aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp10863
1 files changed, 10863 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp b/contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp
new file mode 100644
index 000000000000..27e7175da841
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp
@@ -0,0 +1,10863 @@
+//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides a class for OpenMP runtime code generation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CGCleanup.h"
+#include "CGOpenMPRuntime.h"
+#include "CGRecordLayout.h"
+#include "CodeGenFunction.h"
+#include "clang/CodeGen/ConstantInitBuilder.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "clang/Basic/BitmaskEnum.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/Bitcode/BitcodeReader.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+/// Base class for handling code generation inside OpenMP regions.
+class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
+public:
+ /// Kinds of OpenMP regions used in codegen.
+ enum CGOpenMPRegionKind {
+ /// Region with outlined function for standalone 'parallel'
+ /// directive.
+ ParallelOutlinedRegion,
+ /// Region with outlined function for standalone 'task' directive.
+ TaskOutlinedRegion,
+ /// Region for constructs that do not require function outlining,
+ /// like 'for', 'sections', 'atomic' etc. directives.
+ InlinedRegion,
+ /// Region with outlined function for standalone 'target' directive.
+ TargetRegion,
+ };
+
+ CGOpenMPRegionInfo(const CapturedStmt &CS,
+ const CGOpenMPRegionKind RegionKind,
+ const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
+ bool HasCancel)
+ : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
+ CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
+
+ CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
+ const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
+ bool HasCancel)
+ : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
+ Kind(Kind), HasCancel(HasCancel) {}
+
+ /// Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ virtual const VarDecl *getThreadIDVariable() const = 0;
+
+ /// Emit the captured statement body.
+ void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
+
+ /// Get an LValue for the current ThreadID variable.
+ /// \return LValue for thread id variable. This LValue always has type int32*.
+ virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
+
+ virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
+
+ CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
+
+ OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
+
+ bool hasCancel() const { return HasCancel; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return Info->getKind() == CR_OpenMP;
+ }
+
+ ~CGOpenMPRegionInfo() override = default;
+
+protected:
+ CGOpenMPRegionKind RegionKind;
+ RegionCodeGenTy CodeGen;
+ OpenMPDirectiveKind Kind;
+ bool HasCancel;
+};
+
+/// API for captured statement code generation in OpenMP constructs.
+class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
+public:
+ CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
+ const RegionCodeGenTy &CodeGen,
+ OpenMPDirectiveKind Kind, bool HasCancel,
+ StringRef HelperName)
+ : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
+ HasCancel),
+ ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
+ assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
+ }
+
+ /// Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
+
+ /// Get the name of the capture helper.
+ StringRef getHelperName() const override { return HelperName; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
+ ParallelOutlinedRegion;
+ }
+
+private:
+ /// A variable or parameter storing global thread id for OpenMP
+ /// constructs.
+ const VarDecl *ThreadIDVar;
+ StringRef HelperName;
+};
+
+/// API for captured statement code generation in OpenMP constructs.
+class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
+public:
+ class UntiedTaskActionTy final : public PrePostActionTy {
+ bool Untied;
+ const VarDecl *PartIDVar;
+ const RegionCodeGenTy UntiedCodeGen;
+ llvm::SwitchInst *UntiedSwitch = nullptr;
+
+ public:
+ UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
+ const RegionCodeGenTy &UntiedCodeGen)
+ : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
+ void Enter(CodeGenFunction &CGF) override {
+ if (Untied) {
+ // Emit task switching point.
+ LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(PartIDVar),
+ PartIDVar->getType()->castAs<PointerType>());
+ llvm::Value *Res =
+ CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
+ llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
+ UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
+ CGF.EmitBlock(DoneBB);
+ CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
+ CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
+ UntiedSwitch->addCase(CGF.Builder.getInt32(0),
+ CGF.Builder.GetInsertBlock());
+ emitUntiedSwitch(CGF);
+ }
+ }
+ void emitUntiedSwitch(CodeGenFunction &CGF) const {
+ if (Untied) {
+ LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(PartIDVar),
+ PartIDVar->getType()->castAs<PointerType>());
+ CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
+ PartIdLVal);
+ UntiedCodeGen(CGF);
+ CodeGenFunction::JumpDest CurPoint =
+ CGF.getJumpDestInCurrentScope(".untied.next.");
+ CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
+ CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
+ UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
+ CGF.Builder.GetInsertBlock());
+ CGF.EmitBranchThroughCleanup(CurPoint);
+ CGF.EmitBlock(CurPoint.getBlock());
+ }
+ }
+ unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
+ };
+ CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
+ const VarDecl *ThreadIDVar,
+ const RegionCodeGenTy &CodeGen,
+ OpenMPDirectiveKind Kind, bool HasCancel,
+ const UntiedTaskActionTy &Action)
+ : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
+ ThreadIDVar(ThreadIDVar), Action(Action) {
+ assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
+ }
+
+ /// Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
+
+ /// Get an LValue for the current ThreadID variable.
+ LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
+
+ /// Get the name of the capture helper.
+ StringRef getHelperName() const override { return ".omp_outlined."; }
+
+ void emitUntiedSwitch(CodeGenFunction &CGF) override {
+ Action.emitUntiedSwitch(CGF);
+ }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
+ TaskOutlinedRegion;
+ }
+
+private:
+ /// A variable or parameter storing global thread id for OpenMP
+ /// constructs.
+ const VarDecl *ThreadIDVar;
+ /// Action for emitting code for untied tasks.
+ const UntiedTaskActionTy &Action;
+};
+
+/// API for inlined captured statement code generation in OpenMP
+/// constructs.
+class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
+public:
+ CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
+ const RegionCodeGenTy &CodeGen,
+ OpenMPDirectiveKind Kind, bool HasCancel)
+ : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
+ OldCSI(OldCSI),
+ OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
+
+ // Retrieve the value of the context parameter.
+ llvm::Value *getContextValue() const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->getContextValue();
+ llvm_unreachable("No context value for inlined OpenMP region");
+ }
+
+ void setContextValue(llvm::Value *V) override {
+ if (OuterRegionInfo) {
+ OuterRegionInfo->setContextValue(V);
+ return;
+ }
+ llvm_unreachable("No context value for inlined OpenMP region");
+ }
+
+ /// Lookup the captured field decl for a variable.
+ const FieldDecl *lookup(const VarDecl *VD) const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->lookup(VD);
+ // If there is no outer outlined region,no need to lookup in a list of
+ // captured variables, we can use the original one.
+ return nullptr;
+ }
+
+ FieldDecl *getThisFieldDecl() const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->getThisFieldDecl();
+ return nullptr;
+ }
+
+ /// Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->getThreadIDVariable();
+ return nullptr;
+ }
+
+ /// Get an LValue for the current ThreadID variable.
+ LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
+ if (OuterRegionInfo)
+ return OuterRegionInfo->getThreadIDVariableLValue(CGF);
+ llvm_unreachable("No LValue for inlined OpenMP construct");
+ }
+
+ /// Get the name of the capture helper.
+ StringRef getHelperName() const override {
+ if (auto *OuterRegionInfo = getOldCSI())
+ return OuterRegionInfo->getHelperName();
+ llvm_unreachable("No helper name for inlined OpenMP construct");
+ }
+
+ void emitUntiedSwitch(CodeGenFunction &CGF) override {
+ if (OuterRegionInfo)
+ OuterRegionInfo->emitUntiedSwitch(CGF);
+ }
+
+ CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
+ }
+
+ ~CGOpenMPInlinedRegionInfo() override = default;
+
+private:
+ /// CodeGen info about outer OpenMP region.
+ CodeGenFunction::CGCapturedStmtInfo *OldCSI;
+ CGOpenMPRegionInfo *OuterRegionInfo;
+};
+
+/// API for captured statement code generation in OpenMP target
+/// constructs. For this captures, implicit parameters are used instead of the
+/// captured fields. The name of the target region has to be unique in a given
+/// application so it is provided by the client, because only the client has
+/// the information to generate that.
+class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
+public:
+ CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
+ const RegionCodeGenTy &CodeGen, StringRef HelperName)
+ : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
+ /*HasCancel=*/false),
+ HelperName(HelperName) {}
+
+ /// This is unused for target regions because each starts executing
+ /// with a single thread.
+ const VarDecl *getThreadIDVariable() const override { return nullptr; }
+
+ /// Get the name of the capture helper.
+ StringRef getHelperName() const override { return HelperName; }
+
+ static bool classof(const CGCapturedStmtInfo *Info) {
+ return CGOpenMPRegionInfo::classof(Info) &&
+ cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
+ }
+
+private:
+ StringRef HelperName;
+};
+
+static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
+ llvm_unreachable("No codegen for expressions");
+}
+/// API for generation of expressions captured in a innermost OpenMP
+/// region.
+class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
+public:
+ CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
+ : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
+ OMPD_unknown,
+ /*HasCancel=*/false),
+ PrivScope(CGF) {
+ // Make sure the globals captured in the provided statement are local by
+ // using the privatization logic. We assume the same variable is not
+ // captured more than once.
+ for (const auto &C : CS.captures()) {
+ if (!C.capturesVariable() && !C.capturesVariableByCopy())
+ continue;
+
+ const VarDecl *VD = C.getCapturedVar();
+ if (VD->isLocalVarDeclOrParm())
+ continue;
+
+ DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
+ /*RefersToEnclosingVariableOrCapture=*/false,
+ VD->getType().getNonReferenceType(), VK_LValue,
+ C.getLocation());
+ PrivScope.addPrivate(
+ VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(); });
+ }
+ (void)PrivScope.Privatize();
+ }
+
+ /// Lookup the captured field decl for a variable.
+ const FieldDecl *lookup(const VarDecl *VD) const override {
+ if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
+ return FD;
+ return nullptr;
+ }
+
+ /// Emit the captured statement body.
+ void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
+ llvm_unreachable("No body for expressions");
+ }
+
+ /// Get a variable or parameter for storing global thread id
+ /// inside OpenMP construct.
+ const VarDecl *getThreadIDVariable() const override {
+ llvm_unreachable("No thread id for expressions");
+ }
+
+ /// Get the name of the capture helper.
+ StringRef getHelperName() const override {
+ llvm_unreachable("No helper name for expressions");
+ }
+
+ static bool classof(const CGCapturedStmtInfo *Info) { return false; }
+
+private:
+ /// Private scope to capture global variables.
+ CodeGenFunction::OMPPrivateScope PrivScope;
+};
+
+/// RAII for emitting code of OpenMP constructs.
+class InlinedOpenMPRegionRAII {
+ CodeGenFunction &CGF;
+ llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
+ FieldDecl *LambdaThisCaptureField = nullptr;
+ const CodeGen::CGBlockInfo *BlockInfo = nullptr;
+
+public:
+ /// Constructs region for combined constructs.
+ /// \param CodeGen Code generation sequence for combined directives. Includes
+ /// a list of functions used for code generation of implicitly inlined
+ /// regions.
+ InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
+ OpenMPDirectiveKind Kind, bool HasCancel)
+ : CGF(CGF) {
+ // Start emission for the construct.
+ CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
+ CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
+ std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
+ LambdaThisCaptureField = CGF.LambdaThisCaptureField;
+ CGF.LambdaThisCaptureField = nullptr;
+ BlockInfo = CGF.BlockInfo;
+ CGF.BlockInfo = nullptr;
+ }
+
+ ~InlinedOpenMPRegionRAII() {
+ // Restore original CapturedStmtInfo only if we're done with code emission.
+ auto *OldCSI =
+ cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
+ delete CGF.CapturedStmtInfo;
+ CGF.CapturedStmtInfo = OldCSI;
+ std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
+ CGF.LambdaThisCaptureField = LambdaThisCaptureField;
+ CGF.BlockInfo = BlockInfo;
+ }
+};
+
+/// Values for bit flags used in the ident_t to describe the fields.
+/// All enumeric elements are named and described in accordance with the code
+/// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
+enum OpenMPLocationFlags : unsigned {
+ /// Use trampoline for internal microtask.
+ OMP_IDENT_IMD = 0x01,
+ /// Use c-style ident structure.
+ OMP_IDENT_KMPC = 0x02,
+ /// Atomic reduction option for kmpc_reduce.
+ OMP_ATOMIC_REDUCE = 0x10,
+ /// Explicit 'barrier' directive.
+ OMP_IDENT_BARRIER_EXPL = 0x20,
+ /// Implicit barrier in code.
+ OMP_IDENT_BARRIER_IMPL = 0x40,
+ /// Implicit barrier in 'for' directive.
+ OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
+ /// Implicit barrier in 'sections' directive.
+ OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
+ /// Implicit barrier in 'single' directive.
+ OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
+ /// Call of __kmp_for_static_init for static loop.
+ OMP_IDENT_WORK_LOOP = 0x200,
+ /// Call of __kmp_for_static_init for sections.
+ OMP_IDENT_WORK_SECTIONS = 0x400,
+ /// Call of __kmp_for_static_init for distribute.
+ OMP_IDENT_WORK_DISTRIBUTE = 0x800,
+ LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
+};
+
+namespace {
+LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
+/// Values for bit flags for marking which requires clauses have been used.
+enum OpenMPOffloadingRequiresDirFlags : int64_t {
+ /// flag undefined.
+ OMP_REQ_UNDEFINED = 0x000,
+ /// no requires clause present.
+ OMP_REQ_NONE = 0x001,
+ /// reverse_offload clause.
+ OMP_REQ_REVERSE_OFFLOAD = 0x002,
+ /// unified_address clause.
+ OMP_REQ_UNIFIED_ADDRESS = 0x004,
+ /// unified_shared_memory clause.
+ OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008,
+ /// dynamic_allocators clause.
+ OMP_REQ_DYNAMIC_ALLOCATORS = 0x010,
+ LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
+};
+
+enum OpenMPOffloadingReservedDeviceIDs {
+ /// Device ID if the device was not defined, runtime should get it
+ /// from environment variables in the spec.
+ OMP_DEVICEID_UNDEF = -1,
+};
+} // anonymous namespace
+
+/// Describes ident structure that describes a source location.
+/// All descriptions are taken from
+/// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
+/// Original structure:
+/// typedef struct ident {
+/// kmp_int32 reserved_1; /**< might be used in Fortran;
+/// see above */
+/// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
+/// KMP_IDENT_KMPC identifies this union
+/// member */
+/// kmp_int32 reserved_2; /**< not really used in Fortran any more;
+/// see above */
+///#if USE_ITT_BUILD
+/// /* but currently used for storing
+/// region-specific ITT */
+/// /* contextual information. */
+///#endif /* USE_ITT_BUILD */
+/// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
+/// C++ */
+/// char const *psource; /**< String describing the source location.
+/// The string is composed of semi-colon separated
+// fields which describe the source file,
+/// the function and a pair of line numbers that
+/// delimit the construct.
+/// */
+/// } ident_t;
+enum IdentFieldIndex {
+ /// might be used in Fortran
+ IdentField_Reserved_1,
+ /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
+ IdentField_Flags,
+ /// Not really used in Fortran any more
+ IdentField_Reserved_2,
+ /// Source[4] in Fortran, do not use for C++
+ IdentField_Reserved_3,
+ /// String describing the source location. The string is composed of
+ /// semi-colon separated fields which describe the source file, the function
+ /// and a pair of line numbers that delimit the construct.
+ IdentField_PSource
+};
+
+/// Schedule types for 'omp for' loops (these enumerators are taken from
+/// the enum sched_type in kmp.h).
+enum OpenMPSchedType {
+ /// Lower bound for default (unordered) versions.
+ OMP_sch_lower = 32,
+ OMP_sch_static_chunked = 33,
+ OMP_sch_static = 34,
+ OMP_sch_dynamic_chunked = 35,
+ OMP_sch_guided_chunked = 36,
+ OMP_sch_runtime = 37,
+ OMP_sch_auto = 38,
+ /// static with chunk adjustment (e.g., simd)
+ OMP_sch_static_balanced_chunked = 45,
+ /// Lower bound for 'ordered' versions.
+ OMP_ord_lower = 64,
+ OMP_ord_static_chunked = 65,
+ OMP_ord_static = 66,
+ OMP_ord_dynamic_chunked = 67,
+ OMP_ord_guided_chunked = 68,
+ OMP_ord_runtime = 69,
+ OMP_ord_auto = 70,
+ OMP_sch_default = OMP_sch_static,
+ /// dist_schedule types
+ OMP_dist_sch_static_chunked = 91,
+ OMP_dist_sch_static = 92,
+ /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
+ /// Set if the monotonic schedule modifier was present.
+ OMP_sch_modifier_monotonic = (1 << 29),
+ /// Set if the nonmonotonic schedule modifier was present.
+ OMP_sch_modifier_nonmonotonic = (1 << 30),
+};
+
+enum OpenMPRTLFunction {
+ /// Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
+ /// kmpc_micro microtask, ...);
+ OMPRTL__kmpc_fork_call,
+ /// Call to void *__kmpc_threadprivate_cached(ident_t *loc,
+ /// kmp_int32 global_tid, void *data, size_t size, void ***cache);
+ OMPRTL__kmpc_threadprivate_cached,
+ /// Call to void __kmpc_threadprivate_register( ident_t *,
+ /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
+ OMPRTL__kmpc_threadprivate_register,
+ // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
+ OMPRTL__kmpc_global_thread_num,
+ // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ OMPRTL__kmpc_critical,
+ // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
+ // global_tid, kmp_critical_name *crit, uintptr_t hint);
+ OMPRTL__kmpc_critical_with_hint,
+ // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ OMPRTL__kmpc_end_critical,
+ // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_cancel_barrier,
+ // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_barrier,
+ // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_for_static_fini,
+ // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_serialized_parallel,
+ // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_end_serialized_parallel,
+ // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_threads);
+ OMPRTL__kmpc_push_num_threads,
+ // Call to void __kmpc_flush(ident_t *loc);
+ OMPRTL__kmpc_flush,
+ // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_master,
+ // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_master,
+ // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
+ // int end_part);
+ OMPRTL__kmpc_omp_taskyield,
+ // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_single,
+ // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_single,
+ // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
+ // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ // kmp_routine_entry_t *task_entry);
+ OMPRTL__kmpc_omp_task_alloc,
+ // Call to kmp_task_t * __kmpc_omp_target_task_alloc(ident_t *,
+ // kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
+ // size_t sizeof_shareds, kmp_routine_entry_t *task_entry,
+ // kmp_int64 device_id);
+ OMPRTL__kmpc_omp_target_task_alloc,
+ // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
+ // new_task);
+ OMPRTL__kmpc_omp_task,
+ // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
+ // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
+ // kmp_int32 didit);
+ OMPRTL__kmpc_copyprivate,
+ // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
+ // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
+ OMPRTL__kmpc_reduce,
+ // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
+ // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
+ // *lck);
+ OMPRTL__kmpc_reduce_nowait,
+ // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ OMPRTL__kmpc_end_reduce,
+ // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ OMPRTL__kmpc_end_reduce_nowait,
+ // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t * new_task);
+ OMPRTL__kmpc_omp_task_begin_if0,
+ // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t * new_task);
+ OMPRTL__kmpc_omp_task_complete_if0,
+ // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_ordered,
+ // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_ordered,
+ // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
+ // global_tid);
+ OMPRTL__kmpc_omp_taskwait,
+ // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_taskgroup,
+ // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_end_taskgroup,
+ // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
+ // int proc_bind);
+ OMPRTL__kmpc_push_proc_bind,
+ // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
+ // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
+ // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
+ OMPRTL__kmpc_omp_task_with_deps,
+ // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
+ // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
+ // ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
+ OMPRTL__kmpc_omp_wait_deps,
+ // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 cncl_kind);
+ OMPRTL__kmpc_cancellationpoint,
+ // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 cncl_kind);
+ OMPRTL__kmpc_cancel,
+ // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_teams, kmp_int32 thread_limit);
+ OMPRTL__kmpc_push_num_teams,
+ // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
+ // microtask, ...);
+ OMPRTL__kmpc_fork_teams,
+ // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
+ // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
+ // sched, kmp_uint64 grainsize, void *task_dup);
+ OMPRTL__kmpc_taskloop,
+ // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
+ // num_dims, struct kmp_dim *dims);
+ OMPRTL__kmpc_doacross_init,
+ // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
+ OMPRTL__kmpc_doacross_fini,
+ // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
+ // *vec);
+ OMPRTL__kmpc_doacross_post,
+ // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
+ // *vec);
+ OMPRTL__kmpc_doacross_wait,
+ // Call to void *__kmpc_task_reduction_init(int gtid, int num_data, void
+ // *data);
+ OMPRTL__kmpc_task_reduction_init,
+ // Call to void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
+ // *d);
+ OMPRTL__kmpc_task_reduction_get_th_data,
+ // Call to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
+ OMPRTL__kmpc_alloc,
+ // Call to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
+ OMPRTL__kmpc_free,
+
+ //
+ // Offloading related calls
+ //
+ // Call to void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
+ // size);
+ OMPRTL__kmpc_push_target_tripcount,
+ // Call to int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
+ // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
+ // *arg_types);
+ OMPRTL__tgt_target,
+ // Call to int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
+ // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
+ // *arg_types);
+ OMPRTL__tgt_target_nowait,
+ // Call to int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
+ // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
+ // *arg_types, int32_t num_teams, int32_t thread_limit);
+ OMPRTL__tgt_target_teams,
+ // Call to int32_t __tgt_target_teams_nowait(int64_t device_id, void
+ // *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
+ // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
+ OMPRTL__tgt_target_teams_nowait,
+ // Call to void __tgt_register_requires(int64_t flags);
+ OMPRTL__tgt_register_requires,
+ // Call to void __tgt_register_lib(__tgt_bin_desc *desc);
+ OMPRTL__tgt_register_lib,
+ // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc);
+ OMPRTL__tgt_unregister_lib,
+ // Call to void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
+ // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
+ OMPRTL__tgt_target_data_begin,
+ // Call to void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
+ // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
+ // *arg_types);
+ OMPRTL__tgt_target_data_begin_nowait,
+ // Call to void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
+ // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
+ OMPRTL__tgt_target_data_end,
+ // Call to void __tgt_target_data_end_nowait(int64_t device_id, int32_t
+ // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
+ // *arg_types);
+ OMPRTL__tgt_target_data_end_nowait,
+ // Call to void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
+ // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
+ OMPRTL__tgt_target_data_update,
+ // Call to void __tgt_target_data_update_nowait(int64_t device_id, int32_t
+ // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
+ // *arg_types);
+ OMPRTL__tgt_target_data_update_nowait,
+};
+
+/// A basic class for pre|post-action for advanced codegen sequence for OpenMP
+/// region.
+class CleanupTy final : public EHScopeStack::Cleanup {
+ PrePostActionTy *Action;
+
+public:
+ explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
+ void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
+ if (!CGF.HaveInsertPoint())
+ return;
+ Action->Exit(CGF);
+ }
+};
+
+} // anonymous namespace
+
+void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ if (PrePostAction) {
+ CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
+ Callback(CodeGen, CGF, *PrePostAction);
+ } else {
+ PrePostActionTy Action;
+ Callback(CodeGen, CGF, Action);
+ }
+}
+
+/// Check if the combiner is a call to UDR combiner and if it is so return the
+/// UDR decl used for reduction.
+static const OMPDeclareReductionDecl *
+getReductionInit(const Expr *ReductionOp) {
+ if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
+ if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
+ if (const auto *DRE =
+ dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
+ if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
+ return DRD;
+ return nullptr;
+}
+
+static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
+ const OMPDeclareReductionDecl *DRD,
+ const Expr *InitOp,
+ Address Private, Address Original,
+ QualType Ty) {
+ if (DRD->getInitializer()) {
+ std::pair<llvm::Function *, llvm::Function *> Reduction =
+ CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
+ const auto *CE = cast<CallExpr>(InitOp);
+ const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
+ const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
+ const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
+ const auto *LHSDRE =
+ cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
+ const auto *RHSDRE =
+ cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
+ CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
+ PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
+ [=]() { return Private; });
+ PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
+ [=]() { return Original; });
+ (void)PrivateScope.Privatize();
+ RValue Func = RValue::get(Reduction.second);
+ CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
+ CGF.EmitIgnoredExpr(InitOp);
+ } else {
+ llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
+ std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
+ auto *GV = new llvm::GlobalVariable(
+ CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
+ llvm::GlobalValue::PrivateLinkage, Init, Name);
+ LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
+ RValue InitRVal;
+ switch (CGF.getEvaluationKind(Ty)) {
+ case TEK_Scalar:
+ InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
+ break;
+ case TEK_Complex:
+ InitRVal =
+ RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
+ break;
+ case TEK_Aggregate:
+ InitRVal = RValue::getAggregate(LV.getAddress());
+ break;
+ }
+ OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
+ CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
+ CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
+ /*IsInitializer=*/false);
+ }
+}
+
+/// Emit initialization of arrays of complex types.
+/// \param DestAddr Address of the array.
+/// \param Type Type of array.
+/// \param Init Initial expression of array.
