diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2022-07-03 14:10:23 +0000 |
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2022-07-03 14:10:23 +0000 |
| commit | 145449b1e420787bb99721a429341fa6be3adfb6 (patch) | |
| tree | 1d56ae694a6de602e348dd80165cf881a36600ed /llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp | |
| parent | ecbca9f5fb7d7613d2b94982c4825eb0d33d6842 (diff) | |
Diffstat (limited to 'llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp')
| -rw-r--r-- | llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp | 2963 |
1 files changed, 2963 insertions, 0 deletions
diff --git a/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp new file mode 100644 index 000000000000..494a71e51a89 --- /dev/null +++ b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp @@ -0,0 +1,2963 @@ +//===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Bitcode writer implementation. +// +//===----------------------------------------------------------------------===// + +#include "DXILBitcodeWriter.h" +#include "DXILValueEnumerator.h" +#include "PointerTypeAnalysis.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Bitcode/BitcodeCommon.h" +#include "llvm/Bitcode/BitcodeReader.h" +#include "llvm/Bitcode/LLVMBitCodes.h" +#include "llvm/Bitstream/BitCodes.h" +#include "llvm/Bitstream/BitstreamWriter.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Comdat.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalIFunc.h" +#include "llvm/IR/GlobalObject.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ModuleSummaryIndex.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/UseListOrder.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/Object/IRSymtab.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/SHA1.h" + +namespace llvm { +namespace dxil { + +// Generates an enum to use as an index in the Abbrev array of Metadata record. +enum MetadataAbbrev : unsigned { +#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, +#include "llvm/IR/Metadata.def" + LastPlusOne +}; + +class DXILBitcodeWriter { + + /// These are manifest constants used by the bitcode writer. They do not need + /// to be kept in sync with the reader, but need to be consistent within this + /// file. + enum { + // VALUE_SYMTAB_BLOCK abbrev id's. + VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, + VST_ENTRY_7_ABBREV, + VST_ENTRY_6_ABBREV, + VST_BBENTRY_6_ABBREV, + + // CONSTANTS_BLOCK abbrev id's. + CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, + CONSTANTS_INTEGER_ABBREV, + CONSTANTS_CE_CAST_Abbrev, + CONSTANTS_NULL_Abbrev, + + // FUNCTION_BLOCK abbrev id's. + FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, + FUNCTION_INST_BINOP_ABBREV, + FUNCTION_INST_BINOP_FLAGS_ABBREV, + FUNCTION_INST_CAST_ABBREV, + FUNCTION_INST_RET_VOID_ABBREV, + FUNCTION_INST_RET_VAL_ABBREV, + FUNCTION_INST_UNREACHABLE_ABBREV, + FUNCTION_INST_GEP_ABBREV, + }; + + // Cache some types + Type *I8Ty; + Type *I8PtrTy; + + /// The stream created and owned by the client. + BitstreamWriter &Stream; + + StringTableBuilder &StrtabBuilder; + + /// The Module to write to bitcode. + const Module &M; + + /// Enumerates ids for all values in the module. + ValueEnumerator VE; + + /// Map that holds the correspondence between GUIDs in the summary index, + /// that came from indirect call profiles, and a value id generated by this + /// class to use in the VST and summary block records. + std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; + + /// Tracks the last value id recorded in the GUIDToValueMap. + unsigned GlobalValueId; + + /// Saves the offset of the VSTOffset record that must eventually be + /// backpatched with the offset of the actual VST. + uint64_t VSTOffsetPlaceholder = 0; + + /// Pointer to the buffer allocated by caller for bitcode writing. + const SmallVectorImpl<char> &Buffer; + + /// The start bit of the identification block. + uint64_t BitcodeStartBit; + + /// This maps values to their typed pointers + PointerTypeMap PointerMap; + +public: + /// Constructs a ModuleBitcodeWriter object for the given Module, + /// writing to the provided \p Buffer. + DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, + StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream) + : I8Ty(Type::getInt8Ty(M.getContext())), + I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream), + StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer), + BitcodeStartBit(Stream.GetCurrentBitNo()), + PointerMap(PointerTypeAnalysis::run(M)) { + GlobalValueId = VE.getValues().size(); + // Enumerate the typed pointers + for (auto El : PointerMap) + VE.EnumerateType(El.second); + } + + /// Emit the current module to the bitstream. + void write(); + + static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind); + static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, + StringRef Str, unsigned AbbrevToUse); + static void writeIdentificationBlock(BitstreamWriter &Stream); + static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V); + static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A); + + static unsigned getEncodedComdatSelectionKind(const Comdat &C); + static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage); + static unsigned getEncodedLinkage(const GlobalValue &GV); + static unsigned getEncodedVisibility(const GlobalValue &GV); + static unsigned getEncodedThreadLocalMode(const GlobalValue &GV); + static unsigned getEncodedDLLStorageClass(const GlobalValue &GV); + static unsigned getEncodedCastOpcode(unsigned Opcode); + static unsigned getEncodedUnaryOpcode(unsigned Opcode); + static unsigned getEncodedBinaryOpcode(unsigned Opcode); + static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op); + static unsigned getEncodedOrdering(AtomicOrdering Ordering); + static uint64_t getOptimizationFlags(const Value *V); + +private: + void writeModuleVersion(); + void writePerModuleGlobalValueSummary(); + + void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, + GlobalValueSummary *Summary, + unsigned ValueID, + unsigned FSCallsAbbrev, + unsigned FSCallsProfileAbbrev, + const Function &F); + void writeModuleLevelReferences(const GlobalVariable &V, + SmallVector<uint64_t, 64> &NameVals, + unsigned FSModRefsAbbrev, + unsigned FSModVTableRefsAbbrev); + + void assignValueId(GlobalValue::GUID ValGUID) { + GUIDToValueIdMap[ValGUID] = ++GlobalValueId; + } + + unsigned getValueId(GlobalValue::GUID ValGUID) { + const auto &VMI = GUIDToValueIdMap.find(ValGUID); + // Expect that any GUID value had a value Id assigned by an + // earlier call to assignValueId. + assert(VMI != GUIDToValueIdMap.end() && + "GUID does not have assigned value Id"); + return VMI->second; + } + + // Helper to get the valueId for the type of value recorded in VI. + unsigned getValueId(ValueInfo VI) { + if (!VI.haveGVs() || !VI.getValue()) + return getValueId(VI.getGUID()); + return VE.getValueID(VI.getValue()); + } + + std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } + + uint64_t bitcodeStartBit() { return BitcodeStartBit; } + + size_t addToStrtab(StringRef Str); + + unsigned createDILocationAbbrev(); + unsigned createGenericDINodeAbbrev(); + + void writeAttributeGroupTable(); + void writeAttributeTable(); + void writeTypeTable(); + void writeComdats(); + void writeValueSymbolTableForwardDecl(); + void writeModuleInfo(); + void writeValueAsMetadata(const ValueAsMetadata *MD, + SmallVectorImpl<uint64_t> &Record); + void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, + unsigned &Abbrev); + void writeGenericDINode(const GenericDINode *N, + SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) { + llvm_unreachable("DXIL cannot contain GenericDI Nodes"); + } + void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIGenericSubrange(const DIGenericSubrange *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes"); + } + void writeDIEnumerator(const DIEnumerator *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIStringType(const DIStringType *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { + llvm_unreachable("DXIL cannot contain DIStringType Nodes"); + } + void writeDIDerivedType(const DIDerivedType *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDICompositeType(const DICompositeType *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDISubroutineType(const DISubroutineType *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDICompileUnit(const DICompileUnit *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDISubprogram(const DISubprogram *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDILexicalBlock(const DILexicalBlock *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDILexicalBlockFile(const DILexicalBlockFile *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDICommonBlock(const DICommonBlock *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { + llvm_unreachable("DXIL cannot contain DICommonBlock Nodes"); + } + void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + llvm_unreachable("DXIL cannot contain DIMacro Nodes"); + } + void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + llvm_unreachable("DXIL cannot contain DIMacroFile Nodes"); + } + void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + llvm_unreachable("DXIL cannot contain DIArgList Nodes"); + } + void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDITemplateValueParameter(const DITemplateValueParameter *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDIGlobalVariable(const DIGlobalVariable *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + void writeDILocalVariable(const DILocalVariable *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + llvm_unreachable("DXIL cannot contain DILabel Nodes"); + } + void writeDIExpression(const DIExpression *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes"); + } + void writeDIObjCProperty(const DIObjCProperty *N, + SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); + void writeDIImportedEntity(const DIImportedEntity *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev); + unsigned createNamedMetadataAbbrev(); + void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); + unsigned createMetadataStringsAbbrev(); + void writeMetadataStrings(ArrayRef<const Metadata *> Strings, + SmallVectorImpl<uint64_t> &Record); + void writeMetadataRecords(ArrayRef<const Metadata *> MDs, + SmallVectorImpl<uint64_t> &Record, + std::vector<unsigned> *MDAbbrevs = nullptr, + std::vector<uint64_t> *IndexPos = nullptr); + void writeModuleMetadata(); + void writeFunctionMetadata(const Function &F); + void writeFunctionMetadataAttachment(const Function &F); + void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, + const GlobalObject &GO); + void writeModuleMetadataKinds(); + void writeOperandBundleTags(); + void writeSyncScopeNames(); + void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); + void