aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp957
1 files changed, 0 insertions, 957 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
deleted file mode 100644
index cbb114f9a47a..000000000000
--- a/contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
+++ /dev/null
@@ -1,957 +0,0 @@
-//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements induction variable simplification. It does
-// not define any actual pass or policy, but provides a single function to
-// simplify a loop's induction variables based on ScalarEvolution.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Utils/SimplifyIndVar.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/ScalarEvolutionExpander.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/Local.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "indvars"
-
-STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
-STATISTIC(NumElimOperand, "Number of IV operands folded into a use");
-STATISTIC(NumFoldedUser, "Number of IV users folded into a constant");
-STATISTIC(NumElimRem , "Number of IV remainder operations eliminated");
-STATISTIC(
- NumSimplifiedSDiv,
- "Number of IV signed division operations converted to unsigned division");
-STATISTIC(
- NumSimplifiedSRem,
- "Number of IV signed remainder operations converted to unsigned remainder");
-STATISTIC(NumElimCmp , "Number of IV comparisons eliminated");
-
-namespace {
- /// This is a utility for simplifying induction variables
- /// based on ScalarEvolution. It is the primary instrument of the
- /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
- /// other loop passes that preserve SCEV.
- class SimplifyIndvar {
- Loop *L;
- LoopInfo *LI;
- ScalarEvolution *SE;
- DominatorTree *DT;
- SCEVExpander &Rewriter;
- SmallVectorImpl<WeakTrackingVH> &DeadInsts;
-
- bool Changed;
-
- public:
- SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, SCEVExpander &Rewriter,
- SmallVectorImpl<WeakTrackingVH> &Dead)
- : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead),
- Changed(false) {
- assert(LI && "IV simplification requires LoopInfo");
- }
-
- bool hasChanged() const { return Changed; }
-
- /// Iteratively perform simplification on a worklist of users of the
- /// specified induction variable. This is the top-level driver that applies
- /// all simplifications to users of an IV.
- void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
-
- Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
-
- bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
- bool replaceIVUserWithLoopInvariant(Instruction *UseInst);
-
- bool eliminateOverflowIntrinsic(WithOverflowInst *WO);
- bool eliminateSaturatingIntrinsic(SaturatingInst *SI);
- bool eliminateTrunc(TruncInst *TI);
- bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
- bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand);
- void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
- void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
- bool IsSigned);
- void replaceRemWithNumerator(BinaryOperator *Rem);
- void replaceRemWithNumeratorOrZero(BinaryOperator *Rem);
- void replaceSRemWithURem(BinaryOperator *Rem);
- bool eliminateSDiv(BinaryOperator *SDiv);
- bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
- bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand);
- };
-}
-
-/// Fold an IV operand into its use. This removes increments of an
-/// aligned IV when used by a instruction that ignores the low bits.
-///
-/// IVOperand is guaranteed SCEVable, but UseInst may not be.
-///
-/// Return the operand of IVOperand for this induction variable if IVOperand can
-/// be folded (in case more folding opportunities have been exposed).
-/// Otherwise return null.
-Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
- Value *IVSrc = nullptr;
- const unsigned OperIdx = 0;
- const SCEV *FoldedExpr = nullptr;
- bool MustDropExactFlag = false;
- switch (UseInst->getOpcode()) {
- default:
- return nullptr;
- case Instruction::UDiv:
- case Instruction::LShr:
- // We're only interested in the case where we know something about
- // the numerator and have a constant denominator.
- if (IVOperand != UseInst->getOperand(OperIdx) ||
- !isa<ConstantInt>(UseInst->getOperand(1)))
- return nullptr;
-
- // Attempt to fold a binary operator with constant operand.
- // e.g. ((I + 1) >> 2) => I >> 2
- if (!isa<BinaryOperator>(IVOperand)
- || !isa<ConstantInt>(IVOperand->getOperand(1)))
- return nullptr;
-
- IVSrc = IVOperand->getOperand(0);
- // IVSrc must be the (SCEVable) IV, since the other operand is const.
- assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
-
- ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
- if (UseInst->getOpcode() == Instruction::LShr) {
- // Get a constant for the divisor. See createSCEV.
- uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
- if (D->getValue().uge(BitWidth))
- return nullptr;
-
- D = ConstantInt::get(UseInst->getContext(),
- APInt::getOneBitSet(BitWidth, D->getZExtValue()));
- }
- FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
- // We might have 'exact' flag set at this point which will no longer be
- // correct after we make the replacement.
- if (UseInst->isExact() &&
- SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D)))
- MustDropExactFlag = true;
- }
- // We have something that might fold it's operand. Compare SCEVs.
- if (!SE->isSCEVable(UseInst->getType()))
- return nullptr;
-
- // Bypass the operand if SCEV can prove it has no effect.
- if (SE->getSCEV(UseInst) != FoldedExpr)
- return nullptr;
-
- LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
- << " -> " << *UseInst << '\n');
-
- UseInst->setOperand(OperIdx, IVSrc);
- assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
-
- if (MustDropExactFlag)
- UseInst->dropPoisonGeneratingFlags();
-
- ++NumElimOperand;
- Changed = true;
- if (IVOperand->use_empty())
- DeadInsts.emplace_back(IVOperand);
- return IVSrc;
-}
-
-bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp,
- Value *IVOperand) {
- unsigned IVOperIdx = 0;
- ICmpInst::Predicate Pred = ICmp->getPredicate();
- if (IVOperand != ICmp->getOperand(0)) {
- // Swapped
- assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
- IVOperIdx = 1;
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
-
- // Get the SCEVs for the ICmp operands (in the specific context of the
- // current loop)
- const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
- const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
- const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
-
- ICmpInst::Predicate InvariantPredicate;
- const SCEV *InvariantLHS, *InvariantRHS;
-
- auto *PN = dyn_cast<PHINode>(IVOperand);
- if (!PN)
- return false;
- if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
- InvariantLHS, InvariantRHS))
- return false;
-
- // Rewrite the comparison to a loop invariant comparison if it can be done
- // cheaply, where cheaply means "we don't need to emit any new
- // instructions".
-
- SmallDenseMap<const SCEV*, Value*> CheapExpansions;
- CheapExpansions[S] = ICmp->getOperand(IVOperIdx);
- CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx);
-
- // TODO: Support multiple entry loops? (We currently bail out of these in
- // the IndVarSimplify pass)
- if (auto *BB = L->getLoopPredecessor()) {
- const int Idx = PN->getBasicBlockIndex(BB);
- if (Idx >= 0) {
- Value *Incoming = PN->getIncomingValue(Idx);
- const SCEV *IncomingS = SE->getSCEV(Incoming);
- CheapExpansions[IncomingS] = Incoming;
- }
- }
- Value *NewLHS = CheapExpansions[InvariantLHS];
- Value *NewRHS = CheapExpansions[InvariantRHS];
-
- if (!NewLHS)
- if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS))
- NewLHS = ConstLHS->getValue();
- if (!NewRHS)
- if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS))
- NewRHS = ConstRHS->getValue();
-
- if (!NewLHS || !NewRHS)
- // We could not find an existing value to replace either LHS or RHS.
- // Generating new instructions has subtler tradeoffs, so avoid doing that
- // for now.
- return false;
-
- LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
- ICmp->setPredicate(InvariantPredicate);
- ICmp->setOperand(0, NewLHS);
- ICmp->setOperand(1, NewRHS);
- return true;
-}
-
-/// SimplifyIVUsers helper for eliminating useless
-/// comparisons against an induction variable.
-void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
- unsigned IVOperIdx = 0;
- ICmpInst::Predicate Pred = ICmp->getPredicate();
- ICmpInst::Predicate OriginalPred = Pred;
- if (IVOperand != ICmp->getOperand(0)) {
- // Swapped
- assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
- IVOperIdx = 1;
- Pred = ICmpInst::getSwappedPredicate(Pred);
- }
-
- // Get the SCEVs for the ICmp operands (in the specific context of the
- // current loop)
- const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
- const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop);
- const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop);
-
- // If the condition is always true or always false, replace it with
- // a constant value.
- if (SE->isKnownPredicate(Pred, S, X)) {
- ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
- DeadInsts.emplace_back(ICmp);
- LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
- } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
- ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
- DeadInsts.emplace_back(ICmp);
- LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
- } else if (makeIVComparisonInvariant(ICmp, IVOperand)) {
- // fallthrough to end of function
- } else if (ICmpInst::isSigned(OriginalPred) &&
- SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) {
- // If we were unable to make anything above, all we can is to canonicalize
- // the comparison hoping that it will open the doors for other
- // optimizations. If we find out that we compare two non-negative values,
- // we turn the instruction's predicate to its unsigned version. Note that
- // we cannot rely on Pred here unless we check if we have swapped it.
- assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?");
- LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp
- << '\n');
- ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred));
- } else
- return;
-
- ++NumElimCmp;
- Changed = true;
-}
-
-bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) {
- // Get the SCEVs for the ICmp operands.
- auto *N = SE->getSCEV(SDiv->getOperand(0));
- auto *D = SE->getSCEV(SDiv->getOperand(1));
-
- // Simplify unnecessary loops away.
- const Loop *L = LI->getLoopFor(SDiv->getParent());
- N = SE->getSCEVAtScope(N, L);
- D = SE->getSCEVAtScope(D, L);
-
- // Replace sdiv by udiv if both of the operands are non-negative
- if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) {
- auto *UDiv = BinaryOperator::Create(
- BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1),
- SDiv->getName() + ".udiv", SDiv);
- UDiv->setIsExact(SDiv->isExact());
- SDiv->replaceAllUsesWith(UDiv);
- LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n');
- ++NumSimplifiedSDiv;
- Changed = true;
- DeadInsts.push_back(SDiv);
- return true;
- }
-
- return false;
-}
-
-// i %s n -> i %u n if i >= 0 and n >= 0
-void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) {
- auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
- auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D,
- Rem->getName() + ".urem", Rem);
- Rem->replaceAllUsesWith(URem);
- LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n');
- ++NumSimplifiedSRem;
- Changed = true;
- DeadInsts.emplace_back(Rem);
-}
-
-// i % n --> i if i is in [0,n).
-void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) {
- Rem->replaceAllUsesWith(Rem->getOperand(0));
- LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
- ++NumElimRem;
- Changed = true;
- DeadInsts.emplace_back(Rem);
-}
-
-// (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n).
-void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) {
- auto *T = Rem->getType();
- auto *N = Rem->getOperand(0), *D = Rem->getOperand(1);
- ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D);
- SelectInst *Sel =
- SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem);
- Rem->replaceAllUsesWith(Sel);
- LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
- ++NumElimRem;
- Changed = true;
- DeadInsts.emplace_back(Rem);
-}
-
-/// SimplifyIVUsers helper for eliminating useless remainder operations
-/// operating on an induction variable or replacing srem by urem.
-void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand,
- bool IsSigned) {
- auto *NValue = Rem->getOperand(0);
- auto *DValue = Rem->getOperand(1);
- // We're only interested in the case where we know something about
- // the numerator, unless it is a srem, because we want to replace srem by urem
- // in general.
- bool UsedAsNumerator = IVOperand == NValue;
- if (!UsedAsNumerator && !IsSigned)
- return;
-
- const SCEV *N = SE->getSCEV(NValue);
-
- // Simplify unnecessary loops away.
- const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
- N = SE->getSCEVAtScope(N, ICmpLoop);
-
- bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N);
-
- // Do not proceed if the Numerator may be negative
- if (!IsNumeratorNonNegative)
- return;
-
- const SCEV *D = SE->getSCEV(DValue);
- D = SE->getSCEVAtScope(D, ICmpLoop);
-
- if (UsedAsNumerator) {
- auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
- if (SE->isKnownPredicate(LT, N, D)) {
- replaceRemWithNumerator(Rem);
- return;
- }
-
- auto *T = Rem->getType();
- const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T));
- if (SE->isKnownPredicate(LT, NLessOne, D)) {
- replaceRemWithNumeratorOrZero(Rem);
- return;
- }
- }
-
- // Try to replace SRem with URem, if both N and D are known non-negative.
