aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp978
1 files changed, 0 insertions, 978 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
deleted file mode 100644
index 4a1edb3700c0..000000000000
--- a/contrib/llvm/lib/Transforms/Utils/LoopUnroll.cpp
+++ /dev/null
@@ -1,978 +0,0 @@
-//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements some loop unrolling utilities. It does not define any
-// actual pass or policy, but provides a single function to perform loop
-// unrolling.
-//
-// The process of unrolling can produce extraneous basic blocks linked with
-// unconditional branches. This will be corrected in the future.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AssumptionCache.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/Analysis/LoopIterator.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/IR/BasicBlock.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/LoopSimplify.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-#include "llvm/Transforms/Utils/UnrollLoop.h"
-using namespace llvm;
-
-#define DEBUG_TYPE "loop-unroll"
-
-// TODO: Should these be here or in LoopUnroll?
-STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
-STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
-STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a "
- "conditional latch (completely or otherwise)");
-
-static cl::opt<bool>
-UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
- cl::desc("Allow runtime unrolled loops to be unrolled "
- "with epilog instead of prolog."));
-
-static cl::opt<bool>
-UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
- cl::desc("Verify domtree after unrolling"),
-#ifdef EXPENSIVE_CHECKS
- cl::init(true)
-#else
- cl::init(false)
-#endif
- );
-
-/// Convert the instruction operands from referencing the current values into
-/// those specified by VMap.
-void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
- for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
- Value *Op = I->getOperand(op);
-
- // Unwrap arguments of dbg.value intrinsics.
- bool Wrapped = false;
- if (auto *V = dyn_cast<MetadataAsValue>(Op))
- if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
- Op = Unwrapped->getValue();
- Wrapped = true;
- }
-
- auto wrap = [&](Value *V) {
- auto &C = I->getContext();
- return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
- };
-
- ValueToValueMapTy::iterator It = VMap.find(Op);
- if (It != VMap.end())
- I->setOperand(op, wrap(It->second));
- }
-
- if (PHINode *PN = dyn_cast<PHINode>(I)) {
- for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
- ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
- if (It != VMap.end())
- PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
- }
- }
-}
-
-/// Check if unrolling created a situation where we need to insert phi nodes to
-/// preserve LCSSA form.
-/// \param Blocks is a vector of basic blocks representing unrolled loop.
-/// \param L is the outer loop.
-/// It's possible that some of the blocks are in L, and some are not. In this
-/// case, if there is a use is outside L, and definition is inside L, we need to
-/// insert a phi-node, otherwise LCSSA will be broken.
-/// The function is just a helper function for llvm::UnrollLoop that returns
-/// true if this situation occurs, indicating that LCSSA needs to be fixed.
-static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
- LoopInfo *LI) {
- for (BasicBlock *BB : Blocks) {
- if (LI->getLoopFor(BB) == L)
- continue;
- for (Instruction &I : *BB) {
- for (Use &U : I.operands()) {
- if (auto Def = dyn_cast<Instruction>(U)) {
- Loop *DefLoop = LI->getLoopFor(Def->getParent());
- if (!DefLoop)
- continue;
- if (DefLoop->contains(L))
- return true;
- }
- }
- }
- }
- return false;
-}
-
-/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
-/// and adds a mapping from the original loop to the new loop to NewLoops.
-/// Returns nullptr if no new loop was created and a pointer to the
-/// original loop OriginalBB was part of otherwise.
-const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
- BasicBlock *ClonedBB, LoopInfo *LI,
- NewLoopsMap &NewLoops) {
- // Figure out which loop New is in.
- const Loop *OldLoop = LI->getLoopFor(OriginalBB);
- assert(OldLoop && "Should (at least) be in the loop being unrolled!");
-
- Loop *&NewLoop = NewLoops[OldLoop];
- if (!NewLoop) {
- // Found a new sub-loop.