writeModuleConstants(); + bool pushValueAndType(const Value *V, unsigned InstID, + SmallVectorImpl<unsigned> &Vals); + void writeOperandBundles(const CallBase &CB, unsigned InstID); + void pushValue(const Value *V, unsigned InstID, + SmallVectorImpl<unsigned> &Vals); + void pushValueSigned(const Value *V, unsigned InstID, + SmallVectorImpl<uint64_t> &Vals); + void writeInstruction(const Instruction &I, unsigned InstID, + SmallVectorImpl<unsigned> &Vals); + void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); + void writeGlobalValueSymbolTable( + DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); + void writeUseList(UseListOrder &&Order); + void writeUseListBlock(const Function *F); + void writeFunction(const Function &F); + void writeBlockInfo(); + + unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); } + + unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } + + unsigned getTypeID(Type *T, const Value *V = nullptr); + unsigned getTypeID(Type *T, const Function *F); +}; + +} // namespace dxil +} // namespace llvm + +using namespace llvm; +using namespace llvm::dxil; + +//////////////////////////////////////////////////////////////////////////////// +/// Begin dxil::BitcodeWriter Implementation +//////////////////////////////////////////////////////////////////////////////// + +dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, + raw_fd_stream *FS) + : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) { + // Emit the file header. + Stream->Emit((unsigned)'B', 8); + Stream->Emit((unsigned)'C', 8); + Stream->Emit(0x0, 4); + Stream->Emit(0xC, 4); + Stream->Emit(0xE, 4); + Stream->Emit(0xD, 4); +} + +dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } + +/// Write the specified module to the specified output stream. +void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) { + SmallVector<char, 0> Buffer; + Buffer.reserve(256 * 1024); + + // If this is darwin or another generic macho target, reserve space for the + // header. + Triple TT(M.getTargetTriple()); + if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) + Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); + + BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); + Writer.writeModule(M); + Writer.writeSymtab(); + Writer.writeStrtab(); + + // Write the generated bitstream to "Out". + if (!Buffer.empty()) + Out.write((char *)&Buffer.front(), Buffer.size()); +} + +void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { + Stream->EnterSubblock(Block, 3); + + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(Record)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); + auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); + + Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); + + Stream->ExitBlock(); +} + +void BitcodeWriter::writeSymtab() { + assert(!WroteStrtab && !WroteSymtab); + + // If any module has module-level inline asm, we will require a registered asm + // parser for the target so that we can create an accurate symbol table for + // the module. + for (Module *M : Mods) { + if (M->getModuleInlineAsm().empty()) + continue; + } + + WroteSymtab = true; + SmallVector<char, 0> Symtab; + // The irsymtab::build function may be unable to create a symbol table if the + // module is malformed (e.g. it contains an invalid alias). Writing a symbol + // table is not required for correctness, but we still want to be able to + // write malformed modules to bitcode files, so swallow the error. + if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { + consumeError(std::move(E)); + return; + } + + writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, + {Symtab.data(), Symtab.size()}); +} + +void BitcodeWriter::writeStrtab() { + assert(!WroteStrtab); + + std::vector<char> Strtab; + StrtabBuilder.finalizeInOrder(); + Strtab.resize(StrtabBuilder.getSize()); + StrtabBuilder.write((uint8_t *)Strtab.data()); + + writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, + {Strtab.data(), Strtab.size()}); + + WroteStrtab = true; +} + +void BitcodeWriter::copyStrtab(StringRef Strtab) { + writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); + WroteStrtab = true; +} + +void BitcodeWriter::writeModule(const Module &M) { + assert(!WroteStrtab); + + // The Mods vector is used by irsymtab::build, which requires non-const + // Modules in case it needs to materialize metadata. But the bitcode writer + // requires that the module is materialized, so we can cast to non-const here, + // after checking that it is in fact materialized. + assert(M.isMaterialized()); + Mods.push_back(const_cast<Module *>(&M)); + + DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream); + ModuleWriter.write(); +} + +//////////////////////////////////////////////////////////////////////////////// +/// Begin dxil::BitcodeWriterBase Implementation +//////////////////////////////////////////////////////////////////////////////// + +unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) { + switch (Opcode) { + default: + llvm_unreachable("Unknown cast instruction!"); + case Instruction::Trunc: + return bitc::CAST_TRUNC; + case Instruction::ZExt: + return bitc::CAST_ZEXT; + case Instruction::SExt: + return bitc::CAST_SEXT; + case Instruction::FPToUI: + return bitc::CAST_FPTOUI; + case Instruction::FPToSI: + return bitc::CAST_FPTOSI; + case Instruction::UIToFP: + return bitc::CAST_UITOFP; + case Instruction::SIToFP: + return bitc::CAST_SITOFP; + case Instruction::FPTrunc: + return bitc::CAST_FPTRUNC; + case Instruction::FPExt: + return bitc::CAST_FPEXT; + case Instruction::PtrToInt: + return bitc::CAST_PTRTOINT; + case Instruction::IntToPtr: + return bitc::CAST_INTTOPTR; + case Instruction::BitCast: + return bitc::CAST_BITCAST; + case Instruction::AddrSpaceCast: + return bitc::CAST_ADDRSPACECAST; + } +} + +unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) { + switch (Opcode) { + default: + llvm_unreachable("Unknown binary instruction!"); + case Instruction::FNeg: + return bitc::UNOP_FNEG; + } +} + +unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) { + switch (Opcode) { + default: + llvm_unreachable("Unknown binary instruction!"); + case Instruction::Add: + case Instruction::FAdd: + return bitc::BINOP_ADD; + case Instruction::Sub: + case Instruction::FSub: + return bitc::BINOP_SUB; + case Instruction::Mul: + case Instruction::FMul: + return bitc::BINOP_MUL; + case Instruction::UDiv: + return bitc::BINOP_UDIV; + case Instruction::FDiv: + case Instruction::SDiv: + return bitc::BINOP_SDIV; + case Instruction::URem: + return bitc::BINOP_UREM; + case Instruction::FRem: + case Instruction::SRem: + return bitc::BINOP_SREM; + case Instruction::Shl: + return bitc::BINOP_SHL; + case Instruction::LShr: + return bitc::BINOP_LSHR; + case Instruction::AShr: + return bitc::BINOP_ASHR; + case Instruction::And: + return bitc::BINOP_AND; + case Instruction::Or: + return bitc::BINOP_OR; + case Instruction::Xor: + return bitc::BINOP_XOR; + } +} + +unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) { + if (!T->isOpaquePointerTy()) + return VE.getTypeID(T); + auto It = PointerMap.find(V); + if (It != PointerMap.end()) + return VE.getTypeID(It->second); + return VE.getTypeID(I8PtrTy); +} + +unsigned DXILBitcodeWriter::getTypeID(Type *T, const Function *F) { + auto It = PointerMap.find(F); + if (It != PointerMap.end()) + return VE.getTypeID(It->second); + return VE.getTypeID(T); +} + +unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { + switch (Op) { + default: + llvm_unreachable("Unknown RMW operation!"); + case AtomicRMWInst::Xchg: + return bitc::RMW_XCHG; + case AtomicRMWInst::Add: + return bitc::RMW_ADD; + case AtomicRMWInst::Sub: + return bitc::RMW_SUB; + case AtomicRMWInst::And: + return bitc::RMW_AND; + case AtomicRMWInst::Nand: + return bitc::RMW_NAND; + case AtomicRMWInst::Or: + return bitc::RMW_OR; + case AtomicRMWInst::Xor: + return bitc::RMW_XOR; + case AtomicRMWInst::Max: + return bitc::RMW_MAX; + case AtomicRMWInst::Min: + return bitc::RMW_MIN; + case AtomicRMWInst::UMax: + return bitc::RMW_UMAX; + case AtomicRMWInst::UMin: + return bitc::RMW_UMIN; + case AtomicRMWInst::FAdd: + return bitc::RMW_FADD; + case AtomicRMWInst::FSub: + return bitc::RMW_FSUB; + } +} + +unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) { + switch (Ordering) { + case AtomicOrdering::NotAtomic: + return bitc::ORDERING_NOTATOMIC; + case AtomicOrdering::Unordered: + return bitc::ORDERING_UNORDERED; + case AtomicOrdering::Monotonic: + return bitc::ORDERING_MONOTONIC; + case AtomicOrdering::Acquire: + return bitc::ORDERING_ACQUIRE; + case AtomicOrdering::Release: + return bitc::ORDERING_RELEASE; + case AtomicOrdering::AcquireRelease: + return bitc::ORDERING_ACQREL; + case AtomicOrdering::SequentiallyConsistent: + return bitc::ORDERING_SEQCST; + } + llvm_unreachable("Invalid ordering"); +} + +void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream, + unsigned Code, StringRef Str, + unsigned AbbrevToUse) { + SmallVector<unsigned, 64> Vals; + + // Code: [strchar x N] + for (char C : Str) { + if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) + AbbrevToUse = 0; + Vals.push_back(C); + } + + // Emit the finished record. + Stream.EmitRecord(Code, Vals, AbbrevToUse); +} + +uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) { + switch (Kind) { + case Attribute::Alignment: + return bitc::ATTR_KIND_ALIGNMENT; + case Attribute::AlwaysInline: + return bitc::ATTR_KIND_ALWAYS_INLINE; + case Attribute::ArgMemOnly: + return bitc::ATTR_KIND_ARGMEMONLY; + case Attribute::Builtin: + return bitc::ATTR_KIND_BUILTIN; + case Attribute::ByVal: + return bitc::ATTR_KIND_BY_VAL; + case Attribute::Convergent: + return bitc::ATTR_KIND_CONVERGENT; + case Attribute::InAlloca: + return bitc::ATTR_KIND_IN_ALLOCA; + case Attribute::Cold: + return bitc::ATTR_KIND_COLD; + case Attribute::InlineHint: + return bitc::ATTR_KIND_INLINE_HINT; + case Attribute::InReg: + return bitc::ATTR_KIND_IN_REG; + case Attribute::JumpTable: + return bitc::ATTR_KIND_JUMP_TABLE; + case Attribute::MinSize: + return bitc::ATTR_KIND_MIN_SIZE; + case Attribute::Naked: + return bitc::ATTR_KIND_NAKED; + case Attribute::Nest: + return bitc::ATTR_KIND_NEST; + case Attribute::NoAlias: + return bitc::ATTR_KIND_NO_ALIAS; + case Attribute::NoBuiltin: + return bitc::ATTR_KIND_NO_BUILTIN; + case Attribute::NoCapture: + return bitc::ATTR_KIND_NO_CAPTURE; + case Attribute::NoDuplicate: + return bitc::ATTR_KIND_NO_DUPLICATE; + case Attribute::NoImplicitFloat: + return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; + case Attribute::NoInline: + return bitc::ATTR_KIND_NO_INLINE; + case Attribute::NonLazyBind: + return bitc::ATTR_KIND_NON_LAZY_BIND; + case Attribute::NonNull: + return bitc::ATTR_KIND_NON_NULL; + case Attribute::Dereferenceable: + return bitc::ATTR_KIND_DEREFERENCEABLE; + case