diff options
author | Marcel Moolenaar <marcel@FreeBSD.org> | 2008-02-23 20:05:26 +0000 |
---|---|---|
committer | Marcel Moolenaar <marcel@FreeBSD.org> | 2008-02-23 20:05:26 +0000 |
commit | 7e76048a6983e2f98c82d50ccd83bcdffe5a69d4 (patch) | |
tree | 595e5661bff8b902e5e265264b1122f56098725b /sys/powerpc/fpu | |
parent | 859baed9a9f5d2e3181d8a2f53c5030b455c1906 (diff) | |
download | src-7e76048a6983e2f98c82d50ccd83bcdffe5a69d4.tar.gz src-7e76048a6983e2f98c82d50ccd83bcdffe5a69d4.zip |
Notes
Diffstat (limited to 'sys/powerpc/fpu')
-rw-r--r-- | sys/powerpc/fpu/fpu_add.c | 227 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_arith.h | 152 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_compare.c | 162 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_div.c | 292 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_emu.c | 787 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_emu.h | 192 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_explode.c | 262 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_extern.h | 83 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_implode.c | 462 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_instr.h | 386 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_mul.c | 239 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_sqrt.c | 415 | ||||
-rw-r--r-- | sys/powerpc/fpu/fpu_subr.c | 221 |
13 files changed, 3880 insertions, 0 deletions
diff --git a/sys/powerpc/fpu/fpu_add.c b/sys/powerpc/fpu/fpu_add.c new file mode 100644 index 000000000000..375c529354d9 --- /dev/null +++ b/sys/powerpc/fpu/fpu_add.c @@ -0,0 +1,227 @@ +/* $NetBSD: fpu_add.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_add.c 8.1 (Berkeley) 6/11/93 + */ + +/* + * Perform an FPU add (return x + y). + * + * To subtract, negate y and call add. + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/systm.h> +#include <sys/types.h> + +#include <machine/fpu.h> +#include <machine/ieeefp.h> +#include <machine/reg.h> + +#include <powerpc/fpu/fpu_arith.h> +#include <powerpc/fpu/fpu_emu.h> +#include <powerpc/fpu/fpu_extern.h> + +struct fpn * +fpu_add(struct fpemu *fe) +{ + struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2, *r; + u_int r0, r1, r2, r3; + int rd; + + /* + * Put the `heavier' operand on the right (see fpu_emu.h). + * Then we will have one of the following cases, taken in the + * following order: + * + * - y = NaN. Implied: if only one is a signalling NaN, y is. + * The result is y. + * - y = Inf. Implied: x != NaN (is 0, number, or Inf: the NaN + * case was taken care of earlier). + * If x = -y, the result is NaN. Otherwise the result + * is y (an Inf of whichever sign). + * - y is 0. Implied: x = 0. + * If x and y differ in sign (one positive, one negative), + * the result is +0 except when rounding to -Inf. If same: + * +0 + +0 = +0; -0 + -0 = -0. + * - x is 0. Implied: y != 0. + * Result is y. + * - other. Implied: both x and y are numbers. + * Do addition a la Hennessey & Patterson. + */ + DPRINTF(FPE_REG, ("fpu_add:\n")); + DUMPFPN(FPE_REG, x); + DUMPFPN(FPE_REG, y); + DPRINTF(FPE_REG, ("=>\n")); + ORDER(x, y); + if (ISNAN(y)) { + fe->fe_cx |= FPSCR_VXSNAN; + DUMPFPN(FPE_REG, y); + return (y); + } + if (ISINF(y)) { + if (ISINF(x) && x->fp_sign != y->fp_sign) { + fe->fe_cx |= FPSCR_VXISI; + return (fpu_newnan(fe)); + } + DUMPFPN(FPE_REG, y); + return (y); + } + rd = ((fe->fe_fpscr) & FPSCR_RN); + if (ISZERO(y)) { + if (rd != FP_RM) /* only -0 + -0 gives -0 */ + y->fp_sign &= x->fp_sign; + else /* any -0 operand gives -0 */ + y->fp_sign |= x->fp_sign; + DUMPFPN(FPE_REG, y); + return (y); + } + if (ISZERO(x)) { + DUMPFPN(FPE_REG, y); + return (y); + } + /* + * We really have two numbers to add, although their signs may + * differ. Make the exponents match, by shifting the smaller + * number right (e.g., 1.011 => 0.1011) and increasing its + * exponent (2^3 => 2^4). Note that we do not alter the exponents + * of x and y here. + */ + r = &fe->fe_f3; + r->fp_class = FPC_NUM; + if (x->fp_exp == y->fp_exp) { + r->fp_exp = x->fp_exp; + r->fp_sticky = 0; + } else { + if (x->fp_exp < y->fp_exp) { + /* + * Try to avoid subtract case iii (see below). + * This also guarantees that x->fp_sticky = 0. + */ + SWAP(x, y); + } + /* now x->fp_exp > y->fp_exp */ + r->fp_exp = x->fp_exp; + r->fp_sticky = fpu_shr(y, x->fp_exp - y->fp_exp); + } + r->fp_sign = x->fp_sign; + if (x->fp_sign == y->fp_sign) { + FPU_DECL_CARRY + + /* + * The signs match, so we simply add the numbers. The result + * may be `supernormal' (as big as 1.111...1 + 1.111...1, or + * 11.111...0). If so, a single bit shift-right will fix it + * (but remember to adjust the exponent). + */ + /* r->fp_mant = x->fp_mant + y->fp_mant */ + FPU_ADDS(r->fp_mant[3], x->fp_mant[3], y->fp_mant[3]); + FPU_ADDCS(r->fp_mant[2], x->fp_mant[2], y->fp_mant[2]); + FPU_ADDCS(r->fp_mant[1], x->fp_mant[1], y->fp_mant[1]); + FPU_ADDC(r0, x->fp_mant[0], y->fp_mant[0]); + if ((r->fp_mant[0] = r0) >= FP_2) { + (void) fpu_shr(r, 1); + r->fp_exp++; + } + } else { + FPU_DECL_CARRY + + /* + * The signs differ, so things are rather more difficult. + * H&P would have us negate the negative operand and add; + * this is the same as subtracting the negative operand. + * This is quite a headache. Instead, we will subtract + * y from x, regardless of whether y itself is the negative + * operand. When this is done one of three conditions will + * hold, depending on the magnitudes of x and y: + * case i) |x| > |y|. The result is just x - y, + * with x's sign, but it may need to be normalized. + * case ii) |x| = |y|. The result is 0 (maybe -0) + * so must be fixed up. + * case iii) |x| < |y|. We goofed; the result should + * be (y - x), with the same sign as y. + * We could compare |x| and |y| here and avoid case iii, + * but that would take just as much work as the subtract. + * We can tell case iii has occurred by an overflow. + * + * N.B.: since x->fp_exp >= y->fp_exp, x->fp_sticky = 0. + */ + /* r->fp_mant = x->fp_mant - y->fp_mant */ + FPU_SET_CARRY(y->fp_sticky); + FPU_SUBCS(r3, x->fp_mant[3], y->fp_mant[3]); + FPU_SUBCS(r2, x->fp_mant[2], y->fp_mant[2]); + FPU_SUBCS(r1, x->fp_mant[1], y->fp_mant[1]); + FPU_SUBC(r0, x->fp_mant[0], y->fp_mant[0]); + if (r0 < FP_2) { + /* cases i and ii */ + if ((r0 | r1 | r2 | r3) == 0) { + /* case ii */ + r->fp_class = FPC_ZERO; + r->fp_sign = rd == FP_RM; + return (r); + } + } else { + /* + * Oops, case iii. This can only occur when the + * exponents were equal, in which case neither + * x nor y have sticky bits set. Flip the sign + * (to y's sign) and negate the result to get y - x. + */ +#ifdef DIAGNOSTIC + if (x->fp_exp != y->fp_exp || r->fp_sticky) + panic("fpu_add"); +#endif + r->fp_sign = y->fp_sign; + FPU_SUBS(r3, 0, r3); + FPU_SUBCS(r2, 0, r2); + FPU_SUBCS(r1, 0, r1); + FPU_SUBC(r0, 0, r0); + } + r->fp_mant[3] = r3; + r->fp_mant[2] = r2; + r->fp_mant[1] = r1; + r->fp_mant[0] = r0; + if (r0 < FP_1) + fpu_norm(r); + } + DUMPFPN(FPE_REG, r); + return (r); +} diff --git a/sys/powerpc/fpu/fpu_arith.h b/sys/powerpc/fpu/fpu_arith.h new file mode 100644 index 000000000000..f74ac6688ccc --- /dev/null +++ b/sys/powerpc/fpu/fpu_arith.h @@ -0,0 +1,152 @@ +/* $NetBSD: fpu_arith.h,v 1.4 2005/12/24 20:07:28 perry Exp $ */ +/* $FreeBSD$ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_arith.h 8.1 (Berkeley) 6/11/93 + */ + +/* + * Extended-precision arithmetic. + * + * We hold the notion of a `carry register', which may or may not be a + * machine carry bit or register. On the SPARC, it is just the machine's + * carry bit. + * + * In the worst case, you can compute the carry from x+y as + * (unsigned)(x + y) < (unsigned)x + * and from x+y+c as + * ((unsigned)(x + y + c) <= (unsigned)x && (y|c) != 0) + * for example. + */ + + +#ifndef FPE_USE_ASM + +/* set up for extended-precision arithemtic */ +#define FPU_DECL_CARRY quad_t fpu_carry, fpu_tmp; + +/* + * We have three kinds of add: + * add with carry: r = x + y + c + * add (ignoring current carry) and set carry: c'r = x + y + 0 + * add with carry and set carry: c'r = x + y + c + * The macros use `C' for `use carry' and `S' for `set carry'. + * Note that the state of the carry is undefined after ADDC and SUBC, + * so if all you have for these is `add with carry and set carry', + * that is OK. + * + * The same goes for subtract, except that we compute x - y - c. + * + * Finally, we have a way to get the carry into a `regular' variable, + * or set it from a value. SET_CARRY turns 0 into no-carry, nonzero + * into carry; GET_CARRY sets its argument to 0 or 1. + */ +#define FPU_ADDC(r, x, y) \ + (r) = (x) + (y) + (!!fpu_carry) +#define FPU_ADDS(r, x, y) \ + { \ + fpu_tmp = (quad_t)(x) + (quad_t)(y); \ + (r) = (u_int)fpu_tmp; \ + fpu_carry = ((fpu_tmp & 0xffffffff00000000LL) != 0); \ + } +#define FPU_ADDCS(r, x, y) \ + { \ + fpu_tmp = (quad_t)(x) + (quad_t)(y) + (!!fpu_carry); \ + (r) = (u_int)fpu_tmp; \ + fpu_carry = ((fpu_tmp & 0xffffffff00000000LL) != 0); \ + } +#define FPU_SUBC(r, x, y) \ + (r) = (x) - (y) - (!!fpu_carry) +#define FPU_SUBS(r, x, y) \ + { \ + fpu_tmp = (quad_t)(x) - (quad_t)(y); \ + (r) = (u_int)fpu_tmp; \ + fpu_carry = ((fpu_tmp & 0xffffffff00000000LL) != 0); \ + } +#define FPU_SUBCS(r, x, y) \ + { \ + fpu_tmp = (quad_t)(x) - (quad_t)(y) - (!!fpu_carry); \ + (r) = (u_int)fpu_tmp; \ + fpu_carry = ((fpu_tmp & 0xffffffff00000000LL) != 0); \ + } + +#define FPU_GET_CARRY(r) (r) = (!!fpu_carry) +#define FPU_SET_CARRY(v) fpu_carry = ((v) != 0) + +#else +/* set up for extended-precision arithemtic */ +#define FPU_DECL_CARRY + +/* + * We have three kinds of add: + * add with carry: r = x + y + c + * add (ignoring current carry) and set carry: c'r = x + y + 0 + * add with carry and set carry: c'r = x + y + c + * The macros use `C' for `use carry' and `S' for `set carry'. + * Note that the state of the carry is undefined after ADDC and SUBC, + * so if all you have for these is `add with carry and set carry', + * that is OK. + * + * The same goes for subtract, except that we compute x - y - c. + * + * Finally, we have a way to get the carry into a `regular' variable, + * or set it from a value. SET_CARRY turns 0 into no-carry, nonzero + * into carry; GET_CARRY sets its argument to 0 or 1. + */ +#define FPU_ADDC(r, x, y) \ + __asm volatile("adde %0,%1,%2" : "=r"(r) : "r"(x), "r"(y)) +#define FPU_ADDS(r, x, y) \ + __asm volatile("addc %0,%1,%2" : "=r"(r) : "r"(x), "r"(y)) +#define FPU_ADDCS(r, x, y) \ + __asm volatile("adde %0,%1,%2" : "=r"(r) : "r"(x), "r"(y)) +#define FPU_SUBC(r, x, y) \ + __asm volatile("subfe %0,%2,%1" : "=r"(r) : "r"(x), "r"(y)) +#define FPU_SUBS(r, x, y) \ + __asm volatile("subfc %0,%2,%1" : "=r"(r) : "r"(x), "r"(y)) +#define FPU_SUBCS(r, x, y) \ + __asm volatile("subfe %0,%2,%1" : "=r"(r) : "r"(x), "r"(y)) + +#define FPU_GET_CARRY(r) __asm volatile("li %0,0; addie %0,%0,0" : "=r"(r)) +/* This one needs to destroy a temp register. */ +#define FPU_SET_CARRY(v) do { int __tmp; \ + __asm volatile("addic %0,%0,-1" : "r"(__tmp) : "r"(v)); \ + } while (0) + +#define FPU_SHL1_BY_ADD /* shift left 1 faster by ADDC than (a<<1)|(b>>31) */ +#endif diff --git a/sys/powerpc/fpu/fpu_compare.c b/sys/powerpc/fpu/fpu_compare.c new file mode 100644 index 000000000000..6edba5f85905 --- /dev/null +++ b/sys/powerpc/fpu/fpu_compare.c @@ -0,0 +1,162 @@ +/* $NetBSD: fpu_compare.