+/// \param SrcAddr Address of the original array.
+static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
+ QualType Type, bool EmitDeclareReductionInit,
+ const Expr *Init,
+ const OMPDeclareReductionDecl *DRD,
+ Address SrcAddr = Address::invalid()) {
+ // Perform element-by-element initialization.
+ QualType ElementTy;
+
+ // Drill down to the base element type on both arrays.
+ const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
+ llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
+ DestAddr =
+ CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
+ if (DRD)
+ SrcAddr =
+ CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
+
+ llvm::Value *SrcBegin = nullptr;
+ if (DRD)
+ SrcBegin = SrcAddr.getPointer();
+ llvm::Value *DestBegin = DestAddr.getPointer();
+ // Cast from pointer to array type to pointer to single element.
+ llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
+ // The basic structure here is a while-do loop.
+ llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
+ llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
+ llvm::Value *IsEmpty =
+ CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
+ CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
+
+ // Enter the loop body, making that address the current address.
+ llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
+ CGF.EmitBlock(BodyBB);
+
+ CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
+
+ llvm::PHINode *SrcElementPHI = nullptr;
+ Address SrcElementCurrent = Address::invalid();
+ if (DRD) {
+ SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
+ "omp.arraycpy.srcElementPast");
+ SrcElementPHI->addIncoming(SrcBegin, EntryBB);
+ SrcElementCurrent =
+ Address(SrcElementPHI,
+ SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
+ }
+ llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
+ DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
+ DestElementPHI->addIncoming(DestBegin, EntryBB);
+ Address DestElementCurrent =
+ Address(DestElementPHI,
+ DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
+
+ // Emit copy.
+ {
+ CodeGenFunction::RunCleanupsScope InitScope(CGF);
+ if (EmitDeclareReductionInit) {
+ emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
+ SrcElementCurrent, ElementTy);
+ } else
+ CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
+ /*IsInitializer=*/false);
+ }
+
+ if (DRD) {
+ // Shift the address forward by one element.
+ llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
+ SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
+ SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
+ }
+
+ // Shift the address forward by one element.
+ llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
+ DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
+ // Check whether we've reached the end.
+ llvm::Value *Done =
+ CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
+ CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
+ DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
+
+ // Done.
+ CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
+}
+
+LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
+ return CGF.EmitOMPSharedLValue(E);
+}
+
+LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
+ const Expr *E) {
+ if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
+ return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
+ return LValue();
+}
+
+void ReductionCodeGen::emitAggregateInitialization(
+ CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
+ const OMPDeclareReductionDecl *DRD) {
+ // Emit VarDecl with copy init for arrays.
+ // Get the address of the original variable captured in current
+ // captured region.
+ const auto *PrivateVD =
+ cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
+ bool EmitDeclareReductionInit =
+ DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
+ EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
+ EmitDeclareReductionInit,
+ EmitDeclareReductionInit ? ClausesData[N].ReductionOp
+ : PrivateVD->getInit(),
+ DRD, SharedLVal.getAddress());
+}
+
+ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
+ ArrayRef<const Expr *> Privates,
+ ArrayRef<const Expr *> ReductionOps) {
+ ClausesData.reserve(Shareds.size());
+ SharedAddresses.reserve(Shareds.size());
+ Sizes.reserve(Shareds.size());
+ BaseDecls.reserve(Shareds.size());
+ auto IPriv = Privates.begin();
+ auto IRed = ReductionOps.begin();
+ for (const Expr *Ref : Shareds) {
+ ClausesData.emplace_back(Ref, *IPriv, *IRed);
+ std::advance(IPriv, 1);
+ std::advance(IRed, 1);
+ }
+}
+
+void ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, unsigned N) {
+ assert(SharedAddresses.size() == N &&
+ "Number of generated lvalues must be exactly N.");
+ LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
+ LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
+ SharedAddresses.emplace_back(First, Second);
+}
+
+void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
+ const auto *PrivateVD =
+ cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
+ QualType PrivateType = PrivateVD->getType();
+ bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
+ if (!PrivateType->isVariablyModifiedType()) {
+ Sizes.emplace_back(
+ CGF.getTypeSize(
+ SharedAddresses[N].first.getType().getNonReferenceType()),
+ nullptr);
+ return;
+ }
+ llvm::Value *Size;
+ llvm::Value *SizeInChars;
+ auto *ElemType =
+ cast<llvm::PointerType>(SharedAddresses[N].first.getPointer()->getType())
+ ->getElementType();
+ auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
+ if (AsArraySection) {
+ Size = CGF.Builder.CreatePtrDiff(SharedAddresses[N].second.getPointer(),
+ SharedAddresses[N].first.getPointer());
+ Size = CGF.Builder.CreateNUWAdd(
+ Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
+ SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
+ } else {
+ SizeInChars = CGF.getTypeSize(
+ SharedAddresses[N].first.getType().getNonReferenceType());
+ Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
+ }
+ Sizes.emplace_back(SizeInChars, Size);
+ CodeGenFunction::OpaqueValueMapping OpaqueMap(
+ CGF,
+ cast<OpaqueValueExpr>(
+ CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
+ RValue::get(Size));
+ CGF.EmitVariablyModifiedType(PrivateType);
+}
+
+void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
+ llvm::Value *Size) {
+ const auto *PrivateVD =
+ cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
+ QualType PrivateType = PrivateVD->getType();
+ if (!PrivateType->isVariablyModifiedType()) {
+ assert(!Size && !Sizes[N].second &&
+ "Size should be nullptr for non-variably modified reduction "
+ "items.");
+ return;
+ }
+ CodeGenFunction::OpaqueValueMapping OpaqueMap(
+ CGF,
+ cast<OpaqueValueExpr>(
+ CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
+ RValue::get(Size));
+ CGF.EmitVariablyModifiedType(PrivateType);
+}
+
+void ReductionCodeGen::emitInitialization(
+ CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
+ llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
+ assert(SharedAddresses.size() > N && "No variable was generated");
+ const auto *PrivateVD =
+ cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
+ const OMPDeclareReductionDecl *DRD =
+ getReductionInit(ClausesData[N].ReductionOp);
+ QualType PrivateType = PrivateVD->getType();
+ PrivateAddr = CGF.Builder.CreateElementBitCast(
+ PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
+ QualType SharedType = SharedAddresses[N].first.getType();
+ SharedLVal = CGF.MakeAddrLValue(
+ CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(),
+ CGF.ConvertTypeForMem(SharedType)),
+ SharedType, SharedAddresses[N].first.getBaseInfo(),
+ CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
+ if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
+ emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
+ } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
+ emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
+ PrivateAddr, SharedLVal.getAddress(),
+ SharedLVal.getType());
+ } else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
+ !CGF.isTrivialInitializer(PrivateVD->getInit())) {
+ CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
+ PrivateVD->getType().getQualifiers(),
+ /*IsInitializer=*/false);
+ }
+}
+
+bool ReductionCodeGen::needCleanups(unsigned N) {
+ const auto *PrivateVD =
+ cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
+ QualType PrivateType = PrivateVD->getType();
+ QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
+ return DTorKind != QualType::DK_none;
+}
+
+void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
+ Address PrivateAddr) {
+ const auto *PrivateVD =
+ cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
+ QualType PrivateType = PrivateVD->getType();
+ QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
+ if (needCleanups(N)) {
+ PrivateAddr = CGF.Builder.CreateElementBitCast(
+ PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
+ CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
+ }
+}
+
+static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
+ LValue BaseLV) {
+ BaseTy = BaseTy.getNonReferenceType();
+ while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
+ !CGF.getContext().hasSameType(BaseTy, ElTy)) {
+ if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
+ BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
+ } else {
+ LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(), BaseTy);
+ BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
+ }
+ BaseTy = BaseTy->getPointeeType();
+ }
+ return CGF.MakeAddrLValue(
+ CGF.Builder.CreateElementBitCast(BaseLV.getAddress(),
+ CGF.ConvertTypeForMem(ElTy)),
+ BaseLV.getType(), BaseLV.getBaseInfo(),
+ CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
+}
+
+static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
+ llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
+ llvm::Value *Addr) {
+ Address Tmp = Address::invalid();
+ Address TopTmp = Address::invalid();
+ Address MostTopTmp = Address::invalid();
+ BaseTy = BaseTy.getNonReferenceType();
+ while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
+ !CGF.getContext().hasSameType(BaseTy, ElTy)) {
+ Tmp = CGF.CreateMemTemp(BaseTy);
+ if (TopTmp.isValid())
+ CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
+ else
+ MostTopTmp = Tmp;
+ TopTmp = Tmp;
+ BaseTy = BaseTy->getPointeeType();
+ }
+ llvm::Type *Ty = BaseLVType;
+ if (Tmp.isValid())
+ Ty = Tmp.getElementType();
+ Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
+ if (Tmp.isValid()) {
+ CGF.Builder.CreateStore(Addr, Tmp);
+ return MostTopTmp;
+ }
+ return Address(Addr, BaseLVAlignment);
+}
+
+static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
+ const VarDecl *OrigVD = nullptr;
+ if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
+ const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
+ while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
+ Base = TempOASE->getBase()->IgnoreParenImpCasts();
+ while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
+ Base = TempASE->getBase()->IgnoreParenImpCasts();
+ DE = cast<DeclRefExpr>(Base);
+ OrigVD = cast<VarDecl>(DE->getDecl());
+ } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
+ const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
+ while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
+ Base = TempASE->getBase()->IgnoreParenImpCasts();
+ DE = cast<DeclRefExpr>(Base);
+ OrigVD = cast<VarDecl>(DE->getDecl());
+ }
+ return OrigVD;
+}
+
+Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
+ Address PrivateAddr) {
+ const DeclRefExpr *DE;
+ if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
+ BaseDecls.emplace_back(OrigVD);
+ LValue OriginalBaseLValue = CGF.EmitLValue(DE);
+ LValue BaseLValue =
+ loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
+ OriginalBaseLValue);
+ llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
+ BaseLValue.getPointer(), SharedAddresses[N].first.getPointer());
+ llvm::Value *PrivatePointer =
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ PrivateAddr.getPointer(),
+ SharedAddresses[N].first.getAddress().getType());
+ llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
+ return castToBase(CGF, OrigVD->getType(),
+ SharedAddresses[N].first.getType(),
+ OriginalBaseLValue.getAddress().getType(),
+ OriginalBaseLValue.getAlignment(), Ptr);
+ }
+ BaseDecls.emplace_back(
+ cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
+ return PrivateAddr;
+}
+
+bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
+ const OMPDeclareReductionDecl *DRD =
+ getReductionInit(ClausesData[N].ReductionOp);
+ return DRD && DRD->getInitializer();
+}
+
+LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
+ return CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(getThreadIDVariable()),
+ getThreadIDVariable()->getType()->castAs<PointerType>());
+}
+
+void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // 1.2.2 OpenMP Language Terminology
+ // Structured block - An executable statement with a single entry at the
+ // top and a single exit at the bottom.
+ // The point of exit cannot be a branch out of the structured block.
+ // longjmp() and throw() must not violate the entry/exit criteria.
+ CGF.EHStack.pushTerminate();
+ CodeGen(CGF);
+ CGF.EHStack.popTerminate();
+}
+
+LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
+ CodeGenFunction &CGF) {
+ return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
+ getThreadIDVariable()->getType(),
+ AlignmentSource::Decl);
+}
+
+static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
+ QualType FieldTy) {
+ auto *Field = FieldDecl::Create(
+ C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
+ C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
+ /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
+ Field->setAccess(AS_public);
+ DC->addDecl(Field);
+ return Field;
+}
+
+CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
+ StringRef Separator)
+ : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
+ OffloadEntriesInfoManager(CGM) {
+ ASTContext &C = CGM.getContext();
+ RecordDecl *RD = C.buildImplicitRecord("ident_t");
+ QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
+ RD->startDefinition();
+ // reserved_1
+ addFieldToRecordDecl(C, RD, KmpInt32Ty);
+ // flags
+ addFieldToRecordDecl(C, RD, KmpInt32Ty);
+ // reserved_2
+ addFieldToRecordDecl(C, RD, KmpInt32Ty);
+ // reserved_3
+ addFieldToRecordDecl(C, RD, KmpInt32Ty);
+ // psource
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ RD->completeDefinition();
+ IdentQTy = C.getRecordType(RD);
+ IdentTy = CGM.getTypes().ConvertRecordDeclType(RD);
+ KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
+
+ loadOffloadInfoMetadata();
+}
+
+void CGOpenMPRuntime::clear() {
+ InternalVars.clear();
+ // Clean non-target variable declarations possibly used only in debug info.
