aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/X86/X86InstrArithmetic.td
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2011-02-20 12:57:14 +0000
committerDimitry Andric <dim@FreeBSD.org>2011-02-20 12:57:14 +0000
commitcf099d11218cb6f6c5cce947d6738e347f07fb12 (patch)
treed2b61ce94e654cb01a254d2195259db5f9cc3f3c /lib/Target/X86/X86InstrArithmetic.td
parent49011b52fcba02a6051957b84705159f52fae4e4 (diff)
downloadsrc-cf099d11218cb6f6c5cce947d6738e347f07fb12.tar.gz
src-cf099d11218cb6f6c5cce947d6738e347f07fb12.zip
Notes
Diffstat (limited to 'lib/Target/X86/X86InstrArithmetic.td')
-rw-r--r--lib/Target/X86/X86InstrArithmetic.td1125
1 files changed, 1125 insertions, 0 deletions
diff --git a/lib/Target/X86/X86InstrArithmetic.td b/lib/Target/X86/X86InstrArithmetic.td
new file mode 100644
index 000000000000..f0ea06870869
--- /dev/null
+++ b/lib/Target/X86/X86InstrArithmetic.td
@@ -0,0 +1,1125 @@
+//===- X86InstrArithmetic.td - Integer Arithmetic Instrs ---*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the integer arithmetic instructions in the X86
+// architecture.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// LEA - Load Effective Address
+
+let neverHasSideEffects = 1 in
+def LEA16r : I<0x8D, MRMSrcMem,
+ (outs GR16:$dst), (ins i32mem:$src),
+ "lea{w}\t{$src|$dst}, {$dst|$src}", []>, OpSize;
+let isReMaterializable = 1 in
+def LEA32r : I<0x8D, MRMSrcMem,
+ (outs GR32:$dst), (ins i32mem:$src),
+ "lea{l}\t{$src|$dst}, {$dst|$src}",
+ [(set GR32:$dst, lea32addr:$src)]>, Requires<[In32BitMode]>;
+
+def LEA64_32r : I<0x8D, MRMSrcMem,
+ (outs GR32:$dst), (ins lea64_32mem:$src),
+ "lea{l}\t{$src|$dst}, {$dst|$src}",
+ [(set GR32:$dst, lea32addr:$src)]>, Requires<[In64BitMode]>;
+
+let isReMaterializable = 1 in
+def LEA64r : RI<0x8D, MRMSrcMem, (outs GR64:$dst), (ins i64mem:$src),
+ "lea{q}\t{$src|$dst}, {$dst|$src}",
+ [(set GR64:$dst, lea64addr:$src)]>;
+
+
+
+//===----------------------------------------------------------------------===//
+// Fixed-Register Multiplication and Division Instructions.
+//
+
+// Extra precision multiplication
+
+// AL is really implied by AX, but the registers in Defs must match the
+// SDNode results (i8, i32).
+let Defs = [AL,EFLAGS,AX], Uses = [AL] in
+def MUL8r : I<0xF6, MRM4r, (outs), (ins GR8:$src), "mul{b}\t$src",
+ // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
+ // This probably ought to be moved to a def : Pat<> if the
+ // syntax can be accepted.
+ [(set AL, (mul AL, GR8:$src)),
+ (implicit EFLAGS)]>; // AL,AH = AL*GR8
+
+let Defs = [AX,DX,EFLAGS], Uses = [AX], neverHasSideEffects = 1 in
+def MUL16r : I<0xF7, MRM4r, (outs), (ins GR16:$src),
+ "mul{w}\t$src",
+ []>, OpSize; // AX,DX = AX*GR16
+
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX], neverHasSideEffects = 1 in
+def MUL32r : I<0xF7, MRM4r, (outs), (ins GR32:$src),
+ "mul{l}\t$src", // EAX,EDX = EAX*GR32
+ [/*(set EAX, EDX, EFLAGS, (X86umul_flag EAX, GR32:$src))*/]>;
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
+def MUL64r : RI<0xF7, MRM4r, (outs), (ins GR64:$src),
+ "mul{q}\t$src", // RAX,RDX = RAX*GR64
+ [/*(set RAX, RDX, EFLAGS, (X86umul_flag RAX, GR64:$src))*/]>;
+
+let Defs = [AL,EFLAGS,AX], Uses = [AL] in
+def MUL8m : I<0xF6, MRM4m, (outs), (ins i8mem :$src),
+ "mul{b}\t$src",
+ // FIXME: Used for 8-bit mul, ignore result upper 8 bits.
+ // This probably ought to be moved to a def : Pat<> if the
+ // syntax can be accepted.
+ [(set AL, (mul AL, (loadi8 addr:$src))),
+ (implicit EFLAGS)]>; // AL,AH = AL*[mem8]
+
+let mayLoad = 1, neverHasSideEffects = 1 in {
+let Defs = [AX,DX,EFLAGS], Uses = [AX] in
+def MUL16m : I<0xF7, MRM4m, (outs), (ins i16mem:$src),
+ "mul{w}\t$src",
+ []>, OpSize; // AX,DX = AX*[mem16]
+
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
+def MUL32m : I<0xF7, MRM4m, (outs), (ins i32mem:$src),
+ "mul{l}\t$src",
+ []>; // EAX,EDX = EAX*[mem32]
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
+def MUL64m : RI<0xF7, MRM4m, (outs), (ins i64mem:$src),
+ "mul{q}\t$src", []>; // RAX,RDX = RAX*[mem64]
+}
+
+let neverHasSideEffects = 1 in {
+let Defs = [AL,EFLAGS,AX], Uses = [AL] in
+def IMUL8r : I<0xF6, MRM5r, (outs), (ins GR8:$src), "imul{b}\t$src", []>;
+ // AL,AH = AL*GR8
+let Defs = [AX,DX,EFLAGS], Uses = [AX] in
+def IMUL16r : I<0xF7, MRM5r, (outs), (ins GR16:$src), "imul{w}\t$src", []>,
+ OpSize; // AX,DX = AX*GR16
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
+def IMUL32r : I<0xF7, MRM5r, (outs), (ins GR32:$src), "imul{l}\t$src", []>;
+ // EAX,EDX = EAX*GR32
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
+def IMUL64r : RI<0xF7, MRM5r, (outs), (ins GR64:$src), "imul{q}\t$src", []>;
+ // RAX,RDX = RAX*GR64
+
+let mayLoad = 1 in {
+let Defs = [AL,EFLAGS,AX], Uses = [AL] in
+def IMUL8m : I<0xF6, MRM5m, (outs), (ins i8mem :$src),
+ "imul{b}\t$src", []>; // AL,AH = AL*[mem8]
+let Defs = [AX,DX,EFLAGS], Uses = [AX] in
+def IMUL16m : I<0xF7, MRM5m, (outs), (ins i16mem:$src),
+ "imul{w}\t$src", []>, OpSize; // AX,DX = AX*[mem16]
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX] in
+def IMUL32m : I<0xF7, MRM5m, (outs), (ins i32mem:$src),
+ "imul{l}\t$src", []>; // EAX,EDX = EAX*[mem32]
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX], neverHasSideEffects = 1 in
+def IMUL64m : RI<0xF7, MRM5m, (outs), (ins i64mem:$src),
+ "imul{q}\t$src", []>; // RAX,RDX = RAX*[mem64]
+}
+} // neverHasSideEffects
+
+
+let Defs = [EFLAGS] in {
+let Constraints = "$src1 = $dst" in {
+
+let isCommutable = 1 in { // X = IMUL Y, Z --> X = IMUL Z, Y
+// Register-Register Signed Integer Multiply
+def IMUL16rr : I<0xAF, MRMSrcReg, (outs GR16:$dst), (ins GR16:$src1,GR16:$src2),
+ "imul{w}\t{$src2, $dst|$dst, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag GR16:$src1, GR16:$src2))]>, TB, OpSize;
+def IMUL32rr : I<0xAF, MRMSrcReg, (outs GR32:$dst), (ins GR32:$src1,GR32:$src2),
+ "imul{l}\t{$src2, $dst|$dst, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag GR32:$src1, GR32:$src2))]>, TB;
+def IMUL64rr : RI<0xAF, MRMSrcReg, (outs GR64:$dst),
+ (ins GR64:$src1, GR64:$src2),
+ "imul{q}\t{$src2, $dst|$dst, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag GR64:$src1, GR64:$src2))]>, TB;
+}
+
+// Register-Memory Signed Integer Multiply
+def IMUL16rm : I<0xAF, MRMSrcMem, (outs GR16:$dst),
+ (ins GR16:$src1, i16mem:$src2),
+ "imul{w}\t{$src2, $dst|$dst, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag GR16:$src1, (load addr:$src2)))]>,
+ TB, OpSize;
+def IMUL32rm : I<0xAF, MRMSrcMem, (outs GR32:$dst),
+ (ins GR32:$src1, i32mem:$src2),
+ "imul{l}\t{$src2, $dst|$dst, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag GR32:$src1, (load addr:$src2)))]>, TB;
+def IMUL64rm : RI<0xAF, MRMSrcMem, (outs GR64:$dst),
+ (ins GR64:$src1, i64mem:$src2),
+ "imul{q}\t{$src2, $dst|$dst, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag GR64:$src1, (load addr:$src2)))]>, TB;
+} // Constraints = "$src1 = $dst"
+
+} // Defs = [EFLAGS]
+
+// Suprisingly enough, these are not two address instructions!
