diff options
Diffstat (limited to 'contrib/binutils/bfd/doc/bfdsumm.texi')
-rw-r--r-- | contrib/binutils/bfd/doc/bfdsumm.texi | 148 |
1 files changed, 0 insertions, 148 deletions
diff --git a/contrib/binutils/bfd/doc/bfdsumm.texi b/contrib/binutils/bfd/doc/bfdsumm.texi deleted file mode 100644 index 77a5f09e51cf..000000000000 --- a/contrib/binutils/bfd/doc/bfdsumm.texi +++ /dev/null @@ -1,148 +0,0 @@ -@c This summary of BFD is shared by the BFD and LD docs. -When an object file is opened, BFD subroutines automatically determine -the format of the input object file. They then build a descriptor in -memory with pointers to routines that will be used to access elements of -the object file's data structures. - -As different information from the object files is required, -BFD reads from different sections of the file and processes them. -For example, a very common operation for the linker is processing symbol -tables. Each BFD back end provides a routine for converting -between the object file's representation of symbols and an internal -canonical format. When the linker asks for the symbol table of an object -file, it calls through a memory pointer to the routine from the -relevant BFD back end which reads and converts the table into a canonical -form. The linker then operates upon the canonical form. When the link is -finished and the linker writes the output file's symbol table, -another BFD back end routine is called to take the newly -created symbol table and convert it into the chosen output format. - -@menu -* BFD information loss:: Information Loss -* Canonical format:: The BFD canonical object-file format -@end menu - -@node BFD information loss -@subsection Information Loss - -@emph{Information can be lost during output.} The output formats -supported by BFD do not provide identical facilities, and -information which can be described in one form has nowhere to go in -another format. One example of this is alignment information in -@code{b.out}. There is nowhere in an @code{a.out} format file to store -alignment information on the contained data, so when a file is linked -from @code{b.out} and an @code{a.out} image is produced, alignment -information will not propagate to the output file. (The linker will -still use the alignment information internally, so the link is performed -correctly). - -Another example is COFF section names. COFF files may contain an -unlimited number of sections, each one with a textual section name. If -the target of the link is a format which does not have many sections (e.g., -@code{a.out}) or has sections without names (e.g., the Oasys format), the -link cannot be done simply. You can circumvent this problem by -describing the desired input-to-output section mapping with the linker command -language. - -@emph{Information can be lost during canonicalization.} The BFD -internal canonical form of the external formats is not exhaustive; there -are structures in input formats for which there is no direct -representation internally. This means that the BFD back ends -cannot maintain all possible data richness through the transformation -between external to internal and back to external formats. - -This limitation is only a problem when an application reads one -format and writes another. Each BFD back end is responsible for -maintaining as much data as possible, and the internal BFD -canonical form has structures which are opaque to the BFD core, -and exported only to the back ends. When a file is read in one format, -the canonical form is generated for BFD and the application. At the -same time, the back end saves away any information which may otherwise -be lost. If the data is then written back in the same format, the back -end routine will be able to use the canonical form provided by the -BFD core as well as the information it prepared earlier. Since -there is a great deal of commonality between back ends, -there is no information lost when -linking or copying big endian COFF to little endian COFF, or @code{a.out} to -@code{b.out}. When a mixture of formats is linked, the information is -only lost from the files whose format differs from the destination. - -@node Canonical format -@subsection The BFD canonical object-file format - -The greatest potential for loss of information occurs when there is the least -overlap between the information provided by the source format, that -stored by the canonical format, and that needed by the -destination format. A brief description of the canonical form may help -you understand which kinds of data you can count on preserving across -conversions. -@cindex BFD canonical format -@cindex internal object-file format - -@table @emph -@item files -Information stored on a per-file basis includes target machine -architecture, particular implementation format type, a demand pageable -bit, and a write protected bit. Information like Unix magic numbers is -not stored here---only the magic numbers' meaning, so a @code{ZMAGIC} -file would have both the demand pageable bit and the write protected -text bit set. The byte order of the target is stored on a per-file -basis, so that big- and little-endian object files may be used with one -another. - -@item sections -Each section in the input file contains the name of the section, the -section's original address in the object file, size and alignment -information, various flags, and pointers into other BFD data -structures. - -@item symbols -Each symbol contains a pointer to the information for the object file -which originally defined it, its name, its value, and various flag -bits. When a BFD back end reads in a symbol table, it relocates all -symbols to make them relative to the base of the section where they were -defined. Doing this ensures that each symbol points to its containing -section. Each symbol also has a varying amount of hidden private data -for the BFD back end. Since the symbol points to the original file, the -private data format for that symbol is accessible. @code{ld} can -operate on a collection of symbols of wildly different formats without -problems. - -Normal global and simple local symbols are maintained on output, so an -output file (no matter its format) will retain symbols pointing to -functions and to global, static, and common variables. Some symbol -information is not worth retaining; in @code{a.out}, type information is -stored in the symbol table as long symbol names. This information would -be useless to most COFF debuggers; the linker has command line switches -to allow users to throw it away. - -There is one word of type information within the symbol, so if the -format supports symbol type information within symbols (for example, COFF, -IEEE, Oasys) and the type is simple enough to fit within one word -(nearly everything but aggregates), the information will be preserved. - -@item relocation level -Each canonical BFD relocation record contains a pointer to the symbol to -relocate to, the offset of the data to relocate, the section the data -is in, and a pointer to a relocation type descriptor. Relocation is -performed by passing messages through the relocation type -descriptor and the symbol pointer. Therefore, relocations can be performed -on output data using a relocation method that is only available in one of the -input formats. For instance, Oasys provides a byte relocation format. -A relocation record requesting this relocation type would point -indirectly to a routine to perform this, so the relocation may be -performed on a byte being written to a 68k COFF file, even though 68k COFF -has no such relocation type. - -@item line numbers -Object formats can contain, for debugging purposes, some form of mapping -between symbols, source line numbers, and addresses in the output file. -These addresses have to be relocated along with the symbol information. -Each symbol with an associated list of line number records points to the -first record of the list. The head of a line number list consists of a -pointer to the symbol, which allows finding out the address of the -function whose line number is being described. The rest of the list is -made up of pairs: offsets into the section and line numbers. Any format -which can simply derive this information can pass it successfully -between formats (COFF, IEEE and Oasys). -@end table |