use an assert statement.
-/// The reason is that although an invalid node oder may prevent
-/// the pipeliner from finding a pipelined schedule for arbitrary II,
-/// it does not lead to the generation of incorrect code.
-void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
-
- // a sorted vector that maps each SUnit to its index in the NodeOrder
- typedef std::pair<SUnit *, unsigned> UnitIndex;
- std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
-
- for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
- Indices.push_back(std::make_pair(NodeOrder[i], i));
-
- auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
- return std::get<0>(i1) < std::get<0>(i2);
- };
-
- // sort, so that we can perform a binary search
- llvm::sort(Indices, CompareKey);
-
- bool Valid = true;
- (void)Valid;
- // for each SUnit in the NodeOrder, check whether
- // it appears after both a successor and a predecessor
- // of the SUnit. If this is the case, and the SUnit
- // is not part of circuit, then the NodeOrder is not
- // valid.
- for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
- SUnit *SU = NodeOrder[i];
- unsigned Index = i;
-
- bool PredBefore = false;
- bool SuccBefore = false;
-
- SUnit *Succ;
- SUnit *Pred;
- (void)Succ;
- (void)Pred;
-
- for (SDep &PredEdge : SU->Preds) {
- SUnit *PredSU = PredEdge.getSUnit();
- unsigned PredIndex = std::get<1>(
- *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
- if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
- PredBefore = true;
- Pred = PredSU;
- break;
- }
- }
-
- for (SDep &SuccEdge : SU->Succs) {
- SUnit *SuccSU = SuccEdge.getSUnit();
- // Do not process a boundary node, it was not included in NodeOrder,
- // hence not in Indices either, call to std::lower_bound() below will
- // return Indices.end().
- if (SuccSU->isBoundaryNode())
- continue;
- unsigned SuccIndex = std::get<1>(
- *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
- if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
- SuccBefore = true;
- Succ = SuccSU;
- break;
- }
- }
-
- if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
- // instructions in circuits are allowed to be scheduled
- // after both a successor and predecessor.
- bool InCircuit = llvm::any_of(
- Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
- if (InCircuit)
- LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
- else {
- Valid = false;
- NumNodeOrderIssues++;
- LLVM_DEBUG(dbgs() << "Predecessor ";);
- }
- LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
- << " are scheduled before node " << SU->NodeNum
- << "\n";);
- }
- }
-
- LLVM_DEBUG({
- if (!Valid)
- dbgs() << "Invalid node order found!\n";
- });
-}
-
-/// Attempt to fix the degenerate cases when the instruction serialization
-/// causes the register lifetimes to overlap. For example,
-/// p' = store_pi(p, b)
-/// = load p, offset
-/// In this case p and p' overlap, which means that two registers are needed.
-/// Instead, this function changes the load to use p' and updates the offset.
-void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
- unsigned OverlapReg = 0;
- unsigned NewBaseReg = 0;
- for (SUnit *SU : Instrs) {
- MachineInstr *MI = SU->getInstr();
- for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- // Look for an instruction that uses p. The instruction occurs in the
- // same cycle but occurs later in the serialized order.
- if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
- // Check that the instruction appears in the InstrChanges structure,
- // which contains instructions that can have the offset updated.
- DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
- InstrChanges.find(SU);
- if (It != InstrChanges.end()) {
- unsigned BasePos, OffsetPos;
- // Update the base register and adjust the offset.
- if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
- MachineInstr *NewMI = MF.CloneMachineInstr(MI);
- NewMI->getOperand(BasePos).setReg(NewBaseReg);
- int64_t NewOffset =
- MI->getOperand(OffsetPos).getImm() - It->second.second;
- NewMI->getOperand(OffsetPos).setImm(NewOffset);
- SU->setInstr(NewMI);
- MISUnitMap[NewMI] = SU;
- NewMIs.insert(NewMI);
- }
- }
- OverlapReg = 0;
- NewBaseReg = 0;
- break;
- }
- // Look for an instruction of the form p' = op(p), which uses and defines
- // two virtual registers that get allocated to the same physical register.