Attribute::DereferenceableOrNull: + return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; + case Attribute::NoRedZone: + return bitc::ATTR_KIND_NO_RED_ZONE; + case Attribute::NoReturn: + return bitc::ATTR_KIND_NO_RETURN; + case Attribute::NoUnwind: + return bitc::ATTR_KIND_NO_UNWIND; + case Attribute::OptimizeForSize: + return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; + case Attribute::OptimizeNone: + return bitc::ATTR_KIND_OPTIMIZE_NONE; + case Attribute::ReadNone: + return bitc::ATTR_KIND_READ_NONE; + case Attribute::ReadOnly: + return bitc::ATTR_KIND_READ_ONLY; + case Attribute::Returned: + return bitc::ATTR_KIND_RETURNED; + case Attribute::ReturnsTwice: + return bitc::ATTR_KIND_RETURNS_TWICE; + case Attribute::SExt: + return bitc::ATTR_KIND_S_EXT; + case Attribute::StackAlignment: + return bitc::ATTR_KIND_STACK_ALIGNMENT; + case Attribute::StackProtect: + return bitc::ATTR_KIND_STACK_PROTECT; + case Attribute::StackProtectReq: + return bitc::ATTR_KIND_STACK_PROTECT_REQ; + case Attribute::StackProtectStrong: + return bitc::ATTR_KIND_STACK_PROTECT_STRONG; + case Attribute::SafeStack: + return bitc::ATTR_KIND_SAFESTACK; + case Attribute::StructRet: + return bitc::ATTR_KIND_STRUCT_RET; + case Attribute::SanitizeAddress: + return bitc::ATTR_KIND_SANITIZE_ADDRESS; + case Attribute::SanitizeThread: + return bitc::ATTR_KIND_SANITIZE_THREAD; + case Attribute::SanitizeMemory: + return bitc::ATTR_KIND_SANITIZE_MEMORY; + case Attribute::UWTable: + return bitc::ATTR_KIND_UW_TABLE; + case Attribute::ZExt: + return bitc::ATTR_KIND_Z_EXT; + case Attribute::EndAttrKinds: + llvm_unreachable("Can not encode end-attribute kinds marker."); + case Attribute::None: + llvm_unreachable("Can not encode none-attribute."); + case Attribute::EmptyKey: + case Attribute::TombstoneKey: + llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); + default: + llvm_unreachable("Trying to encode attribute not supported by DXIL. These " + "should be stripped in DXILPrepare"); + } + + llvm_unreachable("Trying to encode unknown attribute"); +} + +void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, + uint64_t V) { + if ((int64_t)V >= 0) + Vals.push_back(V << 1); + else + Vals.push_back((-V << 1) | 1); +} + +void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, + const APInt &A) { + // We have an arbitrary precision integer value to write whose + // bit width is > 64. However, in canonical unsigned integer + // format it is likely that the high bits are going to be zero. + // So, we only write the number of active words. + unsigned NumWords = A.getActiveWords(); + const uint64_t *RawData = A.getRawData(); + for (unsigned i = 0; i < NumWords; i++) + emitSignedInt64(Vals, RawData[i]); +} + +uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) { + uint64_t Flags = 0; + + if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { + if (OBO->hasNoSignedWrap()) + Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; + if (OBO->hasNoUnsignedWrap()) + Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; + } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { + if (PEO->isExact()) + Flags |= 1 << bitc::PEO_EXACT; + } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { + if (FPMO->hasAllowReassoc()) + Flags |= bitc::AllowReassoc; + if (FPMO->hasNoNaNs()) + Flags |= bitc::NoNaNs; + if (FPMO->hasNoInfs()) + Flags |= bitc::NoInfs; + if (FPMO->hasNoSignedZeros()) + Flags |= bitc::NoSignedZeros; + if (FPMO->hasAllowReciprocal()) + Flags |= bitc::AllowReciprocal; + if (FPMO->hasAllowContract()) + Flags |= bitc::AllowContract; + if (FPMO->hasApproxFunc()) + Flags |= bitc::ApproxFunc; + } + + return Flags; +} + +unsigned +DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { + switch (Linkage) { + case GlobalValue::ExternalLinkage: + return 0; + case GlobalValue::WeakAnyLinkage: + return 16; + case GlobalValue::AppendingLinkage: + return 2; + case GlobalValue::InternalLinkage: + return 3; + case GlobalValue::LinkOnceAnyLinkage: + return 18; + case GlobalValue::ExternalWeakLinkage: + return 7; + case GlobalValue::CommonLinkage: + return 8; + case GlobalValue::PrivateLinkage: + return 9; + case GlobalValue::WeakODRLinkage: + return 17; + case GlobalValue::LinkOnceODRLinkage: + return 19; + case GlobalValue::AvailableExternallyLinkage: + return 12; + } + llvm_unreachable("Invalid linkage"); +} + +unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) { + return getEncodedLinkage(GV.getLinkage()); +} + +unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) { + switch (GV.getVisibility()) { + case GlobalValue::DefaultVisibility: + return 0; + case GlobalValue::HiddenVisibility: + return 1; + case GlobalValue::ProtectedVisibility: + return 2; + } + llvm_unreachable("Invalid visibility"); +} + +unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) { + switch (GV.getDLLStorageClass()) { + case GlobalValue::DefaultStorageClass: + return 0; + case GlobalValue::DLLImportStorageClass: + return 1; + case GlobalValue::DLLExportStorageClass: + return 2; + } + llvm_unreachable("Invalid DLL storage class"); +} + +unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) { + switch (GV.getThreadLocalMode()) { + case GlobalVariable::NotThreadLocal: + return 0; + case GlobalVariable::GeneralDynamicTLSModel: + return 1; + case GlobalVariable::LocalDynamicTLSModel: + return 2; + case GlobalVariable::InitialExecTLSModel: + return 3; + case GlobalVariable::LocalExecTLSModel: + return 4; + } + llvm_unreachable("Invalid TLS model"); +} + +unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) { + switch (C.getSelectionKind()) { + case Comdat::Any: + return bitc::COMDAT_SELECTION_KIND_ANY; + case Comdat::ExactMatch: + return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; + case Comdat::Largest: + return bitc::COMDAT_SELECTION_KIND_LARGEST; + case Comdat::NoDeduplicate: + return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; + case Comdat::SameSize: + return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; + } + llvm_unreachable("Invalid selection kind"); +} + +//////////////////////////////////////////////////////////////////////////////// +/// Begin DXILBitcodeWriter Implementation +//////////////////////////////////////////////////////////////////////////////// + +void DXILBitcodeWriter::writeAttributeGroupTable() { + const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = + VE.getAttributeGroups(); + if (AttrGrps.empty()) + return; + + Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); + + SmallVector<uint64_t, 64> Record; + for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { + unsigned AttrListIndex = Pair.first; + AttributeSet AS = Pair.second; + Record.push_back(VE.getAttributeGroupID(Pair)); + Record.push_back(AttrListIndex); + + for (Attribute Attr : AS) { + if (Attr.isEnumAttribute()) { + uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); + assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && + "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); + Record.push_back(0); + Record.push_back(Val); + } else if (Attr.isIntAttribute()) { + uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum()); + assert(Val <= bitc::ATTR_KIND_ARGMEMONLY && + "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY"); + Record.push_back(1); + Record.push_back(Val); + Record.push_back(Attr.getValueAsInt()); + } else { + StringRef Kind = Attr.getKindAsString(); + StringRef Val = Attr.getValueAsString(); + + Record.push_back(Val.empty() ? 3 : 4); + Record.append(Kind.begin(), Kind.end()); + Record.push_back(0); + if (!Val.empty()) { + Record.append(Val.begin(), Val.end()); + Record.push_back(0); + } + } + } + + Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void DXILBitcodeWriter::writeAttributeTable() { + const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); + if (Attrs.empty()) + return; + + Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); + + SmallVector<uint64_t, 64> Record; + for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { + AttributeList AL = Attrs[i]; + for (unsigned i : AL.indexes()) { + AttributeSet AS = AL.getAttributes(i); + if (AS.hasAttributes()) + Record.push_back(VE.getAttributeGroupID({i, AS})); + } + + Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); + Record.clear(); + } + + Stream.ExitBlock(); +} + +/// WriteTypeTable - Write out the type table for a module. +void DXILBitcodeWriter::writeTypeTable() { + const ValueEnumerator::TypeList &TypeList = VE.getTypes(); + + Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); + SmallVector<uint64_t, 64> TypeVals; + + uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); + + // Abbrev for TYPE_CODE_POINTER. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); + Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 + unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_FUNCTION. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); + unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_STRUCT_ANON. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); + unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_STRUCT_NAME. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_STRUCT_NAMED. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); + unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for TYPE_CODE_ARRAY. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); + unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Emit an entry count so the reader can reserve space. + TypeVals.push_back(TypeList.size()); + Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); + TypeVals.clear(); + + // Loop over all of the types, emitting each in turn. + for (Type *T : TypeList) { + int AbbrevToUse = 0; + unsigned Code = 0; + + switch (T->getTypeID()) { + case Type::BFloatTyID: + case Type::X86_AMXTyID: + case Type::TokenTyID: + llvm_unreachable("These should never be used!!!"); + break; + case Type::VoidTyID: + Code = bitc::TYPE_CODE_VOID; + break; + case Type::HalfTyID: + Code = bitc::TYPE_CODE_HALF; + break; + case Type::FloatTyID: + Code = bitc::TYPE_CODE_FLOAT; + break; + case Type::DoubleTyID: + Code = bitc::TYPE_CODE_DOUBLE; + break; + case Type::X86_FP80TyID: + Code = bitc::TYPE_CODE_X86_FP80; + break; + case Type::FP128TyID: + Code = bitc::TYPE_CODE_FP128; + break; + case Type::PPC_FP128TyID: + Code = bitc::TYPE_CODE_PPC_FP128; + break; + case Type::LabelTyID: + Code = bitc::TYPE_CODE_LABEL; + break; + case Type::MetadataTyID: + Code = bitc::TYPE_CODE_METADATA; + break; + case Type::X86_MMXTyID: + Code = bitc::TYPE_CODE_X86_MMX; + break; + case Type::IntegerTyID: + // INTEGER: [width] + Code = bitc::TYPE_CODE_INTEGER; + TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); + break; + case Type::DXILPointerTyID: { + TypedPointerType *PTy = cast<TypedPointerType>(T); + // POINTER: [pointee type, address space] + Code = bitc::TYPE_CODE_POINTER; + TypeVals.push_back(getTypeID(PTy->getElementType())); + unsigned AddressSpace = PTy->getAddressSpace(); + TypeVals.push_back(AddressSpace); + if (AddressSpace == 0) + AbbrevToUse = PtrAbbrev; + break; + } + case Type::PointerTyID: { + PointerType *PTy = cast<PointerType>(T); + // POINTER: [pointee type, address space] + Code = bitc::TYPE_CODE_POINTER; + // Emitting an empty struct type for the opaque pointer's type allows + // this to be order-independent. Non-struct types must be emitted in + // bitcode before they can be referenced. + if (PTy->isOpaquePointerTy()) { + TypeVals.push_back(false); + Code = bitc::TYPE_CODE_OPAQUE; + writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, + "dxilOpaquePtrReservedName", StructNameAbbrev); + } else { + TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType())); + unsigned AddressSpace = PTy->getAddressSpace(); + TypeVals.push_back(AddressSpace); + if (AddressSpace == 0) + AbbrevToUse = PtrAbbrev; + } + break; + } + case Type::FunctionTyID: { + FunctionType *FT = cast<FunctionType>(T); + // FUNCTION: [isvararg, retty, paramty x N] + Code = bitc::TYPE_CODE_FUNCTION; + TypeVals.push_back(FT->isVarArg()); + TypeVals.push_back(getTypeID(FT->getReturnType())); + for (Type *PTy : FT->params()) + TypeVals.push_back(getTypeID(PTy)); + AbbrevToUse = FunctionAbbrev; + break; + } + case Type::StructTyID: { + StructType *ST = cast<StructType>(T); + // STRUCT: [ispacked, eltty x N] + TypeVals.push_back(ST->isPacked()); + // Output all of the element types. + for (Type *ElTy : ST->elements()) + TypeVals.push_back(getTypeID(ElTy)); + + if (ST->isLiteral()) { + Code = bitc::TYPE_CODE_STRUCT_ANON; + AbbrevToUse = StructAnonAbbrev; + } else { + if (ST->isOpaque()) { + Code = bitc::TYPE_CODE_OPAQUE; + } else { + Code = bitc::TYPE_CODE_STRUCT_NAMED; + AbbrevToUse = StructNamedAbbrev; + } + + // Emit the name if it is present. + if (!ST->getName().empty()) + writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), + StructNameAbbrev); + } + break; + } + case Type::ArrayTyID: { + ArrayType *AT = cast<ArrayType>(T); + // ARRAY: [numelts, eltty] + Code = bitc::TYPE_CODE_ARRAY; + TypeVals.push_back(AT->getNumElements()); + TypeVals.push_back(getTypeID(AT->getElementType())); + AbbrevToUse = ArrayAbbrev; + break; + } + case Type::FixedVectorTyID: + case Type::ScalableVectorTyID: { + VectorType *VT = cast<VectorType>(T); + // VECTOR [numelts, eltty] + Code = bitc::TYPE_CODE_VECTOR; + TypeVals.push_back(VT->getElementCount().getKnownMinValue()); + TypeVals.push_back(getTypeID(VT->getElementType())); + break; + } + } + + // Emit the finished record. + Stream.EmitRecord(Code, TypeVals, AbbrevToUse); + TypeVals.clear(); + } + + Stream.ExitBlock(); +} + +void DXILBitcodeWriter::writeComdats() { + SmallVector<uint16_t, 64> Vals; + for (const Comdat *C : VE.getComdats()) { + // COMDAT: [selection_kind, name] + Vals.push_back(getEncodedComdatSelectionKind(*C)); + size_t Size = C->getName().size(); + assert(isUInt<16>(Size)); + Vals.push_back(Size); + for (char Chr : C->getName()) + Vals.push_back((unsigned char)Chr); + Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); + Vals.clear(); + } +} + +void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {} + +/// Emit top-level description of module, including target triple, inline asm, +/// descriptors for global variables, and function prototype info. +/// Returns the bit offset to backpatch with the location of the real VST. +void DXILBitcodeWriter::writeModuleInfo() { + // Emit various pieces of data attached to a module. + if (!M.getTargetTriple().empty()) + writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), + 0 /*TODO*/); + const std::string &DL = M.getDataLayoutStr(); + if (!DL.empty()) + writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); + if (!M.getModuleInlineAsm().empty()) + writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), + 0 /*TODO*/); + + // Emit information about sections and GC, computing how many there are. Also + // compute the maximum alignment value. + std::map<std::string, unsigned> SectionMap; + std::map<std::string, unsigned> GCMap; + MaybeAlign MaxAlignment; + unsigned MaxGlobalType = 0; + const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { + if (A) + MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); + }; + for (const GlobalVariable &GV : M.globals()) { + UpdateMaxAlignment(GV.getAlign()); + MaxGlobalType = std::max(MaxGlobalType, getTypeID(GV.getValueType(), &GV)); + if (GV.hasSection()) { + // Give section names unique ID's. + unsigned &Entry = SectionMap[std::string(GV.getSection())]; + if (!Entry) { + writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, + GV.getSection(), 0 /*TODO*/); + Entry = SectionMap.size(); + } + } + } + for (const Function &F : M) { + UpdateMaxAlignment(F.getAlign()); + if (F.hasSection()) { + // Give section names unique ID's. + unsigned &Entry = SectionMap[std::string(F.getSection())]; + if (!Entry) { + writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), + 0 /*TODO*/); + Entry = SectionMap.size(); + } + } + if (F.hasGC()) { + // Same for GC names. + unsigned &Entry = GCMap[F.getGC()]; + if (!Entry) { + writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), + 0 /*TODO*/); + Entry = GCMap.size(); + } + } + } + + // Emit abbrev for globals, now that we know # sections and max alignment. + unsigned SimpleGVarAbbrev = 0; + if (!M.global_empty()) { + // Add an abbrev for common globals with no visibility or thread + // localness. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(MaxGlobalType + 1))); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 + //| explicitType << 1 + //| constant + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. + if (!MaxAlignment) // Alignment. + Abbv->Add(BitCodeAbbrevOp(0)); + else { + unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(MaxEncAlignment + 1))); + } + if (SectionMap.empty()) // Section. + Abbv->Add(BitCodeAbbrevOp(0)); + else + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + Log2_32_Ceil(SectionMap.size() + 1))); + // Don't bother emitting vis + thread local. + SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + } + + // Emit the global variable information. + SmallVector<unsigned, 64> Vals; + for (const GlobalVariable &GV : M.globals()) { + unsigned AbbrevToUse = 0; + + // GLOBALVAR: [type, isconst, initid, + // linkage, alignment, section, visibility, threadlocal, + // unnamed_addr, externally_initialized, dllstorageclass, + // comdat] + Vals.push_back(getTypeID(GV.getValueType(), &GV)); + Vals.push_back( + GV.getType()->getAddressSpace() << 2 | 2 | + (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with + // unsigned int and bool + Vals.push_back( + GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1)); + Vals.push_back(getEncodedLinkage(GV)); + Vals.push_back(getEncodedAlign(GV.getAlign())); + Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] + : 0); + if (GV.isThreadLocal() || + GV.getVisibility() != GlobalValue::DefaultVisibility || + GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || + GV.isExternallyInitialized() || + GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || + GV.hasComdat()) { + Vals.push_back(getEncodedVisibility(GV)); + Vals.push_back(getEncodedThreadLocalMode(GV)); + Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); + Vals.push_back(GV.isExternallyInitialized()); + Vals.push_back(getEncodedDLLStorageClass(GV)); + Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); + } else { + AbbrevToUse = SimpleGVarAbbrev; + } + + Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); + Vals.clear(); + } + + // Emit the function proto information. + for (const Function &F : M) { + // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, + // section, visibility, gc, unnamed_addr, prologuedata, + // dllstorageclass, comdat, prefixdata, personalityfn] + Vals.push_back(getTypeID(F.getFunctionType(), &F)); + Vals.push_back(F.getCallingConv()); + Vals.push_back(F.isDeclaration()); + Vals.push_back(getEncodedLinkage(F)); + Vals.push_back(VE.getAttributeListID(F.getAttributes())); + Vals.push_back(getEncodedAlign(F.getAlign())); + Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] + : 0); + Vals.push_back(getEncodedVisibility(F)); + Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); + Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); + Vals.push_back( + F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0); + Vals.push_back(getEncodedDLLStorageClass(F)); + Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); + Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) + : 0); + Vals.push_back( + F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); + + unsigned AbbrevToUse = 0; + Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); + Vals.clear(); + } + + // Emit the alias information. + for (const GlobalAlias &A : M.aliases()) { + // ALIAS: [alias type, aliasee val#, linkage, visibility] + Vals.push_back(getTypeID(A.getValueType(), &A)); + Vals.push_back(VE.getValueID(A.getAliasee())); + Vals.push_back(getEncodedLinkage(A)); + Vals.push_back(getEncodedVisibility(A)); + Vals.push_back(getEncodedDLLStorageClass(A)); + Vals.push_back(getEncodedThreadLocalMode(A)); + Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None); + unsigned AbbrevToUse = 0; + Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse); + Vals.clear(); + } +} + +void DXILBitcodeWriter::writeValueAsMetadata( + const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { + // Mimic an MDNode with a value as one operand. + Value *V = MD->getValue(); + Type *Ty = V->getType(); + if (Function *F = dyn_cast<Function>(V)) + Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace()); + else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) + Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace()); + Record.push_back(getTypeID(Ty)); + Record.push_back(VE.getValueID(V)); + Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); + Record.clear(); +} + +void DXILBitcodeWriter::writeMDTuple(const MDTuple *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + Metadata *MD = N->getOperand(i); + assert(!