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_compare.c 8.1 (Berkeley) 6/11/93 + */ + +/* + * FCMPU and FCMPO instructions. + * + * These rely on the fact that our internal wide format is achieved by + * adding zero bits to the end of narrower mantissas. + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/systm.h> +#include <sys/types.h> + +#include <machine/fpu.h> +#include <machine/reg.h> + +#include <powerpc/fpu/fpu_arith.h> +#include <powerpc/fpu/fpu_emu.h> + +/* + * Perform a compare instruction (with or without unordered exception). + * This updates the fcc field in the fsr. + * + * If either operand is NaN, the result is unordered. For ordered, this + * causes an NV exception. Everything else is ordered: + * |Inf| > |numbers| > |0|. + * We already arranged for fp_class(Inf) > fp_class(numbers) > fp_class(0), + * so we get this directly. Note, however, that two zeros compare equal + * regardless of sign, while everything else depends on sign. + * + * Incidentally, two Infs of the same sign compare equal (per the 80387 + * manual---it would be nice if the SPARC documentation were more + * complete). + */ +void +fpu_compare(struct fpemu *fe, int ordered) +{ + struct fpn *a, *b, *r; + int cc; + + a = &fe->fe_f1; + b = &fe->fe_f2; + r = &fe->fe_f3; + + if (ISNAN(a) || ISNAN(b)) { + /* + * In any case, we already got an exception for signalling + * NaNs; here we may replace that one with an identical + * exception, but so what?. + */ + cc = FPSCR_FU; + if (ISSNAN(a) || ISSNAN(b)) + cc |= FPSCR_VXSNAN; + if (ordered) { + if (fe->fe_fpscr & FPSCR_VE || ISQNAN(a) || ISQNAN(b)) + cc |= FPSCR_VXVC; + } + goto done; + } + + /* + * Must handle both-zero early to avoid sign goofs. Otherwise, + * at most one is 0, and if the signs differ we are done. + */ + if (ISZERO(a) && ISZERO(b)) { + cc = FPSCR_FE; + goto done; + } + if (a->fp_sign) { /* a < 0 (or -0) */ + if (!b->fp_sign) { /* b >= 0 (or if a = -0, b > 0) */ + cc = FPSCR_FL; + goto done; + } + } else { /* a > 0 (or +0) */ + if (b->fp_sign) { /* b <= -0 (or if a = +0, b < 0) */ + cc = FPSCR_FG; + goto done; + } + } + + /* + * Now the signs are the same (but may both be negative). All + * we have left are these cases: + * + * |a| < |b| [classes or values differ] + * |a| > |b| [classes or values differ] + * |a| == |b| [classes and values identical] + * + * We define `diff' here to expand these as: + * + * |a| < |b|, a,b >= 0: a < b => FSR_CC_LT + * |a| < |b|, a,b < 0: a > b => FSR_CC_GT + * |a| > |b|, a,b >= 0: a > b => FSR_CC_GT + * |a| > |b|, a,b < 0: a < b => FSR_CC_LT + */ +#define opposite_cc(cc) ((cc) == FPSCR_FL ? FPSCR_FG : FPSCR_FL) +#define diff(magnitude) (a->fp_sign ? opposite_cc(magnitude) : (magnitude)) + if (a->fp_class < b->fp_class) { /* |a| < |b| */ + cc = diff(FPSCR_FL); + goto done; + } + if (a->fp_class > b->fp_class) { /* |a| > |b| */ + cc = diff(FPSCR_FG); + goto done; + } + /* now none can be 0: only Inf and numbers remain */ + if (ISINF(a)) { /* |Inf| = |Inf| */ + cc = FPSCR_FE; + goto done; + } + fpu_sub(fe); + if (ISZERO(r)) + cc = FPSCR_FE; + else if (r->fp_sign) + cc = FPSCR_FL; + else + cc = FPSCR_FG; +done: + fe->fe_cx = cc; +} diff --git a/sys/powerpc/fpu/fpu_div.c b/sys/powerpc/fpu/fpu_div.c new file mode 100644 index 000000000000..5376b3dfd53f --- /dev/null +++ b/sys/powerpc/fpu/fpu_div.c @@ -0,0 +1,292 @@ +/* $NetBSD: fpu_div.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_div.c 8.1 (Berkeley) 6/11/93 + */ + +/* + * Perform an FPU divide (return x / y). + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/systm.h> +#include <sys/types.h> + +#include <machine/fpu.h> +#include <machine/reg.h> + +#include <powerpc/fpu/fpu_arith.h> +#include <powerpc/fpu/fpu_emu.h> + +/* + * Division of normal numbers is done as follows: + * + * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e. + * If X and Y are the mantissas (1.bbbb's), the quotient is then: + * + * q = (X / Y) * 2^((x exponent) - (y exponent)) + * + * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y) + * will be in [0.5,2.0). Moreover, it will be less than 1.0 if and only + * if X < Y. In that case, it will have to be shifted left one bit to + * become a normal number, and the exponent decremented. Thus, the + * desired exponent is: + * + * left_shift = x->fp_mant < y->fp_mant; + * result_exp = x->fp_exp - y->fp_exp - left_shift; + * + * The quotient mantissa X/Y can then be computed one bit at a time + * using the following algorithm: + * + * Q = 0; -- Initial quotient. + * R = X; -- Initial remainder, + * if (left_shift) -- but fixed up in advance. + * R *= 2; + * for (bit = FP_NMANT; --bit >= 0; R *= 2) { + * if (R >= Y) { + * Q |= 1 << bit; + * R -= Y; + * } + * } + * + * The subtraction R -= Y always removes the uppermost bit from R (and + * can sometimes remove additional lower-order 1 bits); this proof is + * left to the reader. + * + * This loop correctly calculates the guard and round bits since they are + * included in the expanded internal representation. The sticky bit + * is to be set if and only if any other bits beyond guard and round + * would be set. From the above it is obvious that this is true if and + * only if the remainder R is nonzero when the loop terminates. + * + * Examining the loop above, we can see that the quotient Q is built + * one bit at a time ``from the top down''. This means that we can + * dispense with the multi-word arithmetic and just build it one word + * at a time, writing each result word when it is done. + * + * Furthermore, since X and Y are both in [1.0,2.0), we know that, + * initially, R >= Y. (Recall that, if X < Y, R is set to X * 2 and + * is therefore at in [2.0,4.0).) Thus Q is sure to have bit FP_NMANT-1 + * set, and R can be set initially to either X - Y (when X >= Y) or + * 2X - Y (when X < Y). In addition, comparing R and Y is difficult, + * so we will simply calculate R - Y and see if that underflows. + * This leads to the following revised version of the algorithm: + * + * R = X; + * bit = FP_1; + * D = R - Y; + * if (D >= 0) { + * result_exp = x->fp_exp - y->fp_exp; + * R = D; + * q = bit; + * bit >>= 1; + * } else { + * result_exp = x->fp_exp - y->fp_exp - 1; + * q = 0; + * } + * R <<= 1; + * do { + * D = R - Y; + * if (D >= 0) { + * q |= bit; + * R = D; + * } + * R <<= 1; + * } while ((bit >>= 1) != 0); + * Q[0] = q; + * for (i = 1; i < 4; i++) { + * q = 0, bit = 1 << 31; + * do { + * D = R - Y; + * if (D >= 0) { + * q |= bit; + * R = D; + * } + * R <<= 1; + * } while ((bit >>= 1) != 0); + * Q[i] = q; + * } + * + * This can be refined just a bit further by moving the `R <<= 1' + * calculations to the front of the do-loops and eliding the first one. + * The process can be terminated immediately whenever R becomes 0, but + * this is relatively rare, and we do not bother. + */ + +struct fpn * +fpu_div(struct fpemu *fe) +{ + struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2; + u_int q, bit; + u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3; + FPU_DECL_CARRY + + /* + * Since divide is not commutative, we cannot just use ORDER. + * Check either operand for NaN first; if there is at least one, + * order the signalling one (if only one) onto the right, then + * return it. Otherwise we have the following cases: + * + * Inf / Inf = NaN, plus NV exception + * Inf / num = Inf [i.e., return x] + * Inf / 0 = Inf [i.e., return x] + * 0 / Inf = 0 [i.e., return x] + * 0 / num = 0 [i.e., return x] + * 0 / 0 = NaN, plus NV exception + * num / Inf = 0 + * num / num = num (do the divide) + * num / 0 = Inf, plus DZ exception + */ + DPRINTF(FPE_REG, ("fpu_div:\n")); + DUMPFPN(FPE_REG, x); + DUMPFPN(FPE_REG, y); + DPRINTF(FPE_REG, ("=>\n")); + if (ISNAN(x) || ISNAN(y)) { + ORDER(x, y); + fe->fe_cx |= FPSCR_VXSNAN; + DUMPFPN(FPE_REG, y); + return (y); + } + /* + * Need to split the following out cause they generate different + * exceptions. + */ + if (ISINF(x)) { + if (x->fp_class == y->fp_class) { + fe->fe_cx |= FPSCR_VXIDI; + return (fpu_newnan(fe)); + } + DUMPFPN(FPE_REG, x); + return (x); + } + if (ISZERO(x)) { + fe->fe_cx |= FPSCR_ZX; + if (x->fp_class == y->fp_class) { + fe->fe_cx |= FPSCR_VXZDZ; + return (fpu_newnan(fe)); + } + DUMPFPN(FPE_REG, x); + return (x); + } + + /* all results at this point use XOR of operand signs */ + x->fp_sign ^= y->fp_sign; + if (ISINF(y)) { + x->fp_class = FPC_ZERO; + DUMPFPN(FPE_REG, x); + return (x); + } + if (ISZERO(y)) { + fe->fe_cx = FPSCR_ZX; + x->fp_class = FPC_INF; + DUMPFPN(FPE_REG, x); + return (x); + } + + /* + * Macros for the divide. See comments at top for algorithm. + * Note that we expand R, D, and Y here. + */ + +#define SUBTRACT /* D = R - Y */ \ + FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \ + FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0) + +#define NONNEGATIVE /* D >= 0 */ \ + ((int)d0 >= 0) + +#ifdef FPU_SHL1_BY_ADD +#define SHL1 /* R <<= 1 */ \ + FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \ + FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0) +#else +#define SHL1 \ + r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \ + r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1 +#endif + +#define LOOP /* do ... while (bit >>= 1) */ \ + do { \ + SHL1; \ + SUBTRACT; \ + if (NONNEGATIVE) { \ + q |= bit; \ + r0 = d0, r1 = d1, r2 = d2, r3 = d3; \ + } \ + } while ((bit >>= 1) != 0) + +#define WORD(r, i) /* calculate r->fp_mant[i] */ \ + q = 0; \ + bit = 1 << 31; \ + LOOP; \ + (x)->fp_mant[i] = q + + /* Setup. Note that we put our result in x. */ + r0 = x->fp_mant[0]; + r1 = x->fp_mant[1]; + r2 = x->fp_mant[2]; + r3 = x->fp_mant[3]; + y0 = y->fp_mant[0]; + y1 = y->fp_mant[1]; + y2 = y->fp_mant[2]; + y3 = y->fp_mant[3]; + + bit = FP_1; + SUBTRACT; + if (NONNEGATIVE) { + x->fp_exp -= y->fp_exp; + r0 = d0, r1 = d1, r2 = d2, r3 = d3; + q = bit; + bit >>= 1; + } else { + x->fp_exp -= y->fp_exp + 1; + q = 0; + } + LOOP; + x->fp_mant[0] = q; + WORD(x, 1); + WORD(x, 2); + WORD(x, 3); + x->fp_sticky = r0 | r1 | r2 | r3; + + DUMPFPN(FPE_REG, x); + return (x); +} diff --git a/sys/powerpc/fpu/fpu_emu.c b/sys/powerpc/fpu/fpu_emu.c new file mode 100644 index 000000000000..ef7c1860ade6 --- /dev/null +++ b/sys/powerpc/fpu/fpu_emu.c @@ -0,0 +1,787 @@ +/* $NetBSD: fpu_emu.c,v 1.14 2005/12/11 12:18:42 christos Exp $ */ + +/* + * Copyright 2001 Wasabi Systems, Inc. + * All rights reserved. + * + * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed for the NetBSD Project by + * Wasabi Systems, Inc. + * 4. The name of Wasabi Systems, Inc. may not be used to endorse + * or promote products derived from this software without specific prior + * written permission. + * + * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu.c 8.1 (Berkeley) 6/11/93 + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include "opt_ddb.h" + +#define DEBUG + +#include <sys/param.h> +#include <sys/systm.h> +#include <sys/kdb.h> +#include <sys/kernel.h> +#include <sys/proc.h> +#include <sys/sysctl.h> +#include <sys/signal.h> +#include <sys/syslog.h> +#include <sys/signalvar.h> + +#include <machine/fpu.h> +#include <machine/reg.h> + +#include <powerpc/fpu/fpu_emu.h> +#include <powerpc/fpu/fpu_extern.h> +#include <powerpc/fpu/fpu_instr.h> + +SYSCTL_NODE(_hw, OID_AUTO, fpu_emu, CTLFLAG_RW, 0, "FPU emulator"); + +#define FPU_EMU_EVCNT_DECL(name) \ +static u_int fpu_emu_evcnt_##name; \ +SYSCTL_INT(_hw_fpu_emu, OID_AUTO, evcnt_##name, CTLFLAG_RD, \ + &fpu_emu_evcnt_##name, 0, "") + +#define FPU_EMU_EVCNT_INCR(name) fpu_emu_evcnt_##name++ + +FPU_EMU_EVCNT_DECL(stfiwx); +FPU_EMU_EVCNT_DECL(fpstore); +FPU_EMU_EVCNT_DECL(fpload); +FPU_EMU_EVCNT_DECL(fcmpu); +FPU_EMU_EVCNT_DECL(frsp); +FPU_EMU_EVCNT_DECL(fctiw); +FPU_EMU_EVCNT_DECL(fcmpo); +FPU_EMU_EVCNT_DECL(mtfsb1); +FPU_EMU_EVCNT_DECL(fnegabs); +FPU_EMU_EVCNT_DECL(mcrfs); +FPU_EMU_EVCNT_DECL(mtfsb0); +FPU_EMU_EVCNT_DECL(fmr); +FPU_EMU_EVCNT_DECL(mtfsfi); +FPU_EMU_EVCNT_DECL(fnabs); +FPU_EMU_EVCNT_DECL(fabs); +FPU_EMU_EVCNT_DECL(mffs); +FPU_EMU_EVCNT_DECL(mtfsf); +FPU_EMU_EVCNT_DECL(fctid); +FPU_EMU_EVCNT_DECL(fcfid); +FPU_EMU_EVCNT_DECL(fdiv); +FPU_EMU_EVCNT_DECL(fsub); +FPU_EMU_EVCNT_DECL(fadd); +FPU_EMU_EVCNT_DECL(fsqrt); +FPU_EMU_EVCNT_DECL(fsel); +FPU_EMU_EVCNT_DECL(fpres); +FPU_EMU_EVCNT_DECL(fmul); +FPU_EMU_EVCNT_DECL(frsqrte); +FPU_EMU_EVCNT_DECL(fmulsub); +FPU_EMU_EVCNT_DECL(fmuladd); +FPU_EMU_EVCNT_DECL(fnmsub); +FPU_EMU_EVCNT_DECL(fnmadd); + +/* FPSR