- assert(OriginalBB == OldLoop->getHeader() &&
- "Header should be first in RPO");
-
- NewLoop = LI->AllocateLoop();
- Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
-
- if (NewLoopParent)
- NewLoopParent->addChildLoop(NewLoop);
- else
- LI->addTopLevelLoop(NewLoop);
-
- NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
- return OldLoop;
- } else {
- NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
- return nullptr;
- }
-}
-
-/// The function chooses which type of unroll (epilog or prolog) is more
-/// profitabale.
-/// Epilog unroll is more profitable when there is PHI that starts from
-/// constant. In this case epilog will leave PHI start from constant,
-/// but prolog will convert it to non-constant.
-///
-/// loop:
-/// PN = PHI [I, Latch], [CI, PreHeader]
-/// I = foo(PN)
-/// ...
-///
-/// Epilog unroll case.
-/// loop:
-/// PN = PHI [I2, Latch], [CI, PreHeader]
-/// I1 = foo(PN)
-/// I2 = foo(I1)
-/// ...
-/// Prolog unroll case.
-/// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
-/// loop:
-/// PN = PHI [I2, Latch], [NewPN, PreHeader]
-/// I1 = foo(PN)
-/// I2 = foo(I1)
-/// ...
-///
-static bool isEpilogProfitable(Loop *L) {
- BasicBlock *PreHeader = L->getLoopPreheader();
- BasicBlock *Header = L->getHeader();
- assert(PreHeader && Header);
- for (const PHINode &PN : Header->phis()) {
- if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
- return true;
- }
- return false;
-}
-
-/// Perform some cleanup and simplifications on loops after unrolling. It is
-/// useful to simplify the IV's in the new loop, as well as do a quick
-/// simplify/dce pass of the instructions.
-void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
- ScalarEvolution *SE, DominatorTree *DT,
- AssumptionCache *AC) {
- // Simplify any new induction variables in the partially unrolled loop.
- if (SE && SimplifyIVs) {
- SmallVector<WeakTrackingVH, 16> DeadInsts;
- simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
-
- // Aggressively clean up dead instructions that simplifyLoopIVs already
- // identified. Any remaining should be cleaned up below.
- while (!DeadInsts.empty())
- if (Instruction *Inst =
- dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
- RecursivelyDeleteTriviallyDeadInstructions(Inst);
- }
-
- // At this point, the code is well formed. We now do a quick sweep over the
- // inserted code, doing constant propagation and dead code elimination as we
- // go.
- const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
- for (BasicBlock *BB : L->getBlocks()) {
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
- Instruction *Inst = &*I++;
-
- if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
- if (LI->replacementPreservesLCSSAForm(Inst, V))
- Inst->replaceAllUsesWith(V);
- if (isInstructionTriviallyDead(Inst))
- BB->getInstList().erase(Inst);
- }
- }
-
- // TODO: after peeling or unrolling, previously loop variant conditions are
- // likely to fold to constants, eagerly propagating those here will require
- // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be
- // appropriate.
-}
-
-/// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
-/// can only fail when the loop's latch block is not terminated by a conditional
-/// branch instruction. However, if the trip count (and multiple) are not known,
-/// loop unrolling will mostly produce more code that is no faster.
-///
-/// TripCount is the upper bound of the iteration on which control exits
-/// LatchBlock. Control may exit the loop prior to TripCount iterations either
-/// via an early branch in other loop block or via LatchBlock terminator. This
-/// is relaxed from the general definition of trip count which is the number of
-/// times the loop header executes. Note that UnrollLoop assumes that the loop
-/// counter test is in LatchBlock in order to remove unnecesssary instances of
-/// the test. If control can exit the loop from the LatchBlock's terminator
-/// prior to TripCount iterations, flag PreserveCondBr needs to be set.
-///
-/// PreserveCondBr indicates whether the conditional branch of the LatchBlock
-/// needs to be preserved. It is needed when we use trip count upper bound to
-/// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
-/// conditional branch needs to be preserved.
-///
-/// Similarly, TripMultiple divides the number of times that the LatchBlock may
-/// execute without exiting the loop.