+let Defs = [EFLAGS] in {
+// Register-Integer Signed Integer Multiply
+def IMUL16rri : Ii16<0x69, MRMSrcReg, // GR16 = GR16*I16
+ (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
+ "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag GR16:$src1, imm:$src2))]>, OpSize;
+def IMUL16rri8 : Ii8<0x6B, MRMSrcReg, // GR16 = GR16*I8
+ (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
+ "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag GR16:$src1, i16immSExt8:$src2))]>,
+ OpSize;
+def IMUL32rri : Ii32<0x69, MRMSrcReg, // GR32 = GR32*I32
+ (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
+ "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag GR32:$src1, imm:$src2))]>;
+def IMUL32rri8 : Ii8<0x6B, MRMSrcReg, // GR32 = GR32*I8
+ (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
+ "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag GR32:$src1, i32immSExt8:$src2))]>;
+def IMUL64rri32 : RIi32<0x69, MRMSrcReg, // GR64 = GR64*I32
+ (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
+ "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag GR64:$src1, i64immSExt32:$src2))]>;
+def IMUL64rri8 : RIi8<0x6B, MRMSrcReg, // GR64 = GR64*I8
+ (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
+ "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag GR64:$src1, i64immSExt8:$src2))]>;
+
+
+// Memory-Integer Signed Integer Multiply
+def IMUL16rmi : Ii16<0x69, MRMSrcMem, // GR16 = [mem16]*I16
+ (outs GR16:$dst), (ins i16mem:$src1, i16imm:$src2),
+ "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1), imm:$src2))]>,
+ OpSize;
+def IMUL16rmi8 : Ii8<0x6B, MRMSrcMem, // GR16 = [mem16]*I8
+ (outs GR16:$dst), (ins i16mem:$src1, i16i8imm :$src2),
+ "imul{w}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR16:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1),
+ i16immSExt8:$src2))]>, OpSize;
+def IMUL32rmi : Ii32<0x69, MRMSrcMem, // GR32 = [mem32]*I32
+ (outs GR32:$dst), (ins i32mem:$src1, i32imm:$src2),
+ "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1), imm:$src2))]>;
+def IMUL32rmi8 : Ii8<0x6B, MRMSrcMem, // GR32 = [mem32]*I8
+ (outs GR32:$dst), (ins i32mem:$src1, i32i8imm: $src2),
+ "imul{l}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR32:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1),
+ i32immSExt8:$src2))]>;
+def IMUL64rmi32 : RIi32<0x69, MRMSrcMem, // GR64 = [mem64]*I32
+ (outs GR64:$dst), (ins i64mem:$src1, i64i32imm:$src2),
+ "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1),
+ i64immSExt32:$src2))]>;
+def IMUL64rmi8 : RIi8<0x6B, MRMSrcMem, // GR64 = [mem64]*I8
+ (outs GR64:$dst), (ins i64mem:$src1, i64i8imm: $src2),
+ "imul{q}\t{$src2, $src1, $dst|$dst, $src1, $src2}",
+ [(set GR64:$dst, EFLAGS,
+ (X86smul_flag (load addr:$src1),
+ i64immSExt8:$src2))]>;
+} // Defs = [EFLAGS]
+
+
+
+
+// unsigned division/remainder
+let Defs = [AL,EFLAGS,AX], Uses = [AX] in
+def DIV8r : I<0xF6, MRM6r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
+ "div{b}\t$src", []>;
+let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
+def DIV16r : I<0xF7, MRM6r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
+ "div{w}\t$src", []>, OpSize;
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
+def DIV32r : I<0xF7, MRM6r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
+ "div{l}\t$src", []>;
+// RDX:RAX/r64 = RAX,RDX
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
+def DIV64r : RI<0xF7, MRM6r, (outs), (ins GR64:$src),
+ "div{q}\t$src", []>;
+
+let mayLoad = 1 in {
+let Defs = [AL,EFLAGS,AX], Uses = [AX] in
+def DIV8m : I<0xF6, MRM6m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
+ "div{b}\t$src", []>;
+let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
+def DIV16m : I<0xF7, MRM6m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
+ "div{w}\t$src", []>, OpSize;
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
+def DIV32m : I<0xF7, MRM6m, (outs), (ins i32mem:$src),
+ "div{l}\t$src", []>;
+// RDX:RAX/[mem64] = RAX,RDX
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
+def DIV64m : RI<0xF7, MRM6m, (outs), (ins i64mem:$src),
+ "div{q}\t$src", []>;
+}
+
+// Signed division/remainder.