exception masks */ +#define FPSR_EX_MSK (FPSCR_VX|FPSCR_OX|FPSCR_UX|FPSCR_ZX| \ + FPSCR_XX|FPSCR_VXSNAN|FPSCR_VXISI|FPSCR_VXIDI| \ + FPSCR_VXZDZ|FPSCR_VXIMZ|FPSCR_VXVC|FPSCR_VXSOFT|\ + FPSCR_VXSQRT|FPSCR_VXCVI) +#define FPSR_EX (FPSCR_VE|FPSCR_OE|FPSCR_UE|FPSCR_ZE|FPSCR_XE) +#define FPSR_EXOP (FPSR_EX_MSK&(~FPSR_EX)) + +int fpe_debug = 0; + +#ifdef DEBUG +vm_offset_t opc_disasm(vm_offset_t, int); + +/* + * Dump a `fpn' structure. + */ +void +fpu_dumpfpn(struct fpn *fp) +{ + static const char *class[] = { + "SNAN", "QNAN", "ZERO", "NUM", "INF" + }; + + printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2], + fp->fp_sign ? '-' : ' ', + fp->fp_mant[0], fp->fp_mant[1], + fp->fp_mant[2], fp->fp_mant[3], + fp->fp_exp); +} +#endif + +/* + * fpu_execute returns the following error numbers (0 = no error): + */ +#define FPE 1 /* take a floating point exception */ +#define NOTFPU 2 /* not an FPU instruction */ +#define FAULT 3 + + +/* + * Emulate a floating-point instruction. + * Return zero for success, else signal number. + * (Typically: zero, SIGFPE, SIGILL, SIGSEGV) + */ +int +fpu_emulate(struct trapframe *frame, struct fpreg *fpf) +{ + static union instr insn; + static struct fpemu fe; + static int lastill = 0; + int sig; + + /* initialize insn.is_datasize to tell it is *not* initialized */ + fe.fe_fpstate = fpf; + fe.fe_cx = 0; + + /* always set this (to avoid a warning) */ + + if (copyin((void *) (frame->srr0), &insn.i_int, sizeof (insn.i_int))) { +#ifdef DEBUG + printf("fpu_emulate: fault reading opcode\n"); +#endif + return SIGSEGV; + } + + DPRINTF(FPE_EX, ("fpu_emulate: emulating insn %x at %p\n", + insn.i_int, (void *)frame->srr0)); + + + if ((insn.i_any.i_opcd == OPC_TWI) || + ((insn.i_any.i_opcd == OPC_integer_31) && + (insn.i_x.i_xo == OPC31_TW))) { + /* Check for the two trap insns. */ + DPRINTF(FPE_EX, ("fpu_emulate: SIGTRAP\n")); + return (SIGTRAP); + } + sig = 0; + switch (fpu_execute(frame, &fe, &insn)) { + case 0: + DPRINTF(FPE_EX, ("fpu_emulate: success\n")); + frame->srr0 += 4; + break; + + case FPE: + DPRINTF(FPE_EX, ("fpu_emulate: SIGFPE\n")); + sig = SIGFPE; + break; + + case FAULT: + DPRINTF(FPE_EX, ("fpu_emulate: SIGSEGV\n")); + sig = SIGSEGV; + break; + + case NOTFPU: + default: + DPRINTF(FPE_EX, ("fpu_emulate: SIGILL\n")); +#ifdef DEBUG + if (fpe_debug & FPE_EX) { + printf("fpu_emulate: illegal insn %x at %p:", + insn.i_int, (void *) (frame->srr0)); + opc_disasm(frame->srr0, insn.i_int); + } +#endif + /* + * XXXX retry an illegal insn once due to cache issues. + */ + if (lastill == frame->srr0) { + sig = SIGILL; +#ifdef DEBUG + if (fpe_debug & FPE_EX) + kdb_enter(KDB_WHY_UNSET, "illegal instruction"); +#endif + } + lastill = frame->srr0; + break; + } + + return (sig); +} + +/* + * Execute an FPU instruction (one that runs entirely in the FPU; not + * FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be + * modified to reflect the setting the hardware would have left. + * + * Note that we do not catch all illegal opcodes, so you can, for instance, + * multiply two integers this way. + */ +int +fpu_execute(struct trapframe *tf, struct fpemu *fe, union instr *insn) +{ + struct fpn *fp; + union instr instr = *insn; + int *a; + vm_offset_t addr; + int ra, rb, rc, rt, type, mask, fsr, cx, bf, setcr; + unsigned int cond; + struct fpreg *fs; + + /* Setup work. */ + fp = NULL; + fs = fe->fe_fpstate; + fe->fe_fpscr = ((int *)&fs->fpscr)[1]; + + /* + * On PowerPC all floating point values are stored in registers + * as doubles, even when used for single precision operations. + */ + type = FTYPE_DBL; + cond = instr.i_any.i_rc; + setcr = 0; + bf = 0; /* XXX gcc */ + +#if defined(DDB) && defined(DEBUG) + if (fpe_debug & FPE_EX) { + vm_offset_t loc = tf->srr0; + + printf("Trying to emulate: %p ", (void *)loc); + opc_disasm(loc, instr.i_int); + } +#endif + + /* + * `Decode' and execute instruction. + */ + + if ((instr.i_any.i_opcd >= OPC_LFS && instr.i_any.i_opcd <= OPC_STFDU) || + instr.i_any.i_opcd == OPC_integer_31) { + /* + * Handle load/store insns: + * + * Convert to/from single if needed, calculate addr, + * and update index reg if needed. + */ + double buf; + size_t size = sizeof(float); + int store, update; + + cond = 0; /* ld/st never set condition codes */ + + + if (instr.i_any.i_opcd == OPC_integer_31) { + if (instr.i_x.i_xo == OPC31_STFIWX) { + FPU_EMU_EVCNT_INCR(stfiwx); + + /* Store as integer */ + ra = instr.i_x.i_ra; + rb = instr.i_x.i_rb; + DPRINTF(FPE_INSN, ("reg %d has %lx reg %d has %lx\n", + ra, tf->fixreg[ra], rb, tf->fixreg[rb])); + + addr = tf->fixreg[rb]; + if (ra != 0) + addr += tf->fixreg[ra]; + rt = instr.i_x.i_rt; + a = (int *)&fs->fpreg[rt]; + DPRINTF(FPE_INSN, + ("fpu_execute: Store INT %x at %p\n", + a[1], (void *)addr)); + if (copyout(&a[1], (void *)addr, sizeof(int))) + return (FAULT); + return (0); + } + + if ((instr.i_x.i_xo & OPC31_FPMASK) != OPC31_FPOP) + /* Not an indexed FP load/store op */ + return (NOTFPU); + + store = (instr.i_x.i_xo & 0x80); + if (instr.i_x.i_xo & 0x40) + size = sizeof(double); + else + type = FTYPE_SNG; + update = (instr.i_x.i_xo & 0x20); + + /* calculate EA of load/store */ + ra = instr.i_x.i_ra; + rb = instr.i_x.i_rb; + DPRINTF(FPE_INSN, ("reg %d has %lx reg %d has %lx\n", + ra, tf->fixreg[ra], rb, tf->fixreg[rb])); + addr = tf->fixreg[rb]; + if (ra != 0) + addr += tf->fixreg[ra]; + rt = instr.i_x.i_rt; + } else { + store = instr.i_d.i_opcd & 0x4; + if (instr.i_d.i_opcd & 0x2) + size = sizeof(double); + else + type = FTYPE_SNG; + update = instr.i_d.i_opcd & 0x1; + + /* calculate EA of load/store */ + ra = instr.i_d.i_ra; + addr = instr.i_d.i_d; + DPRINTF(FPE_INSN, ("reg %d has %lx displ %lx\n", + ra, tf->fixreg[ra], addr)); + if (ra != 0) + addr += tf->fixreg[ra]; + rt = instr.i_d.i_rt; + } + + if (update && ra == 0) + return (NOTFPU); + + if (store) { + /* Store */ + FPU_EMU_EVCNT_INCR(fpstore); + if (type != FTYPE_DBL) { + DPRINTF(FPE_INSN, + ("fpu_execute: Store SNG at %p\n", + (void *)addr)); + fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL, rt); + fpu_implode(fe, fp, type, (void *)&buf); + if (copyout(&buf, (void *)addr, size)) + return (FAULT); + } else { + DPRINTF(FPE_INSN, + ("fpu_execute: Store DBL at %p\n", + (void *)addr)); + if (copyout(&fs->fpreg[rt], (void *)addr, size)) + return (FAULT); + } + } else { + /* Load */ + FPU_EMU_EVCNT_INCR(fpload); + DPRINTF(FPE_INSN, ("fpu_execute: Load from %p\n", + (void *)addr)); + if (copyin((const void *)addr, &fs->fpreg[rt], size)) + return (FAULT); + if (type != FTYPE_DBL) { + fpu_explode(fe, fp = &fe->fe_f1, type, rt); + fpu_implode(fe, fp, FTYPE_DBL, + (u_int *)&fs->fpreg[rt]); + } + } + if (update) + tf->fixreg[ra] = addr; + /* Complete. */ + return (0); +#ifdef notyet + } else if (instr.i_any.i_opcd == OPC_load_st_62) { + /* These are 64-bit extenstions */ + return (NOTFPU); +#endif + } else if (instr.i_any.i_opcd == OPC_sp_fp_59 || + instr.i_any.i_opcd == OPC_dp_fp_63) { + + + if (instr.i_any.i_opcd == OPC_dp_fp_63 && + !(instr.i_a.i_xo & OPC63M_MASK)) { + /* Format X */ + rt = instr.i_x.i_rt; + ra = instr.i_x.i_ra; + rb = instr.i_x.i_rb; + + + /* One of the special opcodes.... */ + switch (instr.i_x.i_xo) { + case OPC63_FCMPU: + FPU_EMU_EVCNT_INCR(fcmpu); + DPRINTF(FPE_INSN, ("fpu_execute: FCMPU\n")); + rt >>= 2; + fpu_explode(fe, &fe->fe_f1, type, ra); + fpu_explode(fe, &fe->fe_f2, type, rb); + fpu_compare(fe, 0); + /* Make sure we do the condition regs. */ + cond = 0; + /* N.B.: i_rs is already left shifted by two. */ + bf = instr.i_x.i_rs & 0xfc; + setcr = 1; + break; + + case OPC63_FRSP: + /* + * Convert to single: + * + * PowerPC uses this to round a double + * precision value to single precision, + * but values in registers are always + * stored in double precision format. + */ + FPU_EMU_EVCNT_INCR(frsp); + DPRINTF(FPE_INSN, ("fpu_execute: FRSP\n")); + fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL, rb); + fpu_implode(fe, fp, FTYPE_SNG, + (u_int *)&fs->fpreg[rt]); + fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG, rt); + type = FTYPE_DBL; + break; + case OPC63_FCTIW: + case OPC63_FCTIWZ: + FPU_EMU_EVCNT_INCR(fctiw); + DPRINTF(FPE_INSN, ("fpu_execute: FCTIW\n")); + fpu_explode(fe, fp = &fe->fe_f1, type, rb); + type = FTYPE_INT; + break; + case OPC63_FCMPO: + FPU_EMU_EVCNT_INCR(fcmpo); + DPRINTF(FPE_INSN, ("fpu_execute: FCMPO\n")); + rt >>= 2; + fpu_explode(fe, &fe->fe_f1, type, ra); + fpu_explode(fe, &fe->fe_f2, type, rb); + fpu_compare(fe, 1); + /* Make sure we do the condition regs. */ + cond = 0; + /* N.B.: i_rs is already left shifted by two. */ + bf = instr.i_x.i_rs & 0xfc; + setcr = 1; + break; + case OPC63_MTFSB1: + FPU_EMU_EVCNT_INCR(mtfsb1); + DPRINTF(FPE_INSN, ("fpu_execute: MTFSB1\n")); + fe->fe_fpscr |= + (~(FPSCR_VX|FPSR_EX) & (1<<(31-rt))); + break; + case OPC63_FNEG: + FPU_EMU_EVCNT_INCR(fnegabs); + DPRINTF(FPE_INSN, ("fpu_execute: FNEGABS\n")); + memcpy(&fs->fpreg[rt], &fs->fpreg[rb], + sizeof(double)); + a = (int *)&fs->fpreg[rt]; + *a ^= (1 << 31); + break; + case OPC63_MCRFS: + FPU_EMU_EVCNT_INCR(mcrfs); + DPRINTF(FPE_INSN, ("fpu_execute: MCRFS\n")); + cond = 0; + rt &= 0x1c; + ra &= 0x1c; + /* Extract the bits we want */ + mask = (fe->fe_fpscr >> (28 - ra)) & 0xf; + /* Clear the bits we copied. */ + fe->fe_cx = + (FPSR_EX_MSK | (0xf << (28 - ra))); + fe->fe_fpscr &= fe->fe_cx; + /* Now shove them in the right part of cr */ + tf->cr &= ~(0xf << (28 - rt)); + tf->cr |= (mask << (28 - rt)); + break; + case OPC63_MTFSB0: + FPU_EMU_EVCNT_INCR(mtfsb0); + DPRINTF(FPE_INSN, ("fpu_execute: MTFSB0\n")); + fe->fe_fpscr &= + ((FPSCR_VX|FPSR_EX) & ~(1<<(31-rt))); + break; + case OPC63_FMR: + FPU_EMU_EVCNT_INCR(fmr); + DPRINTF(FPE_INSN, ("fpu_execute: FMR\n")); + memcpy(&fs->fpreg[rt], &fs->fpreg[rb], + sizeof(double)); + break; + case OPC63_MTFSFI: + FPU_EMU_EVCNT_INCR(mtfsfi); + DPRINTF(FPE_INSN, ("fpu_execute: MTFSFI\n")); + rb >>= 1; + rt &= 0x1c; /* Already left-shifted 4 */ + fe->fe_cx = rb << (28 - rt); + mask = 0xf<<(28 - rt); + fe->fe_fpscr = (fe->fe_fpscr & ~mask) | + fe->fe_cx; +/* XXX weird stuff about OX, FX, FEX, and VX should be handled */ + break; + case OPC63_FNABS: + FPU_EMU_EVCNT_INCR(fnabs); + DPRINTF(FPE_INSN, ("fpu_execute: FABS\n")); + memcpy(&fs->fpreg[rt], &fs->fpreg[rb], + sizeof(double)); + a = (int *)&fs->fpreg[rt]; + *a |= (1 << 31); + break; + case OPC63_FABS: + FPU_EMU_EVCNT_INCR(fabs); + DPRINTF(FPE_INSN, ("fpu_execute: FABS\n")); + memcpy(&fs->fpreg[rt], &fs->fpreg[rb], + sizeof(double)); + a = (int *)&fs->fpreg[rt]; + *a &= ~(1 << 31); + break; + case OPC63_MFFS: + FPU_EMU_EVCNT_INCR(mffs); + DPRINTF(FPE_INSN, ("fpu_execute: MFFS\n")); + memcpy(&fs->fpreg[rt], &fs->fpscr, + sizeof(fs->fpscr)); + break; + case OPC63_MTFSF: + FPU_EMU_EVCNT_INCR(mtfsf); + DPRINTF(FPE_INSN, ("fpu_execute: MTFSF\n")); + if ((rt = instr.i_xfl.i_flm) == -1) + mask = -1; + else { + mask = 0; + /* Convert 1 bit -> 4 bits */ + for (ra = 0; ra < 8; ra ++) + if (rt & (1<<ra)) + mask |= (0xf<<(4*ra)); + } + a = (int *)&fs->fpreg[rt]; + fe->fe_cx = mask & a[1]; + fe->fe_fpscr = (fe->fe_fpscr&~mask) | + (fe->fe_cx); +/* XXX weird stuff about OX, FX, FEX, and VX should be handled */ + break; + case OPC63_FCTID: + case OPC63_FCTIDZ: + FPU_EMU_EVCNT_INCR(fctid); + DPRINTF(FPE_INSN, ("fpu_execute: FCTID\n")); + fpu_explode(fe, fp = &fe->fe_f1, type, rb); + type = FTYPE_LNG; + break; + case OPC63_FCFID: + FPU_EMU_EVCNT_INCR(fcfid); + DPRINTF(FPE_INSN, ("fpu_execute: FCFID\n")); + type = FTYPE_LNG; + fpu_explode(fe, fp = &fe->fe_f1, type, rb); + type = FTYPE_DBL; + break; + default: + return (NOTFPU); + break; + } + } else { + /* Format A */ + rt = instr.i_a.i_frt; + ra = instr.i_a.i_fra; + rb = instr.i_a.i_frb; + rc = instr.i_a.i_frc; + + type = FTYPE_SNG; + if (instr.i_any.i_opcd & 0x4) + type = FTYPE_DBL; + switch ((unsigned int)instr.i_a.i_xo) { + case OPC59_FDIVS: + FPU_EMU_EVCNT_INCR(fdiv); + DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n")); + fpu_explode(fe, &fe->fe_f1, type, ra); + fpu_explode(fe, &fe->fe_f2, type, rb); + fp = fpu_div(fe); + break; + case OPC59_FSUBS: + FPU_EMU_EVCNT_INCR(fsub); + DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n")); + fpu_explode(fe, &fe->fe_f1, type, ra); + fpu_explode(fe, &fe->fe_f2, type, rb); + fp = fpu_sub(fe); + break; + case OPC59_FADDS: + FPU_EMU_EVCNT_INCR(fadd); + DPRINTF(FPE_INSN, ("fpu_execute: FADD\n")); + fpu_explode(fe, &fe->fe_f1, type, ra); + fpu_explode(fe, &fe->fe_f2, type, rb); + fp = fpu_add(fe); + break; + case OPC59_FSQRTS: + FPU_EMU_EVCNT_INCR(fsqrt); + DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n")); + fpu_explode(fe, &fe->fe_f1, type, rb); + fp = fpu_sqrt(fe); + break; + case OPC63M_FSEL: + FPU_EMU_EVCNT_INCR(fsel); + DPRINTF(FPE_INSN, ("fpu_execute: FSEL\n")); + a = (int *)&fe->fe_fpstate->fpreg[ra]; + if ((*a & 0x80000000) && (*a & 0x7fffffff)) + /* fra < 0 */ + rc = rb; + DPRINTF(FPE_INSN, ("f%d => f%d\n", rc, rt)); + memcpy(&fs->fpreg[rt], &fs->fpreg[rc], + sizeof(double)); + break; + case OPC59_FRES: + FPU_EMU_EVCNT_INCR(fpres); + DPRINTF(FPE_INSN, ("fpu_execute: FPRES\n")); + fpu_explode(fe, &fe->fe_f1, type, rb); + fp = fpu_sqrt(fe); + /* now we've gotta overwrite the dest reg */ + *((int *)&fe->fe_fpstate->fpreg[rt]) = 1; + fpu_explode(fe, &fe->fe_f1, FTYPE_INT, rt); + fpu_div(fe); + break; + case OPC59_FMULS: + FPU_EMU_EVCNT_INCR(fmul); + DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n")); + fpu_explode(fe, &fe->fe_f1, type, ra); + fpu_explode(fe, &fe->fe_f2, type, rc); + fp = fpu_mul(fe); + break; + case OPC63M_FRSQRTE: + /* Reciprocal sqrt() estimate */ + FPU_EMU_EVCNT_INCR(frsqrte); + DPRINTF(FPE_INSN, ("fpu_execute: FRSQRTE\n")); + fpu_explode(fe, &fe->fe_f1, type, rb); + fp = fpu_sqrt(fe); + fe->fe_f2 = *fp; + /* now we've gotta overwrite the dest reg */ + *((int *)&fe->fe_fpstate->fpreg[rt]) = 1; + fpu_explode(fe, &fe->fe_f1, FTYPE_INT, rt); + fpu_div(fe); + break; + case OPC59_FMSUBS: + FPU_EMU_EVCNT_INCR(fmulsub); + DPRINTF(FPE_INSN, ("fpu_execute: FMULSUB\n")); + fpu_explode(fe, &fe->fe_f1, type, ra); + fpu_explode(fe, &fe->fe_f2, type, rc); + fp = fpu_mul(fe); + fe->fe_f1 = *fp; + fpu_explode(fe, &fe->fe_f2, type, rb); + fp = fpu_sub(fe); + break; + case OPC59_FMADDS: + FPU_EMU_EVCNT_INCR(fmuladd); + DPRINTF(FPE_INSN, ("fpu_execute: FMULADD\n")); + fpu_explode(fe, &fe->fe_f1, type, ra); + fpu_explode(fe, &fe->fe_f2, type, rc); + fp = fpu_mul(fe); + fe->fe_f1 = *fp; + fpu_explode(fe, &fe->fe_f2, type, rb); + fp = fpu_add(fe); + break; + case OPC59_FNMSUBS: + FPU_EMU_EVCNT_INCR(fnmsub); + DPRINTF(FPE_INSN, ("fpu_execute: FNMSUB\n")); + fpu_explode(fe, &fe->fe_f1, type, ra); + fpu_explode(fe, &fe->fe_f2, type, rc); + fp = fpu_mul(fe); + fe->fe_f1 = *fp; + fpu_explode(fe, &fe->fe_f2, type, rb); + fp = fpu_sub(fe); + /* Negate */ + fp->fp_sign ^= 1; + break; + case OPC59_FNMADDS: + FPU_EMU_EVCNT_INCR(fnmadd); + DPRINTF(FPE_INSN, ("fpu_execute: FNMADD\n")); + fpu_explode(fe, &fe->fe_f1, type, ra); + fpu_explode(fe, &fe->fe_f2, type, rc); + fp = fpu_mul(fe); + fe->fe_f1 = *fp; + fpu_explode(fe, &fe->fe_f2, type, rb); + fp = fpu_add(fe); + /* Negate */ + fp->fp_sign ^= 1; + break; + default: + return (NOTFPU); + break; + } + } + } else { + return (NOTFPU); + } + + /* + * ALU operation is complete. Collapse the result and then check + * for exceptions. If we got any, and they are enabled, do not + * alter the destination register, just stop with an exception. + * Otherwise set new current exceptions and accrue. + */ + if (fp) + fpu_implode(fe, fp, type, (u_int *)&fs->fpreg[rt]); + cx = fe->fe_cx; + fsr = fe->fe_fpscr; + if (cx != 0) { + fsr &= ~FPSCR_FX; + if ((cx^fsr)&FPSR_EX_MSK) + fsr |= FPSCR_FX; + mask = fsr & FPSR_EX; + mask <<= (25-3); + if (cx & mask) + fsr |= FPSCR_FEX; + if (cx & FPSCR_FPRF) { + /* Need to replace CC */ + fsr &= ~FPSCR_FPRF; + } + if (cx & (FPSR_EXOP)) + fsr |= FPSCR_VX; + fsr |= cx; + DPRINTF(FPE_INSN, ("fpu_execute: cx %x, fsr %x\n", cx, fsr)); + } + + if (cond) { + cond = fsr & 0xf0000000; + /* Isolate condition codes */ + cond >>= 28; + /* Move fpu condition codes to cr[1] */ + tf->cr &= (0x0f000000); + tf->cr |= (cond<<24); + DPRINTF(FPE_INSN, ("fpu_execute: cr[1] <= %x\n", cond)); + } + + if (setcr) { + cond = fsr & FPSCR_FPCC; + /* Isolate condition codes */ + cond <<= 16; + /* Move fpu condition codes to cr[1] */ + tf->cr &= ~(0xf0000000>>bf); + tf->cr |= (cond>>bf); + DPRINTF(FPE_INSN, ("fpu_execute: cr[%d] (cr=%x) <= %x\n", bf/4, tf->cr, cond)); + } + + ((int *)&fs->fpscr)[1] = fsr; + if (fsr & FPSCR_FEX) + return(FPE); + return (0); /* success */ +} diff --git a/sys/powerpc/fpu/fpu_emu.h b/sys/powerpc/fpu/fpu_emu.h new file mode 100644 index 000000000000..56f1ef8b8390 --- /dev/null +++ b/sys/powerpc/fpu/fpu_emu.h @@ -0,0 +1,192 @@ +/* $NetBSD: fpu_emu.h,v 1.3 2005/12/11 12:18:42 christos Exp $ */ +/* $FreeBSD$ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_emu.h 8.1 (Berkeley) 6/11/93 + */ + +/* + * Floating point emulator (tailored for SPARC, but structurally + * machine-independent). + * + * Floating point numbers are carried around internally in an `expanded' + * or `unpacked' form consisting of: + * - sign + * - unbiased exponent + * - mantissa (`1.' + 112-bit fraction + guard + round) + * - sticky bit + * Any implied `1' bit is inserted, giving a 113-bit mantissa that is + * always nonzero. Additional low-order `guard' and `round' bits are + * scrunched in, making the entire mantissa 115 bits long. This is divided + * into four 32-bit words, with `spare' bits left over in the upper part + * of the top word (the high bits of fp_mant[0]). An internal `exploded' + * number is thus kept within the half-open interval [1.0,2.0) (but see + * the `number classes' below). This holds even for denormalized numbers: + * when we explode an external denorm, we normalize it, introducing low-order + * zero bits, so that the rest of the code always sees normalized values. + * + * Note that a number of our algorithms use the `spare' bits at the top. + * The most demanding algorithm---the one for sqrt---depends on two such + * bits, so that it can represent values up to (but not including) 8.0, + * and then it needs a carry on top of that, so that we need three `spares'. + * + * The sticky-word is 32 bits so that we can use `OR' operators to goosh + * whole words from the mantissa into it. + * + * All operations are done in this internal extended precision. According + * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is, + * it is OK to do a+b in extended precision and then round the result to + * single precision---provided single, double, and extended precisions are + * `far enough apart' (they always are), but we will try to avoid any such + * extra work where possible. + */ +struct fpn { + int fp_class; /* see below */ + int fp_sign; /* 0 => positive, 1 => negative */ + int fp_exp; /* exponent (unbiased) */ + int fp_sticky; /* nonzero bits lost at right end */ + u_int fp_mant[4]; /* 115-bit mantissa */ +}; + +#define FP_NMANT 115 /* total bits in mantissa (incl g,r) */ +#define FP_NG 2 /* number of low-order guard bits */ +#define FP_LG ((FP_NMANT - 1) & 31) /* log2(1.0) for fp_mant[0] */ +#define FP_LG2 ((FP_NMANT - 1) & 63) /* log2(1.0) for fp_mant[0] and fp_mant[1] */ +#define FP_QUIETBIT (1 << (FP_LG - 1)) /* Quiet bit in NaNs (0.5) */ +#define FP_1 (1 << FP_LG) /* 1.0 in fp_mant[0] */ +#define FP_2 (1 << (FP_LG + 1)) /* 2.0 in fp_mant[0] */ + +/* + * Number classes. Since zero, Inf, and NaN cannot be represented using + * the above layout, we distinguish these from other numbers via a class. + * In addition, to make computation easier and to follow Appendix N of + * the SPARC Version 8 standard, we give each kind of NaN a separate class. + */ +#define FPC_SNAN -2 /* signalling NaN (sign irrelevant) */ +#define FPC_QNAN -1 /* quiet NaN (sign irrelevant) */ +#define FPC_ZERO 0 /* zero (sign matters) */ +#define FPC_NUM 1 /* number (sign matters) */ +#define FPC_INF 2 /* infinity (sign matters) */ + +#define ISSNAN(fp) ((fp)->fp_class == FPC_SNAN) +#define ISQNAN(fp) ((fp)->fp_class == FPC_QNAN) +#define ISNAN(fp) ((fp)->fp_class < 0) +#define ISZERO(fp) ((fp)->fp_class == 0) +#define ISINF(fp) ((fp)->fp_class == FPC_INF) + +/* + * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points + * to the `more significant' operand for our purposes. Appendix N says that + * the result of a computation involving two numbers are: + * + * If both are SNaN: operand 2, converted to Quiet + * If only one is SNaN: the SNaN operand, converted to Quiet + * If both are QNaN: operand 2 + * If only one is QNaN: the QNaN operand + * + * In addition, in operations with an Inf operand, the result is usually + * Inf. The class numbers are carefully arranged so that if + * (unsigned)class(op1) > (unsigned)class(op2) + * then op1 is the one we want; otherwise op2 is the one we want. + */ +#define ORDER(x, y) { \ + if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \ + SWAP(x, y); \ +} +#define SWAP(x, y) { \ + struct fpn *swap; \ + swap = (x), (x) = (y), (y) = swap; \ +} + +/* + * Emulator state. + */ +struct fpemu { + struct fpreg *fe_fpstate; /* registers, etc */ + int fe_fpscr; /* fpscr copy (modified during op) */ + int fe_cx; /* keep track of exceptions */ + struct fpn fe_f1; /* operand 1 */ + struct fpn fe_f2; /* operand 2, if required */ + struct fpn fe_f3; /* available storage for result */ +}; + +/* + * Arithmetic functions. + * Each of these may modify its inputs (f1,f2) and/or the temporary. + * Each returns a pointer to the result and/or sets exceptions. + */ +struct fpn *fpu_add(struct fpemu *); +#define fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, fpu_add(fe)) +struct fpn *fpu_mul(struct fpemu *); +struct fpn *fpu_div(struct fpemu *); +struct fpn *fpu_sqrt(struct fpemu *); + +/* + * Other functions. + */ + +/* Perform a compare instruction (with or without unordered exception). */ +void fpu_compare(struct fpemu *, int); + +/* Build a new Quiet NaN (sign=0, frac=all 1's). */ +struct fpn *fpu_newnan(struct fpemu *); + +/* + * Shift a number right some number of bits, taking care of round/sticky. + * Note that the result is probably not a well-formed number (it will lack + * the normal 1-bit mant[0]&FP_1). + */ +int fpu_shr(struct fpn *, int); + +void fpu_explode(struct fpemu *, struct fpn *, int, int); +void fpu_implode(struct fpemu *, struct fpn *, int, u_int *); + +#ifdef DEBUG +#define FPE_EX 0x1 +#define FPE_INSN 0x2 +#define FPE_OP 0x4 +#define FPE_REG 0x8 +extern int fpe_debug; +void fpu_dumpfpn(struct fpn *); +#define DPRINTF(x, y) if (fpe_debug & (x)) printf y +#define DUMPFPN(x, f) if (fpe_debug & (x)) fpu_dumpfpn((f)) +#else +#define DPRINTF(x, y) +#define DUMPFPN(x, f) +#endif diff --git a/sys/powerpc/fpu/fpu_explode.c b/sys/powerpc/fpu/fpu_explode.c new file mode 100644 index 000000000000..70eef6aa8737 --- /dev/null +++ b/sys/powerpc/fpu/fpu_explode.c @@ -0,0 +1,262 @@ +/* $NetBSD: fpu_explode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93 + */ + +/* + * FPU subroutines: `explode' the machine's `packed binary' format numbers + * into our internal format. + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/systm.h> +#include <sys/types.h> + +#include <machine/fpu.h> +#include <machine/ieee.h> +#include <machine/reg.h> + +#include <powerpc/fpu/fpu_arith.h> +#include <powerpc/fpu/fpu_emu.h> +#include <powerpc/fpu/fpu_extern.h> +#include <powerpc/fpu/fpu_instr.h> + +/* + * N.B.: in all of the following, we assume the FP format is + * + * --------------------------- + * | s | exponent | fraction | + * --------------------------- + * + * (which represents -1**s * 1.fraction * 2**exponent), so that the + * sign bit is way at the top (bit 31), the exponent is next, and + * then the remaining bits mark the fraction. A zero exponent means + * zero or denormalized (0.fraction rather than 1.fraction), and the + * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN. + * + * Since the sign bit is always the topmost bit---this holds even for + * integers---we set that outside all the *tof functions. Each function + * returns the class code for the new number (but note that we use + * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate). + */ + +/* + * int -> fpn. + */ +int +fpu_itof(struct fpn *fp, u_int i) +{ + + if (i == 0) + return (FPC_ZERO); + /* + * The value FP_1 represents 2^FP_LG, so set the exponent + * there and let normalization fix it up. Convert negative + * numbers to sign-and-magnitude. Note that this relies on + * fpu_norm()'s handling of `supernormals'; see fpu_subr.c. + */ + fp->fp_exp = FP_LG; + fp->fp_mant[0] = (int)i < 0 ? -i : i; + fp->fp_mant[1] = 0; + fp->fp_mant[2] = 0; + fp->fp_mant[3] = 0; + fpu_norm(fp); + return (FPC_NUM); +} + +/* + * 64-bit int -> fpn. + */ +int +fpu_xtof(struct fpn *fp, u_int64_t i) +{ + + if (i == 0) + return (FPC_ZERO); + /* + * The value FP_1 represents 2^FP_LG, so set the exponent + * there and let normalization fix it up. Convert negative + * numbers to sign-and-magnitude. Note that this relies on + * fpu_norm()'s handling of `supernormals'; see fpu_subr.c. + */ + fp->fp_exp = FP_LG2; + *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i; + fp->fp_mant[2] = 0; + fp->fp_mant[3] = 0; + fpu_norm(fp); + return (FPC_NUM); +} + +#define mask(nbits) ((1L << (nbits)) - 1) + +/* + * All external floating formats convert to internal in the same manner, + * as defined here. Note that only normals get an implied 1.0 inserted. + */ +#define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \ + if (exp == 0) { \ + if (allfrac == 0) \ + return (FPC_ZERO); \ + fp->fp_exp = 1 - expbias; \ + fp->fp_mant[0] = f0; \ + fp->fp_mant[1] = f1; \ + fp->fp_mant[2] = f2; \ + fp->fp_mant[3] = f3; \ + fpu_norm(fp); \ + return (FPC_NUM); \ + } \ + if (exp == (2 * expbias + 1)) { \ + if (allfrac == 0) \ + return (FPC_INF); \ + fp->fp_mant[0] = f0; \ + fp->fp_mant[1] = f1; \ + fp->fp_mant[2] = f2; \ + fp->fp_mant[3] = f3; \ + return (FPC_QNAN); \ + } \ + fp->fp_exp = exp - expbias; \ + fp->fp_mant[0] = FP_1 | f0; \ + fp->fp_mant[1] = f1; \ + fp->fp_mant[2] = f2; \ + fp->fp_mant[3] = f3; \ + return (FPC_NUM) + +/* + * 32-bit single precision -> fpn. + * We assume a single occupies at most (64-FP_LG) bits in the internal + * format: i.e., needs at most fp_mant[0] and fp_mant[1]. + */ +int +fpu_stof(struct fpn *fp, u_int i) +{ + int exp; + u_int frac, f0, f1; +#define SNG_SHIFT (SNG_FRACBITS - FP_LG) + + exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS); + frac = i & mask(SNG_FRACBITS); + f0 = frac >> SNG_SHIFT; + f1 = frac << (32 - SNG_SHIFT); + FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0); +} + +/* + * 64-bit double -> fpn. + * We assume this uses at most (96-FP_LG) bits. + */ +int +fpu_dtof(struct fpn *fp, u_int i, u_int j) +{ + int exp; + u_int frac, f0, f1, f2; +#define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG) + + exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS); + frac = i & mask(DBL_FRACBITS - 32); + f0 = frac >> DBL_SHIFT; + f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT); + f2 = j << (32 - DBL_SHIFT); + frac |= j; + FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0); +} + +/* + * Explode the contents of a register / regpair / regquad. + * If the input is a signalling NaN, an NV (invalid) exception + * will be set. (Note that nothing but NV can occur until ALU + * operations are performed.) + */ +void +fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg) +{ + u_int s, *space; + u_int64_t l, *xspace; + + xspace = (u_int64_t *)&fe->fe_fpstate->fpreg[reg]; + l = xspace[0]; + space = (u_int *)&fe->fe_fpstate->fpreg[reg]; + s = space[0]; + fp->fp_sign = s >> 31; + fp->fp_sticky = 0; + switch (type) { + + case FTYPE_LNG: + s = fpu_xtof(fp, l); + break; + + case FTYPE_INT: + s = fpu_itof(fp, space[1]); + break; + + case FTYPE_SNG: + s = fpu_stof(fp, s); + break; + + case FTYPE_DBL: + s = fpu_dtof(fp, s, space[1]); + break; + + panic("fpu_explode"); + panic("fpu_explode: invalid type %d", type); + } + + if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) { + /* + * Input is a signalling NaN. All operations that return + * an input NaN operand put it through a ``NaN conversion'', + * which basically just means ``turn on the quiet bit''. + * We do this here so that all NaNs internally look quiet + * (we can tell signalling ones by their class). + */ + fp->fp_mant[0] |= FP_QUIETBIT; + fe->fe_cx = FPSCR_VXSNAN; /* assert invalid operand */ + s = FPC_SNAN; + } + fp->fp_class = s; + DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' : + ((type == FTYPE_INT) ? 'i' : + ((type == FTYPE_SNG) ? 's' : + ((type == FTYPE_DBL) ? 'd' : '?'))), + reg)); + DUMPFPN(FPE_REG, fp); + DPRINTF(FPE_REG, ("\n")); +} diff --git a/sys/powerpc/fpu/fpu_extern.h b/sys/powerpc/fpu/fpu_extern.h new file mode 100644 index 000000000000..cb569e29dfbf --- /dev/null +++ b/sys/powerpc/fpu/fpu_extern.h @@ -0,0 +1,83 @@ +/* $NetBSD: fpu_extern.h,v 1.3 2005/12/11 12:18:42 christos Exp $ */ +/* $FreeBSD$ */ + +/*- + * Copyright (c) 1995 The NetBSD Foundation, Inc. + * All rights reserved. + * + * This code is derived from software contributed to The NetBSD Foundation + * by Christos Zoulas. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the NetBSD + * Foundation, Inc. and its contributors. + * 4. Neither the name of The NetBSD Foundation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS + * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS + * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +struct proc; +struct fpreg; +struct trapframe; +union instr; +struct fpemu; +struct fpn; + +/* fpu.c */ +int fpu_emulate(struct trapframe *, struct fpreg *); +int fpu_execute(struct trapframe *, struct fpemu *, union instr *); + +/* fpu_add.c */ +struct fpn *fpu_add(struct fpemu *); + +/* fpu_compare.c */ +void fpu_compare(struct fpemu *, int); + +/* fpu_div.c */ +struct fpn *fpu_div(struct fpemu *); + +/* fpu_explode.c */ +int fpu_itof(struct fpn *, u_int); +int fpu_xtof(struct fpn *, u_int64_t); +int fpu_stof(struct fpn *, u_int); +int fpu_dtof(struct fpn *, u_int, u_int); +void fpu_explode(struct fpemu *, struct fpn *, int, int); + +/* fpu_implode.c */ +u_int fpu_ftoi(struct fpemu *, struct fpn *); +u_int fpu_ftox(struct fpemu *, struct fpn *, u_int *); +u_int fpu_ftos(struct fpemu *, struct fpn *); +u_int fpu_ftod(struct fpemu *, struct fpn *, u_int *); +void fpu_implode(struct fpemu *, struct fpn *, int, u_int *); + +/* fpu_mul.c */ +struct fpn *fpu_mul(struct fpemu *); + +/* fpu_sqrt.c */ +struct fpn *fpu_sqrt(struct fpemu *); + +/* fpu_subr.c */ +int fpu_shr(struct fpn *, int); +void fpu_norm(struct fpn *); +struct fpn *fpu_newnan(struct fpemu *); diff --git a/sys/powerpc/fpu/fpu_implode.c b/sys/powerpc/fpu/fpu_implode.c new file mode 100644 index 000000000000..cbb3651a032a --- /dev/null +++ b/sys/powerpc/fpu/fpu_implode.c @@ -0,0 +1,462 @@ +/* $NetBSD: fpu_implode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93 + */ + +/* + * FPU subroutines: `implode' internal format numbers into the machine's + * `packed binary' format. + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/systm.h> +#include <sys/types.h> + +#include <machine/fpu.h> +#include <machine/ieee.h> +#include <machine/ieeefp.h> +#include <machine/reg.h> + +#include <powerpc/fpu/fpu_arith.h> +#include <powerpc/fpu/fpu_emu.h> +#include <powerpc/fpu/fpu_extern.h> +#include <powerpc/fpu/fpu_instr.h> + +static int round(struct fpemu *, struct fpn *); +static int toinf(struct fpemu *, int); + +/* + * Round a number (algorithm from Motorola MC68882 manual, modified for + * our internal format). Set inexact exception if rounding is required. + * Return true iff we rounded up. + * + * After rounding, we discard the guard and round bits by shifting right + * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky). + * This saves effort later. + * + * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's + * responsibility to fix this if necessary. + */ +static int +round(struct fpemu *fe, struct fpn *fp) +{ + u_int m0, m1, m2, m3; + int gr, s; + FPU_DECL_CARRY; + + m0 = fp->fp_mant[0]; + m1 = fp->fp_mant[1]; + m2 = fp->fp_mant[2]; + m3 = fp->fp_mant[3]; + gr = m3 & 3; + s = fp->fp_sticky; + + /* mant >>= FP_NG */ + m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG)); + m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG)); + m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG)); + m0 >>= FP_NG; + + if ((gr | s) == 0) /* result is exact: no rounding needed */ + goto rounddown; + + fe->fe_cx |= FPSCR_XX|FPSCR_FI; /* inexact */ + + /* Go to rounddown to round down; break to round up. */ + switch ((fe->fe_fpscr) & FPSCR_RN) { + + case FP_RN: + default: + /* + * Round only if guard is set (gr & 2). If guard is set, + * but round & sticky both clear, then we want to round + * but have a tie, so round to even, i.e., add 1 iff odd. + */ + if ((gr & 2) == 0) + goto rounddown; + if ((gr & 1) || fp->fp_sticky || (m3 & 1)) + break; + goto rounddown; + + case FP_RZ: + /* Round towards zero, i.e., down. */ + goto rounddown; + + case FP_RM: + /* Round towards -Inf: up if negative, down if positive. */ + if (fp->fp_sign) + break; + goto rounddown; + + case FP_RP: + /* Round towards +Inf: up if positive, down otherwise. */ + if (!fp->fp_sign) + break; + goto rounddown; + } + + /* Bump low bit of mantissa, with carry. */ + fe->fe_cx |= FPSCR_FR; + + FPU_ADDS(m3, m3, 1); + FPU_ADDCS(m2, m2, 0); + FPU_ADDCS(m1, m1, 0); + FPU_ADDC(m0, m0, 0); + fp->fp_mant[0] = m0; + fp->fp_mant[1] = m1; + fp->fp_mant[2] = m2; + fp->fp_mant[3] = m3; + return (1); + +rounddown: + fp->fp_mant[0] = m0; + fp->fp_mant[1] = m1; + fp->fp_mant[2] = m2; + fp->fp_mant[3] = m3; + return (0); +} + +/* + * For overflow: return true if overflow is to go to +/-Inf, according + * to the sign of the overflowing result. If false, overflow is to go + * to the largest magnitude value instead. + */ +static int +toinf(struct fpemu *fe, int sign) +{ + int inf; + + /* look at rounding direction */ + switch ((fe->fe_fpscr) & FPSCR_RN) { + + default: + case FP_RN: /* the nearest value is always Inf */ + inf = 1; + break; + + case FP_RZ: /* toward 0 => never towards Inf */ + inf = 0; + break; + + case FP_RP: /* toward +Inf iff positive */ + inf = sign == 0; + break; + + case FP_RM: /* toward -Inf iff negative */ + inf = sign; + break; + } + if (inf) + fe->fe_cx |= FPSCR_OX; + return (inf); +} + +/* + * fpn -> int (int value returned as return value). + * + * N.B.: this conversion always rounds towards zero (this is a peculiarity + * of the SPARC instruction set). + */ +u_int +fpu_ftoi(struct fpemu *fe, struct fpn *fp) +{ + u_int i; + int sign, exp; + + sign = fp->fp_sign; + switch (fp->fp_class) { + + case FPC_ZERO: + return (0); + + case FPC_NUM: + /* + * If exp >= 2^32, overflow. Otherwise shift value right + * into last mantissa word (this will not exceed 