diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2015-05-27 18:44:32 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2015-05-27 18:44:32 +0000 |
commit | 5a5ac124e1efaf208671f01c46edb15f29ed2a0b (patch) | |
tree | a6140557876943cdd800ee997c9317283394b22c /lib/Transforms/InstCombine/InstructionCombining.cpp | |
parent | f03b5bed27d0d2eafd68562ce14f8b5e3f1f0801 (diff) | |
download | src-5a5ac124e1efaf208671f01c46edb15f29ed2a0b.tar.gz src-5a5ac124e1efaf208671f01c46edb15f29ed2a0b.zip |
Notes
Diffstat (limited to 'lib/Transforms/InstCombine/InstructionCombining.cpp')
-rw-r--r-- | lib/Transforms/InstCombine/InstructionCombining.cpp | 824 |
1 files changed, 454 insertions, 370 deletions
diff --git a/lib/Transforms/InstCombine/InstructionCombining.cpp b/lib/Transforms/InstCombine/InstructionCombining.cpp index a0c239a020c8..be49cd1c436b 100644 --- a/lib/Transforms/InstCombine/InstructionCombining.cpp +++ b/lib/Transforms/InstCombine/InstructionCombining.cpp @@ -33,8 +33,8 @@ // //===----------------------------------------------------------------------===// -#include "llvm/Transforms/Scalar.h" -#include "InstCombine.h" +#include "llvm/Transforms/InstCombine/InstCombine.h" +#include "InstCombineInternal.h" #include "llvm-c/Initialization.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" @@ -43,8 +43,10 @@ #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" +#include "llvm/Analysis/LibCallSemantics.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DataLayout.h" @@ -55,7 +57,8 @@ #include "llvm/IR/ValueHandle.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" -#include "llvm/Target/TargetLibraryInfo.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include <algorithm> #include <climits> @@ -72,35 +75,8 @@ STATISTIC(NumExpand, "Number of expansions"); STATISTIC(NumFactor , "Number of factorizations"); STATISTIC(NumReassoc , "Number of reassociations"); -// Initialization Routines -void llvm::initializeInstCombine(PassRegistry &Registry) { - initializeInstCombinerPass(Registry); -} - -void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { - initializeInstCombine(*unwrap(R)); -} - -char InstCombiner::ID = 0; -INITIALIZE_PASS_BEGIN(InstCombiner, "instcombine", - "Combine redundant instructions", false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_END(InstCombiner, "instcombine", - "Combine redundant instructions", false, false) - -void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const { - AU.setPreservesCFG(); - AU.addRequired<AssumptionCacheTracker>(); - AU.addRequired<TargetLibraryInfo>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); -} - - Value *InstCombiner::EmitGEPOffset(User *GEP) { - return llvm::EmitGEPOffset(Builder, *getDataLayout(), GEP); + return llvm::EmitGEPOffset(Builder, DL, GEP); } /// ShouldChangeType - Return true if it is desirable to convert a computation @@ -109,13 +85,10 @@ Value *InstCombiner::EmitGEPOffset(User *GEP) { bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { assert(From->isIntegerTy() && To->isIntegerTy()); - // If we don't have DL, we don't know if the source/dest are legal. - if (!DL) return false; - unsigned FromWidth = From->getPrimitiveSizeInBits(); unsigned ToWidth = To->getPrimitiveSizeInBits(); - bool FromLegal = DL->isLegalInteger(FromWidth); - bool ToLegal = DL->isLegalInteger(ToWidth); + bool FromLegal = DL.isLegalInteger(FromWidth); + bool ToLegal = DL.isLegalInteger(ToWidth); // If this is a legal integer from type, and the result would be an illegal // type, don't do the transformation. @@ -470,7 +443,7 @@ getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode, /// This tries to simplify binary operations by factorizing out common terms /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). static Value *tryFactorization(InstCombiner::BuilderTy *Builder, - const DataLayout *DL, BinaryOperator &I, + const DataLayout &DL, BinaryOperator &I, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D) { @@ -479,6 +452,7 @@ static Value *tryFactorization(InstCombiner::BuilderTy *Builder, if (!A || !C || !B || !D) return nullptr; + Value *V = nullptr; Value *SimplifiedInst = nullptr; Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); @@ -495,7 +469,7 @@ static Value *tryFactorization(InstCombiner::BuilderTy *Builder, std::swap(C, D); // Consider forming "A op' (B op D)". // If "B op D" simplifies then it can be formed with no cost. - Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL); + V = SimplifyBinOp(TopLevelOpcode, B, D, DL); // If "B op D" doesn't simplify then only go on if both of the existing // operations "A op' B" and "C op' D" will be zapped as no longer used. if (!V && LHS->hasOneUse() && RHS->hasOneUse()) @@ -514,7 +488,7 @@ static Value *tryFactorization(InstCombiner::BuilderTy *Builder, std::swap(C, D); // Consider forming "(A op C) op' B". // If "A op C" simplifies then it can be formed with no cost. - Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL); + V = SimplifyBinOp(TopLevelOpcode, A, C, DL); // If "A op C" doesn't simplify then only go on if both of the existing // operations "A op' B" and "C op' D" will be zapped as no longer used. @@ -544,7 +518,19 @@ static Value *tryFactorization(InstCombiner::BuilderTy *Builder, if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) if (isa<OverflowingBinaryOperator>(Op1)) HasNSW &= Op1->hasNoSignedWrap(); - BO->setHasNoSignedWrap(HasNSW); + + // We can propogate 'nsw' if we know that + // %Y = mul nsw i16 %X, C + // %Z = add nsw i16 %Y, %X + // => + // %Z = mul nsw i16 %X, C+1 + // + // iff C+1 isn't INT_MIN + const APInt *CInt; + if (TopLevelOpcode == Instruction::Add && + InnerOpcode == Instruction::Mul) + if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) + BO->setHasNoSignedWrap(HasNSW); } } } @@ -741,6 +727,22 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { return nullptr; } + // Test if a CmpInst instruction is used exclusively by a select as + // part of a minimum or maximum operation. If so, refrain from doing + // any other folding. This helps out other analyses which understand + // non-obfuscated minimum and maximum idioms, such as ScalarEvolution + // and CodeGen. And in this case, at least one of the comparison + // operands has at least one user besides the compare (the select), + // which would often largely negate the benefit of folding anyway. + if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { + if (CI->hasOneUse()) { + Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); + if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || + (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) + return nullptr; + } + } + Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); @@ -750,7 +752,6 @@ Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { return nullptr; } - /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which /// has a PHI node as operand #0, see if we can fold the instruction into the /// PHI (which is only possible if all operands to the PHI are constants). @@ -799,8 +800,7 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { // If the incoming non-constant value is in I's block, we will remove one // instruction, but insert another equivalent one, leading to infinite // instcombine. - if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, - getAnalysisIfAvailable<LoopInfo>())) + if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI)) return nullptr; } @@ -897,23 +897,18 @@ Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { /// whether or not there is a sequence of GEP indices into the pointed type that /// will land us at the specified offset. If so, fill them into NewIndices and /// return the resultant element type, otherwise return null. -Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset, - SmallVectorImpl<Value*> &NewIndices) { - assert(PtrTy->isPtrOrPtrVectorTy()); - - if (!DL) - return nullptr; - - Type *Ty = PtrTy->getPointerElementType(); +Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, + SmallVectorImpl<Value *> &NewIndices) { + Type *Ty = PtrTy->getElementType(); if (!Ty->isSized()) return nullptr; // Start with the index over the outer type. Note that the type size // might be zero (even if the offset isn't zero) if the indexed type // is something like [0 x {int, int}] - Type *IntPtrTy = DL->getIntPtrType(PtrTy); + Type *IntPtrTy = DL.getIntPtrType(PtrTy); int64_t FirstIdx = 0; - if (int64_t TySize = DL->getTypeAllocSize(Ty)) { + if (int64_t TySize = DL.getTypeAllocSize(Ty)) { FirstIdx = Offset/TySize; Offset -= FirstIdx*TySize; @@ -931,11 +926,11 @@ Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset, // Index into the types. If we fail, set OrigBase to null. while (Offset) { // Indexing into tail padding between struct/array elements. - if (uint64_t(Offset*8) >= DL->getTypeSizeInBits(Ty)) + if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) return nullptr; if (StructType *STy = dyn_cast<StructType>(Ty)) { - const StructLayout *SL = DL->getStructLayout(STy); + const StructLayout *SL = DL.getStructLayout(STy); assert(Offset < (int64_t)SL->getSizeInBytes() && "Offset must stay within the indexed type"); @@ -946,7 +941,7 @@ Type *InstCombiner::FindElementAtOffset(Type *PtrTy, int64_t Offset, Offset -= SL->getElementOffset(Elt); Ty = STy->getElementType(Elt); } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { - uint64_t EltSize = DL->getTypeAllocSize(AT->getElementType()); + uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); assert(EltSize && "Cannot index into a zero-sized array"); NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); Offset %= EltSize; @@ -1240,7 +1235,8 @@ Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { // It may not be safe to reorder shuffles and things like div, urem, etc. // because we may trap when executing those ops on unknown vector elements. // See PR20059. - if (!isSafeToSpeculativelyExecute(&Inst, DL)) return nullptr; + if (!isSafeToSpeculativelyExecute(&Inst)) + return nullptr; unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); @@ -1326,37 +1322,37 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // Eliminate unneeded casts for indices, and replace indices which displace // by multiples of a zero size type with zero. - if (DL) { - bool MadeChange = false; - Type *IntPtrTy = DL->getIntPtrType(GEP.getPointerOperandType()); - - gep_type_iterator GTI = gep_type_begin(GEP); - for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); - I != E; ++I, ++GTI) { - // Skip indices into struct types. - SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI); - if (!SeqTy) continue; - - // If the element type has zero size then any index over it is equivalent - // to an index of zero, so replace it with zero if it is not zero already. - if (SeqTy->getElementType()->isSized() && - DL->getTypeAllocSize(SeqTy->getElementType()) == 0) - if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { - *I = Constant::getNullValue(IntPtrTy); - MadeChange = true; - } + bool MadeChange = false; + Type *IntPtrTy = DL.getIntPtrType(GEP.getPointerOperandType()); + + gep_type_iterator GTI = gep_type_begin(GEP); + for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; + ++I, ++GTI) { + // Skip indices into struct types. + SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI); + if (!SeqTy) + continue; - Type *IndexTy = (*I)->getType(); - if (IndexTy != IntPtrTy) { - // If we are using a wider index than needed for this platform, shrink - // it to what we need. If narrower, sign-extend it to what we need. - // This explicit cast can make subsequent optimizations more obvious. - *I = Builder->CreateIntCast(*I, IntPtrTy, true); + // If the element type has zero size then any index over it is equivalent + // to an index of zero, so replace it with zero if it is not zero already. + if (SeqTy->getElementType()->isSized() && + DL.getTypeAllocSize(SeqTy->getElementType()) == 0) + if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { + *I = Constant::getNullValue(IntPtrTy); MadeChange = true; } + + Type *IndexTy = (*I)->getType(); + if (IndexTy != IntPtrTy) { + // If we are using a wider index than needed for this platform, shrink + // it to what we need. If narrower, sign-extend it to what we need. + // This explicit cast can make subsequent optimizations more obvious. + *I = Builder->CreateIntCast(*I, IntPtrTy, true); + MadeChange = true; } - if (MadeChange) return &GEP; } + if (MadeChange) + return &GEP; // Check to see if the inputs to the PHI node are getelementptr instructions. if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { @@ -1364,6 +1360,15 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { if (!Op1) return nullptr; + // Don't fold a GEP into itself through a PHI node. This can only happen + // through the back-edge of a loop. Folding a GEP into itself means that + // the value of the previous iteration needs to be stored in the meantime, + // thus requiring an additional register variable to be live, but not + // actually achieving anything (the GEP still needs to be executed once per + // loop iteration). + if (Op1 == &GEP) + return nullptr; + signed DI = -1; for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { @@ -1371,6 +1376,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) return nullptr; + // As for Op1 above, don't try to fold a GEP into itself. + if (Op2 == &GEP) + return nullptr; + // Keep track of the type as we walk the GEP. Type *CurTy = Op1->getOperand(0)->getType()->getScalarType(); @@ -1417,8 +1426,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { if (DI == -1) { // All the GEPs feeding the PHI are identical. Clone one down into our // BB so that it can be merged with the current GEP. - GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(), - NewGEP); + GEP.getParent()->getInstList().insert( + GEP.getParent()->getFirstInsertionPt(), NewGEP); } else { // All the GEPs feeding the PHI differ at a single offset. Clone a GEP // into the current block so it can be merged, and create a new PHI to @@ -1434,8 +1443,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { PN->getIncomingBlock(I)); NewGEP->setOperand(DI, NewPN); - GEP.getParent()->getInstList().insert(GEP.getParent()->getFirstNonPHI(), - NewGEP); + GEP.getParent()->getInstList().insert( + GEP.getParent()->getFirstInsertionPt(), NewGEP); NewGEP->setOperand(DI, NewPN); } @@ -1486,6 +1495,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // normalized. if (SO1->getType() != GO1->getType()) return nullptr; + // Only do the combine when GO1 and SO1 are both constants. Only in + // this case, we are sure the cost after the merge is never more than + // that before the merge. + if (!isa<Constant>(GO1) || !isa<Constant>(SO1)) + return nullptr; Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); } @@ -1507,19 +1521,22 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { } if (!Indices.empty()) - return (GEP.isInBounds() && Src->isInBounds()) ? - GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices, - GEP.getName()) : - GetElementPtrInst::Create(Src->getOperand(0), Indices, GEP.getName()); + return GEP.isInBounds() && Src->isInBounds() + ? GetElementPtrInst::CreateInBounds( + Src->getSourceElementType(), Src->getOperand(0), Indices, + GEP.getName()) + : GetElementPtrInst::Create(Src->getSourceElementType(), + Src->getOperand(0), Indices, + GEP.getName()); } - if (DL && GEP.getNumIndices() == 1) { + if (GEP.getNumIndices() == 1) { unsigned AS = GEP.getPointerAddressSpace(); if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == - DL->getPointerSizeInBits(AS)) { + DL.getPointerSizeInBits(AS)) { Type *PtrTy = GEP.getPointerOperandType(); Type *Ty = PtrTy->getPointerElementType(); - uint64_t TyAllocSize = DL->getTypeAllocSize(Ty); + uint64_t TyAllocSize = DL.getTypeAllocSize(Ty); bool Matched = false; uint64_t C; @@ -1588,8 +1605,8 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { if (CATy->getElementType() == StrippedPtrTy->getElementType()) { // -> GEP i8* X, ... SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); - GetElementPtrInst *Res = - GetElementPtrInst::Create(StrippedPtr, Idx, GEP.getName()); + GetElementPtrInst *Res = GetElementPtrInst::Create( + StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); Res->setIsInBounds(GEP.isInBounds()); if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) return Res; @@ -1613,6 +1630,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // is a leading zero) we can fold the cast into this GEP. if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { GEP.setOperand(0, StrippedPtr); + GEP.setSourceElementType(XATy); return &GEP; } // Cannot replace the base pointer directly because StrippedPtr's @@ -1625,9 +1643,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // %0 = GEP [10 x i8] addrspace(1)* X, ... // addrspacecast i8 addrspace(1)* %0 to i8* SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); - Value *NewGEP = GEP.isInBounds() ? - Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) : - Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); + Value *NewGEP = GEP.isInBounds() + ? Builder->CreateInBoundsGEP( + nullptr, StrippedPtr, Idx, GEP.getName()) + : Builder->CreateGEP(nullptr, StrippedPtr, Idx, + GEP.getName()); return new AddrSpaceCastInst(NewGEP, GEP.getType()); } } @@ -1638,14 +1658,16 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast Type *SrcElTy = StrippedPtrTy->getElementType(); Type *ResElTy = PtrOp->getType()->getPointerElementType(); - if (DL && SrcElTy->isArrayTy() && - DL->getTypeAllocSize(SrcElTy->getArrayElementType()) == - DL->getTypeAllocSize(ResElTy)) { - Type *IdxType = DL->getIntPtrType(GEP.getType()); + if (SrcElTy->isArrayTy() && + DL.getTypeAllocSize(SrcElTy->getArrayElementType()) == + DL.getTypeAllocSize(ResElTy)) { + Type *IdxType = DL.getIntPtrType(GEP.getType()); Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; - Value *NewGEP = GEP.isInBounds() ? - Builder->CreateInBoundsGEP(StrippedPtr, Idx, GEP.getName()) : - Builder->CreateGEP(StrippedPtr, Idx, GEP.getName()); + Value *NewGEP = + GEP.isInBounds() + ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx, + GEP.getName()) + : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); // V and GEP are both pointer types --> BitCast return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, @@ -1656,11 +1678,11 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // %V = mul i64 %N, 4 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast - if (DL && ResElTy->isSized() && SrcElTy->isSized()) { + if (ResElTy->isSized() && SrcElTy->isSized()) { // Check that changing the type amounts to dividing the index by a scale // factor. - uint64_t ResSize = DL->getTypeAllocSize(ResElTy); - uint64_t SrcSize = DL->getTypeAllocSize(SrcElTy); + uint64_t ResSize = DL.getTypeAllocSize(ResElTy); + uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy); if (ResSize && SrcSize % ResSize == 0) { Value *Idx = GEP.getOperand(1); unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); @@ -1668,7 +1690,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // Earlier transforms ensure that the index has type IntPtrType, which // considerably simplifies the logic by eliminating implicit casts. - assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) && + assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && "Index not cast to pointer width?"); bool NSW; @@ -1676,9 +1698,12 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. // If the multiplication NewIdx * Scale may overflow then the new // GEP may not be "inbounds". - Value *NewGEP = GEP.isInBounds() && NSW ? - Builder->CreateInBoundsGEP(StrippedPtr, NewIdx, GEP.getName()) : - Builder->CreateGEP(StrippedPtr, NewIdx, GEP.getName()); + Value *NewGEP = + GEP.isInBounds() && NSW + ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, + GEP.getName()) + : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx, + GEP.getName()); // The NewGEP must be pointer typed, so must the old one -> BitCast return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, @@ -1691,13 +1716,12 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp // (where tmp = 8*tmp2) into: // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast - if (DL && ResElTy->isSized() && SrcElTy->isSized() && - SrcElTy->isArrayTy()) { + if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) { // Check that changing to the array element type amounts to dividing the // index by a scale factor. - uint64_t ResSize = DL->getTypeAllocSize(ResElTy); - uint64_t ArrayEltSize - = DL->getTypeAllocSize(SrcElTy->getArrayElementType()); + uint64_t ResSize = DL.getTypeAllocSize(ResElTy); + uint64_t ArrayEltSize = + DL.getTypeAllocSize(SrcElTy->getArrayElementType()); if (ResSize && ArrayEltSize % ResSize == 0) { Value *Idx = GEP.getOperand(1); unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); @@ -1705,7 +1729,7 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // Earlier transforms ensure that the index has type IntPtrType, which // considerably simplifies the logic by eliminating implicit casts. - assert(Idx->getType() == DL->getIntPtrType(GEP.getType()) && + assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && "Index not cast to pointer width?"); bool NSW; @@ -1714,13 +1738,14 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // If the multiplication NewIdx * Scale may overflow then the new // GEP may not be "inbounds". Value *Off[2] = { - Constant::getNullValue(DL->getIntPtrType(GEP.getType())), - NewIdx - }; - - Value *NewGEP = GEP.isInBounds() && NSW ? - Builder->CreateInBoundsGEP(StrippedPtr, Off, GEP.getName()) : - Builder->CreateGEP(StrippedPtr, Off, GEP.getName()); + Constant::getNullValue(DL.getIntPtrType(GEP.getType())), + NewIdx}; + + Value *NewGEP = GEP.isInBounds() && NSW + ? Builder->CreateInBoundsGEP( + SrcElTy, StrippedPtr, Off, GEP.getName()) + : Builder->CreateGEP(SrcElTy, StrippedPtr, Off, + GEP.getName()); // The NewGEP must be pointer typed, so must the old one -> BitCast return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEP.getType()); @@ -1730,9 +1755,6 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { } } - if (!DL) - return nullptr; - // addrspacecast between types is canonicalized as a bitcast, then an // addrspacecast. To take advantage of the below bitcast + struct GEP, look // through the addrspacecast. @@ -1753,10 +1775,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { Value *Operand = BCI->getOperand(0); PointerType *OpType = cast<PointerType>(Operand->getType()); - unsigned OffsetBits = DL->getPointerTypeSizeInBits(GEP.getType()); + unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType()); APInt Offset(OffsetBits, 0); if (!isa<BitCastInst>(Operand) && - GEP.accumulateConstantOffset(*DL, Offset)) { + GEP.accumulateConstantOffset(DL, Offset)) { // If this GEP instruction doesn't move the pointer, just replace the GEP // with a bitcast of the real input to the dest type. @@ -1785,9 +1807,10 @@ Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { // GEP. SmallVector<Value*, 8> NewIndices; if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { - Value *NGEP = GEP.isInBounds() ? - Builder->CreateInBoundsGEP(Operand, NewIndices) : - Builder->CreateGEP(Operand, NewIndices); + Value *NGEP = + GEP.isInBounds() + ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices) + : Builder->CreateGEP(nullptr, Operand, NewIndices); if (NGEP->getType() == GEP.getType()) return ReplaceInstUsesWith(GEP, NGEP); @@ -2038,6 +2061,15 @@ Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { return &BI; } + // If the condition is irrelevant, remove the use so that other + // transforms on the condition become more effective. + if (BI.isConditional() && + BI.getSuccessor(0) == BI.getSuccessor(1) && + !isa<UndefValue>(BI.getCondition())) { + BI.setCondition(UndefValue::get(BI.getCondition()->getType())); + return &BI; + } + // Canonicalize fcmp_one -> fcmp_oeq FCmpInst::Predicate FPred; Value *Y; if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), @@ -2077,7 +2109,7 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { Value *Cond = SI.getCondition(); unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); - computeKnownBits(Cond, KnownZero, KnownOne); + computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI); unsigned LeadingKnownZeros = KnownZero.countLeadingOnes(); unsigned LeadingKnownOnes = KnownOne.countLeadingOnes(); @@ -2096,8 +2128,8 @@ Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { // x86 generates redundant zero-extenstion instructions if the operand is // truncated to i8 or i16. bool TruncCond = false; - if (DL && BitWidth > NewWidth && - NewWidth >= DL->getLargestLegalIntTypeSize()) { + if (NewWidth > 0 && BitWidth > NewWidth && + NewWidth >= DL.getLargestLegalIntTypeSize()) { TruncCond = true; IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); Builder->SetInsertPoint(&SI); @@ -2270,7 +2302,8 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { // We need to insert these at the location of the old load, not at that of // the extractvalue. Builder->SetInsertPoint(L->getParent(), L); - Value *GEP = Builder->CreateInBoundsGEP(L->getPointerOperand(), Indices); + Value *GEP = Builder->CreateInBoundsGEP(L->getType(), + L->getPointerOperand(), Indices); // Returning the load directly will cause the main loop to insert it in // the wrong spot, so use ReplaceInstUsesWith(). return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP)); @@ -2286,41 +2319,27 @@ Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { return nullptr; } -enum Personality_Type { - Unknown_Personality, - GNU_Ada_Personality, - GNU_CXX_Personality, - GNU_ObjC_Personality -}; - -/// RecognizePersonality - See if the given exception handling personality -/// function is one that we understand. If so, return a description of it; -/// otherwise return Unknown_Personality. -static Personality_Type RecognizePersonality(Value *Pers) { - Function *F = dyn_cast<Function>(Pers->stripPointerCasts()); - if (!F) - return Unknown_Personality; - return StringSwitch<Personality_Type>(F->getName()) - .Case("__gnat_eh_personality", GNU_Ada_Personality) - .Case("__gxx_personality_v0", GNU_CXX_Personality) - .Case("__objc_personality_v0", GNU_ObjC_Personality) - .Default(Unknown_Personality); -} - /// isCatchAll - Return 'true' if the given typeinfo will match anything. -static bool isCatchAll(Personality_Type Personality, Constant *TypeInfo) { +static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { switch (Personality) { - case Unknown_Personality: + case EHPersonality::GNU_C: + // The GCC C EH personality only exists to support cleanups, so it's not + // clear what the semantics of catch clauses are. return false; - case GNU_Ada_Personality: + case EHPersonality::Unknown: + return false; + case EHPersonality::GNU_Ada: // While __gnat_all_others_value will match any Ada exception, it doesn't // match foreign exceptions (or didn't, before gcc-4.7). return false; - case GNU_CXX_Personality: - case GNU_ObjC_Personality: + case EHPersonality::GNU_CXX: + case EHPersonality::GNU_ObjC: + case EHPersonality::MSVC_X86SEH: + case EHPersonality::MSVC_Win64SEH: + case EHPersonality::MSVC_CXX: return TypeInfo->isNullValue(); } - llvm_unreachable("Unknown personality!"); + llvm_unreachable("invalid enum"); } static bool shorter_filter(const Value *LHS, const Value *RHS) { @@ -2334,7 +2353,7 @@ Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { // The logic here should be correct for any real-world personality function. // However if that turns out not to be true, the offending logic can always // be conditioned on the personality function, like the catch-all logic is. - Personality_Type Personality = RecognizePersonality(LI.getPersonalityFn()); + EHPersonality Personality = classifyEHPersonality(LI.getPersonalityFn()); // Simplify the list of clauses, eg by removing repeated catch clauses // (these are often created by inlining). @@ -2625,9 +2644,6 @@ Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { return nullptr; } - - - /// TryToSinkInstruction - Try to move the specified instruction from its /// current block into the beginning of