diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp | 2417 |
1 files changed, 0 insertions, 2417 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp b/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp deleted file mode 100644 index a7f0f7ac5d61..000000000000 --- a/contrib/llvm/lib/Transforms/Utils/InlineFunction.cpp +++ /dev/null @@ -1,2417 +0,0 @@ -//===- InlineFunction.cpp - Code to perform function inlining -------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements inlining of a function into a call site, resolving -// parameters and the return value as appropriate. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/CallGraph.h" -#include "llvm/Analysis/CaptureTracking.h" -#include "llvm/Analysis/EHPersonalities.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/ProfileSummaryInfo.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DIBuilder.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Transforms/Utils/Cloning.h" -#include "llvm/Transforms/Utils/ValueMapper.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <iterator> -#include <limits> -#include <string> -#include <utility> -#include <vector> - -using namespace llvm; -using ProfileCount = Function::ProfileCount; - -static cl::opt<bool> -EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), - cl::Hidden, - cl::desc("Convert noalias attributes to metadata during inlining.")); - -static cl::opt<bool> -PreserveAlignmentAssumptions("preserve-alignment-assumptions-during-inlining", - cl::init(true), cl::Hidden, - cl::desc("Convert align attributes to assumptions during inlining.")); - -llvm::InlineResult llvm::InlineFunction(CallBase *CB, InlineFunctionInfo &IFI, - AAResults *CalleeAAR, - bool InsertLifetime) { - return InlineFunction(CallSite(CB), IFI, CalleeAAR, InsertLifetime); -} - -namespace { - - /// A class for recording information about inlining a landing pad. - class LandingPadInliningInfo { - /// Destination of the invoke's unwind. - BasicBlock *OuterResumeDest; - - /// Destination for the callee's resume. - BasicBlock *InnerResumeDest = nullptr; - - /// LandingPadInst associated with the invoke. - LandingPadInst *CallerLPad = nullptr; - - /// PHI for EH values from landingpad insts. - PHINode *InnerEHValuesPHI = nullptr; - - SmallVector<Value*, 8> UnwindDestPHIValues; - - public: - LandingPadInliningInfo(InvokeInst *II) - : OuterResumeDest(II->getUnwindDest()) { - // If there are PHI nodes in the unwind destination block, we need to keep - // track of which values came into them from the invoke before removing - // the edge from this block. - BasicBlock *InvokeBB = II->getParent(); - BasicBlock::iterator I = OuterResumeDest->begin(); - for (; isa<PHINode>(I); ++I) { - // Save the value to use for this edge. - PHINode *PHI = cast<PHINode>(I); - UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); - } - - CallerLPad = cast<LandingPadInst>(I); - } - - /// The outer unwind destination is the target of - /// unwind edges introduced for calls within the inlined function. - BasicBlock *getOuterResumeDest() const { - return OuterResumeDest; - } - - BasicBlock *getInnerResumeDest(); - - LandingPadInst *getLandingPadInst() const { return CallerLPad; } - - /// Forward the 'resume' instruction to the caller's landing pad block. - /// When the landing pad block has only one predecessor, this is - /// a simple branch. When there is more than one predecessor, we need to - /// split the landing pad block after the landingpad instruction and jump - /// to there. - void forwardResume(ResumeInst *RI, - SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); - - /// Add incoming-PHI values to the unwind destination block for the given - /// basic block, using the values for the original invoke's source block. - void addIncomingPHIValuesFor(BasicBlock *BB) const { - addIncomingPHIValuesForInto(BB, OuterResumeDest); - } - - void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { - BasicBlock::iterator I = dest->begin(); - for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { - PHINode *phi = cast<PHINode>(I); - phi->addIncoming(UnwindDestPHIValues[i], src); - } - } - }; - -} // end anonymous namespace - -/// Get or create a target for the branch from ResumeInsts. -BasicBlock *LandingPadInliningInfo::getInnerResumeDest() { - if (InnerResumeDest) return InnerResumeDest; - - // Split the landing pad. - BasicBlock::iterator SplitPoint = ++CallerLPad->getIterator(); - InnerResumeDest = - OuterResumeDest->splitBasicBlock(SplitPoint, - OuterResumeDest->getName() + ".body"); - - // The number of incoming edges we expect to the inner landing pad. - const unsigned PHICapacity = 2; - - // Create corresponding new PHIs for all the PHIs in the outer landing pad. - Instruction *InsertPoint = &InnerResumeDest->front(); - BasicBlock::iterator I = OuterResumeDest->begin(); - for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { - PHINode *OuterPHI = cast<PHINode>(I); - PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, - OuterPHI->getName() + ".lpad-body", - InsertPoint); - OuterPHI->replaceAllUsesWith(InnerPHI); - InnerPHI->addIncoming(OuterPHI, OuterResumeDest); - } - - // Create a PHI for the exception values. - InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, - "eh.lpad-body", InsertPoint); - CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); - InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); - - // All done. - return InnerResumeDest; -} - -/// Forward the 'resume' instruction to the caller's landing pad block. -/// When the landing pad block has only one predecessor, this is a simple -/// branch. When there is more than one predecessor, we need to split the -/// landing pad block after the landingpad instruction and jump to there. -void LandingPadInliningInfo::forwardResume( - ResumeInst *RI, SmallPtrSetImpl<LandingPadInst *> &InlinedLPads) { - BasicBlock *Dest = getInnerResumeDest(); - BasicBlock *Src = RI->getParent(); - - BranchInst::Create(Dest, Src); - - // Update the PHIs in the destination. They were inserted in an order which - // makes this work. - addIncomingPHIValuesForInto(Src, Dest); - - InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); - RI->eraseFromParent(); -} - -/// Helper for getUnwindDestToken/getUnwindDestTokenHelper. -static Value *getParentPad(Value *EHPad) { - if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad)) - return FPI->getParentPad(); - return cast<CatchSwitchInst>(EHPad)->getParentPad(); -} - -using UnwindDestMemoTy = DenseMap<Instruction *, Value *>; - -/// Helper for getUnwindDestToken that does the descendant-ward part of -/// the search. -static Value *getUnwindDestTokenHelper(Instruction *EHPad, - UnwindDestMemoTy &MemoMap) { - SmallVector<Instruction *, 8> Worklist(1, EHPad); - - while (!Worklist.empty()) { - Instruction *CurrentPad = Worklist.pop_back_val(); - // We only put pads on the worklist that aren't in the MemoMap. When - // we find an unwind dest for a pad we may update its ancestors, but - // the queue only ever contains uncles/great-uncles/etc. of CurrentPad, - // so they should never get updated while queued on the worklist. - assert(!MemoMap.count(CurrentPad)); - Value *UnwindDestToken = nullptr; - if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(CurrentPad)) { - if (CatchSwitch->hasUnwindDest()) { - UnwindDestToken = CatchSwitch->getUnwindDest()->getFirstNonPHI(); - } else { - // Catchswitch doesn't have a 'nounwind' variant, and one might be - // annotated as "unwinds to caller" when really it's nounwind (see - // e.g. SimplifyCFGOpt::SimplifyUnreachable), so we can't infer the - // parent's unwind dest from this. We can check its catchpads' - // descendants, since they might include a cleanuppad with an - // "unwinds to caller" cleanupret, which can be trusted. - for (auto HI = CatchSwitch->handler_begin(), - HE = CatchSwitch->handler_end(); - HI != HE && !UnwindDestToken; ++HI) { - BasicBlock *HandlerBlock = *HI; - auto *CatchPad = cast<CatchPadInst>(HandlerBlock->getFirstNonPHI()); - for (User *Child : CatchPad->users()) { - // Intentionally ignore invokes here -- since the catchswitch is - // marked "unwind to caller", it would be a verifier error if it - // contained an invoke which unwinds out of it, so any invoke we'd - // encounter must unwind to some child of the catch. - if (!isa<CleanupPadInst>(Child) && !isa<CatchSwitchInst>(Child)) - continue; - - Instruction *ChildPad = cast<Instruction>(Child); - auto Memo = MemoMap.find(ChildPad); - if (Memo == MemoMap.end()) { - // Haven't figured out this child pad yet; queue it. - Worklist.push_back(ChildPad); - continue; - } - // We've already checked this child, but might have found that - // it offers no proof either way. - Value *ChildUnwindDestToken = Memo->second; - if (!ChildUnwindDestToken) - continue; - // We already know the child's unwind dest, which can either - // be ConstantTokenNone to indicate unwind to caller, or can - // be another child of the catchpad. Only the former indicates - // the unwind dest of the catchswitch. - if (isa<ConstantTokenNone>(ChildUnwindDestToken)) { - UnwindDestToken = ChildUnwindDestToken; - break; - } - assert(getParentPad(ChildUnwindDestToken) == CatchPad); - } - } - } - } else { - auto *CleanupPad = cast<CleanupPadInst>(CurrentPad); - for (User *U : CleanupPad->users()) { - if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) { - if (BasicBlock *RetUnwindDest = CleanupRet->getUnwindDest()) - UnwindDestToken = RetUnwindDest->getFirstNonPHI(); - else - UnwindDestToken = ConstantTokenNone::get(CleanupPad->getContext()); - break; - } - Value *ChildUnwindDestToken; - if (auto *Invoke = dyn_cast<InvokeInst>(U)) { - ChildUnwindDestToken = Invoke->getUnwindDest()->getFirstNonPHI(); - } else if (isa<CleanupPadInst>(U) || isa<CatchSwitchInst>(U)) { - Instruction *ChildPad = cast<Instruction>(U); - auto Memo = MemoMap.find(ChildPad); - if (Memo == MemoMap.end()) { - // Haven't resolved this child yet; queue it and keep searching. - Worklist.push_back(ChildPad); - continue; - } - // We've checked this child, but still need to ignore it if it - // had no proof either way. - ChildUnwindDestToken = Memo->second; - if (!ChildUnwindDestToken) - continue; - } else { - // Not a relevant user of the cleanuppad - continue; - } - // In a well-formed program, the child/invoke must either unwind to - // an(other) child of the cleanup, or exit the cleanup. In the - // first case, continue searching. - if (isa<Instruction>(ChildUnwindDestToken) && - getParentPad(ChildUnwindDestToken) == CleanupPad) - continue; - UnwindDestToken = ChildUnwindDestToken; - break; - } - } - // If we haven't found an unwind dest for CurrentPad, we may have queued its - // children, so move on to the next in the worklist. - if (!UnwindDestToken) - continue; - - // Now we know that CurrentPad unwinds to UnwindDestToken. It also exits - // any ancestors of CurrentPad up to but not including UnwindDestToken's - // parent pad. Record this in the memo map, and check to see if the - // original EHPad being queried is one of the ones exited. - Value *UnwindParent; - if (auto *UnwindPad = dyn_cast<Instruction>(UnwindDestToken)) - UnwindParent = getParentPad(UnwindPad); - else - UnwindParent = nullptr; - bool ExitedOriginalPad = false; - for (Instruction *ExitedPad = CurrentPad; - ExitedPad && ExitedPad != UnwindParent; - ExitedPad = dyn_cast<Instruction>(getParentPad(ExitedPad))) { - // Skip over catchpads since they just follow their