aboutsummaryrefslogtreecommitdiff
path: root/sys/powerpc/fpu
diff options
context:
space:
mode:
authorMarcel Moolenaar <marcel@FreeBSD.org>2008-02-23 20:05:26 +0000
committerMarcel Moolenaar <marcel@FreeBSD.org>2008-02-23 20:05:26 +0000
commit7e76048a6983e2f98c82d50ccd83bcdffe5a69d4 (patch)
tree595e5661bff8b902e5e265264b1122f56098725b /sys/powerpc/fpu
parent859baed9a9f5d2e3181d8a2f53c5030b455c1906 (diff)
downloadsrc-7e76048a6983e2f98c82d50ccd83bcdffe5a69d4.tar.gz
src-7e76048a6983e2f98c82d50ccd83bcdffe5a69d4.zip
Notes
Diffstat (limited to 'sys/powerpc/fpu')
-rw-r--r--sys/powerpc/fpu/fpu_add.c227
-rw-r--r--sys/powerpc/fpu/fpu_arith.h152
-rw-r--r--sys/powerpc/fpu/fpu_compare.c162
-rw-r--r--sys/powerpc/fpu/fpu_div.c292
-rw-r--r--sys/powerpc/fpu/fpu_emu.c787
-rw-r--r--sys/powerpc/fpu/fpu_emu.h192
-rw-r--r--sys/powerpc/fpu/fpu_explode.c262
-rw-r--r--sys/powerpc/fpu/fpu_extern.h83
-rw-r--r--sys/powerpc/fpu/fpu_implode.c462
-rw-r--r--sys/powerpc/fpu/fpu_instr.h386
-rw-r--r--sys/powerpc/fpu/fpu_mul.c239
-rw-r--r--sys/powerpc/fpu/fpu_sqrt.c415
-rw-r--r--sys/powerpc/fpu/fpu_subr.c221
13 files changed, 3880 insertions, 0 deletions
diff --git a/sys/powerpc/fpu/fpu_add.c b/sys/powerpc/fpu/fpu_add.c
new file mode 100644
index 000000000000..375c529354d9
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_add.c
@@ -0,0 +1,227 @@
+/* $NetBSD: fpu_add.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu_add.c 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * Perform an FPU add (return x + y).
+ *
+ * To subtract, negate y and call add.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/systm.h>
+#include <sys/types.h>
+
+#include <machine/fpu.h>
+#include <machine/ieeefp.h>
+#include <machine/reg.h>
+
+#include <powerpc/fpu/fpu_arith.h>
+#include <powerpc/fpu/fpu_emu.h>
+#include <powerpc/fpu/fpu_extern.h>
+
+struct fpn *
+fpu_add(struct fpemu *fe)
+{
+ struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2, *r;
+ u_int r0, r1, r2, r3;
+ int rd;
+
+ /*
+ * Put the `heavier' operand on the right (see fpu_emu.h).
+ * Then we will have one of the following cases, taken in the
+ * following order:
+ *
+ * - y = NaN. Implied: if only one is a signalling NaN, y is.
+ * The result is y.
+ * - y = Inf. Implied: x != NaN (is 0, number, or Inf: the NaN
+ * case was taken care of earlier).
+ * If x = -y, the result is NaN. Otherwise the result
+ * is y (an Inf of whichever sign).
+ * - y is 0. Implied: x = 0.
+ * If x and y differ in sign (one positive, one negative),
+ * the result is +0 except when rounding to -Inf. If same:
+ * +0 + +0 = +0; -0 + -0 = -0.
+ * - x is 0. Implied: y != 0.
+ * Result is y.
+ * - other. Implied: both x and y are numbers.
+ * Do addition a la Hennessey & Patterson.
+ */
+ DPRINTF(FPE_REG, ("fpu_add:\n"));
+ DUMPFPN(FPE_REG, x);
+ DUMPFPN(FPE_REG, y);
+ DPRINTF(FPE_REG, ("=>\n"));
+ ORDER(x, y);
+ if (ISNAN(y)) {
+ fe->fe_cx |= FPSCR_VXSNAN;
+ DUMPFPN(FPE_REG, y);
+ return (y);
+ }
+ if (ISINF(y)) {
+ if (ISINF(x) && x->fp_sign != y->fp_sign) {
+ fe->fe_cx |= FPSCR_VXISI;
+ return (fpu_newnan(fe));
+ }
+ DUMPFPN(FPE_REG, y);
+ return (y);
+ }
+ rd = ((fe->fe_fpscr) & FPSCR_RN);
+ if (ISZERO(y)) {
+ if (rd != FP_RM) /* only -0 + -0 gives -0 */
+ y->fp_sign &= x->fp_sign;
+ else /* any -0 operand gives -0 */
+ y->fp_sign |= x->fp_sign;
+ DUMPFPN(FPE_REG, y);
+ return (y);
+ }
+ if (ISZERO(x)) {
+ DUMPFPN(FPE_REG, y);
+ return (y);
+ }
+ /*
+ * We really have two numbers to add, although their signs may
+ * differ. Make the exponents match, by shifting the smaller
+ * number right (e.g., 1.011 => 0.1011) and increasing its
+ * exponent (2^3 => 2^4). Note that we do not alter the exponents
+ * of x and y here.
+ */
+ r = &fe->fe_f3;
+ r->fp_class = FPC_NUM;
+ if (x->fp_exp == y->fp_exp) {
+ r->fp_exp = x->fp_exp;
+ r->fp_sticky = 0;
+ } else {
+ if (x->fp_exp < y->fp_exp) {
+ /*
+ * Try to avoid subtract case iii (see below).
+ * This also guarantees that x->fp_sticky = 0.
+ */
+ SWAP(x, y);
+ }
+ /* now x->fp_exp > y->fp_exp */
+ r->fp_exp = x->fp_exp;
+ r->fp_sticky = fpu_shr(y, x->fp_exp - y->fp_exp);
+ }
+ r->fp_sign = x->fp_sign;
+ if (x->fp_sign == y->fp_sign) {
+ FPU_DECL_CARRY
+
+ /*
+ * The signs match, so we simply add the numbers. The result
+ * may be `supernormal' (as big as 1.111...1 + 1.111...1, or
+ * 11.111...0). If so, a single bit shift-right will fix it
+ * (but remember to adjust the exponent).
+ */
+ /* r->fp_mant = x->fp_mant + y->fp_mant */
+ FPU_ADDS(r->fp_mant[3], x->fp_mant[3], y->fp_mant[3]);
+ FPU_ADDCS(r->fp_mant[2], x->fp_mant[2], y->fp_mant[2]);
+ FPU_ADDCS(r->fp_mant[1], x->fp_mant[1], y->fp_mant[1]);
+ FPU_ADDC(r0, x->fp_mant[0], y->fp_mant[0]);
+ if ((r->fp_mant[0] = r0) >= FP_2) {
+ (void) fpu_shr(r, 1);
+ r->fp_exp++;
+ }
+ } else {
+ FPU_DECL_CARRY
+
+ /*
+ * The signs differ, so things are rather more difficult.
+ * H&P would have us negate the negative operand and add;
+ * this is the same as subtracting the negative operand.
+ * This is quite a headache. Instead, we will subtract
+ * y from x, regardless of whether y itself is the negative
+ * operand. When this is done one of three conditions will
+ * hold, depending on the magnitudes of x and y:
+ * case i) |x| > |y|. The result is just x - y,
+ * with x's sign, but it may need to be normalized.
+ * case ii) |x| = |y|. The result is 0 (maybe -0)
+ * so must be fixed up.
+ * case iii) |x| < |y|. We goofed; the result should
+ * be (y - x), with the same sign as y.
+ * We could compare |x| and |y| here and avoid case iii,
+ * but that would take just as much work as the subtract.
+ * We can tell case iii has occurred by an overflow.
+ *
+ * N.B.: since x->fp_exp >= y->fp_exp, x->fp_sticky = 0.
+ */
+ /* r->fp_mant = x->fp_mant - y->fp_mant */
+ FPU_SET_CARRY(y->fp_sticky);
+ FPU_SUBCS(r3, x->fp_mant[3], y->fp_mant[3]);
+ FPU_SUBCS(r2, x->fp_mant[2], y->fp_mant[2]);
+ FPU_SUBCS(r1, x->fp_mant[1], y->fp_mant[1]);
+ FPU_SUBC(r0, x->fp_mant[0], y->fp_mant[0]);
+ if (r0 < FP_2) {
+ /* cases i and ii */
+ if ((r0 | r1 | r2 | r3) == 0) {
+ /* case ii */
+ r->fp_class = FPC_ZERO;
+ r->fp_sign = rd == FP_RM;
+ return (r);
+ }
+ } else {
+ /*
+ * Oops, case iii. This can only occur when the
+ * exponents were equal, in which case neither
+ * x nor y have sticky bits set. Flip the sign
+ * (to y's sign) and negate the result to get y - x.
+ */
+#ifdef DIAGNOSTIC
+ if (x->fp_exp != y->fp_exp || r->fp_sticky)
+ panic("fpu_add");
+#endif
+ r->fp_sign = y->fp_sign;
+ FPU_SUBS(r3, 0, r3);
+ FPU_SUBCS(r2, 0, r2);
+ FPU_SUBCS(r1, 0, r1);
+ FPU_SUBC(r0, 0, r0);
+ }
+ r->fp_mant[3] = r3;
+ r->fp_mant[2] = r2;
+ r->fp_mant[1] = r1;
+ r->fp_mant[0] = r0;
+ if (r0 < FP_1)
+ fpu_norm(r);
+ }
+ DUMPFPN(FPE_REG, r);
+ return (r);
+}
diff --git a/sys/powerpc/fpu/fpu_arith.h b/sys/powerpc/fpu/fpu_arith.h
new file mode 100644
index 000000000000..f74ac6688ccc
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_arith.h
@@ -0,0 +1,152 @@
+/* $NetBSD: fpu_arith.h,v 1.4 2005/12/24 20:07:28 perry Exp $ */
+/* $FreeBSD$ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu_arith.h 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * Extended-precision arithmetic.
+ *
+ * We hold the notion of a `carry register', which may or may not be a
+ * machine carry bit or register. On the SPARC, it is just the machine's
+ * carry bit.
+ *
+ * In the worst case, you can compute the carry from x+y as
+ * (unsigned)(x + y) < (unsigned)x
+ * and from x+y+c as
+ * ((unsigned)(x + y + c) <= (unsigned)x && (y|c) != 0)
+ * for example.
+ */
+
+
+#ifndef FPE_USE_ASM
+
+/* set up for extended-precision arithemtic */
+#define FPU_DECL_CARRY quad_t fpu_carry, fpu_tmp;
+
+/*
+ * We have three kinds of add:
+ * add with carry: r = x + y + c
+ * add (ignoring current carry) and set carry: c'r = x + y + 0
+ * add with carry and set carry: c'r = x + y + c
+ * The macros use `C' for `use carry' and `S' for `set carry'.
+ * Note that the state of the carry is undefined after ADDC and SUBC,
+ * so if all you have for these is `add with carry and set carry',
+ * that is OK.
+ *
+ * The same goes for subtract, except that we compute x - y - c.
+ *
+ * Finally, we have a way to get the carry into a `regular' variable,
+ * or set it from a value. SET_CARRY turns 0 into no-carry, nonzero
+ * into carry; GET_CARRY sets its argument to 0 or 1.
+ */
+#define FPU_ADDC(r, x, y) \
+ (r) = (x) + (y) + (!!fpu_carry)
+#define FPU_ADDS(r, x, y) \
+ { \
+ fpu_tmp = (quad_t)(x) + (quad_t)(y); \
+ (r) = (u_int)fpu_tmp; \
+ fpu_carry = ((fpu_tmp & 0xffffffff00000000LL) != 0); \
+ }
+#define FPU_ADDCS(r, x, y) \
+ { \
+ fpu_tmp = (quad_t)(x) + (quad_t)(y) + (!!fpu_carry); \
+ (r) = (u_int)fpu_tmp; \
+ fpu_carry = ((fpu_tmp & 0xffffffff00000000LL) != 0); \
+ }
+#define FPU_SUBC(r, x, y) \
+ (r) = (x) - (y) - (!!fpu_carry)
+#define FPU_SUBS(r, x, y) \
+ { \
+ fpu_tmp = (quad_t)(x) - (quad_t)(y); \
+ (r) = (u_int)fpu_tmp; \
+ fpu_carry = ((fpu_tmp & 0xffffffff00000000LL) != 0); \
+ }
+#define FPU_SUBCS(r, x, y) \
+ { \
+ fpu_tmp = (quad_t)(x) - (quad_t)(y) - (!!fpu_carry); \
+ (r) = (u_int)fpu_tmp; \
+ fpu_carry = ((fpu_tmp & 0xffffffff00000000LL) != 0); \
+ }
+
+#define FPU_GET_CARRY(r) (r) = (!!fpu_carry)
+#define FPU_SET_CARRY(v) fpu_carry = ((v) != 0)
+
+#else
+/* set up for extended-precision arithemtic */
+#define FPU_DECL_CARRY
+
+/*
+ * We have three kinds of add:
+ * add with carry: r = x + y + c
+ * add (ignoring current carry) and set carry: c'r = x + y + 0
+ * add with carry and set carry: c'r = x + y + c
+ * The macros use `C' for `use carry' and `S' for `set carry'.
+ * Note that the state of the carry is undefined after ADDC and SUBC,
+ * so if all you have for these is `add with carry and set carry',
+ * that is OK.
+ *
+ * The same goes for subtract, except that we compute x - y - c.
+ *
+ * Finally, we have a way to get the carry into a `regular' variable,
+ * or set it from a value. SET_CARRY turns 0 into no-carry, nonzero
+ * into carry; GET_CARRY sets its argument to 0 or 1.
+ */
+#define FPU_ADDC(r, x, y) \
+ __asm volatile("adde %0,%1,%2" : "=r"(r) : "r"(x), "r"(y))
+#define FPU_ADDS(r, x, y) \
+ __asm volatile("addc %0,%1,%2" : "=r"(r) : "r"(x), "r"(y))
+#define FPU_ADDCS(r, x, y) \
+ __asm volatile("adde %0,%1,%2" : "=r"(r) : "r"(x), "r"(y))
+#define FPU_SUBC(r, x, y) \
+ __asm volatile("subfe %0,%2,%1" : "=r"(r) : "r"(x), "r"(y))
+#define FPU_SUBS(r, x, y) \
+ __asm volatile("subfc %0,%2,%1" : "=r"(r) : "r"(x), "r"(y))
+#define FPU_SUBCS(r, x, y) \
+ __asm volatile("subfe %0,%2,%1" : "=r"(r) : "r"(x), "r"(y))
+
+#define FPU_GET_CARRY(r) __asm volatile("li %0,0; addie %0,%0,0" : "=r"(r))
+/* This one needs to destroy a temp register. */
+#define FPU_SET_CARRY(v) do { int __tmp; \
+ __asm volatile("addic %0,%0,-1" : "r"(__tmp) : "r"(v)); \
+ } while (0)
+
+#define FPU_SHL1_BY_ADD /* shift left 1 faster by ADDC than (a<<1)|(b>>31) */
+#endif
diff --git a/sys/powerpc/fpu/fpu_compare.c b/sys/powerpc/fpu/fpu_compare.c
new file mode 100644
index 000000000000..6edba5f85905
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_compare.c
@@ -0,0 +1,162 @@
+/* $NetBSD: fpu_compare.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu_compare.c 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * FCMPU and FCMPO instructions.
+ *
+ * These rely on the fact that our internal wide format is achieved by
+ * adding zero bits to the end of narrower mantissas.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/systm.h>
+#include <sys/types.h>
+
+#include <machine/fpu.h>
+#include <machine/reg.h>
+
+#include <powerpc/fpu/fpu_arith.h>
+#include <powerpc/fpu/fpu_emu.h>
+
+/*
+ * Perform a compare instruction (with or without unordered exception).
+ * This updates the fcc field in the fsr.
+ *
+ * If either operand is NaN, the result is unordered. For ordered, this
+ * causes an NV exception. Everything else is ordered:
+ * |Inf| > |numbers| > |0|.
+ * We already arranged for fp_class(Inf) > fp_class(numbers) > fp_class(0),
+ * so we get this directly. Note, however, that two zeros compare equal
+ * regardless of sign, while everything else depends on sign.
