aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2022-07-03 14:10:23 +0000
committerDimitry Andric <dim@FreeBSD.org>2022-07-03 14:10:23 +0000
commit145449b1e420787bb99721a429341fa6be3adfb6 (patch)
tree1d56ae694a6de602e348dd80165cf881a36600ed /llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp
parentecbca9f5fb7d7613d2b94982c4825eb0d33d6842 (diff)
Diffstat (limited to 'llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp')
-rw-r--r--llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp2963
1 files changed, 2963 insertions, 0 deletions
diff --git a/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp
new file mode 100644
index 000000000000..494a71e51a89
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp
@@ -0,0 +1,2963 @@
+//===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Bitcode writer implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DXILBitcodeWriter.h"
+#include "DXILValueEnumerator.h"
+#include "PointerTypeAnalysis.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Bitcode/BitcodeCommon.h"
+#include "llvm/Bitcode/BitcodeReader.h"
+#include "llvm/Bitcode/LLVMBitCodes.h"
+#include "llvm/Bitstream/BitCodes.h"
+#include "llvm/Bitstream/BitstreamWriter.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Comdat.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalIFunc.h"
+#include "llvm/IR/GlobalObject.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ModuleSummaryIndex.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/UseListOrder.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/Object/IRSymtab.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SHA1.h"
+
+namespace llvm {
+namespace dxil {
+
+// Generates an enum to use as an index in the Abbrev array of Metadata record.
+enum MetadataAbbrev : unsigned {
+#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
+#include "llvm/IR/Metadata.def"
+ LastPlusOne
+};
+
+class DXILBitcodeWriter {
+
+ /// These are manifest constants used by the bitcode writer. They do not need
+ /// to be kept in sync with the reader, but need to be consistent within this
+ /// file.
+ enum {
+ // VALUE_SYMTAB_BLOCK abbrev id's.
+ VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ VST_ENTRY_7_ABBREV,
+ VST_ENTRY_6_ABBREV,
+ VST_BBENTRY_6_ABBREV,
+
+ // CONSTANTS_BLOCK abbrev id's.
+ CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ CONSTANTS_INTEGER_ABBREV,
+ CONSTANTS_CE_CAST_Abbrev,
+ CONSTANTS_NULL_Abbrev,
+
+ // FUNCTION_BLOCK abbrev id's.
+ FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ FUNCTION_INST_BINOP_ABBREV,
+ FUNCTION_INST_BINOP_FLAGS_ABBREV,
+ FUNCTION_INST_CAST_ABBREV,
+ FUNCTION_INST_RET_VOID_ABBREV,
+ FUNCTION_INST_RET_VAL_ABBREV,
+ FUNCTION_INST_UNREACHABLE_ABBREV,
+ FUNCTION_INST_GEP_ABBREV,
+ };
+
+ // Cache some types
+ Type *I8Ty;
+ Type *I8PtrTy;
+
+ /// The stream created and owned by the client.
+ BitstreamWriter &Stream;
+
+ StringTableBuilder &StrtabBuilder;
+
+ /// The Module to write to bitcode.
+ const Module &M;
+
+ /// Enumerates ids for all values in the module.
+ ValueEnumerator VE;
+
+ /// Map that holds the correspondence between GUIDs in the summary index,
+ /// that came from indirect call profiles, and a value id generated by this
+ /// class to use in the VST and summary block records.
+ std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
+
+ /// Tracks the last value id recorded in the GUIDToValueMap.
+ unsigned GlobalValueId;
+
+ /// Saves the offset of the VSTOffset record that must eventually be
+ /// backpatched with the offset of the actual VST.
+ uint64_t VSTOffsetPlaceholder = 0;
+
+ /// Pointer to the buffer allocated by caller for bitcode writing.
+ const SmallVectorImpl<char> &Buffer;
+
+ /// The start bit of the identification block.
+ uint64_t BitcodeStartBit;
+
+ /// This maps values to their typed pointers
+ PointerTypeMap PointerMap;
+
+public:
+ /// Constructs a ModuleBitcodeWriter object for the given Module,
+ /// writing to the provided \p Buffer.
+ DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
+ StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
+ : I8Ty(Type::getInt8Ty(M.getContext())),
+ I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
+ StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
+ BitcodeStartBit(Stream.GetCurrentBitNo()),
+ PointerMap(PointerTypeAnalysis::run(M)) {
+ GlobalValueId = VE.getValues().size();
+ // Enumerate the typed pointers
+ for (auto El : PointerMap)
+ VE.EnumerateType(El.second);
+ }
+
+ /// Emit the current module to the bitstream.
+ void write();
+
+ static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
+ static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
+ StringRef Str, unsigned AbbrevToUse);
+ static void writeIdentificationBlock(BitstreamWriter &Stream);
+ static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
+ static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
+
+ static unsigned getEncodedComdatSelectionKind(const Comdat &C);
+ static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
+ static unsigned getEncodedLinkage(const GlobalValue &GV);
+ static unsigned getEncodedVisibility(const GlobalValue &GV);
+ static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
+ static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
+ static unsigned getEncodedCastOpcode(unsigned Opcode);
+ static unsigned getEncodedUnaryOpcode(unsigned Opcode);
+ static unsigned getEncodedBinaryOpcode(unsigned Opcode);
+ static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
+ static unsigned getEncodedOrdering(AtomicOrdering Ordering);
+ static uint64_t getOptimizationFlags(const Value *V);
+
+private:
+ void writeModuleVersion();
+ void writePerModuleGlobalValueSummary();
+
+ void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
+ GlobalValueSummary *Summary,
+ unsigned ValueID,
+ unsigned FSCallsAbbrev,
+ unsigned FSCallsProfileAbbrev,
+ const Function &F);
+ void writeModuleLevelReferences(const GlobalVariable &V,
+ SmallVector<uint64_t, 64> &NameVals,
+ unsigned FSModRefsAbbrev,
+ unsigned FSModVTableRefsAbbrev);
+
+ void assignValueId(GlobalValue::GUID ValGUID) {
+ GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
+ }
+
+ unsigned getValueId(GlobalValue::GUID ValGUID) {
+ const auto &VMI = GUIDToValueIdMap.find(ValGUID);
+ // Expect that any GUID value had a value Id assigned by an
+ // earlier call to assignValueId.
+ assert(VMI != GUIDToValueIdMap.end() &&
+ "GUID does not have assigned value Id");
+ return VMI->second;
+ }
+
+ // Helper to get the valueId for the type of value recorded in VI.
+ unsigned getValueId(ValueInfo VI) {
+ if (!VI.haveGVs() || !VI.getValue())
+ return getValueId(VI.getGUID());
+ return VE.getValueID(VI.getValue());
+ }
+
+ std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
+
+ uint64_t bitcodeStartBit() { return BitcodeStartBit; }
+
+ size_t addToStrtab(StringRef Str);
+
+ unsigned createDILocationAbbrev();
+ unsigned createGenericDINodeAbbrev();
+
+ void writeAttributeGroupTable();
+ void writeAttributeTable();
+ void writeTypeTable();
+ void writeComdats();
+ void writeValueSymbolTableForwardDecl();
+ void writeModuleInfo();
+ void writeValueAsMetadata(const ValueAsMetadata *MD,
+ SmallVectorImpl<uint64_t> &Record);
+ void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned &Abbrev);
+ void writeGenericDINode(const GenericDINode *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
+ llvm_unreachable("DXIL cannot contain GenericDI Nodes");
+ }
+ void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDIGenericSubrange(const DIGenericSubrange *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
+ }
+ void writeDIEnumerator(const DIEnumerator *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDIStringType(const DIStringType *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DIStringType Nodes");
+ }
+ void writeDIDerivedType(const DIDerivedType *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDICompositeType(const DICompositeType *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDISubroutineType(const DISubroutineType *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDICompileUnit(const DICompileUnit *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDISubprogram(const DISubprogram *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDILexicalBlock(const DILexicalBlock *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDILexicalBlockFile(const DILexicalBlockFile *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDICommonBlock(const DICommonBlock *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
+ }
+ void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DIMacro Nodes");
+ }
+ void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
+ }
+ void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DIArgList Nodes");
+ }
+ void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDITemplateValueParameter(const DITemplateValueParameter *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDIGlobalVariable(const DIGlobalVariable *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDILocalVariable(const DILocalVariable *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DILabel Nodes");
+ }
+ void writeDIExpression(const DIExpression *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
+ }
+ void writeDIObjCProperty(const DIObjCProperty *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDIImportedEntity(const DIImportedEntity *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ unsigned createNamedMetadataAbbrev();
+ void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
+ unsigned createMetadataStringsAbbrev();
+ void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
+ SmallVectorImpl<uint64_t> &Record);
+ void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
+ SmallVectorImpl<uint64_t> &Record,
+ std::vector<unsigned> *MDAbbrevs = nullptr,
+ std::vector<uint64_t> *IndexPos = nullptr);
+ void writeModuleMetadata();
+ void writeFunctionMetadata(const Function &F);
+ void writeFunctionMetadataAttachment(const Function &F);
+ void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
+ const GlobalObject &GO);
+ void writeModuleMetadataKinds();
+ void writeOperandBundleTags();
+ void writeSyncScopeNames();
+ void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
+ void writeModuleConstants();
+ bool pushValueAndType(const Value *V, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals);
+ void writeOperandBundles(const CallBase &CB, unsigned InstID);
+ void pushValue(const Value *V, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals);
+ void pushValueSigned(const Value *V, unsigned InstID,
+ SmallVectorImpl<uint64_t> &Vals);
+ void writeInstruction(const Instruction &I, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals);
+ void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
+ void writeGlobalValueSymbolTable(
+ DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
+ void writeUseList(UseListOrder &&Order);
+ void writeUseListBlock(const Function *F);
+ void writeFunction(const Function &F);
+ void writeBlockInfo();
+
+ unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
+
+ unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
+
+ unsigned getTypeID(Type *T, const Value *V = nullptr);
+ unsigned getTypeID(Type *T, const Function *F);
+};
+
+} // namespace dxil
+} // namespace llvm
+
+using namespace llvm;
+using namespace llvm::dxil;
+
+////////////////////////////////////////////////////////////////////////////////
+/// Begin dxil::BitcodeWriter Implementation
+////////////////////////////////////////////////////////////////////////////////
+
+dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer,
+ raw_fd_stream *FS)
+ : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
+ // Emit the file header.
