diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2013-04-08 18:41:23 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2013-04-08 18:41:23 +0000 |
commit | 4a16efa3e43e35f0cc9efe3a67f620f0017c3d36 (patch) | |
tree | 06099edc18d30894081a822b756f117cbe0b8207 /lib/CodeGen/TargetRegisterInfo.cpp | |
parent | 482e7bddf617ae804dc47133cb07eb4aa81e45de (diff) | |
download | src-4a16efa3e43e35f0cc9efe3a67f620f0017c3d36.tar.gz src-4a16efa3e43e35f0cc9efe3a67f620f0017c3d36.zip |
Notes
Diffstat (limited to 'lib/CodeGen/TargetRegisterInfo.cpp')
-rw-r--r-- | lib/CodeGen/TargetRegisterInfo.cpp | 285 |
1 files changed, 285 insertions, 0 deletions
diff --git a/lib/CodeGen/TargetRegisterInfo.cpp b/lib/CodeGen/TargetRegisterInfo.cpp new file mode 100644 index 000000000000..84b4bfc33221 --- /dev/null +++ b/lib/CodeGen/TargetRegisterInfo.cpp @@ -0,0 +1,285 @@ +//===- TargetRegisterInfo.cpp - Target Register Information Implementation ===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the TargetRegisterInfo interface. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Target/TargetRegisterInfo.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +TargetRegisterInfo::TargetRegisterInfo(const TargetRegisterInfoDesc *ID, + regclass_iterator RCB, regclass_iterator RCE, + const char *const *SRINames, + const unsigned *SRILaneMasks) + : InfoDesc(ID), SubRegIndexNames(SRINames), + SubRegIndexLaneMasks(SRILaneMasks), + RegClassBegin(RCB), RegClassEnd(RCE) { +} + +TargetRegisterInfo::~TargetRegisterInfo() {} + +void PrintReg::print(raw_ostream &OS) const { + if (!Reg) + OS << "%noreg"; + else if (TargetRegisterInfo::isStackSlot(Reg)) + OS << "SS#" << TargetRegisterInfo::stackSlot2Index(Reg); + else if (TargetRegisterInfo::isVirtualRegister(Reg)) + OS << "%vreg" << TargetRegisterInfo::virtReg2Index(Reg); + else if (TRI && Reg < TRI->getNumRegs()) + OS << '%' << TRI->getName(Reg); + else + OS << "%physreg" << Reg; + if (SubIdx) { + if (TRI) + OS << ':' << TRI->getSubRegIndexName(SubIdx); + else + OS << ":sub(" << SubIdx << ')'; + } +} + +void PrintRegUnit::print(raw_ostream &OS) const { + // Generic printout when TRI is missing. + if (!TRI) { + OS << "Unit~" << Unit; + return; + } + + // Check for invalid register units. + if (Unit >= TRI->getNumRegUnits()) { + OS << "BadUnit~" << Unit; + return; + } + + // Normal units have at least one root. + MCRegUnitRootIterator Roots(Unit, TRI); + assert(Roots.isValid() && "Unit has no roots."); + OS << TRI->getName(*Roots); + for (++Roots; Roots.isValid(); ++Roots) + OS << '~' << TRI->getName(*Roots); +} + +/// getAllocatableClass - Return the maximal subclass of the given register +/// class that is alloctable, or NULL. +const TargetRegisterClass * +TargetRegisterInfo::getAllocatableClass(const TargetRegisterClass *RC) const { + if (!RC || RC->isAllocatable()) + return RC; + + const unsigned *SubClass = RC->getSubClassMask(); + for (unsigned Base = 0, BaseE = getNumRegClasses(); + Base < BaseE; Base += 32) { + unsigned Idx = Base; + for (unsigned Mask = *SubClass++; Mask; Mask >>= 1) { + unsigned Offset = CountTrailingZeros_32(Mask); + const TargetRegisterClass *SubRC = getRegClass(Idx + Offset); + if (SubRC->isAllocatable()) + return SubRC; + Mask >>= Offset; + Idx += Offset + 1; + } + } + return NULL; +} + +/// getMinimalPhysRegClass - Returns the Register Class of a physical +/// register of the given type, picking the most sub register class of +/// the right type that contains this physreg. +const TargetRegisterClass * +TargetRegisterInfo::getMinimalPhysRegClass(unsigned reg, EVT VT) const { + assert(isPhysicalRegister(reg) && "reg must be a physical register"); + + // Pick the most sub register class of the right type that contains + // this physreg. + const TargetRegisterClass* BestRC = 0; + for (regclass_iterator I = regclass_begin(), E = regclass_end(); I != E; ++I){ + const TargetRegisterClass* RC = *I; + if ((VT == MVT::Other || RC->hasType(VT)) && RC->contains(reg) && + (!BestRC || BestRC->hasSubClass(RC))) + BestRC = RC; + } + + assert(BestRC && "Couldn't find the register class"); + return BestRC; +} + +/// getAllocatableSetForRC - Toggle the bits that represent allocatable +/// registers for the specific register class. +static void getAllocatableSetForRC(const MachineFunction &MF, + const TargetRegisterClass *RC, BitVector &R){ + assert(RC->isAllocatable() && "invalid for nonallocatable sets"); + ArrayRef<uint16_t> Order = RC->getRawAllocationOrder(MF); + for (unsigned i = 0; i != Order.size(); ++i) + R.set(Order[i]); +} + +BitVector TargetRegisterInfo::getAllocatableSet(const MachineFunction &MF, + const TargetRegisterClass *RC) const { + BitVector Allocatable(getNumRegs()); + if (RC) { + // A register class with no allocatable subclass returns an empty set. + const TargetRegisterClass *SubClass = getAllocatableClass(RC); + if (SubClass) + getAllocatableSetForRC(MF, SubClass, Allocatable); + } else { + for (TargetRegisterInfo::regclass_iterator I = regclass_begin(), + E = regclass_end(); I != E; ++I) + if ((*I)->isAllocatable()) + getAllocatableSetForRC(MF, *I, Allocatable); + } + + // Mask out the