- unsigned TiedUseIdx = 0;
- if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
- // OverlapReg is p in the example above.
- OverlapReg = MI->getOperand(TiedUseIdx).getReg();
- // NewBaseReg is p' in the example above.
- NewBaseReg = MI->getOperand(i).getReg();
- break;
- }
- }
- }
-}
-
-/// After the schedule has been formed, call this function to combine
-/// the instructions from the different stages/cycles. That is, this
-/// function creates a schedule that represents a single iteration.
-void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
- // Move all instructions to the first stage from later stages.
- for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
- for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
- ++stage) {
- std::deque<SUnit *> &cycleInstrs =
- ScheduledInstrs[cycle + (stage * InitiationInterval)];
- for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
- E = cycleInstrs.rend();
- I != E; ++I)
- ScheduledInstrs[cycle].push_front(*I);
- }
- }
- // Iterate over the definitions in each instruction, and compute the
- // stage difference for each use. Keep the maximum value.
- for (auto &I : InstrToCycle) {
- int DefStage = stageScheduled(I.first);
- MachineInstr *MI = I.first->getInstr();
- for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
- MachineOperand &Op = MI->getOperand(i);
- if (!Op.isReg() || !Op.isDef())
- continue;
-
- unsigned Reg = Op.getReg();
- unsigned MaxDiff = 0;
- bool PhiIsSwapped = false;
- for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
- EI = MRI.use_end();
- UI != EI; ++UI) {
- MachineOperand &UseOp = *UI;
- MachineInstr *UseMI = UseOp.getParent();
- SUnit *SUnitUse = SSD->getSUnit(UseMI);
- int UseStage = stageScheduled(SUnitUse);
- unsigned Diff = 0;
- if (UseStage != -1 && UseStage >= DefStage)
- Diff = UseStage - DefStage;
- if (MI->isPHI()) {
- if (isLoopCarried(SSD, *MI))
- ++Diff;
- else
- PhiIsSwapped = true;
- }
- MaxDiff = std::max(Diff, MaxDiff);
- }
- RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
- }
- }
-
- // Erase all the elements in the later stages. Only one iteration should
- // remain in the scheduled list, and it contains all the instructions.
- for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
- ScheduledInstrs.erase(cycle);
-
- // Change the registers in instruction as specified in the InstrChanges
- // map. We need to use the new registers to create the correct order.
- for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
- SUnit *SU = &SSD->SUnits[i];
- SSD->applyInstrChange(SU->getInstr(), *this);
- }
-
- // Reorder the instructions in each cycle to fix and improve the
- // generated code.
- for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
- std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
- std::deque<SUnit *> newOrderPhi;
- for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
- SUnit *SU = cycleInstrs[i];
- if (SU->getInstr()->isPHI())
- newOrderPhi.push_back(SU);
- }
- std::deque<SUnit *> newOrderI;
- for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
- SUnit *SU = cycleInstrs[i];
- if (!SU->getInstr()->isPHI())
- orderDependence(SSD, SU, newOrderI);
- }
- // Replace the old order with the new order.
- cycleInstrs.swap(newOrderPhi);
- cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
- SSD->fixupRegisterOverlaps(cycleInstrs);
- }
-
- LLVM_DEBUG(dump(););
-}
-
-void NodeSet::print(raw_ostream &os) const {
- os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
- << " depth " << MaxDepth << " col " << Colocate << "\n";
- for (const auto &I : Nodes)
- os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
- os << "\n";
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-/// Print the schedule information to the given output.
-void SMSchedule::print(raw_ostream &os) const {
- // Iterate over each cycle.
- for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
- // Iterate over each instruction in the cycle.
- const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
- for (SUnit *CI : cycleInstrs->second) {
- os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
- os << "(" << CI->NodeNum << ") ";
- CI->getInstr()->print(os);
- os << "\n";
- }
- }
-}
-
-/// Utility function used for debugging to print the schedule.
-LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
-LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
-
-#endif
-
-void ResourceManager::initProcResourceVectors(
- const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
- unsigned ProcResourceID = 0;
-
- // We currently limit the resource kinds to 64 and below so that we can use
- // uint64_t for Masks
- assert(SM.getNumProcResourceKinds() < 64 &&
- "Too many kinds of resources, unsupported");
- // Create a unique bitmask for every processor resource unit.
- // Skip resource at index 0, since it always references 'InvalidUnit'.
- Masks.resize(SM.getNumProcResourceKinds());
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc &Desc = *SM.getProcResource(I);
- if (Desc.SubUnitsIdxBegin)
- continue;
- Masks[I] = 1ULL << ProcResourceID;
- ProcResourceID++;
- }
- // Create a unique bitmask for every processor resource group.
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc &Desc = *SM.getProcResource(I);
- if (!Desc.SubUnitsIdxBegin)
- continue;
- Masks[I] = 1ULL << ProcResourceID;
- for (unsigned U = 0; U < Desc.NumUnits; ++U)
- Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
- ProcResourceID++;
- }
- LLVM_DEBUG({
- if (SwpShowResMask) {
- dbgs() << "ProcResourceDesc:\n";
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
- dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
- ProcResource->Name, I, Masks[I],
- ProcResource->NumUnits);
- }
- dbgs() << " -----------------\n";
- }
- });
-}
-
-bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
-
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << "canReserveResources:\n";
- });
- if (UseDFA)
- return DFAResources->canReserveResources(MID);
-
- unsigned InsnClass = MID->getSchedClass();
- const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
- if (!SCDesc->isValid()) {
- LLVM_DEBUG({
- dbgs() << "No valid Schedule Class Desc for schedClass!\n";
- dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
- });
- return true;
- }
-
- const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
- const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
- for (; I != E; ++I) {
- if (!I->Cycles)
- continue;
- const MCProcResourceDesc *ProcResource =
- SM.getProcResource(I->ProcResourceIdx);
- unsigned NumUnits = ProcResource->NumUnits;
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
- ProcResource->Name, I->ProcResourceIdx,
- ProcResourceCount[I->ProcResourceIdx], NumUnits,
- I->Cycles);
- });
- if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
- return false;
- }
- LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
- return true;
-}
-
-void ResourceManager::reserveResources(const MCInstrDesc *MID) {
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << "reserveResources:\n";
- });
- if (UseDFA)
- return DFAResources->reserveResources(MID);
-
- unsigned InsnClass = MID->getSchedClass();
- const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
- if (!SCDesc->isValid()) {
- LLVM_DEBUG({
- dbgs() << "No valid Schedule Class Desc for schedClass!\n";
- dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
- });
- return;
- }
- for (const MCWriteProcResEntry &PRE :
- make_range(STI->getWriteProcResBegin(SCDesc),
- STI->getWriteProcResEnd(SCDesc))) {
- if (!PRE.Cycles)
- continue;
- ++ProcResourceCount[PRE.ProcResourceIdx];
- LLVM_DEBUG({
- if (SwpDebugResource) {
- const MCProcResourceDesc *ProcResource =
- SM.getProcResource(PRE.ProcResourceIdx);
- dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
- ProcResource->Name, PRE.ProcResourceIdx,
- ProcResourceCount[PRE.ProcResourceIdx],
- ProcResource->NumUnits, PRE.Cycles);
- }
- });
- }
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << "reserveResources: done!\n\n";
- });
-}
-
-bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
- return canReserveResources(&MI.getDesc());
-}
-
-void ResourceManager::reserveResources(const MachineInstr &MI) {
- return reserveResources(&MI.getDesc());
-}
-
-void ResourceManager::clearResources() {
- if (UseDFA)
- return DFAResources->clearResources();
- std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
-}
-