+ Stream->Emit((unsigned)'B', 8);
+ Stream->Emit((unsigned)'C', 8);
+ Stream->Emit(0x0, 4);
+ Stream->Emit(0xC, 4);
+ Stream->Emit(0xE, 4);
+ Stream->Emit(0xD, 4);
+}
+
+dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
+
+/// Write the specified module to the specified output stream.
+void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
+ SmallVector<char, 0> Buffer;
+ Buffer.reserve(256 * 1024);
+
+ // If this is darwin or another generic macho target, reserve space for the
+ // header.
+ Triple TT(M.getTargetTriple());
+ if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
+ Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
+
+ BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
+ Writer.writeModule(M);
+ Writer.writeSymtab();
+ Writer.writeStrtab();
+
+ // Write the generated bitstream to "Out".
+ if (!Buffer.empty())
+ Out.write((char *)&Buffer.front(), Buffer.size());
+}
+
+void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
+ Stream->EnterSubblock(Block, 3);
+
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(Record));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
+
+ Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
+
+ Stream->ExitBlock();
+}
+
+void BitcodeWriter::writeSymtab() {
+ assert(!WroteStrtab && !WroteSymtab);
+
+ // If any module has module-level inline asm, we will require a registered asm
+ // parser for the target so that we can create an accurate symbol table for
+ // the module.
+ for (Module *M : Mods) {
+ if (M->getModuleInlineAsm().empty())
+ continue;
+ }
+
+ WroteSymtab = true;
+ SmallVector<char, 0> Symtab;
+ // The irsymtab::build function may be unable to create a symbol table if the
+ // module is malformed (e.g. it contains an invalid alias). Writing a symbol
+ // table is not required for correctness, but we still want to be able to
+ // write malformed modules to bitcode files, so swallow the error.
+ if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
+ consumeError(std::move(E));
+ return;
+ }
+
+ writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
+ {Symtab.data(), Symtab.size()});
+}
+
+void BitcodeWriter::writeStrtab() {
+ assert(!WroteStrtab);
+
+ std::vector<char> Strtab;
+ StrtabBuilder.finalizeInOrder();
+ Strtab.resize(StrtabBuilder.getSize());
+ StrtabBuilder.write((uint8_t *)Strtab.data());
+
+ writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
+ {Strtab.data(), Strtab.size()});
+
+ WroteStrtab = true;
+}
+
+void BitcodeWriter::copyStrtab(StringRef Strtab) {
+ writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
+ WroteStrtab = true;
+}
+
+void BitcodeWriter::writeModule(const Module &M) {
+ assert(!WroteStrtab);
+
+ // The Mods vector is used by irsymtab::build, which requires non-const
+ // Modules in case it needs to materialize metadata. But the bitcode writer
+ // requires that the module is materialized, so we can cast to non-const here,
+ // after checking that it is in fact materialized.
+ assert(M.isMaterialized());
+ Mods.push_back(const_cast<Module *>(&M));
+
+ DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
+ ModuleWriter.write();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+/// Begin dxil::BitcodeWriterBase Implementation
+////////////////////////////////////////////////////////////////////////////////
+
+unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Unknown cast instruction!");
+ case Instruction::Trunc:
+ return bitc::CAST_TRUNC;
+ case Instruction::ZExt:
+ return bitc::CAST_ZEXT;
+ case Instruction::SExt:
+ return bitc::CAST_SEXT;
+ case Instruction::FPToUI:
+ return bitc::CAST_FPTOUI;
+ case Instruction::FPToSI:
+ return bitc::CAST_FPTOSI;
+ case Instruction::UIToFP:
+ return bitc::CAST_UITOFP;
+ case Instruction::SIToFP:
+ return bitc::CAST_SITOFP;
+ case Instruction::FPTrunc:
+ return bitc::CAST_FPTRUNC;
+ case Instruction::FPExt:
+ return bitc::CAST_FPEXT;
+ case Instruction::PtrToInt:
+ return bitc::CAST_PTRTOINT;
+ case Instruction::IntToPtr:
+ return bitc::CAST_INTTOPTR;
+ case Instruction::BitCast:
+ return bitc::CAST_BITCAST;
+ case Instruction::AddrSpaceCast:
+ return bitc::CAST_ADDRSPACECAST;
+ }
+}
+
+unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Unknown binary instruction!");
+ case Instruction::FNeg:
+ return bitc::UNOP_FNEG;
+ }
+}
+
+unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Unknown binary instruction!");
+ case Instruction::Add:
+ case Instruction::FAdd:
+ return bitc::BINOP_ADD;
+ case Instruction::Sub:
+ case Instruction::FSub:
+ return bitc::BINOP_SUB;
+ case Instruction::Mul:
+ case Instruction::FMul:
+ return bitc::BINOP_MUL;
+ case Instruction::UDiv:
+ return bitc::BINOP_UDIV;
+ case Instruction::FDiv:
+ case Instruction::SDiv:
+ return bitc::BINOP_SDIV;
+ case Instruction::URem:
+ return bitc::BINOP_UREM;
+ case Instruction::FRem:
+ case Instruction::SRem:
+ return bitc::BINOP_SREM;
+ case Instruction::Shl:
+ return bitc::BINOP_SHL;
+ case Instruction::LShr:
+ return bitc::BINOP_LSHR;
+ case Instruction::AShr:
+ return bitc::BINOP_ASHR;
+ case Instruction::And:
+ return bitc::BINOP_AND;
+ case Instruction::Or:
+ return bitc::BINOP_OR;
+ case Instruction::Xor:
+ return bitc::BINOP_XOR;
+ }
+}
+
+unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
+ if (!T->isOpaquePointerTy())
+ return VE.getTypeID(T);
+ auto It = PointerMap.find(V);
+ if (It != PointerMap.end())
+ return VE.getTypeID(It->second);
+ return VE.getTypeID(I8PtrTy);
+}
+
+unsigned DXILBitcodeWriter::getTypeID(Type *T, const Function *F) {
+ auto It = PointerMap.find(F);
+ if (It != PointerMap.end())
+ return VE.getTypeID(It->second);
+ return VE.getTypeID(T);
+}
+
+unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
+ switch (Op) {
+ default:
+ llvm_unreachable("Unknown RMW operation!");
+ case AtomicRMWInst::Xchg:
+ return bitc::RMW_XCHG;
+ case AtomicRMWInst::Add:
+ return bitc::RMW_ADD;
+ case AtomicRMWInst::Sub:
+ return bitc::RMW_SUB;
+ case AtomicRMWInst::And:
+ return bitc::RMW_AND;
+ case AtomicRMWInst::Nand:
+ return bitc::RMW_NAND;
+ case AtomicRMWInst::Or:
+ return bitc::RMW_OR;
+ case AtomicRMWInst::Xor:
+ return bitc::RMW_XOR;
+ case AtomicRMWInst::Max:
+ return bitc::RMW_MAX;
+ case AtomicRMWInst::Min:
+ return bitc::RMW_MIN;
+ case AtomicRMWInst::UMax:
+ return bitc::RMW_UMAX;
+ case AtomicRMWInst::UMin:
+ return bitc::RMW_UMIN;
+ case AtomicRMWInst::FAdd:
+ return bitc::RMW_FADD;
+ case AtomicRMWInst::FSub:
+ return bitc::RMW_FSUB;
+ }
+}
+
+unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
+ switch (Ordering) {
+ case AtomicOrdering::NotAtomic:
+ return bitc::ORDERING_NOTATOMIC;
+ case AtomicOrdering::Unordered:
+ return bitc::ORDERING_UNORDERED;
+ case AtomicOrdering::Monotonic:
+ return bitc::ORDERING_MONOTONIC;
+ case AtomicOrdering::Acquire:
+ return bitc::ORDERING_ACQUIRE;
+ case AtomicOrdering::Release:
+ return bitc::ORDERING_RELEASE;
+ case AtomicOrdering::AcquireRelease:
+ return bitc::ORDERING_ACQREL;
+ case AtomicOrdering::SequentiallyConsistent:
+ return bitc::ORDERING_SEQCST;
+ }
+ llvm_unreachable("Invalid ordering");
+}
+
+void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
+ unsigned Code, StringRef Str,
+ unsigned AbbrevToUse) {
+ SmallVector<unsigned, 64> Vals;
+
+ // Code: [strchar x N]
+ for (char C : Str) {
+ if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
+ AbbrevToUse = 0;
+ Vals.push_back(C);
+ }
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, Vals, AbbrevToUse);
+}
+
+uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
+ switch (Kind) {
+ case Attribute::Alignment:
+ return bitc::ATTR_KIND_ALIGNMENT;
+ case Attribute::AlwaysInline:
+ return bitc::ATTR_KIND_ALWAYS_INLINE;
+ case Attribute::ArgMemOnly:
+ return bitc::ATTR_KIND_ARGMEMONLY;
+ case Attribute::Builtin:
+ return bitc::ATTR_KIND_BUILTIN;
+ case Attribute::ByVal:
+ return bitc::ATTR_KIND_BY_VAL;
+ case Attribute::Convergent:
+ return bitc::ATTR_KIND_CONVERGENT;
+ case Attribute::InAlloca:
+ return bitc::ATTR_KIND_IN_ALLOCA;
+ case Attribute::Cold:
+ return bitc::ATTR_KIND_COLD;
+ case Attribute::InlineHint:
+ return bitc::ATTR_KIND_INLINE_HINT;
+ case Attribute::InReg:
+ return bitc::ATTR_KIND_IN_REG;
+ case Attribute::JumpTable:
+ return bitc::ATTR_KIND_JUMP_TABLE;
+ case Attribute::MinSize:
+ return bitc::ATTR_KIND_MIN_SIZE;
+ case Attribute::Naked:
+ return bitc::ATTR_KIND_NAKED;
+ case Attribute::Nest:
+ return bitc::ATTR_KIND_NEST;
+ case Attribute::NoAlias:
+ return bitc::ATTR_KIND_NO_ALIAS;
+ case Attribute::NoBuiltin:
+ return bitc::ATTR_KIND_NO_BUILTIN;
+ case Attribute::NoCapture:
+ return bitc::ATTR_KIND_NO_CAPTURE;
+ case Attribute::NoDuplicate:
+ return bitc::ATTR_KIND_NO_DUPLICATE;
