aboutsummaryrefslogtreecommitdiff
path: root/lib/Transforms/InstCombine/InstructionCombining.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2015-05-27 18:44:32 +0000
committerDimitry Andric <dim@FreeBSD.org>2015-05-27 18:44:32 +0000
commit5a5ac124e1efaf208671f01c46edb15f29ed2a0b (patch)
treea6140557876943cdd800ee997c9317283394b22c /lib/Transforms/InstCombine/InstructionCombining.cpp
parentf03b5bed27d0d2eafd68562ce14f8b5e3f1f0801 (diff)
downloadsrc-5a5ac124e1efaf208671f01c46edb15f29ed2a0b.tar.gz
src-5a5ac124e1efaf208671f01c46edb15f29ed2a0b.zip
Notes
Diffstat (limited to 'lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r--lib/Transforms/InstCombine/InstructionCombining.cpp824
1 files changed, 454 insertions, 370 deletions
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp
index a0c239a020c8..be49cd1c436b 100644
--- a/lib/Transforms/InstCombine/InstructionCombining.cpp
+++ b/lib/Transforms/InstCombine/InstructionCombining.cpp
@@ -33,8 +33,8 @@
//
//===----------------------------------------------------------------------===//
-#include "llvm/Transforms/Scalar.h"
-#include "InstCombine.h"
+#include "llvm/Transforms/InstCombine/InstCombine.h"
+#include "InstCombineInternal.h"
#include "llvm-c/Initialization.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
@@ -43,8 +43,10 @@
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LibCallSemantics.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/DataLayout.h"
@@ -55,7 +57,8 @@
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
-#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <climits>
@@ -72,35 +75,8 @@ STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumFactor , "Number of factorizations");
STATISTIC(NumReassoc , "Number of reassociations");
-// Initialization Routines
-void llvm::initializeInstCombine(PassRegistry &Registry) {
- initializeInstCombinerPass(Registry);
-}
-
-void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
- initializeInstCombine(*unwrap(R));
-}
-
-char InstCombiner::ID = 0;
-INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine",
- "Combine redundant instructions", false, false)
-INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
-INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
-INITIALIZE_PASS_END(InstCombiner, "instcombine",
- "Combine redundant instructions", false, false)
-
-void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.setPreservesCFG();
- AU.addRequired<AssumptionCacheTracker>();
- AU.addRequired<TargetLibraryInfo>();
- AU.addRequired<DominatorTreeWrapperPass>();
- AU.addPreserved<DominatorTreeWrapperPass>();
-}
-
-
Value *InstCombiner::EmitGEPOffset(User *GEP) {
- return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP);
+ return llvm::EmitGEPOffset(Builder, DL, GEP);
}
/// ShouldChangeType - Return true if it is desirable to convert a computation
@@ -109,13 +85,10 @@ Value *InstCombiner::EmitGEPOffset(User *GEP) {
bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
assert(From->isIntegerTy() && To->isIntegerTy());
- // If we don't have DL, we don't know if the source/dest are legal.
- if (!DL) return false;
-
unsigned FromWidth = From->getPrimitiveSizeInBits();
unsigned ToWidth = To->getPrimitiveSizeInBits();
- bool FromLegal = DL->isLegalInteger(FromWidth);
- bool ToLegal = DL->isLegalInteger(ToWidth);
+ bool FromLegal = DL.isLegalInteger(FromWidth);
+ bool ToLegal = DL.isLegalInteger(ToWidth);
// If this is a legal integer from type, and the result would be an illegal
// type, don't do the transformation.
@@ -470,7 +443,7 @@ getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
/// This tries to simplify binary operations by factorizing out common terms
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
- const DataLayout *DL, BinaryOperator &I,
+ const DataLayout &DL, BinaryOperator &I,
Instruction::BinaryOps InnerOpcode, Value *A,
Value *B, Value *C, Value *D) {
@@ -479,6 +452,7 @@ static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
if (!A || !C || !B || !D)
return nullptr;
+ Value *V = nullptr;
Value *SimplifiedInst = nullptr;
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
@@ -495,7 +469,7 @@ static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
std::swap(C, D);
// Consider forming "A op' (B op D)".
// If "B op D" simplifies then it can be formed with no cost.
- Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
+ V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
// If "B op D" doesn't simplify then only go on if both of the existing
// operations "A op' B" and "C op' D" will be zapped as no longer used.
if (!V && LHS->hasOneUse() && RHS->hasOneUse())
@@ -514,7 +488,7 @@ static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
std::swap(C, D);
// Consider forming "(A op C) op' B".
// If "A op C" simplifies then it can be formed with no cost.
- Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
+ V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
// If "A op C" doesn't simplify then only go on if both of the existing
// operations "A op' B" and "C op' D" will be zapped as no longer used.