-///
-/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
-/// have a runtime (i.e. not compile time constant) trip count. Unrolling these
-/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
-/// iterations before branching into the unrolled loop. UnrollLoop will not
-/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
-/// AllowExpensiveTripCount is false.
-///
-/// If we want to perform PGO-based loop peeling, PeelCount is set to the
-/// number of iterations we want to peel off.
-///
-/// The LoopInfo Analysis that is passed will be kept consistent.
-///
-/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
-/// DominatorTree if they are non-null.
-///
-/// If RemainderLoop is non-null, it will receive the remainder loop (if
-/// required and not fully unrolled).
-LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
- ScalarEvolution *SE, DominatorTree *DT,
- AssumptionCache *AC,
- OptimizationRemarkEmitter *ORE,
- bool PreserveLCSSA, Loop **RemainderLoop) {
-
- BasicBlock *Preheader = L->getLoopPreheader();
- if (!Preheader) {
- LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
- return LoopUnrollResult::Unmodified;
- }
-
- BasicBlock *LatchBlock = L->getLoopLatch();
- if (!LatchBlock) {
- LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
- return LoopUnrollResult::Unmodified;
- }
-
- // Loops with indirectbr cannot be cloned.
- if (!L->isSafeToClone()) {
- LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
- return LoopUnrollResult::Unmodified;
- }
-
- // The current loop unroll pass can unroll loops with a single latch or header
- // that's a conditional branch exiting the loop.
- // FIXME: The implementation can be extended to work with more complicated
- // cases, e.g. loops with multiple latches.
- BasicBlock *Header = L->getHeader();
- BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator());
- BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
-
- // FIXME: Support loops without conditional latch and multiple exiting blocks.
- if (!BI ||
- (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() ||
- L->getExitingBlock() != Header))) {
- LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional "
- "branch in the latch or header.\n");
- return LoopUnrollResult::Unmodified;
- }
-
- auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) {
- return BI->isConditional() && BI->getSuccessor(S1) == Header &&
- !L->contains(BI->getSuccessor(S2));
- };
-
- // If we have a conditional latch, it must exit the loop.
- if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) &&
- !CheckLatchSuccessors(1, 0)) {
- LLVM_DEBUG(
- dbgs() << "Can't unroll; a conditional latch must exit the loop");
- return LoopUnrollResult::Unmodified;
- }
-
- auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) {
- return HeaderBI && HeaderBI->isConditional() &&
- L->contains(HeaderBI->getSuccessor(S1)) &&
- !L->contains(HeaderBI->getSuccessor(S2));
- };
-
- // If we do not have a conditional latch, the header must exit the loop.
- if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() &&
- !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) {
- LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop");
- return LoopUnrollResult::Unmodified;
- }
-
- if (Header->hasAddressTaken()) {
- // The loop-rotate pass can be helpful to avoid this in many cases.
- LLVM_DEBUG(
- dbgs() << " Won't unroll loop: address of header block is taken.\n");
- return LoopUnrollResult::Unmodified;
- }
-
- if (ULO.TripCount != 0)
- LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n");
- if (ULO.TripMultiple != 1)
- LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n");
-
- // Effectively "DCE" unrolled iterations that are beyond the tripcount
- // and will never be executed.
- if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
- ULO.Count = ULO.TripCount;
-
- // Don't enter the unroll code if there is nothing to do.
- if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
- LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
- return LoopUnrollResult::Unmodified;
- }
-
- assert(ULO.Count > 0);
- assert(ULO.TripMultiple > 0);
- assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
-
- // Are we eliminating the loop control altogether?
- bool CompletelyUnroll = ULO.Count == ULO.TripCount;
- SmallVector<BasicBlock *, 4> ExitBlocks;
- L->getExitBlocks(ExitBlocks);
- std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
-
- // Go through all exits of L and see if there are any phi-nodes there. We just
- // conservatively assume that they're inserted to preserve LCSSA form, which
- // means that complete unrolling might break this form. We need to either fix
- // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
- // now we just recompute LCSSA for the outer loop, but it should be possible
- // to fix it in-place.
- bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
- any_of(ExitBlocks, [](const BasicBlock *BB) {
- return isa<PHINode>(BB->begin());
- });
-
- // We assume a run-time trip count if the compiler cannot
- // figure out the loop trip count and the unroll-runtime
- // flag is specified.
- bool RuntimeTripCount =
- (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
-
- assert((!RuntimeTripCount || !ULO.PeelCount) &&
- "Did not expect runtime trip-count unrolling "
- "and peeling for the same loop");
-
- bool Peeled = false;
- if (ULO.PeelCount) {
- Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
-
- // Successful peeling may result in a change in the loop preheader/trip
- // counts. If we later unroll the loop, we want these to be updated.
- if (Peeled) {
- // According to our guards and profitability checks the only
- // meaningful exit should be latch block. Other exits go to deopt,
- // so we do not worry about them.
- BasicBlock *ExitingBlock = L->getLoopLatch();
- assert(ExitingBlock && "Loop without exiting block?");
- assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
- Preheader = L->getLoopPreheader();
- ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
- ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
- }
- }
-
- // Loops containing convergent instructions must have a count that divides
- // their TripMultiple.
- LLVM_DEBUG(
- {
- bool HasConvergent = false;
- for (auto &BB : L->blocks())
- for (auto &I : *BB)
- if (auto CS = CallSite(&I))
- HasConvergent |= CS.isConvergent();
- assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
- "Unroll count must divide trip multiple if loop contains a "
- "convergent operation.");
- });
-
- bool EpilogProfitability =
- UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
- : isEpilogProfitable(L);
-
- if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
- !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
- EpilogProfitability, ULO.UnrollRemainder,
- ULO.ForgetAllSCEV, LI, SE, DT, AC,
- PreserveLCSSA, RemainderLoop)) {
- if (ULO.Force)
- RuntimeTripCount = false;
- else {
- LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
- "generated when assuming runtime trip count\n");
- return LoopUnrollResult::Unmodified;
- }
- }
-
- // If we know the trip count, we know the multiple...
- unsigned BreakoutTrip = 0;
- if (ULO.TripCount != 0) {
- BreakoutTrip = ULO.TripCount % ULO.Count;
- ULO.TripMultiple = 0;
- } else {
- // Figure out what multiple to use.
- BreakoutTrip = ULO.TripMultiple =
- (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
- }
-
- using namespace ore;
- // Report the unrolling decision.
- if (CompletelyUnroll) {
- LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
- << " with trip count " << ULO.TripCount << "!\n");
- if (ORE)
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
- L->getHeader())
- << "completely unrolled loop with "
- << NV("UnrollCount", ULO.TripCount) << " iterations";
- });
- } else if (ULO.PeelCount) {
- LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
- << " with iteration count " << ULO.PeelCount << "!\n");
- if (ORE)
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
- L->getHeader())
- << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
- << " iterations";
- });
- } else {
- auto DiagBuilder = [&]() {
- OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
- L->getHeader());
- return Diag << "unrolled loop by a factor of "
- << NV("UnrollCount", ULO.Count);
- };
-
- LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
- << ULO.Count);
- if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
- LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
- if (ORE)
- ORE->emit([&]() {
- return DiagBuilder() << " with a breakout at trip "
- << NV("BreakoutTrip", BreakoutTrip);
- });
- } else if (ULO.TripMultiple != 1) {
- LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
- if (ORE)
- ORE->emit([&]() {
- return DiagBuilder()
- << " with " << NV("TripMultiple", ULO.TripMultiple)
- << " trips per branch";
- });
- } else if (RuntimeTripCount) {
- LLVM_DEBUG(dbgs() << " with run-time trip count");
- if (ORE)
- ORE->emit(
- [&]() { return DiagBuilder() << " with run-time trip count"; });
- }
- LLVM_DEBUG(dbgs() << "!\n");
- }
-
- // We are going to make changes to this loop. SCEV may be keeping cached info
- // about it, in particular about backedge taken count. The changes we make
- // are guaranteed to invalidate this information for our loop. It is tempting
- // to only invalidate the loop being unrolled, but it is incorrect as long as
- // all exiting branches from all inner loops have impact on the outer loops,
- // and if something changes inside them then any of outer loops may also
- // change. When we forget outermost loop, we also forget all contained loops
- // and this is what we need here.