+let Defs = [AL,EFLAGS,AX], Uses = [AX] in
+def IDIV8r : I<0xF6, MRM7r, (outs), (ins GR8:$src), // AX/r8 = AL,AH
+ "idiv{b}\t$src", []>;
+let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
+def IDIV16r: I<0xF7, MRM7r, (outs), (ins GR16:$src), // DX:AX/r16 = AX,DX
+ "idiv{w}\t$src", []>, OpSize;
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in
+def IDIV32r: I<0xF7, MRM7r, (outs), (ins GR32:$src), // EDX:EAX/r32 = EAX,EDX
+ "idiv{l}\t$src", []>;
+// RDX:RAX/r64 = RAX,RDX
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in
+def IDIV64r: RI<0xF7, MRM7r, (outs), (ins GR64:$src),
+ "idiv{q}\t$src", []>;
+
+let mayLoad = 1, mayLoad = 1 in {
+let Defs = [AL,EFLAGS,AX], Uses = [AX] in
+def IDIV8m : I<0xF6, MRM7m, (outs), (ins i8mem:$src), // AX/[mem8] = AL,AH
+ "idiv{b}\t$src", []>;
+let Defs = [AX,DX,EFLAGS], Uses = [AX,DX] in
+def IDIV16m: I<0xF7, MRM7m, (outs), (ins i16mem:$src), // DX:AX/[mem16] = AX,DX
+ "idiv{w}\t$src", []>, OpSize;
+let Defs = [EAX,EDX,EFLAGS], Uses = [EAX,EDX] in // EDX:EAX/[mem32] = EAX,EDX
+def IDIV32m: I<0xF7, MRM7m, (outs), (ins i32mem:$src),
+ "idiv{l}\t$src", []>;
+let Defs = [RAX,RDX,EFLAGS], Uses = [RAX,RDX] in // RDX:RAX/[mem64] = RAX,RDX
+def IDIV64m: RI<0xF7, MRM7m, (outs), (ins i64mem:$src),
+ "idiv{q}\t$src", []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Two address Instructions.
+//
+
+// unary instructions
+let CodeSize = 2 in {
+let Defs = [EFLAGS] in {
+let Constraints = "$src1 = $dst" in {
+def NEG8r : I<0xF6, MRM3r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "neg{b}\t$dst",
+ [(set GR8:$dst, (ineg GR8:$src1)),
+ (implicit EFLAGS)]>;
+def NEG16r : I<0xF7, MRM3r, (outs GR16:$dst), (ins GR16:$src1),
+ "neg{w}\t$dst",
+ [(set GR16:$dst, (ineg GR16:$src1)),
+ (implicit EFLAGS)]>, OpSize;
+def NEG32r : I<0xF7, MRM3r, (outs GR32:$dst), (ins GR32:$src1),
+ "neg{l}\t$dst",
+ [(set GR32:$dst, (ineg GR32:$src1)),
+ (implicit EFLAGS)]>;
+def NEG64r : RI<0xF7, MRM3r, (outs GR64:$dst), (ins GR64:$src1), "neg{q}\t$dst",
+ [(set GR64:$dst, (ineg GR64:$src1)),
+ (implicit EFLAGS)]>;
+} // Constraints = "$src1 = $dst"
+
+def NEG8m : I<0xF6, MRM3m, (outs), (ins i8mem :$dst),
+ "neg{b}\t$dst",
+ [(store (ineg (loadi8 addr:$dst)), addr:$dst),
+ (implicit EFLAGS)]>;
+def NEG16m : I<0xF7, MRM3m, (outs), (ins i16mem:$dst),
+ "neg{w}\t$dst",
+ [(store (ineg (loadi16 addr:$dst)), addr:$dst),
+ (implicit EFLAGS)]>, OpSize;
+def NEG32m : I<0xF7, MRM3m, (outs), (ins i32mem:$dst),
+ "neg{l}\t$dst",
+ [(store (ineg (loadi32 addr:$dst)), addr:$dst),
+ (implicit EFLAGS)]>;
+def NEG64m : RI<0xF7, MRM3m, (outs), (ins i64mem:$dst), "neg{q}\t$dst",
+ [(store (ineg (loadi64 addr:$dst)), addr:$dst),
+ (implicit EFLAGS)]>;
+} // Defs = [EFLAGS]
+
+
+// Note: NOT does not set EFLAGS!
+
+let Constraints = "$src1 = $dst" in {
+// Match xor -1 to not. Favors these over a move imm + xor to save code size.
+let AddedComplexity = 15 in {
+def NOT8r : I<0xF6, MRM2r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "not{b}\t$dst",
+ [(set GR8:$dst, (not GR8:$src1))]>;
+def NOT16r : I<0xF7, MRM2r, (outs GR16:$dst), (ins GR16:$src1),
+ "not{w}\t$dst",
+ [(set GR16:$dst, (not GR16:$src1))]>, OpSize;
+def NOT32r : I<0xF7, MRM2r, (outs GR32:$dst), (ins GR32:$src1),
+ "not{l}\t$dst",
+ [(set GR32:$dst, (not GR32:$src1))]>;
+def NOT64r : RI<0xF7, MRM2r, (outs GR64:$dst), (ins GR64:$src1), "not{q}\t$dst",
+ [(set GR64:$dst, (not GR64:$src1))]>;
+}
+} // Constraints = "$src1 = $dst"
+
+def NOT8m : I<0xF6, MRM2m, (outs), (ins i8mem :$dst),
+ "not{b}\t$dst",
+ [(store (not (loadi8 addr:$dst)), addr:$dst)]>;
+def NOT16m : I<0xF7, MRM2m, (outs), (ins i16mem:$dst),
+ "not{w}\t$dst",
+ [(store (not (loadi16 addr:$dst)), addr:$dst)]>, OpSize;
+def NOT32m : I<0xF7, MRM2m, (outs), (ins i32mem:$dst),
+ "not{l}\t$dst",
+ [(store (not (loadi32 addr:$dst)), addr:$dst)]>;
+def NOT64m : RI<0xF7, MRM2m, (outs), (ins i64mem:$dst), "not{q}\t$dst",
+ [(store (not (loadi64 addr:$dst)), addr:$dst)]>;
+} // CodeSize
+
+// TODO: inc/dec is slow for P4, but fast for Pentium-M.
+let Defs = [EFLAGS] in {
+let Constraints = "$src1 = $dst" in {
+let CodeSize = 2 in
+def INC8r : I<0xFE, MRM0r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "inc{b}\t$dst",
+ [(set GR8:$dst, EFLAGS, (X86inc_flag GR8:$src1))]>;
+
+let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA.
+def INC16r : I<0x40, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
+ "inc{w}\t$dst",
+ [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>,
+ OpSize, Requires<[In32BitMode]>;
+def INC32r : I<0x40, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
+ "inc{l}\t$dst",
+ [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>,
+ Requires<[In32BitMode]>;
+def INC64r : RI<0xFF, MRM0r, (outs GR64:$dst), (ins GR64:$src1), "inc{q}\t$dst",
+ [(set GR64:$dst, EFLAGS, (X86inc_flag GR64:$src1))]>;
+} // isConvertibleToThreeAddress = 1, CodeSize = 1
+
+
+// In 64-bit mode, single byte INC and DEC cannot be encoded.
+let isConvertibleToThreeAddress = 1, CodeSize = 2 in {
+// Can transform into LEA.