+ case Attribute::NoImplicitFloat:
+ return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
+ case Attribute::NoInline:
+ return bitc::ATTR_KIND_NO_INLINE;
+ case Attribute::NonLazyBind:
+ return bitc::ATTR_KIND_NON_LAZY_BIND;
+ case Attribute::NonNull:
+ return bitc::ATTR_KIND_NON_NULL;
+ case Attribute::Dereferenceable:
+ return bitc::ATTR_KIND_DEREFERENCEABLE;
+ case Attribute::DereferenceableOrNull:
+ return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
+ case Attribute::NoRedZone:
+ return bitc::ATTR_KIND_NO_RED_ZONE;
+ case Attribute::NoReturn:
+ return bitc::ATTR_KIND_NO_RETURN;
+ case Attribute::NoUnwind:
+ return bitc::ATTR_KIND_NO_UNWIND;
+ case Attribute::OptimizeForSize:
+ return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
+ case Attribute::OptimizeNone:
+ return bitc::ATTR_KIND_OPTIMIZE_NONE;
+ case Attribute::ReadNone:
+ return bitc::ATTR_KIND_READ_NONE;
+ case Attribute::ReadOnly:
+ return bitc::ATTR_KIND_READ_ONLY;
+ case Attribute::Returned:
+ return bitc::ATTR_KIND_RETURNED;
+ case Attribute::ReturnsTwice:
+ return bitc::ATTR_KIND_RETURNS_TWICE;
+ case Attribute::SExt:
+ return bitc::ATTR_KIND_S_EXT;
+ case Attribute::StackAlignment:
+ return bitc::ATTR_KIND_STACK_ALIGNMENT;
+ case Attribute::StackProtect:
+ return bitc::ATTR_KIND_STACK_PROTECT;
+ case Attribute::StackProtectReq:
+ return bitc::ATTR_KIND_STACK_PROTECT_REQ;
+ case Attribute::StackProtectStrong:
+ return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
+ case Attribute::SafeStack:
+ return bitc::ATTR_KIND_SAFESTACK;
+ case Attribute::StructRet:
+ return bitc::ATTR_KIND_STRUCT_RET;
+ case Attribute::SanitizeAddress:
+ return bitc::ATTR_KIND_SANITIZE_ADDRESS;
+ case Attribute::SanitizeThread:
+ return bitc::ATTR_KIND_SANITIZE_THREAD;
+ case Attribute::SanitizeMemory:
+ return bitc::ATTR_KIND_SANITIZE_MEMORY;
+ case Attribute::UWTable:
+ return bitc::ATTR_KIND_UW_TABLE;
+ case Attribute::ZExt:
+ return bitc::ATTR_KIND_Z_EXT;
+ case Attribute::EndAttrKinds:
+ llvm_unreachable("Can not encode end-attribute kinds marker.");
+ case Attribute::None:
+ llvm_unreachable("Can not encode none-attribute.");
+ case Attribute::EmptyKey:
+ case Attribute::TombstoneKey:
+ llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
+ default:
+ llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
+ "should be stripped in DXILPrepare");
+ }
+
+ llvm_unreachable("Trying to encode unknown attribute");
+}
+
+void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
+ uint64_t V) {
+ if ((int64_t)V >= 0)
+ Vals.push_back(V << 1);
+ else
+ Vals.push_back((-V << 1) | 1);
+}
+
+void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
+ const APInt &A) {
+ // We have an arbitrary precision integer value to write whose
+ // bit width is > 64. However, in canonical unsigned integer
+ // format it is likely that the high bits are going to be zero.
+ // So, we only write the number of active words.
+ unsigned NumWords = A.getActiveWords();
+ const uint64_t *RawData = A.getRawData();
+ for (unsigned i = 0; i < NumWords; i++)
+ emitSignedInt64(Vals, RawData[i]);
+}
+
+uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
+ uint64_t Flags = 0;
+
+ if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
+ if (OBO->hasNoSignedWrap())
+ Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
+ if (OBO->hasNoUnsignedWrap())
+ Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
+ } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
+ if (PEO->isExact())
+ Flags |= 1 << bitc::PEO_EXACT;
+ } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
+ if (FPMO->hasAllowReassoc())
+ Flags |= bitc::AllowReassoc;
+ if (FPMO->hasNoNaNs())
+ Flags |= bitc::NoNaNs;
+ if (FPMO->hasNoInfs())
+ Flags |= bitc::NoInfs;
+ if (FPMO->hasNoSignedZeros())
+ Flags |= bitc::NoSignedZeros;
+ if (FPMO->hasAllowReciprocal())
+ Flags |= bitc::AllowReciprocal;
+ if (FPMO->hasAllowContract())
+ Flags |= bitc::AllowContract;
+ if (FPMO->hasApproxFunc())
+ Flags |= bitc::ApproxFunc;
+ }
+
+ return Flags;
+}
+
+unsigned
+DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
+ switch (Linkage) {
+ case GlobalValue::ExternalLinkage:
+ return 0;
+ case GlobalValue::WeakAnyLinkage:
+ return 16;
+ case GlobalValue::AppendingLinkage:
+ return 2;
+ case GlobalValue::InternalLinkage:
+ return 3;
+ case GlobalValue::LinkOnceAnyLinkage:
+ return 18;
+ case GlobalValue::ExternalWeakLinkage:
+ return 7;
+ case GlobalValue::CommonLinkage:
+ return 8;
+ case GlobalValue::PrivateLinkage:
+ return 9;
+ case GlobalValue::WeakODRLinkage:
+ return 17;
+ case GlobalValue::LinkOnceODRLinkage:
+ return 19;
+ case GlobalValue::AvailableExternallyLinkage:
+ return 12;
+ }
+ llvm_unreachable("Invalid linkage");
+}
+
+unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
+ return getEncodedLinkage(GV.getLinkage());
+}
+
+unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
+ switch (GV.getVisibility()) {
+ case GlobalValue::DefaultVisibility:
+ return 0;
+ case GlobalValue::HiddenVisibility:
+ return 1;
+ case GlobalValue::ProtectedVisibility:
+ return 2;
+ }
+ llvm_unreachable("Invalid visibility");
+}
+
+unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
+ switch (GV.getDLLStorageClass()) {
+ case GlobalValue::DefaultStorageClass:
+ return 0;
+ case GlobalValue::DLLImportStorageClass:
+ return 1;
+ case GlobalValue::DLLExportStorageClass:
+ return 2;
+ }
+ llvm_unreachable("Invalid DLL storage class");
+}
+
+unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
+ switch (GV.getThreadLocalMode()) {
+ case GlobalVariable::NotThreadLocal:
+ return 0;
+ case GlobalVariable::GeneralDynamicTLSModel:
+ return 1;
+ case GlobalVariable::LocalDynamicTLSModel:
+ return 2;
+ case GlobalVariable::InitialExecTLSModel:
+ return 3;
+ case GlobalVariable::LocalExecTLSModel:
+ return 4;
+ }
+ llvm_unreachable("Invalid TLS model");
+}
+
+unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
+ switch (C.getSelectionKind()) {
+ case Comdat::Any:
+ return bitc::COMDAT_SELECTION_KIND_ANY;
+ case Comdat::ExactMatch:
+ return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
+ case Comdat::Largest:
+ return bitc::COMDAT_SELECTION_KIND_LARGEST;
+ case Comdat::NoDeduplicate:
+ return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
+ case Comdat::SameSize:
+ return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
+ }
+ llvm_unreachable("Invalid selection kind");
+}
+
+////////////////////////////////////////////////////////////////////////////////
+/// Begin DXILBitcodeWriter Implementation
+////////////////////////////////////////////////////////////////////////////////
+
+void DXILBitcodeWriter::writeAttributeGroupTable() {
+ const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
+ VE.getAttributeGroups();
+ if (AttrGrps.empty())
+ return;
+
+ Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
+
+ SmallVector<uint64_t, 64> Record;
+ for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
+ unsigned AttrListIndex = Pair.first;
+ AttributeSet AS = Pair.second;
+ Record.push_back(VE.getAttributeGroupID(Pair));
+ Record.push_back(AttrListIndex);
+
+ for (Attribute Attr : AS) {
+ if (Attr.isEnumAttribute()) {
+ uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
+ assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
+ "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
+ Record.push_back(0);
+ Record.push_back(Val);
+ } else if (Attr.isIntAttribute()) {
+ uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
+ assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
+ "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
+ Record.push_back(1);
+ Record.push_back(Val);
+ Record.push_back(Attr.getValueAsInt());
+ } else {
+ StringRef Kind = Attr.getKindAsString();
+ StringRef Val = Attr.getValueAsString();
+
+ Record.push_back(Val.empty() ? 3 : 4);
+ Record.append(Kind.begin(), Kind.end());
+ Record.push_back(0);
+ if (!Val.empty()) {
+ Record.append(Val.begin(), Val.end());
+ Record.push_back(0);
+ }
+ }
+ }
+
+ Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeAttributeTable() {
+ const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
+ if (Attrs.empty())
+ return;
+
+ Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
+
+ SmallVector<uint64_t, 64> Record;
+ for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
+ AttributeList AL = Attrs[i];
+ for (unsigned i : AL.indexes()) {
+ AttributeSet AS = AL.getAttributes(i);
+ if (AS.hasAttributes())
+ Record.push_back(VE.getAttributeGroupID({i, AS}));
+ }
+
+ Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+/// WriteTypeTable - Write out the type table for a module.