+ *
+ * Incidentally, two Infs of the same sign compare equal (per the 80387
+ * manual---it would be nice if the SPARC documentation were more
+ * complete).
+ */
+void
+fpu_compare(struct fpemu *fe, int ordered)
+{
+ struct fpn *a, *b, *r;
+ int cc;
+
+ a = &fe->fe_f1;
+ b = &fe->fe_f2;
+ r = &fe->fe_f3;
+
+ if (ISNAN(a) || ISNAN(b)) {
+ /*
+ * In any case, we already got an exception for signalling
+ * NaNs; here we may replace that one with an identical
+ * exception, but so what?.
+ */
+ cc = FPSCR_FU;
+ if (ISSNAN(a) || ISSNAN(b))
+ cc |= FPSCR_VXSNAN;
+ if (ordered) {
+ if (fe->fe_fpscr & FPSCR_VE || ISQNAN(a) || ISQNAN(b))
+ cc |= FPSCR_VXVC;
+ }
+ goto done;
+ }
+
+ /*
+ * Must handle both-zero early to avoid sign goofs. Otherwise,
+ * at most one is 0, and if the signs differ we are done.
+ */
+ if (ISZERO(a) && ISZERO(b)) {
+ cc = FPSCR_FE;
+ goto done;
+ }
+ if (a->fp_sign) { /* a < 0 (or -0) */
+ if (!b->fp_sign) { /* b >= 0 (or if a = -0, b > 0) */
+ cc = FPSCR_FL;
+ goto done;
+ }
+ } else { /* a > 0 (or +0) */
+ if (b->fp_sign) { /* b <= -0 (or if a = +0, b < 0) */
+ cc = FPSCR_FG;
+ goto done;
+ }
+ }
+
+ /*
+ * Now the signs are the same (but may both be negative). All
+ * we have left are these cases:
+ *
+ * |a| < |b| [classes or values differ]
+ * |a| > |b| [classes or values differ]
+ * |a| == |b| [classes and values identical]
+ *
+ * We define `diff' here to expand these as:
+ *
+ * |a| < |b|, a,b >= 0: a < b => FSR_CC_LT
+ * |a| < |b|, a,b < 0: a > b => FSR_CC_GT
+ * |a| > |b|, a,b >= 0: a > b => FSR_CC_GT
+ * |a| > |b|, a,b < 0: a < b => FSR_CC_LT
+ */
+#define opposite_cc(cc) ((cc) == FPSCR_FL ? FPSCR_FG : FPSCR_FL)
+#define diff(magnitude) (a->fp_sign ? opposite_cc(magnitude) : (magnitude))
+ if (a->fp_class < b->fp_class) { /* |a| < |b| */
+ cc = diff(FPSCR_FL);
+ goto done;
+ }
+ if (a->fp_class > b->fp_class) { /* |a| > |b| */
+ cc = diff(FPSCR_FG);
+ goto done;
+ }
+ /* now none can be 0: only Inf and numbers remain */
+ if (ISINF(a)) { /* |Inf| = |Inf| */
+ cc = FPSCR_FE;
+ goto done;
+ }
+ fpu_sub(fe);
+ if (ISZERO(r))
+ cc = FPSCR_FE;
+ else if (r->fp_sign)
+ cc = FPSCR_FL;
+ else
+ cc = FPSCR_FG;
+done:
+ fe->fe_cx = cc;
+}
diff --git a/sys/powerpc/fpu/fpu_div.c b/sys/powerpc/fpu/fpu_div.c
new file mode 100644
index 000000000000..5376b3dfd53f
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_div.c
@@ -0,0 +1,292 @@
+/* $NetBSD: fpu_div.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu_div.c 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * Perform an FPU divide (return x / y).
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/systm.h>
+#include <sys/types.h>
+
+#include <machine/fpu.h>
+#include <machine/reg.h>
+
+#include <powerpc/fpu/fpu_arith.h>
+#include <powerpc/fpu/fpu_emu.h>
+
+/*
+ * Division of normal numbers is done as follows:
+ *
+ * x and y are floating point numbers, i.e., in the form 1.bbbb * 2^e.
+ * If X and Y are the mantissas (1.bbbb's), the quotient is then:
+ *
+ * q = (X / Y) * 2^((x exponent) - (y exponent))
+ *
+ * Since X and Y are both in [1.0,2.0), the quotient's mantissa (X / Y)
+ * will be in [0.5,2.0). Moreover, it will be less than 1.0 if and only
+ * if X < Y. In that case, it will have to be shifted left one bit to
+ * become a normal number, and the exponent decremented. Thus, the
+ * desired exponent is:
+ *
+ * left_shift = x->fp_mant < y->fp_mant;
+ * result_exp = x->fp_exp - y->fp_exp - left_shift;
+ *
+ * The quotient mantissa X/Y can then be computed one bit at a time
+ * using the following algorithm:
+ *
+ * Q = 0; -- Initial quotient.
+ * R = X; -- Initial remainder,
+ * if (left_shift) -- but fixed up in advance.
+ * R *= 2;
+ * for (bit = FP_NMANT; --bit >= 0; R *= 2) {
+ * if (R >= Y) {
+ * Q |= 1 << bit;
+ * R -= Y;
+ * }
+ * }
+ *
+ * The subtraction R -= Y always removes the uppermost bit from R (and
+ * can sometimes remove additional lower-order 1 bits); this proof is
+ * left to the reader.
+ *
+ * This loop correctly calculates the guard and round bits since they are
+ * included in the expanded internal representation. The sticky bit
+ * is to be set if and only if any other bits beyond guard and round
+ * would be set. From the above it is obvious that this is true if and
+ * only if the remainder R is nonzero when the loop terminates.
+ *
+ * Examining the loop above, we can see that the quotient Q is built
+ * one bit at a time ``from the top down''. This means that we can
+ * dispense with the multi-word arithmetic and just build it one word
+ * at a time, writing each result word when it is done.
+ *
+ * Furthermore, since X and Y are both in [1.0,2.0), we know that,
+ * initially, R >= Y. (Recall that, if X < Y, R is set to X * 2 and
+ * is therefore at in [2.0,4.0).) Thus Q is sure to have bit FP_NMANT-1
+ * set, and R can be set initially to either X - Y (when X >= Y) or
+ * 2X - Y (when X < Y). In addition, comparing R and Y is difficult,
+ * so we will simply calculate R - Y and see if that underflows.
+ * This leads to the following revised version of the algorithm:
+ *
+ * R = X;
+ * bit = FP_1;
+ * D = R - Y;
+ * if (D >= 0) {
+ * result_exp = x->fp_exp - y->fp_exp;
+ * R = D;
+ * q = bit;
+ * bit >>= 1;
+ * } else {
+ * result_exp = x->fp_exp - y->fp_exp - 1;
+ * q = 0;
+ * }
+ * R <<= 1;
+ * do {
+ * D = R - Y;
+ * if (D >= 0) {
+ * q |= bit;
+ * R = D;
+ * }
+ * R <<= 1;
+ * } while ((bit >>= 1) != 0);
+ * Q[0] = q;
+ * for (i = 1; i < 4; i++) {
+ * q = 0, bit = 1 << 31;
+ * do {
+ * D = R - Y;
+ * if (D >= 0) {
+ * q |= bit;
+ * R = D;
+ * }
+ * R <<= 1;
+ * } while ((bit >>= 1) != 0);
+ * Q[i] = q;
+ * }
+ *
+ * This can be refined just a bit further by moving the `R <<= 1'
+ * calculations to the front of the do-loops and eliding the first one.
+ * The process can be terminated immediately whenever R becomes 0, but
+ * this is relatively rare, and we do not bother.
+ */
+
+struct fpn *
+fpu_div(struct fpemu *fe)
+{
+ struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
+ u_int q, bit;
+ u_int r0, r1, r2, r3, d0, d1, d2, d3, y0, y1, y2, y3;
+ FPU_DECL_CARRY
+
+ /*
+ * Since divide is not commutative, we cannot just use ORDER.
+ * Check either operand for NaN first; if there is at least one,
+ * order the signalling one (if only one) onto the right, then
+ * return it. Otherwise we have the following cases:
+ *
+ * Inf / Inf = NaN, plus NV exception
+ * Inf / num = Inf [i.e., return x]
+ * Inf / 0 = Inf [i.e., return x]
+ * 0 / Inf = 0 [i.e., return x]
+ * 0 / num = 0 [i.e., return x]
+ * 0 / 0 = NaN, plus NV exception
+ * num / Inf = 0
+ * num / num = num (do the divide)
+ * num / 0 = Inf, plus DZ exception
+ */
+ DPRINTF(FPE_REG, ("fpu_div:\n"));
+ DUMPFPN(FPE_REG, x);
+ DUMPFPN(FPE_REG, y);
+ DPRINTF(FPE_REG, ("=>\n"));
+ if (ISNAN(x) || ISNAN(y)) {
+ ORDER(x, y);
+ fe->fe_cx |= FPSCR_VXSNAN;
+ DUMPFPN(FPE_REG, y);
+ return (y);
+ }
+ /*
+ * Need to split the following out cause they generate different
+ * exceptions.
+ */
+ if (ISINF(x)) {
+ if (x->fp_class == y->fp_class) {
+ fe->fe_cx |= FPSCR_VXIDI;
+ return (fpu_newnan(fe));
+ }
+ DUMPFPN(FPE_REG, x);
+ return (x);
+ }
+ if (ISZERO(x)) {
+ fe->fe_cx |= FPSCR_ZX;
+ if (x->fp_class == y->fp_class) {
+ fe->fe_cx |= FPSCR_VXZDZ;
+ return (fpu_newnan(fe));
+ }
+ DUMPFPN(FPE_REG, x);
+ return (x);
+ }
+
+ /* all results at this point use XOR of operand signs */
+ x->fp_sign ^= y->fp_sign;
+ if (ISINF(y)) {
+ x->fp_class = FPC_ZERO;
+ DUMPFPN(FPE_REG, x);
+ return (x);
+ }
+ if (ISZERO(y)) {
+ fe->fe_cx = FPSCR_ZX;
+ x->fp_class = FPC_INF;
+ DUMPFPN(FPE_REG, x);
+ return (x);
+ }
+
+ /*
+ * Macros for the divide. See comments at top for algorithm.
+ * Note that we expand R, D, and Y here.
+ */
+
+#define SUBTRACT /* D = R - Y */ \
+ FPU_SUBS(d3, r3, y3); FPU_SUBCS(d2, r2, y2); \
+ FPU_SUBCS(d1, r1, y1); FPU_SUBC(d0, r0, y0)
+
+#define NONNEGATIVE /* D >= 0 */ \
+ ((int)d0 >= 0)
+
+#ifdef FPU_SHL1_BY_ADD
+#define SHL1 /* R <<= 1 */ \
+ FPU_ADDS(r3, r3, r3); FPU_ADDCS(r2, r2, r2); \
+ FPU_ADDCS(r1, r1, r1); FPU_ADDC(r0, r0, r0)
+#else
+#define SHL1 \
+ r0 = (r0 << 1) | (r1 >> 31), r1 = (r1 << 1) | (r2 >> 31), \
+ r2 = (r2 << 1) | (r3 >> 31), r3 <<= 1
+#endif
+
+#define LOOP /* do ... while (bit >>= 1) */ \
+ do { \
+ SHL1; \
+ SUBTRACT; \
+ if (NONNEGATIVE) { \
+ q |= bit; \
+ r0 = d0, r1 = d1, r2 = d2, r3 = d3; \
+ } \
+ } while ((bit >>= 1) != 0)
+
+#define WORD(r, i) /* calculate r->fp_mant[i] */ \
+ q = 0; \
+ bit = 1 << 31; \
+ LOOP; \
+ (x)->fp_mant[i] = q
+
+ /* Setup. Note that we put our result in x. */
+ r0 = x->fp_mant[0];
+ r1 = x->fp_mant[1];
+ r2 = x->fp_mant[2];
+ r3 = x->fp_mant[3];
+ y0 = y->fp_mant[0];
+ y1 = y->fp_mant[1];
+ y2 = y->fp_mant[2];
+ y3 = y->fp_mant[3];
+
+ bit = FP_1;
+ SUBTRACT;
+ if (NONNEGATIVE) {
+ x->fp_exp -= y->fp_exp;
+ r0 = d0, r1 = d1, r2 = d2, r3 = d3;
+ q = bit;
+ bit >>= 1;
+ } else {
+ x->fp_exp -= y->fp_exp + 1;
+ q = 0;
+ }
+ LOOP;
+ x->fp_mant[0] = q;
+ WORD(x, 1);
+ WORD(x, 2);
+ WORD(x, 3);
+ x->fp_sticky = r0 | r1 | r2 | r3;
+
+ DUMPFPN(FPE_REG, x);
+ return (x);
+}
diff --git a/sys/powerpc/fpu/fpu_emu.c b/sys/powerpc/fpu/fpu_emu.c
new file mode 100644
index 000000000000..ef7c1860ade6
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_emu.c
@@ -0,0 +1,787 @@
+/* $NetBSD: fpu_emu.c,v 1.14 2005/12/11 12:18:42 christos Exp $ */
+
+/*
+ * Copyright 2001 Wasabi Systems, Inc.
+ * All rights reserved.
+ *
+ * Written by Eduardo Horvath and Simon Burge for Wasabi Systems, Inc.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed for the NetBSD Project by
+ * Wasabi Systems, Inc.
+ * 4. The name of Wasabi Systems, Inc. may not be used to endorse
+ * or promote products derived from this software without specific prior
+ * written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu.c 8.1 (Berkeley) 6/11/93
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include "opt_ddb.h"
+
+#define DEBUG
+
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/kdb.h>
+#include <sys/kernel.h>
+#include <sys/proc.h>
+#include <sys/sysctl.h>
+#include <sys/signal.h>
+#include <sys/syslog.h>
+#include <sys/signalvar.h>
+
+#include <machine/fpu.h>
+#include <machine/reg.h>
+
+#include <powerpc/fpu/fpu_emu.h>
+#include <powerpc/fpu/fpu_extern.h>
+#include <powerpc/fpu/fpu_instr.h>
+
+SYSCTL_NODE(_hw, OID_AUTO, fpu_emu, CTLFLAG_RW, 0, "FPU emulator");
+
+#define FPU_EMU_EVCNT_DECL(name) \
+static u_int fpu_emu_evcnt_##name; \
+SYSCTL_INT(_hw_fpu_emu, OID_AUTO, evcnt_##name, CTLFLAG_RD, \
+ &fpu_emu_evcnt_##name, 0, "")
+
+#define FPU_EMU_EVCNT_INCR(name) fpu_emu_evcnt_##name++
+
+FPU_EMU_EVCNT_DECL(stfiwx);
+FPU_EMU_EVCNT_DECL(fpstore);
+FPU_EMU_EVCNT_DECL(fpload);
+FPU_EMU_EVCNT_DECL(fcmpu);
+FPU_EMU_EVCNT_DECL(frsp);
+FPU_EMU_EVCNT_DECL(fctiw);
+FPU_EMU_EVCNT_DECL(fcmpo);
+FPU_EMU_EVCNT_DECL(mtfsb1);
+FPU_EMU_EVCNT_DECL(fnegabs);
+FPU_EMU_EVCNT_DECL(mcrfs);
+FPU_EMU_EVCNT_DECL(mtfsb0);
+FPU_EMU_EVCNT_DECL(fmr);
+FPU_EMU_EVCNT_DECL(mtfsfi);
+FPU_EMU_EVCNT_DECL(fnabs);
+FPU_EMU_EVCNT_DECL(fabs);
+FPU_EMU_EVCNT_DECL(mffs);
+FPU_EMU_EVCNT_DECL(mtfsf);
+FPU_EMU_EVCNT_DECL(fctid);
+FPU_EMU_EVCNT_DECL(fcfid);
+FPU_EMU_EVCNT_DECL(fdiv);
+FPU_EMU_EVCNT_DECL(fsub);
+FPU_EMU_EVCNT_DECL(fadd);
+FPU_EMU_EVCNT_DECL(fsqrt);
+FPU_EMU_EVCNT_DECL(fsel);
+FPU_EMU_EVCNT_DECL(fpres);
+FPU_EMU_EVCNT_DECL(fmul);
+FPU_EMU_EVCNT_DECL(frsqrte);
+FPU_EMU_EVCNT_DECL(fmulsub);
+FPU_EMU_EVCNT_DECL(fmuladd);
+FPU_EMU_EVCNT_DECL(fnmsub);
+FPU_EMU_EVCNT_DECL(fnmadd);
+
+/* FPSR exception masks */
+#define FPSR_EX_MSK (FPSCR_VX|FPSCR_OX|FPSCR_UX|FPSCR_ZX| \
+ FPSCR_XX|FPSCR_VXSNAN|FPSCR_VXISI|FPSCR_VXIDI| \
+ FPSCR_VXZDZ|FPSCR_VXIMZ|FPSCR_VXVC|FPSCR_VXSOFT|\
+ FPSCR_VXSQRT|FPSCR_VXCVI)
+#define FPSR_EX (FPSCR_VE|FPSCR_OE|FPSCR_UE|FPSCR_ZE|FPSCR_XE)
+#define FPSR_EXOP (FPSR_EX_MSK&(~FPSR_EX))
+
+int fpe_debug = 0;
+
+#ifdef DEBUG
+vm_offset_t opc_disasm(vm_offset_t, int);
+
+/*
+ * Dump a `fpn' structure.