+def INC64_16r : I<0xFF, MRM0r, (outs GR16:$dst), (ins GR16:$src1),
+ "inc{w}\t$dst",
+ [(set GR16:$dst, EFLAGS, (X86inc_flag GR16:$src1))]>,
+ OpSize, Requires<[In64BitMode]>;
+def INC64_32r : I<0xFF, MRM0r, (outs GR32:$dst), (ins GR32:$src1),
+ "inc{l}\t$dst",
+ [(set GR32:$dst, EFLAGS, (X86inc_flag GR32:$src1))]>,
+ Requires<[In64BitMode]>;
+def DEC64_16r : I<0xFF, MRM1r, (outs GR16:$dst), (ins GR16:$src1),
+ "dec{w}\t$dst",
+ [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>,
+ OpSize, Requires<[In64BitMode]>;
+def DEC64_32r : I<0xFF, MRM1r, (outs GR32:$dst), (ins GR32:$src1),
+ "dec{l}\t$dst",
+ [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>,
+ Requires<[In64BitMode]>;
+} // isConvertibleToThreeAddress = 1, CodeSize = 2
+
+} // Constraints = "$src1 = $dst"
+
+let CodeSize = 2 in {
+ def INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst), "inc{b}\t$dst",
+ [(store (add (loadi8 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)]>;
+ def INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
+ [(store (add (loadi16 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)]>,
+ OpSize, Requires<[In32BitMode]>;
+ def INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
+ [(store (add (loadi32 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)]>,
+ Requires<[In32BitMode]>;
+ def INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst), "inc{q}\t$dst",
+ [(store (add (loadi64 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)]>;
+
+// These are duplicates of their 32-bit counterparts. Only needed so X86 knows
+// how to unfold them.
+// FIXME: What is this for??
+def INC64_16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst), "inc{w}\t$dst",
+ [(store (add (loadi16 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)]>,
+ OpSize, Requires<[In64BitMode]>;
+def INC64_32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst), "inc{l}\t$dst",
+ [(store (add (loadi32 addr:$dst), 1), addr:$dst),
+ (implicit EFLAGS)]>,
+ Requires<[In64BitMode]>;
+def DEC64_16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
+ [(store (add (loadi16 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)]>,
+ OpSize, Requires<[In64BitMode]>;
+def DEC64_32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
+ [(store (add (loadi32 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)]>,
+ Requires<[In64BitMode]>;
+} // CodeSize = 2
+
+let Constraints = "$src1 = $dst" in {
+let CodeSize = 2 in
+def DEC8r : I<0xFE, MRM1r, (outs GR8 :$dst), (ins GR8 :$src1),
+ "dec{b}\t$dst",
+ [(set GR8:$dst, EFLAGS, (X86dec_flag GR8:$src1))]>;
+let isConvertibleToThreeAddress = 1, CodeSize = 1 in { // Can xform into LEA.
+def DEC16r : I<0x48, AddRegFrm, (outs GR16:$dst), (ins GR16:$src1),
+ "dec{w}\t$dst",
+ [(set GR16:$dst, EFLAGS, (X86dec_flag GR16:$src1))]>,
+ OpSize, Requires<[In32BitMode]>;
+def DEC32r : I<0x48, AddRegFrm, (outs GR32:$dst), (ins GR32:$src1),
+ "dec{l}\t$dst",
+ [(set GR32:$dst, EFLAGS, (X86dec_flag GR32:$src1))]>,
+ Requires<[In32BitMode]>;
+def DEC64r : RI<0xFF, MRM1r, (outs GR64:$dst), (ins GR64:$src1), "dec{q}\t$dst",
+ [(set GR64:$dst, EFLAGS, (X86dec_flag GR64:$src1))]>;
+} // CodeSize = 2
+} // Constraints = "$src1 = $dst"
+
+
+let CodeSize = 2 in {
+ def DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst), "dec{b}\t$dst",
+ [(store (add (loadi8 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)]>;
+ def DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst), "dec{w}\t$dst",
+ [(store (add (loadi16 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)]>,
+ OpSize, Requires<[In32BitMode]>;
+ def DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst), "dec{l}\t$dst",
+ [(store (add (loadi32 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)]>,
+ Requires<[In32BitMode]>;
+ def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
+ [(store (add (loadi64 addr:$dst), -1), addr:$dst),
+ (implicit EFLAGS)]>;
+} // CodeSize = 2
+} // Defs = [EFLAGS]
+
+
+/// X86TypeInfo - This is a bunch of information that describes relevant X86
+/// information about value types. For example, it can tell you what the
+/// register class and preferred load to use.
+class X86TypeInfo<ValueType vt, string instrsuffix, RegisterClass regclass,
+ PatFrag loadnode, X86MemOperand memoperand, ImmType immkind,
+ Operand immoperand, SDPatternOperator immoperator,
+ Operand imm8operand, SDPatternOperator imm8operator,
+ bit hasOddOpcode, bit hasOpSizePrefix, bit hasREX_WPrefix> {
+ /// VT - This is the value type itself.
+ ValueType VT = vt;
+
+ /// InstrSuffix - This is the suffix used on instructions with this type. For
+ /// example, i8 -> "b", i16 -> "w", i32 -> "l", i64 -> "q".
+ string InstrSuffix = instrsuffix;
+
+ /// RegClass - This is the register class associated with this type. For
+ /// example, i8 -> GR8, i16 -> GR16, i32 -> GR32, i64 -> GR64.
+ RegisterClass RegClass = regclass;
+
+ /// LoadNode - This is the load node associated with this type. For
+ /// example, i8 -> loadi8, i16 -> loadi16, i32 -> loadi32, i64 -> loadi64.
+ PatFrag LoadNode = loadnode;
+
+ /// MemOperand - This is the memory operand associated with this type. For
+ /// example, i8 -> i8mem, i16 -> i16mem, i32 -> i32mem, i64 -> i64mem.
+ X86MemOperand MemOperand = memoperand;
+
+ /// ImmEncoding - This is the encoding of an immediate of this type. For
+ /// example, i8 -> Imm8, i16 -> Imm16, i32 -> Imm32. Note that i64 -> Imm32
+ /// since the immediate fields of i64 instructions is a 32-bit sign extended
+ /// value.
+ ImmType ImmEncoding = immkind;
+
+ /// ImmOperand - This is the operand kind of an immediate of this type. For
+ /// example, i8 -> i8imm, i16 -> i16imm, i32 -> i32imm. Note that i64 ->
+ /// i64i32imm since the immediate fields of i64 instructions is a 32-bit sign
+ /// extended value.
+ Operand ImmOperand = immoperand;
+
+ /// ImmOperator - This is the operator that should be used to match an
+ /// immediate of this kind in a pattern (e.g. imm, or i64immSExt32).
+ SDPatternOperator ImmOperator = immoperator;
+
+ /// Imm8Operand - This is the operand kind to use for an imm8 of this type.
+ /// For example, i8 -> <invalid>, i16 -> i16i8imm, i32 -> i32i8imm. This is
+ /// only used for instructions that have a sign-extended imm8 field form.
+ Operand Imm8Operand = imm8operand;
+
+ /// Imm8Operator - This is the operator that should be used to match an 8-bit
+ /// sign extended immediate of this kind in a pattern (e.g. imm16immSExt8).
+ SDPatternOperator Imm8Operator = imm8operator;
+
+ /// HasOddOpcode - This bit is true if the instruction should have an odd (as
+ /// opposed to even) opcode. Operations on i8 are usually even, operations on
+ /// other datatypes are odd.
+ bit HasOddOpcode = hasOddOpcode;
+
+ /// HasOpSizePrefix - This bit is set to true if the instruction should have
+ /// the 0x66 operand size prefix. This is set for i16 types.