@@ -544,7 +518,19 @@ static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
if (isa<OverflowingBinaryOperator>(Op1))
HasNSW &= Op1->hasNoSignedWrap();
- BO->setHasNoSignedWrap(HasNSW);
+
+ // We can propogate 'nsw' if we know that
+ // %Y = mul nsw i16 %X, C
+ // %Z = add nsw i16 %Y, %X
+ // =>
+ // %Z = mul nsw i16 %X, C+1
+ //
+ // iff C+1 isn't INT_MIN
+ const APInt *CInt;
+ if (TopLevelOpcode == Instruction::Add &&
+ InnerOpcode == Instruction::Mul)
+ if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
+ BO->setHasNoSignedWrap(HasNSW);
}
}
}
@@ -741,6 +727,22 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
return nullptr;
}
+ // Test if a CmpInst instruction is used exclusively by a select as
+ // part of a minimum or maximum operation. If so, refrain from doing
+ // any other folding. This helps out other analyses which understand
+ // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
+ // and CodeGen. And in this case, at least one of the comparison
+ // operands has at least one user besides the compare (the select),
+ // which would often largely negate the benefit of folding anyway.
+ if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
+ if (CI->hasOneUse()) {
+ Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
+ if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
+ (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
+ return nullptr;
+ }
+ }
+
Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
@@ -750,7 +752,6 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
return nullptr;
}
-
/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
/// has a PHI node as operand #0, see if we can fold the instruction into the
/// PHI (which is only possible if all operands to the PHI are constants).
@@ -799,8 +800,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
// If the incoming non-constant value is in I's block, we will remove one
// instruction, but insert another equivalent one, leading to infinite
// instcombine.
- if (isPotentiallyReachable(I.getParent(), NonConstBB, DT,
- getAnalysisIfAvailable<LoopInfo>()))
+ if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
return nullptr;
}
@@ -897,23 +897,18 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
/// whether or not there is a sequence of GEP indices into the pointed type that
/// will land us at the specified offset. If so, fill them into NewIndices and
/// return the resultant element type, otherwise return null.
-Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
- SmallVectorImpl<Value*> &NewIndices) {
- assert(PtrTy->isPtrOrPtrVectorTy());
-
- if (!DL)
- return nullptr;
-
- Type *Ty = PtrTy->getPointerElementType();
+Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
+ SmallVectorImpl<Value *> &NewIndices) {
+ Type *Ty = PtrTy->getElementType();
if (!Ty->isSized())
return nullptr;
// Start with the index over the outer type. Note that the type size
// might be zero (even if the offset isn't zero) if the indexed type
// is something like [0 x {int, int}]
- Type *IntPtrTy = DL->getIntPtrType(PtrTy);
+ Type *IntPtrTy = DL.getIntPtrType(PtrTy);
int64_t FirstIdx = 0;
- if (int64_t TySize = DL->getTypeAllocSize(Ty)) {
+ if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
Offset -= FirstIdx*TySize;
@@ -931,11 +926,11 @@ Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
// Index into the types. If we fail, set OrigBase to null.
while (Offset) {
// Indexing into tail padding between struct/array elements.
- if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty))
+ if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
return nullptr;
if (StructType *STy = dyn_cast<StructType>(Ty)) {
- const StructLayout *SL = DL->getStructLayout(STy);
+ const StructLayout *SL = DL.getStructLayout(STy);
assert(Offset < (int64_t)SL->getSizeInBytes() &&
"Offset must stay within the indexed type");
@@ -946,7 +941,7 @@ Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset,
Offset -= SL->getElementOffset(Elt);
Ty = STy->getElementType(Elt);
} else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
- uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType());
+ uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
assert(EltSize && "Cannot index into a zero-sized array");
NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Offset %= EltSize;
@@ -1240,7 +1235,8 @@ Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
// It may not be safe to reorder shuffles and things like div, urem, etc.
// because we may trap when executing those ops on unknown vector elements.
// See PR20059.
- if (!isSafeToSpeculativelyExecute(&Inst, DL)) return nullptr;
+ if (!isSafeToSpeculativelyExecute(&Inst))
+ return nullptr;
unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
@@ -1326,37 +1322,37 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Eliminate unneeded casts for indices, and replace indices which displace
// by multiples of a zero size type with zero.
- if (DL) {
- bool MadeChange = false;
- Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType());
-
- gep_type_iterator GTI = gep_type_begin(GEP);
- for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
- I != E; ++I, ++GTI) {
- // Skip indices into struct types.
- SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
- if (!SeqTy) continue;
-
- // If the element type has zero size then any index over it is equivalent
- // to an index of zero, so replace it with zero if it is not zero already.
- if (SeqTy->getElementType()->isSized() &&
- DL->getTypeAllocSize(SeqTy->getElementType()) == 0)
- if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
- *I = Constant::getNullValue(IntPtrTy);
- MadeChange = true;
- }
+ bool MadeChange = false;
+ Type *IntPtrTy = DL.getIntPtrType(GEP.getPointerOperandType());
+
+ gep_type_iterator GTI = gep_type_begin(GEP);
+ for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
+ ++I, ++GTI) {
+ // Skip indices into struct types.
+ SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
+ if (!SeqTy)
+ continue;
- Type *IndexTy = (*I)->getType();
- if (IndexTy != IntPtrTy) {
- // If we are using a wider index than needed for this platform, shrink
- // it to what we need. If narrower, sign-extend it to what we need.
- // This explicit cast can make subsequent optimizations more obvious.
- *I = Builder->CreateIntCast(*I, IntPtrTy, true);
+ // If the element type has zero size then any index over it is equivalent
+ // to an index of zero, so replace it with zero if it is not zero already.
+ if (SeqTy->getElementType()->isSized() &&
+ DL.getTypeAllocSize(SeqTy->getElementType()) == 0)
+ if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
+ *I = Constant::getNullValue(IntPtrTy);
MadeChange = true;
}
+
+ Type *IndexTy = (*I)->getType();
+ if (IndexTy != IntPtrTy) {
+ // If we are using a wider index than needed for this platform, shrink
+ // it to what we need. If narrower, sign-extend it to what we need.
+ // This explicit cast can make subsequent optimizations more obvious.
+ *I = Builder->CreateIntCast(*I, IntPtrTy, true);
+ MadeChange = true;
}
- if (MadeChange) return &GEP;
}
+ if (MadeChange)
+ return &GEP;
// Check to see if the inputs to the PHI node are getelementptr instructions.
if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
@@ -1364,6 +1360,15 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (!Op1)
return nullptr;
+ // Don't fold a GEP into itself through a PHI node. This can only happen
+ // through the back-edge of a loop. Folding a GEP into itself means that
+ // the value of the previous iteration needs to be stored in the meantime,
+ // thus requiring an additional register variable to be live, but not
+ // actually achieving anything (the GEP still needs to be executed once per
+ // loop iteration).
+ if (Op1 == &GEP)
+ return nullptr;
+
signed DI = -1;
for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
@@ -1371,6 +1376,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
return nullptr;
+ // As for Op1 above, don't try to fold a GEP into itself.
+ if (Op2 == &GEP)
+ return nullptr;
+
// Keep track of the type as we walk the GEP.
Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
@@ -1417,8 +1426,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (DI == -1) {
// All the GEPs feeding the PHI are identical. Clone one down into our
// BB so that it can be merged with the current GEP.
- GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
- NewGEP);
+ GEP.getParent()->getInstList().insert(
+ GEP.getParent()->getFirstInsertionPt(), NewGEP);
} else {
// All the GEPs feeding the PHI differ at a single offset. Clone a GEP
// into the current block so it can be merged, and create a new PHI to
@@ -1434,8 +1443,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
PN->getIncomingBlock(I));
NewGEP->setOperand(DI, NewPN);
- GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(),
- NewGEP);
+ GEP.getParent()->getInstList().insert(
+ GEP.getParent()->getFirstInsertionPt(), NewGEP);
NewGEP->setOperand(DI, NewPN);
}
@@ -1486,6 +1495,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// normalized.
if (SO1->getType() != GO1->getType())
return nullptr;
+ // Only do the combine when GO1 and SO1 are both constants. Only in
+ // this case, we are sure the cost after the merge is never more than
+ // that before the merge.
+ if (!isa<Constant>(GO1) || !isa<Constant>(SO1))
+ return nullptr;
Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
}
@@ -1507,19 +1521,22 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
if (!Indices.empty())
- return (GEP.isInBounds() && Src->isInBounds()) ?
- GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices,
- GEP.getName()) :
- GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName());
+ return GEP.isInBounds() && Src->isInBounds()
+ ? GetElementPtrInst::CreateInBounds(
+ Src->getSourceElementType(), Src->getOperand(0), Indices,
+ GEP.getName())
+ : GetElementPtrInst::Create(Src->getSourceElementType(),
+ Src->getOperand(0), Indices,
+ GEP.getName());
}
- if (DL && GEP.getNumIndices() == 1) {
+ if (GEP.getNumIndices() == 1) {
unsigned AS = GEP.getPointerAddressSpace();
if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
- DL->getPointerSizeInBits(AS)) {
+ DL.getPointerSizeInBits(AS)) {
Type *PtrTy = GEP.getPointerOperandType();
Type *Ty = PtrTy->getPointerElementType();
- uint64_t TyAllocSize = DL->getTypeAllocSize(Ty);
+ uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
bool Matched = false;
uint64_t C;
@@ -1588,8 +1605,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
// -> GEP i8* X, ...
SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
- GetElementPtrInst *Res =
- GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName());
+ GetElementPtrInst *Res = GetElementPtrInst::Create(
+ StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
Res->setIsInBounds(GEP.isInBounds());
if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
return Res;
@@ -1613,6 +1630,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// is a leading zero) we can fold the cast into this GEP.
if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
GEP.setOperand(0, StrippedPtr);
+ GEP.setSourceElementType(XATy);
return &GEP;
}
// Cannot replace the base pointer directly because StrippedPtr's
@@ -1625,9 +1643,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// %0 = GEP [10 x i8] addrspace(1)* X, ...