+void DXILBitcodeWriter::writeTypeTable() {
+ const ValueEnumerator::TypeList &TypeList = VE.getTypes();
+
+ Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
+ SmallVector<uint64_t, 64> TypeVals;
+
+ uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
+
+ // Abbrev for TYPE_CODE_POINTER.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+ Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
+ unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for TYPE_CODE_FUNCTION.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+ unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for TYPE_CODE_STRUCT_ANON.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+ unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for TYPE_CODE_STRUCT_NAME.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for TYPE_CODE_STRUCT_NAMED.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+ unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for TYPE_CODE_ARRAY.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+ unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Emit an entry count so the reader can reserve space.
+ TypeVals.push_back(TypeList.size());
+ Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
+ TypeVals.clear();
+
+ // Loop over all of the types, emitting each in turn.
+ for (Type *T : TypeList) {
+ int AbbrevToUse = 0;
+ unsigned Code = 0;
+
+ switch (T->getTypeID()) {
+ case Type::BFloatTyID:
+ case Type::X86_AMXTyID:
+ case Type::TokenTyID:
+ llvm_unreachable("These should never be used!!!");
+ break;
+ case Type::VoidTyID:
+ Code = bitc::TYPE_CODE_VOID;
+ break;
+ case Type::HalfTyID:
+ Code = bitc::TYPE_CODE_HALF;
+ break;
+ case Type::FloatTyID:
+ Code = bitc::TYPE_CODE_FLOAT;
+ break;
+ case Type::DoubleTyID:
+ Code = bitc::TYPE_CODE_DOUBLE;
+ break;
+ case Type::X86_FP80TyID:
+ Code = bitc::TYPE_CODE_X86_FP80;
+ break;
+ case Type::FP128TyID:
+ Code = bitc::TYPE_CODE_FP128;
+ break;
+ case Type::PPC_FP128TyID:
+ Code = bitc::TYPE_CODE_PPC_FP128;
+ break;
+ case Type::LabelTyID:
+ Code = bitc::TYPE_CODE_LABEL;
+ break;
+ case Type::MetadataTyID:
+ Code = bitc::TYPE_CODE_METADATA;
+ break;
+ case Type::X86_MMXTyID:
+ Code = bitc::TYPE_CODE_X86_MMX;
+ break;
+ case Type::IntegerTyID:
+ // INTEGER: [width]
+ Code = bitc::TYPE_CODE_INTEGER;
+ TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
+ break;
+ case Type::DXILPointerTyID: {
+ TypedPointerType *PTy = cast<TypedPointerType>(T);
+ // POINTER: [pointee type, address space]
+ Code = bitc::TYPE_CODE_POINTER;
+ TypeVals.push_back(getTypeID(PTy->getElementType()));
+ unsigned AddressSpace = PTy->getAddressSpace();
+ TypeVals.push_back(AddressSpace);
+ if (AddressSpace == 0)
+ AbbrevToUse = PtrAbbrev;
+ break;
+ }
+ case Type::PointerTyID: {
+ PointerType *PTy = cast<PointerType>(T);
+ // POINTER: [pointee type, address space]
+ Code = bitc::TYPE_CODE_POINTER;
+ // Emitting an empty struct type for the opaque pointer's type allows
+ // this to be order-independent. Non-struct types must be emitted in
+ // bitcode before they can be referenced.
+ if (PTy->isOpaquePointerTy()) {
+ TypeVals.push_back(false);
+ Code = bitc::TYPE_CODE_OPAQUE;
+ writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
+ "dxilOpaquePtrReservedName", StructNameAbbrev);
+ } else {
+ TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType()));
+ unsigned AddressSpace = PTy->getAddressSpace();
+ TypeVals.push_back(AddressSpace);
+ if (AddressSpace == 0)
+ AbbrevToUse = PtrAbbrev;
+ }
+ break;
+ }
+ case Type::FunctionTyID: {
+ FunctionType *FT = cast<FunctionType>(T);
+ // FUNCTION: [isvararg, retty, paramty x N]
+ Code = bitc::TYPE_CODE_FUNCTION;
+ TypeVals.push_back(FT->isVarArg());
+ TypeVals.push_back(getTypeID(FT->getReturnType()));
+ for (Type *PTy : FT->params())
+ TypeVals.push_back(getTypeID(PTy));
+ AbbrevToUse = FunctionAbbrev;
+ break;
+ }
+ case Type::StructTyID: {
+ StructType *ST = cast<StructType>(T);
+ // STRUCT: [ispacked, eltty x N]
+ TypeVals.push_back(ST->isPacked());
+ // Output all of the element types.
+ for (Type *ElTy : ST->elements())
+ TypeVals.push_back(getTypeID(ElTy));
+
+ if (ST->isLiteral()) {
+ Code = bitc::TYPE_CODE_STRUCT_ANON;
+ AbbrevToUse = StructAnonAbbrev;
+ } else {
+ if (ST->isOpaque()) {
+ Code = bitc::TYPE_CODE_OPAQUE;
+ } else {
+ Code = bitc::TYPE_CODE_STRUCT_NAMED;
+ AbbrevToUse = StructNamedAbbrev;
+ }
+
+ // Emit the name if it is present.
+ if (!ST->getName().empty())
+ writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
+ StructNameAbbrev);
+ }
+ break;
+ }
+ case Type::ArrayTyID: {
+ ArrayType *AT = cast<ArrayType>(T);
+ // ARRAY: [numelts, eltty]
+ Code = bitc::TYPE_CODE_ARRAY;
+ TypeVals.push_back(AT->getNumElements());
+ TypeVals.push_back(getTypeID(AT->getElementType()));
+ AbbrevToUse = ArrayAbbrev;
+ break;
+ }
+ case Type::FixedVectorTyID:
+ case Type::ScalableVectorTyID: {
+ VectorType *VT = cast<VectorType>(T);
+ // VECTOR [numelts, eltty]
+ Code = bitc::TYPE_CODE_VECTOR;
+ TypeVals.push_back(VT->getElementCount().getKnownMinValue());
+ TypeVals.push_back(getTypeID(VT->getElementType()));
+ break;
+ }
+ }
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
+ TypeVals.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeComdats() {
+ SmallVector<uint16_t, 64> Vals;
+ for (const Comdat *C : VE.getComdats()) {
+ // COMDAT: [selection_kind, name]
+ Vals.push_back(getEncodedComdatSelectionKind(*C));
+ size_t Size = C->getName().size();
+ assert(isUInt<16>(Size));
+ Vals.push_back(Size);
+ for (char Chr : C->getName())
+ Vals.push_back((unsigned char)Chr);
+ Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
+ Vals.clear();
+ }
+}
+
+void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
+
+/// Emit top-level description of module, including target triple, inline asm,
+/// descriptors for global variables, and function prototype info.
+/// Returns the bit offset to backpatch with the location of the real VST.
+void DXILBitcodeWriter::writeModuleInfo() {
+ // Emit various pieces of data attached to a module.
+ if (!M.getTargetTriple().empty())
+ writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
+ 0 /*TODO*/);
+ const std::string &DL = M.getDataLayoutStr();
+ if (!DL.empty())
+ writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
+ if (!M.getModuleInlineAsm().empty())
+ writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
+ 0 /*TODO*/);
+
+ // Emit information about sections and GC, computing how many there are. Also
+ // compute the maximum alignment value.
+ std::map<std::string, unsigned> SectionMap;
+ std::map<std::string, unsigned> GCMap;
+ MaybeAlign MaxAlignment;
+ unsigned MaxGlobalType = 0;
+ const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
+ if (A)
+ MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
+ };
+ for (const GlobalVariable &GV : M.globals()) {
+ UpdateMaxAlignment(GV.getAlign());
+ MaxGlobalType = std::max(MaxGlobalType, getTypeID(GV.getValueType(), &GV));
+ if (GV.hasSection()) {
+ // Give section names unique ID's.
+ unsigned &Entry = SectionMap[std::string(GV.getSection())];
+ if (!Entry) {
+ writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
+ GV.getSection(), 0 /*TODO*/);
+ Entry = SectionMap.size();
+ }
+ }
+ }
+ for (const Function &F : M) {
+ UpdateMaxAlignment(F.getAlign());
+ if (F.hasSection()) {
+ // Give section names unique ID's.
+ unsigned &Entry = SectionMap[std::string(F.getSection())];
+ if (!Entry) {
+ writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
+ 0 /*TODO*/);
+ Entry = SectionMap.size();
+ }
+ }
+ if (F.hasGC()) {
+ // Same for GC names.
+ unsigned &Entry = GCMap[F.getGC()];
+ if (!Entry) {
+ writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
+ 0 /*TODO*/);
+ Entry = GCMap.size();
+ }
+ }
+ }
+
+ // Emit abbrev for globals, now that we know # sections and max alignment.
+ unsigned SimpleGVarAbbrev = 0;
+ if (!M.global_empty()) {
+ // Add an abbrev for common globals with no visibility or thread
+ // localness.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(MaxGlobalType + 1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
+ //| explicitType << 1
+ //| constant
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
+ if (!MaxAlignment) // Alignment.
+ Abbv->Add(BitCodeAbbrevOp(0));
+ else {
+ unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(MaxEncAlignment + 1)));
+ }
+ if (SectionMap.empty()) // Section.
+ Abbv->Add(BitCodeAbbrevOp(0));
+ else
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(SectionMap.size() + 1)));
+ // Don't bother emitting vis + thread local.
+ SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+ }
+
+ // Emit the global variable information.