+ for (const auto &Data : EmittedNonTargetVariables) {
+ if (!Data.getValue().pointsToAliveValue())
+ continue;
+ auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
+ if (!GV)
+ continue;
+ if (!GV->isDeclaration() || GV->getNumUses() > 0)
+ continue;
+ GV->eraseFromParent();
+ }
+}
+
+std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
+ SmallString<128> Buffer;
+ llvm::raw_svector_ostream OS(Buffer);
+ StringRef Sep = FirstSeparator;
+ for (StringRef Part : Parts) {
+ OS << Sep << Part;
+ Sep = Separator;
+ }
+ return OS.str();
+}
+
+static llvm::Function *
+emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
+ const Expr *CombinerInitializer, const VarDecl *In,
+ const VarDecl *Out, bool IsCombiner) {
+ // void .omp_combiner.(Ty *in, Ty *out);
+ ASTContext &C = CGM.getContext();
+ QualType PtrTy = C.getPointerType(Ty).withRestrict();
+ FunctionArgList Args;
+ ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
+ /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
+ ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
+ /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
+ Args.push_back(&OmpOutParm);
+ Args.push_back(&OmpInParm);
+ const CGFunctionInfo &FnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
+ std::string Name = CGM.getOpenMPRuntime().getName(
+ {IsCombiner ? "omp_combiner" : "omp_initializer", ""});
+ auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
+ Name, &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
+ if (CGM.getLangOpts().Optimize) {
+ Fn->removeFnAttr(llvm::Attribute::NoInline);
+ Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
+ Fn->addFnAttr(llvm::Attribute::AlwaysInline);
+ }
+ CodeGenFunction CGF(CGM);
+ // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
+ // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
+ Out->getLocation());
+ CodeGenFunction::OMPPrivateScope Scope(CGF);
+ Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
+ Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
+ return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
+ .getAddress();
+ });
+ Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
+ Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
+ return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
+ .getAddress();
+ });
+ (void)Scope.Privatize();
+ if (!IsCombiner && Out->hasInit() &&
+ !CGF.isTrivialInitializer(Out->getInit())) {
+ CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
+ Out->getType().getQualifiers(),
+ /*IsInitializer=*/true);
+ }
+ if (CombinerInitializer)
+ CGF.EmitIgnoredExpr(CombinerInitializer);
+ Scope.ForceCleanup();
+ CGF.FinishFunction();
+ return Fn;
+}
+
+void CGOpenMPRuntime::emitUserDefinedReduction(
+ CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
+ if (UDRMap.count(D) > 0)
+ return;
+ llvm::Function *Combiner = emitCombinerOrInitializer(
+ CGM, D->getType(), D->getCombiner(),
+ cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
+ cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
+ /*IsCombiner=*/true);
+ llvm::Function *Initializer = nullptr;
+ if (const Expr *Init = D->getInitializer()) {
+ Initializer = emitCombinerOrInitializer(
+ CGM, D->getType(),
+ D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
+ : nullptr,
+ cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
+ cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
+ /*IsCombiner=*/false);
+ }
+ UDRMap.try_emplace(D, Combiner, Initializer);
+ if (CGF) {
+ auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
+ Decls.second.push_back(D);
+ }
+}
+
+std::pair<llvm::Function *, llvm::Function *>
+CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
+ auto I = UDRMap.find(D);
+ if (I != UDRMap.end())
+ return I->second;
+ emitUserDefinedReduction(/*CGF=*/nullptr, D);
+ return UDRMap.lookup(D);
+}
+
+static llvm::Function *emitParallelOrTeamsOutlinedFunction(
+ CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
+ const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
+ const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
+ assert(ThreadIDVar->getType()->isPointerType() &&
+ "thread id variable must be of type kmp_int32 *");
+ CodeGenFunction CGF(CGM, true);
+ bool HasCancel = false;
+ if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
+ HasCancel = OPD->hasCancel();
+ else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
+ HasCancel = OPSD->hasCancel();
+ else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
+ HasCancel = OPFD->hasCancel();
+ else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
+ HasCancel = OPFD->hasCancel();
+ else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
+ HasCancel = OPFD->hasCancel();
+ else if (const auto *OPFD =
+ dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
+ HasCancel = OPFD->hasCancel();
+ else if (const auto *OPFD =
+ dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
+ HasCancel = OPFD->hasCancel();
+ CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
+ HasCancel, OutlinedHelperName);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+ return CGF.GenerateOpenMPCapturedStmtFunction(*CS);
+}
+
+llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+ const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
+ return emitParallelOrTeamsOutlinedFunction(
+ CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
+}
+
+llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+ const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
+ return emitParallelOrTeamsOutlinedFunction(
+ CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
+}
+
+llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ const VarDecl *PartIDVar, const VarDecl *TaskTVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
+ bool Tied, unsigned &NumberOfParts) {
+ auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
+ llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
+ llvm::Value *TaskArgs[] = {
+ UpLoc, ThreadID,
+ CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
+ TaskTVar->getType()->castAs<PointerType>())
+ .getPointer()};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
+ };
+ CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
+ UntiedCodeGen);
+ CodeGen.setAction(Action);
+ assert(!ThreadIDVar->getType()->isPointerType() &&
+ "thread id variable must be of type kmp_int32 for tasks");
+ const OpenMPDirectiveKind Region =
+ isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
+ : OMPD_task;
+ const CapturedStmt *CS = D.getCapturedStmt(Region);
+ const auto *TD = dyn_cast<OMPTaskDirective>(&D);
+ CodeGenFunction CGF(CGM, true);
+ CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
+ InnermostKind,
+ TD ? TD->hasCancel() : false, Action);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+ llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
+ if (!Tied)
+ NumberOfParts = Action.getNumberOfParts();
+ return Res;
+}
+
+static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
+ const RecordDecl *RD, const CGRecordLayout &RL,
+ ArrayRef<llvm::Constant *> Data) {
+ llvm::StructType *StructTy = RL.getLLVMType();
+ unsigned PrevIdx = 0;
+ ConstantInitBuilder CIBuilder(CGM);
+ auto DI = Data.begin();
+ for (const FieldDecl *FD : RD->fields()) {
+ unsigned Idx = RL.getLLVMFieldNo(FD);
+ // Fill the alignment.
+ for (unsigned I = PrevIdx; I < Idx; ++I)
+ Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
+ PrevIdx = Idx + 1;
+ Fields.add(*DI);
+ ++DI;
+ }
+}
+
+template <class... As>
+static llvm::GlobalVariable *
+createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
+ ArrayRef<llvm::Constant *> Data, const Twine &Name,
+ As &&... Args) {
+ const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
+ const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
+ ConstantInitBuilder CIBuilder(CGM);
+ ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
+ buildStructValue(Fields, CGM, RD, RL, Data);
+ return Fields.finishAndCreateGlobal(
+ Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
+ std::forward<As>(Args)...);
+}
+
+template <typename T>
+static void
+createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
+ ArrayRef<llvm::Constant *> Data,
+ T &Parent) {
+ const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
+ const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
+ ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
+ buildStructValue(Fields, CGM, RD, RL, Data);
+ Fields.finishAndAddTo(Parent);
+}
+
+Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
+ CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
+ unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
+ FlagsTy FlagsKey(Flags, Reserved2Flags);
+ llvm::Value *Entry = OpenMPDefaultLocMap.lookup(FlagsKey);
+ if (!Entry) {
+ if (!DefaultOpenMPPSource) {
+ // Initialize default location for psource field of ident_t structure of
+ // all ident_t objects. Format is ";file;function;line;column;;".
+ // Taken from
+ // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp_str.cpp
+ DefaultOpenMPPSource =
+ CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
+ DefaultOpenMPPSource =
+ llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
+ }
+
+ llvm::Constant *Data[] = {
+ llvm::ConstantInt::getNullValue(CGM.Int32Ty),
+ llvm::ConstantInt::get(CGM.Int32Ty, Flags),
+ llvm::ConstantInt::get(CGM.Int32Ty, Reserved2Flags),
+ llvm::ConstantInt::getNullValue(CGM.Int32Ty), DefaultOpenMPPSource};
+ llvm::GlobalValue *DefaultOpenMPLocation =
+ createGlobalStruct(CGM, IdentQTy, isDefaultLocationConstant(), Data, "",
+ llvm::GlobalValue::PrivateLinkage);
+ DefaultOpenMPLocation->setUnnamedAddr(
+ llvm::GlobalValue::UnnamedAddr::Global);
+
+ OpenMPDefaultLocMap[FlagsKey] = Entry = DefaultOpenMPLocation;
+ }
+ return Address(Entry, Align);
+}
+
+void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
+ bool AtCurrentPoint) {
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
+
+ llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
+ if (AtCurrentPoint) {
+ Elem.second.ServiceInsertPt = new llvm::BitCastInst(
+ Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
+ } else {
+ Elem.second.ServiceInsertPt =
+ new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
+ Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
+ }
+}
+
+void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ if (Elem.second.ServiceInsertPt) {
+ llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
+ Elem.second.ServiceInsertPt = nullptr;
+ Ptr->eraseFromParent();
+ }
+}
+
+llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ unsigned Flags) {
+ Flags |= OMP_IDENT_KMPC;
+ // If no debug info is generated - return global default location.
+ if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
+ Loc.isInvalid())
+ return getOrCreateDefaultLocation(Flags).getPointer();
+
+ assert(CGF.CurFn && "No function in current CodeGenFunction.");
+
+ CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
+ Address LocValue = Address::invalid();
+ auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
+ if (I != OpenMPLocThreadIDMap.end())
+ LocValue = Address(I->second.DebugLoc, Align);
+
+ // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
+ // GetOpenMPThreadID was called before this routine.
+ if (!LocValue.isValid()) {
+ // Generate "ident_t .kmpc_loc.addr;"
+ Address AI = CGF.CreateMemTemp(IdentQTy, ".kmpc_loc.addr");
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ Elem.second.DebugLoc = AI.getPointer();
+ LocValue = AI;
+
+ if (!Elem.second.ServiceInsertPt)
+ setLocThreadIdInsertPt(CGF);
+ CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
+ CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
+ CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
+ CGF.getTypeSize(IdentQTy));
+ }
+
+ // char **psource = &.kmpc_loc_<flags>.addr.psource;
+ LValue Base = CGF.MakeAddrLValue(LocValue, IdentQTy);
+ auto Fields = cast<RecordDecl>(IdentQTy->getAsTagDecl())->field_begin();
+ LValue PSource =
+ CGF.EmitLValueForField(Base, *std::next(Fields, IdentField_PSource));
+
+ llvm::Value *OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
+ if (OMPDebugLoc == nullptr) {
+ SmallString<128> Buffer2;
+ llvm::raw_svector_ostream OS2(Buffer2);
+ // Build debug location
+ PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
+ OS2 << ";" << PLoc.getFilename() << ";";
+ if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
+ OS2 << FD->getQualifiedNameAsString();
+ OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
+ OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
+ OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
+ }
+ // *psource = ";<File>;<Function>;<Line>;<Column>;;";
+ CGF.EmitStoreOfScalar(OMPDebugLoc, PSource);
+
+ // Our callers always pass this to a runtime function, so for
+ // convenience, go ahead and return a naked pointer.
+ return LocValue.getPointer();
+}
+
+llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ assert(CGF.CurFn && "No function in current CodeGenFunction.");
+
+ llvm::Value *ThreadID = nullptr;
+ // Check whether we've already cached a load of the thread id in this
+ // function.
+ auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
+ if (I != OpenMPLocThreadIDMap.end()) {
+ ThreadID = I->second.ThreadID;
+ if (ThreadID != nullptr)
+ return ThreadID;
+ }
+ // If exceptions are enabled, do not use parameter to avoid possible crash.
+ if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
+ !CGF.getLangOpts().CXXExceptions ||
+ CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
+ if (auto *OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
+ if (OMPRegionInfo->getThreadIDVariable()) {
+ // Check if this an outlined function with thread id passed as argument.
+ LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
+ ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
+ // If value loaded in entry block, cache it and use it everywhere in
+ // function.
+ if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) {
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ Elem.second.ThreadID = ThreadID;
+ }
+ return ThreadID;
+ }
+ }
+ }
+
+ // This is not an outlined function region - need to call __kmpc_int32
+ // kmpc_global_thread_num(ident_t *loc).
+ // Generate thread id value and cache this value for use across the
+ // function.
+ auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
+ if (!Elem.second.ServiceInsertPt)
+ setLocThreadIdInsertPt(CGF);
+ CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
+ CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
+ llvm::CallInst *Call = CGF.Builder.CreateCall(
+ createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
+ emitUpdateLocation(CGF, Loc));
+ Call->setCallingConv(CGF.getRuntimeCC());
+ Elem.second.ThreadID = Call;
+ return Call;
+}
+
+void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
+ assert(CGF.CurFn && "No function in current CodeGenFunction.");
+ if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
+ clearLocThreadIdInsertPt(CGF);
+ OpenMPLocThreadIDMap.erase(CGF.CurFn);
+ }
+ if (FunctionUDRMap.count(CGF.CurFn) > 0) {
+ for(auto *D : FunctionUDRMap[CGF.CurFn])
+ UDRMap.erase(D);
+ FunctionUDRMap.erase(CGF.CurFn);
+ }
+}
+
+llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
+ return IdentTy->getPointerTo();
+}
+
+llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
+ if (!Kmpc_MicroTy) {
+ // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
+ llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
+ llvm::PointerType::getUnqual(CGM.Int32Ty)};
+ Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
+ }
+ return llvm::PointerType::getUnqual(Kmpc_MicroTy);
+}
+
+llvm::FunctionCallee CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
+ llvm::FunctionCallee RTLFn = nullptr;
+ switch (static_cast<OpenMPRTLFunction>(Function)) {
+ case OMPRTL__kmpc_fork_call: {
+ // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
+ // microtask, ...);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ getKmpc_MicroPointerTy()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
+ if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
+ if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
+ llvm::LLVMContext &Ctx = F->getContext();
+ llvm::MDBuilder MDB(Ctx);
+ // Annotate the callback behavior of the __kmpc_fork_call:
+ // - The callback callee is argument number 2 (microtask).
+ // - The first two arguments of the callback callee are unknown (-1).
+ // - All variadic arguments to the __kmpc_fork_call are passed to the
+ // callback callee.
+ F->addMetadata(
+ llvm::LLVMContext::MD_callback,
+ *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
+ 2, {-1, -1},
+ /* VarArgsArePassed */ true)}));
+ }
+ }
+ break;
+ }
+ case OMPRTL__kmpc_global_thread_num: {
+ // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
+ break;
+ }
+ case OMPRTL__kmpc_threadprivate_cached: {
+ // Build void *__kmpc_threadprivate_cached(ident_t *loc,
+ // kmp_int32 global_tid, void *data, size_t size, void ***cache);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy, CGM.SizeTy,
+ CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
+ break;
+ }
+ case OMPRTL__kmpc_critical: {
+ // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
+ break;
+ }
+ case OMPRTL__kmpc_critical_with_hint: {
+ // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit, uintptr_t hint);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy),
+ CGM.IntPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
+ break;
+ }
+ case OMPRTL__kmpc_threadprivate_register: {
+ // Build void __kmpc_threadprivate_register(ident_t *, void *data,
+ // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
+ // typedef void *(*kmpc_ctor)(void *);
+ auto *KmpcCtorTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
+ /*isVarArg*/ false)->getPointerTo();
+ // typedef void *(*kmpc_cctor)(void *, void *);
+ llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *KmpcCopyCtorTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
+ /*isVarArg*/ false)
+ ->getPointerTo();
+ // typedef void (*kmpc_dtor)(void *);
+ auto *KmpcDtorTy =
+ llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
+ ->getPointerTo();
+ llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
+ KmpcCopyCtorTy, KmpcDtorTy};
+ auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
+ /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
+ break;
+ }
+ case OMPRTL__kmpc_end_critical: {
+ // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *crit);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
+ break;
+ }
+ case OMPRTL__kmpc_cancel_barrier: {
+ // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
+ break;
+ }
+ case OMPRTL__kmpc_barrier: {
+ // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
+ break;
+ }
+ case OMPRTL__kmpc_for_static_fini: {
+ // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
+ break;
+ }
+ case OMPRTL__kmpc_push_num_threads: {
+ // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_threads)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
+ break;
+ }
+ case OMPRTL__kmpc_serialized_parallel: {
+ // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
+ break;
+ }
+ case OMPRTL__kmpc_end_serialized_parallel: {
+ // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
+ break;
+ }
+ case OMPRTL__kmpc_flush: {
+ // Build void __kmpc_flush(ident_t *loc);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
+ break;
+ }
+ case OMPRTL__kmpc_master: {
+ // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
+ break;
+ }
+ case OMPRTL__kmpc_end_master: {
+ // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
+ break;
+ }
+ case OMPRTL__kmpc_omp_taskyield: {
+ // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
+ // int end_part);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
+ break;
+ }
+ case OMPRTL__kmpc_single: {
+ // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
+ break;
+ }
+ case OMPRTL__kmpc_end_single: {
+ // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_alloc: {
+ // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
+ // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ // kmp_routine_entry_t *task_entry);
+ assert(KmpRoutineEntryPtrTy != nullptr &&
+ "Type kmp_routine_entry_t must be created.");
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
+ CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
+ // Return void * and then cast to particular kmp_task_t type.
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
+ break;
+ }
+ case OMPRTL__kmpc_omp_target_task_alloc: {
+ // Build kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *, kmp_int32 gtid,
+ // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ // kmp_routine_entry_t *task_entry, kmp_int64 device_id);
+ assert(KmpRoutineEntryPtrTy != nullptr &&
+ "Type kmp_routine_entry_t must be created.");
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
+ CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy,
+ CGM.Int64Ty};
+ // Return void * and then cast to particular kmp_task_t type.
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_target_task_alloc");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task: {
+ // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
+ // *new_task);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
+ break;
+ }
+ case OMPRTL__kmpc_copyprivate: {
+ // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
+ // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
+ // kmp_int32 didit);
+ llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *CpyFnTy =
+ llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
+ CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
+ CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
+ break;
+ }
+ case OMPRTL__kmpc_reduce: {
+ // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
+ // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
+ llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
+ /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
+ CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
+ break;
+ }
+ case OMPRTL__kmpc_reduce_nowait: {
+ // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
+ // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
+ // *lck);
+ llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
+ /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
+ CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
+ break;
+ }
+ case OMPRTL__kmpc_end_reduce: {
+ // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
+ break;
+ }
+ case OMPRTL__kmpc_end_reduce_nowait: {
+ // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
+ // kmp_critical_name *lck);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(KmpCriticalNameTy)};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_begin_if0: {
+ // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
+ // *new_task);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_complete_if0: {
+ // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
+ // *new_task);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy,
+ /*Name=*/"__kmpc_omp_task_complete_if0");
+ break;
+ }
+ case OMPRTL__kmpc_ordered: {
+ // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
+ break;
+ }
+ case OMPRTL__kmpc_end_ordered: {
+ // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
+ break;
+ }
+ case OMPRTL__kmpc_omp_taskwait: {
+ // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
+ break;
+ }
+ case OMPRTL__kmpc_taskgroup: {
+ // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
+ break;
+ }
+ case OMPRTL__kmpc_end_taskgroup: {
+ // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
+ break;
+ }
+ case OMPRTL__kmpc_push_proc_bind: {
+ // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
+ // int proc_bind)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
+ break;
+ }
+ case OMPRTL__kmpc_omp_task_with_deps: {
+ // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
+ // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
+ // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
+ CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
+ break;
+ }
+ case OMPRTL__kmpc_omp_wait_deps: {
+ // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
+ // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
+ // kmp_depend_info_t *noalias_dep_list);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.Int32Ty, CGM.VoidPtrTy,
+ CGM.Int32Ty, CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
+ break;
+ }
+ case OMPRTL__kmpc_cancellationpoint: {
+ // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 cncl_kind)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
+ break;
+ }
+ case OMPRTL__kmpc_cancel: {
+ // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 cncl_kind)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
+ break;
+ }
+ case OMPRTL__kmpc_push_num_teams: {
+ // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
+ // kmp_int32 num_teams, kmp_int32 num_threads)
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
+ CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
+ break;
+ }
+ case OMPRTL__kmpc_fork_teams: {
+ // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
+ // microtask, ...);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ getKmpc_MicroPointerTy()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
+ if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
+ if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
+ llvm::LLVMContext &Ctx = F->getContext();
+ llvm::MDBuilder MDB(Ctx);
+ // Annotate the callback behavior of the __kmpc_fork_teams:
+ // - The callback callee is argument number 2 (microtask).
+ // - The first two arguments of the callback callee are unknown (-1).
+ // - All variadic arguments to the __kmpc_fork_teams are passed to the
+ // callback callee.
+ F->addMetadata(
+ llvm::LLVMContext::MD_callback,
+ *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
+ 2, {-1, -1},
+ /* VarArgsArePassed */ true)}));
+ }
+ }
+ break;
+ }
+ case OMPRTL__kmpc_taskloop: {
+ // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
+ // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
+ // sched, kmp_uint64 grainsize, void *task_dup);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
+ CGM.IntTy,
+ CGM.VoidPtrTy,
+ CGM.IntTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty,
+ CGM.IntTy,
+ CGM.IntTy,
+ CGM.Int64Ty,
+ CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
+ break;
+ }
+ case OMPRTL__kmpc_doacross_init: {
+ // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
+ // num_dims, struct kmp_dim *dims);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
+ CGM.Int32Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
+ break;
+ }
+ case OMPRTL__kmpc_doacross_fini: {
+ // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
+ break;
+ }
+ case OMPRTL__kmpc_doacross_post: {
+ // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
+ // *vec);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.Int64Ty->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
+ break;
+ }
+ case OMPRTL__kmpc_doacross_wait: {
+ // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
+ // *vec);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
+ CGM.Int64Ty->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
+ break;
+ }
+ case OMPRTL__kmpc_task_reduction_init: {
+ // Build void *__kmpc_task_reduction_init(int gtid, int num_data, void
+ // *data);
+ llvm::Type *TypeParams[] = {CGM.IntTy, CGM.IntTy, CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_task_reduction_init");
+ break;
+ }
+ case OMPRTL__kmpc_task_reduction_get_th_data: {
+ // Build void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
+ // *d);
+ llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(
+ FnTy, /*Name=*/"__kmpc_task_reduction_get_th_data");
+ break;
+ }
+ case OMPRTL__kmpc_alloc: {
+ // Build to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t
+ // al); omp_allocator_handle_t type is void *.
+ llvm::Type *TypeParams[] = {CGM.IntTy, CGM.SizeTy, CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_alloc");
+ break;
+ }
+ case OMPRTL__kmpc_free: {
+ // Build to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t
+ // al); omp_allocator_handle_t type is void *.
+ llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_free");
+ break;
+ }
+ case OMPRTL__kmpc_push_target_tripcount: {
+ // Build void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
+ // size);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int64Ty};
+ llvm::FunctionType *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_target_tripcount");
+ break;
+ }
+ case OMPRTL__tgt_target: {
+ // Build int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
+ // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
+ // *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty,
+ CGM.VoidPtrTy,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
+ break;
+ }
+ case OMPRTL__tgt_target_nowait: {
+ // Build int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
+ // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
+ // int64_t *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty,
+ CGM.VoidPtrTy,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_nowait");
+ break;
+ }
+ case OMPRTL__tgt_target_teams: {
+ // Build int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
+ // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
+ // int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty,
+ CGM.VoidPtrTy,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int32Ty,
+ CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
+ break;
+ }
+ case OMPRTL__tgt_target_teams_nowait: {
+ // Build int32_t __tgt_target_teams_nowait(int64_t device_id, void
+ // *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
+ // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty,
+ CGM.VoidPtrTy,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int32Ty,
+ CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams_nowait");
+ break;
+ }
+ case OMPRTL__tgt_register_requires: {
+ // Build void __tgt_register_requires(int64_t flags);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_requires");
+ break;
+ }
+ case OMPRTL__tgt_register_lib: {
+ // Build void __tgt_register_lib(__tgt_bin_desc *desc);
+ QualType ParamTy =
+ CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
+ llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib");
+ break;
+ }
+ case OMPRTL__tgt_unregister_lib: {
+ // Build void __tgt_unregister_lib(__tgt_bin_desc *desc);
+ QualType ParamTy =
+ CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy());
+ llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib");
+ break;
+ }
+ case OMPRTL__tgt_target_data_begin: {
+ // Build void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
+ // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
+ break;
+ }
+ case OMPRTL__tgt_target_data_begin_nowait: {
+ // Build void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
+ // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
+ // *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin_nowait");
+ break;
+ }
+ case OMPRTL__tgt_target_data_end: {
+ // Build void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
+ // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
+ break;
+ }
+ case OMPRTL__tgt_target_data_end_nowait: {
+ // Build void __tgt_target_data_end_nowait(int64_t device_id, int32_t
+ // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
+ // *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end_nowait");
+ break;
+ }
+ case OMPRTL__tgt_target_data_update: {
+ // Build void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
+ // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
+ break;
+ }
+ case OMPRTL__tgt_target_data_update_nowait: {
+ // Build void __tgt_target_data_update_nowait(int64_t device_id, int32_t
+ // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
+ // *arg_types);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty,
+ CGM.Int32Ty,
+ CGM.VoidPtrPtrTy,
+ CGM.VoidPtrPtrTy,
+ CGM.Int64Ty->getPointerTo(),
+ CGM.Int64Ty->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update_nowait");
+ break;
+ }
+ }
+ assert(RTLFn && "Unable to find OpenMP runtime function");
+ return RTLFn;
+}
+
+llvm::FunctionCallee
+CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
+ : "__kmpc_for_static_init_4u")
+ : (IVSigned ? "__kmpc_for_static_init_8"
+ : "__kmpc_for_static_init_8u");
+ llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
+ auto *PtrTy = llvm::PointerType::getUnqual(ITy);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ CGM.Int32Ty, // schedtype
+ llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
+ PtrTy, // p_lower
+ PtrTy, // p_upper
+ PtrTy, // p_stride
+ ITy, // incr
+ ITy // chunk
+ };
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::FunctionCallee
+CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ StringRef Name =
+ IVSize == 32
+ ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
+ : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
+ llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
+ llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ CGM.Int32Ty, // schedtype
+ ITy, // lower
+ ITy, // upper
+ ITy, // stride
+ ITy // chunk
+ };
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::FunctionCallee
+CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ StringRef Name =
+ IVSize == 32
+ ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
+ : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ };
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+llvm::FunctionCallee
+CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
+ assert((IVSize == 32 || IVSize == 64) &&
+ "IV size is not compatible with the omp runtime");
+ StringRef Name =
+ IVSize == 32
+ ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
+ : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
+ llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
+ auto *PtrTy = llvm::PointerType::getUnqual(ITy);
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), // loc
+ CGM.Int32Ty, // tid
+ llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
+ PtrTy, // p_lower
+ PtrTy, // p_upper
+ PtrTy // p_stride
+ };
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ return CGM.CreateRuntimeFunction(FnTy, Name);
+}
+
+Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
+ if (CGM.getLangOpts().OpenMPSimd)
+ return Address::invalid();
+ llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
+ if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
+ (*Res == OMPDeclareTargetDeclAttr::MT_To &&
+ HasRequiresUnifiedSharedMemory))) {
+ SmallString<64> PtrName;
+ {
+ llvm::raw_svector_ostream OS(PtrName);
+ OS << CGM.getMangledName(GlobalDecl(VD)) << "_decl_tgt_ref_ptr";
+ }
+ llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
+ if (!Ptr) {
+ QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
+ Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
+ PtrName);
+ if (!CGM.getLangOpts().OpenMPIsDevice) {
+ auto *GV = cast<llvm::GlobalVariable>(Ptr);
+ GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
+ GV->setInitializer(CGM.GetAddrOfGlobal(VD));
+ }
+ CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ptr));
+ registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
+ }
+ return Address(Ptr, CGM.getContext().getDeclAlign(VD));
+ }
+ return Address::invalid();
+}
+
+llvm::Constant *
+CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
+ assert(!CGM.getLangOpts().OpenMPUseTLS ||
+ !CGM.getContext().getTargetInfo().isTLSSupported());
+ // Lookup the entry, lazily creating it if necessary.
+ std::string Suffix = getName({"cache", ""});
+ return getOrCreateInternalVariable(
+ CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
+}
+
+Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
+ const VarDecl *VD,
+ Address VDAddr,
+ SourceLocation Loc) {
+ if (CGM.getLangOpts().OpenMPUseTLS &&
+ CGM.getContext().getTargetInfo().isTLSSupported())
+ return VDAddr;
+
+ llvm::Type *VarTy = VDAddr.getElementType();
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
+ CGM.Int8PtrTy),
+ CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
+ getOrCreateThreadPrivateCache(VD)};
+ return Address(CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
+ VDAddr.getAlignment());
+}
+
+void CGOpenMPRuntime::emitThreadPrivateVarInit(
+ CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
+ llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
+ // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
+ // library.
+ llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
+ OMPLoc);
+ // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
+ // to register constructor/destructor for variable.
+ llvm::Value *Args[] = {
+ OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
+ Ctor, CopyCtor, Dtor};
+ CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
+}
+
+llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
+ const VarDecl *VD, Address VDAddr, SourceLocation Loc,
+ bool PerformInit, CodeGenFunction *CGF) {
+ if (CGM.getLangOpts().OpenMPUseTLS &&
+ CGM.getContext().getTargetInfo().isTLSSupported())
+ return nullptr;
+
+ VD = VD->getDefinition(CGM.getContext());
+ if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
+ QualType ASTTy = VD->getType();
+
+ llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
+ const Expr *Init = VD->getAnyInitializer();
+ if (CGM.getLangOpts().CPlusPlus && PerformInit) {
+ // Generate function that re-emits the declaration's initializer into the
+ // threadprivate copy of the variable VD
+ CodeGenFunction CtorCGF(CGM);
+ FunctionArgList Args;
+ ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
+ ImplicitParamDecl::Other);
+ Args.push_back(&Dst);
+
+ const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
+ CGM.getContext().VoidPtrTy, Args);
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
+ std::string Name = getName({"__kmpc_global_ctor_", ""});
+ llvm::Function *Fn =
+ CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
+ CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
+ Args, Loc, Loc);
+ llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
+ CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
+ CGM.getContext().VoidPtrTy, Dst.getLocation());
+ Address Arg = Address(ArgVal, VDAddr.getAlignment());
+ Arg = CtorCGF.Builder.CreateElementBitCast(
+ Arg, CtorCGF.ConvertTypeForMem(ASTTy));
+ CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
+ /*IsInitializer=*/true);
+ ArgVal = CtorCGF.EmitLoadOfScalar(
+ CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
+ CGM.getContext().VoidPtrTy, Dst.getLocation());
+ CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
+ CtorCGF.FinishFunction();
+ Ctor = Fn;
+ }
+ if (VD->getType().isDestructedType() != QualType::DK_none) {
+ // Generate function that emits destructor call for the threadprivate copy
+ // of the variable VD
+ CodeGenFunction DtorCGF(CGM);
+ FunctionArgList Args;
+ ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
+ /*Id=*/nullptr, CGM.getContext().VoidPtrTy,
+ ImplicitParamDecl::Other);
+ Args.push_back(&Dst);
+
+ const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
+ CGM.getContext().VoidTy, Args);
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
+ std::string Name = getName({"__kmpc_global_dtor_", ""});
+ llvm::Function *Fn =
+ CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
+ auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
+ DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
+ Loc, Loc);
+ // Create a scope with an artificial location for the body of this function.
+ auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
+ llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
+ DtorCGF.GetAddrOfLocalVar(&Dst),
+ /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
+ DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
+ DtorCGF.getDestroyer(ASTTy.isDestructedType()),
+ DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
+ DtorCGF.FinishFunction();
+ Dtor = Fn;
+ }
+ // Do not emit init function if it is not required.
+ if (!Ctor && !Dtor)
+ return nullptr;
+
+ llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
+ auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
+ /*isVarArg=*/false)
+ ->getPointerTo();
+ // Copying constructor for the threadprivate variable.
+ // Must be NULL - reserved by runtime, but currently it requires that this
+ // parameter is always NULL. Otherwise it fires assertion.
+ CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
+ if (Ctor == nullptr) {
+ auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
+ /*isVarArg=*/false)
+ ->getPointerTo();
+ Ctor = llvm::Constant::getNullValue(CtorTy);
+ }
+ if (Dtor == nullptr) {
+ auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
+ /*isVarArg=*/false)
+ ->getPointerTo();
+ Dtor = llvm::Constant::getNullValue(DtorTy);
+ }
+ if (!CGF) {
+ auto *InitFunctionTy =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
+ std::string Name = getName({"__omp_threadprivate_init_", ""});
+ llvm::Function *InitFunction = CGM.CreateGlobalInitOrDestructFunction(
+ InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
+ CodeGenFunction InitCGF(CGM);
+ FunctionArgList ArgList;
+ InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
+ CGM.getTypes().arrangeNullaryFunction(), ArgList,
+ Loc, Loc);
+ emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
+ InitCGF.FinishFunction();
+ return InitFunction;
+ }
+ emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
+ }
+ return nullptr;
+}
+
+/// Obtain information that uniquely identifies a target entry. This
+/// consists of the file and device IDs as well as line number associated with
+/// the relevant entry source location.
+static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
+ unsigned &DeviceID, unsigned &FileID,
+ unsigned &LineNum) {
+ SourceManager &SM = C.getSourceManager();
+
+ // The loc should be always valid and have a file ID (the user cannot use
+ // #pragma directives in macros)
+
+ assert(Loc.isValid() && "Source location is expected to be always valid.");
+
+ PresumedLoc PLoc = SM.getPresumedLoc(Loc);
+ assert(PLoc.isValid() && "Source location is expected to be always valid.");
+
+ llvm::sys::fs::UniqueID ID;
+ if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
+ SM.getDiagnostics().Report(diag::err_cannot_open_file)
+ << PLoc.getFilename() << EC.message();
+
+ DeviceID = ID.getDevice();
+ FileID = ID.getFile();
+ LineNum = PLoc.getLine();
+}
+
+bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
+ llvm::GlobalVariable *Addr,
+ bool PerformInit) {
+ Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
+ if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
+ (*Res == OMPDeclareTargetDeclAttr::MT_To &&
+ HasRequiresUnifiedSharedMemory))
+ return CGM.getLangOpts().OpenMPIsDevice;
+ VD = VD->getDefinition(CGM.getContext());
+ if (VD && !DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
+ return CGM.getLangOpts().OpenMPIsDevice;
+
+ QualType ASTTy = VD->getType();
+
+ SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
+ // Produce the unique prefix to identify the new target regions. We use
+ // the source location of the variable declaration which we know to not
+ // conflict with any target region.
+ unsigned DeviceID;
+ unsigned FileID;
+ unsigned Line;
+ getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
+ SmallString<128> Buffer, Out;
+ {
+ llvm::raw_svector_ostream OS(Buffer);
+ OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
+ << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
+ }
+
+ const Expr *Init = VD->getAnyInitializer();
+ if (CGM.getLangOpts().CPlusPlus && PerformInit) {
+ llvm::Constant *Ctor;
+ llvm::Constant *ID;
+ if (CGM.getLangOpts().OpenMPIsDevice) {
+ // Generate function that re-emits the declaration's initializer into
+ // the threadprivate copy of the variable VD
+ CodeGenFunction CtorCGF(CGM);
+
+ const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
+ llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
+ FTy, Twine(Buffer, "_ctor"), FI, Loc);
+ auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
+ CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
+ FunctionArgList(), Loc, Loc);
+ auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
+ CtorCGF.EmitAnyExprToMem(Init,
+ Address(Addr, CGM.getContext().getDeclAlign(VD)),
+ Init->getType().getQualifiers(),
+ /*IsInitializer=*/true);
+ CtorCGF.FinishFunction();
+ Ctor = Fn;
+ ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
+ CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
+ } else {
+ Ctor = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
+ llvm::GlobalValue::PrivateLinkage,
+ llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
+ ID = Ctor;
+ }
+
+ // Register the information for the entry associated with the constructor.
+ Out.clear();
+ OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
+ DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
+ ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
+ }
+ if (VD->getType().isDestructedType() != QualType::DK_none) {
+ llvm::Constant *Dtor;
+ llvm::Constant *ID;
+ if (CGM.getLangOpts().OpenMPIsDevice) {
+ // Generate function that emits destructor call for the threadprivate
+ // copy of the variable VD
+ CodeGenFunction DtorCGF(CGM);
+
+ const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
+ llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
+ FTy, Twine(Buffer, "_dtor"), FI, Loc);
+ auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
+ DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
+ FunctionArgList(), Loc, Loc);
+ // Create a scope with an artificial location for the body of this
+ // function.
+ auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
+ DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
+ ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
+ DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
+ DtorCGF.FinishFunction();
+ Dtor = Fn;
+ ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
+ CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
+ } else {
+ Dtor = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
+ llvm::GlobalValue::PrivateLinkage,
+ llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
+ ID = Dtor;
+ }
+ // Register the information for the entry associated with the destructor.