+ */
+void
+fpu_dumpfpn(struct fpn *fp)
+{
+ static const char *class[] = {
+ "SNAN", "QNAN", "ZERO", "NUM", "INF"
+ };
+
+ printf("%s %c.%x %x %x %xE%d", class[fp->fp_class + 2],
+ fp->fp_sign ? '-' : ' ',
+ fp->fp_mant[0], fp->fp_mant[1],
+ fp->fp_mant[2], fp->fp_mant[3],
+ fp->fp_exp);
+}
+#endif
+
+/*
+ * fpu_execute returns the following error numbers (0 = no error):
+ */
+#define FPE 1 /* take a floating point exception */
+#define NOTFPU 2 /* not an FPU instruction */
+#define FAULT 3
+
+
+/*
+ * Emulate a floating-point instruction.
+ * Return zero for success, else signal number.
+ * (Typically: zero, SIGFPE, SIGILL, SIGSEGV)
+ */
+int
+fpu_emulate(struct trapframe *frame, struct fpreg *fpf)
+{
+ static union instr insn;
+ static struct fpemu fe;
+ static int lastill = 0;
+ int sig;
+
+ /* initialize insn.is_datasize to tell it is *not* initialized */
+ fe.fe_fpstate = fpf;
+ fe.fe_cx = 0;
+
+ /* always set this (to avoid a warning) */
+
+ if (copyin((void *) (frame->srr0), &insn.i_int, sizeof (insn.i_int))) {
+#ifdef DEBUG
+ printf("fpu_emulate: fault reading opcode\n");
+#endif
+ return SIGSEGV;
+ }
+
+ DPRINTF(FPE_EX, ("fpu_emulate: emulating insn %x at %p\n",
+ insn.i_int, (void *)frame->srr0));
+
+
+ if ((insn.i_any.i_opcd == OPC_TWI) ||
+ ((insn.i_any.i_opcd == OPC_integer_31) &&
+ (insn.i_x.i_xo == OPC31_TW))) {
+ /* Check for the two trap insns. */
+ DPRINTF(FPE_EX, ("fpu_emulate: SIGTRAP\n"));
+ return (SIGTRAP);
+ }
+ sig = 0;
+ switch (fpu_execute(frame, &fe, &insn)) {
+ case 0:
+ DPRINTF(FPE_EX, ("fpu_emulate: success\n"));
+ frame->srr0 += 4;
+ break;
+
+ case FPE:
+ DPRINTF(FPE_EX, ("fpu_emulate: SIGFPE\n"));
+ sig = SIGFPE;
+ break;
+
+ case FAULT:
+ DPRINTF(FPE_EX, ("fpu_emulate: SIGSEGV\n"));
+ sig = SIGSEGV;
+ break;
+
+ case NOTFPU:
+ default:
+ DPRINTF(FPE_EX, ("fpu_emulate: SIGILL\n"));
+#ifdef DEBUG
+ if (fpe_debug & FPE_EX) {
+ printf("fpu_emulate: illegal insn %x at %p:",
+ insn.i_int, (void *) (frame->srr0));
+ opc_disasm(frame->srr0, insn.i_int);
+ }
+#endif
+ /*
+ * XXXX retry an illegal insn once due to cache issues.
+ */
+ if (lastill == frame->srr0) {
+ sig = SIGILL;
+#ifdef DEBUG
+ if (fpe_debug & FPE_EX)
+ kdb_enter(KDB_WHY_UNSET, "illegal instruction");
+#endif
+ }
+ lastill = frame->srr0;
+ break;
+ }
+
+ return (sig);
+}
+
+/*
+ * Execute an FPU instruction (one that runs entirely in the FPU; not
+ * FBfcc or STF, for instance). On return, fe->fe_fs->fs_fsr will be
+ * modified to reflect the setting the hardware would have left.
+ *
+ * Note that we do not catch all illegal opcodes, so you can, for instance,
+ * multiply two integers this way.
+ */
+int
+fpu_execute(struct trapframe *tf, struct fpemu *fe, union instr *insn)
+{
+ struct fpn *fp;
+ union instr instr = *insn;
+ int *a;
+ vm_offset_t addr;
+ int ra, rb, rc, rt, type, mask, fsr, cx, bf, setcr;
+ unsigned int cond;
+ struct fpreg *fs;
+
+ /* Setup work. */
+ fp = NULL;
+ fs = fe->fe_fpstate;
+ fe->fe_fpscr = ((int *)&fs->fpscr)[1];
+
+ /*
+ * On PowerPC all floating point values are stored in registers
+ * as doubles, even when used for single precision operations.
+ */
+ type = FTYPE_DBL;
+ cond = instr.i_any.i_rc;
+ setcr = 0;
+ bf = 0; /* XXX gcc */
+
+#if defined(DDB) && defined(DEBUG)
+ if (fpe_debug & FPE_EX) {
+ vm_offset_t loc = tf->srr0;
+
+ printf("Trying to emulate: %p ", (void *)loc);
+ opc_disasm(loc, instr.i_int);
+ }
+#endif
+
+ /*
+ * `Decode' and execute instruction.
+ */
+
+ if ((instr.i_any.i_opcd >= OPC_LFS && instr.i_any.i_opcd <= OPC_STFDU) ||
+ instr.i_any.i_opcd == OPC_integer_31) {
+ /*
+ * Handle load/store insns:
+ *
+ * Convert to/from single if needed, calculate addr,
+ * and update index reg if needed.
+ */
+ double buf;
+ size_t size = sizeof(float);
+ int store, update;
+
+ cond = 0; /* ld/st never set condition codes */
+
+
+ if (instr.i_any.i_opcd == OPC_integer_31) {
+ if (instr.i_x.i_xo == OPC31_STFIWX) {
+ FPU_EMU_EVCNT_INCR(stfiwx);
+
+ /* Store as integer */
+ ra = instr.i_x.i_ra;
+ rb = instr.i_x.i_rb;
+ DPRINTF(FPE_INSN, ("reg %d has %lx reg %d has %lx\n",
+ ra, tf->fixreg[ra], rb, tf->fixreg[rb]));
+
+ addr = tf->fixreg[rb];
+ if (ra != 0)
+ addr += tf->fixreg[ra];
+ rt = instr.i_x.i_rt;
+ a = (int *)&fs->fpreg[rt];
+ DPRINTF(FPE_INSN,
+ ("fpu_execute: Store INT %x at %p\n",
+ a[1], (void *)addr));
+ if (copyout(&a[1], (void *)addr, sizeof(int)))
+ return (FAULT);
+ return (0);
+ }
+
+ if ((instr.i_x.i_xo & OPC31_FPMASK) != OPC31_FPOP)
+ /* Not an indexed FP load/store op */
+ return (NOTFPU);
+
+ store = (instr.i_x.i_xo & 0x80);
+ if (instr.i_x.i_xo & 0x40)
+ size = sizeof(double);
+ else
+ type = FTYPE_SNG;
+ update = (instr.i_x.i_xo & 0x20);
+
+ /* calculate EA of load/store */
+ ra = instr.i_x.i_ra;
+ rb = instr.i_x.i_rb;
+ DPRINTF(FPE_INSN, ("reg %d has %lx reg %d has %lx\n",
+ ra, tf->fixreg[ra], rb, tf->fixreg[rb]));
+ addr = tf->fixreg[rb];
+ if (ra != 0)
+ addr += tf->fixreg[ra];
+ rt = instr.i_x.i_rt;
+ } else {
+ store = instr.i_d.i_opcd & 0x4;
+ if (instr.i_d.i_opcd & 0x2)
+ size = sizeof(double);
+ else
+ type = FTYPE_SNG;
+ update = instr.i_d.i_opcd & 0x1;
+
+ /* calculate EA of load/store */
+ ra = instr.i_d.i_ra;
+ addr = instr.i_d.i_d;
+ DPRINTF(FPE_INSN, ("reg %d has %lx displ %lx\n",
+ ra, tf->fixreg[ra], addr));
+ if (ra != 0)
+ addr += tf->fixreg[ra];
+ rt = instr.i_d.i_rt;
+ }
+
+ if (update && ra == 0)
+ return (NOTFPU);
+
+ if (store) {
+ /* Store */
+ FPU_EMU_EVCNT_INCR(fpstore);
+ if (type != FTYPE_DBL) {
+ DPRINTF(FPE_INSN,
+ ("fpu_execute: Store SNG at %p\n",
+ (void *)addr));
+ fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL, rt);
+ fpu_implode(fe, fp, type, (void *)&buf);
+ if (copyout(&buf, (void *)addr, size))
+ return (FAULT);
+ } else {
+ DPRINTF(FPE_INSN,
+ ("fpu_execute: Store DBL at %p\n",
+ (void *)addr));
+ if (copyout(&fs->fpreg[rt], (void *)addr, size))
+ return (FAULT);
+ }
+ } else {
+ /* Load */
+ FPU_EMU_EVCNT_INCR(fpload);
+ DPRINTF(FPE_INSN, ("fpu_execute: Load from %p\n",
+ (void *)addr));
+ if (copyin((const void *)addr, &fs->fpreg[rt], size))
+ return (FAULT);
+ if (type != FTYPE_DBL) {
+ fpu_explode(fe, fp = &fe->fe_f1, type, rt);
+ fpu_implode(fe, fp, FTYPE_DBL,
+ (u_int *)&fs->fpreg[rt]);
+ }
+ }
+ if (update)
+ tf->fixreg[ra] = addr;
+ /* Complete. */
+ return (0);
+#ifdef notyet
+ } else if (instr.i_any.i_opcd == OPC_load_st_62) {
+ /* These are 64-bit extenstions */
+ return (NOTFPU);
+#endif
+ } else if (instr.i_any.i_opcd == OPC_sp_fp_59 ||
+ instr.i_any.i_opcd == OPC_dp_fp_63) {
+
+
+ if (instr.i_any.i_opcd == OPC_dp_fp_63 &&
+ !(instr.i_a.i_xo & OPC63M_MASK)) {
+ /* Format X */
+ rt = instr.i_x.i_rt;
+ ra = instr.i_x.i_ra;
+ rb = instr.i_x.i_rb;
+
+
+ /* One of the special opcodes.... */
+ switch (instr.i_x.i_xo) {
+ case OPC63_FCMPU:
+ FPU_EMU_EVCNT_INCR(fcmpu);
+ DPRINTF(FPE_INSN, ("fpu_execute: FCMPU\n"));
+ rt >>= 2;
+ fpu_explode(fe, &fe->fe_f1, type, ra);
+ fpu_explode(fe, &fe->fe_f2, type, rb);
+ fpu_compare(fe, 0);
+ /* Make sure we do the condition regs. */
+ cond = 0;
+ /* N.B.: i_rs is already left shifted by two. */
+ bf = instr.i_x.i_rs & 0xfc;
+ setcr = 1;
+ break;
+
+ case OPC63_FRSP:
+ /*
+ * Convert to single:
+ *
+ * PowerPC uses this to round a double
+ * precision value to single precision,
+ * but values in registers are always
+ * stored in double precision format.