+ bit HasOpSizePrefix = hasOpSizePrefix;
+
+ /// HasREX_WPrefix - This bit is set to true if the instruction should have
+ /// the 0x40 REX prefix. This is set for i64 types.
+ bit HasREX_WPrefix = hasREX_WPrefix;
+}
+
+def invalid_node : SDNode<"<<invalid_node>>", SDTIntLeaf,[],"<<invalid_node>>">;
+
+
+def Xi8 : X86TypeInfo<i8 , "b", GR8 , loadi8 , i8mem ,
+ Imm8 , i8imm , imm, i8imm , invalid_node,
+ 0, 0, 0>;
+def Xi16 : X86TypeInfo<i16, "w", GR16, loadi16, i16mem,
+ Imm16, i16imm, imm, i16i8imm, i16immSExt8,
+ 1, 1, 0>;
+def Xi32 : X86TypeInfo<i32, "l", GR32, loadi32, i32mem,
+ Imm32, i32imm, imm, i32i8imm, i32immSExt8,
+ 1, 0, 0>;
+def Xi64 : X86TypeInfo<i64, "q", GR64, loadi64, i64mem,
+ Imm32, i64i32imm, i64immSExt32, i64i8imm, i64immSExt8,
+ 1, 0, 1>;
+
+/// ITy - This instruction base class takes the type info for the instruction.
+/// Using this, it:
+/// 1. Concatenates together the instruction mnemonic with the appropriate
+/// suffix letter, a tab, and the arguments.
+/// 2. Infers whether the instruction should have a 0x66 prefix byte.
+/// 3. Infers whether the instruction should have a 0x40 REX_W prefix.
+/// 4. Infers whether the low bit of the opcode should be 0 (for i8 operations)
+/// or 1 (for i16,i32,i64 operations).
+class ITy<bits<8> opcode, Format f, X86TypeInfo typeinfo, dag outs, dag ins,
+ string mnemonic, string args, list<dag> pattern>
+ : I<{opcode{7}, opcode{6}, opcode{5}, opcode{4},
+ opcode{3}, opcode{2}, opcode{1}, typeinfo.HasOddOpcode },
+ f, outs, ins,
+ !strconcat(mnemonic, "{", typeinfo.InstrSuffix, "}\t", args), pattern> {
+
+ // Infer instruction prefixes from type info.
+ let hasOpSizePrefix = typeinfo.HasOpSizePrefix;
+ let hasREX_WPrefix = typeinfo.HasREX_WPrefix;
+}
+
+// BinOpRR - Instructions like "add reg, reg, reg".
+class BinOpRR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ dag outlist, list<dag> pattern, Format f = MRMDestReg>
+ : ITy<opcode, f, typeinfo, outlist,
+ (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
+ mnemonic, "{$src2, $src1|$src1, $src2}", pattern>;
+
+// BinOpRR_R - Instructions like "add reg, reg, reg", where the pattern has
+// just a regclass (no eflags) as a result.
+class BinOpRR_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst,
+ (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
+
+// BinOpRR_F - Instructions like "cmp reg, Reg", where the pattern has
+// just a EFLAGS as a result.
+class BinOpRR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDPatternOperator opnode, Format f = MRMDestReg>
+ : BinOpRR<opcode, mnemonic, typeinfo, (outs),
+ [(set EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))],
+ f>;
+
+// BinOpRR_RF - Instructions like "add reg, reg, reg", where the pattern has
+// both a regclass and EFLAGS as a result.
+class BinOpRR_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2))]>;
+
+// BinOpRR_RFF - Instructions like "adc reg, reg, reg", where the pattern has
+// both a regclass and EFLAGS as a result, and has EFLAGS as input.
+class BinOpRR_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRR<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.RegClass:$src2,
+ EFLAGS))]>;
+
+// BinOpRR_Rev - Instructions like "add reg, reg, reg" (reversed encoding).
+class BinOpRR_Rev<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo>
+ : ITy<opcode, MRMSrcReg, typeinfo,
+ (outs typeinfo.RegClass:$dst),
+ (ins typeinfo.RegClass:$src1, typeinfo.RegClass:$src2),
+ mnemonic, "{$src2, $dst|$dst, $src2}", []> {
+ // The disassembler should know about this, but not the asmparser.
+ let isCodeGenOnly = 1;
+}
+
+// BinOpRM - Instructions like "add reg, reg, [mem]".
+class BinOpRM<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ dag outlist, list<dag> pattern>
+ : ITy<opcode, MRMSrcMem, typeinfo, outlist,
+ (ins typeinfo.RegClass:$src1, typeinfo.MemOperand:$src2),
+ mnemonic, "{$src2, $src1|$src1, $src2}", pattern>;
+
+// BinOpRM_R - Instructions like "add reg, reg, [mem]".
+class BinOpRM_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst,
+ (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
+
+// BinOpRM_F - Instructions like "cmp reg, [mem]".
+class BinOpRM_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDPatternOperator opnode>
+ : BinOpRM<opcode, mnemonic, typeinfo, (outs),
+ [(set EFLAGS,
+ (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
+
+// BinOpRM_RF - Instructions like "add reg, reg, [mem]".
+class BinOpRM_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2)))]>;
+
+// BinOpRM_RFF - Instructions like "adc reg, reg, [mem]".
+class BinOpRM_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpRM<opcode, mnemonic, typeinfo, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, (typeinfo.LoadNode addr:$src2),
+ EFLAGS))]>;
+
+// BinOpRI - Instructions like "add reg, reg, imm".
+class BinOpRI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ Format f, dag outlist, list<dag> pattern>
+ : ITy<opcode, f, typeinfo, outlist,
+ (ins typeinfo.RegClass:$src1, typeinfo.ImmOperand:$src2),
+ mnemonic, "{$src2, $src1|$src1, $src2}", pattern> {
+ let ImmT = typeinfo.ImmEncoding;
+}
+
+// BinOpRI_R - Instructions like "add reg, reg, imm".
+class BinOpRI_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst,
+ (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
+
+// BinOpRI_F - Instructions like "cmp reg, imm".
+class BinOpRI_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDPatternOperator opnode, Format f>
+ : BinOpRI<opcode, mnemonic, typeinfo, f, (outs),
+ [(set EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
+
+// BinOpRI_RF - Instructions like "add reg, reg, imm".
+class BinOpRI_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2))]>;
+
+// BinOpRI_RFF - Instructions like "adc reg, reg, imm".
+class BinOpRI_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.ImmOperator:$src2,
+ EFLAGS))]>;
+
+// BinOpRI8 - Instructions like "add reg, reg, imm8".
+class BinOpRI8<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ Format f, dag outlist, list<dag> pattern>
+ : ITy<opcode, f, typeinfo, outlist,
+ (ins typeinfo.RegClass:$src1, typeinfo.Imm8Operand:$src2),
+ mnemonic, "{$src2, $src1|$src1, $src2}", pattern> {
+ let ImmT = Imm8; // Always 8-bit immediate.
+}
+
+// BinOpRI8_R - Instructions like "add reg, reg, imm8".
+class BinOpRI8_R<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst,
+ (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
+
+// BinOpRI8_F - Instructions like "cmp reg, imm8".
+class BinOpRI8_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs),
+ [(set EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
+
+// BinOpRI8_RF - Instructions like "add reg, reg, imm8".
+class BinOpRI8_RF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2))]>;
+
+// BinOpRI8_RFF - Instructions like "adc reg, reg, imm8".