// addrspacecast i8 addrspace(1)* %0 to i8*
SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
- Value *NewGEP = GEP.isInBounds() ?
- Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
- Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
+ Value *NewGEP = GEP.isInBounds()
+ ? Builder->CreateInBoundsGEP(
+ nullptr, StrippedPtr, Idx, GEP.getName())
+ : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
+ GEP.getName());
return new AddrSpaceCastInst(NewGEP, GEP.getType());
}
}
@@ -1638,14 +1658,16 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Type *SrcElTy = StrippedPtrTy->getElementType();
Type *ResElTy = PtrOp->getType()->getPointerElementType();
- if (DL && SrcElTy->isArrayTy() &&
- DL->getTypeAllocSize(SrcElTy->getArrayElementType()) ==
- DL->getTypeAllocSize(ResElTy)) {
- Type *IdxType = DL->getIntPtrType(GEP.getType());
+ if (SrcElTy->isArrayTy() &&
+ DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
+ DL.getTypeAllocSize(ResElTy)) {
+ Type *IdxType = DL.getIntPtrType(GEP.getType());
Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
- Value *NewGEP = GEP.isInBounds() ?
- Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) :
- Builder->CreateGEP(StrippedPtr, Idx, GEP.getName());
+ Value *NewGEP =
+ GEP.isInBounds()
+ ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
+ GEP.getName())
+ : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
// V and GEP are both pointer types --> BitCast
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
@@ -1656,11 +1678,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// %V = mul i64 %N, 4
// %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
// into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
- if (DL && ResElTy->isSized() && SrcElTy->isSized()) {
+ if (ResElTy->isSized() && SrcElTy->isSized()) {
// Check that changing the type amounts to dividing the index by a scale
// factor.
- uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
- uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy);
+ uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
+ uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
if (ResSize && SrcSize % ResSize == 0) {
Value *Idx = GEP.getOperand(1);
unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
@@ -1668,7 +1690,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Earlier transforms ensure that the index has type IntPtrType, which
// considerably simplifies the logic by eliminating implicit casts.
- assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
+ assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
"Index not cast to pointer width?");
bool NSW;
@@ -1676,9 +1698,12 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
// If the multiplication NewIdx * Scale may overflow then the new
// GEP may not be "inbounds".
- Value *NewGEP = GEP.isInBounds() && NSW ?
- Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) :
- Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName());
+ Value *NewGEP =
+ GEP.isInBounds() && NSW
+ ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
+ GEP.getName())
+ : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
+ GEP.getName());
// The NewGEP must be pointer typed, so must the old one -> BitCast
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
@@ -1691,13 +1716,12 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
// (where tmp = 8*tmp2) into:
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
- if (DL && ResElTy->isSized() && SrcElTy->isSized() &&
- SrcElTy->isArrayTy()) {
+ if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
// Check that changing to the array element type amounts to dividing the
// index by a scale factor.
- uint64_t ResSize = DL->getTypeAllocSize(ResElTy);
- uint64_t ArrayEltSize
- = DL->getTypeAllocSize(SrcElTy->getArrayElementType());
+ uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
+ uint64_t ArrayEltSize =
+ DL.getTypeAllocSize(SrcElTy->getArrayElementType());
if (ResSize && ArrayEltSize % ResSize == 0) {
Value *Idx = GEP.getOperand(1);
unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
@@ -1705,7 +1729,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// Earlier transforms ensure that the index has type IntPtrType, which
// considerably simplifies the logic by eliminating implicit casts.
- assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) &&
+ assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
"Index not cast to pointer width?");
bool NSW;
@@ -1714,13 +1738,14 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// If the multiplication NewIdx * Scale may overflow then the new
// GEP may not be "inbounds".
Value *Off[2] = {
- Constant::getNullValue(DL->getIntPtrType(GEP.getType())),
- NewIdx
- };
-
- Value *NewGEP = GEP.isInBounds() && NSW ?
- Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) :
- Builder->CreateGEP(StrippedPtr, Off, GEP.getName());
+ Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
+ NewIdx};
+
+ Value *NewGEP = GEP.isInBounds() && NSW
+ ? Builder->CreateInBoundsGEP(
+ SrcElTy, StrippedPtr, Off, GEP.getName())
+ : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
+ GEP.getName());
// The NewGEP must be pointer typed, so must the old one -> BitCast
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
GEP.getType());
@@ -1730,9 +1755,6 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
}
}
- if (!DL)
- return nullptr;
-
// addrspacecast between types is canonicalized as a bitcast, then an
// addrspacecast. To take advantage of the below bitcast + struct GEP, look
// through the addrspacecast.
@@ -1753,10 +1775,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
Value *Operand = BCI->getOperand(0);
PointerType *OpType = cast<PointerType>(Operand->getType());
- unsigned OffsetBits = DL->getPointerTypeSizeInBits(GEP.getType());
+ unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
APInt Offset(OffsetBits, 0);
if (!isa<BitCastInst>(Operand) &&
- GEP.accumulateConstantOffset(*DL, Offset)) {
+ GEP.accumulateConstantOffset(DL, Offset)) {
// If this GEP instruction doesn't move the pointer, just replace the GEP
// with a bitcast of the real input to the dest type.