reserved registers + BitVector Reserved = getReservedRegs(MF); + Allocatable &= Reserved.flip(); + + return Allocatable; +} + +static inline +const TargetRegisterClass *firstCommonClass(const uint32_t *A, + const uint32_t *B, + const TargetRegisterInfo *TRI) { + for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; I += 32) + if (unsigned Common = *A++ & *B++) + return TRI->getRegClass(I + CountTrailingZeros_32(Common)); + return 0; +} + +const TargetRegisterClass * +TargetRegisterInfo::getCommonSubClass(const TargetRegisterClass *A, + const TargetRegisterClass *B) const { + // First take care of the trivial cases. + if (A == B) + return A; + if (!A || !B) + return 0; + + // Register classes are ordered topologically, so the largest common + // sub-class it the common sub-class with the smallest ID. + return firstCommonClass(A->getSubClassMask(), B->getSubClassMask(), this); +} + +const TargetRegisterClass * +TargetRegisterInfo::getMatchingSuperRegClass(const TargetRegisterClass *A, + const TargetRegisterClass *B, + unsigned Idx) const { + assert(A && B && "Missing register class"); + assert(Idx && "Bad sub-register index"); + + // Find Idx in the list of super-register indices. + for (SuperRegClassIterator RCI(B, this); RCI.isValid(); ++RCI) + if (RCI.getSubReg() == Idx) + // The bit mask contains all register classes that are projected into B + // by Idx. Find a class that is also a sub-class of A. + return firstCommonClass(RCI.getMask(), A->getSubClassMask(), this); + return 0; +} + +const TargetRegisterClass *TargetRegisterInfo:: +getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, + const TargetRegisterClass *RCB, unsigned SubB, + unsigned &PreA, unsigned &PreB) const { + assert(RCA && SubA && RCB && SubB && "Invalid arguments"); + + // Search all pairs of sub-register indices that project into RCA and RCB + // respectively. This is quadratic, but usually the sets are very small. On + // most targets like X86, there will only be a single sub-register index + // (e.g., sub_16bit projecting into GR16). + // + // The worst case is a register class like DPR on ARM. + // We have indices dsub_0..dsub_7 projecting into that class. + // + // It is very common that one register class is a sub-register of the other. + // Arrange for RCA to be the larger register so the answer will be found in + // the first iteration. This makes the search linear for the most common + // case. + const TargetRegisterClass *BestRC = 0; + unsigned *BestPreA = &PreA; + unsigned *BestPreB = &PreB; + if (RCA->getSize() < RCB->getSize()) { + std::swap(RCA, RCB); + std::swap(SubA, SubB); + std::swap(BestPreA, BestPreB); + } + + // Also terminate the search one we have found a register class as small as + // RCA. + unsigned MinSize = RCA->getSize(); + + for (SuperRegClassIterator IA(RCA, this, true); IA.isValid(); ++IA) { + unsigned FinalA = composeSubRegIndices(IA.getSubReg(), SubA); + for (SuperRegClassIterator IB(RCB, this, true); IB.isValid(); ++IB) { + // Check if a common super-register class exists for this index pair. + const TargetRegisterClass *RC = + firstCommonClass(IA.getMask(), IB.getMask(), this); + if (!RC || RC->getSize() < MinSize) + continue; + + // The indexes must compose identically: PreA+SubA == PreB+SubB. + unsigned FinalB = composeSubRegIndices(IB.getSubReg(), SubB); + if (FinalA != FinalB) + continue; + + // Is RC a better candidate than BestRC? + if (BestRC && RC->getSize() >= BestRC->getSize()) + continue; + + // Yes, RC is the smallest super-register seen so far. + BestRC = RC; + *BestPreA = IA.getSubReg(); + *BestPreB = IB.getSubReg(); + + // Bail early if we reached MinSize. We won't find a better candidate. + if (BestRC->getSize() == MinSize) + return BestRC; + } + } + return BestRC; +} + +// Compute target-independent register allocator hints to help eliminate copies. +void +TargetRegisterInfo::getRegAllocationHints(unsigned VirtReg, + ArrayRef<MCPhysReg> Order, + SmallVectorImpl<MCPhysReg> &Hints, + const MachineFunction &MF, + const VirtRegMap *VRM) const { + const MachineRegisterInfo &MRI = MF.getRegInfo(); + std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg); + + // Hints with HintType != 0 were set by target-dependent code. + // Such targets must provide their own implementation of + // TRI::getRegAllocationHints to interpret those hint types. + assert(Hint.first == 0 && "Target must implement TRI::getRegAllocationHints"); + + // Target-independent hints are either a physical or a virtual register. + unsigned Phys = Hint.second; + if (VRM && isVirtualRegister(Phys)) + Phys = VRM->getPhys(Phys); + + // Check that Phys is a valid hint in VirtReg's register class. + if (!isPhysicalRegister(Phys)) + return; + if (MRI.isReserved(Phys)) + return; + // Check that Phys is in the allocation order. We shouldn't heed hints + // from VirtReg's register class if they aren't in the allocation order. The + // target probably has a reason for removing the register. + if (std::find(Order.begin(), Order.end(), Phys) == Order.end()) + return; + + // All clear, tell the register allocator to prefer this register. + Hints.push_back(Phys); +} |