+class BinOpRI8_RFF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpRI8<opcode, mnemonic, typeinfo, f, (outs typeinfo.RegClass:$dst),
+ [(set typeinfo.RegClass:$dst, EFLAGS,
+ (opnode typeinfo.RegClass:$src1, typeinfo.Imm8Operator:$src2,
+ EFLAGS))]>;
+
+// BinOpMR - Instructions like "add [mem], reg".
+class BinOpMR<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ list<dag> pattern>
+ : ITy<opcode, MRMDestMem, typeinfo,
+ (outs), (ins typeinfo.MemOperand:$dst, typeinfo.RegClass:$src),
+ mnemonic, "{$src, $dst|$dst, $src}", pattern>;
+
+// BinOpMR_RMW - Instructions like "add [mem], reg".
+class BinOpMR_RMW<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpMR<opcode, mnemonic, typeinfo,
+ [(store (opnode (load addr:$dst), typeinfo.RegClass:$src), addr:$dst),
+ (implicit EFLAGS)]>;
+
+// BinOpMR_RMW_FF - Instructions like "adc [mem], reg".
+class BinOpMR_RMW_FF<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpMR<opcode, mnemonic, typeinfo,
+ [(store (opnode (load addr:$dst), typeinfo.RegClass:$src, EFLAGS),
+ addr:$dst),
+ (implicit EFLAGS)]>;
+
+// BinOpMR_F - Instructions like "cmp [mem], reg".
+class BinOpMR_F<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode>
+ : BinOpMR<opcode, mnemonic, typeinfo,
+ [(set EFLAGS, (opnode (load addr:$dst), typeinfo.RegClass:$src))]>;
+
+// BinOpMI - Instructions like "add [mem], imm".
+class BinOpMI<string mnemonic, X86TypeInfo typeinfo,
+ Format f, list<dag> pattern, bits<8> opcode = 0x80>
+ : ITy<opcode, f, typeinfo,
+ (outs), (ins typeinfo.MemOperand:$dst, typeinfo.ImmOperand:$src),
+ mnemonic, "{$src, $dst|$dst, $src}", pattern> {
+ let ImmT = typeinfo.ImmEncoding;
+}
+
+// BinOpMI_RMW - Instructions like "add [mem], imm".
+class BinOpMI_RMW<string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI<mnemonic, typeinfo, f,
+ [(store (opnode (typeinfo.VT (load addr:$dst)),
+ typeinfo.ImmOperator:$src), addr:$dst),
+ (implicit EFLAGS)]>;
+
+// BinOpMI_RMW_FF - Instructions like "adc [mem], imm".
+class BinOpMI_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI<mnemonic, typeinfo, f,
+ [(store (opnode (typeinfo.VT (load addr:$dst)),
+ typeinfo.ImmOperator:$src, EFLAGS), addr:$dst),
+ (implicit EFLAGS)]>;
+
+// BinOpMI_F - Instructions like "cmp [mem], imm".
+class BinOpMI_F<string mnemonic, X86TypeInfo typeinfo,
+ SDPatternOperator opnode, Format f, bits<8> opcode = 0x80>
+ : BinOpMI<mnemonic, typeinfo, f,
+ [(set EFLAGS, (opnode (typeinfo.VT (load addr:$dst)),
+ typeinfo.ImmOperator:$src))],
+ opcode>;
+
+// BinOpMI8 - Instructions like "add [mem], imm8".
+class BinOpMI8<string mnemonic, X86TypeInfo typeinfo,
+ Format f, list<dag> pattern>
+ : ITy<0x82, f, typeinfo,
+ (outs), (ins typeinfo.MemOperand:$dst, typeinfo.Imm8Operand:$src),
+ mnemonic, "{$src, $dst|$dst, $src}", pattern> {
+ let ImmT = Imm8; // Always 8-bit immediate.
+}
+
+// BinOpMI8_RMW - Instructions like "add [mem], imm8".
+class BinOpMI8_RMW<string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI8<mnemonic, typeinfo, f,
+ [(store (opnode (load addr:$dst),
+ typeinfo.Imm8Operator:$src), addr:$dst),
+ (implicit EFLAGS)]>;
+
+// BinOpMI8_RMW_FF - Instructions like "adc [mem], imm8".
+class BinOpMI8_RMW_FF<string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI8<mnemonic, typeinfo, f,
+ [(store (opnode (load addr:$dst),
+ typeinfo.Imm8Operator:$src, EFLAGS), addr:$dst),
+ (implicit EFLAGS)]>;
+
+// BinOpMI8_F - Instructions like "cmp [mem], imm8".
+class BinOpMI8_F<string mnemonic, X86TypeInfo typeinfo,
+ SDNode opnode, Format f>
+ : BinOpMI8<mnemonic, typeinfo, f,
+ [(set EFLAGS, (opnode (load addr:$dst),
+ typeinfo.Imm8Operator:$src))]>;
+
+// BinOpAI - Instructions like "add %eax, %eax, imm".
+class BinOpAI<bits<8> opcode, string mnemonic, X86TypeInfo typeinfo,
+ Register areg>
+ : ITy<opcode, RawFrm, typeinfo,
+ (outs), (ins typeinfo.ImmOperand:$src),
+ mnemonic, !strconcat("{$src, %", areg.AsmName, "|%",
+ areg.AsmName, ", $src}"), []> {
+ let ImmT = typeinfo.ImmEncoding;
+ let Uses = [areg];
+ let Defs = [areg];
+}
+
+/// ArithBinOp_RF - This is an arithmetic binary operator where the pattern is
+/// defined with "(set GPR:$dst, EFLAGS, (...".
+///
+/// It would be nice to get rid of the second and third argument here, but
+/// tblgen can't handle dependent type references aggressively enough: PR8330
+multiclass ArithBinOp_RF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
+ string mnemonic, Format RegMRM, Format MemMRM,
+ SDNode opnodeflag, SDNode opnode,
+ bit CommutableRR, bit ConvertibleToThreeAddress> {
+ let Defs = [EFLAGS] in {
+ let Constraints = "$src1 = $dst" in {
+ let isCommutable = CommutableRR,
+ isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ def #NAME#8rr : BinOpRR_RF<BaseOpc, mnemonic, Xi8 , opnodeflag>;
+ def #NAME#16rr : BinOpRR_RF<BaseOpc, mnemonic, Xi16, opnodeflag>;
+ def #NAME#32rr : BinOpRR_RF<BaseOpc, mnemonic, Xi32, opnodeflag>;
+ def #NAME#64rr : BinOpRR_RF<BaseOpc, mnemonic, Xi64, opnodeflag>;
+ } // isCommutable
+
+ def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
+ def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
+ def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
+ def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
+
+ def #NAME#8rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi8 , opnodeflag>;
+ def #NAME#16rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi16, opnodeflag>;
+ def #NAME#32rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi32, opnodeflag>;
+ def #NAME#64rm : BinOpRM_RF<BaseOpc2, mnemonic, Xi64, opnodeflag>;
+
+ let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ // NOTE: These are order specific, we want the ri8 forms to be listed
+ // first so that they are slightly preferred to the ri forms.