catchswitches. - if (isa<CatchPadInst>(ExitedPad)) - continue; - MemoMap[ExitedPad] = UnwindDestToken; - ExitedOriginalPad |= (ExitedPad == EHPad); - } - - if (ExitedOriginalPad) - return UnwindDestToken; - - // Continue the search. - } - - // No definitive information is contained within this funclet. - return nullptr; -} - -/// Given an EH pad, find where it unwinds. If it unwinds to an EH pad, -/// return that pad instruction. If it unwinds to caller, return -/// ConstantTokenNone. If it does not have a definitive unwind destination, -/// return nullptr. -/// -/// This routine gets invoked for calls in funclets in inlinees when inlining -/// an invoke. Since many funclets don't have calls inside them, it's queried -/// on-demand rather than building a map of pads to unwind dests up front. -/// Determining a funclet's unwind dest may require recursively searching its -/// descendants, and also ancestors and cousins if the descendants don't provide -/// an answer. Since most funclets will have their unwind dest immediately -/// available as the unwind dest of a catchswitch or cleanupret, this routine -/// searches top-down from the given pad and then up. To avoid worst-case -/// quadratic run-time given that approach, it uses a memo map to avoid -/// re-processing funclet trees. The callers that rewrite the IR as they go -/// take advantage of this, for correctness, by checking/forcing rewritten -/// pads' entries to match the original callee view. -static Value *getUnwindDestToken(Instruction *EHPad, - UnwindDestMemoTy &MemoMap) { - // Catchpads unwind to the same place as their catchswitch; - // redirct any queries on catchpads so the code below can - // deal with just catchswitches and cleanuppads. - if (auto *CPI = dyn_cast<CatchPadInst>(EHPad)) - EHPad = CPI->getCatchSwitch(); - - // Check if we've already determined the unwind dest for this pad. - auto Memo = MemoMap.find(EHPad); - if (Memo != MemoMap.end()) - return Memo->second; - - // Search EHPad and, if necessary, its descendants. - Value *UnwindDestToken = getUnwindDestTokenHelper(EHPad, MemoMap); - assert((UnwindDestToken == nullptr) != (MemoMap.count(EHPad) != 0)); - if (UnwindDestToken) - return UnwindDestToken; - - // No information is available for this EHPad from itself or any of its - // descendants. An unwind all the way out to a pad in the caller would - // need also to agree with the unwind dest of the parent funclet, so - // search up the chain to try to find a funclet with information. Put - // null entries in the memo map to avoid re-processing as we go up. - MemoMap[EHPad] = nullptr; -#ifndef NDEBUG - SmallPtrSet<Instruction *, 4> TempMemos; - TempMemos.insert(EHPad); -#endif - Instruction *LastUselessPad = EHPad; - Value *AncestorToken; - for (AncestorToken = getParentPad(EHPad); - auto *AncestorPad = dyn_cast<Instruction>(AncestorToken); - AncestorToken = getParentPad(AncestorToken)) { - // Skip over catchpads since they just follow their catchswitches. - if (isa<CatchPadInst>(AncestorPad)) - continue; - // If the MemoMap had an entry mapping AncestorPad to nullptr, since we - // haven't yet called getUnwindDestTokenHelper for AncestorPad in this - // call to getUnwindDestToken, that would mean that AncestorPad had no - // information in itself, its descendants, or its ancestors. If that - // were the case, then we should also have recorded the lack of information - // for the descendant that we're coming from. So assert that we don't - // find a null entry in the MemoMap for AncestorPad. - assert(!MemoMap.count(AncestorPad) || MemoMap[AncestorPad]); - auto AncestorMemo = MemoMap.find(AncestorPad); - if (AncestorMemo == MemoMap.end()) { - UnwindDestToken = getUnwindDestTokenHelper(AncestorPad, MemoMap); - } else { - UnwindDestToken = AncestorMemo->second; - } - if (UnwindDestToken) - break; - LastUselessPad = AncestorPad; - MemoMap[LastUselessPad] = nullptr; -#ifndef NDEBUG - TempMemos.insert(LastUselessPad); -#endif - } - - // We know that getUnwindDestTokenHelper was called on LastUselessPad and - // returned nullptr (and likewise for EHPad and any of its ancestors up to - // LastUselessPad), so LastUselessPad has no information from below. Since - // getUnwindDestTokenHelper must investigate all downward paths through - // no-information nodes to prove that a node has no information like this, - // and since any time it finds information it records it in the MemoMap for - // not just the immediately-containing funclet but also any ancestors also - // exited, it must be the case that, walking downward from LastUselessPad, - // visiting just those nodes which have not been mapped to an unwind dest - // by getUnwindDestTokenHelper (the nullptr TempMemos notwithstanding, since - // they are just used to keep getUnwindDestTokenHelper from repeating work), - // any node visited must have been exhaustively searched with no information - // for it found. - SmallVector<Instruction *, 8> Worklist(1, LastUselessPad); - while (!Worklist.empty()) { - Instruction *UselessPad = Worklist.pop_back_val(); - auto Memo = MemoMap.find(UselessPad); - if (Memo != MemoMap.end() && Memo->second) { - // Here the name 'UselessPad' is a bit of a misnomer, because we've found - // that it is a funclet that does have information about unwinding to - // a particular destination; its parent was a useless pad. - // Since its parent has no information, the unwind edge must not escape - // the parent, and must target a sibling of this pad. This local unwind - // gives us no information about EHPad. Leave it and the subtree rooted - // at it alone. - assert(getParentPad(Memo->second) == getParentPad(UselessPad)); - continue; - } - // We know we don't have information for UselesPad. If it has an entry in - // the MemoMap (mapping it to nullptr), it must be one of the TempMemos - // added on this invocation of getUnwindDestToken; if a previous invocation - // recorded nullptr, it would have had to prove that the ancestors of - // UselessPad, which include LastUselessPad, had no information, and that - // in turn would have required proving that the descendants of - // LastUselesPad, which include EHPad, have no information about - // LastUselessPad, which would imply that EHPad was mapped to nullptr in - // the MemoMap on that invocation, which isn't the case if we got here. - assert(!MemoMap.count(UselessPad) || TempMemos.count(UselessPad)); - // Assert as we enumerate users that 'UselessPad' doesn't have any unwind - // information that we'd be contradicting by making a map entry for it - // (which is something that getUnwindDestTokenHelper must have proved for - // us to get here). Just assert on is direct users here; the checks in - // this downward walk at its descendants will verify that they don't have - // any unwind edges that exit 'UselessPad' either (i.e. they either have no - // unwind edges or unwind to a sibling). - MemoMap[UselessPad] = UnwindDestToken; - if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(UselessPad)) { - assert(CatchSwitch->getUnwindDest() == nullptr && "Expected useless pad"); - for (BasicBlock *HandlerBlock : CatchSwitch->handlers()) { - auto *CatchPad = HandlerBlock->getFirstNonPHI(); - for (User *U : CatchPad->users()) { - assert( - (!isa<InvokeInst>(U) || - (getParentPad( - cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == - CatchPad)) && - "Expected useless pad"); - if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) - Worklist.push_back(cast<Instruction>(U)); - } - } - } else { - assert(isa<CleanupPadInst>(UselessPad)); - for (User *U : UselessPad->users()) { - assert(!isa<CleanupReturnInst>(U) && "Expected useless pad"); - assert((!isa<InvokeInst>(U) || - (getParentPad( - cast<InvokeInst>(U)->getUnwindDest()->getFirstNonPHI()) == - UselessPad)) && - "Expected useless pad"); - if (isa<CatchSwitchInst>(U) || isa<CleanupPadInst>(U)) - Worklist.push_back(cast<Instruction>(U)); - } - } - } - - return UnwindDestToken; -} - -/// When we inline a basic block into an invoke, -/// we have to turn all of the calls that can throw into invokes. -/// This function analyze BB to see if there are any calls, and if so, -/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI -/// nodes in that block with the values specified in InvokeDestPHIValues. -static BasicBlock *HandleCallsInBlockInlinedThroughInvoke( - BasicBlock *BB, BasicBlock *UnwindEdge, - UnwindDestMemoTy *FuncletUnwindMap = nullptr) { - for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { - Instruction *I = &*BBI++; - - // We only need to check for function calls: inlined invoke - // instructions require no special handling. - CallInst *CI = dyn_cast<CallInst>(I); - - if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) - continue; - - // We do not need to (and in fact, cannot) convert possibly throwing calls - // to @llvm.experimental_deoptimize (resp. @llvm.experimental.guard) into - // invokes. The caller's "segment" of the deoptimization continuation - // attached to the newly inlined @llvm.experimental_deoptimize - // (resp. @llvm.experimental.guard) call should contain the exception - // handling logic, if any. - if (auto *F = CI->getCalledFunction()) - if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize || - F->getIntrinsicID() == Intrinsic::experimental_guard) - continue; - - if (auto FuncletBundle = CI->getOperandBundle(LLVMContext::OB_funclet)) { - // This call is nested inside a funclet. If that funclet has an unwind - // destination within the inlinee, then unwinding out of this call would - // be UB. Rewriting this call to an invoke which targets the inlined - // invoke's unwind dest would give the call's parent funclet multiple - // unwind destinations, which is something that subsequent EH table - // generation can't handle and that the veirifer rejects. So when we - // see such a call, leave it as a call. - auto *FuncletPad = cast<Instruction>(FuncletBundle->Inputs[0]); - Value *UnwindDestToken = - getUnwindDestToken(FuncletPad, *FuncletUnwindMap); - if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) - continue; -#ifndef NDEBUG - Instruction *MemoKey; - if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad)) - MemoKey = CatchPad->getCatchSwitch(); - else - MemoKey = FuncletPad; - assert(FuncletUnwindMap->count(MemoKey) && - (*FuncletUnwindMap)[MemoKey] == UnwindDestToken && - "must get memoized to avoid confusing later searches"); -#endif // NDEBUG - } - - changeToInvokeAndSplitBasicBlock(CI, UnwindEdge); - return BB; - } - return nullptr; -} - -/// If we inlined an invoke site, we need to convert calls -/// in the body of the inlined function into invokes. -/// -/// II is the invoke instruction being inlined. FirstNewBlock is the first -/// block of the inlined code (the last block is the end of the function), -/// and InlineCodeInfo is information about the code that got inlined. -static void HandleInlinedLandingPad(InvokeInst *II, BasicBlock *FirstNewBlock, - ClonedCodeInfo &InlinedCodeInfo) { - BasicBlock *InvokeDest = II->getUnwindDest(); - - Function *Caller = FirstNewBlock->getParent(); - - // The inlined code is currently at the end of the function, scan from the - // start of the inlined code to its end, checking for stuff we need to - // rewrite. - LandingPadInliningInfo Invoke(II); - - // Get all of the inlined landing pad instructions. - SmallPtrSet<LandingPadInst*, 16> InlinedLPads; - for (Function::iterator I = FirstNewBlock->getIterator(), E = Caller->end(); - I != E; ++I) - if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) - InlinedLPads.insert(II->getLandingPadInst()); - - // Append the clauses from the outer landing pad instruction into the inlined - // landing pad instructions. - LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); - for (LandingPadInst *InlinedLPad : InlinedLPads) { - unsigned OuterNum = OuterLPad->getNumClauses(); - InlinedLPad->reserveClauses(OuterNum); - for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) - InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); - if (OuterLPad->isCleanup()) - InlinedLPad->setCleanup(true); - } - - for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); - BB != E; ++BB) { - if (InlinedCodeInfo.ContainsCalls) - if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( - &*BB, Invoke.getOuterResumeDest())) - // Update any PHI nodes in the exceptional block to indicate that there - // is now a new entry in them. - Invoke.addIncomingPHIValuesFor(NewBB); - - // Forward any resumes that are remaining here. - if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) - Invoke.forwardResume(RI, InlinedLPads); - } - - // Now that everything is happy, we have one final detail. The PHI nodes in - // the exception destination block still have entries due to the original - // invoke instruction. Eliminate these entries (which might even delete the - // PHI node) now. - InvokeDest->removePredecessor(II->getParent()); -} - -/// If we inlined an invoke site, we need to convert calls -/// in the body of the inlined function into invokes. -/// -/// II is the invoke instruction being inlined. FirstNewBlock is the first -/// block of the inlined code (the last block is the end of the function), -/// and InlineCodeInfo is information about the code that got inlined. -static void HandleInlinedEHPad(InvokeInst *II, BasicBlock *FirstNewBlock, - ClonedCodeInfo &InlinedCodeInfo) { - BasicBlock *UnwindDest = II->getUnwindDest(); - Function *Caller = FirstNewBlock->getParent(); - - assert(UnwindDest->getFirstNonPHI()->isEHPad() && "unexpected BasicBlock!"); - - // If there are PHI nodes in the unwind destination block, we need to keep - // track of which values came into them from the invoke before removing the - // edge from this block. - SmallVector<Value *, 8> UnwindDestPHIValues; - BasicBlock *InvokeBB = II->getParent(); - for (Instruction &I : *UnwindDest) { - // Save the value to use for this edge. - PHINode *PHI = dyn_cast<PHINode>(&I); - if (!PHI) - break; - UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); - } - - // Add incoming-PHI values to the unwind destination block for the given basic - // block, using the values for the original invoke's source block. - auto UpdatePHINodes = [&](BasicBlock *Src) { - BasicBlock::iterator I = UnwindDest->begin(); - for (Value *V : UnwindDestPHIValues) { - PHINode *PHI = cast<PHINode>(I); - PHI->addIncoming(V, Src); - ++I; - } - }; - - // This connects all the instructions which 'unwind to caller' to the invoke - // destination. - UnwindDestMemoTy FuncletUnwindMap; - for (Function::iterator BB = FirstNewBlock->getIterator(), E = Caller->end(); - BB != E; ++BB) { - if (auto *CRI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { - if (CRI->unwindsToCaller()) { - auto *CleanupPad = CRI->getCleanupPad(); - CleanupReturnInst::Create(CleanupPad, UnwindDest, CRI); - CRI->eraseFromParent(); - UpdatePHINodes(&*BB); - // Finding a cleanupret with an unwind destination would confuse - // subsequent calls to getUnwindDestToken, so map the cleanuppad - // to short-circuit any such calls and recognize this as an "unwind - // to caller" cleanup. - assert(!FuncletUnwindMap.count(CleanupPad) || - isa<ConstantTokenNone>(FuncletUnwindMap[CleanupPad])); - FuncletUnwindMap[CleanupPad] = - ConstantTokenNone::get(Caller->getContext()); - } - } - - Instruction *I = BB->getFirstNonPHI(); - if (!I->isEHPad()) - continue; - - Instruction *Replacement = nullptr; - if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { - if (CatchSwitch->unwindsToCaller()) { - Value *UnwindDestToken; - if (auto *ParentPad = - dyn_cast<Instruction>(CatchSwitch->getParentPad())) { - // This catchswitch is nested inside another funclet. If that - // funclet has an unwind destination within the inlinee, then - // unwinding out of this catchswitch would be UB. Rewriting this - // catchswitch to unwind to the inlined invoke's unwind dest would - // give the parent funclet multiple unwind destinations, which is - // something that subsequent EH table generation can't handle and - // that the veirifer rejects. So when we see such a call, leave it - // as "unwind to caller". - UnwindDestToken = getUnwindDestToken(ParentPad, FuncletUnwindMap); - if (UnwindDestToken && !isa<ConstantTokenNone>(UnwindDestToken)) - continue; - } else { - // This catchswitch has no parent to inherit constraints from, and - // none of its descendants can have an unwind edge that exits it and - // targets another funclet in the inlinee. It may or may not have a - // descendant that definitively has an unwind to caller. In either - // case, we'll have to assume that any unwinds out of it may need to - // be routed to the caller, so treat it as though it has a definitive - // unwind to caller. - UnwindDestToken = ConstantTokenNone::get(Caller->getContext()); - } - auto *NewCatchSwitch = CatchSwitchInst::Create( - CatchSwitch->getParentPad(), UnwindDest, - CatchSwitch->getNumHandlers(), CatchSwitch->getName(), - CatchSwitch); - for (BasicBlock *PadBB : CatchSwitch->handlers()) - NewCatchSwitch->addHandler(PadBB); - // Propagate info for the old catchswitch over to the new one in - // the unwind map. This also serves to short-circuit any subsequent - // checks for the unwind dest of this catchswitch, which would get - // confused if they found the outer handler in the callee. - FuncletUnwindMap[NewCatchSwitch] = UnwindDestToken; - Replacement = NewCatchSwitch; - } - } else if (!isa<FuncletPadInst>(I)) { - llvm_unreachable("unexpected EHPad!"); - } - - if (Replacement) { - Replacement->takeName(I); - I->replaceAllUsesWith(Replacement); - I->eraseFromParent(); - UpdatePHINodes(&*BB); - } - } - - if (InlinedCodeInfo.ContainsCalls) - for (Function::iterator BB = FirstNewBlock->getIterator(), - E = Caller->end(); - BB != E; ++BB) - if (BasicBlock *NewBB = HandleCallsInBlockInlinedThroughInvoke( - &*BB, UnwindDest, &FuncletUnwindMap)) - // Update any PHI nodes in the exceptional block to indicate that there - // is now a new entry in them. - UpdatePHINodes(NewBB); - - // Now that everything is happy, we have one final detail. The PHI nodes in - // the exception destination block still have entries due to the original - // invoke instruction. Eliminate these entries (which might even delete the - // PHI node) now. - UnwindDest->removePredecessor(InvokeBB); -} - -/// When inlining a call site that has !llvm.mem.parallel_loop_access or -/// llvm.access.group metadata, that metadata should be propagated to all -/// memory-accessing cloned instructions. -static void PropagateParallelLoopAccessMetadata(CallSite CS, - ValueToValueMapTy &VMap) { - MDNode *M = - CS.getInstruction()->getMetadata(LLVMContext::MD_mem_parallel_loop_access); - MDNode *CallAccessGroup = - CS.getInstruction()->getMetadata(LLVMContext::MD_access_group); - if (!M && !CallAccessGroup) - return; - - for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); - VMI != VMIE; ++VMI) { - if (!VMI->second) - continue; - - Instruction *NI = dyn_cast<Instruction>(VMI->second); - if (!NI) - continue; - - if (M) { - if (MDNode *PM = - NI->getMetadata(LLVMContext::MD_mem_parallel_loop_access)) { - M = MDNode::concatenate(PM, M); - NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); - } else if (NI->mayReadOrWriteMemory()) { - NI->setMetadata(LLVMContext::MD_mem_parallel_loop_access, M); - } - } - - if (NI->mayReadOrWriteMemory()) { - MDNode *UnitedAccGroups = uniteAccessGroups( - NI->getMetadata(LLVMContext::MD_access_group), CallAccessGroup); - NI->setMetadata(LLVMContext::MD_access_group, UnitedAccGroups); - } - } -} - -/// When inlining a function that contains noalias scope metadata, -/// this metadata needs to be cloned so that the inlined blocks -/// have different "unique scopes" at every call site. Were this not done, then -/// aliasing scopes from a function inlined into a caller multiple times could -/// not be differentiated (and this would lead to miscompiles because the -/// non-aliasing property communicated by the metadata could have -/// call-site-specific control dependencies). -static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { - const Function *CalledFunc = CS.getCalledFunction(); - SetVector<const MDNode *> MD; - - // Note: We could only clone the metadata if it is already used in the - // caller. I'm omitting that check here because it might confuse - // inter-procedural alias analysis passes. We can revisit this if it becomes - // an efficiency or overhead problem. - - for (const BasicBlock &I : *CalledFunc) - for (const Instruction &J : I) { - if (const MDNode *M = J.getMetadata(LLVMContext::MD_alias_scope)) - MD.insert(M); - if (const MDNode *M = J.getMetadata(LLVMContext::MD_noalias)) - MD.insert(M); - } - - if (MD.empty()) - return; - - // Walk the existing metadata, adding the complete (perhaps cyclic) chain to - // the set. - SmallVector<const Metadata *, 16> Queue(MD.begin(), MD.end()); - while (!Queue.empty()) { - const MDNode *M = cast<MDNode>(Queue.pop_back_val()); - for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) - if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) - if (MD.insert(M1)) - Queue.push_back(M1); - } - - // Now we have a complete set of all metadata in the chains used to specify - // the noalias scopes and the lists of those scopes. - SmallVector<TempMDTuple, 16> DummyNodes; - DenseMap<const MDNode *, TrackingMDNodeRef> MDMap; - for (const MDNode *I : MD) { - DummyNodes.push_back(MDTuple::getTemporary(CalledFunc->getContext(), None)); - MDMap[I].reset(DummyNodes.back().get()); - } - - // Create new metadata nodes to replace the dummy nodes, replacing old - // metadata references with either a dummy node or an already-created new - // node. - for (const MDNode *I : MD) { - SmallVector<Metadata *, 4> NewOps; - for (unsigned i = 0, ie = I->getNumOperands(); i != ie; ++i) { - const Metadata *V = I->getOperand(i); - if (const MDNode *M = dyn_cast<MDNode>(V)) - NewOps.push_back(MDMap[M]); - else - NewOps.push_back(const_cast<Metadata *>(V)); - } - - MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps); - MDTuple *TempM = cast<MDTuple>(MDMap[I]); - assert(TempM->isTemporary() && "Expected temporary node"); - - TempM->replaceAllUsesWith(NewM); - } - - // Now replace the metadata in the new inlined instructions with the - // repacements from the map. - for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); - VMI != VMIE; ++VMI) { - if (!VMI->second) - continue; - - Instruction *NI = dyn_cast<Instruction>(VMI->second); - if (!NI) - continue; - - if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { - MDNode *NewMD = MDMap[M]; - // If the call site also had alias scope metadata (a list of scopes to - // which instructions inside it might belong), propagate those scopes to - // the inlined instructions. - if (MDNode *CSM = - CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) - NewMD = MDNode::concatenate(NewMD, CSM); - NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); - } else