+ */
+ FPU_EMU_EVCNT_INCR(frsp);
+ DPRINTF(FPE_INSN, ("fpu_execute: FRSP\n"));
+ fpu_explode(fe, fp = &fe->fe_f1, FTYPE_DBL, rb);
+ fpu_implode(fe, fp, FTYPE_SNG,
+ (u_int *)&fs->fpreg[rt]);
+ fpu_explode(fe, fp = &fe->fe_f1, FTYPE_SNG, rt);
+ type = FTYPE_DBL;
+ break;
+ case OPC63_FCTIW:
+ case OPC63_FCTIWZ:
+ FPU_EMU_EVCNT_INCR(fctiw);
+ DPRINTF(FPE_INSN, ("fpu_execute: FCTIW\n"));
+ fpu_explode(fe, fp = &fe->fe_f1, type, rb);
+ type = FTYPE_INT;
+ break;
+ case OPC63_FCMPO:
+ FPU_EMU_EVCNT_INCR(fcmpo);
+ DPRINTF(FPE_INSN, ("fpu_execute: FCMPO\n"));
+ rt >>= 2;
+ fpu_explode(fe, &fe->fe_f1, type, ra);
+ fpu_explode(fe, &fe->fe_f2, type, rb);
+ fpu_compare(fe, 1);
+ /* Make sure we do the condition regs. */
+ cond = 0;
+ /* N.B.: i_rs is already left shifted by two. */
+ bf = instr.i_x.i_rs & 0xfc;
+ setcr = 1;
+ break;
+ case OPC63_MTFSB1:
+ FPU_EMU_EVCNT_INCR(mtfsb1);
+ DPRINTF(FPE_INSN, ("fpu_execute: MTFSB1\n"));
+ fe->fe_fpscr |=
+ (~(FPSCR_VX|FPSR_EX) & (1<<(31-rt)));
+ break;
+ case OPC63_FNEG:
+ FPU_EMU_EVCNT_INCR(fnegabs);
+ DPRINTF(FPE_INSN, ("fpu_execute: FNEGABS\n"));
+ memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
+ sizeof(double));
+ a = (int *)&fs->fpreg[rt];
+ *a ^= (1 << 31);
+ break;
+ case OPC63_MCRFS:
+ FPU_EMU_EVCNT_INCR(mcrfs);
+ DPRINTF(FPE_INSN, ("fpu_execute: MCRFS\n"));
+ cond = 0;
+ rt &= 0x1c;
+ ra &= 0x1c;
+ /* Extract the bits we want */
+ mask = (fe->fe_fpscr >> (28 - ra)) & 0xf;
+ /* Clear the bits we copied. */
+ fe->fe_cx =
+ (FPSR_EX_MSK | (0xf << (28 - ra)));
+ fe->fe_fpscr &= fe->fe_cx;
+ /* Now shove them in the right part of cr */
+ tf->cr &= ~(0xf << (28 - rt));
+ tf->cr |= (mask << (28 - rt));
+ break;
+ case OPC63_MTFSB0:
+ FPU_EMU_EVCNT_INCR(mtfsb0);
+ DPRINTF(FPE_INSN, ("fpu_execute: MTFSB0\n"));
+ fe->fe_fpscr &=
+ ((FPSCR_VX|FPSR_EX) & ~(1<<(31-rt)));
+ break;
+ case OPC63_FMR:
+ FPU_EMU_EVCNT_INCR(fmr);
+ DPRINTF(FPE_INSN, ("fpu_execute: FMR\n"));
+ memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
+ sizeof(double));
+ break;
+ case OPC63_MTFSFI:
+ FPU_EMU_EVCNT_INCR(mtfsfi);
+ DPRINTF(FPE_INSN, ("fpu_execute: MTFSFI\n"));
+ rb >>= 1;
+ rt &= 0x1c; /* Already left-shifted 4 */
+ fe->fe_cx = rb << (28 - rt);
+ mask = 0xf<<(28 - rt);
+ fe->fe_fpscr = (fe->fe_fpscr & ~mask) |
+ fe->fe_cx;
+/* XXX weird stuff about OX, FX, FEX, and VX should be handled */
+ break;
+ case OPC63_FNABS:
+ FPU_EMU_EVCNT_INCR(fnabs);
+ DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
+ memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
+ sizeof(double));
+ a = (int *)&fs->fpreg[rt];
+ *a |= (1 << 31);
+ break;
+ case OPC63_FABS:
+ FPU_EMU_EVCNT_INCR(fabs);
+ DPRINTF(FPE_INSN, ("fpu_execute: FABS\n"));
+ memcpy(&fs->fpreg[rt], &fs->fpreg[rb],
+ sizeof(double));
+ a = (int *)&fs->fpreg[rt];
+ *a &= ~(1 << 31);
+ break;
+ case OPC63_MFFS:
+ FPU_EMU_EVCNT_INCR(mffs);
+ DPRINTF(FPE_INSN, ("fpu_execute: MFFS\n"));
+ memcpy(&fs->fpreg[rt], &fs->fpscr,
+ sizeof(fs->fpscr));
+ break;
+ case OPC63_MTFSF:
+ FPU_EMU_EVCNT_INCR(mtfsf);
+ DPRINTF(FPE_INSN, ("fpu_execute: MTFSF\n"));
+ if ((rt = instr.i_xfl.i_flm) == -1)
+ mask = -1;
+ else {
+ mask = 0;
+ /* Convert 1 bit -> 4 bits */
+ for (ra = 0; ra < 8; ra ++)
+ if (rt & (1<<ra))
+ mask |= (0xf<<(4*ra));
+ }
+ a = (int *)&fs->fpreg[rt];
+ fe->fe_cx = mask & a[1];
+ fe->fe_fpscr = (fe->fe_fpscr&~mask) |
+ (fe->fe_cx);
+/* XXX weird stuff about OX, FX, FEX, and VX should be handled */
+ break;
+ case OPC63_FCTID:
+ case OPC63_FCTIDZ:
+ FPU_EMU_EVCNT_INCR(fctid);
+ DPRINTF(FPE_INSN, ("fpu_execute: FCTID\n"));
+ fpu_explode(fe, fp = &fe->fe_f1, type, rb);
+ type = FTYPE_LNG;
+ break;
+ case OPC63_FCFID:
+ FPU_EMU_EVCNT_INCR(fcfid);
+ DPRINTF(FPE_INSN, ("fpu_execute: FCFID\n"));
+ type = FTYPE_LNG;
+ fpu_explode(fe, fp = &fe->fe_f1, type, rb);
+ type = FTYPE_DBL;
+ break;
+ default:
+ return (NOTFPU);
+ break;
+ }
+ } else {
+ /* Format A */
+ rt = instr.i_a.i_frt;
+ ra = instr.i_a.i_fra;
+ rb = instr.i_a.i_frb;
+ rc = instr.i_a.i_frc;
+
+ type = FTYPE_SNG;
+ if (instr.i_any.i_opcd & 0x4)
+ type = FTYPE_DBL;
+ switch ((unsigned int)instr.i_a.i_xo) {
+ case OPC59_FDIVS:
+ FPU_EMU_EVCNT_INCR(fdiv);
+ DPRINTF(FPE_INSN, ("fpu_execute: FDIV\n"));
+ fpu_explode(fe, &fe->fe_f1, type, ra);
+ fpu_explode(fe, &fe->fe_f2, type, rb);
+ fp = fpu_div(fe);
+ break;
+ case OPC59_FSUBS:
+ FPU_EMU_EVCNT_INCR(fsub);
+ DPRINTF(FPE_INSN, ("fpu_execute: FSUB\n"));
+ fpu_explode(fe, &fe->fe_f1, type, ra);
+ fpu_explode(fe, &fe->fe_f2, type, rb);
+ fp = fpu_sub(fe);
+ break;
+ case OPC59_FADDS:
+ FPU_EMU_EVCNT_INCR(fadd);
+ DPRINTF(FPE_INSN, ("fpu_execute: FADD\n"));
+ fpu_explode(fe, &fe->fe_f1, type, ra);
+ fpu_explode(fe, &fe->fe_f2, type, rb);
+ fp = fpu_add(fe);
+ break;
+ case OPC59_FSQRTS:
+ FPU_EMU_EVCNT_INCR(fsqrt);
+ DPRINTF(FPE_INSN, ("fpu_execute: FSQRT\n"));
+ fpu_explode(fe, &fe->fe_f1, type, rb);
+ fp = fpu_sqrt(fe);
+ break;
+ case OPC63M_FSEL:
+ FPU_EMU_EVCNT_INCR(fsel);
+ DPRINTF(FPE_INSN, ("fpu_execute: FSEL\n"));
+ a = (int *)&fe->fe_fpstate->fpreg[ra];
+ if ((*a & 0x80000000) && (*a & 0x7fffffff))
+ /* fra < 0 */
+ rc = rb;
+ DPRINTF(FPE_INSN, ("f%d => f%d\n", rc, rt));
+ memcpy(&fs->fpreg[rt], &fs->fpreg[rc],
+ sizeof(double));
+ break;
+ case OPC59_FRES:
+ FPU_EMU_EVCNT_INCR(fpres);
+ DPRINTF(FPE_INSN, ("fpu_execute: FPRES\n"));
+ fpu_explode(fe, &fe->fe_f1, type, rb);
+ fp = fpu_sqrt(fe);
+ /* now we've gotta overwrite the dest reg */
+ *((int *)&fe->fe_fpstate->fpreg[rt]) = 1;
+ fpu_explode(fe, &fe->fe_f1, FTYPE_INT, rt);
+ fpu_div(fe);
+ break;
+ case OPC59_FMULS:
+ FPU_EMU_EVCNT_INCR(fmul);
+ DPRINTF(FPE_INSN, ("fpu_execute: FMUL\n"));
+ fpu_explode(fe, &fe->fe_f1, type, ra);
+ fpu_explode(fe, &fe->fe_f2, type, rc);
+ fp = fpu_mul(fe);
+ break;
+ case OPC63M_FRSQRTE:
+ /* Reciprocal sqrt() estimate */
+ FPU_EMU_EVCNT_INCR(frsqrte);
+ DPRINTF(FPE_INSN, ("fpu_execute: FRSQRTE\n"));
+ fpu_explode(fe, &fe->fe_f1, type, rb);
+ fp = fpu_sqrt(fe);
+ fe->fe_f2 = *fp;
+ /* now we've gotta overwrite the dest reg */
+ *((int *)&fe->fe_fpstate->fpreg[rt]) = 1;
+ fpu_explode(fe, &fe->fe_f1, FTYPE_INT, rt);
+ fpu_div(fe);
+ break;
+ case OPC59_FMSUBS:
+ FPU_EMU_EVCNT_INCR(fmulsub);
+ DPRINTF(FPE_INSN, ("fpu_execute: FMULSUB\n"));
+ fpu_explode(fe, &fe->fe_f1, type, ra);
+ fpu_explode(fe, &fe->fe_f2, type, rc);
+ fp = fpu_mul(fe);
+ fe->fe_f1 = *fp;
+ fpu_explode(fe, &fe->fe_f2, type, rb);
+ fp = fpu_sub(fe);
+ break;
+ case OPC59_FMADDS:
+ FPU_EMU_EVCNT_INCR(fmuladd);
+ DPRINTF(FPE_INSN, ("fpu_execute: FMULADD\n"));
+ fpu_explode(fe, &fe->fe_f1, type, ra);
+ fpu_explode(fe, &fe->fe_f2, type, rc);
+ fp = fpu_mul(fe);
+ fe->fe_f1 = *fp;
+ fpu_explode(fe, &fe->fe_f2, type, rb);
+ fp = fpu_add(fe);
+ break;
+ case OPC59_FNMSUBS:
+ FPU_EMU_EVCNT_INCR(fnmsub);
+ DPRINTF(FPE_INSN, ("fpu_execute: FNMSUB\n"));
+ fpu_explode(fe, &fe->fe_f1, type, ra);
+ fpu_explode(fe, &fe->fe_f2, type, rc);
+ fp = fpu_mul(fe);
+ fe->fe_f1 = *fp;
+ fpu_explode(fe, &fe->fe_f2, type, rb);
+ fp = fpu_sub(fe);
+ /* Negate */
+ fp->fp_sign ^= 1;
+ break;
+ case OPC59_FNMADDS:
+ FPU_EMU_EVCNT_INCR(fnmadd);
+ DPRINTF(FPE_INSN, ("fpu_execute: FNMADD\n"));
+ fpu_explode(fe, &fe->fe_f1, type, ra);
+ fpu_explode(fe, &fe->fe_f2, type, rc);
+ fp = fpu_mul(fe);
+ fe->fe_f1 = *fp;
+ fpu_explode(fe, &fe->fe_f2, type, rb);
+ fp = fpu_add(fe);
+ /* Negate */
+ fp->fp_sign ^= 1;
+ break;
+ default:
+ return (NOTFPU);
+ break;
+ }
+ }
+ } else {
+ return (NOTFPU);
+ }
+
+ /*
+ * ALU operation is complete. Collapse the result and then check
+ * for exceptions. If we got any, and they are enabled, do not
+ * alter the destination register, just stop with an exception.
+ * Otherwise set new current exceptions and accrue.
+ */
+ if (fp)
+ fpu_implode(fe, fp, type, (u_int *)&fs->fpreg[rt]);
+ cx = fe->fe_cx;
+ fsr = fe->fe_fpscr;
+ if (cx != 0) {
+ fsr &= ~FPSCR_FX;
+ if ((cx^fsr)&FPSR_EX_MSK)
+ fsr |= FPSCR_FX;
+ mask = fsr & FPSR_EX;
+ mask <<= (25-3);
+ if (cx & mask)
+ fsr |= FPSCR_FEX;
+ if (cx & FPSCR_FPRF) {
+ /* Need to replace CC */
+ fsr &= ~FPSCR_FPRF;
+ }
+ if (cx & (FPSR_EXOP))
+ fsr |= FPSCR_VX;
+ fsr |= cx;
+ DPRINTF(FPE_INSN, ("fpu_execute: cx %x, fsr %x\n", cx, fsr));
+ }
+
+ if (cond) {
+ cond = fsr & 0xf0000000;
+ /* Isolate condition codes */
+ cond >>= 28;
+ /* Move fpu condition codes to cr[1] */
+ tf->cr &= (0x0f000000);
+ tf->cr |= (cond<<24);
+ DPRINTF(FPE_INSN, ("fpu_execute: cr[1] <= %x\n", cond));
+ }
+
+ if (setcr) {
+ cond = fsr & FPSCR_FPCC;
+ /* Isolate condition codes */
+ cond <<= 16;
+ /* Move fpu condition codes to cr[1] */
+ tf->cr &= ~(0xf0000000>>bf);
+ tf->cr |= (cond>>bf);
+ DPRINTF(FPE_INSN, ("fpu_execute: cr[%d] (cr=%x) <= %x\n", bf/4, tf->cr, cond));
+ }
+
+ ((int *)&fs->fpscr)[1] = fsr;
+ if (fsr & FPSCR_FEX)
+ return(FPE);
+ return (0); /* success */
+}
diff --git a/sys/powerpc/fpu/fpu_emu.h b/sys/powerpc/fpu/fpu_emu.h
new file mode 100644
index 000000000000..56f1ef8b8390
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_emu.h
@@ -0,0 +1,192 @@
+/* $NetBSD: fpu_emu.h,v 1.3 2005/12/11 12:18:42 christos Exp $ */
+/* $FreeBSD$ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu_emu.h 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * Floating point emulator (tailored for SPARC, but structurally
+ * machine-independent).
+ *
+ * Floating point numbers are carried around internally in an `expanded'
+ * or `unpacked' form consisting of:
+ * - sign
+ * - unbiased exponent
+ * - mantissa (`1.' + 112-bit fraction + guard + round)
+ * - sticky bit
+ * Any implied `1' bit is inserted, giving a 113-bit mantissa that is
+ * always nonzero. Additional low-order `guard' and `round' bits are
+ * scrunched in, making the entire mantissa 115 bits long. This is divided
+ * into four 32-bit words, with `spare' bits left over in the upper part
+ * of the top word (the high bits of fp_mant[0]). An internal `exploded'
+ * number is thus kept within the half-open interval [1.0,2.0) (but see
+ * the `number classes' below). This holds even for denormalized numbers:
+ * when we explode an external denorm, we normalize it, introducing low-order
+ * zero bits, so that the rest of the code always sees normalized values.
+ *
+ * Note that a number of our algorithms use the `spare' bits at the top.
+ * The most demanding algorithm---the one for sqrt---depends on two such
+ * bits, so that it can represent values up to (but not including) 8.0,
+ * and then it needs a carry on top of that, so that we need three `spares'.
+ *
+ * The sticky-word is 32 bits so that we can use `OR' operators to goosh
+ * whole words from the mantissa into it.
+ *
+ * All operations are done in this internal extended precision. According
+ * to Hennesey & Patterson, Appendix A, rounding can be repeated---that is,
+ * it is OK to do a+b in extended precision and then round the result to
+ * single precision---provided single, double, and extended precisions are
+ * `far enough apart' (they always are), but we will try to avoid any such
+ * extra work where possible.
+ */
+struct fpn {
+ int fp_class; /* see below */
+ int fp_sign; /* 0 => positive, 1 => negative */
+ int fp_exp; /* exponent (unbiased) */
+ int fp_sticky; /* nonzero bits lost at right end */
+ u_int fp_mant[4]; /* 115-bit mantissa */
+};
+
+#define FP_NMANT 115 /* total bits in mantissa (incl g,r) */
+#define FP_NG 2 /* number of low-order guard bits */
+#define FP_LG ((FP_NMANT - 1) & 31) /* log2(1.0) for fp_mant[0] */
+#define FP_LG2 ((FP_NMANT - 1) & 63) /* log2(1.0) for fp_mant[0] and fp_mant[1] */
+#define FP_QUIETBIT (1 << (FP_LG - 1)) /* Quiet bit in NaNs (0.5) */
+#define FP_1 (1 << FP_LG) /* 1.0 in fp_mant[0] */
+#define FP_2 (1 << (FP_LG + 1)) /* 2.0 in fp_mant[0] */
+
+/*
+ * Number classes. Since zero, Inf, and NaN cannot be represented using
+ * the above layout, we distinguish these from other numbers via a class.
+ * In addition, to make computation easier and to follow Appendix N of
+ * the SPARC Version 8 standard, we give each kind of NaN a separate class.
+ */
+#define FPC_SNAN -2 /* signalling NaN (sign irrelevant) */
+#define FPC_QNAN -1 /* quiet NaN (sign irrelevant) */
+#define FPC_ZERO 0 /* zero (sign matters) */
+#define FPC_NUM 1 /* number (sign matters) */
+#define FPC_INF 2 /* infinity (sign matters) */
+
+#define ISSNAN(fp) ((fp)->fp_class == FPC_SNAN)
+#define ISQNAN(fp) ((fp)->fp_class == FPC_QNAN)
+#define ISNAN(fp) ((fp)->fp_class < 0)
+#define ISZERO(fp) ((fp)->fp_class == 0)
+#define ISINF(fp) ((fp)->fp_class == FPC_INF)
+
+/*
+ * ORDER(x,y) `sorts' a pair of `fpn *'s so that the right operand (y) points
+ * to the `more significant' operand for our purposes. Appendix N says that
+ * the result of a computation involving two numbers are:
+ *
+ * If both are SNaN: operand 2, converted to Quiet
+ * If only one is SNaN: the SNaN operand, converted to Quiet
+ * If both are QNaN: operand 2
+ * If only one is QNaN: the QNaN operand
+ *
+ * In addition, in operations with an Inf operand, the result is usually
+ * Inf. The class numbers are carefully arranged so that if
+ * (unsigned)class(op1) > (unsigned)class(op2)
+ * then op1 is the one we want; otherwise op2 is the one we want.
+ */
+#define ORDER(x, y) { \
+ if ((u_int)(x)->fp_class > (u_int)(y)->fp_class) \
+ SWAP(x, y); \
+}
+#define SWAP(x, y) { \
+ struct fpn *swap; \
+ swap = (x), (x) = (y), (y) = swap; \
+}
+
+/*
+ * Emulator state.