+ Out.clear();
+ OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
+ DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
+ ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
+ }
+ return CGM.getLangOpts().OpenMPIsDevice;
+}
+
+Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
+ QualType VarType,
+ StringRef Name) {
+ std::string Suffix = getName({"artificial", ""});
+ std::string CacheSuffix = getName({"cache", ""});
+ llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
+ llvm::Value *GAddr =
+ getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, SourceLocation()),
+ getThreadID(CGF, SourceLocation()),
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
+ CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
+ /*isSigned=*/false),
+ getOrCreateInternalVariable(
+ CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
+ return Address(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
+ VarLVType->getPointerTo(/*AddrSpace=*/0)),
+ CGM.getPointerAlign());
+}
+
+void CGOpenMPRuntime::emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond,
+ const RegionCodeGenTy &ThenGen,
+ const RegionCodeGenTy &ElseGen) {
+ CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
+
+ // If the condition constant folds and can be elided, try to avoid emitting
+ // the condition and the dead arm of the if/else.
+ bool CondConstant;
+ if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
+ if (CondConstant)
+ ThenGen(CGF);
+ else
+ ElseGen(CGF);
+ return;
+ }
+
+ // Otherwise, the condition did not fold, or we couldn't elide it. Just
+ // emit the conditional branch.
+ llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
+ llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
+ llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
+ CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
+
+ // Emit the 'then' code.
+ CGF.EmitBlock(ThenBlock);
+ ThenGen(CGF);
+ CGF.EmitBranch(ContBlock);
+ // Emit the 'else' code if present.
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(ElseBlock);
+ ElseGen(CGF);
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBranch(ContBlock);
+ // Emit the continuation block for code after the if.
+ CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
+}
+
+void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
+ llvm::Function *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars,
+ const Expr *IfCond) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+ auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
+ CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
+ llvm::Value *Args[] = {
+ RTLoc,
+ CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
+ CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
+ llvm::SmallVector<llvm::Value *, 16> RealArgs;
+ RealArgs.append(std::begin(Args), std::end(Args));
+ RealArgs.append(CapturedVars.begin(), CapturedVars.end());
+
+ llvm::FunctionCallee RTLFn =
+ RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
+ CGF.EmitRuntimeCall(RTLFn, RealArgs);
+ };
+ auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
+ llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
+ // Build calls:
+ // __kmpc_serialized_parallel(&Loc, GTid);
+ llvm::Value *Args[] = {RTLoc, ThreadID};
+ CGF.EmitRuntimeCall(
+ RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
+
+ // OutlinedFn(&GTid, &zero, CapturedStruct);
+ Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
+ /*Name*/ ".zero.addr");
+ CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+ llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+ // ThreadId for serialized parallels is 0.
+ OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+ OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+ OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+ RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
+
+ // __kmpc_end_serialized_parallel(&Loc, GTid);
+ llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
+ CGF.EmitRuntimeCall(
+ RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
+ EndArgs);
+ };
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen);
+ } else {
+ RegionCodeGenTy ThenRCG(ThenGen);
+ ThenRCG(CGF);
+ }
+}
+
+// If we're inside an (outlined) parallel region, use the region info's
+// thread-ID variable (it is passed in a first argument of the outlined function
+// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
+// regular serial code region, get thread ID by calling kmp_int32
+// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
+// return the address of that temp.
+Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ if (auto *OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
+ if (OMPRegionInfo->getThreadIDVariable())
+ return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
+
+ llvm::Value *ThreadID = getThreadID(CGF, Loc);
+ QualType Int32Ty =
+ CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
+ Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
+ CGF.EmitStoreOfScalar(ThreadID,
+ CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
+
+ return ThreadIDTemp;
+}
+
+llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
+ llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ Out << Name;
+ StringRef RuntimeName = Out.str();
+ auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
+ if (Elem.second) {
+ assert(Elem.second->getType()->getPointerElementType() == Ty &&
+ "OMP internal variable has different type than requested");
+ return &*Elem.second;
+ }
+
+ return Elem.second = new llvm::GlobalVariable(
+ CGM.getModule(), Ty, /*IsConstant*/ false,
+ llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
+ Elem.first(), /*InsertBefore=*/nullptr,
+ llvm::GlobalValue::NotThreadLocal, AddressSpace);
+}
+
+llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
+ std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
+ std::string Name = getName({Prefix, "var"});
+ return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
+}
+
+namespace {
+/// Common pre(post)-action for different OpenMP constructs.
+class CommonActionTy final : public PrePostActionTy {
+ llvm::FunctionCallee EnterCallee;
+ ArrayRef<llvm::Value *> EnterArgs;
+ llvm::FunctionCallee ExitCallee;
+ ArrayRef<llvm::Value *> ExitArgs;
+ bool Conditional;
+ llvm::BasicBlock *ContBlock = nullptr;
+
+public:
+ CommonActionTy(llvm::FunctionCallee EnterCallee,
+ ArrayRef<llvm::Value *> EnterArgs,
+ llvm::FunctionCallee ExitCallee,
+ ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
+ : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
+ ExitArgs(ExitArgs), Conditional(Conditional) {}
+ void Enter(CodeGenFunction &CGF) override {
+ llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
+ if (Conditional) {
+ llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
+ auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
+ ContBlock = CGF.createBasicBlock("omp_if.end");
+ // Generate the branch (If-stmt)
+ CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
+ CGF.EmitBlock(ThenBlock);
+ }
+ }
+ void Done(CodeGenFunction &CGF) {
+ // Emit the rest of blocks/branches
+ CGF.EmitBranch(ContBlock);
+ CGF.EmitBlock(ContBlock, true);
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
+ }
+};
+} // anonymous namespace
+
+void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
+ StringRef CriticalName,
+ const RegionCodeGenTy &CriticalOpGen,
+ SourceLocation Loc, const Expr *Hint) {
+ // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
+ // CriticalOpGen();
+ // __kmpc_end_critical(ident_t *, gtid, Lock);
+ // Prepare arguments and build a call to __kmpc_critical
+ if (!CGF.HaveInsertPoint())
+ return;
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ getCriticalRegionLock(CriticalName)};
+ llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
+ std::end(Args));
+ if (Hint) {
+ EnterArgs.push_back(CGF.Builder.CreateIntCast(
+ CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
+ }
+ CommonActionTy Action(
+ createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
+ : OMPRTL__kmpc_critical),
+ EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
+ CriticalOpGen.setAction(Action);
+ emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
+}
+
+void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &MasterOpGen,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // if(__kmpc_master(ident_t *, gtid)) {
+ // MasterOpGen();
+ // __kmpc_end_master(ident_t *, gtid);
+ // }
+ // Prepare arguments and build a call to __kmpc_master
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
+ createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
+ /*Conditional=*/true);
+ MasterOpGen.setAction(Action);
+ emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
+ Action.Done(CGF);
+}
+
+void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
+ if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
+ Region->emitUntiedSwitch(CGF);
+}
+
+void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &TaskgroupOpGen,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // __kmpc_taskgroup(ident_t *, gtid);
+ // TaskgroupOpGen();
+ // __kmpc_end_taskgroup(ident_t *, gtid);
+ // Prepare arguments and build a call to __kmpc_taskgroup
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
+ createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
+ Args);
+ TaskgroupOpGen.setAction(Action);
+ emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
+}
+
+/// Given an array of pointers to variables, project the address of a
+/// given variable.
+static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
+ unsigned Index, const VarDecl *Var) {
+ // Pull out the pointer to the variable.
+ Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
+ llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
+
+ Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
+ Addr = CGF.Builder.CreateElementBitCast(
+ Addr, CGF.ConvertTypeForMem(Var->getType()));
+ return Addr;
+}
+
+static llvm::Value *emitCopyprivateCopyFunction(
+ CodeGenModule &CGM, llvm::Type *ArgsType,
+ ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
+ ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
+ SourceLocation Loc) {
+ ASTContext &C = CGM.getContext();
+ // void copy_func(void *LHSArg, void *RHSArg);
+ FunctionArgList Args;
+ ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
+ ImplicitParamDecl::Other);
+ ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
+ ImplicitParamDecl::Other);
+ Args.push_back(&LHSArg);
+ Args.push_back(&RHSArg);
+ const auto &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ std::string Name =
+ CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
+ auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
+ llvm::GlobalValue::InternalLinkage, Name,
+ &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+ // Dest = (void*[n])(LHSArg);
+ // Src = (void*[n])(RHSArg);
+ Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
+ ArgsType), CGF.getPointerAlign());
+ Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
+ ArgsType), CGF.getPointerAlign());
+ // *(Type0*)Dst[0] = *(Type0*)Src[0];
+ // *(Type1*)Dst[1] = *(Type1*)Src[1];
+ // ...
+ // *(Typen*)Dst[n] = *(Typen*)Src[n];
+ for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
+ const auto *DestVar =
+ cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
+ Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
+
+ const auto *SrcVar =
+ cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
+ Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
+
+ const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
+ QualType Type = VD->getType();
+ CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
+ }
+ CGF.FinishFunction();
+ return Fn;
+}
+
+void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &SingleOpGen,
+ SourceLocation Loc,
+ ArrayRef<const Expr *> CopyprivateVars,
+ ArrayRef<const Expr *> SrcExprs,
+ ArrayRef<const Expr *> DstExprs,
+ ArrayRef<const Expr *> AssignmentOps) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ assert(CopyprivateVars.size() == SrcExprs.size() &&
+ CopyprivateVars.size() == DstExprs.size() &&
+ CopyprivateVars.size() == AssignmentOps.size());
+ ASTContext &C = CGM.getContext();
+ // int32 did_it = 0;
+ // if(__kmpc_single(ident_t *, gtid)) {
+ // SingleOpGen();
+ // __kmpc_end_single(ident_t *, gtid);
+ // did_it = 1;
+ // }
+ // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
+ // <copy_func>, did_it);
+
+ Address DidIt = Address::invalid();
+ if (!CopyprivateVars.empty()) {
+ // int32 did_it = 0;
+ QualType KmpInt32Ty =
+ C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
+ DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
+ CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
+ }
+ // Prepare arguments and build a call to __kmpc_single
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
+ createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
+ /*Conditional=*/true);
+ SingleOpGen.setAction(Action);
+ emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
+ if (DidIt.isValid()) {
+ // did_it = 1;
+ CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
+ }
+ Action.Done(CGF);
+ // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
+ // <copy_func>, did_it);
+ if (DidIt.isValid()) {
+ llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
+ QualType CopyprivateArrayTy =
+ C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ // Create a list of all private variables for copyprivate.
+ Address CopyprivateList =
+ CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
+ for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
+ Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
+ CGF.Builder.CreateStore(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy),
+ Elem);
+ }
+ // Build function that copies private values from single region to all other
+ // threads in the corresponding parallel region.
+ llvm::Value *CpyFn = emitCopyprivateCopyFunction(
+ CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
+ CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
+ llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
+ Address CL =
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
+ CGF.VoidPtrTy);
+ llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), // ident_t *<loc>
+ getThreadID(CGF, Loc), // i32 <gtid>
+ BufSize, // size_t <buf_size>
+ CL.getPointer(), // void *<copyprivate list>
+ CpyFn, // void (*) (void *, void *) <copy_func>
+ DidItVal // i32 did_it
+ };
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
+ }
+}
+
+void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &OrderedOpGen,
+ SourceLocation Loc, bool IsThreads) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // __kmpc_ordered(ident_t *, gtid);
+ // OrderedOpGen();
+ // __kmpc_end_ordered(ident_t *, gtid);
+ // Prepare arguments and build a call to __kmpc_ordered
+ if (IsThreads) {
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
+ createRuntimeFunction(OMPRTL__kmpc_end_ordered),
+ Args);
+ OrderedOpGen.setAction(Action);
+ emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
+ return;
+ }
+ emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
+}
+
+unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
+ unsigned Flags;
+ if (Kind == OMPD_for)
+ Flags = OMP_IDENT_BARRIER_IMPL_FOR;
+ else if (Kind == OMPD_sections)
+ Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
+ else if (Kind == OMPD_single)
+ Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
+ else if (Kind == OMPD_barrier)
+ Flags = OMP_IDENT_BARRIER_EXPL;
+ else
+ Flags = OMP_IDENT_BARRIER_IMPL;
+ return Flags;
+}
+
+void CGOpenMPRuntime::getDefaultScheduleAndChunk(
+ CodeGenFunction &CGF, const OMPLoopDirective &S,
+ OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
+ // Check if the loop directive is actually a doacross loop directive. In this
+ // case choose static, 1 schedule.
+ if (llvm::any_of(
+ S.getClausesOfKind<OMPOrderedClause>(),
+ [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
+ ScheduleKind = OMPC_SCHEDULE_static;
+ // Chunk size is 1 in this case.