if (NI->mayReadOrWriteMemory()) { - if (MDNode *M = - CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) - NI->setMetadata(LLVMContext::MD_alias_scope, M); - } - - if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { - MDNode *NewMD = MDMap[M]; - // If the call site also had noalias metadata (a list of scopes with - // which instructions inside it don't alias), propagate those scopes to - // the inlined instructions. - if (MDNode *CSM = - CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) - NewMD = MDNode::concatenate(NewMD, CSM); - NI->setMetadata(LLVMContext::MD_noalias, NewMD); - } else if (NI->mayReadOrWriteMemory()) { - if (MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) - NI->setMetadata(LLVMContext::MD_noalias, M); - } - } -} - -/// If the inlined function has noalias arguments, -/// then add new alias scopes for each noalias argument, tag the mapped noalias -/// parameters with noalias metadata specifying the new scope, and tag all -/// non-derived loads, stores and memory intrinsics with the new alias scopes. -static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, - const DataLayout &DL, AAResults *CalleeAAR) { - if (!EnableNoAliasConversion) - return; - - const Function *CalledFunc = CS.getCalledFunction(); - SmallVector<const Argument *, 4> NoAliasArgs; - - for (const Argument &Arg : CalledFunc->args()) - if (Arg.hasNoAliasAttr() && !Arg.use_empty()) - NoAliasArgs.push_back(&Arg); - - if (NoAliasArgs.empty()) - return; - - // To do a good job, if a noalias variable is captured, we need to know if - // the capture point dominates the particular use we're considering. - DominatorTree DT; - DT.recalculate(const_cast<Function&>(*CalledFunc)); - - // noalias indicates that pointer values based on the argument do not alias - // pointer values which are not based on it. So we add a new "scope" for each - // noalias function argument. Accesses using pointers based on that argument - // become part of that alias scope, accesses using pointers not based on that - // argument are tagged as noalias with that scope. - - DenseMap<const Argument *, MDNode *> NewScopes; - MDBuilder MDB(CalledFunc->getContext()); - - // Create a new scope domain for this function. - MDNode *NewDomain = - MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); - for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { - const Argument *A = NoAliasArgs[i]; - - std::string Name = CalledFunc->getName(); - if (A->hasName()) { - Name += ": %"; - Name += A->getName(); - } else { - Name += ": argument "; - Name += utostr(i); - } - - // Note: We always create a new anonymous root here. This is true regardless - // of the linkage of the callee because the aliasing "scope" is not just a - // property of the callee, but also all control dependencies in the caller. - MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); - NewScopes.insert(std::make_pair(A, NewScope)); - } - - // Iterate over all new instructions in the map; for all memory-access - // instructions, add the alias scope metadata. - for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); - VMI != VMIE; ++VMI) { - if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { - if (!VMI->second) - continue; - - Instruction *NI = dyn_cast<Instruction>(VMI->second); - if (!NI) - continue; - - bool IsArgMemOnlyCall = false, IsFuncCall = false; - SmallVector<const Value *, 2> PtrArgs; - - if (const LoadInst *LI = dyn_cast<LoadInst>(I)) - PtrArgs.push_back(LI->getPointerOperand()); - else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) - PtrArgs.push_back(SI->getPointerOperand()); - else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) - PtrArgs.push_back(VAAI->getPointerOperand()); - else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) - PtrArgs.push_back(CXI->getPointerOperand()); - else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) - PtrArgs.push_back(RMWI->getPointerOperand()); - else if (const auto *Call = dyn_cast<CallBase>(I)) { - // If we know that the call does not access memory, then we'll still - // know that about the inlined clone of this call site, and we don't - // need to add metadata. - if (Call->doesNotAccessMemory()) - continue; - - IsFuncCall = true; - if (CalleeAAR) { - FunctionModRefBehavior MRB = CalleeAAR->getModRefBehavior(Call); - if (MRB == FMRB_OnlyAccessesArgumentPointees || - MRB == FMRB_OnlyReadsArgumentPointees) - IsArgMemOnlyCall = true; - } - - for (Value *Arg : Call->args()) { - // We need to check the underlying objects of all arguments, not just - // the pointer arguments, because we might be passing pointers as - // integers, etc. - // However, if we know that the call only accesses pointer arguments, - // then we only need to check the pointer arguments. - if (IsArgMemOnlyCall && !Arg->getType()->isPointerTy()) - continue; - - PtrArgs.push_back(Arg); - } - } - - // If we found no pointers, then this instruction is not suitable for - // pairing with an instruction to receive aliasing metadata. - // However, if this is a call, this we might just alias with none of the - // noalias arguments. - if (PtrArgs.empty() && !IsFuncCall) - continue; - - // It is possible that there is only one underlying object, but you - // need to go through several PHIs to see it, and thus could be - // repeated in the Objects list. - SmallPtrSet<const Value *, 4> ObjSet; - SmallVector<Metadata *, 4> Scopes, NoAliases; - - SmallSetVector<const Argument *, 4> NAPtrArgs; - for (const Value *V : PtrArgs) { - SmallVector<const Value *, 4> Objects; - GetUnderlyingObjects(V, Objects, DL, /* LI = */ nullptr); - - for (const Value *O : Objects) - ObjSet.insert(O); - } - - // Figure out if we're derived from anything that is not a noalias - // argument. - bool CanDeriveViaCapture = false, UsesAliasingPtr = false; - for (const Value *V : ObjSet) { - // Is this value a constant that cannot be derived from any pointer - // value (we need to exclude constant expressions, for example, that - // are formed from arithmetic on global symbols). - bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || - isa<ConstantPointerNull>(V) || - isa<ConstantDataVector>(V) || isa<UndefValue>(V); - if (IsNonPtrConst) - continue; - - // If this is anything other than a noalias argument, then we cannot - // completely describe the aliasing properties using alias.scope - // metadata (and, thus, won't add any). - if (const Argument *A = dyn_cast<Argument>(V)) { - if (!A->hasNoAliasAttr()) - UsesAliasingPtr = true; - } else { - UsesAliasingPtr = true; - } - - // If this is not some identified function-local object (which cannot - // directly alias a noalias argument), or some other argument (which, - // by definition, also cannot alias a noalias argument), then we could - // alias a noalias argument that has been captured). - if (!isa<Argument>(V) && - !isIdentifiedFunctionLocal(const_cast<Value*>(V))) - CanDeriveViaCapture = true; - } - - // A function call can always get captured noalias pointers (via other - // parameters, globals, etc.). - if (IsFuncCall && !IsArgMemOnlyCall) - CanDeriveViaCapture = true; - - // First, we want to figure out all of the sets with which we definitely - // don't alias. Iterate over all noalias set, and add those for which: - // 1. The noalias argument is not in the set of objects from which we - // definitely derive. - // 2. The noalias argument has not yet been captured. - // An arbitrary function that might load pointers could see captured - // noalias arguments via other noalias arguments or globals, and so we - // must always check for prior capture. - for (const Argument *A : NoAliasArgs) { - if (!ObjSet.count(A) && (!CanDeriveViaCapture || - // It might be tempting to skip the - // PointerMayBeCapturedBefore check if - // A->hasNoCaptureAttr() is true, but this is - // incorrect because nocapture only guarantees - // that no copies outlive the function, not - // that the value cannot be locally captured. - !PointerMayBeCapturedBefore(A, - /* ReturnCaptures */ false, - /* StoreCaptures */ false, I, &DT))) - NoAliases.push_back(NewScopes[A]); - } - - if (!NoAliases.empty()) - NI->setMetadata(LLVMContext::MD_noalias, - MDNode::concatenate( - NI->getMetadata(LLVMContext::MD_noalias), - MDNode::get(CalledFunc->getContext(), NoAliases))); - - // Next, we want to figure out all of the sets to which we might belong. - // We might belong to a set if the noalias argument is in the set of - // underlying objects. If there is some non-noalias argument in our list - // of underlying objects, then we cannot add a scope because the fact - // that some access does not alias with any set of our noalias arguments - // cannot itself guarantee that it does not alias with this access - // (because there is some pointer of unknown origin involved and the - // other access might also depend on this pointer). We also cannot add - // scopes to arbitrary functions unless we know they don't access any - // non-parameter pointer-values. - bool CanAddScopes = !UsesAliasingPtr; - if (CanAddScopes && IsFuncCall) - CanAddScopes = IsArgMemOnlyCall; - - if (CanAddScopes) - for (const Argument *A : NoAliasArgs) { - if (ObjSet.count(A)) - Scopes.push_back(NewScopes[A]); - } - - if (!Scopes.empty()) - NI->setMetadata( - LLVMContext::MD_alias_scope, - MDNode::concatenate(NI->getMetadata(LLVMContext::MD_alias_scope), - MDNode::get(CalledFunc->getContext(), Scopes))); - } - } -} - -/// If the inlined function has non-byval align arguments, then -/// add @llvm.assume-based alignment assumptions to preserve this information. -static void AddAlignmentAssumptions(CallSite CS, InlineFunctionInfo &IFI) { - if (!PreserveAlignmentAssumptions || !IFI.GetAssumptionCache) - return; - - AssumptionCache *AC = &(*IFI.GetAssumptionCache)(*CS.getCaller()); - auto &DL = CS.getCaller()->getParent()->getDataLayout(); - - // To avoid inserting redundant assumptions, we should check for assumptions - // already in the caller. To do this, we might need a DT of the caller. - DominatorTree DT; - bool DTCalculated = false; - - Function *CalledFunc = CS.getCalledFunction(); - for (Argument &Arg : CalledFunc->args()) { - unsigned Align = Arg.getType()->isPointerTy() ? Arg.getParamAlignment() : 0; - if (Align && !Arg.hasByValOrInAllocaAttr() && !Arg.hasNUses(0)) { - if (!DTCalculated) { - DT.recalculate(*CS.getCaller()); - DTCalculated = true; - } - - // If we can already prove the asserted alignment in the context of the - // caller, then don't bother inserting the assumption. - Value *ArgVal = CS.getArgument(Arg.getArgNo()); - if (getKnownAlignment(ArgVal, DL, CS.getInstruction(), AC, &DT) >= Align) - continue; - - CallInst *NewAsmp = IRBuilder<>(CS.getInstruction()) - .CreateAlignmentAssumption(DL, ArgVal, Align); - AC->registerAssumption(NewAsmp); - } - } -} - -/// Once we have cloned code over from a callee into the caller, -/// update the specified callgraph to reflect the changes we made. -/// Note that it's possible that not all code was copied over, so only -/// some edges of the callgraph may remain. -static void UpdateCallGraphAfterInlining(CallSite CS, - Function::iterator FirstNewBlock, - ValueToValueMapTy &VMap, - InlineFunctionInfo &IFI) { - CallGraph &CG = *IFI.CG; - const Function *Caller = CS.getCaller(); - const Function *Callee = CS.getCalledFunction(); - CallGraphNode *CalleeNode = CG[Callee]; - CallGraphNode *CallerNode = CG[Caller]; - - // Since we inlined some uninlined call sites in