- if (SE) {
- if (ULO.ForgetAllSCEV)
- SE->forgetAllLoops();
- else
- SE->forgetTopmostLoop(L);
- }
-
- bool ContinueOnTrue;
- bool LatchIsExiting = BI->isConditional();
- BasicBlock *LoopExit = nullptr;
- if (LatchIsExiting) {
- ContinueOnTrue = L->contains(BI->getSuccessor(0));
- LoopExit = BI->getSuccessor(ContinueOnTrue);
- } else {
- NumUnrolledWithHeader++;
- ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0));
- LoopExit = HeaderBI->getSuccessor(ContinueOnTrue);
- }
-
- // For the first iteration of the loop, we should use the precloned values for
- // PHI nodes. Insert associations now.
- ValueToValueMapTy LastValueMap;
- std::vector<PHINode*> OrigPHINode;
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- OrigPHINode.push_back(cast<PHINode>(I));
- }
-
- std::vector<BasicBlock *> Headers;
- std::vector<BasicBlock *> HeaderSucc;
- std::vector<BasicBlock *> Latches;
- Headers.push_back(Header);
- Latches.push_back(LatchBlock);
-
- if (!LatchIsExiting) {
- auto *Term = cast<BranchInst>(Header->getTerminator());
- if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) {
- assert(L->contains(Term->getSuccessor(0)));
- HeaderSucc.push_back(Term->getSuccessor(0));
- } else {
- assert(L->contains(Term->getSuccessor(1)));
- HeaderSucc.push_back(Term->getSuccessor(1));
- }
- }
-
- // The current on-the-fly SSA update requires blocks to be processed in
- // reverse postorder so that LastValueMap contains the correct value at each
- // exit.
- LoopBlocksDFS DFS(L);
- DFS.perform(LI);
-
- // Stash the DFS iterators before adding blocks to the loop.
- LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
- LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
-
- std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
-
- // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
- // might break loop-simplified form for these loops (as they, e.g., would
- // share the same exit blocks). We'll keep track of loops for which we can
- // break this so that later we can re-simplify them.
- SmallSetVector<Loop *, 4> LoopsToSimplify;
- for (Loop *SubLoop : *L)
- LoopsToSimplify.insert(SubLoop);
-
- if (Header->getParent()->isDebugInfoForProfiling())
- for (BasicBlock *BB : L->getBlocks())
- for (Instruction &I : *BB)
- if (!isa<DbgInfoIntrinsic>(&I))
- if (const DILocation *DIL = I.getDebugLoc()) {
- auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
- if (NewDIL)
- I.setDebugLoc(NewDIL.getValue());
- else
- LLVM_DEBUG(dbgs()
- << "Failed to create new discriminator: "
- << DIL->getFilename() << " Line: " << DIL->getLine());
- }
-
- for (unsigned It = 1; It != ULO.Count; ++It) {
- std::vector<BasicBlock*> NewBlocks;
- SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
- NewLoops[L] = L;
-
- for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
- ValueToValueMapTy VMap;
- BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
- Header->getParent()->getBasicBlockList().push_back(New);
-
- assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
- "Header should not be in a sub-loop");
- // Tell LI about New.
- const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
- if (OldLoop)
- LoopsToSimplify.insert(NewLoops[OldLoop]);
-
- if (*BB == Header)
- // Loop over all of the PHI nodes in the block, changing them to use
- // the incoming values from the previous block.