+ def #NAME#16ri8 : BinOpRI8_RF<0x82, mnemonic, Xi16, opnodeflag, RegMRM>;
+ def #NAME#32ri8 : BinOpRI8_RF<0x82, mnemonic, Xi32, opnodeflag, RegMRM>;
+ def #NAME#64ri8 : BinOpRI8_RF<0x82, mnemonic, Xi64, opnodeflag, RegMRM>;
+
+ def #NAME#8ri : BinOpRI_RF<0x80, mnemonic, Xi8 , opnodeflag, RegMRM>;
+ def #NAME#16ri : BinOpRI_RF<0x80, mnemonic, Xi16, opnodeflag, RegMRM>;
+ def #NAME#32ri : BinOpRI_RF<0x80, mnemonic, Xi32, opnodeflag, RegMRM>;
+ def #NAME#64ri32: BinOpRI_RF<0x80, mnemonic, Xi64, opnodeflag, RegMRM>;
+ }
+ } // Constraints = "$src1 = $dst"
+
+ def #NAME#8mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi8 , opnode>;
+ def #NAME#16mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi16, opnode>;
+ def #NAME#32mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi32, opnode>;
+ def #NAME#64mr : BinOpMR_RMW<BaseOpc, mnemonic, Xi64, opnode>;
+
+ // NOTE: These are order specific, we want the mi8 forms to be listed
+ // first so that they are slightly preferred to the mi forms.
+ def #NAME#16mi8 : BinOpMI8_RMW<mnemonic, Xi16, opnode, MemMRM>;
+ def #NAME#32mi8 : BinOpMI8_RMW<mnemonic, Xi32, opnode, MemMRM>;
+ def #NAME#64mi8 : BinOpMI8_RMW<mnemonic, Xi64, opnode, MemMRM>;
+
+ def #NAME#8mi : BinOpMI_RMW<mnemonic, Xi8 , opnode, MemMRM>;
+ def #NAME#16mi : BinOpMI_RMW<mnemonic, Xi16, opnode, MemMRM>;
+ def #NAME#32mi : BinOpMI_RMW<mnemonic, Xi32, opnode, MemMRM>;
+ def #NAME#64mi32 : BinOpMI_RMW<mnemonic, Xi64, opnode, MemMRM>;
+
+ def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL>;
+ def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX>;
+ def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX>;
+ def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX>;
+ }
+}
+
+/// ArithBinOp_RFF - This is an arithmetic binary operator where the pattern is
+/// defined with "(set GPR:$dst, EFLAGS, (node LHS, RHS, EFLAGS))" like ADC and
+/// SBB.
+///
+/// It would be nice to get rid of the second and third argument here, but
+/// tblgen can't handle dependent type references aggressively enough: PR8330
+multiclass ArithBinOp_RFF<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
+ string mnemonic, Format RegMRM, Format MemMRM,
+ SDNode opnode, bit CommutableRR,
+ bit ConvertibleToThreeAddress> {
+ let Defs = [EFLAGS] in {
+ let Constraints = "$src1 = $dst" in {
+ let isCommutable = CommutableRR,
+ isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ def #NAME#8rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi8 , opnode>;
+ def #NAME#16rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi16, opnode>;
+ def #NAME#32rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi32, opnode>;
+ def #NAME#64rr : BinOpRR_RFF<BaseOpc, mnemonic, Xi64, opnode>;
+ } // isCommutable
+
+ def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
+ def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
+ def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
+ def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
+
+ def #NAME#8rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi8 , opnode>;
+ def #NAME#16rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi16, opnode>;
+ def #NAME#32rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi32, opnode>;
+ def #NAME#64rm : BinOpRM_RFF<BaseOpc2, mnemonic, Xi64, opnode>;
+
+ let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ // NOTE: These are order specific, we want the ri8 forms to be listed
+ // first so that they are slightly preferred to the ri forms.
+ def #NAME#16ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi16, opnode, RegMRM>;
+ def #NAME#32ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi32, opnode, RegMRM>;
+ def #NAME#64ri8 : BinOpRI8_RFF<0x82, mnemonic, Xi64, opnode, RegMRM>;
+
+ def #NAME#8ri : BinOpRI_RFF<0x80, mnemonic, Xi8 , opnode, RegMRM>;
+ def #NAME#16ri : BinOpRI_RFF<0x80, mnemonic, Xi16, opnode, RegMRM>;
+ def #NAME#32ri : BinOpRI_RFF<0x80, mnemonic, Xi32, opnode, RegMRM>;
+ def #NAME#64ri32: BinOpRI_RFF<0x80, mnemonic, Xi64, opnode, RegMRM>;
+ }
+ } // Constraints = "$src1 = $dst"
+
+ def #NAME#8mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi8 , opnode>;
+ def #NAME#16mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi16, opnode>;
+ def #NAME#32mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi32, opnode>;
+ def #NAME#64mr : BinOpMR_RMW_FF<BaseOpc, mnemonic, Xi64, opnode>;
+
+ // NOTE: These are order specific, we want the mi8 forms to be listed
+ // first so that they are slightly preferred to the mi forms.
+ def #NAME#16mi8 : BinOpMI8_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
+ def #NAME#32mi8 : BinOpMI8_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
+ def #NAME#64mi8 : BinOpMI8_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
+
+ def #NAME#8mi : BinOpMI_RMW_FF<mnemonic, Xi8 , opnode, MemMRM>;
+ def #NAME#16mi : BinOpMI_RMW_FF<mnemonic, Xi16, opnode, MemMRM>;
+ def #NAME#32mi : BinOpMI_RMW_FF<mnemonic, Xi32, opnode, MemMRM>;
+ def #NAME#64mi32 : BinOpMI_RMW_FF<mnemonic, Xi64, opnode, MemMRM>;
+
+ def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL>;
+ def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX>;
+ def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX>;
+ def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX>;
+ }
+}
+
+/// ArithBinOp_F - This is an arithmetic binary operator where the pattern is
+/// defined with "(set EFLAGS, (...". It would be really nice to find a way
+/// to factor this with the other ArithBinOp_*.
+///
+multiclass ArithBinOp_F<bits<8> BaseOpc, bits<8> BaseOpc2, bits<8> BaseOpc4,
+ string mnemonic, Format RegMRM, Format MemMRM,
+ SDNode opnode,
+ bit CommutableRR, bit ConvertibleToThreeAddress> {
+ let Defs = [EFLAGS] in {
+ let isCommutable = CommutableRR,
+ isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ def #NAME#8rr : BinOpRR_F<BaseOpc, mnemonic, Xi8 , opnode>;
+ def #NAME#16rr : BinOpRR_F<BaseOpc, mnemonic, Xi16, opnode>;
+ def #NAME#32rr : BinOpRR_F<BaseOpc, mnemonic, Xi32, opnode>;
+ def #NAME#64rr : BinOpRR_F<BaseOpc, mnemonic, Xi64, opnode>;
+ } // isCommutable
+
+ def #NAME#8rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi8>;
+ def #NAME#16rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi16>;
+ def #NAME#32rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi32>;
+ def #NAME#64rr_REV : BinOpRR_Rev<BaseOpc2, mnemonic, Xi64>;
+
+ def #NAME#8rm : BinOpRM_F<BaseOpc2, mnemonic, Xi8 , opnode>;
+ def #NAME#16rm : BinOpRM_F<BaseOpc2, mnemonic, Xi16, opnode>;
+ def #NAME#32rm : BinOpRM_F<BaseOpc2, mnemonic, Xi32, opnode>;
+ def #NAME#64rm : BinOpRM_F<BaseOpc2, mnemonic, Xi64, opnode>;
+
+ let isConvertibleToThreeAddress = ConvertibleToThreeAddress in {
+ // NOTE: These are order specific, we want the ri8 forms to be listed
+ // first so that they are slightly preferred to the ri forms.