the callee into the caller, - // add edges from the caller to all of the callees of the callee. - CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); - - // Consider the case where CalleeNode == CallerNode. - CallGraphNode::CalledFunctionsVector CallCache; - if (CalleeNode == CallerNode) { - CallCache.assign(I, E); - I = CallCache.begin(); - E = CallCache.end(); - } - - for (; I != E; ++I) { - const Value *OrigCall = I->first; - - ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); - // Only copy the edge if the call was inlined! - if (VMI == VMap.end() || VMI->second == nullptr) - continue; - - // If the call was inlined, but then constant folded, there is no edge to - // add. Check for this case. - auto *NewCall = dyn_cast<CallBase>(VMI->second); - if (!NewCall) - continue; - - // We do not treat intrinsic calls like real function calls because we - // expect them to become inline code; do not add an edge for an intrinsic. - if (NewCall->getCalledFunction() && - NewCall->getCalledFunction()->isIntrinsic()) - continue; - - // Remember that this call site got inlined for the client of - // InlineFunction. - IFI.InlinedCalls.push_back(NewCall); - - // It's possible that inlining the callsite will cause it to go from an - // indirect to a direct call by resolving a function pointer. If this - // happens, set the callee of the new call site to a more precise - // destination. This can also happen if the call graph node of the caller - // was just unnecessarily imprecise. - if (!I->second->getFunction()) - if (Function *F = NewCall->getCalledFunction()) { - // Indirect call site resolved to direct call. - CallerNode->addCalledFunction(NewCall, CG[F]); - - continue; - } - - CallerNode->addCalledFunction(NewCall, I->second); - } - - // Update the call graph by deleting the edge from Callee to Caller. We must - // do this after the loop above in case Caller and Callee are the same. - CallerNode->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction())); -} - -static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, - BasicBlock *InsertBlock, - InlineFunctionInfo &IFI) { - Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); - IRBuilder<> Builder(InsertBlock, InsertBlock->begin()); - - Value *Size = Builder.getInt64(M->getDataLayout().getTypeStoreSize(AggTy)); - - // Always generate a memcpy of alignment 1 here because we don't know - // the alignment of the src pointer. Other optimizations can infer - // better alignment. - Builder.CreateMemCpy(Dst, /*DstAlign*/1, Src, /*SrcAlign*/1, Size); -} - -/// When inlining a call site that has a byval argument, -/// we have to make the implicit memcpy explicit by adding it. -static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, - const Function *CalledFunc, - InlineFunctionInfo &IFI, - unsigned ByValAlignment) { - PointerType *ArgTy = cast<PointerType>(Arg->getType()); - Type *AggTy = ArgTy->getElementType(); - - Function *Caller = TheCall->getFunction(); - const DataLayout &DL = Caller->getParent()->getDataLayout(); - - // If the called function is readonly, then it could not mutate the caller's - // copy of the byval'd memory. In this case, it is safe to elide the copy and - // temporary. - if (CalledFunc->onlyReadsMemory()) { - // If the byval argument has a specified alignment that is greater than the - // passed in pointer, then we either have to round up the input pointer or - // give up on this transformation. - if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. - return Arg; - - AssumptionCache *AC = - IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; - - // If the pointer is already known to be sufficiently aligned, or if we can - // round it up to a larger alignment, then we don't need a temporary. - if (getOrEnforceKnownAlignment(Arg, ByValAlignment, DL, TheCall, AC) >= - ByValAlignment) - return Arg; - - // Otherwise, we have to make a memcpy to get a safe alignment. This is bad - // for code quality, but rarely happens and is required for correctness. - } - - // Create the alloca. If we have DataLayout, use nice alignment. - unsigned Align = DL.getPrefTypeAlignment(AggTy); - - // If the byval had an alignment specified, we *must* use at least that - // alignment, as it is required by the byval argument (and uses of the - // pointer inside the callee). - Align = std::max(Align, ByValAlignment); - - Value *NewAlloca = new AllocaInst(AggTy, DL.getAllocaAddrSpace(), - nullptr, Align, Arg->getName(), - &*Caller->begin()->begin()); - IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); - - // Uses of the argument in the function should use our new alloca - // instead. - return NewAlloca; -} - -// Check whether this Value is used by a lifetime intrinsic. -static bool isUsedByLifetimeMarker(Value *V) { - for (User *U : V->users()) - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) - if (II->isLifetimeStartOrEnd()) - return true; - return false; -} - -// Check whether the given alloca already has -// lifetime.start or lifetime.end intrinsics. -static bool hasLifetimeMarkers(AllocaInst *AI) { - Type *Ty = AI->getType(); - Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), - Ty->getPointerAddressSpace()); - if (Ty == Int8PtrTy) - return isUsedByLifetimeMarker(AI); - - // Do a scan to find all the casts to i8*. - for (User *U : AI->users()) { - if (U->getType() != Int8PtrTy) continue; - if (U->stripPointerCasts() != AI) continue; - if (isUsedByLifetimeMarker(U)) - return true; - } - return false; -} - -/// Return the result of AI->isStaticAlloca() if AI were moved to the entry -/// block. Allocas used in inalloca calls and allocas of dynamic array size -/// cannot be static. -static bool allocaWouldBeStaticInEntry(const AllocaInst *AI ) { - return isa<Constant>(AI->getArraySize()) && !AI->isUsedWithInAlloca(); -} - -/// Returns a DebugLoc for a new DILocation which is a clone of \p OrigDL -/// inlined at \p InlinedAt. \p IANodes is an inlined-at cache. -static DebugLoc inlineDebugLoc(DebugLoc OrigDL, DILocation *InlinedAt, - LLVMContext &Ctx, - DenseMap<const MDNode *, MDNode *> &IANodes) { - auto IA = DebugLoc::appendInlinedAt(OrigDL, InlinedAt, Ctx, IANodes); - return DebugLoc::get(OrigDL.getLine(), OrigDL.getCol(), OrigDL.getScope(), - IA); -} - -/// Returns the LoopID for a loop which has has been cloned from another -/// function for inlining with the new inlined-at start and end locs. -static MDNode *inlineLoopID(const MDNode *OrigLoopId, DILocation *InlinedAt, - LLVMContext &Ctx, - DenseMap<const MDNode *, MDNode *> &IANodes) { - assert(OrigLoopId && OrigLoopId->getNumOperands() > 0 && - "Loop ID needs at least one operand"); - assert(OrigLoopId && OrigLoopId->getOperand(0).get() == OrigLoopId && - "Loop ID should refer to itself"); - - // Save space for the self-referential LoopID. - SmallVector<Metadata *, 4> MDs = {nullptr}; - - for (unsigned i = 1; i < OrigLoopId->getNumOperands(); ++i) { - Metadata *MD = OrigLoopId->getOperand(i); - // Update the DILocations to encode the inlined-at metadata. - if (DILocation *DL = dyn_cast<DILocation>(MD)) - MDs.push_back(inlineDebugLoc(DL, InlinedAt, Ctx, IANodes)); - else - MDs.push_back(MD); - } - - MDNode *NewLoopID = MDNode::getDistinct(Ctx, MDs); - // Insert the self-referential LoopID. - NewLoopID->replaceOperandWith(0, NewLoopID); - return NewLoopID; -} - -/// Update inlined instructions' line numbers to -/// to encode location where these instructions are inlined. -static void fixupLineNumbers(Function *Fn, Function::iterator FI, - Instruction *TheCall, bool CalleeHasDebugInfo) { - const DebugLoc &TheCallDL = TheCall->getDebugLoc(); - if (!TheCallDL) - return; - - auto &Ctx = Fn->getContext(); - DILocation *InlinedAtNode = TheCallDL; - - // Create a unique call site, not to be confused with any other call from the - // same location. - InlinedAtNode = DILocation::getDistinct( - Ctx, InlinedAtNode->getLine(), InlinedAtNode->getColumn(), - InlinedAtNode->getScope(), InlinedAtNode->getInlinedAt()); - - // Cache the inlined-at nodes as they're built so they are reused, without - // this every instruction's inlined-at chain would become distinct from each - // other. - DenseMap<const MDNode *, MDNode *> IANodes; - - for (; FI != Fn->end(); ++FI) { - for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); - BI != BE; ++BI) { - // Loop metadata needs to be updated so that the start and end locs - // reference inlined-at locations. - if (MDNode *LoopID = BI->getMetadata(LLVMContext::MD_loop)) { - MDNode *NewLoopID = - inlineLoopID(LoopID, InlinedAtNode, BI->getContext(), IANodes); - BI->setMetadata(LLVMContext::MD_loop, NewLoopID); - } - - if (DebugLoc DL = BI->getDebugLoc()) { - DebugLoc IDL = - inlineDebugLoc(DL, InlinedAtNode, BI->getContext(), IANodes); - BI->setDebugLoc(IDL); - continue; - } - - if (CalleeHasDebugInfo) - continue; - - // If the inlined instruction has no line number, make it look as if it - // originates from the call location. This is important for - // ((__always_inline__, __nodebug__)) functions which must use caller - // location for all instructions in their function body. - - // Don't update static allocas, as they may get moved later. - if (auto *AI = dyn_cast<AllocaInst>(BI)) - if (allocaWouldBeStaticInEntry(AI)) - continue; - - BI->setDebugLoc(TheCallDL); - } - } -} - -/// Update the block frequencies of the caller after a callee has been inlined. -/// -/// Each block cloned into the caller has its block frequency scaled by the -/// ratio of CallSiteFreq/CalleeEntryFreq. This ensures that the cloned copy of -/// callee's entry block gets the same frequency as the callsite block and the -/// relative frequencies of all cloned blocks remain the same after cloning. -static void updateCallerBFI(BasicBlock *CallSiteBlock, - const ValueToValueMapTy &VMap, - BlockFrequencyInfo *CallerBFI, - BlockFrequencyInfo *CalleeBFI, - const BasicBlock &CalleeEntryBlock) { - SmallPtrSet<BasicBlock *, 16> ClonedBBs; - for (auto const &Entry : VMap) { - if (!isa<BasicBlock>(Entry.first) || !Entry.second) - continue; - auto *OrigBB = cast<BasicBlock>(Entry.first); - auto *ClonedBB = cast<BasicBlock>(Entry.second); - uint64_t Freq = CalleeBFI->getBlockFreq(OrigBB).getFrequency(); - if (!ClonedBBs.insert(ClonedBB).second) { - // Multiple blocks in the callee might get mapped to one cloned block in - // the caller since we prune the callee as we clone it. When that happens, - // we want to use the maximum among the original blocks' frequencies. - uint64_t NewFreq = CallerBFI->getBlockFreq(ClonedBB).getFrequency(); - if (NewFreq > Freq) - Freq = NewFreq; - } - CallerBFI->setBlockFreq(ClonedBB, Freq); - } - BasicBlock *EntryClone = cast<BasicBlock>(VMap.lookup(&CalleeEntryBlock)); - CallerBFI->setBlockFreqAndScale( - EntryClone, CallerBFI->getBlockFreq(CallSiteBlock).getFrequency(), - ClonedBBs); -} - -/// Update the branch metadata for cloned call instructions. -static void updateCallProfile(Function *Callee, const ValueToValueMapTy &VMap, - const ProfileCount &CalleeEntryCount, - const Instruction *TheCall, - ProfileSummaryInfo *PSI, - BlockFrequencyInfo *CallerBFI) { - if (!CalleeEntryCount.hasValue() || CalleeEntryCount.isSynthetic() || - CalleeEntryCount.getCount() < 1) - return; - auto CallSiteCount = PSI ? PSI->getProfileCount(TheCall, CallerBFI) : None; - int64_t CallCount = - std::min(CallSiteCount.hasValue() ? CallSiteCount.getValue() : 0, - CalleeEntryCount.getCount()); - updateProfileCallee(Callee, -CallCount, &VMap); -} - -void