0xffffffff), + * shifting any guard and round bits out into the sticky + * bit. Then ``round'' towards zero, i.e., just set an + * inexact exception if sticky is set (see round()). + * If the result is > 0x80000000, or is positive and equals + * 0x80000000, overflow; otherwise the last fraction word + * is the result. + */ + if ((exp = fp->fp_exp) >= 32) + break; + /* NB: the following includes exp < 0 cases */ + if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0) + fe->fe_cx |= FPSCR_UX; + i = fp->fp_mant[3]; + if (i >= ((u_int)0x80000000 + sign)) + break; + return (sign ? -i : i); + + default: /* Inf, qNaN, sNaN */ + break; + } + /* overflow: replace any inexact exception with invalid */ + fe->fe_cx |= FPSCR_VXCVI; + return (0x7fffffff + sign); +} + +/* + * fpn -> extended int (high bits of int value returned as return value). + * + * N.B.: this conversion always rounds towards zero (this is a peculiarity + * of the SPARC instruction set). + */ +u_int +fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res) +{ + u_int64_t i; + int sign, exp; + + sign = fp->fp_sign; + switch (fp->fp_class) { + + case FPC_ZERO: + res[1] = 0; + return (0); + + case FPC_NUM: + /* + * If exp >= 2^64, overflow. Otherwise shift value right + * into last mantissa word (this will not exceed 0xffffffffffffffff), + * shifting any guard and round bits out into the sticky + * bit. Then ``round'' towards zero, i.e., just set an + * inexact exception if sticky is set (see round()). + * If the result is > 0x8000000000000000, or is positive and equals + * 0x8000000000000000, overflow; otherwise the last fraction word + * is the result. + */ + if ((exp = fp->fp_exp) >= 64) + break; + /* NB: the following includes exp < 0 cases */ + if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0) + fe->fe_cx |= FPSCR_UX; + i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3]; + if (i >= ((u_int64_t)0x8000000000000000LL + sign)) + break; + return (sign ? -i : i); + + default: /* Inf, qNaN, sNaN */ + break; + } + /* overflow: replace any inexact exception with invalid */ + fe->fe_cx |= FPSCR_VXCVI; + return (0x7fffffffffffffffLL + sign); +} + +/* + * fpn -> single (32 bit single returned as return value). + * We assume <= 29 bits in a single-precision fraction (1.f part). + */ +u_int +fpu_ftos(struct fpemu *fe, struct fpn *fp) +{ + u_int sign = fp->fp_sign << 31; + int exp; + +#define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */ +#define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */ + + /* Take care of non-numbers first. */ + if (ISNAN(fp)) { + /* + * Preserve upper bits of NaN, per SPARC V8 appendix N. + * Note that fp->fp_mant[0] has the quiet bit set, + * even if it is classified as a signalling NaN. + */ + (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS); + exp = SNG_EXP_INFNAN; + goto done; + } + if (ISINF(fp)) + return (sign | SNG_EXP(SNG_EXP_INFNAN)); + if (ISZERO(fp)) + return (sign); + + /* + * Normals (including subnormals). Drop all the fraction bits + * (including the explicit ``implied'' 1 bit) down into the + * single-precision range. If the number is subnormal, move + * the ``implied'' 1 into the explicit range as well, and shift + * right to introduce leading zeroes. Rounding then acts + * differently for normals and subnormals: the largest subnormal + * may round to the smallest normal (1.0 x 2^minexp), or may + * remain subnormal. In the latter case, signal an underflow + * if the result was inexact or if underflow traps are enabled. + * + * Rounding a normal, on the other hand, always produces another + * normal (although either way the result might be too big for + * single precision, and cause an overflow). If rounding a + * normal produces 2.0 in the fraction, we need not adjust that + * fraction at all, since both 1.0 and 2.0 are zero under the + * fraction mask. + * + * Note that the guard and round bits vanish from the number after + * rounding. + */ + if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */ + /* -NG for g,r; -SNG_FRACBITS-exp for fraction */ + (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp); + if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1)) + return (sign | SNG_EXP(1) | 0); + if ((fe->fe_cx & FPSCR_FI) || + (fe->fe_fpscr & FPSCR_UX)) + fe->fe_cx |= FPSCR_UX; + return (sign | SNG_EXP(0) | fp->fp_mant[3]); + } + /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */ + (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS); +#ifdef DIAGNOSTIC + if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0) + panic("fpu_ftos"); +#endif + if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2)) + exp++; + if (exp >= SNG_EXP_INFNAN) { + /* overflow to inf or to max single */ + if (toinf(fe, sign)) + return (sign | SNG_EXP(SNG_EXP_INFNAN)); + return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK); + } +done: + /* phew, made it */ + return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK)); +} + +/* + * fpn -> double (32 bit high-order result returned; 32-bit low order result + * left in res[1]). Assumes <= 61 bits in double precision fraction. + * + * This code mimics fpu_ftos; see it for comments. + */ +u_int +fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res) +{ + u_int sign = fp->fp_sign << 31; + int exp; + +#define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31)) +#define DBL_MASK (DBL_EXP(1) - 1) + + if (ISNAN(fp)) { + (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS); + exp = DBL_EXP_INFNAN; + goto done; + } + if (ISINF(fp)) { + sign |= DBL_EXP(DBL_EXP_INFNAN); + goto zero; + } + if (ISZERO(fp)) { +zero: res[1] = 0; + return (sign); + } + + if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) { + (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp); + if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) { + res[1] = 0; + return (sign | DBL_EXP(1) | 0); + } + if ((fe->fe_cx & FPSCR_FI) || + (fe->fe_fpscr & FPSCR_UX)) + fe->fe_cx |= FPSCR_UX; + exp = 0; + goto done; + } + (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS); + if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2)) + exp++; + if (exp >= DBL_EXP_INFNAN) { + fe->fe_cx |= FPSCR_OX | FPSCR_UX; + if (toinf(fe, sign)) { + res[1] = 0; + return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0); + } + res[1] = ~0; + return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK); + } +done: + res[1] = fp->fp_mant[3]; + return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK)); +} + +/* + * Implode an fpn, writing the result into the given space. + */ +void +fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space) +{ + + switch (type) { + + case FTYPE_LNG: + space[0] = fpu_ftox(fe, fp, space); + DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n", + space[0], space[1])); + break; + + case FTYPE_INT: + space[0] = 0; + space[1] = fpu_ftoi(fe, fp); + DPRINTF(FPE_REG, ("fpu_implode: int %x\n", + space[1])); + break; + + case FTYPE_SNG: + space[0] = fpu_ftos(fe, fp); + DPRINTF(FPE_REG, ("fpu_implode: single %x\n", + space[0])); + break; + + case FTYPE_DBL: + space[0] = fpu_ftod(fe, fp, space); + DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n", + space[0], space[1])); + break; break; + + default: + panic("fpu_implode: invalid type %d", type); + } +} diff --git a/sys/powerpc/fpu/fpu_instr.h b/sys/powerpc/fpu/fpu_instr.h new file mode 100644 index 000000000000..15801ef3c251 --- /dev/null +++ b/sys/powerpc/fpu/fpu_instr.h @@ -0,0 +1,386 @@ +/* $NetBSD: instr.h,v 1.4 2005/12/11 12:18:43 christos Exp $ */ +/* $FreeBSD$ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)instr.h 8.1 (Berkeley) 6/11/93 + */ + +/* + * An instruction. + */ +union instr { + int i_int; /* as a whole */ + + /* + * Any instruction type. + */ + struct { + u_int i_opcd:6; /* first-level decode */ + u_int :25; + u_int i_rc:1; + } i_any; + + /* + * Format A + */ + struct { + u_int i_opcd:6; + u_int i_frt:5; + u_int i_fra:5; + u_int i_frb:5; + u_int i_frc:5; + u_int i_xo:5; + u_int i_rc:1; + } i_a; + + /* + * Format B + */ + struct { + u_int i_opcd:6; + int i_bo:5; + int i_bi:5; + int i_bd:14; + int i_aa:1; + int i_lk:1; + } i_b; + + /* + * Format D + */ + struct { + u_int i_opcd:6; + u_int i_rs:5; + u_int i_ra:5; + int i_d:16; + } i_d; + + /* + * Format DE + */ + struct { + u_int i_opcd:6; + u_int i_rs:5; + u_int i_ra:5; + int i_d:12; + u_int i_xo:4; + } i_de; + + /* + * Format I + */ + struct { + u_int i_opcd:6; + int i_li:24; + int i_aa:1; + int i_lk:1; + } i_i; + + /* + * Format M + */ + struct { + u_int i_opcd:6; + u_int i_rs:5; + u_int i_ra:5; + u_int i_rb:5; + int i_mb:5; + int i_me:5; + u_int i_rc:1; + } i_m; + + /* + * Format MD + */ + struct { + u_int i_opcd:6; + u_int i_rs:5; + u_int i_ra:5; + u_int i_rb:5; + int i_sh1_5:5; + int i_mb:6; + u_int i_xo:3; + int i_sh0:2; + u_int i_rc:1; + } i_md; + + /* + * Format MDS + */ + struct { + u_int i_opcd:6; + u_int i_rs:5; + u_int i_ra:5; + u_int i_rb:5; + int i_sh:5; + int i_mb:6; + u_int i_xo:4; + u_int i_rc:1; + } i_mds; + + + /* + * Format S + */ + struct { + u_int i_opcd:6; + int :24; + int i_i:1; + int :1; + } i_s; + + /* + * Format X + */ + struct { + u_int i_opcd:6; + u_int i_rs:5; + u_int i_ra:5; + u_int i_rb:5; + u_int i_xo:10; + u_int i_rc:1; + } i_x; + + /* + * Format XFL + */ + struct { + u_int i_opcd:6; + int :1; + int i_flm:8; + int :1; + int i_frb:5; + u_int i_xo:10; + int :1; + } i_xfl; + + /* + * Format XFX + */ + struct { + u_int i_opcd:6; + int i_dcrn:10; + u_int i_xo:10; + int :1; + } i_xfx; + + /* + * Format XL + */ + struct { + u_int i_opcd:6; + int i_bt:5; + int i_ba:5; + int i_bb:5; + u_int i_xo:10; + int i_lk:1; + } i_xl; + + /* + * Format XS + */ + struct { + u_int i_opcd:6; + u_int i_rs:5; + u_int i_ra:5; + int i_sh0_4:5; + u_int i_xo:9; + int i_sh5:1; + u_int i_rc:1; + } i_xs; + +}; + +#define i_rt i_rs + +/* + * Primary opcode numbers: + */ + +#define OPC_TDI 0x02 +#define OPC_TWI 0x03 +#define OPC_MULLI 0x07 +#define OPC_SUBFIC 0x08 +#define OPC_BCE 0x09 +#define OPC_CMPLI 0x0a +#define OPC_CMPI 0x0b +#define OPC_ADDIC 0x0c +#define OPC_ADDIC_DOT 0x0d +#define OPC_ADDI 0x0e +#define OPC_ADDIS 0x0f +#define OPC_BC 0x10 +#define OPC_SC 0x11 +#define OPC_B 0x12 +#define OPC_branch_19 0x13 +#define OPC_RLWIMI 0x14 +#define OPC_RLWINM 0x15 +#define OPC_BE 0x16 +#define OPC_RLWNM 0x17 +#define OPC_ORI 0x18 +#define OPC_ORIS 0x19 +#define OPC_XORI 0x1a +#define OPC_XORIS 0x1b +#define OPC_ANDI 0x1c +#define OPC_ANDIS 0x1d +#define OPC_dwe_rot_30 0x1e +#define OPC_integer_31 0x1f +#define OPC_LWZ 0x20 +#define OPC_LWZU 0x21 +#define OPC_LBZ 0x22 +#define OPC_LBZU 0x23 +#define OPC_STW 0x24 +#define OPC_STWU 0x25 +#define OPC_STB 0x26 +#define OPC_STBU 0x27 +#define OPC_LHZ 0x28 +#define OPC_LHZU 0x29 +#define OPC_LHA 0x2a +#define OPC_LHAU 0x2b +#define OPC_STH 0x2c +#define OPC_STHU 0x2d +#define OPC_LMW 0x2e +#define OPC_STMW 0x2f +#define OPC_LFS 0x30 +#define OPC_LFSU 0x31 +#define OPC_LFD 0x32 +#define OPC_LFDU 0x33 +#define OPC_STFS 0x34 +#define OPC_STFSU 0x35 +#define OPC_STFD 0x36 +#define OPC_STFDU 0x37 +#define OPC_load_st_58 0x3a +#define OPC_sp_fp_59 0x3b +#define OPC_load_st_62 0x3e +#define OPC_dp_fp_63 0x3f + +/* + * Opcode 31 sub-types (FP only) + */ +#define OPC31_TW 0x004 +#define OPC31_LFSX 0x217 +#define OPC31_LFSUX 0x237 +#define OPC31_LFDX 0x257 +#define OPC31_LFDUX 0x277 +#define OPC31_STFSX 0x297 +#define OPC31_STFSUX 0x2b7 +#define OPC31_STFDX 0x2d7 +#define OPC31_STFDUX 0x2f7 +#define OPC31_STFIWX 0x3d7 + +/* Mask for all valid indexed FP load/store ops (except stfiwx) */ +#define OPC31_FPMASK 0x31f +#define OPC31_FPOP 0x217 + +/* + * Opcode 59 sub-types: + */ + +#define OPC59_FDIVS 0x12 +#define OPC59_FSUBS 0x14 +#define OPC59_FADDS 0x15 +#define OPC59_FSQRTS 