(MD && isa<LocalAsMetadata>(MD)) && + "Unexpected function-local metadata"); + Record.push_back(VE.getMetadataOrNullID(MD)); + } + Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE + : bitc::METADATA_NODE, + Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDILocation(const DILocation *N, + SmallVectorImpl<uint64_t> &Record, + unsigned &Abbrev) { + if (!Abbrev) + Abbrev = createDILocationAbbrev(); + Record.push_back(N->isDistinct()); + Record.push_back(N->getLine()); + Record.push_back(N->getColumn()); + Record.push_back(VE.getMetadataID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); + + Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); + Record.clear(); +} + +static uint64_t rotateSign(APInt Val) { + int64_t I = Val.getSExtValue(); + uint64_t U = I; + return I < 0 ? ~(U << 1) : U << 1; +} + +static uint64_t rotateSign(DISubrange::BoundType Val) { + return rotateSign(Val.get<ConstantInt *>()->getValue()); +} + +void DXILBitcodeWriter::writeDISubrange(const DISubrange *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back( + N->getCount().get<ConstantInt *>()->getValue().getSExtValue()); + Record.push_back(rotateSign(N->getLowerBound())); + + Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(rotateSign(N->getValue())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + + Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(N->getSizeInBits()); + Record.push_back(N->getAlignInBits()); + Record.push_back(N->getEncoding()); + + Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); + Record.push_back(N->getSizeInBits()); + Record.push_back(N->getAlignInBits()); + Record.push_back(N->getOffsetInBits()); + Record.push_back(N->getFlags()); + Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); + + Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); + Record.push_back(N->getSizeInBits()); + Record.push_back(N->getAlignInBits()); + Record.push_back(N->getOffsetInBits()); + Record.push_back(N->getFlags()); + Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); + Record.push_back(N->getRuntimeLang()); + Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); + Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); + Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); + + Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getFlags()); + Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); + + Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDIFile(const DIFile *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); + Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); + + Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getSourceLanguage()); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); + Record.push_back(N->isOptimized()); + Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); + Record.push_back(N->getRuntimeVersion()); + Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); + Record.push_back(N->getEmissionKind()); + Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); + Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); + Record.push_back(/* subprograms */ 0); + Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); + Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); + Record.push_back(N->getDWOId()); + + Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + Record.push_back(N->isLocalToUnit()); + Record.push_back(N->isDefinition()); + Record.push_back(N->getScopeLine()); + Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); + Record.push_back(N->getVirtuality()); + Record.push_back(N->getVirtualIndex()); + Record.push_back(N->getFlags()); + Record.push_back(N->isOptimized()); + Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); + Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); + Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); + Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); + + Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(N->getColumn()); + + Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDILexicalBlockFile( + const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getDiscriminator()); + + Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDINamespace(const DINamespace *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(/* line number */ 0); + + Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDIModule(const DIModule *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + for (auto &I : N->operands()) + Record.push_back(VE.getMetadataOrNullID(I)); + + Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDITemplateTypeParameter( + const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + + Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDITemplateValueParameter( + const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + Record.push_back(VE.getMetadataOrNullID(N->getValue())); + + Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + Record.push_back(N->isLocalToUnit()); + Record.push_back(N->isDefinition()); + Record.push_back(/* N->getRawVariable() */ 0); + Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); + + Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + Record.push_back(VE.getMetadataOrNullID(N->getFile())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getType())); + Record.push_back(N->getArg()); + Record.push_back(N->getFlags()); + + Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDIExpression(const DIExpression *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.reserve(N->getElements().size() + 1); + + Record.push_back(N->isDistinct()); + Record.append(N->elements_begin(), N->elements_end()); + + Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); + Record.clear(); +} + +void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + llvm_unreachable("DXIL does not support objc!!!"); +} + +void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N, + SmallVectorImpl<uint64_t> &Record, + unsigned Abbrev) { + Record.push_back(N->isDistinct()); + Record.push_back(N->getTag()); + Record.push_back(VE.getMetadataOrNullID(N->getScope())); + Record.push_back(VE.getMetadataOrNullID(N->getEntity())); + Record.push_back(N->getLine()); + Record.push_back(VE.getMetadataOrNullID(N->getRawName())); + + Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); + Record.clear(); +} + +unsigned DXILBitcodeWriter::createDILocationAbbrev() { + // Abbrev for METADATA_LOCATION. + // + // Assume the column is usually under 128, and always output the inlined-at + // location (it's never more expensive than building an array size 1). + std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + return Stream.EmitAbbrev(std::move(Abbv)); +} + +unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() { + // Abbrev for METADATA_GENERIC_DEBUG. + // + // Assume the column is usually under 128, and always output the inlined-at + // location (it's never more expensive than building an array size 1). + std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + return Stream.EmitAbbrev(std::move(Abbv)); +} + +void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs, + SmallVectorImpl<uint64_t> &Record, + std::vector<unsigned> *MDAbbrevs, + std::vector<uint64_t> *IndexPos) { + if (MDs.empty()) + return; + + // Initialize MDNode abbreviations. +#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; +#include "llvm/IR/Metadata.def" + + for (const Metadata *MD : MDs) { + if (IndexPos) + IndexPos->push_back(Stream.GetCurrentBitNo()); + if (const MDNode *N = dyn_cast<MDNode>(MD)) { + assert(N->isResolved() && "Expected forward references to be resolved"); + + switch (N->getMetadataID()) { + default: + llvm_unreachable("Invalid MDNode subclass"); +#define HANDLE_MDNODE_LEAF(CLASS) \ + case Metadata::CLASS##Kind: \ + if (MDAbbrevs) \ + write##CLASS(cast<CLASS>(N), Record, \ + (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ + else \ + write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ + continue; +#include "llvm/IR/Metadata.def" + } + } + writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); + } +} + +unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() { + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + return Stream.EmitAbbrev(std::move(Abbv)); +} + +void DXILBitcodeWriter::writeMetadataStrings( + ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { + for (const Metadata *MD : Strings) { + const MDString *MDS = cast<MDString>(MD); + // Code: [strchar x N] + Record.append(MDS->bytes_begin(), MDS->bytes_end()); + + // Emit the finished record. + Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record, + createMetadataStringsAbbrev()); + Record.clear(); + } +} + +void DXILBitcodeWriter::writeModuleMetadata() { + if (!VE.hasMDs() && M.named_metadata_empty()) + return; + + Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5); + + // Emit all abbrevs upfront, so that the reader can jump in the middle of the + // block and load any metadata. + std::vector<unsigned> MDAbbrevs; + + MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); + MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); + MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = + createGenericDINodeAbbrev(); + + unsigned NameAbbrev = 0; + if (!M.named_metadata_empty()) { + // Abbrev for METADATA_NAME. + std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + NameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + } + + SmallVector<uint64_t, 64> Record; + writeMetadataStrings(VE.getMDStrings(), Record); + + std::vector<uint64_t> IndexPos; + IndexPos.reserve(VE.getNonMDStrings().size()); + writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); + + // Write named metadata. + for (const NamedMDNode &NMD : M.named_metadata()) { + // Write name. + StringRef Str = NMD.getName(); + Record.append(Str.bytes_begin(), Str.bytes_end()); + Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); + Record.clear(); + + // Write named metadata operands. + for (const MDNode *N : NMD.operands()) + Record.push_back(VE.getMetadataID(N)); + Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) { + if (!VE.hasMDs()) + return; + + Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); + SmallVector<uint64_t, 64> Record; + writeMetadataStrings(VE.getMDStrings(), Record); + writeMetadataRecords(VE.getNonMDStrings(), Record); + Stream.ExitBlock(); +} + +void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { + Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); + + SmallVector<uint64_t, 64> Record; + + // Write metadata attachments + // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] + SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; + F.getAllMetadata(MDs); + if (!MDs.empty()) { + for (const auto &I : MDs) { + Record.push_back(I.first); + Record.push_back(VE.getMetadataID(I.second)); + } + Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); + Record.clear(); + } + + for (const BasicBlock &BB : F) + for (const Instruction &I : BB) { + MDs.clear(); + I.getAllMetadataOtherThanDebugLoc(MDs); + + // If no metadata, ignore instruction. + if (MDs.empty()) + continue; + + Record.push_back(VE.getInstructionID(&I)); + + for (unsigned i = 0, e = MDs.size(); i != e; ++i) { + Record.push_back(MDs[i].first); + Record.push_back(VE.getMetadataID(MDs[i].second)); + } + Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void DXILBitcodeWriter::writeModuleMetadataKinds() { + SmallVector<uint64_t, 64> Record; + + // Write metadata kinds + // METADATA_KIND - [n x [id, name]] + SmallVector<StringRef, 8> Names; + M.getMDKindNames(Names); + + if (Names.empty()) + return; + + Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); + + for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { + Record.push_back(MDKindID); + StringRef KName = Names[MDKindID]; + Record.append(KName.begin(), KName.end()); + + Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, + bool isGlobal) { + if (FirstVal == LastVal) + return; + + Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); + + unsigned AggregateAbbrev = 0; + unsigned String8Abbrev = 0; + unsigned CString7Abbrev = 0; + unsigned CString6Abbrev = 0; + // If this is a constant pool for the module, emit module-specific abbrevs. + if (isGlobal) { + // Abbrev for CST_CODE_AGGREGATE. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add( + BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1))); + AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); + + // Abbrev for CST_CODE_STRING. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); + // Abbrev for CST_CODE_CSTRING. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); + CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); + // Abbrev for CST_CODE_CSTRING. + Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); + } + + SmallVector<uint64_t, 64> Record; + + const ValueEnumerator::ValueList &Vals = VE.getValues(); + Type *LastTy = nullptr; + for (unsigned i = FirstVal; i != LastVal; ++i) { + const Value *V = Vals[i].first; + // If we need to switch types, do so now. + if (V->getType() != LastTy) { + LastTy = V->getType(); + Record.push_back(getTypeID(LastTy)); + Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, + CONSTANTS_SETTYPE_ABBREV); + Record.clear(); + } + + if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { + Record.push_back(unsigned(IA->hasSideEffects()) | + unsigned(IA->isAlignStack()) << 1 | + unsigned(IA->getDialect() & 1) << 2); + + // Add the asm string. + const std::string &AsmStr = IA->getAsmString(); + Record.push_back(AsmStr.size()); + Record.append(AsmStr.begin(), AsmStr.end()); + + // Add the constraint string. + const std::string &ConstraintStr = IA->getConstraintString(); + Record.push_back(ConstraintStr.size()); + Record.append(ConstraintStr.begin(), ConstraintStr.end()); + Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); + Record.clear(); + continue; + } + const Constant *C = cast<Constant>(V); + unsigned Code = -1U; + unsigned AbbrevToUse = 0; + if (C->isNullValue()) { + Code = bitc::CST_CODE_NULL; + } else if (isa<UndefValue>(C)) { + Code = bitc::CST_CODE_UNDEF; + } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { + if (IV->getBitWidth() <= 64) { + uint64_t V = IV->getSExtValue(); + emitSignedInt64(Record, V); + Code = bitc::CST_CODE_INTEGER; + AbbrevToUse = CONSTANTS_INTEGER_ABBREV; + } else { // Wide integers, > 64 bits in size. + // We have an arbitrary precision integer value to write whose + // bit width is > 64. However, in canonical unsigned integer + // format it is likely that the high bits are going to be zero. + // So, we only write the number of active words. + unsigned NWords = IV->getValue().getActiveWords(); + const uint64_t *RawWords = IV->getValue().getRawData(); + for (unsigned i = 0; i != NWords; ++i) { + emitSignedInt64(Record, RawWords[i]); + } + Code = bitc::CST_CODE_WIDE_INTEGER; + } + } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { + Code = bitc::CST_CODE_FLOAT; + Type *Ty = CFP->getType(); + if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { + Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); + } else if (Ty->isX86_FP80Ty()) { + // api needed to prevent premature destruction + // bits are not in the same order as a normal i80 APInt, compensate. + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t *p = api.getRawData(); + Record.push_back((p[1] << 48) | (p[0] >> 16)); + Record.push_back(p[0] & 0xffffLL); + } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { + APInt api = CFP->getValueAPF().bitcastToAPInt(); + const uint64_t *p = api.getRawData(); + Record.push_back(p[0]); + Record.push_back(p[1]); + } else { + assert(0 && "Unknown FP type!"); + } + } else if (isa<ConstantDataSequential>(C) && + cast<ConstantDataSequential>(C)->isString()) { + const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); + // Emit constant strings specially. + unsigned NumElts = Str->getNumElements(); + // If this is a null-terminated string, use the denser CSTRING encoding. + if (Str->isCString()) { + Code = bitc::CST_CODE_CSTRING; + --NumElts; // Don't encode the null, which isn't allowed by char6. + } else { + Code = bitc::CST_CODE_STRING; + AbbrevToUse = String8Abbrev; + } + bool isCStr7 = Code == bitc::CST_CODE_CSTRING; + bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; + for (unsigned i = 0; i != NumElts; ++i) { + unsigned char V = Str->getElementAsInteger(i); + Record.push_back(V); + isCStr7 &= (V & 128) == 0; + if (isCStrChar6) + isCStrChar6 = BitCodeAbbrevOp::isChar6(V); + } + + if (isCStrChar6) + AbbrevToUse = CString6Abbrev; + else if (isCStr7) + AbbrevToUse = CString7Abbrev; + } else if (const ConstantDataSequential *CDS = + dyn_cast<ConstantDataSequential>(C)) { + Code = bitc::CST_CODE_DATA; + Type *EltTy = CDS->getType()->getArrayElementType(); + if (isa<IntegerType>(EltTy)) { + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) + Record.push_back(CDS->getElementAsInteger(i)); + } else if (EltTy->isFloatTy()) { + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + union { + float F; + uint32_t I; + }; + F = CDS->getElementAsFloat(i); + Record.push_back(I); + } + } else { + assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + union { + double F; + uint64_t I; + }; + F = CDS->getElementAsDouble(i); + Record.push_back(I); + } + } + } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || + isa<ConstantVector>(C)) { + Code = bitc::CST_CODE_AGGREGATE; + for (const Value *Op : C->operands()) + Record.push_back(VE.getValueID(Op)); + AbbrevToUse = AggregateAbbrev; + } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + switch (CE->getOpcode()) { + default: + if (Instruction::isCast(CE->getOpcode())) { + Code = bitc::CST_CODE_CE_CAST; + Record.push_back(getEncodedCastOpcode(CE->getOpcode())); + Record.push_back(getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; + } else { + assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); + Code = bitc::CST_CODE_CE_BINOP; + Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + uint64_t Flags = getOptimizationFlags(CE); + if (Flags != 0) + Record.push_back(Flags); + } + break; + case Instruction::GetElementPtr: { + Code = bitc::CST_CODE_CE_GEP; + const auto *GO = cast<GEPOperator>(C); + if (GO->isInBounds()) + Code = bitc::CST_CODE_CE_INBOUNDS_GEP; + Record.push_back(getTypeID(GO->getSourceElementType())); + for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { + Record.push_back(getTypeID(C->getOperand(i)->getType())); + Record.push_back(VE.getValueID(C->getOperand(i))); + } + break; + } + case Instruction::Select: + Code = bitc::CST_CODE_CE_SELECT; + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(VE.getValueID(C->getOperand(2))); + break; + case Instruction::ExtractElement: + Code = bitc::CST_CODE_CE_EXTRACTELT; + Record.push_back(getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(getTypeID(C->getOperand(1)->getType())); + Record.push_back(VE.getValueID(C->getOperand(1))); + break; + case Instruction::InsertElement: + Code = bitc::CST_CODE_CE_INSERTELT; + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(getTypeID(C->getOperand(2)->getType())); + Record.push_back(VE.getValueID(C->getOperand(2))); + break; + case Instruction::ShuffleVector: + // If the return type and argument types are the same, this is a + // standard shufflevector instruction. If the types are different, + // then the shuffle is widening or truncating the input vectors, and + // the argument type must also be encoded. + if (C->getType() == C->getOperand(0)->getType()) { + Code = bitc::CST_CODE_CE_SHUFFLEVEC; + } else { + Code = bitc::CST_CODE_CE_SHUFVEC_EX; + Record.push_back(getTypeID(C->getOperand(0)->getType())); + } + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(VE.getValueID(C->getOperand(2))); + break; + case Instruction::ICmp: + case Instruction::FCmp: + Code = bitc::CST_CODE_CE_CMP; + Record.push_back(getTypeID(C->getOperand(0)->getType())); + Record.push_back(VE.getValueID(C->getOperand(0))); + Record.push_back(VE.getValueID(C->getOperand(1))); + Record.push_back(CE->getPredicate()); + break; + } + } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { + Code = bitc::CST_CODE_BLOCKADDRESS; + Record.push_back(getTypeID(BA->getFunction()->getType())); + Record.push_back(VE.getValueID(BA->getFunction())); + Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); + } else { +#ifndef NDEBUG + C->dump(); +#endif + llvm_unreachable("Unknown constant!"); + } + Stream.EmitRecord(Code, Record, AbbrevToUse); + Record.clear(); + } + + Stream.ExitBlock(); +} + +void DXILBitcodeWriter::writeModuleConstants() { + const ValueEnumerator::ValueList &Vals = VE.getValues(); + + // Find the first constant to emit, which is the first non-globalvalue value. + // We know globalvalues have been emitted by WriteModuleInfo. + for (unsigned i = 0, e = Vals.size(); i != e; ++i) { + if (!isa<GlobalValue>(Vals[i].first)) { + writeConstants(i, Vals.size(), true); + return; + } + } +} + +/// pushValueAndType - The file has to encode both the value and type id for +/// many values, because we need to know what type to create for forward +/// references. However, most operands are not forward references, so this type +/// field is not needed. +/// +/// This function adds V's value ID to Vals. If the value ID is higher than the +/// instruction ID, then it is a forward reference, and it also includes the +/// type ID. The value ID that is written is encoded relative to the InstID. +bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, + SmallVectorImpl<unsigned> &Vals) { + unsigned ValID = VE.getValueID(V); + // Make encoding relative to the InstID. + Vals.push_back(InstID - ValID); + if (ValID >= InstID) { + Vals.push_back(getTypeID(V->getType(), V)); + return true; + } + return false; +} + +/// pushValue - Like pushValueAndType, but where the type of the value is +/// omitted (perhaps it was already encoded in an earlier operand). +void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID, + SmallVectorImpl<unsigned> &Vals) { + unsigned ValID = VE.getValueID(V); + Vals.push_back(InstID - ValID); +} + +void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, + SmallVectorImpl<uint64_t> &Vals) { + unsigned ValID = VE.getValueID(V); + int64_t diff = ((int32_t)InstID - (int32_t)ValID); + emitSignedInt64(Vals, diff); +} + +/// WriteInstruction - Emit an instruction +void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID, + SmallVectorImpl<unsigned> &Vals) { + unsigned Code = 0; + unsigned