- // Since we had already check N, we only need to check D now
- if (!IsSigned || !SE->isKnownNonNegative(D))
- return;
-
- replaceSRemWithURem(Rem);
-}
-
-static bool willNotOverflow(ScalarEvolution *SE, Instruction::BinaryOps BinOp,
- bool Signed, const SCEV *LHS, const SCEV *RHS) {
- const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
- SCEV::NoWrapFlags, unsigned);
- switch (BinOp) {
- default:
- llvm_unreachable("Unsupported binary op");
- case Instruction::Add:
- Operation = &ScalarEvolution::getAddExpr;
- break;
- case Instruction::Sub:
- Operation = &ScalarEvolution::getMinusSCEV;
- break;
- case Instruction::Mul:
- Operation = &ScalarEvolution::getMulExpr;
- break;
- }
-
- const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
- Signed ? &ScalarEvolution::getSignExtendExpr
- : &ScalarEvolution::getZeroExtendExpr;
-
- // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
- auto *NarrowTy = cast<IntegerType>(LHS->getType());
- auto *WideTy =
- IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
-
- const SCEV *A =
- (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0),
- WideTy, 0);
- const SCEV *B =
- (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0),
- (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0);
- return A == B;
-}
-
-bool SimplifyIndvar::eliminateOverflowIntrinsic(WithOverflowInst *WO) {
- const SCEV *LHS = SE->getSCEV(WO->getLHS());
- const SCEV *RHS = SE->getSCEV(WO->getRHS());
- if (!willNotOverflow(SE, WO->getBinaryOp(), WO->isSigned(), LHS, RHS))
- return false;
-
- // Proved no overflow, nuke the overflow check and, if possible, the overflow
- // intrinsic as well.
-
- BinaryOperator *NewResult = BinaryOperator::Create(
- WO->getBinaryOp(), WO->getLHS(), WO->getRHS(), "", WO);
-
- if (WO->isSigned())
- NewResult->setHasNoSignedWrap(true);
- else
- NewResult->setHasNoUnsignedWrap(true);
-
- SmallVector<ExtractValueInst *, 4> ToDelete;
-
- for (auto *U : WO->users()) {
- if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
- if (EVI->getIndices()[0] == 1)
- EVI->replaceAllUsesWith(ConstantInt::getFalse(WO->getContext()));
- else {
- assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
- EVI->replaceAllUsesWith(NewResult);
- }
- ToDelete.push_back(EVI);
- }
- }
-
- for (auto *EVI : ToDelete)
- EVI->eraseFromParent();
-
- if (WO->use_empty())
- WO->eraseFromParent();
-
- return true;
-}
-
-bool SimplifyIndvar::eliminateSaturatingIntrinsic(SaturatingInst *SI) {
- const SCEV *LHS = SE->getSCEV(SI->getLHS());
- const SCEV *RHS = SE->getSCEV(SI->getRHS());
- if (!willNotOverflow(SE, SI->getBinaryOp(), SI->isSigned(), LHS, RHS))
- return false;
-
- BinaryOperator *BO = BinaryOperator::Create(
- SI->getBinaryOp(), SI->getLHS(), SI->getRHS(), SI->getName(), SI);
- if (SI->isSigned())
- BO->setHasNoSignedWrap();
- else
- BO->setHasNoUnsignedWrap();
-
- SI->replaceAllUsesWith(BO);
- DeadInsts.emplace_back(SI);
- Changed = true;
- return true;
-}
-
-bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) {
- // It is always legal to replace
- // icmp <pred> i32 trunc(iv), n
- // with
- // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate.
- // Or with
- // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate.
- // Or with either of these if pred is an equality predicate.
- //
- // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for
- // every comparison which uses trunc, it means that we can replace each of
- // them with comparison of iv against sext/zext(n). We no longer need trunc
- // after that.
- //
- // TODO: Should we do this if we can widen *some* comparisons, but not all
- // of them? Sometimes it is enough to enable other optimizations, but the
- // trunc instruction will stay in the loop.
- Value *IV = TI->getOperand(0);
- Type *IVTy = IV->getType();
- const SCEV *IVSCEV = SE->getSCEV(IV);
- const SCEV *TISCEV = SE->getSCEV(TI);
-
- // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can
- // get rid of trunc
- bool DoesSExtCollapse = false;
- bool DoesZExtCollapse = false;
- if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy))
- DoesSExtCollapse = true;
- if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy))
- DoesZExtCollapse = true;
-
- // If neither sext nor zext does collapse, it is not profitable to do any
- // transform. Bail.
- if (!DoesSExtCollapse && !DoesZExtCollapse)
- return false;
-
- // Collect users of the trunc that look like comparisons against invariants.
- // Bail if we find something different.
- SmallVector<ICmpInst *, 4> ICmpUsers;
- for (auto *U : TI->users()) {
- // We don't care about users in unreachable blocks.