llvm::updateProfileCallee( - Function *Callee, int64_t entryDelta, - const ValueMap<const Value *, WeakTrackingVH> *VMap) { - auto CalleeCount = Callee->getEntryCount(); - if (!CalleeCount.hasValue()) - return; - - uint64_t priorEntryCount = CalleeCount.getCount(); - uint64_t newEntryCount; - - // Since CallSiteCount is an estimate, it could exceed the original callee - // count and has to be set to 0 so guard against underflow. - if (entryDelta < 0 && static_cast<uint64_t>(-entryDelta) > priorEntryCount) - newEntryCount = 0; - else - newEntryCount = priorEntryCount + entryDelta; - - Callee->setEntryCount(newEntryCount); - - // During inlining ? - if (VMap) { - uint64_t cloneEntryCount = priorEntryCount - newEntryCount; - for (auto const &Entry : *VMap) - if (isa<CallInst>(Entry.first)) - if (auto *CI = dyn_cast_or_null<CallInst>(Entry.second)) - CI->updateProfWeight(cloneEntryCount, priorEntryCount); - } - for (BasicBlock &BB : *Callee) - // No need to update the callsite if it is pruned during inlining. - if (!VMap || VMap->count(&BB)) - for (Instruction &I : BB) - if (CallInst *CI = dyn_cast<CallInst>(&I)) - CI->updateProfWeight(newEntryCount, priorEntryCount); -} - -/// This function inlines the called function into the basic block of the -/// caller. This returns false if it is not possible to inline this call. -/// The program is still in a well defined state if this occurs though. -/// -/// Note that this only does one level of inlining. For example, if the -/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now -/// exists in the instruction stream. Similarly this will inline a recursive -/// function by one level. -llvm::InlineResult llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, - AAResults *CalleeAAR, - bool InsertLifetime, - Function *ForwardVarArgsTo) { - Instruction *TheCall = CS.getInstruction(); - assert(TheCall->getParent() && TheCall->getFunction() - && "Instruction not in function!"); - - // FIXME: we don't inline callbr yet. - if (isa<CallBrInst>(TheCall)) - return false; - - // If IFI has any state in it, zap it before we fill it in. - IFI.reset(); - - Function *CalledFunc = CS.getCalledFunction(); - if (!CalledFunc || // Can't inline external function or indirect - CalledFunc->isDeclaration()) // call! - return "external or indirect"; - - // The inliner does not know how to inline through calls with operand bundles - // in general ... - if (CS.hasOperandBundles()) { - for (int i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { - uint32_t Tag = CS.getOperandBundleAt(i).getTagID(); - // ... but it knows how to inline through "deopt" operand bundles ... - if (Tag == LLVMContext::OB_deopt) - continue; - // ... and "funclet" operand bundles. - if (Tag == LLVMContext::OB_funclet) - continue; - - return "unsupported operand bundle"; - } - } - - // If the call to the callee cannot throw, set the 'nounwind' flag on any - // calls that we inline. - bool MarkNoUnwind = CS.doesNotThrow(); - - BasicBlock *OrigBB = TheCall->getParent(); - Function *Caller = OrigBB->getParent(); - - // GC poses two hazards to inlining, which only occur when the callee has GC: - // 1. If the caller has no GC, then the callee's GC must be propagated to the - // caller. - // 2. If the caller has a differing GC, it is invalid to inline. - if (CalledFunc->hasGC()) { - if (!Caller->hasGC()) - Caller->setGC(CalledFunc->getGC()); - else if (CalledFunc->getGC() != Caller->getGC()) - return "incompatible GC"; - } - - // Get the personality function from the callee if it contains a landing pad. - Constant *CalledPersonality = - CalledFunc->hasPersonalityFn() - ? CalledFunc->getPersonalityFn()->stripPointerCasts() - : nullptr; - - // Find the personality function used by the landing pads of the caller. If it - // exists, then check to see that it matches the personality function used in - // the callee. - Constant *CallerPersonality = - Caller->hasPersonalityFn() - ? Caller->getPersonalityFn()->stripPointerCasts() - : nullptr; - if (CalledPersonality) { - if (!CallerPersonality) - Caller->setPersonalityFn(CalledPersonality); - // If the personality functions match, then we can perform the - // inlining. Otherwise, we can't inline. - // TODO: This isn't 100% true. Some personality functions are proper - // supersets of others and can be used in place of the other. - else if (CalledPersonality != CallerPersonality) - return "incompatible personality"; - } - - // We need to figure out which funclet the callsite was in so that we may - // properly nest the callee. - Instruction *CallSiteEHPad = nullptr; - if (CallerPersonality) { - EHPersonality Personality = classifyEHPersonality(CallerPersonality); - if (isScopedEHPersonality(Personality)) { - Optional<OperandBundleUse> ParentFunclet = - CS.getOperandBundle(LLVMContext::OB_funclet); - if (ParentFunclet) - CallSiteEHPad = cast<FuncletPadInst>(ParentFunclet->Inputs.front()); - - // OK, the inlining site is legal. What about the target function? - - if (CallSiteEHPad) { - if (Personality == EHPersonality::MSVC_CXX) { - // The MSVC personality cannot tolerate catches getting inlined into - // cleanup funclets. - if (isa<CleanupPadInst>(CallSiteEHPad)) { - // Ok, the call site is within a cleanuppad. Let's check the callee - // for catchpads. - for (const BasicBlock &CalledBB : *CalledFunc) { - if (isa<CatchSwitchInst>(CalledBB.getFirstNonPHI())) - return "catch in cleanup funclet"; - } - } - } else if (isAsynchronousEHPersonality(Personality)) { - // SEH is even less tolerant, there may not be any sort of exceptional - // funclet in the callee. - for (const BasicBlock &CalledBB : *CalledFunc) { - if (CalledBB.isEHPad()) - return "SEH in cleanup funclet"; - } - } - } - } - } - - // Determine if we are dealing with a call in an EHPad which does not unwind - // to caller. - bool EHPadForCallUnwindsLocally = false; - if (CallSiteEHPad && CS.isCall()) { - UnwindDestMemoTy FuncletUnwindMap; - Value *CallSiteUnwindDestToken = - getUnwindDestToken(CallSiteEHPad, FuncletUnwindMap); - - EHPadForCallUnwindsLocally = - CallSiteUnwindDestToken && - !isa<ConstantTokenNone>(CallSiteUnwindDestToken); - } - - // Get an iterator to the last basic block in the function, which will have - // the new function inlined after it. - Function::iterator LastBlock = --Caller->end(); - - // Make sure to capture all of the return instructions from the cloned - // function. - SmallVector<ReturnInst*, 8> Returns; - ClonedCodeInfo InlinedFunctionInfo; - Function::iterator FirstNewBlock; - - { // Scope to destroy VMap after cloning. - ValueToValueMapTy VMap; - // Keep a list of pair (dst, src) to emit byval initializations. - SmallVector<std::pair<Value*, Value*>, 4> ByValInit; - - auto &DL = Caller->getParent()->getDataLayout(); - - // Calculate the vector of arguments to pass into the function cloner, which - // matches up the formal to the actual argument values. - CallSite::arg_iterator AI = CS.arg_begin(); - unsigned ArgNo = 0; - for (Function::arg_iterator I = CalledFunc->arg_begin(), - E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { - Value *ActualArg = *AI; - - // When byval arguments actually inlined, we need to make the copy implied - // by them explicit. However, we don't do this if the callee is readonly - // or readnone, because the copy would be unneeded: the callee doesn't - // modify the struct. - if (CS.isByValArgument(ArgNo)) { - ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, - CalledFunc->getParamAlignment(ArgNo)); - if (ActualArg != *AI) - ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); - } - - VMap[&*I] = ActualArg; - } - - // Add alignment assumptions if necessary. We do this before the inlined - // instructions are actually cloned into the caller so that we can easily - // check what will be known at the start of the inlined code. - AddAlignmentAssumptions(CS, IFI); - - // We want the inliner to prune the code as it copies. We would LOVE to - // have no dead or constant instructions leftover after inlining occurs - // (which can happen, e.g., because an argument was constant), but we'll be - // happy with whatever the cloner can do. - CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, - /*ModuleLevelChanges=*/false, Returns, ".i", - &InlinedFunctionInfo, TheCall); - // Remember the first block that is newly cloned over. - FirstNewBlock = LastBlock; ++FirstNewBlock; - - if (IFI.CallerBFI != nullptr && IFI.CalleeBFI != nullptr) - // Update the BFI of blocks cloned into the caller. - updateCallerBFI(OrigBB, VMap, IFI.CallerBFI, IFI.CalleeBFI, - CalledFunc->front()); - - updateCallProfile(CalledFunc, VMap, CalledFunc->getEntryCount(), TheCall, - IFI.PSI, IFI.CallerBFI); - - // Inject byval arguments initialization. - for (std::pair<Value*, Value*> &Init : ByValInit) - HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), - &*FirstNewBlock, IFI); - - Optional<OperandBundleUse> ParentDeopt = - CS.getOperandBundle(LLVMContext::OB_deopt); - if (ParentDeopt) { - SmallVector<OperandBundleDef, 2> OpDefs; - - for (auto &VH : InlinedFunctionInfo.OperandBundleCallSites) { - Instruction *I = dyn_cast_or_null<Instruction>(VH); - if (!I) continue; // instruction was DCE'd or RAUW'ed to undef - - OpDefs.clear(); - - CallSite ICS(I); - OpDefs.reserve(ICS.getNumOperandBundles()); - - for (unsigned i = 0, e = ICS.getNumOperandBundles(); i < e; ++i) { - auto ChildOB = ICS.getOperandBundleAt(i); - if (ChildOB.getTagID() != LLVMContext::OB_deopt) { - // If the inlined call has other operand bundles, let them be - OpDefs.emplace_back(ChildOB); - continue; - } - - // It may be useful to separate this logic (of handling operand - // bundles) out to a separate "policy" component if this gets crowded. - // Prepend the parent's deoptimization continuation to the newly - // inlined call's deoptimization continuation. - std::vector<Value *> MergedDeoptArgs; - MergedDeoptArgs.reserve(ParentDeopt->Inputs.size() + - ChildOB.Inputs.size()); - - MergedDeoptArgs.insert(MergedDeoptArgs.end(), - ParentDeopt->Inputs.begin(), - ParentDeopt->Inputs.end()); - MergedDeoptArgs.insert(MergedDeoptArgs.end(), ChildOB.Inputs.begin(), - ChildOB.Inputs.end()); - - OpDefs.emplace_back("deopt", std::move(MergedDeoptArgs)); - } - - Instruction *NewI = nullptr; - if (isa<CallInst>(I)) - NewI = CallInst::Create(cast<CallInst>(I), OpDefs, I); - else if (isa<CallBrInst>(I)) - NewI = CallBrInst::Create(cast<CallBrInst>(I), OpDefs, I); - else - NewI = InvokeInst::Create(cast<InvokeInst>(I), OpDefs, I); - - // Note: the RAUW does the appropriate fixup in VMap, so we need to do - // this even if the call returns void. - I->replaceAllUsesWith(NewI); - - VH = nullptr; - I->eraseFromParent(); - } - } - - // Update the callgraph if requested. - if (IFI.CG) - UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); - - // For 'nodebug' functions, the associated DISubprogram is always null. - // Conservatively avoid propagating the callsite debug location to - // instructions inlined from a function whose DISubprogram is not null. - fixupLineNumbers(Caller, FirstNewBlock, TheCall, - CalledFunc->getSubprogram() != nullptr); - - // Clone existing noalias metadata if necessary. - CloneAliasScopeMetadata(CS, VMap); - - // Add noalias metadata if necessary. - AddAliasScopeMetadata(CS, VMap, DL, CalleeAAR); - - // Propagate llvm.mem.parallel_loop_access if necessary. - PropagateParallelLoopAccessMetadata(CS, VMap); - - // Register any cloned assumptions. - if (IFI.GetAssumptionCache) - for (BasicBlock &NewBlock : - make_range(FirstNewBlock->getIterator(), Caller->end())) - for (Instruction &I : NewBlock) { - if (auto *II = dyn_cast<IntrinsicInst>(&I)) - if (II->getIntrinsicID() == Intrinsic::assume) - (*IFI.GetAssumptionCache)(*Caller).registerAssumption(II); - } - } - - // If there are any alloca instructions in the block that used to be the entry - // block for the callee, move them to the entry block of the caller. First - // calculate which instruction they should be inserted before. We insert the - // instructions at the end of the current alloca list. - { - BasicBlock::iterator InsertPoint = Caller->begin()->begin(); - for (BasicBlock::iterator I = FirstNewBlock->begin(), - E = FirstNewBlock->end(); I != E; ) { - AllocaInst *AI = dyn_cast<AllocaInst>(I++); - if (!AI) continue; - - // If the alloca is now dead, remove it. This often occurs due to code - // specialization. - if (AI->use_empty()) { - AI->eraseFromParent(); - continue; - } - - if (!allocaWouldBeStaticInEntry(AI)) - continue; - - // Keep track of the static allocas that we inline into the caller. - IFI.StaticAllocas.push_back(AI); - - // Scan for the block of allocas that we can move over, and move them - // all at once. - while (isa<AllocaInst>(I) && - allocaWouldBeStaticInEntry(cast<AllocaInst>(I))) { - IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); - ++I; - } - - // Transfer all of the allocas over in a block. Using splice means - // that the instructions aren't removed from the symbol table, then - // reinserted. - Caller->getEntryBlock().getInstList().splice( - InsertPoint, FirstNewBlock->getInstList(), AI->getIterator(), I); - } - // Move any dbg.declares describing the allocas into the entry basic block. - DIBuilder DIB(*Caller->getParent()); - for (auto &AI : IFI.StaticAllocas) - replaceDbgDeclareForAlloca(AI, AI, DIB, DIExpression::ApplyOffset, 0); - } - - SmallVector<Value*,4> VarArgsToForward; - SmallVector<AttributeSet, 4> VarArgsAttrs; - for (unsigned i = CalledFunc->getFunctionType()->getNumParams(); - i < CS.getNumArgOperands(); i++) { - VarArgsToForward.push_back(CS.getArgOperand(i)); - VarArgsAttrs.push_back(CS.getAttributes().getParamAttributes(i)); - } - - bool InlinedMustTailCalls = false, InlinedDeoptimizeCalls = false; - if (InlinedFunctionInfo.ContainsCalls) { - CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; - if (CallInst *CI = dyn_cast<CallInst>(TheCall)) - CallSiteTailKind = CI->getTailCallKind(); - - // For inlining purposes, the "notail" marker is the same as no marker. - if (CallSiteTailKind == CallInst::TCK_NoTail) - CallSiteTailKind = CallInst::TCK_None; - - for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; - ++BB) { - for (auto II = BB->begin(); II != BB->end();) { - Instruction &I = *II++; - CallInst *CI = dyn_cast<CallInst>(&I); - if (!CI) - continue; - - // Forward varargs from inlined call site to calls to the - // ForwardVarArgsTo function, if requested, and to musttail calls. - if (!VarArgsToForward.empty() && - ((ForwardVarArgsTo && - CI->getCalledFunction() == ForwardVarArgsTo) || - CI->isMustTailCall())) { - // Collect attributes for non-vararg parameters. - AttributeList Attrs = CI->getAttributes(); - SmallVector<AttributeSet, 8> ArgAttrs; - if (!Attrs.isEmpty() || !VarArgsAttrs.empty()) { - for (unsigned ArgNo = 0; - ArgNo < CI->getFunctionType()->getNumParams(); ++ArgNo) - ArgAttrs.push_back(Attrs.getParamAttributes(ArgNo)); - } - - // Add VarArg attributes. - ArgAttrs.append(VarArgsAttrs.begin(), VarArgsAttrs.end()); - Attrs = AttributeList::get(CI->getContext(), Attrs.getFnAttributes(), - Attrs.getRetAttributes(), ArgAttrs); - // Add VarArgs to existing parameters. - SmallVector<Value *, 6> Params(CI->arg_operands()); - Params.append(VarArgsToForward.begin(), VarArgsToForward.end()); - CallInst *NewCI = CallInst::Create( - CI->getFunctionType(), CI->getCalledOperand(), Params, "", CI); - NewCI->setDebugLoc(CI->getDebugLoc()); - NewCI->setAttributes(Attrs); - NewCI->setCallingConv(CI->getCallingConv()); - CI->replaceAllUsesWith(NewCI); - CI->eraseFromParent(); - CI = NewCI; - } - - if (Function *F = CI->getCalledFunction()) - InlinedDeoptimizeCalls |= - F->getIntrinsicID() == Intrinsic::experimental_deoptimize; - - // We need to reduce the strength of any inlined tail calls. For - // musttail, we have to avoid introducing potential unbounded stack - // growth. For example, if functions 'f' and 'g' are mutually recursive - // with musttail, we can inline 'g' into 'f' so long as we preserve - // musttail on the cloned call to 'f'. If either the inlined call site - // or the cloned call site is *not* musttail, the program already has - // one frame of stack growth, so it's safe to remove musttail. Here is - // a table of example transformations: - // - // f -> musttail g -> musttail f ==> f -> musttail f - // f -> musttail g -> tail f ==> f -> tail f - // f -> g -> musttail f ==> f -> f - // f -> g -> tail f ==> f -> f - // - // Inlined notail calls should remain notail calls. - CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); - if (ChildTCK != CallInst::TCK_NoTail) - ChildTCK = std::min(CallSiteTailKind, ChildTCK); - CI->setTailCallKind(ChildTCK); - InlinedMustTailCalls |= CI->isMustTailCall(); - - // Calls inlined through a 'nounwind' call site should be marked - // 'nounwind'. - if (MarkNoUnwind) - CI->setDoesNotThrow(); - } - } - } - - // Leave lifetime markers for the static alloca's, scoping them to the - // function we just inlined. - if (InsertLifetime && !IFI.StaticAllocas.empty()) { - IRBuilder<> builder(&FirstNewBlock->front()); - for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { - AllocaInst *AI = IFI.StaticAllocas[ai]; - // Don't mark swifterror allocas. They can't have bitcast uses. - if (AI->isSwiftError()) - continue; - - // If the alloca is already scoped to something smaller than the whole - // function then there's no need to add redundant, less accurate markers. - if (hasLifetimeMarkers(AI)) - continue; - - // Try to determine the size of the allocation. - ConstantInt *AllocaSize = nullptr; - if (ConstantInt *AIArraySize = - dyn_cast<ConstantInt>(AI->getArraySize())) { - auto &DL = Caller->getParent()->getDataLayout(); - Type *AllocaType = AI->getAllocatedType(); - uint64_t AllocaTypeSize = DL.getTypeAllocSize(AllocaType); - uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); - - // Don't add markers for zero-sized allocas. - if (AllocaArraySize == 0) - continue; - - // Check that array size doesn't saturate uint64_t and doesn't - // overflow when it's multiplied by type size. - if (AllocaArraySize != std::numeric_limits<uint64_t>::max() && - std::numeric_limits<uint64_t>::max() / AllocaArraySize >= - AllocaTypeSize) { - AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), - AllocaArraySize * AllocaTypeSize); - } - } - - builder.CreateLifetimeStart(AI, AllocaSize); - for (ReturnInst *RI : Returns) { - // Don't insert llvm.lifetime.end calls between a musttail or deoptimize - // call and a return. The return kills all local allocas. - if (InlinedMustTailCalls && - RI->getParent()->getTerminatingMustTailCall()) - continue; - if (InlinedDeoptimizeCalls && - RI->getParent()->getTerminatingDeoptimizeCall()) - continue; - IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); - } - } - } - - // If the inlined code contained dynamic alloca instructions, wrap the inlined - // code with llvm.stacksave/llvm.stackrestore intrinsics. - if (InlinedFunctionInfo.ContainsDynamicAllocas) { - Module *M = Caller->getParent(); - // Get the two intrinsics we care about. - Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); - Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); - - // Insert the llvm.stacksave. - CallInst *SavedPtr = IRBuilder<>(&*FirstNewBlock, FirstNewBlock->begin()) - .CreateCall(StackSave, {}, "savedstack"); - - // Insert a call to llvm.stackrestore before any return instructions in the - // inlined function. - for (ReturnInst *RI : Returns) { - // Don't insert llvm.stackrestore calls between a musttail or deoptimize - // call and a return. The return will restore the stack pointer. - if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) - continue; - if (InlinedDeoptimizeCalls && RI->getParent()->getTerminatingDeoptimizeCall()) - continue; - IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); - } - } - - // If we are inlining for an invoke instruction, we must make sure to rewrite - // any call instructions into invoke instructions. This is sensitive to which - // funclet pads were top-level in the inlinee, so must be done before - // rewriting the "parent pad" links. - if (auto *II = dyn_cast<InvokeInst>(TheCall)) { - BasicBlock *UnwindDest = II->getUnwindDest(); - Instruction *FirstNonPHI = UnwindDest->getFirstNonPHI(); - if (isa<LandingPadInst>(FirstNonPHI)) { - HandleInlinedLandingPad(II, &*FirstNewBlock, InlinedFunctionInfo); - } else { - HandleInlinedEHPad(II, &*FirstNewBlock, InlinedFunctionInfo); - } - } - - // Update the lexical scopes of the new funclets and callsites. - // Anything that had 'none' as its parent is now nested inside the callsite's - // EHPad. - - if (CallSiteEHPad) { - for (Function::iterator BB = FirstNewBlock->getIterator(), - E = Caller->end(); - BB != E; ++BB) { - // Add bundle operands to any top-level call sites. - SmallVector<OperandBundleDef, 1> OpBundles; - for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E;) { - Instruction *I = &*BBI++; - CallSite CS(I); - if (!CS) - continue; - - // Skip call sites which are nounwind intrinsics. - auto *CalledFn = - dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts()); - if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow()) - continue; - - // Skip call sites which already have a "funclet" bundle. - if (CS.getOperandBundle(LLVMContext::OB_funclet)) - continue; - - CS.getOperandBundlesAsDefs(OpBundles); - OpBundles.emplace_back("funclet", CallSiteEHPad); - - Instruction *NewInst; - if (CS.isCall()) - NewInst = CallInst::Create(cast<CallInst>(I), OpBundles, I); - else if (CS.isCallBr()) - NewInst = CallBrInst::Create(cast<CallBrInst>(I), OpBundles, I); - else - NewInst = InvokeInst::Create(cast<InvokeInst>(I), OpBundles, I); - NewInst->takeName(I); - I->replaceAllUsesWith(NewInst); - I->eraseFromParent(); - - OpBundles.clear(); - } - - // It is problematic if the inlinee has a cleanupret which unwinds to - // caller and we inline it into a call site which doesn't unwind but into - // an EH pad that does. Such an edge must be dynamically unreachable. - // As such, we replace the cleanupret with unreachable. - if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(BB->getTerminator())) - if (CleanupRet->unwindsToCaller() && EHPadForCallUnwindsLocally) - changeToUnreachable(CleanupRet, /*UseLLVMTrap=*/false); - - Instruction *I = BB->getFirstNonPHI(); - if (!I->isEHPad()) - continue; - - if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) { - if (isa<ConstantTokenNone>(CatchSwitch->getParentPad())) - CatchSwitch->setParentPad(CallSiteEHPad); - } else { - auto *FPI = cast<FuncletPadInst>(I); - if (isa<ConstantTokenNone>(FPI->getParentPad())) - FPI->setParentPad(CallSiteEHPad); - } - } - } - - if (InlinedDeoptimizeCalls) { - // We need to at least remove the deoptimizing returns from the Return set, - // so that the control flow from those returns does not get merged into the - // caller (but terminate it instead). If the