@@ -1785,9 +1807,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
// GEP.
SmallVector<Value*, 8> NewIndices;
if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
- Value *NGEP = GEP.isInBounds() ?
- Builder->CreateInBoundsGEP(Operand, NewIndices) :
- Builder->CreateGEP(Operand, NewIndices);
+ Value *NGEP =
+ GEP.isInBounds()
+ ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
+ : Builder->CreateGEP(nullptr, Operand, NewIndices);
if (NGEP->getType() == GEP.getType())
return ReplaceInstUsesWith(GEP, NGEP);
@@ -2038,6 +2061,15 @@ Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
return &BI;
}
+ // If the condition is irrelevant, remove the use so that other
+ // transforms on the condition become more effective.
+ if (BI.isConditional() &&
+ BI.getSuccessor(0) == BI.getSuccessor(1) &&
+ !isa<UndefValue>(BI.getCondition())) {
+ BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
+ return &BI;
+ }
+
// Canonicalize fcmp_one -> fcmp_oeq
FCmpInst::Predicate FPred; Value *Y;
if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
@@ -2077,7 +2109,7 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
Value *Cond = SI.getCondition();
unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
- computeKnownBits(Cond, KnownZero, KnownOne);
+ computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
@@ -2096,8 +2128,8 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
// x86 generates redundant zero-extenstion instructions if the operand is
// truncated to i8 or i16.
bool TruncCond = false;
- if (DL && BitWidth > NewWidth &&
- NewWidth >= DL->getLargestLegalIntTypeSize()) {
+ if (NewWidth > 0 && BitWidth > NewWidth &&
+ NewWidth >= DL.getLargestLegalIntTypeSize()) {
TruncCond = true;
IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
Builder->SetInsertPoint(&SI);
@@ -2270,7 +2302,8 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
// We need to insert these at the location of the old load, not at that of
// the extractvalue.
Builder->SetInsertPoint(L->getParent(), L);
- Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices);
+ Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
+ L->getPointerOperand(), Indices);
// Returning the load directly will cause the main loop to insert it in
// the wrong spot, so use ReplaceInstUsesWith().
return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
@@ -2286,41 +2319,27 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
return nullptr;
}
-enum Personality_Type {
- Unknown_Personality,
- GNU_Ada_Personality,
- GNU_CXX_Personality,
- GNU_ObjC_Personality
-};
-
-/// RecognizePersonality - See if the given exception handling personality
-/// function is one that we understand. If so, return a description of it;
-/// otherwise return Unknown_Personality.
-static Personality_Type RecognizePersonality(Value *Pers) {
- Function *F = dyn_cast<Function>(Pers->stripPointerCasts());
- if (!F)
- return Unknown_Personality;
- return StringSwitch<Personality_Type>(F->getName())
- .Case("__gnat_eh_personality", GNU_Ada_Personality)
- .Case("__gxx_personality_v0", GNU_CXX_Personality)
- .Case("__objc_personality_v0", GNU_ObjC_Personality)
- .Default(Unknown_Personality);
-}
-
/// isCatchAll - Return 'true' if the given typeinfo will match anything.
-static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) {
+static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
switch (Personality) {
- case Unknown_Personality:
+ case EHPersonality::GNU_C:
+ // The GCC C EH personality only exists to support cleanups, so it's not
+ // clear what the semantics of catch clauses are.
return false;
- case GNU_Ada_Personality:
+ case EHPersonality::Unknown:
+ return false;
+ case EHPersonality::GNU_Ada:
// While __gnat_all_others_value will match any Ada exception, it doesn't
// match foreign exceptions (or didn't, before gcc-4.7).
return false;
- case GNU_CXX_Personality:
- case GNU_ObjC_Personality:
+ case EHPersonality::GNU_CXX:
+ case EHPersonality::GNU_ObjC:
+ case EHPersonality::MSVC_X86SEH:
+ case EHPersonality::MSVC_Win64SEH:
+ case EHPersonality::MSVC_CXX:
return TypeInfo->isNullValue();
}
- llvm_unreachable("Unknown personality!");
+ llvm_unreachable("invalid enum");
}
static bool shorter_filter(const Value *LHS, const Value *RHS) {
@@ -2334,7 +2353,7 @@ Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
// The logic here should be correct for any real-world personality function.
// However if that turns out not to be true, the offending logic can always
// be conditioned on the personality function, like the catch-all logic is.
- Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn());
+ EHPersonality Personality = classifyEHPersonality(LI.getPersonalityFn());
// Simplify the list of clauses, eg by removing repeated catch clauses
// (these are often created by inlining).
@@ -2625,9 +2644,6 @@ Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
return nullptr;
}
-
-
-
/// TryToSinkInstruction - Try to move the specified instruction from its
/// current block into the beginning of DestBlock, which can only happen if it's
/// safe to move the instruction past all of the instructions between it and the
@@ -2660,164 +2676,7 @@ static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
return true;
}
-
-/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
-/// all reachable code to the worklist.
