diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2011-02-20 12:57:14 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2011-02-20 12:57:14 +0000 |
commit | cf099d11218cb6f6c5cce947d6738e347f07fb12 (patch) | |
tree | d2b61ce94e654cb01a254d2195259db5f9cc3f3c /lib/Target/X86/X86InstrArithmetic.td | |
parent | 49011b52fcba02a6051957b84705159f52fae4e4 (diff) | |
download | src-cf099d11218cb6f6c5cce947d6738e347f07fb12.tar.gz src-cf099d11218cb6f6c5cce947d6738e347f07fb12.zip |
Notes
Diffstat (limited to 'lib/Target/X86/X86InstrArithmetic.td')
-rw-r--r-- | lib/Target/X86/X86InstrArithmetic.td | 1125 |
1 files changed, 1125 insertions, 0 deletions
diff --git a/lib/Target/X86/X86InstrArithmetic.td b/lib/Target/X86/X86InstrArithmetic.td new file mode 100644 index 000000000000..f0ea06870869 --- /dev/null +++ b/lib/Target/X86/X86InstrArithmetic.td @@ -0,0 +1,1125 @@ +//===- X86InstrArithmetic.td - Integer Arithmetic Instrs ---*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the integer arithmetic instructions in the X86 +// architecture. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// LEA - Load Effective Address + +let neverHasSideEffects = 1 in +def LEA16r : I<0x8D, MRMSrcMem, + (outs GR16:$dst), (ins i32mem:$src), + "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize; +let isReMaterializable = 1 in +def LEA32r : I<0x8D, MRMSrcMem, + (outs GR32:$dst), (ins i32mem:$src), + "lea{l}\t{$src|$dst}, {$dst|$src}", + [(set GR32:$dst, lea32addr:$src)]>, Requires<[In32BitMode]>; + +def LEA64_32r : I<0x8D, MRMSrcMem, + (outs GR32:$dst), (ins lea64_32mem:$src), + "lea{l}\t{$src|$dst}, {$dst|$src}", + [(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>; + +let isReMaterializable = 1 in +def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src), + "lea{q}\t{$src|$dst}, {$dst|$src}", + [(set GR64:$dst, lea64addr:$src)]>; + + + +//===----------------------------------------------------------------------===// +// Fixed-Register Multiplication and Division Instructions. +// + +// Extra precision multiplication + +// AL is really implied by AX, but the registers in Defs must match the +// SDNode results (i8, i32). +let Defs = [AL,EFLAGS,AX], Uses = [AL] in +def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src", + // FIXME: Used for 8-bit mul, ignore result upper 8 bits. + // This probably ought to be moved to a def : Pat<> if the + // syntax can be accepted. + [(set AL, (mul AL, GR8:$src)), + (implicit EFLAGS)]>; // AL,AH = AL*GR8 + +let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in +def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src), + "mul{w}\t$src", + []>, OpSize; // AX,DX = AX*GR16 + +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in +def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src), + "mul{l}\t$src", // EAX,EDX = EAX*GR32 + [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/]>; +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in +def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src), + "mul{q}\t$src", // RAX,RDX = RAX*GR64 + [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/]>; + +let Defs = [AL,EFLAGS,AX], Uses = [AL] in +def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src), + "mul{b}\t$src", + // FIXME: Used for 8-bit mul, ignore result upper 8 bits. + // This probably ought to be moved to a def : Pat<> if the + // syntax can be accepted. + [(set AL, (mul AL, (loadi8 addr:$src))), + (implicit EFLAGS)]>; // AL,AH = AL*[mem8] + +let mayLoad = 1, neverHasSideEffects = 1 in { +let Defs = [AX,DX,EFLAGS], Uses = [AX] in +def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src), + "mul{w}\t$src", + []>, OpSize; // AX,DX = AX*[mem16] + +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in +def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src), + "mul{l}\t$src", + []>; // EAX,EDX = EAX*[mem32] +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in +def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src), + "mul{q}\t$src", []>; // RAX,RDX = RAX*[mem64] +} + +let neverHasSideEffects = 1 in { +let Defs = [AL,EFLAGS,AX], Uses = [AL] in +def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", []>; + // AL,AH = AL*GR8 +let Defs = [AX,DX,EFLAGS], Uses = [AX] in +def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", []>, + OpSize; // AX,DX = AX*GR16 +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in +def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", []>; + // EAX,EDX = EAX*GR32 +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in +def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", []>; + // RAX,RDX = RAX*GR64 + +let mayLoad = 1 in { +let Defs = [AL,EFLAGS,AX], Uses = [AL] in +def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src), + "imul{b}\t$src", []>; // AL,AH = AL*[mem8] +let Defs = [AX,DX,EFLAGS], Uses = [AX] in +def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src), + "imul{w}\t$src", []>, OpSize; // AX,DX = AX*[mem16] +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in +def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src), + "imul{l}\t$src", []>; // EAX,EDX = EAX*[mem32] +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in +def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src), + "imul{q}\t$src", []>; // RAX,RDX = RAX*[mem64] +} +} // neverHasSideEffects + + +let Defs = [EFLAGS] in { +let Constraints = "$src1 = $dst" in { + +let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y +// Register-Register Signed Integer Multiply +def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2), + "imul{w}\t{$src2, $dst|$dst, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag GR16:$src1, GR16:$src2))]>, TB, OpSize; +def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2), + "imul{l}\t{$src2, $dst|$dst, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag GR32:$src1, GR32:$src2))]>, TB; +def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst), + (ins GR64:$src1, GR64:$src2), + "imul{q}\t{$src2, $dst|$dst, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag GR64:$src1, GR64:$src2))]>, TB; +} + +// Register-Memory Signed Integer Multiply +def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst), + (ins GR16:$src1, i16mem:$src2), + "imul{w}\t{$src2, $dst|$dst, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag GR16:$src1, (load addr:$src2)))]>, + TB, OpSize; +def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst), + (ins GR32:$src1, i32mem:$src2), + "imul{l}\t{$src2, $dst|$dst, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag GR32:$src1, (load addr:$src2)))]>, TB; +def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst), + (ins GR64:$src1, i64mem:$src2), + "imul{q}\t{$src2, $dst|$dst, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag GR64:$src1, (load addr:$src2)))]>, TB; +} // Constraints = "$src1 = $dst" + +} // Defs = [EFLAGS] + +// Suprisingly enough, these are not two address instructions! +let Defs = [EFLAGS] in { +// Register-Integer Signed Integer Multiply +def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16 + (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), + "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag GR16:$src1, imm:$src2))]>, OpSize; +def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8 + (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), + "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag GR16:$src1, i16immSExt8:$src2))]>, + OpSize; +def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32 + (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), + "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag GR32:$src1, imm:$src2))]>; +def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8 + (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), + "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag GR32:$src1, i32immSExt8:$src2))]>; +def IMUL64rri32 : RIi32<0x69, MRMSrcReg, // GR64 = GR64*I32 + (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), + "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag GR64:$src1, i64immSExt32:$src2))]>; +def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8 + (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), + "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag GR64:$src1, i64immSExt8:$src2))]>; + + +// Memory-Integer Signed Integer Multiply +def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16 + (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2), + "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag (load addr:$src1), imm:$src2))]>, + OpSize; +def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8 + (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2), + "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR16:$dst, EFLAGS, + (X86smul_flag (load addr:$src1), + i16immSExt8:$src2))]>, OpSize; +def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32 + (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2), + "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag (load addr:$src1), imm:$src2))]>; +def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8 + (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2), + "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR32:$dst, EFLAGS, + (X86smul_flag (load addr:$src1), + i32immSExt8:$src2))]>; +def IMUL64rmi32 : RIi32<0x69, MRMSrcMem, // GR64 = [mem64]*I32 + (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2), + "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag (load addr:$src1), + i64immSExt32:$src2))]>; +def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8 + (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2), + "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}", + [(set GR64:$dst, EFLAGS, + (X86smul_flag (load addr:$src1), + i64immSExt8:$src2))]>; +} // Defs = [EFLAGS] + + + + +// unsigned division/remainder +let Defs = [AL,EFLAGS,AX], Uses = [AX] in +def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH + "div{b}\t$src", []>; +let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in +def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX + "div{w}\t$src", []>, OpSize; +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in +def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX + "div{l}\t$src", []>; +// RDX:RAX/r64 = RAX,RDX +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in +def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src), + "div{q}\t$src", []>; + +let mayLoad = 1 in { +let Defs = [AL,EFLAGS,AX], Uses = [AX] in +def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH + "div{b}\t$src", []>; +let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in +def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX + "div{w}\t$src", []>, OpSize; +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX +def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src), + "div{l}\t$src", []>; +// RDX:RAX/[mem64] = RAX,RDX +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in +def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src), + "div{q}\t$src", []>; +} + +// Signed division/remainder. +let Defs = [AL,EFLAGS,AX], Uses = [AX] in +def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH + "idiv{b}\t$src", []>; +let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in +def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX + "idiv{w}\t$src", []>, OpSize; +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in +def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX + "idiv{l}\t$src", []>; +// RDX:RAX/r64 = RAX,RDX +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in +def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src), + "idiv{q}\t$src", []>; + +let mayLoad = 1, mayLoad = 1 in { +let Defs = [AL,EFLAGS,AX], Uses = [AX] in +def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH + "idiv{b}\t$src", []>; +let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in +def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX + "idiv{w}\t$src", []>, OpSize; +let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX +def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src), + "idiv{l}\t$src", []>; +let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX +def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src), + "idiv{q}\t$src", []>; +} + +//===----------------------------------------------------------------------===// +// Two address Instructions. +// + +// unary instructions +let CodeSize = 2 in { +let Defs = [EFLAGS] in { +let Constraints = "$src1 = $dst" in { +def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1), + "neg{b}\t$dst", + [(set GR8:$dst, (ineg GR8:$src1)), + (implicit EFLAGS)]>; +def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1), + "neg{w}\t$dst", + [(set GR16:$dst, (ineg GR16:$src1)), + (implicit EFLAGS)]>, OpSize; +def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1), + "neg{l}\t$dst", + [(set GR32:$dst, (ineg GR32:$src1)), + (implicit EFLAGS)]>; +def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst", + [(set GR64:$dst, (ineg GR64:$src1)), + (implicit EFLAGS)]>; +} // Constraints = "$src1 = $dst" + +def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst), + "neg{b}\t$dst", + [(store (ineg (loadi8 addr:$dst)), addr:$dst), + (implicit EFLAGS)]>; +def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst), + "neg{w}\t$dst", + [(store (ineg (loadi16 addr:$dst)), addr:$dst), + (implicit EFLAGS)]>, OpSize; +def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst), + "neg{l}\t$dst", + [(store (ineg (loadi32 addr:$dst)), addr:$dst), + (implicit EFLAGS)]>; +def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst", + [(store (ineg (loadi64 addr:$dst)), addr:$dst), + (implicit EFLAGS)]>; +} // Defs = [EFLAGS] + + +// Note: NOT does not set EFLAGS! + +let Constraints = "$src1 = $dst" in { +// Match xor -1 to not. Favors these over a move imm + xor to save code size. +let AddedComplexity = 15 in { +def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1), + "not{b}\t$dst", + [(set GR8:$dst, (not GR8:$src1))]>; +def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1), + "not{w}\t$dst", + [(set GR16:$dst, (not GR16:$src1))]>, OpSize; +def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1), + "not{l}\t$dst", + [(set GR32:$dst, (not GR32:$src1))]>; +def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst", + [(set GR64:$dst, (not GR64:$src1))]>; +} +} // Constraints = "$src1 = $dst" + +def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst), + "not{b}\t$dst", + [(store (not (loadi8 addr:$dst)), addr:$dst)]>; +def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst), + "not{w}\t$dst", + [(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize; +def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst), + "not{l}\t$dst", + [(store (not (loadi32 addr:$dst)), addr:$dst)]>; +def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst", + [(store (not (loadi64 addr:$dst)), addr:$dst)]>; +} // CodeSize + +// TODO: inc/dec is slow for P4, but fast for Pentium-M. +let Defs = [EFLAGS] in { +let Constraints = "$src1 = $dst" in { +let CodeSize = 2 in +def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1), + "inc{b}\t$dst", + [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))]>; + +let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. +def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), + "inc{w}\t$dst", + [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>, + OpSize, Requires<[In32BitMode]>; +def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), + "inc{l}\t$dst", + [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>, + Requires<[In32BitMode]>; +def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst", + [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))]>; +} // isConvertibleToThreeAddress = 1, CodeSize = 1 + + +// In 64-bit mode, single byte INC and DEC cannot be encoded. +let isConvertibleToThreeAddress = 1, CodeSize = 2 in { +// Can transform into LEA. +def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1), + "inc{w}\t$dst", + [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>, + OpSize, Requires<[In64BitMode]>; +def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1), + "inc{l}\t$dst", + [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>, + Requires<[In64BitMode]>; +def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1), + "dec{w}\t$dst", + [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>, + OpSize, Requires<[In64BitMode]>; +def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1), + "dec{l}\t$dst", + [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>, + Requires<[In64BitMode]>; +} // isConvertibleToThreeAddress = 1, CodeSize = 2 + +} // Constraints = "$src1 = $dst" + +let CodeSize = 2 in { + def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst", + [(store (add (loadi8 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>; + def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", + [(store (add (loadi16 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>, + OpSize, Requires<[In32BitMode]>; + def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", + [(store (add (loadi32 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>, + Requires<[In32BitMode]>; + def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst", + [(store (add (loadi64 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>; + +// These are duplicates of their 32-bit counterparts. Only needed so X86 knows +// how to unfold them. +// FIXME: What is this for?? +def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst", + [(store (add (loadi16 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>, + OpSize, Requires<[In64BitMode]>; +def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst", + [(store (add (loadi32 addr:$dst), 1), addr:$dst), + (implicit EFLAGS)]>, + Requires<[In64BitMode]>; +def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", + [(store (add (loadi16 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>, + OpSize, Requires<[In64BitMode]>; +def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", + [(store (add (loadi32 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>, + Requires<[In64BitMode]>; +} // CodeSize = 2 + +let Constraints = "$src1 = $dst" in { +let CodeSize = 2 in +def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1), + "dec{b}\t$dst", + [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))]>; +let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA. +def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1), + "dec{w}\t$dst", + [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>, + OpSize, Requires<[In32BitMode]>; +def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1), + "dec{l}\t$dst", + [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>, + Requires<[In32BitMode]>; +def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst", + [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))]>; +} // CodeSize = 2 +} // Constraints = "$src1 = $dst" + + +let CodeSize = 2 in { + def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst", + [(store (add (loadi8 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>; + def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst", + [(store (add (loadi16 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>, + OpSize, Requires<[In32BitMode]>; + def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst", + [(store (add (loadi32 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>, + Requires<[In32BitMode]>; + def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst", + [(store (add (loadi64 addr:$dst), -1), addr:$dst), + (implicit EFLAGS)]>; +} // CodeSize = 2 +} // Defs = [EFLAGS] + + +/// X86TypeInfo - This is a bunch of information that describes relevant X86 +/// information about value types. For example, it can tell you what the +/// register class and preferred load to use. +class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass, + PatFrag loadnode, X86MemOperand memoperand, ImmType immkind, + Operand immoperand, SDPatternOperator immoperator, + Operand imm8operand, SDPatternOperator imm8operator, + bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> { + /// VT - This is the value type itself. + ValueType VT = vt; + + /// InstrSuffix - This is the suffix used on instructions with this type. For + /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q". + string InstrSuffix = instrsuffix; + + /// RegClass - This is the register class associated with this type. For + /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64. + RegisterClass RegClass = regclass; + + /// LoadNode - This is the load node associated with this type. For + /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64. + PatFrag LoadNode = loadnode; + + /// MemOperand - This is the memory operand associated with this type. For + /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem. + X86MemOperand MemOperand = memoperand; + + /// ImmEncoding - This is the encoding of an immediate of this type. For + /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32 + /// since the immediate fields of i64 instructions is a 32-bit sign extended + /// value. + ImmType ImmEncoding = immkind; + + /// ImmOperand - This is the operand kind of an immediate of this type. For + /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 -> + /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign + /// extended value. + Operand ImmOperand = immoperand; + + /// ImmOperator - This is the operator that should be used to match an + /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32). + SDPatternOperator ImmOperator = immoperator; + + /// Imm8Operand - This is the operand kind to use for an imm8 of this type. + /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is + /// only used for instructions that have a sign-extended imm8 field form. + Operand Imm8Operand = imm8operand; + + /// Imm8Operator - This is the operator that should be used to match an 8-bit + /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8). + SDPatternOperator Imm8Operator = imm8operator; + + /// HasOddOpcode - This bit is true if the instruction should have an odd (as + /// opposed to even) opcode. Operations on i8 are usually even, operations