+ SmallVector<unsigned, 64> Vals;
+ for (const GlobalVariable &GV : M.globals()) {
+ unsigned AbbrevToUse = 0;
+
+ // GLOBALVAR: [type, isconst, initid,
+ // linkage, alignment, section, visibility, threadlocal,
+ // unnamed_addr, externally_initialized, dllstorageclass,
+ // comdat]
+ Vals.push_back(getTypeID(GV.getValueType(), &GV));
+ Vals.push_back(
+ GV.getType()->getAddressSpace() << 2 | 2 |
+ (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
+ // unsigned int and bool
+ Vals.push_back(
+ GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
+ Vals.push_back(getEncodedLinkage(GV));
+ Vals.push_back(getEncodedAlign(GV.getAlign()));
+ Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
+ : 0);
+ if (GV.isThreadLocal() ||
+ GV.getVisibility() != GlobalValue::DefaultVisibility ||
+ GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
+ GV.isExternallyInitialized() ||
+ GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
+ GV.hasComdat()) {
+ Vals.push_back(getEncodedVisibility(GV));
+ Vals.push_back(getEncodedThreadLocalMode(GV));
+ Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
+ Vals.push_back(GV.isExternallyInitialized());
+ Vals.push_back(getEncodedDLLStorageClass(GV));
+ Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
+ } else {
+ AbbrevToUse = SimpleGVarAbbrev;
+ }
+
+ Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+
+ // Emit the function proto information.
+ for (const Function &F : M) {
+ // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
+ // section, visibility, gc, unnamed_addr, prologuedata,
+ // dllstorageclass, comdat, prefixdata, personalityfn]
+ Vals.push_back(getTypeID(F.getFunctionType(), &F));
+ Vals.push_back(F.getCallingConv());
+ Vals.push_back(F.isDeclaration());
+ Vals.push_back(getEncodedLinkage(F));
+ Vals.push_back(VE.getAttributeListID(F.getAttributes()));
+ Vals.push_back(getEncodedAlign(F.getAlign()));
+ Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
+ : 0);
+ Vals.push_back(getEncodedVisibility(F));
+ Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
+ Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
+ Vals.push_back(
+ F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
+ Vals.push_back(getEncodedDLLStorageClass(F));
+ Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
+ Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
+ : 0);
+ Vals.push_back(
+ F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
+
+ unsigned AbbrevToUse = 0;
+ Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+
+ // Emit the alias information.
+ for (const GlobalAlias &A : M.aliases()) {
+ // ALIAS: [alias type, aliasee val#, linkage, visibility]
+ Vals.push_back(getTypeID(A.getValueType(), &A));
+ Vals.push_back(VE.getValueID(A.getAliasee()));
+ Vals.push_back(getEncodedLinkage(A));
+ Vals.push_back(getEncodedVisibility(A));
+ Vals.push_back(getEncodedDLLStorageClass(A));
+ Vals.push_back(getEncodedThreadLocalMode(A));
+ Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
+ unsigned AbbrevToUse = 0;
+ Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+}
+
+void DXILBitcodeWriter::writeValueAsMetadata(
+ const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
+ // Mimic an MDNode with a value as one operand.
+ Value *V = MD->getValue();
+ Type *Ty = V->getType();
+ if (Function *F = dyn_cast<Function>(V))
+ Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
+ else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
+ Record.push_back(getTypeID(Ty));
+ Record.push_back(VE.getValueID(V));
+ Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ Metadata *MD = N->getOperand(i);
+ assert(!(MD && isa<LocalAsMetadata>(MD)) &&
+ "Unexpected function-local metadata");
+ Record.push_back(VE.getMetadataOrNullID(MD));
+ }
+ Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
+ : bitc::METADATA_NODE,
+ Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILocation(const DILocation *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned &Abbrev) {
+ if (!Abbrev)
+ Abbrev = createDILocationAbbrev();
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getLine());
+ Record.push_back(N->getColumn());
+ Record.push_back(VE.getMetadataID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
+
+ Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
+ Record.clear();
+}
+
+static uint64_t rotateSign(APInt Val) {
+ int64_t I = Val.getSExtValue();
+ uint64_t U = I;
+ return I < 0 ? ~(U << 1) : U << 1;
+}
+
+static uint64_t rotateSign(DISubrange::BoundType Val) {
+ return rotateSign(Val.get<ConstantInt *>()->getValue());
+}
+
+void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(
+ N->getCount().get<ConstantInt *>()->getValue().getSExtValue());
+ Record.push_back(rotateSign(N->getLowerBound()));
+
+ Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(rotateSign(N->getValue()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+
+ Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(N->getSizeInBits());
+ Record.push_back(N->getAlignInBits());
+ Record.push_back(N->getEncoding());
+
+ Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
+ Record.push_back(N->getSizeInBits());
+ Record.push_back(N->getAlignInBits());
+ Record.push_back(N->getOffsetInBits());
+ Record.push_back(N->getFlags());
+ Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
+
+ Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
+ Record.push_back(N->getSizeInBits());
+ Record.push_back(N->getAlignInBits());
+ Record.push_back(N->getOffsetInBits());
+ Record.push_back(N->getFlags());
+ Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
+ Record.push_back(N->getRuntimeLang());
+ Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
+ Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
+
+ Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getFlags());
+ Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
+
+ Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIFile(const DIFile *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
+
+ Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getSourceLanguage());
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
+ Record.push_back(N->isOptimized());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
+ Record.push_back(N->getRuntimeVersion());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
+ Record.push_back(N->getEmissionKind());
+ Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
+ Record.push_back(/* subprograms */ 0);
+ Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
+ Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
+ Record.push_back(N->getDWOId());
+
+ Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getType()));
+ Record.push_back(N->isLocalToUnit());
+ Record.push_back(N->isDefinition());
+ Record.push_back(N->getScopeLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
+ Record.push_back(N->getVirtuality());
+ Record.push_back(N->getVirtualIndex());
+ Record.push_back(N->getFlags());
+ Record.push_back(N->isOptimized());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
+ Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
+ Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
+
+ Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(N->getColumn());
+
+ Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILexicalBlockFile(
+ const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getDiscriminator());
+
+ Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(/* line number */ 0);
+
+ Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIModule(const DIModule *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ for (auto &I : N->operands())
+ Record.push_back(VE.getMetadataOrNullID(I));
+
+ Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDITemplateTypeParameter(
+ const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getType()));
+
+ Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDITemplateValueParameter(
+ const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getType()));
+ Record.push_back(VE.getMetadataOrNullID(N->getValue()));
+
+ Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getType()));
+ Record.push_back(N->isLocalToUnit());
+ Record.push_back(N->isDefinition());
+ Record.push_back(/* N->getRawVariable() */ 0);
+ Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
+
+ Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getType()));
+ Record.push_back(N->getArg());
+ Record.push_back(N->getFlags());
+
+ Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.reserve(N->getElements().size() + 1);
+
+ Record.push_back(N->isDistinct());
+ Record.append(N->elements_begin(), N->elements_end());
+
+ Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL does not support objc!!!");
+}
+
+void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+
+ Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
+ Record.clear();
+}
+
+unsigned DXILBitcodeWriter::createDILocationAbbrev() {
+ // Abbrev for METADATA_LOCATION.
+ //
+ // Assume the column is usually under 128, and always output the inlined-at
+ // location (it's never more expensive than building an array size 1).
+ std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ return Stream.EmitAbbrev(std::move(Abbv));
+}
+
+unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
+ // Abbrev for METADATA_GENERIC_DEBUG.
+ //
+ // Assume the column is usually under 128, and always output the inlined-at
+ // location (it's never more expensive than building an array size 1).
+ std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ return Stream.EmitAbbrev(std::move(Abbv));
+}
+
+void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
+ SmallVectorImpl<uint64_t> &Record,
+ std::vector<unsigned> *MDAbbrevs,
+ std::vector<uint64_t> *IndexPos) {
+ if (MDs.empty())
+ return;
+
+ // Initialize MDNode abbreviations.
+#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
+#include "llvm/IR/Metadata.def"
+
+ for (const Metadata *MD : MDs) {
+ if (IndexPos)
+ IndexPos->push_back(Stream.GetCurrentBitNo());
+ if (const MDNode *N = dyn_cast<MDNode>(MD)) {
+ assert(N->isResolved() && "Expected forward references to be resolved");
+
+ switch (N->getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid MDNode subclass");
+#define HANDLE_MDNODE_LEAF(CLASS) \
+ case Metadata::CLASS##Kind: \
+ if (MDAbbrevs) \
+ write##CLASS(cast<CLASS>(N), Record, \
+ (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
+ else \
+ write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
+ continue;
+#include "llvm/IR/Metadata.def"
+ }
+ }
+ writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
+ }
+}
+
+unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ return Stream.EmitAbbrev(std::move(Abbv));
+}
+
+void DXILBitcodeWriter::writeMetadataStrings(
+ ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
+ for (const Metadata *MD : Strings) {
+ const MDString *MDS = cast<MDString>(MD);
+ // Code: [strchar x N]
+ Record.append(MDS->bytes_begin(), MDS->bytes_end());
+
+ // Emit the finished record.
+ Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record,
+ createMetadataStringsAbbrev());
+ Record.clear();
+ }
+}
+
+void DXILBitcodeWriter::writeModuleMetadata() {
+ if (!VE.hasMDs() && M.named_metadata_empty())
+ return;
+
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
+
+ // Emit all abbrevs upfront, so that the reader can jump in the middle of the
+ // block and load any metadata.
+ std::vector<unsigned> MDAbbrevs;
+
+ MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
+ MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
+ MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
+ createGenericDINodeAbbrev();
+
+ unsigned NameAbbrev = 0;
+ if (!M.named_metadata_empty()) {
+ // Abbrev for METADATA_NAME.
+ std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+ }
+
+ SmallVector<uint64_t, 64> Record;
+ writeMetadataStrings(VE.getMDStrings(), Record);
+
+ std::vector<uint64_t> IndexPos;
+ IndexPos.reserve(VE.getNonMDStrings().size());
+ writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
+
+ // Write named metadata.
+ for (const NamedMDNode &NMD : M.named_metadata()) {
+ // Write name.
+ StringRef Str = NMD.getName();
+ Record.append(Str.bytes_begin(), Str.bytes_end());
+ Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
+ Record.clear();
+
+ // Write named metadata operands.
+ for (const MDNode *N : NMD.operands())
+ Record.push_back(VE.getMetadataID(N));
+ Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
+ if (!VE.hasMDs())
+ return;
+
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
+ SmallVector<uint64_t, 64> Record;
+ writeMetadataStrings(VE.getMDStrings(), Record);
+ writeMetadataRecords(VE.getNonMDStrings(), Record);
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
+ Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Write metadata attachments
+ // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ F.getAllMetadata(MDs);
+ if (!MDs.empty()) {
+ for (const auto &I : MDs) {
+ Record.push_back(I.first);
+ Record.push_back(VE.getMetadataID(I.second));
+ }
+ Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
+ Record.clear();
+ }
+
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB) {
+ MDs.clear();
+ I.getAllMetadataOtherThanDebugLoc(MDs);
+
+ // If no metadata, ignore instruction.