-///
-/// This has a couple of tricks to make the code faster and more powerful. In
-/// particular, we constant fold and DCE instructions as we go, to avoid adding
-/// them to the worklist (this significantly speeds up instcombine on code where
-/// many instructions are dead or constant). Additionally, if we find a branch
-/// whose condition is a known constant, we only visit the reachable successors.
-///
-static bool AddReachableCodeToWorklist(BasicBlock *BB,
- SmallPtrSetImpl<BasicBlock*> &Visited,
- InstCombiner &IC,
- const DataLayout *DL,
- const TargetLibraryInfo *TLI) {
- bool MadeIRChange = false;
- SmallVector<BasicBlock*, 256> Worklist;
- Worklist.push_back(BB);
-
- SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
- DenseMap<ConstantExpr*, Constant*> FoldedConstants;
-
- do {
- BB = Worklist.pop_back_val();
-
- // We have now visited this block! If we've already been here, ignore it.
- if (!Visited.insert(BB).second)
- continue;
-
- for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
- Instruction *Inst = BBI++;
-
- // DCE instruction if trivially dead.
- if (isInstructionTriviallyDead(Inst, TLI)) {
- ++NumDeadInst;
- DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
- Inst->eraseFromParent();
- continue;
- }
-
- // ConstantProp instruction if trivially constant.
- if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
- if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
- DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
- << *Inst << '\n');
- Inst->replaceAllUsesWith(C);
- ++NumConstProp;
- Inst->eraseFromParent();
- continue;
- }
-
- if (DL) {
- // See if we can constant fold its operands.
- for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
- i != e; ++i) {
- ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
- if (CE == nullptr) continue;
-
- Constant*& FoldRes = FoldedConstants[CE];
- if (!FoldRes)
- FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
- if (!FoldRes)
- FoldRes = CE;
-
- if (FoldRes != CE) {
- *i = FoldRes;
- MadeIRChange = true;
- }
- }
- }
-
- InstrsForInstCombineWorklist.push_back(Inst);
- }
-
- // Recursively visit successors. If this is a branch or switch on a
- // constant, only visit the reachable successor.
- TerminatorInst *TI = BB->getTerminator();
- if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
- if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
- bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
- BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
- Worklist.push_back(ReachableBB);
- continue;
- }
- } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
- if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
- // See if this is an explicit destination.
- for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
- i != e; ++i)
- if (i.getCaseValue() == Cond) {
- BasicBlock *ReachableBB = i.getCaseSuccessor();
- Worklist.push_back(ReachableBB);
- continue;
- }
-
- // Otherwise it is the default destination.
- Worklist.push_back(SI->getDefaultDest());
- continue;
- }
- }
-
- for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
- Worklist.push_back(TI->getSuccessor(i));
- } while (!Worklist.empty());
-
- // Once we've found all of the instructions to add to instcombine's worklist,
- // add them in reverse order. This way instcombine will visit from the top
- // of the function down. This jives well with the way that it adds all uses
- // of instructions to the worklist after doing a transformation, thus avoiding
- // some N^2 behavior in pathological cases.
- IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
- InstrsForInstCombineWorklist.size());
-
- return MadeIRChange;
-}
-
-bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
- MadeIRChange = false;
-
- DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
- << F.getName() << "\n");
-
- {
- // Do a depth-first traversal of the function, populate the worklist with
- // the reachable instructions. Ignore blocks that are not reachable. Keep
- // track of which blocks we visit.
- SmallPtrSet<BasicBlock*, 64> Visited;
- MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL,
- TLI);
-
- // Do a quick scan over the function. If we find any blocks that are
- // unreachable, remove any instructions inside of them. This prevents
- // the instcombine code from having to deal with some bad special cases.
- for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
- if (Visited.count(BB)) continue;
-
- // Delete the instructions backwards, as it has a reduced likelihood of
- // having to update as many def-use and use-def chains.
- Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
- while (EndInst != BB->begin()) {
- // Delete the next to last instruction.
- BasicBlock::iterator I = EndInst;
- Instruction *Inst = --I;
- if (!Inst->use_empty())
- Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
- if (isa<LandingPadInst>(Inst)) {
- EndInst = Inst;
- continue;
- }
- if (!isa<DbgInfoIntrinsic>(Inst)) {
- ++NumDeadInst;
- MadeIRChange = true;
- }
- Inst->eraseFromParent();
- }
- }
- }
-
+bool InstCombiner::run() {
while (!Worklist.isEmpty()) {
Instruction *I = Worklist.RemoveOne();
if (I == nullptr) continue; // skip null values.
@@ -2832,7 +2691,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
}
// Instruction isn't dead, see if we can constant propagate it.