on + /// other datatypes are odd. + bit HasOddOpcode = hasOddOpcode; + + /// HasOpSizePrefix - This bit is set to true if the instruction should have + /// the 0x66 operand size prefix. This is set for i16 types. + bit HasOpSizePrefix = hasOpSizePrefix; + + /// HasREX_WPrefix - This bit is set to true if the instruction should have + /// the 0x40 REX prefix. This is set for i64 types. + bit HasREX_WPrefix = hasREX_WPrefix; +} + +def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">; + + +def Xi8 : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem , + Imm8 , i8imm , imm, i8imm , invalid_node, + 0, 0, 0>; +def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem, + Imm16, i16imm, imm, i16i8imm, i16immSExt8, + 1, 1, 0>; +def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem, + Imm32, i32imm, imm, i32i8imm, i32immSExt8, + 1, 0, 0>; +def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem, + Imm32, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8, + 1, 0, 1>; + +/// ITy - This instruction base class takes the type info for the instruction. +/// Using this, it: +/// 1. Concatenates together the instruction mnemonic with the appropriate +/// suffix letter, a tab, and the arguments. +/// 2. Infers whether the instruction should have a 0x66 prefix byte. +/// 3. Infers whether the instruction should have a 0x40 REX_W prefix. +/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations) +/// or 1 (for i16,i32,i64 operations). +class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins, + string mnemonic, string args, list<dag> pattern> + : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4}, + opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode }, + f, outs, ins, + !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern> { + + // Infer instruction prefixes from type info. + let hasOpSizePrefix = typeinfo.HasOpSizePrefix; + let hasREX_WPrefix = typeinfo.HasREX_WPrefix; +} + +// BinOpRR - Instructions like "add reg, reg, reg". +class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + dag outlist, list<dag> pattern, Format f = MRMDestReg> + : ITy<opcode, f, typeinfo, outlist, + (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), + mnemonic, "{$src2, $src1|$src1, $src2}", pattern>; + +// BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has +// just a regclass (no eflags) as a result. +class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, + (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>; + +// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has +// just a EFLAGS as a result. +class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f = MRMDestReg> + : BinOpRR<opcode, mnemonic, typeinfo, (outs), + [(set EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))], + f>; + +// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has +// both a regclass and EFLAGS as a result. +class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>; + +// BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has +// both a regclass and EFLAGS as a result, and has EFLAGS as input. +class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2, + EFLAGS))]>; + +// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding). +class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo> + : ITy<opcode, MRMSrcReg, typeinfo, + (outs typeinfo.RegClass:$dst), + (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2), + mnemonic, "{$src2, $dst|$dst, $src2}", []> { + // The disassembler should know about this, but not the asmparser. + let isCodeGenOnly = 1; +} + +// BinOpRM - Instructions like "add reg, reg, [mem]". +class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + dag outlist, list<dag> pattern> + : ITy<opcode, MRMSrcMem, typeinfo, outlist, + (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2), + mnemonic, "{$src2, $src1|$src1, $src2}", pattern>; + +// BinOpRM_R - Instructions like "add reg, reg, [mem]". +class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, + (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; + +// BinOpRM_F - Instructions like "cmp reg, [mem]". +class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode> + : BinOpRM<opcode, mnemonic, typeinfo, (outs), + [(set EFLAGS, + (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; + +// BinOpRM_RF - Instructions like "add reg, reg, [mem]". +class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>; + +// BinOpRM_RFF - Instructions like "adc reg, reg, [mem]". +class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2), + EFLAGS))]>; + +// BinOpRI - Instructions like "add reg, reg, imm". +class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + Format f, dag outlist, list<dag> pattern> + : ITy<opcode, f, typeinfo, outlist, + (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2), + mnemonic, "{$src2, $src1|$src1, $src2}", pattern> { + let ImmT = typeinfo.ImmEncoding; +} + +// BinOpRI_R - Instructions like "add reg, reg, imm". +class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, + (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; + +// BinOpRI_F - Instructions like "cmp reg, imm". +class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f> + : BinOpRI<opcode, mnemonic, typeinfo, f, (outs), + [(set EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; + +// BinOpRI_RF - Instructions like "add reg, reg, imm". +class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>; + +// BinOpRI_RFF - Instructions like "adc reg, reg, imm". +class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2, + EFLAGS))]>; + +// BinOpRI8 - Instructions like "add reg, reg, imm8". +class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + Format f, dag outlist, list<dag> pattern> + : ITy<opcode, f, typeinfo, outlist, + (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2), + mnemonic, "{$src2, $src1|$src1, $src2}", pattern> { + let ImmT = Imm8; // Always 8-bit immediate. +} + +// BinOpRI8_R - Instructions like "add reg, reg, imm8". +class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, + (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; + +// BinOpRI8_F - Instructions like "cmp reg, imm8". +class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs), + [(set EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; + +// BinOpRI8_RF - Instructions like "add reg, reg, imm8". +class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>; + +// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8". +class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst), + [(set typeinfo.RegClass:$dst, EFLAGS, + (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2, + EFLAGS))]>; + +// BinOpMR - Instructions like "add [mem], reg". +class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + list<dag> pattern> + : ITy<opcode, MRMDestMem, typeinfo, + (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src), + mnemonic, "{$src, $dst|$dst, $src}", pattern>; + +// BinOpMR_RMW - Instructions like "add [mem], reg". +class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpMR<opcode, mnemonic, typeinfo, + [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst), + (implicit EFLAGS)]>; + +// BinOpMR_RMW_FF - Instructions like "adc [mem], reg". +class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpMR<opcode, mnemonic, typeinfo, + [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS), + addr:$dst), + (implicit EFLAGS)]>; + +// BinOpMR_F - Instructions like "cmp [mem], reg". +class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + SDNode opnode> + : BinOpMR<opcode, mnemonic, typeinfo, + [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>; + +// BinOpMI - Instructions like "add [mem], imm". +class BinOpMI<string mnemonic, X86TypeInfo typeinfo, + Format f, list<dag> pattern, bits<8> opcode = 0x80> + : ITy<opcode, f, typeinfo, + (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src), + mnemonic, "{$src, $dst|$dst, $src}", pattern> { + let ImmT = typeinfo.ImmEncoding; +} + +// BinOpMI_RMW - Instructions like "add [mem], imm". +class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpMI<mnemonic, typeinfo, f, + [(store (opnode (typeinfo.VT (load addr:$dst)), + typeinfo.ImmOperator:$src), addr:$dst), + (implicit EFLAGS)]>; + +// BinOpMI_RMW_FF - Instructions like "adc [mem], imm". +class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpMI<mnemonic, typeinfo, f, + [(store (opnode (typeinfo.VT (load addr:$dst)), + typeinfo.ImmOperator:$src, EFLAGS), addr:$dst), + (implicit EFLAGS)]>; + +// BinOpMI_F - Instructions like "cmp [mem], imm". +class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo, + SDPatternOperator opnode, Format f, bits<8> opcode = 0x80> + : BinOpMI<mnemonic, typeinfo, f, + [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)), + typeinfo.ImmOperator:$src))], + opcode>; + +// BinOpMI8 - Instructions like "add [mem], imm8". +class BinOpMI8<string mnemonic, X86TypeInfo typeinfo, + Format f, list<dag> pattern> + : ITy<0x82, f, typeinfo, + (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src), + mnemonic, "{$src, $dst|$dst, $src}", pattern> { + let ImmT = Imm8; // Always 8-bit immediate. +} + +// BinOpMI8_RMW - Instructions like "add [mem], imm8". +class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpMI8<mnemonic, typeinfo, f, + [(store (opnode (load addr:$dst), + typeinfo.Imm8Operator:$src), addr:$dst), + (implicit EFLAGS)]>; + +// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8". +class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpMI8<mnemonic, typeinfo, f, + [(store (opnode (load addr:$dst), + typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst), + (implicit EFLAGS)]>; + +// BinOpMI8_F - Instructions like "cmp [mem], imm8". +class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo, + SDNode opnode, Format f> + : BinOpMI8<mnemonic, typeinfo, f, + [(set EFLAGS, (opnode (load addr:$dst), + typeinfo.Imm8Operator:$src))]>; + +// BinOpAI - Instructions like "add %eax, %eax, imm". +class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo, + Register areg> + : ITy<opcode, RawFrm, typeinfo, + (outs), (ins typeinfo.ImmOperand:$src), + mnemonic, !strconcat("{$src, %", areg.AsmName, "|%", + areg.AsmName, ", $src}"), []> { + let ImmT = typeinfo.ImmEncoding; + let Uses = [areg]; + let Defs = [areg]; +} + +/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is +/// defined with "(set GPR:$dst, EFLAGS, (...". +/// +/// It would be nice to get rid of the second and third argument here, but +/// tblgen can't handle dependent type references aggressively enough: PR8330 +multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, + string mnemonic, Format RegMRM, Format MemMRM, + SDNode opnodeflag, SDNode opnode, + bit CommutableRR, bit ConvertibleToThreeAddress> { + let Defs = [EFLAGS] in { + let Constraints = "$src1 = $dst" in { + let isCommutable = CommutableRR, + isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + def #NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>; + def #NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>; + def #NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>; + def #NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>; + } // isCommutable + + def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>; + def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>; + def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>; + def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>; + + def #NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>; + def #NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>; + def #NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>; + def #NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>; + + let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + // NOTE: These are order specific, we want the ri8 forms to be listed + // first so that they are slightly preferred to the ri forms. + def #NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>; + def #NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>; + def #NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>; + + def #NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>; + def #NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>; + def #NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>; + def #NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>; + } + } // Constraints = "$src1 = $dst" + + def #NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>; + def #NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>; + def #NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>; + def #NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>; + + // NOTE: These are order specific, we want the mi8 forms to be listed + // first so that they are slightly preferred to the mi forms. + def #NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>; + def #NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>; + def #NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>; + + def #NAME#8mi : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>; + def #NAME#16mi : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>; + def #NAME#32mi : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>; + def #NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>; + + def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL>; + def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX>; + def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX>; + def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX>; + } +} + +/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is +/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and +/// SBB. +/// +/// It would be nice to get rid of the second and third argument here, but +/// tblgen can't handle dependent type references aggressively enough: PR8330 +multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, + string mnemonic, Format RegMRM, Format MemMRM, + SDNode opnode, bit CommutableRR, + bit ConvertibleToThreeAddress> { + let Defs = [EFLAGS] in { + let Constraints = "$src1 = $dst" in { + let isCommutable = CommutableRR, + isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + def #NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>; + def #NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>; + def #NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>; + def #NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>; + } // isCommutable + + def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>; + def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>; + def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>; + def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>; + + def #NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>; + def #NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>; + def #NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>; + def #NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>; + + let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + // NOTE: These are order specific, we want the ri8 forms to be listed + // first so that they are slightly preferred to the ri forms. + def #NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>; + def #NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>; + def #NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>; + + def #NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>; + def #NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>; + def #NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>; + def #NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>; + } + } // Constraints = "$src1 = $dst" + + def #NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>; + def #NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>; + def #NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>; + def #NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>; + + // NOTE: These are order specific, we want the mi8 forms to be listed + // first so that they are slightly preferred to the mi forms. + def #NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>; + def #NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>; + def #NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>; + + def #NAME#8mi : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>; + def #NAME#16mi : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>; + def #NAME#32mi : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>; + def #NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>; + + def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL>; + def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX>; + def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX>; + def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX>; + } +} + +/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is +/// defined with "(set EFLAGS, (...". It would be really nice to find a way +/// to factor this with the other ArithBinOp_*. +/// +multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4, + string mnemonic, Format RegMRM, Format MemMRM, + SDNode opnode, + bit CommutableRR, bit ConvertibleToThreeAddress> { + let Defs = [EFLAGS] in { + let isCommutable = CommutableRR, + isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + def #NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>; + def #NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>; + def #NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>; + def #NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>; + } // isCommutable + + def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>; + def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>; + def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>; + def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>; + + def #NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>; + def #NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>; + def #NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>; + def #NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>; + + let isConvertibleToThreeAddress = ConvertibleToThreeAddress in { + // NOTE: These are order specific, we want the ri8 forms to be listed + // first so that they are slightly preferred to the ri forms. + def #NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>; + def #NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>; + def #NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>; + + def #NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>; + def #NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>; + def #NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>; + def #NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>; + } + + def #NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>; + def #NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>; + def #NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>; + def #NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>; + + // NOTE: These are order specific, we want the mi8 forms to be listed + // first so that they are slightly preferred to the mi forms. + def #NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>; + def #NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>; + def #NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>; + + def #NAME#8mi : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>; + def #NAME#16mi : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>; + def #NAME#32mi : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>; + def #NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>; + + def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL>; + def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX>; + def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX>; + def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX>; + } +} + + +defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m, + X86and_flag, and, 1, 0>; +defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m, + X86or_flag, or, 1, 0>; +defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m, + X86xor_flag, xor, 1, 0>; +defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m, + X86add_flag, add, 1, 1>; +defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m, + X86sub_flag, sub, 0, 0>; + +// Arithmetic. +let Uses = [EFLAGS] in { + defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag, + 1, 0>; + defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag, + 0, 0>; +} + +defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>; + + +//===----------------------------------------------------------------------===// +// Semantically, test instructions are similar like AND, except they don't +// generate a result. From an encoding perspective, they are very different: +// they don't have all the usual imm8 and REV forms, and are encoded into a +// different space. +def X86testpat : PatFrag<(ops node:$lhs, node:$rhs), + (X86cmp (and_su node:$lhs, node:$rhs), 0)>; + +let Defs = [EFLAGS] in { + let isCommutable = 1 in { + def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>; + def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>; + def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>; + def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>; + } // isCommutable + + def TEST8rm : BinOpRM_F<0x84, "test", Xi8 , X86testpat>; + def TEST16rm : BinOpRM_F<0x84, "test", Xi16, X86testpat>; + def TEST32rm : BinOpRM_F<0x84, "test", Xi32, X86testpat>; + def TEST64rm : BinOpRM_F<0x84, "test", Xi64, X86testpat>; + + def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>; + def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>; + def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>; + def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>; + + def TEST8mi : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>; + def TEST16mi : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>; + def TEST32mi : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>; + def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>; + + def TEST8i8 : BinOpAI<0xA8, "test", Xi8 , AL>; + def TEST16i16 : BinOpAI<0xA8, "test", Xi16, AX>; + def TEST32i32 : BinOpAI<0xA8, "test", Xi32, EAX>; + def TEST64i32 : BinOpAI<0xA8, "test", Xi64, RAX>; +} + |