+ if (MDs.empty())
+ continue;
+
+ Record.push_back(VE.getInstructionID(&I));
+
+ for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
+ Record.push_back(MDs[i].first);
+ Record.push_back(VE.getMetadataID(MDs[i].second));
+ }
+ Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeModuleMetadataKinds() {
+ SmallVector<uint64_t, 64> Record;
+
+ // Write metadata kinds
+ // METADATA_KIND - [n x [id, name]]
+ SmallVector<StringRef, 8> Names;
+ M.getMDKindNames(Names);
+
+ if (Names.empty())
+ return;
+
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+
+ for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
+ Record.push_back(MDKindID);
+ StringRef KName = Names[MDKindID];
+ Record.append(KName.begin(), KName.end());
+
+ Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
+ bool isGlobal) {
+ if (FirstVal == LastVal)
+ return;
+
+ Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
+
+ unsigned AggregateAbbrev = 0;
+ unsigned String8Abbrev = 0;
+ unsigned CString7Abbrev = 0;
+ unsigned CString6Abbrev = 0;
+ // If this is a constant pool for the module, emit module-specific abbrevs.
+ if (isGlobal) {
+ // Abbrev for CST_CODE_AGGREGATE.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(
+ BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
+ AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for CST_CODE_STRING.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
+ // Abbrev for CST_CODE_CSTRING.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
+ // Abbrev for CST_CODE_CSTRING.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
+ }
+
+ SmallVector<uint64_t, 64> Record;
+
+ const ValueEnumerator::ValueList &Vals = VE.getValues();
+ Type *LastTy = nullptr;
+ for (unsigned i = FirstVal; i != LastVal; ++i) {
+ const Value *V = Vals[i].first;
+ // If we need to switch types, do so now.
+ if (V->getType() != LastTy) {
+ LastTy = V->getType();
+ Record.push_back(getTypeID(LastTy));
+ Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
+ CONSTANTS_SETTYPE_ABBREV);
+ Record.clear();
+ }
+
+ if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+ Record.push_back(unsigned(IA->hasSideEffects()) |
+ unsigned(IA->isAlignStack()) << 1 |
+ unsigned(IA->getDialect() & 1) << 2);
+
+ // Add the asm string.
+ const std::string &AsmStr = IA->getAsmString();
+ Record.push_back(AsmStr.size());
+ Record.append(AsmStr.begin(), AsmStr.end());
+
+ // Add the constraint string.
+ const std::string &ConstraintStr = IA->getConstraintString();
+ Record.push_back(ConstraintStr.size());
+ Record.append(ConstraintStr.begin(), ConstraintStr.end());
+ Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
+ Record.clear();
+ continue;
+ }
+ const Constant *C = cast<Constant>(V);
+ unsigned Code = -1U;
+ unsigned AbbrevToUse = 0;
+ if (C->isNullValue()) {
+ Code = bitc::CST_CODE_NULL;
+ } else if (isa<UndefValue>(C)) {
+ Code = bitc::CST_CODE_UNDEF;
+ } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
+ if (IV->getBitWidth() <= 64) {
+ uint64_t V = IV->getSExtValue();
+ emitSignedInt64(Record, V);
+ Code = bitc::CST_CODE_INTEGER;
+ AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
+ } else { // Wide integers, > 64 bits in size.
+ // We have an arbitrary precision integer value to write whose
+ // bit width is > 64. However, in canonical unsigned integer
+ // format it is likely that the high bits are going to be zero.
+ // So, we only write the number of active words.
+ unsigned NWords = IV->getValue().getActiveWords();
+ const uint64_t *RawWords = IV->getValue().getRawData();
+ for (unsigned i = 0; i != NWords; ++i) {
+ emitSignedInt64(Record, RawWords[i]);
+ }
+ Code = bitc::CST_CODE_WIDE_INTEGER;
+ }
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ Code = bitc::CST_CODE_FLOAT;
+ Type *Ty = CFP->getType();
+ if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
+ Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+ } else if (Ty->isX86_FP80Ty()) {
+ // api needed to prevent premature destruction
+ // bits are not in the same order as a normal i80 APInt, compensate.
+ APInt api = CFP->getValueAPF().bitcastToAPInt();
+ const uint64_t *p = api.getRawData();
+ Record.push_back((p[1] << 48) | (p[0] >> 16));
+ Record.push_back(p[0] & 0xffffLL);
+ } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
+ APInt api = CFP->getValueAPF().bitcastToAPInt();
+ const uint64_t *p = api.getRawData();
+ Record.push_back(p[0]);
+ Record.push_back(p[1]);
+ } else {
+ assert(0 && "Unknown FP type!");
+ }
+ } else if (isa<ConstantDataSequential>(C) &&
+ cast<ConstantDataSequential>(C)->isString()) {
+ const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
+ // Emit constant strings specially.
+ unsigned NumElts = Str->getNumElements();
+ // If this is a null-terminated string, use the denser CSTRING encoding.
+ if (Str->isCString()) {
+ Code = bitc::CST_CODE_CSTRING;
+ --NumElts; // Don't encode the null, which isn't allowed by char6.
+ } else {
+ Code = bitc::CST_CODE_STRING;
+ AbbrevToUse = String8Abbrev;
+ }
+ bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
+ bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ unsigned char V = Str->getElementAsInteger(i);
+ Record.push_back(V);
+ isCStr7 &= (V & 128) == 0;
+ if (isCStrChar6)
+ isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
+ }
+
+ if (isCStrChar6)
+ AbbrevToUse = CString6Abbrev;
+ else if (isCStr7)
+ AbbrevToUse = CString7Abbrev;
+ } else if (const ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(C)) {
+ Code = bitc::CST_CODE_DATA;
+ Type *EltTy = CDS->getType()->getArrayElementType();
+ if (isa<IntegerType>(EltTy)) {
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
+ Record.push_back(CDS->getElementAsInteger(i));
+ } else if (EltTy->isFloatTy()) {
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ union {
+ float F;
+ uint32_t I;
+ };
+ F = CDS->getElementAsFloat(i);
+ Record.push_back(I);
+ }
+ } else {
+ assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ union {
+ double F;
+ uint64_t I;
+ };
+ F = CDS->getElementAsDouble(i);
+ Record.push_back(I);
+ }
+ }
+ } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
+ isa<ConstantVector>(C)) {
+ Code = bitc::CST_CODE_AGGREGATE;
+ for (const Value *Op : C->operands())
+ Record.push_back(VE.getValueID(Op));
+ AbbrevToUse = AggregateAbbrev;
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ switch (CE->getOpcode()) {
+ default:
+ if (Instruction::isCast(CE->getOpcode())) {
+ Code = bitc::CST_CODE_CE_CAST;
+ Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
+ Record.push_back(getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
+ } else {
+ assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
+ Code = bitc::CST_CODE_CE_BINOP;
+ Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ uint64_t Flags = getOptimizationFlags(CE);
+ if (Flags != 0)
+ Record.push_back(Flags);
+ }
+ break;
+ case Instruction::GetElementPtr: {
+ Code = bitc::CST_CODE_CE_GEP;
+ const auto *GO = cast<GEPOperator>(C);
+ if (GO->isInBounds())
+ Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
+ Record.push_back(getTypeID(GO->getSourceElementType()));
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
+ Record.push_back(getTypeID(C->getOperand(i)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(i)));
+ }
+ break;
+ }
+ case Instruction::Select:
+ Code = bitc::CST_CODE_CE_SELECT;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ExtractElement:
+ Code = bitc::CST_CODE_CE_EXTRACTELT;
+ Record.push_back(getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(getTypeID(C->getOperand(1)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ break;
+ case Instruction::InsertElement:
+ Code = bitc::CST_CODE_CE_INSERTELT;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(getTypeID(C->getOperand(2)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ShuffleVector:
+ // If the return type and argument types are the same, this is a
+ // standard shufflevector instruction. If the types are different,
+ // then the shuffle is widening or truncating the input vectors, and
+ // the argument type must also be encoded.
+ if (C->getType() == C->getOperand(0)->getType()) {
+ Code = bitc::CST_CODE_CE_SHUFFLEVEC;
+ } else {
+ Code = bitc::CST_CODE_CE_SHUFVEC_EX;
+ Record.push_back(getTypeID(C->getOperand(0)->getType()));
+ }
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ Code = bitc::CST_CODE_CE_CMP;
+ Record.push_back(getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(CE->getPredicate());
+ break;
+ }
+ } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
+ Code = bitc::CST_CODE_BLOCKADDRESS;
+ Record.push_back(getTypeID(BA->getFunction()->getType()));
+ Record.push_back(VE.getValueID(BA->getFunction()));
+ Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
+ } else {
+#ifndef NDEBUG
+ C->dump();
+#endif
+ llvm_unreachable("Unknown constant!");
+ }
+ Stream.EmitRecord(Code, Record, AbbrevToUse);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeModuleConstants() {
+ const ValueEnumerator::ValueList &Vals = VE.getValues();
+
+ // Find the first constant to emit, which is the first non-globalvalue value.
+ // We know globalvalues have been emitted by WriteModuleInfo.
+ for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+ if (!isa<GlobalValue>(Vals[i].first)) {
+ writeConstants(i, Vals.size(), true);
+ return;
+ }
+ }
+}
+
+/// pushValueAndType - The file has to encode both the value and type id for
+/// many values, because we need to know what type to create for forward
+/// references. However, most operands are not forward references, so this type
+/// field is not needed.
+///
+/// This function adds V's value ID to Vals. If the value ID is higher than the
+/// instruction ID, then it is a forward reference, and it also includes the
+/// type ID. The value ID that is written is encoded relative to the InstID.
+bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals) {
+ unsigned ValID = VE.getValueID(V);
+ // Make encoding relative to the InstID.
+ Vals.push_back(InstID - ValID);
+ if (ValID >= InstID) {
+ Vals.push_back(getTypeID(V->getType(), V));
+ return true;
+ }
+ return false;
+}
+
+/// pushValue - Like pushValueAndType, but where the type of the value is
+/// omitted (perhaps it was already encoded in an earlier operand).
+void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals) {
+ unsigned ValID = VE.getValueID(V);
+ Vals.push_back(InstID - ValID);
+}
+
+void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
+ SmallVectorImpl<uint64_t> &Vals) {
+ unsigned ValID = VE.getValueID(V);
+ int64_t diff = ((int32_t)InstID - (int32_t)ValID);
+ emitSignedInt64(Vals, diff);
+}
+
+/// WriteInstruction - Emit an instruction
+void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals) {
+ unsigned Code = 0;
+ unsigned AbbrevToUse = 0;
+ VE.setInstructionID(&I);
+ switch (I.getOpcode()) {
+ default:
+ if (Instruction::isCast(I.getOpcode())) {
+ Code = bitc::FUNC_CODE_INST_CAST;
+ if (!pushValueAndType(I.getOperand(0), InstID, Vals))
+ AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
+ Vals.push_back(getTypeID(I.getType(), &I));
+ Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
+ } else {
+ assert(isa<BinaryOperator>(I) && "Unknown instruction!");
+ Code = bitc::FUNC_CODE_INST_BINOP;
+ if (!pushValueAndType(I.getOperand(0), InstID, Vals))
+ AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
+ pushValue(I.getOperand(1), InstID, Vals);
+ Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
+ uint64_t Flags = getOptimizationFlags(&I);
+ if (Flags != 0) {
+ if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
+ AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
+ Vals.push_back(Flags);
+ }
+ }
+ break;
+
+ case Instruction::GetElementPtr: {
+ Code = bitc::FUNC_CODE_INST_GEP;
+ AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
+ auto &GEPInst = cast<GetElementPtrInst>(I);
+ Vals.push_back(GEPInst.isInBounds());
+ Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ pushValueAndType(I.getOperand(i), InstID, Vals);
+ break;
+ }
+ case Instruction::ExtractValue: {
+ Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
+ Vals.append(EVI->idx_begin(), EVI->idx_end());
+ break;
+ }
+ case Instruction::InsertValue: {
+ Code = bitc::FUNC_CODE_INST_INSERTVAL;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ pushValueAndType(I.getOperand(1), InstID, Vals);
+ const InsertValueInst *IVI = cast<InsertValueInst>(&I);
+ Vals.append(IVI->idx_begin(), IVI->idx_end());
+ break;
+ }
+ case Instruction::Select:
+ Code = bitc::FUNC_CODE_INST_VSELECT;
+ pushValueAndType(I.getOperand(1), InstID, Vals);
+ pushValue(I.getOperand(2), InstID, Vals);
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ break;
+ case Instruction::ExtractElement:
+ Code = bitc::FUNC_CODE_INST_EXTRACTELT;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ pushValueAndType(I.getOperand(1), InstID, Vals);
+ break;
+ case Instruction::InsertElement:
+ Code = bitc::FUNC_CODE_INST_INSERTELT;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ pushValue(I.getOperand(1), InstID, Vals);
+ pushValueAndType(I.getOperand(2), InstID, Vals);
+ break;
+ case Instruction::ShuffleVector:
+ Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ pushValue(I.getOperand(1), InstID, Vals);
+ pushValue(I.getOperand(2), InstID, Vals);
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ // compare returning Int1Ty or vector of Int1Ty
+ Code = bitc::FUNC_CODE_INST_CMP2;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ pushValue(I.getOperand(1), InstID, Vals);
+ Vals.push_back(cast<CmpInst>(I).getPredicate());
+ uint64_t Flags = getOptimizationFlags(&I);
+ if (Flags != 0)
+ Vals.push_back(Flags);
+ break;
+ }
+
+ case Instruction::Ret: {
+ Code = bitc::FUNC_CODE_INST_RET;
+ unsigned NumOperands = I.getNumOperands();
+ if (NumOperands == 0)
+ AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
+ else if (NumOperands == 1) {
+ if (!pushValueAndType(I.getOperand(0), InstID, Vals))
+ AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
+ } else {
+ for (unsigned i = 0, e = NumOperands; i != e; ++i)
+ pushValueAndType(I.getOperand(i), InstID, Vals);
+ }
+ } break;
+ case Instruction::Br: {
+ Code = bitc::FUNC_CODE_INST_BR;
+ const BranchInst &II = cast<BranchInst>(I);
+ Vals.push_back(VE.getValueID(II.getSuccessor(0)));
+ if (II.isConditional()) {
+ Vals.push_back(VE.getValueID(II.getSuccessor(1)));
+ pushValue(II.getCondition(), InstID, Vals);
+ }
+ } break;
+ case Instruction::Switch: {
+ Code = bitc::FUNC_CODE_INST_SWITCH;
+ const SwitchInst &SI = cast<SwitchInst>(I);
+ Vals.push_back(getTypeID(SI.getCondition()->getType()));
+ pushValue(SI.getCondition(), InstID, Vals);
+ Vals.push_back(VE.getValueID(SI.getDefaultDest()));
+ for (auto Case : SI.cases()) {
+ Vals.push_back(VE.getValueID(Case.getCaseValue()));
+ Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
+ }
+ } break;
+ case Instruction::IndirectBr:
+ Code = bitc::FUNC_CODE_INST_INDIRECTBR;
+ Vals.push_back(getTypeID(I.getOperand(0)->getType()));
+ // Encode the address operand as relative, but not the basic blocks.
+ pushValue(I.getOperand(0), InstID, Vals);
+ for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i)));
+ break;
+
+ case Instruction::Invoke: {
+ const InvokeInst *II = cast<InvokeInst>(&I);
+ const Value *Callee = II->getCalledOperand();
+ FunctionType *FTy = II->getFunctionType();
+ Code = bitc::FUNC_CODE_INST_INVOKE;
+
+ Vals.push_back(VE.getAttributeListID(II->getAttributes()));
+ Vals.push_back(II->getCallingConv() | 1 << 13);
+ Vals.push_back(VE.getValueID(II->getNormalDest()));
+ Vals.push_back(VE.getValueID(II->getUnwindDest()));
+ Vals.push_back(getTypeID(FTy));
+ pushValueAndType(Callee, InstID, Vals);
+
+ // Emit value #'s for the fixed parameters.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ pushValue(I.getOperand(i), InstID, Vals); // fixed param.
+
+ // Emit type/value pairs for varargs params.
+ if (FTy->isVarArg()) {
+ for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
+ ++i)
+ pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
+ }
+ break;
+ }
+ case Instruction::Resume:
+ Code = bitc::FUNC_CODE_INST_RESUME;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ break;
+ case Instruction::Unreachable:
+ Code = bitc::FUNC_CODE_INST_UNREACHABLE;
+ AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
+ break;
+
+ case Instruction::PHI: {
+ const PHINode &PN = cast<PHINode>(I);
+ Code = bitc::FUNC_CODE_INST_PHI;
+ // With the newer instruction encoding, forward references could give
+ // negative valued IDs. This is most common for PHIs, so we use
+ // signed VBRs.
+ SmallVector<uint64_t, 128> Vals64;
+ Vals64.push_back(getTypeID(PN.getType()));
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
+ pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
+ Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
+ }
+ // Emit a Vals64 vector and exit.
+ Stream.EmitRecord(Code, Vals64, AbbrevToUse);
+ Vals64.clear();
+ return;
+ }
+
+ case Instruction::LandingPad: {
+ const LandingPadInst &LP = cast<LandingPadInst>(I);
+ Code = bitc::FUNC_CODE_INST_LANDINGPAD;
+ Vals.push_back(getTypeID(LP.getType()));
+ Vals.push_back(LP.isCleanup());
+ Vals.push_back(LP.getNumClauses());
+ for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
+ if (LP.isCatch(I))
+ Vals.push_back(LandingPadInst::Catch);
+ else
+ Vals.push_back(LandingPadInst::Filter);
+ pushValueAndType(LP.getClause(I), InstID, Vals);
+ }
+ break;
+ }
+
+ case Instruction::Alloca: {
+ Code = bitc::FUNC_CODE_INST_ALLOCA;
+ const AllocaInst &AI = cast<AllocaInst>(I);
+ Vals.push_back(getTypeID(AI.getAllocatedType()));
+ Vals.push_back(getTypeID(I.getOperand(0)->getType()));
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+ using APV = AllocaPackedValues;
+ unsigned Record = 0;
+ unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
+ Bitfield::set<APV::AlignLower>(
+ Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
+ Bitfield::set<APV::AlignUpper>(Record,
+ EncodedAlign >> APV::AlignLower::Bits);
+ Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
+ Vals.push_back(Record);
+ break;
+ }
+
+ case Instruction::Load:
+ if (cast<LoadInst>(I).isAtomic()) {
+ Code = bitc::FUNC_CODE_INST_LOADATOMIC;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ } else {
+ Code = bitc::FUNC_CODE_INST_LOAD;
+ if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
+ AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
+ }
+ Vals.push_back(getTypeID(I.getType()));
+ Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
+ Vals.push_back(cast<LoadInst>(I).isVolatile());
+ if (cast<LoadInst>(I).isAtomic()) {
+ Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
+ Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
+ }
+ break;
+ case Instruction::Store:
+ if (cast<StoreInst>(I).isAtomic())
+ Code = bitc::FUNC_CODE_INST_STOREATOMIC;
+ else
+ Code = bitc::FUNC_CODE_INST_STORE;
+ pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
+ pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
+ Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
+ Vals.push_back(cast<StoreInst>(I).isVolatile());
+ if (cast<StoreInst>(I).isAtomic()) {
+ Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
+ Vals.push_back(
+ getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
+ }
+ break;
+ case Instruction::AtomicCmpXchg:
+ Code = bitc::FUNC_CODE_INST_CMPXCHG;
+ pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
+ pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
+ pushValue(I.getOperand(2), InstID, Vals); // newval.
+ Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
+ Vals.push_back(
+ getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
+ Vals.push_back(
+ getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
+ Vals.push_back(
+ getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
+ Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
+ break;
+ case Instruction::AtomicRMW:
+ Code = bitc::FUNC_CODE_INST_ATOMICRMW;
+ pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
+ pushValue(I.getOperand(1), InstID, Vals); // val.
+ Vals.push_back(
+ getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
+ Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
+ Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
+ Vals.push_back(
+ getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
+ break;
+ case Instruction::Fence:
+ Code = bitc::FUNC_CODE_INST_FENCE;
+ Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
+ Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
+ break;
+ case Instruction::Call: {
+ const CallInst &CI = cast<CallInst>(I);
+ FunctionType *FTy = CI.getFunctionType();
+
+ Code = bitc::FUNC_CODE_INST_CALL;
+
+ Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
+ Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
+ unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
+ Vals.push_back(getTypeID(FTy, CI.getCalledFunction()));
+ pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
+
+ // Emit value #'s for the fixed parameters.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
+ // Check for labels (can happen with asm labels).
+ if (FTy->getParamType(i)->isLabelTy())
+ Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
+ else
+ pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
+ }
+
+ // Emit type/value pairs for varargs params.
+ if (FTy->isVarArg()) {
+ for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
+ pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
+ }
+ break;
+ }
+ case Instruction::VAArg:
+ Code = bitc::FUNC_CODE_INST_VAARG;
+ Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
+ pushValue(I.getOperand(0), InstID, Vals); // valist.
+ Vals.push_back(getTypeID(I.getType())); // restype.
+ break;
+ }
+
+ Stream.EmitRecord(Code, Vals, AbbrevToUse);
+ Vals.clear();
+}
+
+// Emit names for globals/functions etc.
+void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
+ const ValueSymbolTable &VST) {
+ if (VST.empty())
+ return;
+ Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
+
+ SmallVector<unsigned, 64> NameVals;
+
+ // HLSL Change
+ // Read the named values from a sorted list instead of the original list
+ // to ensure the binary is the same no matter what values ever existed.
+ SmallVector<const ValueName *, 16> SortedTable;
+
+ for (auto &VI : VST) {
+ SortedTable.push_back(VI.second->getValueName());
+ }
+ // The keys are unique, so there shouldn't be stability issues.
+ std::sort(SortedTable.begin(), SortedTable.end(),
+ [](const ValueName *A, const ValueName *B) {
+ return A->first() < B->first();
+ });
+
+ for (const ValueName *SI : SortedTable) {
+ auto &Name = *SI;
+
+ // Figure out the encoding to use for the name.
+ bool is7Bit = true;
+ bool isChar6 = true;
+ for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
+ C != E; ++C) {
+ if (isChar6)
+ isChar6 = BitCodeAbbrevOp::isChar6(*C);
+ if ((unsigned char)*C & 128) {
+ is7Bit = false;
+ break; // don't bother scanning the rest.
+ }
+ }
+
+ unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
+
+ // VST_ENTRY: [valueid, namechar x N]
+ // VST_BBENTRY: [bbid, namechar x N]
+ unsigned Code;
+ if (isa<BasicBlock>(SI->getValue())) {
+ Code = bitc::VST_CODE_BBENTRY;
+ if (isChar6)
+ AbbrevToUse = VST_BBENTRY_6_ABBREV;
+ } else {
+ Code = bitc::VST_CODE_ENTRY;
+ if (isChar6)
+ AbbrevToUse = VST_ENTRY_6_ABBREV;
+ else if (is7Bit)
+ AbbrevToUse = VST_ENTRY_7_ABBREV;
+ }
+
+ NameVals.push_back(VE.getValueID(SI->getValue()));
+ for (const char *P = Name.getKeyData(),
+ *E = Name.getKeyData() + Name.getKeyLength();
+ P != E; ++P)
+ NameVals.push_back((unsigned char)*P);
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, NameVals, AbbrevToUse);
+ NameVals.clear();
+ }
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) {
+ assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
+ unsigned Code;
+ if (isa<BasicBlock>(Order.V))
+ Code = bitc::USELIST_CODE_BB;
+ else
+ Code = bitc::USELIST_CODE_DEFAULT;
+
+ SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
+ Record.push_back(VE.getValueID(Order.V));
+ Stream.EmitRecord(Code, Record);
+}
+
+void DXILBitcodeWriter::writeUseListBlock(const Function *F) {
+ auto hasMore = [&]() {
+ return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
+ };
+ if (!hasMore())
+ // Nothing to do.
+ return;
+
+ Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
+ while (hasMore()) {
+ writeUseList(std::move(VE.UseListOrders.back()));
+ VE.UseListOrders.pop_back();
+ }
+ Stream.ExitBlock();
+}
+
+/// Emit a function body to the module stream.
+void DXILBitcodeWriter::writeFunction(const Function &F) {
+ Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
+ VE.incorporateFunction(F);
+
+ SmallVector<unsigned, 64> Vals;
+
+ // Emit the number of basic blocks, so the reader can create them ahead of
+ // time.
+ Vals.push_back(VE.getBasicBlocks().size());
+ Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
+ Vals.clear();
+
+ // If there are function-local constants, emit them now.
+ unsigned CstStart, CstEnd;
+ VE.getFunctionConstantRange(CstStart, CstEnd);
+ writeConstants(CstStart, CstEnd, false);
+
+ // If there is function-local metadata, emit it now.
+ writeFunctionMetadata(F);
+
+ // Keep a running idea of what the instruction ID is.
+ unsigned InstID = CstEnd;
+
+ bool NeedsMetadataAttachment = F.hasMetadata();
+
+ DILocation *LastDL = nullptr;
+
+ // Finally, emit all the instructions, in order.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
+ ++I) {
+ writeInstruction(*I, InstID, Vals);
+
+ if (!I->getType()->isVoidTy())
+ ++InstID;
+
+ // If the instruction has metadata, write a metadata attachment later.
+ NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
+
+ // If the instruction has a debug location, emit it.
+ DILocation *DL = I->getDebugLoc();
+ if (!DL)
+ continue;
+
+ if (DL == LastDL) {
+ // Just repeat the same debug loc as last time.
+ Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
+ continue;
+ }
+
+ Vals.push_back(DL->getLine());
+ Vals.push_back(DL->getColumn());
+ Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
+ Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
+ Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
+ Vals.clear();
+
+ LastDL = DL;
+ }
+
+ // Emit names for all the instructions etc.
+ if (auto *Symtab = F.getValueSymbolTable())
+ writeFunctionLevelValueSymbolTable(*Symtab);
+
+ if (NeedsMetadataAttachment)
+ writeFunctionMetadataAttachment(F);
+
+ writeUseListBlock(&F);
+ VE.purgeFunction();
+ Stream.ExitBlock();
+}
+
+// Emit blockinfo, which defines the standard abbreviations etc.
+void DXILBitcodeWriter::writeBlockInfo() {
+ // We only want to emit block info records for blocks that have multiple
+ // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
+ // Other blocks can define their abbrevs inline.
+ Stream.EnterBlockInfoBlock();
+
+ { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ std::move(Abbv)) != VST_ENTRY_8_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ { // 7-bit fixed width VST_ENTRY strings.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ std::move(Abbv)) != VST_ENTRY_7_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // 6-bit char6 VST_ENTRY strings.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ std::move(Abbv)) != VST_ENTRY_6_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // 6-bit char6 VST_BBENTRY strings.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ { // SETTYPE abbrev for CONSTANTS_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ VE.computeBitsRequiredForTypeIndicies()));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+ CONSTANTS_SETTYPE_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ { // INTEGER abbrev for CONSTANTS_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+ CONSTANTS_INTEGER_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ { // CE_CAST abbrev for CONSTANTS_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
+ VE.computeBitsRequiredForTypeIndicies()));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
+
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+ CONSTANTS_CE_CAST_Abbrev)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // NULL abbrev for CONSTANTS_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+ CONSTANTS_NULL_Abbrev)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ // FIXME: This should only use space for first class types!
+
+ { // INST_LOAD abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
+ VE.computeBitsRequiredForTypeIndicies()));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_LOAD_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // INST_BINOP abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_BINOP_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // INST_CAST abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
+ VE.computeBitsRequiredForTypeIndicies()));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_CAST_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ { // INST_RET abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // INST_RET abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ {
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
+ Log2_32_Ceil(VE.getTypes().size() + 1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_GEP_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeModuleVersion() {
+ // VERSION: [version#]
+ Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
+}
+
+/// WriteModule - Emit the specified module to the bitstream.
+void DXILBitcodeWriter::write() {
+ // The identification block is new since llvm-3.7, but the old bitcode reader
+ // will skip it.
+ // writeIdentificationBlock(Stream);
+
+ Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
+
+ // It is redundant to fully-specify this here, but nice to make it explicit
+ // so that it is clear the DXIL module version is different.
+ DXILBitcodeWriter::writeModuleVersion();
+
+ // Emit blockinfo, which defines the standard abbreviations etc.
+ writeBlockInfo();
+
+ // Emit information about attribute groups.
+ writeAttributeGroupTable();
+
+ // Emit information about parameter attributes.
+ writeAttributeTable();
+
+ // Emit information describing all of the types in the module.
+ writeTypeTable();
+
+ writeComdats();
+
+ // Emit top-level description of module, including target triple, inline asm,
+ // descriptors for global variables, and function prototype info.
+ writeModuleInfo();
+
+ // Emit constants.
+ writeModuleConstants();
+
+ // Emit metadata.
+ writeModuleMetadataKinds();
+
+ // Emit metadata.
+ writeModuleMetadata();
+
+ // Emit names for globals/functions etc.
+ // DXIL uses the same format for module-level value symbol table as for the
+ // function level table.
+ writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
+
+ // Emit module-level use-lists.
+ writeUseListBlock(nullptr);
+
+ // Emit function bodies.
+ for (const Function &F : M)
+ if (!F.isDeclaration())
+ writeFunction(F);
+
+ Stream.ExitBlock();
+}