- for (PHINode *OrigPHI : OrigPHINode) {
- PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
- Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
- if (Instruction *InValI = dyn_cast<Instruction>(InVal))
- if (It > 1 && L->contains(InValI))
- InVal = LastValueMap[InValI];
- VMap[OrigPHI] = InVal;
- New->getInstList().erase(NewPHI);
- }
-
- // Update our running map of newest clones
- LastValueMap[*BB] = New;
- for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
- VI != VE; ++VI)
- LastValueMap[VI->first] = VI->second;
-
- // Add phi entries for newly created values to all exit blocks.
- for (BasicBlock *Succ : successors(*BB)) {
- if (L->contains(Succ))
- continue;
- for (PHINode &PHI : Succ->phis()) {
- Value *Incoming = PHI.getIncomingValueForBlock(*BB);
- ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
- if (It != LastValueMap.end())
- Incoming = It->second;
- PHI.addIncoming(Incoming, New);
- }
- }
- // Keep track of new headers and latches as we create them, so that
- // we can insert the proper branches later.
- if (*BB == Header)
- Headers.push_back(New);
- if (*BB == LatchBlock)
- Latches.push_back(New);
-
- // Keep track of the successor of the new header in the current iteration.
- for (auto *Pred : predecessors(*BB))
- if (Pred == Header) {
- HeaderSucc.push_back(New);
- break;
- }
-
- NewBlocks.push_back(New);
- UnrolledLoopBlocks.push_back(New);
-
- // Update DomTree: since we just copy the loop body, and each copy has a
- // dedicated entry block (copy of the header block), this header's copy
- // dominates all copied blocks. That means, dominance relations in the
- // copied body are the same as in the original body.
- if (DT) {
- if (*BB == Header)
- DT->addNewBlock(New, Latches[It - 1]);
- else {
- auto BBDomNode = DT->getNode(*BB);
- auto BBIDom = BBDomNode->getIDom();
- BasicBlock *OriginalBBIDom = BBIDom->getBlock();
- DT->addNewBlock(
- New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
- }
- }
- }
-
- // Remap all instructions in the most recent iteration
- for (BasicBlock *NewBlock : NewBlocks) {
- for (Instruction &I : *NewBlock) {
- ::remapInstruction(&I, LastValueMap);
- if (auto *II = dyn_cast<IntrinsicInst>(&I))
- if (II->getIntrinsicID() == Intrinsic::assume)
- AC->registerAssumption(II);
- }
- }
- }
-
- // Loop over the PHI nodes in the original block, setting incoming values.
- for (PHINode *PN : OrigPHINode) {
- if (CompletelyUnroll) {
- PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
- Header->getInstList().erase(PN);
- } else if (ULO.Count > 1) {
- Value *InVal = PN->removeIncomingValue(LatchBlock, false);
- // If this value was defined in the loop, take the value defined by the
- // last iteration of the loop.
- if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
- if (L->contains(InValI))
- InVal = LastValueMap[InVal];
- }
- assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
- PN->addIncoming(InVal, Latches.back());
- }
- }
-
- auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest,
- ArrayRef<BasicBlock *> NextBlocks,
- BasicBlock *BlockInLoop,
- bool NeedConditional) {
- auto *Term = cast<BranchInst>(Src->getTerminator());
- if (NeedConditional) {
- // Update the conditional branch's successor for the following
- // iteration.
- Term->setSuccessor(!ContinueOnTrue, Dest);
- } else {
- // Remove phi operands at this loop exit
- if (Dest != LoopExit) {
- BasicBlock *BB = Src;
- for (BasicBlock *Succ : successors(BB)) {
- // Preserve the incoming value from BB if we are jumping to the block
- // in the current loop.
- if (Succ == BlockInLoop)
- continue;
- for (PHINode &Phi : Succ->phis())
- Phi.removeIncomingValue(BB, false);
- }
- }
- // Replace the conditional branch with an unconditional one.
- BranchInst::Create(Dest, Term);
- Term->eraseFromParent();
- }
- };
-
- // Now that all the basic blocks for the unrolled iterations are in place,
- // set up the branches to connect them.
- if (LatchIsExiting) {
- // Set up latches to branch to the new header in the unrolled iterations or
- // the loop exit for the last latch in a fully unrolled loop.