- if (isa<Instruction>(U) &&
- !DT->isReachableFromEntry(cast<Instruction>(U)->getParent()))
- continue;
- ICmpInst *ICI = dyn_cast<ICmpInst>(U);
- if (!ICI) return false;
- assert(L->contains(ICI->getParent()) && "LCSSA form broken?");
- if (!(ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) &&
- !(ICI->getOperand(1) == TI && L->isLoopInvariant(ICI->getOperand(0))))
- return false;
- // If we cannot get rid of trunc, bail.
- if (ICI->isSigned() && !DoesSExtCollapse)
- return false;
- if (ICI->isUnsigned() && !DoesZExtCollapse)
- return false;
- // For equality, either signed or unsigned works.
- ICmpUsers.push_back(ICI);
- }
-
- auto CanUseZExt = [&](ICmpInst *ICI) {
- // Unsigned comparison can be widened as unsigned.
- if (ICI->isUnsigned())
- return true;
- // Is it profitable to do zext?
- if (!DoesZExtCollapse)
- return false;
- // For equality, we can safely zext both parts.
- if (ICI->isEquality())
- return true;
- // Otherwise we can only use zext when comparing two non-negative or two
- // negative values. But in practice, we will never pass DoesZExtCollapse
- // check for a negative value, because zext(trunc(x)) is non-negative. So
- // it only make sense to check for non-negativity here.
- const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0));
- const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1));
- return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2);
- };
- // Replace all comparisons against trunc with comparisons against IV.
- for (auto *ICI : ICmpUsers) {
- bool IsSwapped = L->isLoopInvariant(ICI->getOperand(0));
- auto *Op1 = IsSwapped ? ICI->getOperand(0) : ICI->getOperand(1);
- Instruction *Ext = nullptr;
- // For signed/unsigned predicate, replace the old comparison with comparison
- // of immediate IV against sext/zext of the invariant argument. If we can
- // use either sext or zext (i.e. we are dealing with equality predicate),
- // then prefer zext as a more canonical form.
- // TODO: If we see a signed comparison which can be turned into unsigned,
- // we can do it here for canonicalization purposes.
- ICmpInst::Predicate Pred = ICI->getPredicate();
- if (IsSwapped) Pred = ICmpInst::getSwappedPredicate(Pred);
- if (CanUseZExt(ICI)) {
- assert(DoesZExtCollapse && "Unprofitable zext?");
- Ext = new ZExtInst(Op1, IVTy, "zext", ICI);
- Pred = ICmpInst::getUnsignedPredicate(Pred);
- } else {
- assert(DoesSExtCollapse && "Unprofitable sext?");
- Ext = new SExtInst(Op1, IVTy, "sext", ICI);
- assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!");
- }
- bool Changed;
- L->makeLoopInvariant(Ext, Changed);
- (void)Changed;
- ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext);
- ICI->replaceAllUsesWith(NewICI);
- DeadInsts.emplace_back(ICI);
- }
-
- // Trunc no longer needed.
- TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
- DeadInsts.emplace_back(TI);
- return true;
-}
-
-/// Eliminate an operation that consumes a simple IV and has no observable
-/// side-effect given the range of IV values. IVOperand is guaranteed SCEVable,
-/// but UseInst may not be.
-bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
- Instruction *IVOperand) {
- if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
- eliminateIVComparison(ICmp, IVOperand);
- return true;
- }
- if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) {
- bool IsSRem = Bin->getOpcode() == Instruction::SRem;
- if (IsSRem || Bin->getOpcode() == Instruction::URem) {
- simplifyIVRemainder(Bin, IVOperand, IsSRem);
- return true;
- }
-
- if (Bin->getOpcode() == Instruction::SDiv)
- return eliminateSDiv(Bin);
- }
-
- if (auto *WO = dyn_cast<WithOverflowInst>(UseInst))
- if (eliminateOverflowIntrinsic(WO))
- return true;
-
- if (auto *SI = dyn_cast<SaturatingInst>(UseInst))
- if (eliminateSaturatingIntrinsic(SI))
- return true;
-
- if (auto *TI = dyn_cast<TruncInst>(UseInst))
- if (eliminateTrunc(TI))
- return true;
-
- if (eliminateIdentitySCEV(UseInst, IVOperand))
- return true;
-
- return false;
-}
-
-static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) {
- if (auto *BB = L->getLoopPreheader())
- return BB->getTerminator();
-
- return Hint;
-}
-
-/// Replace the UseInst with a constant if possible.
-bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) {
- if (!SE->isSCEVable(I->getType()))
- return false;
-
- // Get the symbolic expression for this instruction.
- const SCEV *S = SE->getSCEV(I);
-
- if (!SE->isLoopInvariant(S, L))
- return false;
-
- // Do not generate something ridiculous even if S is loop invariant.
- if (Rewriter.isHighCostExpansion(S, L, I))
- return false;
-
- auto *IP = GetLoopInvariantInsertPosition(L, I);
- auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP);
-
- I->replaceAllUsesWith(Invariant);
- LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I
- << " with loop invariant: " << *S << '\n');
- ++NumFoldedUser;
- Changed = true;
- DeadInsts.emplace_back(I);
- return true;
-}
-
-/// Eliminate any operation that SCEV can prove is an identity function.
-bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
- Instruction *IVOperand) {
- if (!SE->isSCEVable(UseInst->getType()) ||
- (UseInst->getType() != IVOperand->getType()) ||
- (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
- return false;
-
- // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
- // dominator tree, even if X is an operand to Y. For instance, in
- //
- // %iv = phi i32 {0,+,1}
- // br %cond, label %left, label %merge
- //
- // left:
- // %X = add i32 %iv, 0
- // br label %merge
- //
- // merge:
- // %M = phi (%X, %iv)
- //
- // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
- // %M.replaceAllUsesWith(%X) would be incorrect.
-
- if (isa<PHINode>(UseInst))
- // If UseInst is not a PHI node then we know that IVOperand dominates
- // UseInst directly from the legality of SSA.
- if (!DT || !DT->dominates(IVOperand, UseInst))
- return false;
-
- if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
- return false;
-
- LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
-
- UseInst->replaceAllUsesWith(IVOperand);
- ++NumElimIdentity;
- Changed = true;
- DeadInsts.emplace_back(UseInst);
- return true;
-}
-
-/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
-/// unsigned-overflow. Returns true if anything changed, false otherwise.
-bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
- Value *IVOperand) {
- // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
- if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
- return false;
-
- if (BO->getOpcode() != Instruction::Add &&
- BO->getOpcode() != Instruction::Sub &&
- BO->getOpcode() != Instruction::Mul)
- return false;
-
- const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
- const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
- bool Changed = false;
-
- if (!BO->hasNoUnsignedWrap() &&
- willNotOverflow(SE, BO->getOpcode(), /* Signed */ false, LHS, RHS)) {
- BO->setHasNoUnsignedWrap();
- SE->forgetValue(BO);
- Changed = true;
- }
-
- if (!BO->hasNoSignedWrap() &&
- willNotOverflow(SE, BO->getOpcode(), /* Signed */ true, LHS, RHS)) {
- BO->setHasNoSignedWrap();
- SE->forgetValue(BO);
- Changed = true;
- }
-
- return Changed;
-}
-
-/// Annotate the Shr in (X << IVOperand) >> C as exact using the
-/// information from the IV's range. Returns true if anything changed, false
-/// otherwise.
-bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO,
- Value *IVOperand) {
- using namespace llvm::PatternMatch;
-
- if (BO->getOpcode() == Instruction::Shl) {
- bool Changed = false;
- ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand));
- for (auto *U : BO->users()) {
- const APInt *C;
- if (match(U,
- m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) ||
- match(U,
- m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) {
- BinaryOperator *Shr = cast<BinaryOperator>(U);
- if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) {
- Shr->setIsExact(true);
- Changed = true;
- }
- }
- }
- return Changed;
- }
-
- return false;
-}
-
-/// Add all uses of Def to the current IV's worklist.
-static void pushIVUsers(
- Instruction *Def, Loop *L,
- SmallPtrSet<Instruction*,16> &Simplified,
- SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
-
- for (User *U : Def->users()) {
- Instruction *UI = cast<Instruction>(U);
-
- // Avoid infinite or exponential worklist processing.
- // Also ensure unique worklist users.
- // If Def is a LoopPhi, it may not be in the Simplified set, so check for
- // self edges first.
- if (UI == Def)
- continue;
-
- // Only change the current Loop, do not change the other parts (e.g. other
- // Loops).
- if (!L->contains(UI))
- continue;
-
- // Do not push the same instruction more than once.