+ */
+struct fpemu {
+ struct fpreg *fe_fpstate; /* registers, etc */
+ int fe_fpscr; /* fpscr copy (modified during op) */
+ int fe_cx; /* keep track of exceptions */
+ struct fpn fe_f1; /* operand 1 */
+ struct fpn fe_f2; /* operand 2, if required */
+ struct fpn fe_f3; /* available storage for result */
+};
+
+/*
+ * Arithmetic functions.
+ * Each of these may modify its inputs (f1,f2) and/or the temporary.
+ * Each returns a pointer to the result and/or sets exceptions.
+ */
+struct fpn *fpu_add(struct fpemu *);
+#define fpu_sub(fe) ((fe)->fe_f2.fp_sign ^= 1, fpu_add(fe))
+struct fpn *fpu_mul(struct fpemu *);
+struct fpn *fpu_div(struct fpemu *);
+struct fpn *fpu_sqrt(struct fpemu *);
+
+/*
+ * Other functions.
+ */
+
+/* Perform a compare instruction (with or without unordered exception). */
+void fpu_compare(struct fpemu *, int);
+
+/* Build a new Quiet NaN (sign=0, frac=all 1's). */
+struct fpn *fpu_newnan(struct fpemu *);
+
+/*
+ * Shift a number right some number of bits, taking care of round/sticky.
+ * Note that the result is probably not a well-formed number (it will lack
+ * the normal 1-bit mant[0]&FP_1).
+ */
+int fpu_shr(struct fpn *, int);
+
+void fpu_explode(struct fpemu *, struct fpn *, int, int);
+void fpu_implode(struct fpemu *, struct fpn *, int, u_int *);
+
+#ifdef DEBUG
+#define FPE_EX 0x1
+#define FPE_INSN 0x2
+#define FPE_OP 0x4
+#define FPE_REG 0x8
+extern int fpe_debug;
+void fpu_dumpfpn(struct fpn *);
+#define DPRINTF(x, y) if (fpe_debug & (x)) printf y
+#define DUMPFPN(x, f) if (fpe_debug & (x)) fpu_dumpfpn((f))
+#else
+#define DPRINTF(x, y)
+#define DUMPFPN(x, f)
+#endif
diff --git a/sys/powerpc/fpu/fpu_explode.c b/sys/powerpc/fpu/fpu_explode.c
new file mode 100644
index 000000000000..70eef6aa8737
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_explode.c
@@ -0,0 +1,262 @@
+/* $NetBSD: fpu_explode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu_explode.c 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * FPU subroutines: `explode' the machine's `packed binary' format numbers
+ * into our internal format.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/systm.h>
+#include <sys/types.h>
+
+#include <machine/fpu.h>
+#include <machine/ieee.h>
+#include <machine/reg.h>
+
+#include <powerpc/fpu/fpu_arith.h>
+#include <powerpc/fpu/fpu_emu.h>
+#include <powerpc/fpu/fpu_extern.h>
+#include <powerpc/fpu/fpu_instr.h>
+
+/*
+ * N.B.: in all of the following, we assume the FP format is
+ *
+ * ---------------------------
+ * | s | exponent | fraction |
+ * ---------------------------
+ *
+ * (which represents -1**s * 1.fraction * 2**exponent), so that the
+ * sign bit is way at the top (bit 31), the exponent is next, and
+ * then the remaining bits mark the fraction. A zero exponent means
+ * zero or denormalized (0.fraction rather than 1.fraction), and the
+ * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
+ *
+ * Since the sign bit is always the topmost bit---this holds even for
+ * integers---we set that outside all the *tof functions. Each function
+ * returns the class code for the new number (but note that we use
+ * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
+ */
+
+/*
+ * int -> fpn.
+ */
+int
+fpu_itof(struct fpn *fp, u_int i)
+{
+
+ if (i == 0)
+ return (FPC_ZERO);
+ /*
+ * The value FP_1 represents 2^FP_LG, so set the exponent
+ * there and let normalization fix it up. Convert negative
+ * numbers to sign-and-magnitude. Note that this relies on
+ * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
+ */
+ fp->fp_exp = FP_LG;
+ fp->fp_mant[0] = (int)i < 0 ? -i : i;
+ fp->fp_mant[1] = 0;
+ fp->fp_mant[2] = 0;
+ fp->fp_mant[3] = 0;
+ fpu_norm(fp);
+ return (FPC_NUM);
+}
+
+/*
+ * 64-bit int -> fpn.
+ */
+int
+fpu_xtof(struct fpn *fp, u_int64_t i)
+{
+
+ if (i == 0)
+ return (FPC_ZERO);
+ /*
+ * The value FP_1 represents 2^FP_LG, so set the exponent
+ * there and let normalization fix it up. Convert negative
+ * numbers to sign-and-magnitude. Note that this relies on
+ * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
+ */
+ fp->fp_exp = FP_LG2;
+ *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
+ fp->fp_mant[2] = 0;
+ fp->fp_mant[3] = 0;
+ fpu_norm(fp);
+ return (FPC_NUM);
+}
+
+#define mask(nbits) ((1L << (nbits)) - 1)
+
+/*
+ * All external floating formats convert to internal in the same manner,
+ * as defined here. Note that only normals get an implied 1.0 inserted.
+ */
+#define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
+ if (exp == 0) { \
+ if (allfrac == 0) \
+ return (FPC_ZERO); \
+ fp->fp_exp = 1 - expbias; \
+ fp->fp_mant[0] = f0; \
+ fp->fp_mant[1] = f1; \
+ fp->fp_mant[2] = f2; \
+ fp->fp_mant[3] = f3; \
+ fpu_norm(fp); \
+ return (FPC_NUM); \
+ } \
+ if (exp == (2 * expbias + 1)) { \
+ if (allfrac == 0) \
+ return (FPC_INF); \
+ fp->fp_mant[0] = f0; \
+ fp->fp_mant[1] = f1; \
+ fp->fp_mant[2] = f2; \
+ fp->fp_mant[3] = f3; \
+ return (FPC_QNAN); \
+ } \
+ fp->fp_exp = exp - expbias; \
+ fp->fp_mant[0] = FP_1 | f0; \
+ fp->fp_mant[1] = f1; \
+ fp->fp_mant[2] = f2; \
+ fp->fp_mant[3] = f3; \
+ return (FPC_NUM)
+
+/*
+ * 32-bit single precision -> fpn.
+ * We assume a single occupies at most (64-FP_LG) bits in the internal
+ * format: i.e., needs at most fp_mant[0] and fp_mant[1].
+ */
+int
+fpu_stof(struct fpn *fp, u_int i)
+{
+ int exp;
+ u_int frac, f0, f1;
+#define SNG_SHIFT (SNG_FRACBITS - FP_LG)
+
+ exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
+ frac = i & mask(SNG_FRACBITS);
+ f0 = frac >> SNG_SHIFT;
+ f1 = frac << (32 - SNG_SHIFT);
+ FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
+}
+
+/*
+ * 64-bit double -> fpn.
+ * We assume this uses at most (96-FP_LG) bits.
+ */
+int
+fpu_dtof(struct fpn *fp, u_int i, u_int j)
+{
+ int exp;
+ u_int frac, f0, f1, f2;
+#define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
+
+ exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
+ frac = i & mask(DBL_FRACBITS - 32);
+ f0 = frac >> DBL_SHIFT;
+ f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
+ f2 = j << (32 - DBL_SHIFT);
+ frac |= j;
+ FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
+}
+
+/*
+ * Explode the contents of a register / regpair / regquad.
+ * If the input is a signalling NaN, an NV (invalid) exception
+ * will be set. (Note that nothing but NV can occur until ALU
+ * operations are performed.)
+ */
+void
+fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg)
+{
+ u_int s, *space;
+ u_int64_t l, *xspace;
+
+ xspace = (u_int64_t *)&fe->fe_fpstate->fpreg[reg];
+ l = xspace[0];
+ space = (u_int *)&fe->fe_fpstate->fpreg[reg];
+ s = space[0];
+ fp->fp_sign = s >> 31;
+ fp->fp_sticky = 0;
+ switch (type) {
+
+ case FTYPE_LNG:
+ s = fpu_xtof(fp, l);
+ break;
+
+ case FTYPE_INT:
+ s = fpu_itof(fp, space[1]);
+ break;
+
+ case FTYPE_SNG:
+ s = fpu_stof(fp, s);
+ break;
+
+ case FTYPE_DBL:
+ s = fpu_dtof(fp, s, space[1]);
+ break;
+
+ panic("fpu_explode");
+ panic("fpu_explode: invalid type %d", type);
+ }
+
+ if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
+ /*
+ * Input is a signalling NaN. All operations that return
+ * an input NaN operand put it through a ``NaN conversion'',
+ * which basically just means ``turn on the quiet bit''.
+ * We do this here so that all NaNs internally look quiet
+ * (we can tell signalling ones by their class).
+ */
+ fp->fp_mant[0] |= FP_QUIETBIT;
+ fe->fe_cx = FPSCR_VXSNAN; /* assert invalid operand */
+ s = FPC_SNAN;
+ }
+ fp->fp_class = s;
+ DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
+ ((type == FTYPE_INT) ? 'i' :
+ ((type == FTYPE_SNG) ? 's' :
+ ((type == FTYPE_DBL) ? 'd' : '?'))),
+ reg));
+ DUMPFPN(FPE_REG, fp);
+ DPRINTF(FPE_REG, ("\n"));
+}
diff --git a/sys/powerpc/fpu/fpu_extern.h b/sys/powerpc/fpu/fpu_extern.h
new file mode 100644
index 000000000000..cb569e29dfbf
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_extern.h
@@ -0,0 +1,83 @@
+/* $NetBSD: fpu_extern.h,v 1.3 2005/12/11 12:18:42 christos Exp $ */
+/* $FreeBSD$ */
+
+/*-
+ * Copyright (c) 1995 The NetBSD Foundation, Inc.
+ * All rights reserved.
+ *
+ * This code is derived from software contributed to The NetBSD Foundation
+ * by Christos Zoulas.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the NetBSD
+ * Foundation, Inc. and its contributors.
+ * 4. Neither the name of The NetBSD Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+ * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
+ * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+struct proc;
+struct fpreg;
+struct trapframe;
+union instr;
+struct fpemu;
+struct fpn;
+
+/* fpu.c */
+int fpu_emulate(struct trapframe *, struct fpreg *);
+int fpu_execute(struct trapframe *, struct fpemu *, union instr *);
+
+/* fpu_add.c */
+struct fpn *fpu_add(struct fpemu *);
+
+/* fpu_compare.c */
+void fpu_compare(struct fpemu *, int);
+
+/* fpu_div.c */
+struct fpn *fpu_div(struct fpemu *);
+
+/* fpu_explode.c */
+int fpu_itof(struct fpn *, u_int);
+int fpu_xtof(struct fpn *, u_int64_t);
+int fpu_stof(struct fpn *, u_int);
+int fpu_dtof(struct fpn *, u_int, u_int);
+void fpu_explode(struct fpemu *, struct fpn *, int, int);
+
+/* fpu_implode.c */
+u_int fpu_ftoi(struct fpemu *, struct fpn *);
+u_int fpu_ftox(struct fpemu *, struct fpn *, u_int *);
+u_int fpu_ftos(struct fpemu *, struct fpn *);
+u_int fpu_ftod(struct fpemu *, struct fpn *, u_int *);
+void fpu_implode(struct fpemu *, struct fpn *, int, u_int *);
+
+/* fpu_mul.c */
+struct fpn *fpu_mul(struct fpemu *);
+
+/* fpu_sqrt.c */
+struct fpn *fpu_sqrt(struct fpemu *);
+
+/* fpu_subr.c */
+int fpu_shr(struct fpn *, int);
+void fpu_norm(struct fpn *);
+struct fpn *fpu_newnan(struct fpemu *);
diff --git a/sys/powerpc/fpu/fpu_implode.c b/sys/powerpc/fpu/fpu_implode.c
new file mode 100644
index 000000000000..cbb3651a032a
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_implode.c
@@ -0,0 +1,462 @@
+/* $NetBSD: fpu_implode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu_implode.c 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * FPU subroutines: `implode' internal format numbers into the machine's
+ * `packed binary' format.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/systm.h>
+#include <sys/types.h>
+
+#include <machine/fpu.h>
+#include <machine/ieee.h>
+#include <machine/ieeefp.h>
+#include <machine/reg.h>
+
+#include <powerpc/fpu/fpu_arith.h>
+#include <powerpc/fpu/fpu_emu.h>
+#include <powerpc/fpu/fpu_extern.h>
+#include <powerpc/fpu/fpu_instr.h>
+
+static int round(struct fpemu *, struct fpn *);
+static int toinf(struct fpemu *, int);
+
+/*
+ * Round a number (algorithm from Motorola MC68882 manual, modified for
+ * our internal format). Set inexact exception if rounding is required.
+ * Return true iff we rounded up.
+ *
+ * After rounding, we discard the guard and round bits by shifting right
+ * 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
+ * This saves effort later.
+ *
+ * Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
+ * responsibility to fix this if necessary.
+ */
+static int
+round(struct fpemu *fe, struct fpn *fp)
+{
+ u_int m0, m1, m2, m3;
+ int gr, s;
+ FPU_DECL_CARRY;
+
+ m0 = fp->fp_mant[0];
+ m1 = fp->fp_mant[1];
+ m2 = fp->fp_mant[2];
+ m3 = fp->fp_mant[3];
+ gr = m3 & 3;
+ s = fp->fp_sticky;
+
+ /* mant >>= FP_NG */
+ m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
+ m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
+ m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
+ m0 >>= FP_NG;
+
+ if ((gr | s) == 0) /* result is exact: no rounding needed */
+ goto rounddown;
+
+ fe->fe_cx |= FPSCR_XX|FPSCR_FI; /* inexact */
+
+ /* Go to rounddown to round down; break to round up. */
+ switch ((fe->fe_fpscr) & FPSCR_RN) {
+
+ case FP_RN:
+ default:
+ /*
+ * Round only if guard is set (gr & 2). If guard is set,
+ * but round & sticky both clear, then we want to round
+ * but have a tie, so round to even, i.e., add 1 iff odd.
+ */
+ if ((gr & 2) == 0)
+ goto rounddown;
+ if ((gr & 1) || fp->fp_sticky || (m3 & 1))
+ break;
+ goto rounddown;
+
+ case FP_RZ:
+ /* Round towards zero, i.e., down. */
+ goto rounddown;
+
+ case FP_RM:
+ /* Round towards -Inf: up if negative, down if positive. */
+ if (fp->fp_sign)
+ break;
+ goto rounddown;
+
+ case FP_RP:
+ /* Round towards +Inf: up if positive, down otherwise. */
+ if (!fp->fp_sign)
+ break;
+ goto rounddown;
+ }
+
+ /* Bump low bit of mantissa, with carry. */
+ fe->fe_cx |= FPSCR_FR;
+
+ FPU_ADDS(m3, m3, 1);
+ FPU_ADDCS(m2, m2, 0);
+ FPU_ADDCS(m1, m1, 0);
+ FPU_ADDC(m0, m0, 0);
+ fp->fp_mant[0] = m0;
+ fp->fp_mant[1] = m1;
+ fp->fp_mant[2] = m2;
+ fp->fp_mant[3] = m3;
+ return (1);
+
+rounddown:
+ fp->fp_mant[0] = m0;
+ fp->fp_mant[1] = m1;
+ fp->fp_mant[2] = m2;
+ fp->fp_mant[3] = m3;
+ return (0);
+}
+
+/*
+ * For overflow: return true if overflow is to go to +/-Inf, according
+ * to the sign of the overflowing result. If false, overflow is to go
+ * to the largest magnitude value instead.
+ */
+static int
+toinf(struct fpemu *fe, int sign)
+{
+ int inf;
+
+ /* look at rounding direction */
+ switch ((fe->fe_fpscr) & FPSCR_RN) {
+
+ default:
+ case FP_RN: /* the nearest value is always Inf */
+ inf = 1;
+ break;
+
+ case FP_RZ: /* toward 0 => never towards Inf */
+ inf = 0;
+ break;
+
+ case FP_RP: /* toward +Inf iff positive */
+ inf = sign == 0;
+ break;
+
+ case FP_RM: /* toward -Inf iff negative */
+ inf = sign;
+ break;
+ }
+ if (inf)
+ fe->fe_cx |= FPSCR_OX;
+ return (inf);
+}
+
+/*
+ * fpn -> int (int value returned as return value).