- for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
- // The branch destination.
- unsigned j = (i + 1) % e;
- BasicBlock *Dest = Headers[j];
- bool NeedConditional = true;
-
- if (RuntimeTripCount && j != 0) {
- NeedConditional = false;
- }
-
- // For a complete unroll, make the last iteration end with a branch
- // to the exit block.
- if (CompletelyUnroll) {
- if (j == 0)
- Dest = LoopExit;
- // If using trip count upper bound to completely unroll, we need to keep
- // the conditional branch except the last one because the loop may exit
- // after any iteration.
- assert(NeedConditional &&
- "NeedCondition cannot be modified by both complete "
- "unrolling and runtime unrolling");
- NeedConditional =
- (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
- } else if (j != BreakoutTrip &&
- (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
- // If we know the trip count or a multiple of it, we can safely use an
- // unconditional branch for some iterations.
- NeedConditional = false;
- }
-
- setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional);
- }
- } else {
- // Setup headers to branch to their new successors in the unrolled
- // iterations.
- for (unsigned i = 0, e = Headers.size(); i != e; ++i) {
- // The branch destination.
- unsigned j = (i + 1) % e;
- BasicBlock *Dest = HeaderSucc[i];
- bool NeedConditional = true;
-
- if (RuntimeTripCount && j != 0)
- NeedConditional = false;
-
- if (CompletelyUnroll)
- // We cannot drop the conditional branch for the last condition, as we
- // may have to execute the loop body depending on the condition.
- NeedConditional = j == 0 || ULO.PreserveCondBr;
- else if (j != BreakoutTrip &&
- (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
- // If we know the trip count or a multiple of it, we can safely use an
- // unconditional branch for some iterations.
- NeedConditional = false;
-
- setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional);
- }
-
- // Set up latches to branch to the new header in the unrolled iterations or
- // the loop exit for the last latch in a fully unrolled loop.
-
- for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
- // The original branch was replicated in each unrolled iteration.
- BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
-
- // The branch destination.
- unsigned j = (i + 1) % e;
- BasicBlock *Dest = Headers[j];
-
- // When completely unrolling, the last latch becomes unreachable.
- if (CompletelyUnroll && j == 0)
- new UnreachableInst(Term->getContext(), Term);
- else
- // Replace the conditional branch with an unconditional one.
- BranchInst::Create(Dest, Term);
-
- Term->eraseFromParent();
- }
- }
-
- // Update dominators of blocks we might reach through exits.
- // Immediate dominator of such block might change, because we add more
- // routes which can lead to the exit: we can now reach it from the copied
- // iterations too.
- if (DT && ULO.Count > 1) {
- for (auto *BB : OriginalLoopBlocks) {
- auto *BBDomNode = DT->getNode(BB);
- SmallVector<BasicBlock *, 16> ChildrenToUpdate;
- for (auto *ChildDomNode : BBDomNode->getChildren()) {
- auto *ChildBB = ChildDomNode->getBlock();
- if (!L->contains(ChildBB))
- ChildrenToUpdate.push_back(ChildBB);
- }
- BasicBlock *NewIDom;
- BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header;
- auto &TermBlocks = LatchIsExiting ? Latches : Headers;
- if (BB == TermBlock) {
- // The latch is special because we emit unconditional branches in
- // some cases where the original loop contained a conditional branch.
- // Since the latch is always at the bottom of the loop, if the latch
- // dominated an exit before unrolling, the new dominator of that exit
- // must also be a latch. Specifically, the dominator is the first
- // latch which ends in a conditional branch, or the last latch if
- // there is no such latch.
- // For loops exiting from the header, we limit the supported loops
- // to have a single exiting block.
- NewIDom = TermBlocks.back();
- for (BasicBlock *Iter : TermBlocks) {
- Instruction *Term = Iter->getTerminator();
- if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
- NewIDom = Iter;
- break;
- }
- }
- } else {
- // The new idom of the block will be the nearest common dominator
- // of all copies of the previous idom. This is equivalent to the
- // nearest common dominator of the previous idom and the first latch,
- // which dominates all copies of the previous idom.
- NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
- }
- for (auto *ChildBB : ChildrenToUpdate)
- DT->changeImmediateDominator(ChildBB, NewIDom);
- }
- }
-
- assert(!DT || !UnrollVerifyDomtree ||
- DT->verify(DominatorTree::VerificationLevel::Fast));
-
- DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
- // Merge adjacent basic blocks, if possible.
- for (BasicBlock *Latch : Latches) {
- BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
- assert((Term ||
- (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
- "Need a branch as terminator, except when fully unrolling with "
- "unconditional latch");
- if (Term && Term->isUnconditional()) {
- BasicBlock *Dest = Term->getSuccessor(0);
- BasicBlock *Fold = Dest->getUniquePredecessor();
- if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
- // Dest has been folded into Fold. Update our worklists accordingly.
- std::replace(Latches.begin(), Latches.end(), Dest, Fold);
- UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
- UnrolledLoopBlocks.end(), Dest),
- UnrolledLoopBlocks.end());
- }
- }
- }
-
- // At this point, the code is well formed. We now simplify the unrolled loop,
- // doing constant propagation and dead code elimination as we go.
- simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
- SE, DT, AC);
-
- NumCompletelyUnrolled += CompletelyUnroll;
- ++NumUnrolled;
-
- Loop *OuterL = L->getParentLoop();
- // Update LoopInfo if the loop is completely removed.
- if (CompletelyUnroll)
- LI->erase(L);
-
- // After complete unrolling most of the blocks should be contained in OuterL.
- // However, some of them might happen to be out of OuterL (e.g. if they
- // precede a loop exit). In this case we might need to insert PHI nodes in
- // order to preserve LCSSA form.
- // We don't need to check this if we already know that we need to fix LCSSA
- // form.
- // TODO: For now we just recompute LCSSA for the outer loop in this case, but
- // it should be possible to fix it in-place.
- if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
- NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
-
- // If we have a pass and a DominatorTree we should re-simplify impacted loops
- // to ensure subsequent analyses can rely on this form. We want to simplify
- // at least one layer outside of the loop that was unrolled so that any
- // changes to the parent loop exposed by the unrolling are considered.
- if (DT) {
- if (OuterL) {
- // OuterL includes all loops for which we can break loop-simplify, so
- // it's sufficient to simplify only it (it'll recursively simplify inner
- // loops too).
- if (NeedToFixLCSSA) {
- // LCSSA must be performed on the outermost affected loop. The unrolled
- // loop's last loop latch is guaranteed to be in the outermost loop
- // after LoopInfo's been updated by LoopInfo::erase.
- Loop *LatchLoop = LI->getLoopFor(Latches.back());
- Loop *FixLCSSALoop = OuterL;
- if (!FixLCSSALoop->contains(LatchLoop))
- while (FixLCSSALoop->getParentLoop() != LatchLoop)
- FixLCSSALoop = FixLCSSALoop->getParentLoop();
-
- formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
- } else if (PreserveLCSSA) {
- assert(OuterL->isLCSSAForm(*DT) &&
- "Loops should be in LCSSA form after loop-unroll.");
- }
-
- // TODO: That potentially might be compile-time expensive. We should try
- // to fix the loop-simplified form incrementally.
- simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
- } else {
- // Simplify loops for which we might've broken loop-simplify form.
- for (Loop *SubLoop : LoopsToSimplify)
- simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
- }
- }
-
- return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
- : LoopUnrollResult::PartiallyUnrolled;
-}
-
-/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
-/// node with the given name (for example, "llvm.loop.unroll.count"). If no
-/// such metadata node exists, then nullptr is returned.
-MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
- // First operand should refer to the loop id itself.
- assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
-
- for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
- if (!MD)
- continue;
-
- MDString *S = dyn_cast<MDString>(MD->getOperand(0));
- if (!S)
- continue;
-
- if (Name.equals(S->getString()))
- return MD;
- }
- return nullptr;
-}