- if (!Simplified.insert(UI).second)
- continue;
-
- SimpleIVUsers.push_back(std::make_pair(UI, Def));
- }
-}
-
-/// Return true if this instruction generates a simple SCEV
-/// expression in terms of that IV.
-///
-/// This is similar to IVUsers' isInteresting() but processes each instruction
-/// non-recursively when the operand is already known to be a simpleIVUser.
-///
-static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
- if (!SE->isSCEVable(I->getType()))
- return false;
-
- // Get the symbolic expression for this instruction.
- const SCEV *S = SE->getSCEV(I);
-
- // Only consider affine recurrences.
- const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
- if (AR && AR->getLoop() == L)
- return true;
-
- return false;
-}
-
-/// Iteratively perform simplification on a worklist of users
-/// of the specified induction variable. Each successive simplification may push
-/// more users which may themselves be candidates for simplification.
-///
-/// This algorithm does not require IVUsers analysis. Instead, it simplifies
-/// instructions in-place during analysis. Rather than rewriting induction
-/// variables bottom-up from their users, it transforms a chain of IVUsers
-/// top-down, updating the IR only when it encounters a clear optimization
-/// opportunity.
-///
-/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
-///
-void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
- if (!SE->isSCEVable(CurrIV->getType()))
- return;
-
- // Instructions processed by SimplifyIndvar for CurrIV.
- SmallPtrSet<Instruction*,16> Simplified;
-
- // Use-def pairs if IV users waiting to be processed for CurrIV.
- SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
-
- // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
- // called multiple times for the same LoopPhi. This is the proper thing to
- // do for loop header phis that use each other.
- pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers);
-
- while (!SimpleIVUsers.empty()) {
- std::pair<Instruction*, Instruction*> UseOper =
- SimpleIVUsers.pop_back_val();
- Instruction *UseInst = UseOper.first;
-
- // If a user of the IndVar is trivially dead, we prefer just to mark it dead
- // rather than try to do some complex analysis or transformation (such as
- // widening) basing on it.
- // TODO: Propagate TLI and pass it here to handle more cases.
- if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) {
- DeadInsts.emplace_back(UseInst);
- continue;
- }
-
- // Bypass back edges to avoid extra work.
- if (UseInst == CurrIV) continue;
-
- // Try to replace UseInst with a loop invariant before any other
- // simplifications.
- if (replaceIVUserWithLoopInvariant(UseInst))
- continue;
-
- Instruction *IVOperand = UseOper.second;
- for (unsigned N = 0; IVOperand; ++N) {
- assert(N <= Simplified.size() && "runaway iteration");
-
- Value *NewOper = foldIVUser(UseInst, IVOperand);
- if (!NewOper)
- break; // done folding
- IVOperand = dyn_cast<Instruction>(NewOper);
- }
- if (!IVOperand)
- continue;
-
- if (eliminateIVUser(UseInst, IVOperand)) {
- pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
- continue;
- }
-
- if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) {
- if ((isa<OverflowingBinaryOperator>(BO) &&
- strengthenOverflowingOperation(BO, IVOperand)) ||
- (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) {
- // re-queue uses of the now modified binary operator and fall
- // through to the checks that remain.
- pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers);
- }
- }
-
- CastInst *Cast = dyn_cast<CastInst>(UseInst);
- if (V && Cast) {
- V->visitCast(Cast);
- continue;
- }
- if (isSimpleIVUser(UseInst, L, SE)) {
- pushIVUsers(UseInst, L, Simplified, SimpleIVUsers);
- }
- }
-}
-
-namespace llvm {
-
-void IVVisitor::anchor() { }
-
-/// Simplify instructions that use this induction variable
-/// by using ScalarEvolution to analyze the IV's recurrence.
-bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead,
- SCEVExpander &Rewriter, IVVisitor *V) {
- SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter,
- Dead);
- SIV.simplifyUsers(CurrIV, V);
- return SIV.hasChanged();
-}
-
-/// Simplify users of induction variables within this
-/// loop. This does not actually change or add IVs.
-bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
- LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) {
- SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars");
-#ifndef NDEBUG
- Rewriter.setDebugType(DEBUG_TYPE);
-#endif
- bool Changed = false;
- for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
- Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter);
- }
- return Changed;
-}
-
-} // namespace llvm