0x16 +#define OPC59_FRES 0x18 +#define OPC59_FMULS 0x19 +#define OPC59_FMSUBS 0x1c +#define OPC59_FMADDS 0x1d +#define OPC59_FNMSUBS 0x1e +#define OPC59_FNMADDS 0x1f + +/* + * Opcode 62 sub-types: + */ +#define OPC62_LDE 0x0 +#define OPC62_LDEU 0x1 +#define OPC62_LFSE 0x4 +#define OPC62_LFSEU 0x5 +#define OPC62_LFDE 0x6 +#define OPC62_LFDEU 0x7 +#define OPC62_STDE 0x8 +#define OPC62_STDEU 0x9 +#define OPC62_STFSE 0xc +#define OPC62_STFSEU 0xd +#define OPC62_STFDE 0xe +#define OPC62_STFDEU 0xf + +/* + * Opcode 63 sub-types: + * + * (The first group are masks....) + */ + +#define OPC63M_MASK 0x10 +#define OPC63M_FDIV 0x12 +#define OPC63M_FSUB 0x14 +#define OPC63M_FADD 0x15 +#define OPC63M_FSQRT 0x16 +#define OPC63M_FSEL 0x17 +#define OPC63M_FMUL 0x19 +#define OPC63M_FRSQRTE 0x1a +#define OPC63M_FMSUB 0x1c +#define OPC63M_FMADD 0x1d +#define OPC63M_FNMSUB 0x1e +#define OPC63M_FNMADD 0x1f + +#define OPC63_FCMPU 0x00 +#define OPC63_FRSP 0x0c +#define OPC63_FCTIW 0x0e +#define OPC63_FCTIWZ 0x0f +#define OPC63_FCMPO 0x20 +#define OPC63_MTFSB1 0x26 +#define OPC63_FNEG 0x28 +#define OPC63_MCRFS 0x40 +#define OPC63_MTFSB0 0x46 +#define OPC63_FMR 0x48 +#define OPC63_MTFSFI 0x86 +#define OPC63_FNABS 0x88 +#define OPC63_FABS 0x108 +#define OPC63_MFFS 0x247 +#define OPC63_MTFSF 0x2c7 +#define OPC63_FCTID 0x32e +#define OPC63_FCTIDZ 0x32f +#define OPC63_FCFID 0x34e + +/* + * FPU data types. + */ +#define FTYPE_LNG -1 /* data = 64-bit signed long integer */ +#define FTYPE_INT 0 /* data = 32-bit signed integer */ +#define FTYPE_SNG 1 /* data = 32-bit float */ +#define FTYPE_DBL 2 /* data = 64-bit double */ + diff --git a/sys/powerpc/fpu/fpu_mul.c b/sys/powerpc/fpu/fpu_mul.c new file mode 100644 index 000000000000..f8735d9d26f7 --- /dev/null +++ b/sys/powerpc/fpu/fpu_mul.c @@ -0,0 +1,239 @@ +/* $NetBSD: fpu_mul.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_mul.c 8.1 (Berkeley) 6/11/93 + */ + +/* + * Perform an FPU multiply (return x * y). + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/systm.h> +#include <sys/types.h> + +#include <machine/fpu.h> +#include <machine/reg.h> + +#include <powerpc/fpu/fpu_arith.h> +#include <powerpc/fpu/fpu_emu.h> + +/* + * The multiplication algorithm for normal numbers is as follows: + * + * The fraction of the product is built in the usual stepwise fashion. + * Each step consists of shifting the accumulator right one bit + * (maintaining any guard bits) and, if the next bit in y is set, + * adding the multiplicand (x) to the accumulator. Then, in any case, + * we advance one bit leftward in y. Algorithmically: + * + * A = 0; + * for (bit = 0; bit < FP_NMANT; bit++) { + * sticky |= A & 1, A >>= 1; + * if (Y & (1 << bit)) + * A += X; + * } + * + * (X and Y here represent the mantissas of x and y respectively.) + * The resultant accumulator (A) is the product's mantissa. It may + * be as large as 11.11111... in binary and hence may need to be + * shifted right, but at most one bit. + * + * Since we do not have efficient multiword arithmetic, we code the + * accumulator as four separate words, just like any other mantissa. + * We use local variables in the hope that this is faster than memory. + * We keep x->fp_mant in locals for the same reason. + * + * In the algorithm above, the bits in y are inspected one at a time. + * We will pick them up 32 at a time and then deal with those 32, one + * at a time. Note, however, that we know several things about y: + * + * - the guard and round bits at the bottom are sure to be zero; + * + * - often many low bits are zero (y is often from a single or double + * precision source); + * + * - bit FP_NMANT-1 is set, and FP_1*2 fits in a word. + * + * We can also test for 32-zero-bits swiftly. In this case, the center + * part of the loop---setting sticky, shifting A, and not adding---will + * run 32 times without adding X to A. We can do a 32-bit shift faster + * by simply moving words. Since zeros are common, we optimize this case. + * Furthermore, since A is initially zero, we can omit the shift as well + * until we reach a nonzero word. + */ +struct fpn * +fpu_mul(struct fpemu *fe) +{ + struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2; + u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m; + int sticky; + FPU_DECL_CARRY; + + /* + * Put the `heavier' operand on the right (see fpu_emu.h). + * Then we will have one of the following cases, taken in the + * following order: + * + * - y = NaN. Implied: if only one is a signalling NaN, y is. + * The result is y. + * - y = Inf. Implied: x != NaN (is 0, number, or Inf: the NaN + * case was taken care of earlier). + * If x = 0, the result is NaN. Otherwise the result + * is y, with its sign reversed if x is negative. + * - x = 0. Implied: y is 0 or number. + * The result is 0 (with XORed sign as usual). + * - other. Implied: both x and y are numbers. + * The result is x * y (XOR sign, multiply bits, add exponents). + */ + DPRINTF(FPE_REG, ("fpu_mul:\n")); + DUMPFPN(FPE_REG, x); + DUMPFPN(FPE_REG, y); + DPRINTF(FPE_REG, ("=>\n")); + + ORDER(x, y); + if (ISNAN(y)) { + y->fp_sign ^= x->fp_sign; + fe->fe_cx |= FPSCR_VXSNAN; + DUMPFPN(FPE_REG, y); + return (y); + } + if (ISINF(y)) { + if (ISZERO(x)) { + fe->fe_cx |= FPSCR_VXIMZ; + return (fpu_newnan(fe)); + } + y->fp_sign ^= x->fp_sign; + DUMPFPN(FPE_REG, y); + return (y); + } + if (ISZERO(x)) { + x->fp_sign ^= y->fp_sign; + DUMPFPN(FPE_REG, x); + return (x); + } + + /* + * Setup. In the code below, the mask `m' will hold the current + * mantissa byte from y. The variable `bit' denotes the bit + * within m. We also define some macros to deal with everything. + */ + x3 = x->fp_mant[3]; + x2 = x->fp_mant[2]; + x1 = x->fp_mant[1]; + x0 = x->fp_mant[0]; + sticky = a3 = a2 = a1 = a0 = 0; + +#define ADD /* A += X */ \ + FPU_ADDS(a3, a3, x3); \ + FPU_ADDCS(a2, a2, x2); \ + FPU_ADDCS(a1, a1, x1); \ + FPU_ADDC(a0, a0, x0) + +#define SHR1 /* A >>= 1, with sticky */ \ + sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \ + a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1 + +#define SHR32 /* A >>= 32, with sticky */ \ + sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0 + +#define STEP /* each 1-bit step of the multiplication */ \ + SHR1; if (bit & m) { ADD; }; bit <<= 1 + + /* + * We are ready to begin. The multiply loop runs once for each + * of the four 32-bit words. Some words, however, are special. + * As noted above, the low order bits of Y are often zero. Even + * if not, the first loop can certainly skip the guard bits. + * The last word of y has its highest 1-bit in position FP_NMANT-1, + * so we stop the loop when we move past that bit. + */ + if ((m = y->fp_mant[3]) == 0) { + /* SHR32; */ /* unneeded since A==0 */ + } else { + bit = 1 << FP_NG; + do { + STEP; + } while (bit != 0); + } + if ((m = y->fp_mant[2]) == 0) { + SHR32; + } else { + bit = 1; + do { + STEP; + } while (bit != 0); + } + if ((m = y->fp_mant[1]) == 0) { + SHR32; + } else { + bit = 1; + do { + STEP; + } while (bit != 0); + } + m = y->fp_mant[0]; /* definitely != 0 */ + bit = 1; + do { + STEP; + } while (bit <= m); + + /* + * Done with mantissa calculation. Get exponent and handle + * 11.111...1 case, then put result in place. We reuse x since + * it already has the right class (FP_NUM). + */ + m = x->fp_exp + y->fp_exp; + if (a0 >= FP_2) { + SHR1; + m++; + } + x->fp_sign ^= y->fp_sign; + x->fp_exp = m; + x->fp_sticky = sticky; + x->fp_mant[3] = a3; + x->fp_mant[2] = a2; + x->fp_mant[1] = a1; + x->fp_mant[0] = a0; + + DUMPFPN(FPE_REG, x); + return (x); +} diff --git a/sys/powerpc/fpu/fpu_sqrt.c b/sys/powerpc/fpu/fpu_sqrt.c new file mode 100644 index 000000000000..c57106959710 --- /dev/null +++ b/sys/powerpc/fpu/fpu_sqrt.c @@ -0,0 +1,415 @@ +/* $NetBSD: fpu_sqrt.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_sqrt.c 8.1 (Berkeley) 6/11/93 + */ + +/* + * Perform an FPU square root (return sqrt(x)). + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/systm.h> +#include <sys/types.h> + +#include <machine/fpu.h> +#include <machine/reg.h> + +#include <powerpc/fpu/fpu_arith.h> +#include <powerpc/fpu/fpu_emu.h> + +/* + * Our task is to calculate the square root of a floating point number x0. + * This number x normally has the form: + * + * exp + * x = mant * 2 (where 1 <= mant < 2 and exp is an integer) + * + * This can be left as it stands, or the mantissa can be doubled and the + * exponent decremented: + * + * exp-1 + * x = (2 * mant) * 2 (where 2 <= 2 * mant < 4) + * + * If the exponent `exp' is even, the square root of the number is best + * handled using the first form, and is by definition equal to: + * + * exp/2 + * sqrt(x) = sqrt(mant) * 2 + * + * If exp is odd, on the other hand, it is convenient to use the second + * form, giving: + * + * (exp-1)/2 + * sqrt(x) = sqrt(2 * mant) * 2 + * + * In the first case, we have + * + * 1 <= mant < 2 + * + * and therefore + * + * sqrt(1) <= sqrt(mant) < sqrt(2) + * + * while in the second case we have + * + * 2 <= 2*mant < 4 + * + * and therefore + * + * sqrt(2) <= sqrt(2*mant) < sqrt(4) + * + * so that in any case, we are sure that + * + * sqrt(1) <= sqrt(n * mant) < sqrt(4), n = 1 or 2 + * + * or + * + * 1 <= sqrt(n * mant) < 2, n = 1 or 2. + * + * This root is therefore a properly formed mantissa for a floating + * point number. The exponent of sqrt(x) is either exp/2 or (exp-1)/2 + * as above. This leaves us with the problem of finding the square root + * of a fixed-point number in the range [1..4). + * + * Though it may not be instantly obvious, the following square root + * algorithm works for any integer x of an even number of bits, provided + * that no overflows occur: + * + * let q = 0 + * for k = NBITS-1 to 0 step -1 do -- for each digit in the answer... + * x *= 2 -- multiply by radix, for next digit + * if x >= 2q + 2^k then -- if adding 2^k does not + * x -= 2q + 2^k -- exceed the correct root, + * q += 2^k -- add 2^k and adjust x + * fi + * done + * sqrt = q / 2^(NBITS/2) -- (and any remainder is in x) + * + * If NBITS is odd (so that k is initially even), we can just add another + * zero bit at the top of x. Doing so means that q is not going to acquire + * a 1 bit in the first trip around the loop (since x0 < 2^NBITS). If the + * final value in x is not needed, or can be off by a factor of 2, this is + * equivalant to moving the `x *= 2' step to the bottom of the loop: + * + * for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done + * + * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2). + * (Since the algorithm is destructive on x, we will call x's initial + * value, for which q is some power of two times its square root, x0.) + * + * If we insert a loop invariant y = 2q, we can then rewrite this using + * C notation as: + * + * q = y = 0; x = x0; + * for (k = NBITS; --k >= 0;) { + * #if (NBITS is even) + * x *= 2; + * #endif + * t = y + (1 << k); + * if (x >= t) { + * x -= t; + * q += 1 << k; + * y += 1 << (k + 1); + * } + * #if (NBITS is odd) + * x *= 2; + * #endif + * } + * + * If x0 is fixed point, rather than an integer, we can simply alter the + * scale factor between q and sqrt(x0). As it happens, we can easily arrange + * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q. + * + * In our case, however, x0 (and therefore x, y, q, and t) are multiword + * integers, which adds some complication. But note that q is built one + * bit at a time, from the top down, and is not used itself in the loop + * (we use 2q as held in y instead). This means we can build our answer + * in an integer, one word at a time, which saves a bit of work. Also, + * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are + * `new' bits in y and we can set them with an `or' operation rather than + * a