DestBlock, which can only happen if it's /// safe to move the instruction past all of the instructions between it and the @@ -2660,164 +2676,7 @@ static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { return true; } - -/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding -/// all reachable code to the worklist. -/// -/// This has a couple of tricks to make the code faster and more powerful. In -/// particular, we constant fold and DCE instructions as we go, to avoid adding -/// them to the worklist (this significantly speeds up instcombine on code where -/// many instructions are dead or constant). Additionally, if we find a branch -/// whose condition is a known constant, we only visit the reachable successors. -/// -static bool AddReachableCodeToWorklist(BasicBlock *BB, - SmallPtrSetImpl<BasicBlock*> &Visited, - InstCombiner &IC, - const DataLayout *DL, - const TargetLibraryInfo *TLI) { - bool MadeIRChange = false; - SmallVector<BasicBlock*, 256> Worklist; - Worklist.push_back(BB); - - SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; - DenseMap<ConstantExpr*, Constant*> FoldedConstants; - - do { - BB = Worklist.pop_back_val(); - - // We have now visited this block! If we've already been here, ignore it. - if (!Visited.insert(BB).second) - continue; - - for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { - Instruction *Inst = BBI++; - - // DCE instruction if trivially dead. - if (isInstructionTriviallyDead(Inst, TLI)) { - ++NumDeadInst; - DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); - Inst->eraseFromParent(); - continue; - } - - // ConstantProp instruction if trivially constant. - if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0))) - if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { - DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " - << *Inst << '\n'); - Inst->replaceAllUsesWith(C); - ++NumConstProp; - Inst->eraseFromParent(); - continue; - } - - if (DL) { - // See if we can constant fold its operands. - for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); - i != e; ++i) { - ConstantExpr *CE = dyn_cast<ConstantExpr>(i); - if (CE == nullptr) continue; - - Constant*& FoldRes = FoldedConstants[CE]; - if (!FoldRes) - FoldRes = ConstantFoldConstantExpression(CE, DL, TLI); - if (!FoldRes) - FoldRes = CE; - - if (FoldRes != CE) { - *i = FoldRes; - MadeIRChange = true; - } - } - } - - InstrsForInstCombineWorklist.push_back(Inst); - } - - // Recursively visit successors. If this is a branch or switch on a - // constant, only visit the reachable successor. - TerminatorInst *TI = BB->getTerminator(); - if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { - if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { - bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); - BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); - Worklist.push_back(ReachableBB); - continue; - } - } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { - // See if this is an explicit destination. - for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); - i != e; ++i) - if (i.getCaseValue() == Cond) { - BasicBlock *ReachableBB = i.getCaseSuccessor(); - Worklist.push_back(ReachableBB); - continue; - } - - // Otherwise it is the default destination. - Worklist.push_back(SI->getDefaultDest()); - continue; - } - } - - for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) - Worklist.push_back(TI->getSuccessor(i)); - } while (!Worklist.empty()); - - // Once we've found all of the instructions to add to instcombine's worklist, - // add them in reverse order. This way instcombine will visit from the top - // of the function down. This jives well with the way that it adds all uses - // of instructions to the worklist after doing a transformation, thus avoiding - // some N^2 behavior in pathological cases. - IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], - InstrsForInstCombineWorklist.size()); - - return MadeIRChange; -} - -bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { - MadeIRChange = false; - - DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " - << F.getName() << "\n"); - - { - // Do a depth-first traversal of the function, populate the worklist with - // the reachable instructions. Ignore blocks that are not reachable. Keep - // track of which blocks we visit. - SmallPtrSet<BasicBlock*, 64> Visited; - MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, DL, - TLI); - - // Do a quick scan over the function. If we find any blocks that are - // unreachable, remove any instructions inside of them. This prevents - // the instcombine code from having to deal with some bad special cases. - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { - if (Visited.count(BB)) continue; - - // Delete the instructions backwards, as it has a reduced likelihood of - // having to update as many def-use and use-def chains. - Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. - while (EndInst != BB->begin()) { - // Delete the next to last instruction. - BasicBlock::iterator I = EndInst; - Instruction *Inst = --I; - if (!Inst->use_empty()) - Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); - if (isa<LandingPadInst>(Inst)) { - EndInst = Inst; - continue; - } - if (!isa<DbgInfoIntrinsic>(Inst)) { - ++NumDeadInst; - MadeIRChange = true; - } - Inst->eraseFromParent(); - } - } - } - +bool InstCombiner::run() { while (!Worklist.isEmpty()) { Instruction *I = Worklist.RemoveOne(); if (I == nullptr) continue; // skip null values. @@ -2832,7 +2691,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { } // Instruction isn't dead, see if we can constant propagate it. - if (!I->use_empty() && isa<Constant>(I->getOperand(0))) + if (!I->use_empty() && isa<Constant>(I->getOperand(0))) { if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) { DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); @@ -2843,6 +2702,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { MadeIRChange = true; continue; } + } // See if we can trivially sink this instruction to a successor basic block. if (I->hasOneUse()) { @@ -2900,7 +2760,7 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { DEBUG(dbgs() << "IC: Old = " << *I << '\n' << " New = " << *Result << '\n'); - if (!I->getDebugLoc().isUnknown()) + if (I->getDebugLoc()) Result->setDebugLoc(I->getDebugLoc()); // Everything uses the new instruction now. I->replaceAllUsesWith(Result); @@ -2947,63 +2807,287 @@ bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) { return MadeIRChange; } -namespace { -class InstCombinerLibCallSimplifier final : public LibCallSimplifier { - InstCombiner *IC; -public: - InstCombinerLibCallSimplifier(const DataLayout *DL, - const TargetLibraryInfo *TLI, - InstCombiner *IC) - : LibCallSimplifier(DL, TLI) { - this->IC = IC; - } +/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding +/// all reachable code to the worklist. +/// +/// This has a couple of tricks to make the code faster and more powerful. In +/// particular, we constant fold and DCE instructions as we go, to avoid adding +/// them to the worklist (this significantly speeds up instcombine on code where +/// many instructions are dead or constant). Additionally, if we find a branch +/// whose condition is a known constant, we only visit the reachable successors. +/// +static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, + SmallPtrSetImpl<BasicBlock *> &Visited, + InstCombineWorklist &ICWorklist, + const TargetLibraryInfo *TLI) { + bool MadeIRChange = false; + SmallVector<BasicBlock*, 256> Worklist; + Worklist.push_back(BB); - /// replaceAllUsesWith - override so that instruction replacement - /// can be defined in terms of the instruction combiner framework. - void replaceAllUsesWith(Instruction *I, Value *With) const override { - IC->ReplaceInstUsesWith(*I, With); - } -}; + SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; + DenseMap<ConstantExpr*, Constant*> FoldedConstants; + + do { + BB = Worklist.pop_back_val(); + + // We have now visited this block! If we've already been here, ignore it. + if (!Visited.insert(BB).second) + continue; + + for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { + Instruction *Inst = BBI++; + + // DCE instruction if trivially dead. + if (isInstructionTriviallyDead(Inst, TLI)) { + ++NumDeadInst; + DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); + Inst->eraseFromParent(); + continue; + } + + // ConstantProp instruction if trivially constant. + if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0))) + if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { + DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " + << *Inst << '\n'); + Inst->replaceAllUsesWith(C); + ++NumConstProp; + Inst->eraseFromParent(); + continue; + } + + // See if we can constant fold its operands. + for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e; + ++i) { + ConstantExpr *CE = dyn_cast<ConstantExpr>(i); + if (CE == nullptr) + continue; + + Constant *&FoldRes = FoldedConstants[CE]; + if (!FoldRes) + FoldRes = ConstantFoldConstantExpression(CE, DL, TLI); + if (!FoldRes) + FoldRes = CE; + + if (FoldRes != CE) { + *i = FoldRes; + MadeIRChange = true; + } + } + + InstrsForInstCombineWorklist.push_back(Inst); + } + + // Recursively visit successors. If this is a branch or switch on a + // constant, only visit the reachable successor. + TerminatorInst *TI = BB->getTerminator(); + if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { + if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { + bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); + BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); + Worklist.push_back(ReachableBB); + continue; + } + } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { + if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { + // See if this is an explicit destination. + for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); + i != e; ++i) + if (i.getCaseValue() == Cond) { + BasicBlock *ReachableBB = i.getCaseSuccessor(); + Worklist.push_back(ReachableBB); + continue; + } + + // Otherwise it is the default destination. + Worklist.push_back(SI->getDefaultDest()); + continue; + } + } + + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) + Worklist.push_back(TI->getSuccessor(i)); + } while (!Worklist.empty()); + + // Once we've found all of the instructions to add to instcombine's worklist, + // add them in reverse order. This way instcombine will visit from the top + // of the function down. This jives well with the way that it adds all uses + // of instructions to the worklist after doing a transformation, thus avoiding + // some N^2 behavior in pathological cases. + ICWorklist.AddInitialGroup(&InstrsForInstCombineWorklist[0], + InstrsForInstCombineWorklist.size()); + + return MadeIRChange; } -bool InstCombiner::runOnFunction(Function &F) { - if (skipOptnoneFunction(F)) - return false; +/// \brief Populate the IC worklist from a function, and prune any dead basic +/// blocks discovered in the process. +/// +/// This also does basic constant propagation and other forward fixing to make +/// the combiner itself run much faster. +static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, + TargetLibraryInfo *TLI, + InstCombineWorklist &ICWorklist) { + bool MadeIRChange = false; + + // Do a