+ *
+ * N.B.: this conversion always rounds towards zero (this is a peculiarity
+ * of the SPARC instruction set).
+ */
+u_int
+fpu_ftoi(struct fpemu *fe, struct fpn *fp)
+{
+ u_int i;
+ int sign, exp;
+
+ sign = fp->fp_sign;
+ switch (fp->fp_class) {
+
+ case FPC_ZERO:
+ return (0);
+
+ case FPC_NUM:
+ /*
+ * If exp >= 2^32, overflow. Otherwise shift value right
+ * into last mantissa word (this will not exceed 0xffffffff),
+ * shifting any guard and round bits out into the sticky
+ * bit. Then ``round'' towards zero, i.e., just set an
+ * inexact exception if sticky is set (see round()).
+ * If the result is > 0x80000000, or is positive and equals
+ * 0x80000000, overflow; otherwise the last fraction word
+ * is the result.
+ */
+ if ((exp = fp->fp_exp) >= 32)
+ break;
+ /* NB: the following includes exp < 0 cases */
+ if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
+ fe->fe_cx |= FPSCR_UX;
+ i = fp->fp_mant[3];
+ if (i >= ((u_int)0x80000000 + sign))
+ break;
+ return (sign ? -i : i);
+
+ default: /* Inf, qNaN, sNaN */
+ break;
+ }
+ /* overflow: replace any inexact exception with invalid */
+ fe->fe_cx |= FPSCR_VXCVI;
+ return (0x7fffffff + sign);
+}
+
+/*
+ * fpn -> extended int (high bits of int value returned as return value).
+ *
+ * N.B.: this conversion always rounds towards zero (this is a peculiarity
+ * of the SPARC instruction set).
+ */
+u_int
+fpu_ftox(struct fpemu *fe, struct fpn *fp, u_int *res)
+{
+ u_int64_t i;
+ int sign, exp;
+
+ sign = fp->fp_sign;
+ switch (fp->fp_class) {
+
+ case FPC_ZERO:
+ res[1] = 0;
+ return (0);
+
+ case FPC_NUM:
+ /*
+ * If exp >= 2^64, overflow. Otherwise shift value right
+ * into last mantissa word (this will not exceed 0xffffffffffffffff),
+ * shifting any guard and round bits out into the sticky
+ * bit. Then ``round'' towards zero, i.e., just set an
+ * inexact exception if sticky is set (see round()).
+ * If the result is > 0x8000000000000000, or is positive and equals
+ * 0x8000000000000000, overflow; otherwise the last fraction word
+ * is the result.
+ */
+ if ((exp = fp->fp_exp) >= 64)
+ break;
+ /* NB: the following includes exp < 0 cases */
+ if (fpu_shr(fp, FP_NMANT - 1 - exp) != 0)
+ fe->fe_cx |= FPSCR_UX;
+ i = ((u_int64_t)fp->fp_mant[2]<<32)|fp->fp_mant[3];
+ if (i >= ((u_int64_t)0x8000000000000000LL + sign))
+ break;
+ return (sign ? -i : i);
+
+ default: /* Inf, qNaN, sNaN */
+ break;
+ }
+ /* overflow: replace any inexact exception with invalid */
+ fe->fe_cx |= FPSCR_VXCVI;
+ return (0x7fffffffffffffffLL + sign);
+}
+
+/*
+ * fpn -> single (32 bit single returned as return value).
+ * We assume <= 29 bits in a single-precision fraction (1.f part).
+ */
+u_int
+fpu_ftos(struct fpemu *fe, struct fpn *fp)
+{
+ u_int sign = fp->fp_sign << 31;
+ int exp;
+
+#define SNG_EXP(e) ((e) << SNG_FRACBITS) /* makes e an exponent */
+#define SNG_MASK (SNG_EXP(1) - 1) /* mask for fraction */
+
+ /* Take care of non-numbers first. */
+ if (ISNAN(fp)) {
+ /*
+ * Preserve upper bits of NaN, per SPARC V8 appendix N.
+ * Note that fp->fp_mant[0] has the quiet bit set,
+ * even if it is classified as a signalling NaN.
+ */
+ (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
+ exp = SNG_EXP_INFNAN;
+ goto done;
+ }
+ if (ISINF(fp))
+ return (sign | SNG_EXP(SNG_EXP_INFNAN));
+ if (ISZERO(fp))
+ return (sign);
+
+ /*
+ * Normals (including subnormals). Drop all the fraction bits
+ * (including the explicit ``implied'' 1 bit) down into the
+ * single-precision range. If the number is subnormal, move
+ * the ``implied'' 1 into the explicit range as well, and shift
+ * right to introduce leading zeroes. Rounding then acts
+ * differently for normals and subnormals: the largest subnormal
+ * may round to the smallest normal (1.0 x 2^minexp), or may
+ * remain subnormal. In the latter case, signal an underflow
+ * if the result was inexact or if underflow traps are enabled.
+ *
+ * Rounding a normal, on the other hand, always produces another
+ * normal (although either way the result might be too big for
+ * single precision, and cause an overflow). If rounding a
+ * normal produces 2.0 in the fraction, we need not adjust that
+ * fraction at all, since both 1.0 and 2.0 are zero under the
+ * fraction mask.
+ *
+ * Note that the guard and round bits vanish from the number after
+ * rounding.
+ */
+ if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) { /* subnormal */
+ /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
+ (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
+ if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(1))
+ return (sign | SNG_EXP(1) | 0);
+ if ((fe->fe_cx & FPSCR_FI) ||
+ (fe->fe_fpscr & FPSCR_UX))
+ fe->fe_cx |= FPSCR_UX;
+ return (sign | SNG_EXP(0) | fp->fp_mant[3]);
+ }
+ /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
+ (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
+#ifdef DIAGNOSTIC
+ if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
+ panic("fpu_ftos");
+#endif
+ if (round(fe, fp) && fp->fp_mant[3] == SNG_EXP(2))
+ exp++;
+ if (exp >= SNG_EXP_INFNAN) {
+ /* overflow to inf or to max single */
+ if (toinf(fe, sign))
+ return (sign | SNG_EXP(SNG_EXP_INFNAN));
+ return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
+ }
+done:
+ /* phew, made it */
+ return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
+}
+
+/*
+ * fpn -> double (32 bit high-order result returned; 32-bit low order result
+ * left in res[1]). Assumes <= 61 bits in double precision fraction.
+ *
+ * This code mimics fpu_ftos; see it for comments.
+ */
+u_int
+fpu_ftod(struct fpemu *fe, struct fpn *fp, u_int *res)
+{
+ u_int sign = fp->fp_sign << 31;
+ int exp;
+
+#define DBL_EXP(e) ((e) << (DBL_FRACBITS & 31))
+#define DBL_MASK (DBL_EXP(1) - 1)
+
+ if (ISNAN(fp)) {
+ (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
+ exp = DBL_EXP_INFNAN;
+ goto done;
+ }
+ if (ISINF(fp)) {
+ sign |= DBL_EXP(DBL_EXP_INFNAN);
+ goto zero;
+ }
+ if (ISZERO(fp)) {
+zero: res[1] = 0;
+ return (sign);
+ }
+
+ if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
+ (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
+ if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(1)) {
+ res[1] = 0;
+ return (sign | DBL_EXP(1) | 0);
+ }
+ if ((fe->fe_cx & FPSCR_FI) ||
+ (fe->fe_fpscr & FPSCR_UX))
+ fe->fe_cx |= FPSCR_UX;
+ exp = 0;
+ goto done;
+ }
+ (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
+ if (round(fe, fp) && fp->fp_mant[2] == DBL_EXP(2))
+ exp++;
+ if (exp >= DBL_EXP_INFNAN) {
+ fe->fe_cx |= FPSCR_OX | FPSCR_UX;
+ if (toinf(fe, sign)) {
+ res[1] = 0;
+ return (sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
+ }
+ res[1] = ~0;
+ return (sign | DBL_EXP(DBL_EXP_INFNAN) | DBL_MASK);
+ }
+done:
+ res[1] = fp->fp_mant[3];
+ return (sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK));
+}
+
+/*
+ * Implode an fpn, writing the result into the given space.
+ */
+void
+fpu_implode(struct fpemu *fe, struct fpn *fp, int type, u_int *space)
+{
+
+ switch (type) {
+
+ case FTYPE_LNG:
+ space[0] = fpu_ftox(fe, fp, space);
+ DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n",
+ space[0], space[1]));
+ break;
+
+ case FTYPE_INT:
+ space[0] = 0;
+ space[1] = fpu_ftoi(fe, fp);
+ DPRINTF(FPE_REG, ("fpu_implode: int %x\n",
+ space[1]));
+ break;
+
+ case FTYPE_SNG:
+ space[0] = fpu_ftos(fe, fp);
+ DPRINTF(FPE_REG, ("fpu_implode: single %x\n",
+ space[0]));
+ break;
+
+ case FTYPE_DBL:
+ space[0] = fpu_ftod(fe, fp, space);
+ DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n",
+ space[0], space[1]));
+ break; break;
+
+ default:
+ panic("fpu_implode: invalid type %d", type);
+ }
+}
diff --git a/sys/powerpc/fpu/fpu_instr.h b/sys/powerpc/fpu/fpu_instr.h
new file mode 100644
index 000000000000..15801ef3c251
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_instr.h
@@ -0,0 +1,386 @@
+/* $NetBSD: instr.h,v 1.4 2005/12/11 12:18:43 christos Exp $ */
+/* $FreeBSD$ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)instr.h 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * An instruction.
+ */
+union instr {
+ int i_int; /* as a whole */
+
+ /*
+ * Any instruction type.
+ */
+ struct {
+ u_int i_opcd:6; /* first-level decode */
+ u_int :25;
+ u_int i_rc:1;
+ } i_any;
+
+ /*
+ * Format A
+ */
+ struct {
+ u_int i_opcd:6;
+ u_int i_frt:5;
+ u_int i_fra:5;
+ u_int i_frb:5;
+ u_int i_frc:5;
+ u_int i_xo:5;
+ u_int i_rc:1;
+ } i_a;
+
+ /*
+ * Format B
+ */
+ struct {
+ u_int i_opcd:6;
+ int i_bo:5;
+ int i_bi:5;
+ int i_bd:14;
+ int i_aa:1;
+ int i_lk:1;
+ } i_b;
+
+ /*
+ * Format D
+ */
+ struct {
+ u_int i_opcd:6;
+ u_int i_rs:5;
+ u_int i_ra:5;
+ int i_d:16;
+ } i_d;
+
+ /*
+ * Format DE
+ */
+ struct {
+ u_int i_opcd:6;
+ u_int i_rs:5;
+ u_int i_ra:5;
+ int i_d:12;
+ u_int i_xo:4;
+ } i_de;
+
+ /*
+ * Format I
+ */
+ struct {
+ u_int i_opcd:6;
+ int i_li:24;
+ int i_aa:1;
+ int i_lk:1;
+ } i_i;
+
+ /*
+ * Format M
+ */
+ struct {
+ u_int i_opcd:6;
+ u_int i_rs:5;
+ u_int i_ra:5;
+ u_int i_rb:5;
+ int i_mb:5;
+ int i_me:5;
+ u_int i_rc:1;
+ } i_m;
+
+ /*
+ * Format MD
+ */
+ struct {
+ u_int i_opcd:6;
+ u_int i_rs:5;
+ u_int i_ra:5;
+ u_int i_rb:5;
+ int i_sh1_5:5;
+ int i_mb:6;
+ u_int i_xo:3;
+ int i_sh0:2;
+ u_int i_rc:1;
+ } i_md;
+
+ /*
+ * Format MDS
+ */
+ struct {
+ u_int i_opcd:6;
+ u_int i_rs:5;
+ u_int i_ra:5;
+ u_int i_rb:5;
+ int i_sh:5;
+ int i_mb:6;
+ u_int i_xo:4;
+ u_int i_rc:1;
+ } i_mds;
+
+
+ /*
+ * Format S
+ */
+ struct {
+ u_int i_opcd:6;
+ int :24;
+ int i_i:1;
+ int :1;
+ } i_s;
+
+ /*
+ * Format X
+ */
+ struct {
+ u_int i_opcd:6;
+ u_int i_rs:5;
+ u_int i_ra:5;
+ u_int i_rb:5;
+ u_int i_xo:10;
+ u_int i_rc:1;
+ } i_x;
+
+ /*
+ * Format XFL
+ */
+ struct {
+ u_int i_opcd:6;
+ int :1;
+ int i_flm:8;
+ int :1;
+ int i_frb:5;
+ u_int i_xo:10;
+ int :1;
+ } i_xfl;
+
+ /*
+ * Format XFX
+ */
+ struct {
+ u_int i_opcd:6;
+ int i_dcrn:10;
+ u_int i_xo:10;
+ int :1;
+ } i_xfx;
+
+ /*
+ * Format XL
+ */
+ struct {
+ u_int i_opcd:6;
+ int i_bt:5;
+ int i_ba:5;
+ int i_bb:5;
+ u_int i_xo:10;
+ int i_lk:1;
+ } i_xl;
+
+ /*
+ * Format XS
+ */
+ struct {
+ u_int i_opcd:6;
+ u_int i_rs:5;
+ u_int i_ra:5;
+ int i_sh0_4:5;
+ u_int i_xo:9;
+ int i_sh5:1;
+ u_int i_rc:1;
+ } i_xs;
+
+};
+
+#define i_rt i_rs
+
+/*
+ * Primary opcode numbers:
+ */
+
+#define OPC_TDI 0x02
+#define OPC_TWI 0x03
+#define OPC_MULLI 0x07
+#define OPC_SUBFIC 0x08
+#define OPC_BCE 0x09
+#define OPC_CMPLI 0x0a
+#define OPC_CMPI 0x0b
+#define OPC_ADDIC 0x0c
+#define OPC_ADDIC_DOT 0x0d
+#define OPC_ADDI 0x0e
+#define OPC_ADDIS 0x0f
+#define OPC_BC 0x10
+#define OPC_SC 0x11
+#define OPC_B 0x12
+#define OPC_branch_19 0x13
+#define OPC_RLWIMI 0x14
+#define OPC_RLWINM 0x15
+#define OPC_BE 0x16
+#define OPC_RLWNM 0x17
+#define OPC_ORI 0x18
+#define OPC_ORIS 0x19
+#define OPC_XORI 0x1a
+#define OPC_XORIS 0x1b
+#define OPC_ANDI 0x1c
+#define OPC_ANDIS 0x1d
+#define OPC_dwe_rot_30 0x1e
+#define OPC_integer_31 0x1f
+#define OPC_LWZ 0x20
+#define OPC_LWZU 0x21
+#define OPC_LBZ 0x22
+#define OPC_LBZU 0x23
+#define OPC_STW 0x24
+#define OPC_STWU 0x25
+#define OPC_STB 0x26
+#define OPC_STBU 0x27
+#define OPC_LHZ 0x28
+#define OPC_LHZU 0x29
+#define OPC_LHA 0x2a
+#define OPC_LHAU 0x2b
+#define OPC_STH 0x2c
+#define OPC_STHU 0x2d
+#define OPC_LMW 0x2e
+#define OPC_STMW 0x2f
+#define OPC_LFS 0x30
+#define OPC_LFSU 0x31
+#define OPC_LFD 0x32
+#define OPC_LFDU 0x33
+#define OPC_STFS 0x34
+#define OPC_STFSU 0x35
+#define OPC_STFD 0x36
+#define OPC_STFDU 0x37
+#define OPC_load_st_58 0x3a
+#define OPC_sp_fp_59 0x3b
+#define OPC_load_st_62 0x3e
+#define OPC_dp_fp_63 0x3f
+
+/*
+ * Opcode 31 sub-types (FP only)
+ */
+#define OPC31_TW 0x004
+#define OPC31_LFSX 0x217
+#define OPC31_LFSUX 0x237
+#define OPC31_LFDX 0x257
+#define OPC31_LFDUX 0x277
+#define OPC31_STFSX 0x297
+#define OPC31_STFSUX 0x2b7
+#define OPC31_STFDX 0x2d7
+#define OPC31_STFDUX 0x2f7
+#define OPC31_STFIWX 0x3d7
+
+/* Mask for all valid indexed FP load/store ops (except stfiwx) */
+#define OPC31_FPMASK 0x31f
+#define OPC31_FPOP 0x217
+
+/*
+ * Opcode 59 sub-types:
+ */
+
+#define OPC59_FDIVS 0x12
+#define OPC59_FSUBS 0x14
+#define OPC59_FADDS 0x15
+#define OPC59_FSQRTS 0x16
+#define OPC59_FRES 0x18
+#define OPC59_FMULS 0x19
+#define OPC59_FMSUBS 0x1c
+#define OPC59_FMADDS 0x1d
+#define OPC59_FNMSUBS 0x1e
+#define OPC59_FNMADDS 0x1f
+
+/*
+ * Opcode 62 sub-types:
+ */
+#define OPC62_LDE 0x0
+#define OPC62_LDEU 0x1
+#define OPC62_LFSE 0x4
+#define OPC62_LFSEU 0x5
+#define OPC62_LFDE 0x6
+#define OPC62_LFDEU 0x7
+#define OPC62_STDE 0x8
+#define OPC62_STDEU 0x9
+#define OPC62_STFSE 0xc
+#define OPC62_STFSEU 0xd
+#define OPC62_STFDE 0xe
+#define OPC62_STFDEU 0xf
+
+/*
+ * Opcode 63 sub-types:
+ *
+ * (The first group are masks....)