- if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
+ if (!I->use_empty() && isa<Constant>(I->getOperand(0))) {
if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
@@ -2843,6 +2702,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
MadeIRChange = true;
continue;
}
+ }
// See if we can trivially sink this instruction to a successor basic block.
if (I->hasOneUse()) {
@@ -2900,7 +2760,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
DEBUG(dbgs() << "IC: Old = " << *I << '\n'
<< " New = " << *Result << '\n');
- if (!I->getDebugLoc().isUnknown())
+ if (I->getDebugLoc())
Result->setDebugLoc(I->getDebugLoc());
// Everything uses the new instruction now.
I->replaceAllUsesWith(Result);
@@ -2947,63 +2807,287 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
return MadeIRChange;
}
-namespace {
-class InstCombinerLibCallSimplifier final : public LibCallSimplifier {
- InstCombiner *IC;
-public:
- InstCombinerLibCallSimplifier(const DataLayout *DL,
- const TargetLibraryInfo *TLI,
- InstCombiner *IC)
- : LibCallSimplifier(DL, TLI) {
- this->IC = IC;
- }
+/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
+/// all reachable code to the worklist.
+///
+/// This has a couple of tricks to make the code faster and more powerful. In
+/// particular, we constant fold and DCE instructions as we go, to avoid adding
+/// them to the worklist (this significantly speeds up instcombine on code where
+/// many instructions are dead or constant). Additionally, if we find a branch
+/// whose condition is a known constant, we only visit the reachable successors.
+///
+static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
+ SmallPtrSetImpl<BasicBlock *> &Visited,
+ InstCombineWorklist &ICWorklist,
+ const TargetLibraryInfo *TLI) {
+ bool MadeIRChange = false;
+ SmallVector<BasicBlock*, 256> Worklist;
+ Worklist.push_back(BB);
- /// replaceAllUsesWith - override so that instruction replacement
- /// can be defined in terms of the instruction combiner framework.
- void replaceAllUsesWith(Instruction *I, Value *With) const override {
- IC->ReplaceInstUsesWith(*I, With);
- }
-};
+ SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
+ DenseMap<ConstantExpr*, Constant*> FoldedConstants;
+
+ do {
+ BB = Worklist.pop_back_val();
+
+ // We have now visited this block! If we've already been here, ignore it.
+ if (!Visited.insert(BB).second)
+ continue;
+
+ for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
+ Instruction *Inst = BBI++;
+
+ // DCE instruction if trivially dead.
+ if (isInstructionTriviallyDead(Inst, TLI)) {
+ ++NumDeadInst;
+ DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ // ConstantProp instruction if trivially constant.
+ if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
+ if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
+ DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
+ << *Inst << '\n');
+ Inst->replaceAllUsesWith(C);
+ ++NumConstProp;
+ Inst->eraseFromParent();
+ continue;
+ }
+
+ // See if we can constant fold its operands.
+ for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
+ ++i) {
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
+ if (CE == nullptr)
+ continue;
+
+ Constant *&FoldRes = FoldedConstants[CE];
+ if (!FoldRes)
+ FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
+ if (!FoldRes)
+ FoldRes = CE;
+
+ if (FoldRes != CE) {
+ *i = FoldRes;
+ MadeIRChange = true;
+ }
+ }
+
+ InstrsForInstCombineWorklist.push_back(Inst);
+ }
+
+ // Recursively visit successors. If this is a branch or switch on a
+ // constant, only visit the reachable successor.
+ TerminatorInst *TI = BB->getTerminator();
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
+ bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
+ BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
+ Worklist.push_back(ReachableBB);
+ continue;
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
+ // See if this is an explicit destination.
+ for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
+ i != e; ++i)
+ if (i.getCaseValue() == Cond) {
+ BasicBlock *ReachableBB = i.getCaseSuccessor();
+ Worklist.push_back(ReachableBB);
+ continue;
+ }
+
+ // Otherwise it is the default destination.
+ Worklist.push_back(SI->getDefaultDest());
+ continue;
+ }
+ }
+
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ Worklist.push_back(TI->getSuccessor(i));
+ } while (!Worklist.empty());
+
+ // Once we've found all of the instructions to add to instcombine's worklist,
+ // add them in reverse order. This way instcombine will visit from the top
+ // of the function down. This jives well with the way that it adds all uses
+ // of instructions to the worklist after doing a transformation, thus avoiding
+ // some N^2 behavior in pathological cases.
+ ICWorklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
+ InstrsForInstCombineWorklist.size());
+
+ return MadeIRChange;
}
-bool InstCombiner::runOnFunction(Function &F) {
- if (skipOptnoneFunction(F))
- return false;
+/// \brief Populate the IC worklist from a function, and prune any dead basic
+/// blocks discovered in the process.
+///
+/// This also does basic constant propagation and other forward fixing to make
+/// the combiner itself run much faster.
+static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
+ TargetLibraryInfo *TLI,
+ InstCombineWorklist &ICWorklist) {
+ bool MadeIRChange = false;
+
+ // Do a depth-first traversal of the function, populate the worklist with
+ // the reachable instructions. Ignore blocks that are not reachable. Keep
+ // track of which blocks we visit.
