diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2015-05-27 20:26:41 +0000 | 
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2015-05-27 20:26:41 +0000 | 
| commit | ff0cc061ecf297f1556e906d229826fd709f37d6 (patch) | |
| tree | bd13a22d9db57ccf3eddbc07b32c18109521d050 /contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp | |
| parent | e14ba20ace4c6ab45aca5130defd992ab7d6bf5f (diff) | |
| parent | 5a5ac124e1efaf208671f01c46edb15f29ed2a0b (diff) | |
Notes
Diffstat (limited to 'contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp | 460 | 
1 files changed, 460 insertions, 0 deletions
| diff --git a/contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp b/contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp new file mode 100644 index 000000000000..7c0b2bb45698 --- /dev/null +++ b/contrib/llvm/lib/CodeGen/ShadowStackGCLowering.cpp @@ -0,0 +1,460 @@ +//===-- ShadowStackGCLowering.cpp - Custom lowering for shadow-stack gc ---===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the custom lowering code required by the shadow-stack GC +// strategy.   +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/Passes.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/CodeGen/GCStrategy.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" + +using namespace llvm; + +#define DEBUG_TYPE "shadowstackgclowering" + +namespace { + +class ShadowStackGCLowering : public FunctionPass { +  /// RootChain - This is the global linked-list that contains the chain of GC +  /// roots. +  GlobalVariable *Head; + +  /// StackEntryTy - Abstract type of a link in the shadow stack. +  /// +  StructType *StackEntryTy; +  StructType *FrameMapTy; + +  /// Roots - GC roots in the current function. Each is a pair of the +  /// intrinsic call and its corresponding alloca. +  std::vector<std::pair<CallInst *, AllocaInst *>> Roots; + +public: +  static char ID; +  ShadowStackGCLowering(); + +  bool doInitialization(Module &M) override; +  bool runOnFunction(Function &F) override; + +private: +  bool IsNullValue(Value *V); +  Constant *GetFrameMap(Function &F); +  Type *GetConcreteStackEntryType(Function &F); +  void CollectRoots(Function &F); +  static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B, +                                      Type *Ty, Value *BasePtr, int Idx1, +                                      const char *Name); +  static GetElementPtrInst *CreateGEP(LLVMContext &Context, IRBuilder<> &B, +                                      Type *Ty, Value *BasePtr, int Idx1, int Idx2, +                                      const char *Name); +}; +} + +INITIALIZE_PASS_BEGIN(ShadowStackGCLowering, "shadow-stack-gc-lowering", +                      "Shadow Stack GC Lowering", false, false) +INITIALIZE_PASS_DEPENDENCY(GCModuleInfo) +INITIALIZE_PASS_END(ShadowStackGCLowering, "shadow-stack-gc-lowering", +                    "Shadow Stack GC Lowering", false, false) + +FunctionPass *llvm::createShadowStackGCLoweringPass() { return new ShadowStackGCLowering(); } + +char ShadowStackGCLowering::ID = 0; + +ShadowStackGCLowering::ShadowStackGCLowering() +  : FunctionPass(ID), Head(nullptr), StackEntryTy(nullptr), +    FrameMapTy(nullptr) { +  initializeShadowStackGCLoweringPass(*PassRegistry::getPassRegistry()); +} + +namespace { +/// EscapeEnumerator - This is a little algorithm to find all escape points +/// from a function so that "finally"-style code can be inserted. In addition +/// to finding the existing return and unwind instructions, it also (if +/// necessary) transforms any call instructions into invokes and sends them to +/// a landing pad. +/// +/// It's wrapped up in a state machine using the same transform C# uses for +/// 'yield return' enumerators, This transform allows it to be non-allocating. +class EscapeEnumerator { +  Function &F; +  const char *CleanupBBName; + +  // State. +  int State; +  Function::iterator StateBB, StateE; +  IRBuilder<> Builder; + +public: +  EscapeEnumerator(Function &F, const char *N = "cleanup") +      : F(F), CleanupBBName(N), State(0), Builder(F.getContext()) {} + +  IRBuilder<> *Next() { +    switch (State) { +    default: +      return nullptr; + +    case 0: +      StateBB = F.begin(); +      StateE = F.end(); +      State = 1; + +    case 1: +      // Find all 'return', 'resume', and 'unwind' instructions. +      while (StateBB != StateE) { +        BasicBlock *CurBB = StateBB++; + +        // Branches and invokes do not escape, only unwind, resume, and return +        // do. +        TerminatorInst *TI = CurBB->getTerminator(); +        if (!isa<ReturnInst>(TI) && !isa<ResumeInst>(TI)) +          continue; + +        Builder.SetInsertPoint(TI->getParent(), TI); +        return &Builder; +      } + +      State = 2; + +      // Find all 'call' instructions. +      SmallVector<Instruction *, 16> Calls; +      for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) +        for (BasicBlock::iterator II = BB->begin(), EE = BB->end(); II != EE; +             ++II) +          if (CallInst *CI = dyn_cast<CallInst>(II)) +            if (!CI->getCalledFunction() || +                !CI->getCalledFunction()->getIntrinsicID()) +              Calls.push_back(CI); + +      if (Calls.empty()) +        return nullptr; + +      // Create a cleanup block. +      LLVMContext &C = F.getContext(); +      BasicBlock *CleanupBB = BasicBlock::Create(C, CleanupBBName, &F); +      Type *ExnTy = +          StructType::get(Type::getInt8PtrTy(C), Type::getInt32Ty(C), nullptr); +      Constant *PersFn = F.getParent()->getOrInsertFunction( +          "__gcc_personality_v0", FunctionType::get(Type::getInt32Ty(C), true)); +      LandingPadInst *LPad = +          LandingPadInst::Create(ExnTy, PersFn, 1, "cleanup.lpad", CleanupBB); +      LPad->setCleanup(true); +      ResumeInst *RI = ResumeInst::Create(LPad, CleanupBB); + +      // Transform the 'call' instructions into 'invoke's branching to the +      // cleanup block. Go in reverse order to make prettier BB names. +      SmallVector<Value *, 16> Args; +      for (unsigned I = Calls.size(); I != 0;) { +        CallInst *CI = cast<CallInst>(Calls[--I]); + +        // Split the basic block containing the function call. +        BasicBlock *CallBB = CI->getParent(); +        BasicBlock *NewBB = +            CallBB->splitBasicBlock(CI, CallBB->getName() + ".cont"); + +        // Remove the unconditional branch inserted at the end of CallBB. +        CallBB->getInstList().pop_back(); +        NewBB->getInstList().remove(CI); + +        // Create a new invoke instruction. +        Args.clear(); +        CallSite CS(CI); +        Args.append(CS.arg_begin(), CS.arg_end()); + +        InvokeInst *II = +            InvokeInst::Create(CI->getCalledValue(), NewBB, CleanupBB, Args, +                               CI->getName(), CallBB); +        II->setCallingConv(CI->getCallingConv()); +        II->setAttributes(CI->getAttributes()); +        CI->replaceAllUsesWith(II); +        delete CI; +      } + +      Builder.SetInsertPoint(RI->getParent(), RI); +      return &Builder; +    } +  } +}; +} + + +Constant *ShadowStackGCLowering::GetFrameMap(Function &F) { +  // doInitialization creates the abstract type of this value. +  Type *VoidPtr = Type::getInt8PtrTy(F.getContext()); + +  // Truncate the ShadowStackDescriptor if some metadata is null. +  unsigned NumMeta = 0; +  SmallVector<Constant *, 16> Metadata; +  for (unsigned I = 0; I != Roots.size(); ++I) { +    Constant *C = cast<Constant>(Roots[I].first->getArgOperand(1)); +    if (!C->isNullValue()) +      NumMeta = I + 1; +    Metadata.push_back(ConstantExpr::getBitCast(C, VoidPtr)); +  } +  Metadata.resize(NumMeta); + +  Type *Int32Ty = Type::getInt32Ty(F.getContext()); + +  Constant *BaseElts[] = { +      ConstantInt::get(Int32Ty, Roots.size(), false), +      ConstantInt::get(Int32Ty, NumMeta, false), +  }; + +  Constant *DescriptorElts[] = { +      ConstantStruct::get(FrameMapTy, BaseElts), +      ConstantArray::get(ArrayType::get(VoidPtr, NumMeta), Metadata)}; + +  Type *EltTys[] = {DescriptorElts[0]->getType(), DescriptorElts[1]->getType()}; +  StructType *STy = StructType::create(EltTys, "gc_map." + utostr(NumMeta)); + +  Constant *FrameMap = ConstantStruct::get(STy, DescriptorElts); + +  // FIXME: Is this actually dangerous as WritingAnLLVMPass.html claims? Seems +  //        that, short of multithreaded LLVM, it should be safe; all that is +  //        necessary is that a simple Module::iterator loop not be invalidated. +  //        Appending to the GlobalVariable list is safe in that sense. +  // +  //        All of the output passes emit globals last. The ExecutionEngine +  //        explicitly supports adding globals to the module after +  //        initialization. +  // +  //        Still, if it isn't deemed acceptable, then this transformation needs +  //        to be a ModulePass (which means it cannot be in the 'llc' pipeline +  //        (which uses a FunctionPassManager (which segfaults (not asserts) if +  //        provided a ModulePass))). +  Constant *GV = new GlobalVariable(*F.getParent(), FrameMap->getType(), true, +                                    