+ */
+
+#define OPC63M_MASK 0x10
+#define OPC63M_FDIV 0x12
+#define OPC63M_FSUB 0x14
+#define OPC63M_FADD 0x15
+#define OPC63M_FSQRT 0x16
+#define OPC63M_FSEL 0x17
+#define OPC63M_FMUL 0x19
+#define OPC63M_FRSQRTE 0x1a
+#define OPC63M_FMSUB 0x1c
+#define OPC63M_FMADD 0x1d
+#define OPC63M_FNMSUB 0x1e
+#define OPC63M_FNMADD 0x1f
+
+#define OPC63_FCMPU 0x00
+#define OPC63_FRSP 0x0c
+#define OPC63_FCTIW 0x0e
+#define OPC63_FCTIWZ 0x0f
+#define OPC63_FCMPO 0x20
+#define OPC63_MTFSB1 0x26
+#define OPC63_FNEG 0x28
+#define OPC63_MCRFS 0x40
+#define OPC63_MTFSB0 0x46
+#define OPC63_FMR 0x48
+#define OPC63_MTFSFI 0x86
+#define OPC63_FNABS 0x88
+#define OPC63_FABS 0x108
+#define OPC63_MFFS 0x247
+#define OPC63_MTFSF 0x2c7
+#define OPC63_FCTID 0x32e
+#define OPC63_FCTIDZ 0x32f
+#define OPC63_FCFID 0x34e
+
+/*
+ * FPU data types.
+ */
+#define FTYPE_LNG -1 /* data = 64-bit signed long integer */
+#define FTYPE_INT 0 /* data = 32-bit signed integer */
+#define FTYPE_SNG 1 /* data = 32-bit float */
+#define FTYPE_DBL 2 /* data = 64-bit double */
+
diff --git a/sys/powerpc/fpu/fpu_mul.c b/sys/powerpc/fpu/fpu_mul.c
new file mode 100644
index 000000000000..f8735d9d26f7
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_mul.c
@@ -0,0 +1,239 @@
+/* $NetBSD: fpu_mul.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu_mul.c 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * Perform an FPU multiply (return x * y).
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/systm.h>
+#include <sys/types.h>
+
+#include <machine/fpu.h>
+#include <machine/reg.h>
+
+#include <powerpc/fpu/fpu_arith.h>
+#include <powerpc/fpu/fpu_emu.h>
+
+/*
+ * The multiplication algorithm for normal numbers is as follows:
+ *
+ * The fraction of the product is built in the usual stepwise fashion.
+ * Each step consists of shifting the accumulator right one bit
+ * (maintaining any guard bits) and, if the next bit in y is set,
+ * adding the multiplicand (x) to the accumulator. Then, in any case,
+ * we advance one bit leftward in y. Algorithmically:
+ *
+ * A = 0;
+ * for (bit = 0; bit < FP_NMANT; bit++) {
+ * sticky |= A & 1, A >>= 1;
+ * if (Y & (1 << bit))
+ * A += X;
+ * }
+ *
+ * (X and Y here represent the mantissas of x and y respectively.)
+ * The resultant accumulator (A) is the product's mantissa. It may
+ * be as large as 11.11111... in binary and hence may need to be
+ * shifted right, but at most one bit.
+ *
+ * Since we do not have efficient multiword arithmetic, we code the
+ * accumulator as four separate words, just like any other mantissa.
+ * We use local variables in the hope that this is faster than memory.
+ * We keep x->fp_mant in locals for the same reason.
+ *
+ * In the algorithm above, the bits in y are inspected one at a time.
+ * We will pick them up 32 at a time and then deal with those 32, one
+ * at a time. Note, however, that we know several things about y:
+ *
+ * - the guard and round bits at the bottom are sure to be zero;
+ *
+ * - often many low bits are zero (y is often from a single or double
+ * precision source);
+ *
+ * - bit FP_NMANT-1 is set, and FP_1*2 fits in a word.
+ *
+ * We can also test for 32-zero-bits swiftly. In this case, the center
+ * part of the loop---setting sticky, shifting A, and not adding---will
+ * run 32 times without adding X to A. We can do a 32-bit shift faster
+ * by simply moving words. Since zeros are common, we optimize this case.
+ * Furthermore, since A is initially zero, we can omit the shift as well
+ * until we reach a nonzero word.
+ */
+struct fpn *
+fpu_mul(struct fpemu *fe)
+{
+ struct fpn *x = &fe->fe_f1, *y = &fe->fe_f2;
+ u_int a3, a2, a1, a0, x3, x2, x1, x0, bit, m;
+ int sticky;
+ FPU_DECL_CARRY;
+
+ /*
+ * Put the `heavier' operand on the right (see fpu_emu.h).
+ * Then we will have one of the following cases, taken in the
+ * following order:
+ *
+ * - y = NaN. Implied: if only one is a signalling NaN, y is.
+ * The result is y.
+ * - y = Inf. Implied: x != NaN (is 0, number, or Inf: the NaN
+ * case was taken care of earlier).
+ * If x = 0, the result is NaN. Otherwise the result
+ * is y, with its sign reversed if x is negative.
+ * - x = 0. Implied: y is 0 or number.
+ * The result is 0 (with XORed sign as usual).
+ * - other. Implied: both x and y are numbers.
+ * The result is x * y (XOR sign, multiply bits, add exponents).
+ */
+ DPRINTF(FPE_REG, ("fpu_mul:\n"));
+ DUMPFPN(FPE_REG, x);
+ DUMPFPN(FPE_REG, y);
+ DPRINTF(FPE_REG, ("=>\n"));
+
+ ORDER(x, y);
+ if (ISNAN(y)) {
+ y->fp_sign ^= x->fp_sign;
+ fe->fe_cx |= FPSCR_VXSNAN;
+ DUMPFPN(FPE_REG, y);
+ return (y);
+ }
+ if (ISINF(y)) {
+ if (ISZERO(x)) {
+ fe->fe_cx |= FPSCR_VXIMZ;
+ return (fpu_newnan(fe));
+ }
+ y->fp_sign ^= x->fp_sign;
+ DUMPFPN(FPE_REG, y);
+ return (y);
+ }
+ if (ISZERO(x)) {
+ x->fp_sign ^= y->fp_sign;
+ DUMPFPN(FPE_REG, x);
+ return (x);
+ }
+
+ /*
+ * Setup. In the code below, the mask `m' will hold the current
+ * mantissa byte from y. The variable `bit' denotes the bit
+ * within m. We also define some macros to deal with everything.
+ */
+ x3 = x->fp_mant[3];
+ x2 = x->fp_mant[2];
+ x1 = x->fp_mant[1];
+ x0 = x->fp_mant[0];
+ sticky = a3 = a2 = a1 = a0 = 0;
+
+#define ADD /* A += X */ \
+ FPU_ADDS(a3, a3, x3); \
+ FPU_ADDCS(a2, a2, x2); \
+ FPU_ADDCS(a1, a1, x1); \
+ FPU_ADDC(a0, a0, x0)
+
+#define SHR1 /* A >>= 1, with sticky */ \
+ sticky |= a3 & 1, a3 = (a3 >> 1) | (a2 << 31), \
+ a2 = (a2 >> 1) | (a1 << 31), a1 = (a1 >> 1) | (a0 << 31), a0 >>= 1
+
+#define SHR32 /* A >>= 32, with sticky */ \
+ sticky |= a3, a3 = a2, a2 = a1, a1 = a0, a0 = 0
+
+#define STEP /* each 1-bit step of the multiplication */ \
+ SHR1; if (bit & m) { ADD; }; bit <<= 1
+
+ /*
+ * We are ready to begin. The multiply loop runs once for each
+ * of the four 32-bit words. Some words, however, are special.
+ * As noted above, the low order bits of Y are often zero. Even
+ * if not, the first loop can certainly skip the guard bits.
+ * The last word of y has its highest 1-bit in position FP_NMANT-1,
+ * so we stop the loop when we move past that bit.
+ */
+ if ((m = y->fp_mant[3]) == 0) {
+ /* SHR32; */ /* unneeded since A==0 */
+ } else {
+ bit = 1 << FP_NG;
+ do {
+ STEP;
+ } while (bit != 0);
+ }
+ if ((m = y->fp_mant[2]) == 0) {
+ SHR32;
+ } else {
+ bit = 1;
+ do {
+ STEP;
+ } while (bit != 0);
+ }
+ if ((m = y->fp_mant[1]) == 0) {
+ SHR32;
+ } else {
+ bit = 1;
+ do {
+ STEP;
+ } while (bit != 0);
+ }
+ m = y->fp_mant[0]; /* definitely != 0 */
+ bit = 1;
+ do {
+ STEP;
+ } while (bit <= m);
+
+ /*
+ * Done with mantissa calculation. Get exponent and handle
+ * 11.111...1 case, then put result in place. We reuse x since
+ * it already has the right class (FP_NUM).
+ */
+ m = x->fp_exp + y->fp_exp;
+ if (a0 >= FP_2) {
+ SHR1;
+ m++;
+ }
+ x->fp_sign ^= y->fp_sign;
+ x->fp_exp = m;
+ x->fp_sticky = sticky;
+ x->fp_mant[3] = a3;
+ x->fp_mant[2] = a2;
+ x->fp_mant[1] = a1;
+ x->fp_mant[0] = a0;
+
+ DUMPFPN(FPE_REG, x);
+ return (x);
+}
diff --git a/sys/powerpc/fpu/fpu_sqrt.c b/sys/powerpc/fpu/fpu_sqrt.c
new file mode 100644
index 000000000000..c57106959710
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_sqrt.c
@@ -0,0 +1,415 @@
+/* $NetBSD: fpu_sqrt.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu_sqrt.c 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * Perform an FPU square root (return sqrt(x)).
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/systm.h>
+#include <sys/types.h>
+
+#include <machine/fpu.h>
+#include <machine/reg.h>
+
+#include <powerpc/fpu/fpu_arith.h>
+#include <powerpc/fpu/fpu_emu.h>
+
+/*
+ * Our task is to calculate the square root of a floating point number x0.
+ * This number x normally has the form:
+ *
+ * exp
+ * x = mant * 2 (where 1 <= mant < 2 and exp is an integer)
+ *
+ * This can be left as it stands, or the mantissa can be doubled and the
+ * exponent decremented:
+ *
+ * exp-1
+ * x = (2 * mant) * 2 (where 2 <= 2 * mant < 4)
+ *
+ * If the exponent `exp' is even, the square root of the number is best
+ * handled using the first form, and is by definition equal to:
+ *
+ * exp/2
+ * sqrt(x) = sqrt(mant) * 2
+ *
+ * If exp is odd, on the other hand, it is convenient to use the second
+ * form, giving:
+ *
+ * (exp-1)/2
+ * sqrt(x) = sqrt(2 * mant) * 2
+ *
+ * In the first case, we have
+ *
+ * 1 <= mant < 2
+ *
+ * and therefore
+ *
+ * sqrt(1) <= sqrt(mant) < sqrt(2)
+ *
+ * while in the second case we have
+ *
+ * 2 <= 2*mant < 4
+ *
+ * and therefore
+ *
+ * sqrt(2) <= sqrt(2*mant) < sqrt(4)
+ *
+ * so that in any case, we are sure that
+ *
+ * sqrt(1) <= sqrt(n * mant) < sqrt(4), n = 1 or 2
+ *
+ * or
+ *
+ * 1 <= sqrt(n * mant) < 2, n = 1 or 2.
+ *
+ * This root is therefore a properly formed mantissa for a floating
+ * point number. The exponent of sqrt(x) is either exp/2 or (exp-1)/2
+ * as above. This leaves us with the problem of finding the square root
+ * of a fixed-point number in the range [1..4).
+ *
+ * Though it may not be instantly obvious, the following square root
+ * algorithm works for any integer x of an even number of bits, provided
+ * that no overflows occur:
+ *
+ * let q = 0
+ * for k = NBITS-1 to 0 step -1 do -- for each digit in the answer...
+ * x *= 2 -- multiply by radix, for next digit
+ * if x >= 2q + 2^k then -- if adding 2^k does not
+ * x -= 2q + 2^k -- exceed the correct root,
+ * q += 2^k -- add 2^k and adjust x
+ * fi
+ * done
+ * sqrt = q / 2^(NBITS/2) -- (and any remainder is in x)
+ *
+ * If NBITS is odd (so that k is initially even), we can just add another
+ * zero bit at the top of x. Doing so means that q is not going to acquire
+ * a 1 bit in the first trip around the loop (since x0 < 2^NBITS). If the
+ * final value in x is not needed, or can be off by a factor of 2, this is
+ * equivalant to moving the `x *= 2' step to the bottom of the loop:
+ *
+ * for k = NBITS-1 to 0 step -1 do if ... fi; x *= 2; done
+ *
+ * and the result q will then be sqrt(x0) * 2^floor(NBITS / 2).
+ * (Since the algorithm is destructive on x, we will call x's initial
+ * value, for which q is some power of two times its square root, x0.)
+ *
+ * If we insert a loop invariant y = 2q, we can then rewrite this using
+ * C notation as:
+ *
+ * q = y = 0; x = x0;
+ * for (k = NBITS; --k >= 0;) {
+ * #if (NBITS is even)
+ * x *= 2;
+ * #endif
+ * t = y + (1 << k);
+ * if (x >= t) {
+ * x -= t;
+ * q += 1 << k;
+ * y += 1 << (k + 1);
+ * }
+ * #if (NBITS is odd)
+ * x *= 2;
+ * #endif
+ * }
+ *
+ * If x0 is fixed point, rather than an integer, we can simply alter the
+ * scale factor between q and sqrt(x0). As it happens, we can easily arrange
+ * for the scale factor to be 2**0 or 1, so that sqrt(x0) == q.
+ *
+ * In our case, however, x0 (and therefore x, y, q, and t) are multiword
+ * integers, which adds some complication. But note that q is built one
+ * bit at a time, from the top down, and is not used itself in the loop
+ * (we use 2q as held in y instead). This means we can build our answer
+ * in an integer, one word at a time, which saves a bit of work. Also,
+ * since 1 << k is always a `new' bit in q, 1 << k and 1 << (k+1) are
+ * `new' bits in y and we can set them with an `or' operation rather than
+ * a full-blown multiword add.
+ *
+ * We are almost done, except for one snag. We must prove that none of our
+ * intermediate calculations can overflow. We know that x0 is in [1..4)
+ * and therefore the square root in q will be in [1..2), but what about x,
+ * y, and t?
+ *
+ * We know that y = 2q at the beginning of each loop. (The relation only
+ * fails temporarily while y and q are being updated.) Since q < 2, y < 4.
+ * The sum in t can, in our case, be as much as y+(1<<1) = y+2 < 6, and.
+ * Furthermore, we can prove with a bit of work that x never exceeds y by
+ * more than 2, so that even after doubling, 0 <= x < 8. (This is left as
+ * an exercise to the reader, mostly because I have become tired of working
+ * on this comment.)
+ *
+ * If our floating point mantissas (which are of the form 1.frac) occupy
+ * B+1 bits, our largest intermediary needs at most B+3 bits, or two extra.