AbbrevToUse = 0; + VE.setInstructionID(&I); + switch (I.getOpcode()) { + default: + if (Instruction::isCast(I.getOpcode())) { + Code = bitc::FUNC_CODE_INST_CAST; + if (!pushValueAndType(I.getOperand(0), InstID, Vals)) + AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV; + Vals.push_back(getTypeID(I.getType(), &I)); + Vals.push_back(getEncodedCastOpcode(I.getOpcode())); + } else { + assert(isa<BinaryOperator>(I) && "Unknown instruction!"); + Code = bitc::FUNC_CODE_INST_BINOP; + if (!pushValueAndType(I.getOperand(0), InstID, Vals)) + AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV; + pushValue(I.getOperand(1), InstID, Vals); + Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); + uint64_t Flags = getOptimizationFlags(&I); + if (Flags != 0) { + if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV) + AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV; + Vals.push_back(Flags); + } + } + break; + + case Instruction::GetElementPtr: { + Code = bitc::FUNC_CODE_INST_GEP; + AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV; + auto &GEPInst = cast<GetElementPtrInst>(I); + Vals.push_back(GEPInst.isInBounds()); + Vals.push_back(getTypeID(GEPInst.getSourceElementType())); + for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) + pushValueAndType(I.getOperand(i), InstID, Vals); + break; + } + case Instruction::ExtractValue: { + Code = bitc::FUNC_CODE_INST_EXTRACTVAL; + pushValueAndType(I.getOperand(0), InstID, Vals); + const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); + Vals.append(EVI->idx_begin(), EVI->idx_end()); + break; + } + case Instruction::InsertValue: { + Code = bitc::FUNC_CODE_INST_INSERTVAL; + pushValueAndType(I.getOperand(0), InstID, Vals); + pushValueAndType(I.getOperand(1), InstID, Vals); + const InsertValueInst *IVI = cast<InsertValueInst>(&I); + Vals.append(IVI->idx_begin(), IVI->idx_end()); + break; + } + case Instruction::Select: + Code = bitc::FUNC_CODE_INST_VSELECT; + pushValueAndType(I.getOperand(1), InstID, Vals); + pushValue(I.getOperand(2), InstID, Vals); + pushValueAndType(I.getOperand(0), InstID, Vals); + break; + case Instruction::ExtractElement: + Code = bitc::FUNC_CODE_INST_EXTRACTELT; + pushValueAndType(I.getOperand(0), InstID, Vals); + pushValueAndType(I.getOperand(1), InstID, Vals); + break; + case Instruction::InsertElement: + Code = bitc::FUNC_CODE_INST_INSERTELT; + pushValueAndType(I.getOperand(0), InstID, Vals); + pushValue(I.getOperand(1), InstID, Vals); + pushValueAndType(I.getOperand(2), InstID, Vals); + break; + case Instruction::ShuffleVector: + Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; + pushValueAndType(I.getOperand(0), InstID, Vals); + pushValue(I.getOperand(1), InstID, Vals); + pushValue(I.getOperand(2), InstID, Vals); + break; + case Instruction::ICmp: + case Instruction::FCmp: { + // compare returning Int1Ty or vector of Int1Ty + Code = bitc::FUNC_CODE_INST_CMP2; + pushValueAndType(I.getOperand(0), InstID, Vals); + pushValue(I.getOperand(1), InstID, Vals); + Vals.push_back(cast<CmpInst>(I).getPredicate()); + uint64_t Flags = getOptimizationFlags(&I); + if (Flags != 0) + Vals.push_back(Flags); + break; + } + + case Instruction::Ret: { + Code = bitc::FUNC_CODE_INST_RET; + unsigned NumOperands = I.getNumOperands(); + if (NumOperands == 0) + AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV; + else if (NumOperands == 1) { + if (!pushValueAndType(I.getOperand(0), InstID, Vals)) + AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV; + } else { + for (unsigned i = 0, e = NumOperands; i != e; ++i) + pushValueAndType(I.getOperand(i), InstID, Vals); + } + } break; + case Instruction::Br: { + Code = bitc::FUNC_CODE_INST_BR; + const BranchInst &II = cast<BranchInst>(I); + Vals.push_back(VE.getValueID(II.getSuccessor(0))); + if (II.isConditional()) { + Vals.push_back(VE.getValueID(II.getSuccessor(1))); + pushValue(II.getCondition(), InstID, Vals); + } + } break; + case Instruction::Switch: { + Code = bitc::FUNC_CODE_INST_SWITCH; + const SwitchInst &SI = cast<SwitchInst>(I); + Vals.push_back(getTypeID(SI.getCondition()->getType())); + pushValue(SI.getCondition(), InstID, Vals); + Vals.push_back(VE.getValueID(SI.getDefaultDest())); + for (auto Case : SI.cases()) { + Vals.push_back(VE.getValueID(Case.getCaseValue())); + Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); + } + } break; + case Instruction::IndirectBr: + Code = bitc::FUNC_CODE_INST_INDIRECTBR; + Vals.push_back(getTypeID(I.getOperand(0)->getType())); + // Encode the address operand as relative, but not the basic blocks. + pushValue(I.getOperand(0), InstID, Vals); + for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) + Vals.push_back(VE.getValueID(I.getOperand(i))); + break; + + case Instruction::Invoke: { + const InvokeInst *II = cast<InvokeInst>(&I); + const Value *Callee = II->getCalledOperand(); + FunctionType *FTy = II->getFunctionType(); + Code = bitc::FUNC_CODE_INST_INVOKE; + + Vals.push_back(VE.getAttributeListID(II->getAttributes())); + Vals.push_back(II->getCallingConv() | 1 << 13); + Vals.push_back(VE.getValueID(II->getNormalDest())); + Vals.push_back(VE.getValueID(II->getUnwindDest())); + Vals.push_back(getTypeID(FTy)); + pushValueAndType(Callee, InstID, Vals); + + // Emit value #'s for the fixed parameters. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) + pushValue(I.getOperand(i), InstID, Vals); // fixed param. + + // Emit type/value pairs for varargs params. + if (FTy->isVarArg()) { + for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e; + ++i) + pushValueAndType(I.getOperand(i), InstID, Vals); // vararg + } + break; + } + case Instruction::Resume: + Code = bitc::FUNC_CODE_INST_RESUME; + pushValueAndType(I.getOperand(0), InstID, Vals); + break; + case Instruction::Unreachable: + Code = bitc::FUNC_CODE_INST_UNREACHABLE; + AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV; + break; + + case Instruction::PHI: { + const PHINode &PN = cast<PHINode>(I); + Code = bitc::FUNC_CODE_INST_PHI; + // With the newer instruction encoding, forward references could give + // negative valued IDs. This is most common for PHIs, so we use + // signed VBRs. + SmallVector<uint64_t, 128> Vals64; + Vals64.push_back(getTypeID(PN.getType())); + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { + pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); + Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); + } + // Emit a Vals64 vector and exit. + Stream.EmitRecord(Code, Vals64, AbbrevToUse); + Vals64.clear(); + return; + } + + case Instruction::LandingPad: { + const LandingPadInst &LP = cast<LandingPadInst>(I); + Code = bitc::FUNC_CODE_INST_LANDINGPAD; + Vals.push_back(getTypeID(LP.getType())); + Vals.push_back(LP.isCleanup()); + Vals.push_back(LP.getNumClauses()); + for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { + if (LP.isCatch(I)) + Vals.push_back(LandingPadInst::Catch); + else + Vals.push_back(LandingPadInst::Filter); + pushValueAndType(LP.getClause(I), InstID, Vals); + } + break; + } + + case Instruction::Alloca: { + Code = bitc::FUNC_CODE_INST_ALLOCA; + const AllocaInst &AI = cast<AllocaInst>(I); + Vals.push_back(getTypeID(AI.getAllocatedType())); + Vals.push_back(getTypeID(I.getOperand(0)->getType())); + Vals.push_back(VE.getValueID(I.getOperand(0))); // size. + using APV = AllocaPackedValues; + unsigned Record = 0; + unsigned EncodedAlign = getEncodedAlign(AI.getAlign()); + Bitfield::set<APV::AlignLower>( + Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); + Bitfield::set<APV::AlignUpper>(Record, + EncodedAlign >> APV::AlignLower::Bits); + Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); + Vals.push_back(Record); + break; + } + + case Instruction::Load: + if (cast<LoadInst>(I).isAtomic()) { + Code = bitc::FUNC_CODE_INST_LOADATOMIC; + pushValueAndType(I.getOperand(0), InstID, Vals); + } else { + Code = bitc::FUNC_CODE_INST_LOAD; + if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr + AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV; + } + Vals.push_back(getTypeID(I.getType())); + Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1); + Vals.push_back(cast<LoadInst>(I).isVolatile()); + if (cast<LoadInst>(I).isAtomic()) { + Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); + Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); + } + break; + case Instruction::Store: + if (cast<StoreInst>(I).isAtomic()) + Code = bitc::FUNC_CODE_INST_STOREATOMIC; + else + Code = bitc::FUNC_CODE_INST_STORE; + pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr + pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val + Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1); + Vals.push_back(cast<StoreInst>(I).isVolatile()); + if (cast<StoreInst>(I).isAtomic()) { + Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); + Vals.push_back( + getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); + } + break; + case Instruction::AtomicCmpXchg: + Code = bitc::FUNC_CODE_INST_CMPXCHG; + pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr + pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. + pushValue(I.getOperand(2), InstID, Vals); // newval. + Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); + Vals.push_back( + getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); + Vals.push_back( + getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); + Vals.push_back( + getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); + Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); + break; + case Instruction::AtomicRMW: + Code = bitc::FUNC_CODE_INST_ATOMICRMW; + pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr + pushValue(I.getOperand(1), InstID, Vals); // val. + Vals.push_back( + getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); + Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); + Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); + Vals.push_back( + getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); + break; + case Instruction::Fence: + Code = bitc::FUNC_CODE_INST_FENCE; + Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); + Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); + break; + case Instruction::Call: { + const CallInst &CI = cast<CallInst>(I); + FunctionType *FTy = CI.getFunctionType(); + + Code = bitc::FUNC_CODE_INST_CALL; + + Vals.push_back(VE.getAttributeListID(CI.getAttributes())); + Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | + unsigned(CI.isMustTailCall()) << 14 | 1 << 15); + Vals.push_back(getTypeID(FTy, CI.getCalledFunction())); + pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee + + // Emit value #'s for the fixed parameters. + for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { + // Check for labels (can happen with asm labels). + if (FTy->getParamType(i)->isLabelTy()) + Vals.push_back(VE.getValueID(CI.getArgOperand(i))); + else + pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. + } + + // Emit type/value pairs for varargs params. + if (FTy->isVarArg()) { + for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) + pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs + } + break; + } + case Instruction::VAArg: + Code = bitc::FUNC_CODE_INST_VAARG; + Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty + pushValue(I.getOperand(0), InstID, Vals); // valist. + Vals.push_back(getTypeID(I.getType())); // restype. + break; + } + + Stream.EmitRecord(Code, Vals, AbbrevToUse); + Vals.clear(); +} + +// Emit names for globals/functions etc. +void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable( + const ValueSymbolTable &VST) { + if (VST.empty()) + return; + Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); + + SmallVector<unsigned, 64> NameVals; + + // HLSL Change + // Read the named values from a sorted list instead of the original list + // to ensure the binary is the same no matter what values ever existed. + SmallVector<const ValueName *, 16> SortedTable; + + for (auto &VI : VST) { + SortedTable.push_back(VI.second->getValueName()); + } + // The keys are unique, so there shouldn't be stability issues. + std::sort(SortedTable.begin(), SortedTable.end(), + [](const ValueName *A, const ValueName *B) { + return A->first() < B->first(); + }); + + for (const ValueName *SI : SortedTable) { + auto &Name = *SI; + + // Figure out the encoding to use for the name. + bool is7Bit = true; + bool isChar6 = true; + for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength(); + C != E; ++C) { + if (isChar6) + isChar6 = BitCodeAbbrevOp::isChar6(*C); + if ((unsigned char)*C & 128) { + is7Bit = false; + break; // don't bother scanning the rest. + } + } + + unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; + + // VST_ENTRY: [valueid, namechar x N] + // VST_BBENTRY: [bbid, namechar x N] + unsigned Code; + if (isa<BasicBlock>(SI->getValue())) { + Code = bitc::VST_CODE_BBENTRY; + if (isChar6) + AbbrevToUse = VST_BBENTRY_6_ABBREV; + } else { + Code = bitc::VST_CODE_ENTRY; + if (isChar6) + AbbrevToUse = VST_ENTRY_6_ABBREV; + else if (is7Bit) + AbbrevToUse = VST_ENTRY_7_ABBREV; + } + + NameVals.push_back(VE.getValueID(SI->getValue())); + for (const char *P = Name.getKeyData(), + *E = Name.getKeyData() + Name.getKeyLength(); + P != E; ++P) + NameVals.push_back((unsigned char)*P); + + // Emit the finished record. + Stream.EmitRecord(Code, NameVals, AbbrevToUse); + NameVals.clear(); + } + Stream.ExitBlock(); +} + +void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) { + assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); + unsigned Code; + if (isa<BasicBlock>(Order.V)) + Code = bitc::USELIST_CODE_BB; + else + Code = bitc::USELIST_CODE_DEFAULT; + + SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); + Record.push_back(VE.getValueID(Order.V)); + Stream.EmitRecord(Code, Record); +} + +void DXILBitcodeWriter::writeUseListBlock(const Function *F) { + auto hasMore = [&]() { + return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; + }; + if (!hasMore()) + // Nothing to do. + return; + + Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); + while (hasMore()) { + writeUseList(std::move(VE.UseListOrders.back())); + VE.UseListOrders.pop_back(); + } + Stream.ExitBlock(); +} + +/// Emit a function body to the module stream. +void DXILBitcodeWriter::writeFunction(const Function &F) { + Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); + VE.incorporateFunction(F); + + SmallVector<unsigned, 64> Vals; + + // Emit the number of basic blocks, so the reader can create them ahead of + // time. + Vals.push_back(VE.getBasicBlocks().size()); + Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); + Vals.clear(); + + // If there are function-local constants, emit them now. + unsigned CstStart, CstEnd; + VE.getFunctionConstantRange(CstStart, CstEnd); + writeConstants(CstStart, CstEnd, false); + + // If there is function-local metadata, emit it now. + writeFunctionMetadata(F); + + // Keep a running idea of what the instruction ID is. + unsigned InstID = CstEnd; + + bool NeedsMetadataAttachment = F.hasMetadata(); + + DILocation *LastDL = nullptr; + + // Finally, emit all the instructions, in order. + for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) + for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; + ++I) { + writeInstruction(*I, InstID, Vals); + + if (!I->getType()->isVoidTy()) + ++InstID; + + // If the instruction has metadata, write a metadata attachment later. + NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); + + // If the instruction has a debug location, emit it. + DILocation *DL = I->getDebugLoc(); + if (!DL) + continue; + + if (DL == LastDL) { + // Just repeat the same debug loc as last time. + Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); + continue; + } + + Vals.push_back(DL->getLine()); + Vals.push_back(DL->getColumn()); + Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); + Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); + Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); + Vals.clear(); + + LastDL = DL; + } + + // Emit names for all the instructions etc. + if (auto *Symtab = F.getValueSymbolTable()) + writeFunctionLevelValueSymbolTable(*Symtab); + + if (NeedsMetadataAttachment) + writeFunctionMetadataAttachment(F); + + writeUseListBlock(&F); + VE.purgeFunction(); + Stream.ExitBlock(); +} + +// Emit blockinfo, which defines the standard abbreviations etc. +void DXILBitcodeWriter::writeBlockInfo() { + // We only want to emit block info records for blocks that have multiple + // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. + // Other blocks can define their abbrevs inline. + Stream.EnterBlockInfoBlock(); + + { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, + std::move(Abbv)) != VST_ENTRY_8_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + + { // 7-bit fixed width VST_ENTRY strings. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, + std::move(Abbv)) != VST_ENTRY_7_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + { // 6-bit char6 VST_ENTRY strings. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, + std::move(Abbv)) != VST_ENTRY_6_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + { // 6-bit char6 VST_BBENTRY strings. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); + if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, + std::move(Abbv)) != VST_BBENTRY_6_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + + { // SETTYPE abbrev for CONSTANTS_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, + VE.computeBitsRequiredForTypeIndicies())); + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != + CONSTANTS_SETTYPE_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + + { // INTEGER abbrev for CONSTANTS_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != + CONSTANTS_INTEGER_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + + { // CE_CAST abbrev for CONSTANTS_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid + VE.computeBitsRequiredForTypeIndicies())); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id + + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != + CONSTANTS_CE_CAST_Abbrev) + assert(false && "Unexpected abbrev ordering!"); + } + { // NULL abbrev for CONSTANTS_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); + if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) != + CONSTANTS_NULL_Abbrev) + assert(false && "Unexpected abbrev ordering!"); + } + + // FIXME: This should only use space for first class types! + + { // INST_LOAD abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty + VE.computeBitsRequiredForTypeIndicies())); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != + (unsigned)FUNCTION_INST_LOAD_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + { // INST_BINOP abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != + (unsigned)FUNCTION_INST_BINOP_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != + (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + { // INST_CAST abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty + VE.computeBitsRequiredForTypeIndicies())); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != + (unsigned)FUNCTION_INST_CAST_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + + { // INST_RET abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != + (unsigned)FUNCTION_INST_RET_VOID_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + { // INST_RET abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != + (unsigned)FUNCTION_INST_RET_VAL_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != + (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + { + auto Abbv = std::make_shared<BitCodeAbbrev>(); + Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty + Log2_32_Ceil(VE.getTypes().size() + 1))); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); + Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); + if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) != + (unsigned)FUNCTION_INST_GEP_ABBREV) + assert(false && "Unexpected abbrev ordering!"); + } + + Stream.ExitBlock(); +} + +void DXILBitcodeWriter::writeModuleVersion() { + // VERSION: [version#] + Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1}); +} + +/// WriteModule - Emit the specified module to the bitstream. +void DXILBitcodeWriter::write() { + // The identification block is new since llvm-3.7, but the old bitcode reader + // will skip it. + // writeIdentificationBlock(Stream); + + Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); + + // It is redundant to fully-specify this here, but nice to make it explicit + // so that it is clear the DXIL module version is different. + DXILBitcodeWriter::writeModuleVersion(); + + // Emit blockinfo, which defines the standard abbreviations etc. + writeBlockInfo(); + + // Emit information about attribute groups. + writeAttributeGroupTable(); + + // Emit information about parameter attributes. + writeAttributeTable(); + + // Emit information describing all of the types in the module. + writeTypeTable(); + + writeComdats(); + + // Emit top-level description of module, including target triple, inline asm, + // descriptors for global variables, and function prototype info. + writeModuleInfo(); + + // Emit constants. + writeModuleConstants(); + + // Emit metadata. + writeModuleMetadataKinds(); + + // Emit metadata. + writeModuleMetadata(); + + // Emit names for globals/functions etc. + // DXIL uses the same format for module-level value symbol table as for the + // function level table. + writeFunctionLevelValueSymbolTable(M.getValueSymbolTable()); + + // Emit module-level use-lists. + writeUseListBlock(nullptr); + + // Emit function bodies. + for (const Function &F : M) + if (!F.isDeclaration()) + writeFunction(F); + + Stream.ExitBlock(); +} |