caller's return type does not - // match the callee's return type, we also need to change the return type of - // the intrinsic. - if (Caller->getReturnType() == TheCall->getType()) { - auto NewEnd = llvm::remove_if(Returns, [](ReturnInst *RI) { - return RI->getParent()->getTerminatingDeoptimizeCall() != nullptr; - }); - Returns.erase(NewEnd, Returns.end()); - } else { - SmallVector<ReturnInst *, 8> NormalReturns; - Function *NewDeoptIntrinsic = Intrinsic::getDeclaration( - Caller->getParent(), Intrinsic::experimental_deoptimize, - {Caller->getReturnType()}); - - for (ReturnInst *RI : Returns) { - CallInst *DeoptCall = RI->getParent()->getTerminatingDeoptimizeCall(); - if (!DeoptCall) { - NormalReturns.push_back(RI); - continue; - } - - // The calling convention on the deoptimize call itself may be bogus, - // since the code we're inlining may have undefined behavior (and may - // never actually execute at runtime); but all - // @llvm.experimental.deoptimize declarations have to have the same - // calling convention in a well-formed module. - auto CallingConv = DeoptCall->getCalledFunction()->getCallingConv(); - NewDeoptIntrinsic->setCallingConv(CallingConv); - auto *CurBB = RI->getParent(); - RI->eraseFromParent(); - - SmallVector<Value *, 4> CallArgs(DeoptCall->arg_begin(), - DeoptCall->arg_end()); - - SmallVector<OperandBundleDef, 1> OpBundles; - DeoptCall->getOperandBundlesAsDefs(OpBundles); - DeoptCall->eraseFromParent(); - assert(!OpBundles.empty() && - "Expected at least the deopt operand bundle"); - - IRBuilder<> Builder(CurBB); - CallInst *NewDeoptCall = - Builder.CreateCall(NewDeoptIntrinsic, CallArgs, OpBundles); - NewDeoptCall->setCallingConv(CallingConv); - if (NewDeoptCall->getType()->isVoidTy()) - Builder.CreateRetVoid(); - else - Builder.CreateRet(NewDeoptCall); - } - - // Leave behind the normal returns so we can merge control flow. - std::swap(Returns, NormalReturns); - } - } - - // Handle any inlined musttail call sites. In order for a new call site to be - // musttail, the source of the clone and the inlined call site must have been - // musttail. Therefore it's safe to return without merging control into the - // phi below. - if (InlinedMustTailCalls) { - // Check if we need to bitcast the result of any musttail calls. - Type *NewRetTy = Caller->getReturnType(); - bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; - - // Handle the returns preceded by musttail calls separately. - SmallVector<ReturnInst *, 8> NormalReturns; - for (ReturnInst *RI : Returns) { - CallInst *ReturnedMustTail = - RI->getParent()->getTerminatingMustTailCall(); - if (!ReturnedMustTail) { - NormalReturns.push_back(RI); - continue; - } - if (!NeedBitCast) - continue; - - // Delete the old return and any preceding bitcast. - BasicBlock *CurBB = RI->getParent(); - auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); - RI->eraseFromParent(); - if (OldCast) - OldCast->eraseFromParent(); - - // Insert a new bitcast and return with the right type. - IRBuilder<> Builder(CurBB); - Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); - } - - // Leave behind the normal returns so we can merge control flow. - std::swap(Returns, NormalReturns); - } - - // Now that all of the transforms on the inlined code have taken place but - // before we splice the inlined code into the CFG and lose track of which - // blocks were actually inlined, collect the call sites. We only do this if - // call graph updates weren't requested, as those provide value handle based - // tracking of inlined call sites instead. - if (InlinedFunctionInfo.ContainsCalls && !IFI.CG) { - // Otherwise just collect the raw call sites that were inlined. - for (BasicBlock &NewBB : - make_range(FirstNewBlock->getIterator(), Caller->end())) - for (Instruction &I : NewBB) - if (auto CS = CallSite(&I)) - IFI.InlinedCallSites.push_back(CS); - } - - // If we cloned in _exactly one_ basic block, and if that block ends in a - // return instruction, we splice the body of the inlined callee directly into - // the calling basic block. - if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { - // Move all of the instructions right before the call. - OrigBB->getInstList().splice(TheCall->getIterator(), - FirstNewBlock->getInstList(), - FirstNewBlock->begin(), FirstNewBlock->end()); - // Remove the cloned basic block. - Caller->getBasicBlockList().pop_back(); - - // If the call site was an invoke instruction, add a branch to the normal - // destination. - if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { - BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); - NewBr->setDebugLoc(Returns[0]->getDebugLoc()); - } - - // If the return instruction returned a value, replace uses of the call with - // uses of the returned value. - if (!TheCall->use_empty()) { - ReturnInst *R = Returns[0]; - if (TheCall == R->getReturnValue()) - TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); - else - TheCall->replaceAllUsesWith(R->getReturnValue()); - } - // Since we are now done with the Call/Invoke, we can delete it. - TheCall->eraseFromParent(); - - // Since we are now done with the return instruction, delete it also. - Returns[0]->eraseFromParent(); - - // We are now done with the inlining. - return true; - } - - // Otherwise, we have the normal case, of more than one block to inline or - // multiple return sites. - - // We want to clone the entire callee function into the hole between the - // "starter" and "ender" blocks. How we accomplish this depends on whether - // this is an invoke instruction or a call instruction. - BasicBlock *AfterCallBB; - BranchInst *CreatedBranchToNormalDest = nullptr; - if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { - - // Add an unconditional branch to make this look like the CallInst case... - CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); - - // Split the basic block. This guarantees that no PHI nodes will have to be - // updated due to new incoming edges, and make the invoke case more - // symmetric to the call case. - AfterCallBB = - OrigBB->splitBasicBlock(CreatedBranchToNormalDest->getIterator(), - CalledFunc->getName() + ".exit"); - - } else { // It's a call - // If this is a call instruction, we need to split the basic block that - // the call lives in. - // - AfterCallBB = OrigBB->splitBasicBlock(TheCall->getIterator(), - CalledFunc->getName() + ".exit"); - } - - if (IFI.CallerBFI) { - // Copy original BB's block frequency to AfterCallBB - IFI.CallerBFI->setBlockFreq( - AfterCallBB, IFI.CallerBFI->getBlockFreq(OrigBB).getFrequency()); - } - - // Change the branch that used to go to AfterCallBB to branch to the first - // basic block of the inlined function. - // - Instruction *Br = OrigBB->getTerminator(); - assert(Br && Br->getOpcode() == Instruction::Br && - "splitBasicBlock broken!"); - Br->setOperand(0, &*FirstNewBlock); - - // Now that the function is correct, make it a little bit nicer. In - // particular, move the basic blocks inserted from the end of the function - // into the space made by splitting the source basic block. - Caller->getBasicBlockList().splice(AfterCallBB->getIterator(), - Caller->getBasicBlockList(), FirstNewBlock, - Caller->end()); - - // Handle all of the return instructions that we just cloned in, and eliminate - // any users of the original call/invoke instruction. - Type *RTy = CalledFunc->getReturnType(); - - PHINode *PHI = nullptr; - if (Returns.size() > 1) { - // The PHI node should go at the front of the new basic block to merge all - // possible incoming values. - if (!TheCall->use_empty()) { - PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), - &AfterCallBB->front()); - // Anything that used the result of the function call should now use the - // PHI node as their operand. - TheCall->replaceAllUsesWith(PHI); - } - - // Loop over all of the return instructions adding entries to the PHI node - // as appropriate. - if (PHI) { - for (unsigned i = 0, e = Returns.size(); i != e; ++i) { - ReturnInst *RI = Returns[i]; - assert(RI->getReturnValue()->getType() == PHI->getType() && - "Ret value not consistent in function!"); - PHI->addIncoming(RI->getReturnValue(), RI->getParent()); - } - } - - // Add a branch to the merge points and remove return instructions. - DebugLoc Loc; - for (unsigned i = 0, e = Returns.size(); i != e; ++i) { - ReturnInst *RI = Returns[i]; - BranchInst* BI = BranchInst::Create(AfterCallBB, RI); - Loc = RI->getDebugLoc(); - BI->setDebugLoc(Loc); - RI->eraseFromParent(); - } - // We need to set the debug location to *somewhere* inside the - // inlined function. The line number may be nonsensical, but the - // instruction will at least be associated with the right - // function. - if (CreatedBranchToNormalDest) - CreatedBranchToNormalDest->setDebugLoc(Loc); - } else if (!Returns.empty()) { - // Otherwise, if there is exactly one return value, just replace anything - // using the return value of the call with the computed value. - if (!TheCall->use_empty()) { - if (TheCall == Returns[0]->getReturnValue()) - TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); - else - TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); - } - - // Update PHI nodes that use the ReturnBB to use the AfterCallBB. - BasicBlock *ReturnBB = Returns[0]->getParent(); - ReturnBB->replaceAllUsesWith(AfterCallBB); - - // Splice the code from the return block into the block that it will return - // to, which contains the code that was after the call. - AfterCallBB->getInstList().splice(AfterCallBB->begin(), - ReturnBB->getInstList()); - - if (CreatedBranchToNormalDest) - CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); - - // Delete the return instruction now and empty ReturnBB now. - Returns[0]->eraseFromParent(); - ReturnBB->eraseFromParent(); - } else if (!TheCall->use_empty()) { - // No returns, but something is using the return value of the call. Just - // nuke the result. - TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); - } - - // Since we are now done with the Call/Invoke, we can delete it. - TheCall->eraseFromParent(); - - // If we inlined any musttail calls and the original return is now - // unreachable, delete it. It can only contain a bitcast and ret. - if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) - AfterCallBB->eraseFromParent(); - - // We should always be able to fold the entry block of the function into the - // single predecessor of the block... - assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); - BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); - - // Splice the code entry block into calling block, right before the - // unconditional branch. - CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes - OrigBB->getInstList().splice(Br->getIterator(), CalleeEntry->getInstList()); - - // Remove the unconditional branch. - OrigBB->getInstList().erase(Br); - - // Now we can remove the CalleeEntry block, which is now empty. - Caller->getBasicBlockList().erase(CalleeEntry); - - // If we inserted a phi node, check to see if it has a single value (e.g. all - // the entries are the same or undef). If so, remove the PHI so it doesn't - // block other optimizations. - if (PHI) { - AssumptionCache *AC = - IFI.GetAssumptionCache ? &(*IFI.GetAssumptionCache)(*Caller) : nullptr; - auto &DL = Caller->getParent()->getDataLayout(); - if (Value *V = SimplifyInstruction(PHI, {DL, nullptr, nullptr, AC})) { - PHI->replaceAllUsesWith(V); - PHI->eraseFromParent(); - } - } - - return true; -} |