+ * In fact, we want even one more bit (for a carry, to avoid compares), or
+ * three extra. There is a comment in fpu_emu.h reminding maintainers of
+ * this, so we have some justification in assuming it.
+ */
+struct fpn *
+fpu_sqrt(struct fpemu *fe)
+{
+ struct fpn *x = &fe->fe_f1;
+ u_int bit, q, tt;
+ u_int x0, x1, x2, x3;
+ u_int y0, y1, y2, y3;
+ u_int d0, d1, d2, d3;
+ int e;
+ FPU_DECL_CARRY;
+
+ /*
+ * Take care of special cases first. In order:
+ *
+ * sqrt(NaN) = NaN
+ * sqrt(+0) = +0
+ * sqrt(-0) = -0
+ * sqrt(x < 0) = NaN (including sqrt(-Inf))
+ * sqrt(+Inf) = +Inf
+ *
+ * Then all that remains are numbers with mantissas in [1..2).
+ */
+ DPRINTF(FPE_REG, ("fpu_sqer:\n"));
+ DUMPFPN(FPE_REG, x);
+ DPRINTF(FPE_REG, ("=>\n"));
+ if (ISNAN(x)) {
+ fe->fe_cx |= FPSCR_VXSNAN;
+ DUMPFPN(FPE_REG, x);
+ return (x);
+ }
+ if (ISZERO(x)) {
+ fe->fe_cx |= FPSCR_ZX;
+ x->fp_class = FPC_INF;
+ DUMPFPN(FPE_REG, x);
+ return (x);
+ }
+ if (x->fp_sign) {
+ return (fpu_newnan(fe));
+ }
+ if (ISINF(x)) {
+ fe->fe_cx |= FPSCR_VXSQRT;
+ DUMPFPN(FPE_REG, 0);
+ return (0);
+ }
+
+ /*
+ * Calculate result exponent. As noted above, this may involve
+ * doubling the mantissa. We will also need to double x each
+ * time around the loop, so we define a macro for this here, and
+ * we break out the multiword mantissa.
+ */
+#ifdef FPU_SHL1_BY_ADD
+#define DOUBLE_X { \
+ FPU_ADDS(x3, x3, x3); FPU_ADDCS(x2, x2, x2); \
+ FPU_ADDCS(x1, x1, x1); FPU_ADDC(x0, x0, x0); \
+}
+#else
+#define DOUBLE_X { \
+ x0 = (x0 << 1) | (x1 >> 31); x1 = (x1 << 1) | (x2 >> 31); \
+ x2 = (x2 << 1) | (x3 >> 31); x3 <<= 1; \
+}
+#endif
+#if (FP_NMANT & 1) != 0
+# define ODD_DOUBLE DOUBLE_X
+# define EVEN_DOUBLE /* nothing */
+#else
+# define ODD_DOUBLE /* nothing */
+# define EVEN_DOUBLE DOUBLE_X
+#endif
+ x0 = x->fp_mant[0];
+ x1 = x->fp_mant[1];
+ x2 = x->fp_mant[2];
+ x3 = x->fp_mant[3];
+ e = x->fp_exp;
+ if (e & 1) /* exponent is odd; use sqrt(2mant) */
+ DOUBLE_X;
+ /* THE FOLLOWING ASSUMES THAT RIGHT SHIFT DOES SIGN EXTENSION */
+ x->fp_exp = e >> 1; /* calculates (e&1 ? (e-1)/2 : e/2 */
+
+ /*
+ * Now calculate the mantissa root. Since x is now in [1..4),
+ * we know that the first trip around the loop will definitely
+ * set the top bit in q, so we can do that manually and start
+ * the loop at the next bit down instead. We must be sure to
+ * double x correctly while doing the `known q=1.0'.
+ *
+ * We do this one mantissa-word at a time, as noted above, to
+ * save work. To avoid `(1 << 31) << 1', we also do the top bit
+ * outside of each per-word loop.
+ *
+ * The calculation `t = y + bit' breaks down into `t0 = y0, ...,
+ * t3 = y3, t? |= bit' for the appropriate word. Since the bit
+ * is always a `new' one, this means that three of the `t?'s are
+ * just the corresponding `y?'; we use `#define's here for this.
+ * The variable `tt' holds the actual `t?' variable.
+ */
+
+ /* calculate q0 */
+#define t0 tt
+ bit = FP_1;
+ EVEN_DOUBLE;
+ /* if (x >= (t0 = y0 | bit)) { */ /* always true */
+ q = bit;
+ x0 -= bit;
+ y0 = bit << 1;
+ /* } */
+ ODD_DOUBLE;
+ while ((bit >>= 1) != 0) { /* for remaining bits in q0 */
+ EVEN_DOUBLE;
+ t0 = y0 | bit; /* t = y + bit */
+ if (x0 >= t0) { /* if x >= t then */
+ x0 -= t0; /* x -= t */
+ q |= bit; /* q += bit */
+ y0 |= bit << 1; /* y += bit << 1 */
+ }
+ ODD_DOUBLE;
+ }
+ x->fp_mant[0] = q;
+#undef t0
+
+ /* calculate q1. note (y0&1)==0. */
+#define t0 y0
+#define t1 tt
+ q = 0;
+ y1 = 0;
+ bit = 1 << 31;
+ EVEN_DOUBLE;
+ t1 = bit;
+ FPU_SUBS(d1, x1, t1);
+ FPU_SUBC(d0, x0, t0); /* d = x - t */
+ if ((int)d0 >= 0) { /* if d >= 0 (i.e., x >= t) then */
+ x0 = d0, x1 = d1; /* x -= t */
+ q = bit; /* q += bit */
+ y0 |= 1; /* y += bit << 1 */
+ }
+ ODD_DOUBLE;
+ while ((bit >>= 1) != 0) { /* for remaining bits in q1 */
+ EVEN_DOUBLE; /* as before */
+ t1 = y1 | bit;
+ FPU_SUBS(d1, x1, t1);
+ FPU_SUBC(d0, x0, t0);
+ if ((int)d0 >= 0) {
+ x0 = d0, x1 = d1;
+ q |= bit;
+ y1 |= bit << 1;
+ }
+ ODD_DOUBLE;
+ }
+ x->fp_mant[1] = q;
+#undef t1
+
+ /* calculate q2. note (y1&1)==0; y0 (aka t0) is fixed. */
+#define t1 y1
+#define t2 tt
+ q = 0;
+ y2 = 0;
+ bit = 1 << 31;
+ EVEN_DOUBLE;
+ t2 = bit;
+ FPU_SUBS(d2, x2, t2);
+ FPU_SUBCS(d1, x1, t1);
+ FPU_SUBC(d0, x0, t0);
+ if ((int)d0 >= 0) {
+ x0 = d0, x1 = d1, x2 = d2;
+ q |= bit;
+ y1 |= 1; /* now t1, y1 are set in concrete */
+ }
+ ODD_DOUBLE;
+ while ((bit >>= 1) != 0) {
+ EVEN_DOUBLE;
+ t2 = y2 | bit;
+ FPU_SUBS(d2, x2, t2);
+ FPU_SUBCS(d1, x1, t1);
+ FPU_SUBC(d0, x0, t0);
+ if ((int)d0 >= 0) {
+ x0 = d0, x1 = d1, x2 = d2;
+ q |= bit;
+ y2 |= bit << 1;
+ }
+ ODD_DOUBLE;
+ }
+ x->fp_mant[2] = q;
+#undef t2
+
+ /* calculate q3. y0, t0, y1, t1 all fixed; y2, t2, almost done. */
+#define t2 y2
+#define t3 tt
+ q = 0;
+ y3 = 0;
+ bit = 1 << 31;
+ EVEN_DOUBLE;
+ t3 = bit;
+ FPU_SUBS(d3, x3, t3);
+ FPU_SUBCS(d2, x2, t2);
+ FPU_SUBCS(d1, x1, t1);
+ FPU_SUBC(d0, x0, t0);
+ ODD_DOUBLE;
+ if ((int)d0 >= 0) {
+ x0 = d0, x1 = d1, x2 = d2;
+ q |= bit;
+ y2 |= 1;
+ }
+ while ((bit >>= 1) != 0) {
+ EVEN_DOUBLE;
+ t3 = y3 | bit;
+ FPU_SUBS(d3, x3, t3);
+ FPU_SUBCS(d2, x2, t2);
+ FPU_SUBCS(d1, x1, t1);
+ FPU_SUBC(d0, x0, t0);
+ if ((int)d0 >= 0) {
+ x0 = d0, x1 = d1, x2 = d2;
+ q |= bit;
+ y3 |= bit << 1;
+ }
+ ODD_DOUBLE;
+ }
+ x->fp_mant[3] = q;
+
+ /*
+ * The result, which includes guard and round bits, is exact iff
+ * x is now zero; any nonzero bits in x represent sticky bits.
+ */
+ x->fp_sticky = x0 | x1 | x2 | x3;
+ DUMPFPN(FPE_REG, x);
+ return (x);
+}
diff --git a/sys/powerpc/fpu/fpu_subr.c b/sys/powerpc/fpu/fpu_subr.c
new file mode 100644
index 000000000000..e403e1816693
--- /dev/null
+++ b/sys/powerpc/fpu/fpu_subr.c
@@ -0,0 +1,221 @@
+/* $NetBSD: fpu_subr.c,v 1.4 2005/12/11 12:18:42 christos Exp $ */
+
+/*
+ * Copyright (c) 1992, 1993
+ * The Regents of the University of California. All rights reserved.
+ *
+ * This software was developed by the Computer Systems Engineering group
+ * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
+ * contributed to Berkeley.
+ *
+ * All advertising materials mentioning features or use of this software
+ * must display the following acknowledgement:
+ * This product includes software developed by the University of
+ * California, Lawrence Berkeley Laboratory.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * 3. Neither the name of the University nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ *
+ * @(#)fpu_subr.c 8.1 (Berkeley) 6/11/93
+ */
+
+/*
+ * FPU subroutines.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#include <sys/systm.h>
+#include <sys/types.h>
+
+#include <machine/fpu.h>
+#include <machine/reg.h>
+
+#include <powerpc/fpu/fpu_arith.h>
+#include <powerpc/fpu/fpu_emu.h>
+#include <powerpc/fpu/fpu_extern.h>
+
+/*
+ * Shift the given number right rsh bits. Any bits that `fall off' will get
+ * shoved into the sticky field; we return the resulting sticky. Note that
+ * shifting NaNs is legal (this will never shift all bits out); a NaN's
+ * sticky field is ignored anyway.
+ */
+int
+fpu_shr(struct fpn *fp, int rsh)
+{
+ u_int m0, m1, m2, m3, s;
+ int lsh;
+
+#ifdef DIAGNOSTIC
+ if (rsh <= 0 || (fp->fp_class != FPC_NUM && !ISNAN(fp)))
+ panic("fpu_rightshift 1");
+#endif
+
+ m0 = fp->fp_mant[0];
+ m1 = fp->fp_mant[1];
+ m2 = fp->fp_mant[2];
+ m3 = fp->fp_mant[3];
+
+ /* If shifting all the bits out, take a shortcut. */
+ if (rsh >= FP_NMANT) {
+#ifdef DIAGNOSTIC
+ if ((m0 | m1 | m2 | m3) == 0)
+ panic("fpu_rightshift 2");
+#endif
+ fp->fp_mant[0] = 0;
+ fp->fp_mant[1] = 0;
+ fp->fp_mant[2] = 0;
+ fp->fp_mant[3] = 0;
+#ifdef notdef
+ if ((m0 | m1 | m2 | m3) == 0)
+ fp->fp_class = FPC_ZERO;
+ else
+#endif
+ fp->fp_sticky = 1;
+ return (1);
+ }
+
+ /* Squish out full words. */
+ s = fp->fp_sticky;
+ if (rsh >= 32 * 3) {
+ s |= m3 | m2 | m1;
+ m3 = m0, m2 = 0, m1 = 0, m0 = 0;
+ } else if (rsh >= 32 * 2) {
+ s |= m3 | m2;
+ m3 = m1, m2 = m0, m1 = 0, m0 = 0;
+ } else if (rsh >= 32) {
+ s |= m3;
+ m3 = m2, m2 = m1, m1 = m0, m0 = 0;
+ }
+
+ /* Handle any remaining partial word. */
+ if ((rsh &= 31) != 0) {
+ lsh = 32 - rsh;
+ s |= m3 << lsh;
+ m3 = (m3 >> rsh) | (m2 << lsh);
+ m2 = (m2 >> rsh) | (m1 << lsh);
+ m1 = (m1 >> rsh) | (m0 << lsh);
+ m0 >>= rsh;
+ }
+ fp->fp_mant[0] = m0;
+ fp->fp_mant[1] = m1;
+ fp->fp_mant[2] = m2;
+ fp->fp_mant[3] = m3;
+ fp->fp_sticky = s;
+ return (s);
+}
+
+/*
+ * Force a number to be normal, i.e., make its fraction have all zero
+ * bits before FP_1, then FP_1, then all 1 bits. This is used for denorms
+ * and (sometimes) for intermediate results.
+ *
+ * Internally, this may use a `supernormal' -- a number whose fp_mant
+ * is greater than or equal to 2.0 -- so as a side effect you can hand it
+ * a supernormal and it will fix it (provided fp->fp_mant[3] == 0).
+ */
+void
+fpu_norm(struct fpn *fp)
+{
+ u_int m0, m1, m2, m3, top, sup, nrm;
+ int lsh, rsh, exp;
+
+ exp = fp->fp_exp;
+ m0 = fp->fp_mant[0];
+ m1 = fp->fp_mant[1];
+ m2 = fp->fp_mant[2];
+ m3 = fp->fp_mant[3];
+
+ /* Handle severe subnormals with 32-bit moves. */
+ if (m0 == 0) {
+ if (m1)
+ m0 = m1, m1 = m2, m2 = m3, m3 = 0, exp -= 32;
+ else if (m2)
+ m0 = m2, m1 = m3, m2 = 0, m3 = 0, exp -= 2 * 32;
+ else if (m3)
+ m0 = m3, m1 = 0, m2 = 0, m3 = 0, exp -= 3 * 32;
+ else {
+ fp->fp_class = FPC_ZERO;
+ return;
+ }
+ }
+
+ /* Now fix any supernormal or remaining subnormal. */
+ nrm = FP_1;
+ sup = nrm << 1;
+ if (m0 >= sup) {
+ /*
+ * We have a supernormal number. We need to shift it right.
+ * We may assume m3==0.
+ */
+ for (rsh = 1, top = m0 >> 1; top >= sup; rsh++) /* XXX slow */
+ top >>= 1;
+ exp += rsh;
+ lsh = 32 - rsh;
+ m3 = m2 << lsh;
+ m2 = (m2 >> rsh) | (m1 << lsh);
+ m1 = (m1 >> rsh) | (m0 << lsh);
+ m0 = top;
+ } else if (m0 < nrm) {
+ /*
+ * We have a regular denorm (a subnormal number), and need
+ * to shift it left.
+ */
+ for (lsh = 1, top = m0 << 1; top < nrm; lsh++) /* XXX slow */
+ top <<= 1;
+ exp -= lsh;
+ rsh = 32 - lsh;
+ m0 = top | (m1 >> rsh);
+ m1 = (m1 << lsh) | (m2 >> rsh);
+ m2 = (m2 << lsh) | (m3 >> rsh);
+ m3 <<= lsh;
+ }
+
+ fp->fp_exp = exp;
+ fp->fp_mant[0] = m0;
+ fp->fp_mant[1] = m1;
+ fp->fp_mant[2] = m2;
+ fp->fp_mant[3] = m3;
+}
+
+/*
+ * Concoct a `fresh' Quiet NaN per Appendix N.
+ * As a side effect, we set NV (invalid) for the current exceptions.
+ */
+struct fpn *
+fpu_newnan(struct fpemu *fe)
+{
+ struct fpn *fp;
+
+ fe->fe_cx |= FPSCR_VXSNAN;
+ fp = &fe->fe_f3;
+ fp->fp_class = FPC_QNAN;
+ fp->fp_sign = 0;
+ fp->fp_mant[0] = FP_1 - 1;
+ fp->fp_mant[1] = fp->fp_mant[2] = fp->fp_mant[3] = ~0;
+ DUMPFPN(FPE_REG, fp);
+ return (fp);
+}