depth-first traversal of the function, populate the worklist with + // the reachable instructions. Ignore blocks that are not reachable. Keep + // track of which blocks we visit. + SmallPtrSet<BasicBlock *, 64> Visited; + MadeIRChange |= + AddReachableCodeToWorklist(F.begin(), DL, Visited, ICWorklist, TLI); + + // Do a quick scan over the function. If we find any blocks that are + // unreachable, remove any instructions inside of them. This prevents + // the instcombine code from having to deal with some bad special cases. + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + if (Visited.count(BB)) + continue; + + // Delete the instructions backwards, as it has a reduced likelihood of + // having to update as many def-use and use-def chains. + Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. + while (EndInst != BB->begin()) { + // Delete the next to last instruction. + BasicBlock::iterator I = EndInst; + Instruction *Inst = --I; + if (!Inst->use_empty()) + Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); + if (isa<LandingPadInst>(Inst)) { + EndInst = Inst; + continue; + } + if (!isa<DbgInfoIntrinsic>(Inst)) { + ++NumDeadInst; + MadeIRChange = true; + } + Inst->eraseFromParent(); + } + } - AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); - DL = DLP ? &DLP->getDataLayout() : nullptr; - DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - TLI = &getAnalysis<TargetLibraryInfo>(); + return MadeIRChange; +} +static bool +combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist, + AssumptionCache &AC, TargetLibraryInfo &TLI, + DominatorTree &DT, LoopInfo *LI = nullptr) { // Minimizing size? - MinimizeSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, - Attribute::MinSize); + bool MinimizeSize = F.hasFnAttribute(Attribute::MinSize); + auto &DL = F.getParent()->getDataLayout(); /// Builder - This is an IRBuilder that automatically inserts new /// instructions into the worklist when they are created. - IRBuilder<true, TargetFolder, InstCombineIRInserter> TheBuilder( - F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, AC)); - Builder = &TheBuilder; - - InstCombinerLibCallSimplifier TheSimplifier(DL, TLI, this); - Simplifier = &TheSimplifier; - - bool EverMadeChange = false; + IRBuilder<true, TargetFolder, InstCombineIRInserter> Builder( + F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC)); // Lower dbg.declare intrinsics otherwise their value may be clobbered // by instcombiner. - EverMadeChange = LowerDbgDeclare(F); + bool DbgDeclaresChanged = LowerDbgDeclare(F); // Iterate while there is work to do. - unsigned Iteration = 0; - while (DoOneIteration(F, Iteration++)) - EverMadeChange = true; + int Iteration = 0; + for (;;) { + ++Iteration; + DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " + << F.getName() << "\n"); + + bool Changed = false; + if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist)) + Changed = true; + + InstCombiner IC(Worklist, &Builder, MinimizeSize, &AC, &TLI, &DT, DL, LI); + if (IC.run()) + Changed = true; + + if (!Changed) + break; + } + + return DbgDeclaresChanged || Iteration > 1; +} + +PreservedAnalyses InstCombinePass::run(Function &F, + AnalysisManager<Function> *AM) { + auto &AC = AM->getResult<AssumptionAnalysis>(F); + auto &DT = AM->getResult<DominatorTreeAnalysis>(F); + auto &TLI = AM->getResult<TargetLibraryAnalysis>(F); + + auto *LI = AM->getCachedResult<LoopAnalysis>(F); + + if (!combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI)) + // No changes, all analyses are preserved. + return PreservedAnalyses::all(); + + // Mark all the analyses that instcombine updates as preserved. + // FIXME: Need a way to preserve CFG analyses here! + PreservedAnalyses PA; + PA.preserve<DominatorTreeAnalysis>(); + return PA; +} + +namespace { +/// \brief The legacy pass manager's instcombine pass. +/// +/// This is a basic whole-function wrapper around the instcombine utility. It +/// will try to combine all instructions in the function. +class InstructionCombiningPass : public FunctionPass { + InstCombineWorklist Worklist; + +public: + static char ID; // Pass identification, replacement for typeid + + InstructionCombiningPass() : FunctionPass(ID) { + initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override; + bool runOnFunction(Function &F) override; +}; +} + +void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addRequired<AssumptionCacheTracker>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); +} + +bool InstructionCombiningPass::runOnFunction(Function &F) { + if (skipOptnoneFunction(F)) + return false; + + // Required analyses. + auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); + auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + + // Optional analyses. + auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); + auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; - Builder = nullptr; - return EverMadeChange; + return combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI); +} + +char InstructionCombiningPass::ID = 0; +INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", + "Combine redundant instructions", false, false) +INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", + "Combine redundant instructions", false, false) + +// Initialization Routines +void llvm::initializeInstCombine(PassRegistry &Registry) { + initializeInstructionCombiningPassPass(Registry); +} + +void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { + initializeInstructionCombiningPassPass(*unwrap(R)); } FunctionPass *llvm::createInstructionCombiningPass() { - return new InstCombiner(); + return new InstructionCombiningPass(); } |