+ SmallPtrSet<BasicBlock *, 64> Visited;
+ MadeIRChange |=
+ AddReachableCodeToWorklist(F.begin(), DL, Visited, ICWorklist, TLI);
+
+ // Do a quick scan over the function. If we find any blocks that are
+ // unreachable, remove any instructions inside of them. This prevents
+ // the instcombine code from having to deal with some bad special cases.
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ if (Visited.count(BB))
+ continue;
+
+ // Delete the instructions backwards, as it has a reduced likelihood of
+ // having to update as many def-use and use-def chains.
+ Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
+ while (EndInst != BB->begin()) {
+ // Delete the next to last instruction.
+ BasicBlock::iterator I = EndInst;
+ Instruction *Inst = --I;
+ if (!Inst->use_empty())
+ Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
+ if (isa<LandingPadInst>(Inst)) {
+ EndInst = Inst;
+ continue;
+ }
+ if (!isa<DbgInfoIntrinsic>(Inst)) {
+ ++NumDeadInst;
+ MadeIRChange = true;
+ }
+ Inst->eraseFromParent();
+ }
+ }
- AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
- DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : nullptr;
- DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
- TLI = &getAnalysis<TargetLibraryInfo>();
+ return MadeIRChange;
+}
+static bool
+combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
+ AssumptionCache &AC, TargetLibraryInfo &TLI,
+ DominatorTree &DT, LoopInfo *LI = nullptr) {
// Minimizing size?
- MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
- Attribute::MinSize);
+ bool MinimizeSize = F.hasFnAttribute(Attribute::MinSize);
+ auto &DL = F.getParent()->getDataLayout();
/// Builder - This is an IRBuilder that automatically inserts new
/// instructions into the worklist when they are created.
- IRBuilder<true, TargetFolder, InstCombineIRInserter> TheBuilder(
- F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, AC));
- Builder = &TheBuilder;
-
- InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this);
- Simplifier = &TheSimplifier;
-
- bool EverMadeChange = false;
+ IRBuilder<true, TargetFolder, InstCombineIRInserter> Builder(
+ F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
// Lower dbg.declare intrinsics otherwise their value may be clobbered
// by instcombiner.
- EverMadeChange = LowerDbgDeclare(F);
+ bool DbgDeclaresChanged = LowerDbgDeclare(F);
// Iterate while there is work to do.
- unsigned Iteration = 0;
- while (DoOneIteration(F, Iteration++))
- EverMadeChange = true;
+ int Iteration = 0;
+ for (;;) {
+ ++Iteration;
+ DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
+ << F.getName() << "\n");
+
+ bool Changed = false;
+ if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist))
+ Changed = true;
+
+ InstCombiner IC(Worklist, &Builder, MinimizeSize, &AC, &TLI, &DT, DL, LI);
+ if (IC.run())
+ Changed = true;
+
+ if (!Changed)
+ break;
+ }
+
+ return DbgDeclaresChanged || Iteration > 1;
+}
+
+PreservedAnalyses InstCombinePass::run(Function &F,
+ AnalysisManager<Function> *AM) {
+ auto &AC = AM->getResult<AssumptionAnalysis>(F);
+ auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
+ auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
+
+ auto *LI = AM->getCachedResult<LoopAnalysis>(F);
+
+ if (!combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI))
+ // No changes, all analyses are preserved.
+ return PreservedAnalyses::all();
+
+ // Mark all the analyses that instcombine updates as preserved.
+ // FIXME: Need a way to preserve CFG analyses here!
+ PreservedAnalyses PA;
+ PA.preserve<DominatorTreeAnalysis>();
+ return PA;
+}
+
+namespace {
+/// \brief The legacy pass manager's instcombine pass.
+///
+/// This is a basic whole-function wrapper around the instcombine utility. It
+/// will try to combine all instructions in the function.
+class InstructionCombiningPass : public FunctionPass {
+ InstCombineWorklist Worklist;
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+
+ InstructionCombiningPass() : FunctionPass(ID) {
+ initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnFunction(Function &F) override;
+};
+}
+
+void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.setPreservesCFG();
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+}
+
+bool InstructionCombiningPass::runOnFunction(Function &F) {
+ if (skipOptnoneFunction(F))
+ return false;
+
+ // Required analyses.
+ auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ // Optional analyses.
+ auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
+ auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
- Builder = nullptr;
- return EverMadeChange;
+ return combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI);
+}
+
+char InstructionCombiningPass::ID = 0;
+INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
+ "Combine redundant instructions", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
+ "Combine redundant instructions", false, false)
+
+// Initialization Routines
+void llvm::initializeInstCombine(PassRegistry &Registry) {
+ initializeInstructionCombiningPassPass(Registry);
+}
+
+void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
+ initializeInstructionCombiningPassPass(*unwrap(R));
}
FunctionPass *llvm::createInstructionCombiningPass() {
- return new InstCombiner();
+ return new InstructionCombiningPass();
}