full-blown multiword add. + * + * We are almost done, except for one snag. We must prove that none of our + * intermediate calculations can overflow. We know that x0 is in [1..4) + * and therefore the square root in q will be in [1..2), but what about x, + * y, and t? + * + * We know that y = 2q at the beginning of each loop. (The relation only + * fails temporarily while y and q are being updated.) Since q < 2, y < 4. + * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and. + * Furthermore, we can prove with a bit of work that x never exceeds y by + * more than 2, so that even after doubling, 0 <= x < 8. (This is left as + * an exercise to the reader, mostly because I have become tired of working + * on this comment.) + * + * If our floating point mantissas (which are of the form 1.frac) occupy + * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra. + * In fact, we want even one more bit (for a carry, to avoid compares), or + * three extra. There is a comment in fpu_emu.h reminding maintainers of + * this, so we have some justification in assuming it. + */ +struct fpn * +fpu_sqrt(struct fpemu *fe) +{ + struct fpn *x = &fe->fe_f1; + u_int bit, q, tt; + u_int x0, x1, x2, x3; + u_int y0, y1, y2, y3; + u_int d0, d1, d2, d3; + int e; + FPU_DECL_CARRY; + + /* + * Take care of special cases first. In order: + * + * sqrt(NaN) = NaN + * sqrt(+0) = +0 + * sqrt(-0) = -0 + * sqrt(x < 0) = NaN (including sqrt(-Inf)) + * sqrt(+Inf) = +Inf + * + * Then all that remains are numbers with mantissas in [1..2). + */ + DPRINTF(FPE_REG, ("fpu_sqer:\n")); + DUMPFPN(FPE_REG, x); + DPRINTF(FPE_REG, ("=>\n")); + if (ISNAN(x)) { + fe->fe_cx |= FPSCR_VXSNAN; + DUMPFPN(FPE_REG, x); + return (x); + } + if (ISZERO(x)) { + fe->fe_cx |= FPSCR_ZX; + x->fp_class = FPC_INF; + DUMPFPN(FPE_REG, x); + return (x); + } + if (x->fp_sign) { + return (fpu_newnan(fe)); + } + if (ISINF(x)) { + fe->fe_cx |= FPSCR_VXSQRT; + DUMPFPN(FPE_REG, 0); + return (0); + } + + /* + * Calculate result exponent. As noted above, this may involve + * doubling the mantissa. We will also need to double x each + * time around the loop, so we define a macro for this here, and + * we break out the multiword mantissa. + */ +#ifdef FPU_SHL1_BY_ADD +#define DOUBLE_X { \ + FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \ + FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \ +} +#else +#define DOUBLE_X { \ + x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \ + x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \ +} +#endif +#if (FP_NMANT & 1) != 0 +# define ODD_DOUBLE DOUBLE_X +# define EVEN_DOUBLE /* nothing */ +#else +# define ODD_DOUBLE /* nothing */ +# define EVEN_DOUBLE DOUBLE_X +#endif + x0 = x->fp_mant[0]; + x1 = x->fp_mant[1]; + x2 = x->fp_mant[2]; + x3 = x->fp_mant[3]; + e = x->fp_exp; + if (e & 1) /* exponent is odd; use sqrt(2mant) */ + DOUBLE_X; + /* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */ + x->fp_exp = e >> 1; /* calculates (e&1 ? (e-1)/2 : e/2 */ + + /* + * Now calculate the mantissa root. Since x is now in [1..4), + * we know that the first trip around the loop will definitely + * set the top bit in q, so we can do that manually and start + * the loop at the next bit down instead. We must be sure to + * double x correctly while doing the `known q=1.0'. + * + * We do this one mantissa-word at a time, as noted above, to + * save work. To avoid `(1 << 31) << 1', we also do the top bit + * outside of each per-word loop. + * + * The calculation `t = y + bit' breaks down into `t0 = y0, ..., + * t3 = y3, t? |= bit' for the appropriate word. Since the bit + * is always a `new' one, this means that three of the `t?'s are + * just the corresponding `y?'; we use `#define's here for this. + * The variable `tt' holds the actual `t?' variable. + */ + + /* calculate q0 */ +#define t0 tt + bit = FP_1; + EVEN_DOUBLE; + /* if (x >= (t0 = y0 | bit)) { */ /* always true */ + q = bit; + x0 -= bit; + y0 = bit << 1; + /* } */ + ODD_DOUBLE; + while ((bit >>= 1) != 0) { /* for remaining bits in q0 */ + EVEN_DOUBLE; + t0 = y0 | bit; /* t = y + bit */ + if (x0 >= t0) { /* if x >= t then */ + x0 -= t0; /* x -= t */ + q |= bit; /* q += bit */ + y0 |= bit << 1; /* y += bit << 1 */ + } + ODD_DOUBLE; + } + x->fp_mant[0] = q; +#undef t0 + + /* calculate q1. note (y0&1)==0. */ +#define t0 y0 +#define t1 tt + q = 0; + y1 = 0; + bit = 1 << 31; + EVEN_DOUBLE; + t1 = bit; + FPU_SUBS(d1, x1, t1); + FPU_SUBC(d0, x0, t0); /* d = x - t */ + if ((int)d0 >= 0) { /* if d >= 0 (i.e., x >= t) then */ + x0 = d0, x1 = d1; /* x -= t */ + q = bit; /* q += bit */ + y0 |= 1; /* y += bit << 1 */ + } + ODD_DOUBLE; + while ((bit >>= 1) != 0) { /* for remaining bits in q1 */ + EVEN_DOUBLE; /* as before */ + t1 = y1 | bit; + FPU_SUBS(d1, x1, t1); + FPU_SUBC(d0, x0, t0); + if ((int)d0 >= 0) { + x0 = d0, x1 = d1; + q |= bit; + y1 |= bit << 1; + } + ODD_DOUBLE; + } + x->fp_mant[1] = q; +#undef t1 + + /* calculate q2. note (y1&1)==0; y0 (aka t0) is fixed. */ +#define t1 y1 +#define t2 tt + q = 0; + y2 = 0; + bit = 1 << 31; + EVEN_DOUBLE; + t2 = bit; + FPU_SUBS(d2, x2, t2); + FPU_SUBCS(d1, x1, t1); + FPU_SUBC(d0, x0, t0); + if ((int)d0 >= 0) { + x0 = d0, x1 = d1, x2 = d2; + q |= bit; + y1 |= 1; /* now t1, y1 are set in concrete */ + } + ODD_DOUBLE; + while ((bit >>= 1) != 0) { + EVEN_DOUBLE; + t2 = y2 | bit; + FPU_SUBS(d2, x2, t2); + FPU_SUBCS(d1, x1, t1); + FPU_SUBC(d0, x0, t0); + if ((int)d0 >= 0) { + x0 = d0, x1 = d1, x2 = d2; + q |= bit; + y2 |= bit << 1; + } + ODD_DOUBLE; + } + x->fp_mant[2] = q; +#undef t2 + + /* calculate q3. y0, t0, y1, t1 all fixed; y2, t2, almost done. */ +#define t2 y2 +#define t3 tt + q = 0; + y3 = 0; + bit = 1 << 31; + EVEN_DOUBLE; + t3 = bit; + FPU_SUBS(d3, x3, t3); + FPU_SUBCS(d2, x2, t2); + FPU_SUBCS(d1, x1, t1); + FPU_SUBC(d0, x0, t0); + ODD_DOUBLE; + if ((int)d0 >= 0) { + x0 = d0, x1 = d1, x2 = d2; + q |= bit; + y2 |= 1; + } + while ((bit >>= 1) != 0) { + EVEN_DOUBLE; + t3 = y3 | bit; + FPU_SUBS(d3, x3, t3); + FPU_SUBCS(d2, x2, t2); + FPU_SUBCS(d1, x1, t1); + FPU_SUBC(d0, x0, t0); + if ((int)d0 >= 0) { + x0 = d0, x1 = d1, x2 = d2; + q |= bit; + y3 |= bit << 1; + } + ODD_DOUBLE; + } + x->fp_mant[3] = q; + + /* + * The result, which includes guard and round bits, is exact iff + * x is now zero; any nonzero bits in x represent sticky bits. + */ + x->fp_sticky = x0 | x1 | x2 | x3; + DUMPFPN(FPE_REG, x); + return (x); +} diff --git a/sys/powerpc/fpu/fpu_subr.c b/sys/powerpc/fpu/fpu_subr.c new file mode 100644 index 000000000000..e403e1816693 --- /dev/null +++ b/sys/powerpc/fpu/fpu_subr.c @@ -0,0 +1,221 @@ +/* $NetBSD: fpu_subr.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */ + +/* + * Copyright (c) 1992, 1993 + * The Regents of the University of California. All rights reserved. + * + * This software was developed by the Computer Systems Engineering group + * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and + * contributed to Berkeley. + * + * All advertising materials mentioning features or use of this software + * must display the following acknowledgement: + * This product includes software developed by the University of + * California, Lawrence Berkeley Laboratory. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. Neither the name of the University nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND + * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE + * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS + * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) + * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF + * SUCH DAMAGE. + * + * @(#)fpu_subr.c 8.1 (Berkeley) 6/11/93 + */ + +/* + * FPU subroutines. + */ + +#include <sys/cdefs.h> +__FBSDID("$FreeBSD$"); + +#include <sys/systm.h> +#include <sys/types.h> + +#include <machine/fpu.h> +#include <machine/reg.h> + +#include <powerpc/fpu/fpu_arith.h> +#include <powerpc/fpu/fpu_emu.h> +#include <powerpc/fpu/fpu_extern.h> + +/* + * Shift the given number right rsh bits. Any bits that `fall off' will get + * shoved into the sticky field; we return the resulting sticky. Note that + * shifting NaNs is legal (this will never shift all bits out); a NaN's + * sticky field is ignored anyway. + */ +int +fpu_shr(struct fpn *fp, int rsh) +{ + u_int m0, m1, m2, m3, s; + int lsh; + +#ifdef DIAGNOSTIC + if (rsh <= 0 || (fp->fp_class != FPC_NUM && !ISNAN(fp))) + panic("fpu_rightshift 1"); +#endif + + m0 = fp->fp_mant[0]; + m1 = fp->fp_mant[1]; + m2 = fp->fp_mant[2]; + m3 = fp->fp_mant[3]; + + /* If shifting all the bits out, take a shortcut. */ + if (rsh >= FP_NMANT) { +#ifdef DIAGNOSTIC + if ((m0 | m1 | m2 | m3) == 0) + panic("fpu_rightshift 2"); +#endif + fp->fp_mant[0] = 0; + fp->fp_mant[1] = 0; + fp->fp_mant[2] = 0; + fp->fp_mant[3] = 0; +#ifdef notdef + if ((m0 | m1 | m2 | m3) == 0) + fp->fp_class = FPC_ZERO; + else +#endif + fp->fp_sticky = 1; + return (1); + } + + /* Squish out full words. */ + s = fp->fp_sticky; + if (rsh >= 32 * 3) { + s |= m3 | m2 | m1; + m3 = m0, m2 = 0, m1 = 0, m0 = 0; + } else if (rsh >= 32 * 2) { + s |= m3 | m2; + m3 = m1, m2 = m0, m1 = 0, m0 = 0; + } else if (rsh >= 32) { + s |= m3; + m3 = m2, m2 = m1, m1 = m0, m0 = 0; + } + + /* Handle any remaining partial word. */ + if ((rsh &= 31) != 0) { + lsh = 32 - rsh; + s |= m3 << lsh; + m3 = (m3 >> rsh) | (m2 << lsh); + m2 = (m2 >> rsh) | (m1 << lsh); + m1 = (m1 >> rsh) | (m0 << lsh); + m0 >>= rsh; + } + fp->fp_mant[0] = m0; + fp->fp_mant[1] = m1; + fp->fp_mant[2] = m2; + fp->fp_mant[3] = m3; + fp->fp_sticky = s; + return (s); +} + +/* + * Force a number to be normal, i.e., make its fraction have all zero + * bits before FP_1, then FP_1, then all 1 bits. This is used for denorms + * and (sometimes) for intermediate results. + * + * Internally, this may use a `supernormal' -- a number whose fp_mant + * is greater than or equal to 2.0 -- so as a side effect you can hand it + * a supernormal and it will fix it (provided fp->fp_mant[3] == 0). + */ +void +fpu_norm(struct fpn *fp) +{ + u_int m0, m1, m2, m3, top, sup, nrm; + int lsh, rsh, exp; + + exp = fp->fp_exp; + m0 = fp->fp_mant[0]; + m1 = fp->fp_mant[1]; + m2 = fp->fp_mant[2]; + m3 = fp->fp_mant[3]; + + /* Handle severe subnormals with 32-bit moves. */ + if (m0 == 0) { + if (m1) + m0 = m1, m1 = m2, m2 = m3, m3 = 0, exp -= 32; + else if (m2) + m0 = m2, m1 = m3, m2 = 0, m3 = 0, exp -= 2 * 32; + else if (m3) + m0 = m3, m1 = 0, m2 = 0, m3 = 0, exp -= 3 * 32; + else { + fp->fp_class = FPC_ZERO; + return; + } + } + + /* Now fix any supernormal or remaining subnormal. */ + nrm = FP_1; + sup = nrm << 1; + if (m0 >= sup) { + /* + * We have a supernormal number. We need to shift it right. + * We may assume m3==0. + */ + for (rsh = 1, top = m0 >> 1; top >= sup; rsh++) /* XXX slow */ + top >>= 1; + exp += rsh; + lsh = 32 - rsh; + m3 = m2 << lsh; + m2 = (m2 >> rsh) | (m1 << lsh); + m1 = (m1 >> rsh) | (m0 << lsh); + m0 = top; + } else if (m0 < nrm) { + /* + * We have a regular denorm (a subnormal number), and need + * to shift it left. + */ + for (lsh = 1, top = m0 << 1; top < nrm; lsh++) /* XXX slow */ + top <<= 1; + exp -= lsh; + rsh = 32 - lsh; + m0 = top | (m1 >> rsh); + m1 = (m1 << lsh) | (m2 >> rsh); + m2 = (m2 << lsh) | (m3 >> rsh); + m3 <<= lsh; + } + + fp->fp_exp = exp; + fp->fp_mant[0] = m0; + fp->fp_mant[1] = m1; + fp->fp_mant[2] = m2; + fp->fp_mant[3] = m3; +} + +/* + * Concoct a `fresh' Quiet NaN per Appendix N. + * As a side effect, we set NV (invalid) for the current exceptions. + */ +struct fpn * +fpu_newnan(struct fpemu *fe) +{ + struct fpn *fp; + + fe->fe_cx |= FPSCR_VXSNAN; + fp = &fe->fe_f3; + fp->fp_class = FPC_QNAN; + fp->fp_sign = 0; + fp->fp_mant[0] = FP_1 - 1; + fp->fp_mant[1] = fp->fp_mant[2] = fp->fp_mant[3] = ~0; + DUMPFPN(FPE_REG, fp); + return (fp); +} |