+ def #NAME#16ri8 : BinOpRI8_F<0x82, mnemonic, Xi16, opnode, RegMRM>;
+ def #NAME#32ri8 : BinOpRI8_F<0x82, mnemonic, Xi32, opnode, RegMRM>;
+ def #NAME#64ri8 : BinOpRI8_F<0x82, mnemonic, Xi64, opnode, RegMRM>;
+
+ def #NAME#8ri : BinOpRI_F<0x80, mnemonic, Xi8 , opnode, RegMRM>;
+ def #NAME#16ri : BinOpRI_F<0x80, mnemonic, Xi16, opnode, RegMRM>;
+ def #NAME#32ri : BinOpRI_F<0x80, mnemonic, Xi32, opnode, RegMRM>;
+ def #NAME#64ri32: BinOpRI_F<0x80, mnemonic, Xi64, opnode, RegMRM>;
+ }
+
+ def #NAME#8mr : BinOpMR_F<BaseOpc, mnemonic, Xi8 , opnode>;
+ def #NAME#16mr : BinOpMR_F<BaseOpc, mnemonic, Xi16, opnode>;
+ def #NAME#32mr : BinOpMR_F<BaseOpc, mnemonic, Xi32, opnode>;
+ def #NAME#64mr : BinOpMR_F<BaseOpc, mnemonic, Xi64, opnode>;
+
+ // NOTE: These are order specific, we want the mi8 forms to be listed
+ // first so that they are slightly preferred to the mi forms.
+ def #NAME#16mi8 : BinOpMI8_F<mnemonic, Xi16, opnode, MemMRM>;
+ def #NAME#32mi8 : BinOpMI8_F<mnemonic, Xi32, opnode, MemMRM>;
+ def #NAME#64mi8 : BinOpMI8_F<mnemonic, Xi64, opnode, MemMRM>;
+
+ def #NAME#8mi : BinOpMI_F<mnemonic, Xi8 , opnode, MemMRM>;
+ def #NAME#16mi : BinOpMI_F<mnemonic, Xi16, opnode, MemMRM>;
+ def #NAME#32mi : BinOpMI_F<mnemonic, Xi32, opnode, MemMRM>;
+ def #NAME#64mi32 : BinOpMI_F<mnemonic, Xi64, opnode, MemMRM>;
+
+ def #NAME#8i8 : BinOpAI<BaseOpc4, mnemonic, Xi8 , AL>;
+ def #NAME#16i16 : BinOpAI<BaseOpc4, mnemonic, Xi16, AX>;
+ def #NAME#32i32 : BinOpAI<BaseOpc4, mnemonic, Xi32, EAX>;
+ def #NAME#64i32 : BinOpAI<BaseOpc4, mnemonic, Xi64, RAX>;
+ }
+}
+
+
+defm AND : ArithBinOp_RF<0x20, 0x22, 0x24, "and", MRM4r, MRM4m,
+ X86and_flag, and, 1, 0>;
+defm OR : ArithBinOp_RF<0x08, 0x0A, 0x0C, "or", MRM1r, MRM1m,
+ X86or_flag, or, 1, 0>;
+defm XOR : ArithBinOp_RF<0x30, 0x32, 0x34, "xor", MRM6r, MRM6m,
+ X86xor_flag, xor, 1, 0>;
+defm ADD : ArithBinOp_RF<0x00, 0x02, 0x04, "add", MRM0r, MRM0m,
+ X86add_flag, add, 1, 1>;
+defm SUB : ArithBinOp_RF<0x28, 0x2A, 0x2C, "sub", MRM5r, MRM5m,
+ X86sub_flag, sub, 0, 0>;
+
+// Arithmetic.
+let Uses = [EFLAGS] in {
+ defm ADC : ArithBinOp_RFF<0x10, 0x12, 0x14, "adc", MRM2r, MRM2m, X86adc_flag,
+ 1, 0>;
+ defm SBB : ArithBinOp_RFF<0x18, 0x1A, 0x1C, "sbb", MRM3r, MRM3m, X86sbb_flag,
+ 0, 0>;
+}
+
+defm CMP : ArithBinOp_F<0x38, 0x3A, 0x3C, "cmp", MRM7r, MRM7m, X86cmp, 0, 0>;
+
+
+//===----------------------------------------------------------------------===//
+// Semantically, test instructions are similar like AND, except they don't
+// generate a result. From an encoding perspective, they are very different:
+// they don't have all the usual imm8 and REV forms, and are encoded into a
+// different space.
+def X86testpat : PatFrag<(ops node:$lhs, node:$rhs),
+ (X86cmp (and_su node:$lhs, node:$rhs), 0)>;
+
+let Defs = [EFLAGS] in {
+ let isCommutable = 1 in {
+ def TEST8rr : BinOpRR_F<0x84, "test", Xi8 , X86testpat, MRMSrcReg>;
+ def TEST16rr : BinOpRR_F<0x84, "test", Xi16, X86testpat, MRMSrcReg>;
+ def TEST32rr : BinOpRR_F<0x84, "test", Xi32, X86testpat, MRMSrcReg>;
+ def TEST64rr : BinOpRR_F<0x84, "test", Xi64, X86testpat, MRMSrcReg>;
+ } // isCommutable
+
+ def TEST8rm : BinOpRM_F<0x84, "test", Xi8 , X86testpat>;
+ def TEST16rm : BinOpRM_F<0x84, "test", Xi16, X86testpat>;
+ def TEST32rm : BinOpRM_F<0x84, "test", Xi32, X86testpat>;
+ def TEST64rm : BinOpRM_F<0x84, "test", Xi64, X86testpat>;
+
+ def TEST8ri : BinOpRI_F<0xF6, "test", Xi8 , X86testpat, MRM0r>;
+ def TEST16ri : BinOpRI_F<0xF6, "test", Xi16, X86testpat, MRM0r>;
+ def TEST32ri : BinOpRI_F<0xF6, "test", Xi32, X86testpat, MRM0r>;
+ def TEST64ri32 : BinOpRI_F<0xF6, "test", Xi64, X86testpat, MRM0r>;
+
+ def TEST8mi : BinOpMI_F<"test", Xi8 , X86testpat, MRM0m, 0xF6>;
+ def TEST16mi : BinOpMI_F<"test", Xi16, X86testpat, MRM0m, 0xF6>;
+ def TEST32mi : BinOpMI_F<"test", Xi32, X86testpat, MRM0m, 0xF6>;
+ def TEST64mi32 : BinOpMI_F<"test", Xi64, X86testpat, MRM0m, 0xF6>;
+
+ def TEST8i8 : BinOpAI<0xA8, "test", Xi8 , AL>;
+ def TEST16i16 : BinOpAI<0xA8, "test", Xi16, AX>;
+ def TEST32i32 : BinOpAI<0xA8, "test", Xi32, EAX>;
+ def TEST64i32 : BinOpAI<0xA8, "test", Xi64, RAX>;
+}
+