GlobalVariable::InternalLinkage, FrameMap, +                                    "__gc_" + F.getName()); + +  Constant *GEPIndices[2] = { +      ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), +      ConstantInt::get(Type::getInt32Ty(F.getContext()), 0)}; +  return ConstantExpr::getGetElementPtr(FrameMap->getType(), GV, GEPIndices); +} + +Type *ShadowStackGCLowering::GetConcreteStackEntryType(Function &F) { +  // doInitialization creates the generic version of this type. +  std::vector<Type *> EltTys; +  EltTys.push_back(StackEntryTy); +  for (size_t I = 0; I != Roots.size(); I++) +    EltTys.push_back(Roots[I].second->getAllocatedType()); + +  return StructType::create(EltTys, ("gc_stackentry." + F.getName()).str()); +} + +/// doInitialization - If this module uses the GC intrinsics, find them now. If +/// not, exit fast. +bool ShadowStackGCLowering::doInitialization(Module &M) { +  bool Active = false; +  for (Function &F : M) { +    if (F.hasGC() && F.getGC() == std::string("shadow-stack")) { +      Active = true; +      break; +    } +  } +  if (!Active) +    return false; +   +  // struct FrameMap { +  //   int32_t NumRoots; // Number of roots in stack frame. +  //   int32_t NumMeta;  // Number of metadata descriptors. May be < NumRoots. +  //   void *Meta[];     // May be absent for roots without metadata. +  // }; +  std::vector<Type *> EltTys; +  // 32 bits is ok up to a 32GB stack frame. :) +  EltTys.push_back(Type::getInt32Ty(M.getContext())); +  // Specifies length of variable length array. +  EltTys.push_back(Type::getInt32Ty(M.getContext())); +  FrameMapTy = StructType::create(EltTys, "gc_map"); +  PointerType *FrameMapPtrTy = PointerType::getUnqual(FrameMapTy); + +  // struct StackEntry { +  //   ShadowStackEntry *Next; // Caller's stack entry. +  //   FrameMap *Map;          // Pointer to constant FrameMap. +  //   void *Roots[];          // Stack roots (in-place array, so we pretend). +  // }; + +  StackEntryTy = StructType::create(M.getContext(), "gc_stackentry"); + +  EltTys.clear(); +  EltTys.push_back(PointerType::getUnqual(StackEntryTy)); +  EltTys.push_back(FrameMapPtrTy); +  StackEntryTy->setBody(EltTys); +  PointerType *StackEntryPtrTy = PointerType::getUnqual(StackEntryTy); + +  // Get the root chain if it already exists. +  Head = M.getGlobalVariable("llvm_gc_root_chain"); +  if (!Head) { +    // If the root chain does not exist, insert a new one with linkonce +    // linkage! +    Head = new GlobalVariable( +        M, StackEntryPtrTy, false, GlobalValue::LinkOnceAnyLinkage, +        Constant::getNullValue(StackEntryPtrTy), "llvm_gc_root_chain"); +  } else if (Head->hasExternalLinkage() && Head->isDeclaration()) { +    Head->setInitializer(Constant::getNullValue(StackEntryPtrTy)); +    Head->setLinkage(GlobalValue::LinkOnceAnyLinkage); +  } + +  return true; +} + +bool ShadowStackGCLowering::IsNullValue(Value *V) { +  if (Constant *C = dyn_cast<Constant>(V)) +    return C->isNullValue(); +  return false; +} + +void ShadowStackGCLowering::CollectRoots(Function &F) { +  // FIXME: Account for original alignment. Could fragment the root array. +  //   Approach 1: Null initialize empty slots at runtime. Yuck. +  //   Approach 2: Emit a map of the array instead of just a count. + +  assert(Roots.empty() && "Not cleaned up?"); + +  SmallVector<std::pair<CallInst *, AllocaInst *>, 16> MetaRoots; + +  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) +    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) +      if (IntrinsicInst *CI = dyn_cast<IntrinsicInst>(II++)) +        if (Function *F = CI->getCalledFunction()) +          if (F->getIntrinsicID() == Intrinsic::gcroot) { +            std::pair<CallInst *, AllocaInst *> Pair = std::make_pair( +                CI, +                cast<AllocaInst>(CI->getArgOperand(0)->stripPointerCasts())); +            if (IsNullValue(CI->getArgOperand(1))) +              Roots.push_back(Pair); +            else +              MetaRoots.push_back(Pair); +          } + +  // Number roots with metadata (usually empty) at the beginning, so that the +  // FrameMap::Meta array can be elided. +  Roots.insert(Roots.begin(), MetaRoots.begin(), MetaRoots.end()); +} + +GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context, +                                                    IRBuilder<> &B, Type *Ty, +                                                    Value *BasePtr, int Idx, +                                                    int Idx2, +                                                    const char *Name) { +  Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0), +                      ConstantInt::get(Type::getInt32Ty(Context), Idx), +                      ConstantInt::get(Type::getInt32Ty(Context), Idx2)}; +  Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name); + +  assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); + +  return dyn_cast<GetElementPtrInst>(Val); +} + +GetElementPtrInst *ShadowStackGCLowering::CreateGEP(LLVMContext &Context, +                                            IRBuilder<> &B, Type *Ty, Value *BasePtr, +                                            int Idx, const char *Name) { +  Value *Indices[] = {ConstantInt::get(Type::getInt32Ty(Context), 0), +                      ConstantInt::get(Type::getInt32Ty(Context), Idx)}; +  Value *Val = B.CreateGEP(Ty, BasePtr, Indices, Name); + +  assert(isa<GetElementPtrInst>(Val) && "Unexpected folded constant"); + +  return dyn_cast<GetElementPtrInst>(Val); +} + +/// runOnFunction - Insert code to maintain the shadow stack. +bool ShadowStackGCLowering::runOnFunction(Function &F) { +  // Quick exit for functions that do not use the shadow stack GC. +  if (!F.hasGC() || +      F.getGC() != std::string("shadow-stack")) +    return false; +   +  LLVMContext &Context = F.getContext(); + +  // Find calls to llvm.gcroot. +  CollectRoots(F); + +  // If there are no roots in this function, then there is no need to add a +  // stack map entry for it. +  if (Roots.empty()) +    return false; + +  // Build the constant map and figure the type of the shadow stack entry. +  Value *FrameMap = GetFrameMap(F); +  Type *ConcreteStackEntryTy = GetConcreteStackEntryType(F); + +  // Build the shadow stack entry at the very start of the function. +  BasicBlock::iterator IP = F.getEntryBlock().begin(); +  IRBuilder<> AtEntry(IP->getParent(), IP); + +  Instruction *StackEntry = +      AtEntry.CreateAlloca(ConcreteStackEntryTy, nullptr, "gc_frame"); + +  while (isa<AllocaInst>(IP)) +    ++IP; +  AtEntry.SetInsertPoint(IP->getParent(), IP); + +  // Initialize the map pointer and load the current head of the shadow stack. +  Instruction *CurrentHead = AtEntry.CreateLoad(Head, "gc_currhead"); +  Instruction *EntryMapPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy, +                                       StackEntry, 0, 1, "gc_frame.map"); +  AtEntry.CreateStore(FrameMap, EntryMapPtr); + +  // After all the allocas... +  for (unsigned I = 0, E = Roots.size(); I != E; ++I) { +    // For each root, find the corresponding slot in the aggregate... +    Value *SlotPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy, +                               StackEntry, 1 + I, "gc_root"); + +    // And use it in lieu of the alloca. +    AllocaInst *OriginalAlloca = Roots[I].second; +    SlotPtr->takeName(OriginalAlloca); +    OriginalAlloca->replaceAllUsesWith(SlotPtr); +  } + +  // Move past the original stores inserted by GCStrategy::InitRoots. This isn't +  // really necessary (the collector would never see the intermediate state at +  // runtime), but it's nicer not to push the half-initialized entry onto the +  // shadow stack. +  while (isa<StoreInst>(IP)) +    ++IP; +  AtEntry.SetInsertPoint(IP->getParent(), IP); + +  // Push the entry onto the shadow stack. +  Instruction *EntryNextPtr = CreateGEP(Context, AtEntry, ConcreteStackEntryTy, +                                        StackEntry, 0, 0, "gc_frame.next"); +  Instruction *NewHeadVal = CreateGEP(Context, AtEntry, ConcreteStackEntryTy, +                                      StackEntry, 0, "gc_newhead"); +  AtEntry.CreateStore(CurrentHead, EntryNextPtr); +  AtEntry.CreateStore(NewHeadVal, Head); + +  // For each instruction that escapes... +  EscapeEnumerator EE(F, "gc_cleanup"); +  while (IRBuilder<> *AtExit = EE.Next()) { +    // Pop the entry from the shadow stack. Don't reuse CurrentHead from +    // AtEntry, since that would make the value live for the entire function. +    Instruction *EntryNextPtr2 = +        CreateGEP(Context, *AtExit, ConcreteStackEntryTy, StackEntry, 0, 0, +                  "gc_frame.next"); +    Value *SavedHead = AtExit->CreateLoad(EntryNextPtr2, "gc_savedhead"); +    AtExit->CreateStore(SavedHead, Head); +  } + +  // Delete the original allocas (which are no longer used) and the intrinsic +  // calls (which are no longer valid). Doing this last avoids invalidating +  // iterators. +  for (unsigned I = 0, E = Roots.size(); I != E; ++I) { +    Roots[I].first->eraseFromParent(); +    Roots[I].second->eraseFromParent(); +  } + +  Roots.clear(); +  return true; +} | 