+ llvm::APInt ChunkSize(32, 1);
+ ChunkExpr = IntegerLiteral::Create(
+ CGF.getContext(), ChunkSize,
+ CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
+ SourceLocation());
+ }
+}
+
+void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPDirectiveKind Kind, bool EmitChecks,
+ bool ForceSimpleCall) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call __kmpc_cancel_barrier(loc, thread_id);
+ // Build call __kmpc_barrier(loc, thread_id);
+ unsigned Flags = getDefaultFlagsForBarriers(Kind);
+ // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
+ // thread_id);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
+ getThreadID(CGF, Loc)};
+ if (auto *OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
+ if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
+ llvm::Value *Result = CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
+ if (EmitChecks) {
+ // if (__kmpc_cancel_barrier()) {
+ // exit from construct;
+ // }
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
+ llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
+ llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
+ CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
+ CGF.EmitBlock(ExitBB);
+ // exit from construct;
+ CodeGenFunction::JumpDest CancelDestination =
+ CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
+ CGF.EmitBranchThroughCleanup(CancelDestination);
+ CGF.EmitBlock(ContBB, /*IsFinished=*/true);
+ }
+ return;
+ }
+ }
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
+}
+
+/// Map the OpenMP loop schedule to the runtime enumeration.
+static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
+ bool Chunked, bool Ordered) {
+ switch (ScheduleKind) {
+ case OMPC_SCHEDULE_static:
+ return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
+ : (Ordered ? OMP_ord_static : OMP_sch_static);
+ case OMPC_SCHEDULE_dynamic:
+ return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
+ case OMPC_SCHEDULE_guided:
+ return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
+ case OMPC_SCHEDULE_runtime:
+ return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
+ case OMPC_SCHEDULE_auto:
+ return Ordered ? OMP_ord_auto : OMP_sch_auto;
+ case OMPC_SCHEDULE_unknown:
+ assert(!Chunked && "chunk was specified but schedule kind not known");
+ return Ordered ? OMP_ord_static : OMP_sch_static;
+ }
+ llvm_unreachable("Unexpected runtime schedule");
+}
+
+/// Map the OpenMP distribute schedule to the runtime enumeration.
+static OpenMPSchedType
+getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
+ // only static is allowed for dist_schedule
+ return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
+}
+
+bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
+ bool Chunked) const {
+ OpenMPSchedType Schedule =
+ getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
+ return Schedule == OMP_sch_static;
+}
+
+bool CGOpenMPRuntime::isStaticNonchunked(
+ OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
+ OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
+ return Schedule == OMP_dist_sch_static;
+}
+
+bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
+ bool Chunked) const {
+ OpenMPSchedType Schedule =
+ getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
+ return Schedule == OMP_sch_static_chunked;
+}
+
+bool CGOpenMPRuntime::isStaticChunked(
+ OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
+ OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
+ return Schedule == OMP_dist_sch_static_chunked;
+}
+
+bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
+ OpenMPSchedType Schedule =
+ getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
+ assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
+ return Schedule != OMP_sch_static;
+}
+
+static int addMonoNonMonoModifier(OpenMPSchedType Schedule,
+ OpenMPScheduleClauseModifier M1,
+ OpenMPScheduleClauseModifier M2) {
+ int Modifier = 0;
+ switch (M1) {
+ case OMPC_SCHEDULE_MODIFIER_monotonic:
+ Modifier = OMP_sch_modifier_monotonic;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
+ Modifier = OMP_sch_modifier_nonmonotonic;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_simd:
+ if (Schedule == OMP_sch_static_chunked)
+ Schedule = OMP_sch_static_balanced_chunked;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_last:
+ case OMPC_SCHEDULE_MODIFIER_unknown:
+ break;
+ }
+ switch (M2) {
+ case OMPC_SCHEDULE_MODIFIER_monotonic:
+ Modifier = OMP_sch_modifier_monotonic;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
+ Modifier = OMP_sch_modifier_nonmonotonic;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_simd:
+ if (Schedule == OMP_sch_static_chunked)
+ Schedule = OMP_sch_static_balanced_chunked;
+ break;
+ case OMPC_SCHEDULE_MODIFIER_last:
+ case OMPC_SCHEDULE_MODIFIER_unknown:
+ break;
+ }
+ return Schedule | Modifier;
+}
+
+void CGOpenMPRuntime::emitForDispatchInit(
+ CodeGenFunction &CGF, SourceLocation Loc,
+ const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
+ bool Ordered, const DispatchRTInput &DispatchValues) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ OpenMPSchedType Schedule = getRuntimeSchedule(
+ ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
+ assert(Ordered ||
+ (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
+ Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
+ Schedule != OMP_sch_static_balanced_chunked));
+ // Call __kmpc_dispatch_init(
+ // ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
+ // kmp_int[32|64] lower, kmp_int[32|64] upper,
+ // kmp_int[32|64] stride, kmp_int[32|64] chunk);
+
+ // If the Chunk was not specified in the clause - use default value 1.
+ llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
+ : CGF.Builder.getIntN(IVSize, 1);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ CGF.Builder.getInt32(addMonoNonMonoModifier(
+ Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
+ DispatchValues.LB, // Lower
+ DispatchValues.UB, // Upper
+ CGF.Builder.getIntN(IVSize, 1), // Stride
+ Chunk // Chunk
+ };
+ CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
+}
+
+static void emitForStaticInitCall(
+ CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
+ llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
+ OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
+ const CGOpenMPRuntime::StaticRTInput &Values) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ assert(!Values.Ordered);
+ assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
+ Schedule == OMP_sch_static_balanced_chunked ||
+ Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
+ Schedule == OMP_dist_sch_static ||
+ Schedule == OMP_dist_sch_static_chunked);
+
+ // Call __kmpc_for_static_init(
+ // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
+ // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
+ // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
+ // kmp_int[32|64] incr, kmp_int[32|64] chunk);
+ llvm::Value *Chunk = Values.Chunk;
+ if (Chunk == nullptr) {
+ assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
+ Schedule == OMP_dist_sch_static) &&
+ "expected static non-chunked schedule");
+ // If the Chunk was not specified in the clause - use default value 1.
+ Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
+ } else {
+ assert((Schedule == OMP_sch_static_chunked ||
+ Schedule == OMP_sch_static_balanced_chunked ||
+ Schedule == OMP_ord_static_chunked ||
+ Schedule == OMP_dist_sch_static_chunked) &&
+ "expected static chunked schedule");
+ }
+ llvm::Value *Args[] = {
+ UpdateLocation,
+ ThreadId,
+ CGF.Builder.getInt32(addMonoNonMonoModifier(Schedule, M1,
+ M2)), // Schedule type
+ Values.IL.getPointer(), // &isLastIter
+ Values.LB.getPointer(), // &LB
+ Values.UB.getPointer(), // &UB
+ Values.ST.getPointer(), // &Stride
+ CGF.Builder.getIntN(Values.IVSize, 1), // Incr
+ Chunk // Chunk
+ };
+ CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
+}
+
+void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ OpenMPDirectiveKind DKind,
+ const OpenMPScheduleTy &ScheduleKind,
+ const StaticRTInput &Values) {
+ OpenMPSchedType ScheduleNum = getRuntimeSchedule(
+ ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
+ assert(isOpenMPWorksharingDirective(DKind) &&
+ "Expected loop-based or sections-based directive.");
+ llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
+ isOpenMPLoopDirective(DKind)
+ ? OMP_IDENT_WORK_LOOP
+ : OMP_IDENT_WORK_SECTIONS);
+ llvm::Value *ThreadId = getThreadID(CGF, Loc);
+ llvm::FunctionCallee StaticInitFunction =
+ createForStaticInitFunction(Values.IVSize, Values.IVSigned);
+ emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
+ ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
+}
+
+void CGOpenMPRuntime::emitDistributeStaticInit(
+ CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPDistScheduleClauseKind SchedKind,
+ const CGOpenMPRuntime::StaticRTInput &Values) {
+ OpenMPSchedType ScheduleNum =
+ getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
+ llvm::Value *UpdatedLocation =
+ emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
+ llvm::Value *ThreadId = getThreadID(CGF, Loc);
+ llvm::FunctionCallee StaticInitFunction =
+ createForStaticInitFunction(Values.IVSize, Values.IVSigned);
+ emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
+ ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
+ OMPC_SCHEDULE_MODIFIER_unknown, Values);
+}
+
+void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ OpenMPDirectiveKind DKind) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc,
+ isOpenMPDistributeDirective(DKind)
+ ? OMP_IDENT_WORK_DISTRIBUTE
+ : isOpenMPLoopDirective(DKind)
+ ? OMP_IDENT_WORK_LOOP
+ : OMP_IDENT_WORK_SECTIONS),
+ getThreadID(CGF, Loc)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
+ Args);
+}
+
+void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ unsigned IVSize,
+ bool IVSigned) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
+}
+
+llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
+ SourceLocation Loc, unsigned IVSize,
+ bool IVSigned, Address IL,
+ Address LB, Address UB,
+ Address ST) {
+ // Call __kmpc_dispatch_next(
+ // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
+ // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
+ // kmp_int[32|64] *p_stride);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc),
+ getThreadID(CGF, Loc),
+ IL.getPointer(), // &isLastIter
+ LB.getPointer(), // &Lower
+ UB.getPointer(), // &Upper
+ ST.getPointer() // &Stride
+ };
+ llvm::Value *Call =
+ CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
+ return CGF.EmitScalarConversion(
+ Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
+ CGF.getContext().BoolTy, Loc);
+}
+
+void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
+ llvm::Value *NumThreads,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
+ Args);
+}
+
+void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
+ OpenMPProcBindClauseKind ProcBind,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Constants for proc bind value accepted by the runtime.
+ enum ProcBindTy {
+ ProcBindFalse = 0,
+ ProcBindTrue,
+ ProcBindMaster,
+ ProcBindClose,
+ ProcBindSpread,
+ ProcBindIntel,
+ ProcBindDefault
+ } RuntimeProcBind;
+ switch (ProcBind) {
+ case OMPC_PROC_BIND_master:
+ RuntimeProcBind = ProcBindMaster;
+ break;
+ case OMPC_PROC_BIND_close:
+ RuntimeProcBind = ProcBindClose;
+ break;
+ case OMPC_PROC_BIND_spread:
+ RuntimeProcBind = ProcBindSpread;
+ break;
+ case OMPC_PROC_BIND_unknown:
+ llvm_unreachable("Unsupported proc_bind value.");
+ }
+ // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
+}
+
+void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call void __kmpc_flush(ident_t *loc)
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
+ emitUpdateLocation(CGF, Loc));
+}
+
+namespace {
+/// Indexes of fields for type kmp_task_t.
+enum KmpTaskTFields {
+ /// List of shared variables.
+ KmpTaskTShareds,
+ /// Task routine.
+ KmpTaskTRoutine,
+ /// Partition id for the untied tasks.
+ KmpTaskTPartId,
+ /// Function with call of destructors for private variables.
+ Data1,
+ /// Task priority.
+ Data2,
+ /// (Taskloops only) Lower bound.
+ KmpTaskTLowerBound,
+ /// (Taskloops only) Upper bound.
+ KmpTaskTUpperBound,
+ /// (Taskloops only) Stride.
+ KmpTaskTStride,
+ /// (Taskloops only) Is last iteration flag.
+ KmpTaskTLastIter,
+ /// (Taskloops only) Reduction data.
+ KmpTaskTReductions,
+};
+} // anonymous namespace
+
+bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
+ return OffloadEntriesTargetRegion.empty() &&
+ OffloadEntriesDeviceGlobalVar.empty();
+}
+
+/// Initialize target region entry.
+void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
+ initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
+ StringRef ParentName, unsigned LineNum,
+ unsigned Order) {
+ assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
+ "only required for the device "
+ "code generation.");
+ OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
+ OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
+ OMPTargetRegionEntryTargetRegion);
+ ++OffloadingEntriesNum;
+}
+
+void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
+ registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
+ StringRef ParentName, unsigned LineNum,
+ llvm::Constant *Addr, llvm::Constant *ID,
+ OMPTargetRegionEntryKind Flags) {
+ // If we are emitting code for a target, the entry is already initialized,
+ // only has to be registered.
+ if (CGM.getLangOpts().OpenMPIsDevice) {
+ if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
+ unsigned DiagID = CGM.getDiags().getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "Unable to find target region on line '%0' in the device code.");
+ CGM.getDiags().Report(DiagID) << LineNum;
+ return;
+ }
+ auto &Entry =
+ OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
+ assert(Entry.isValid() && "Entry not initialized!");
+ Entry.setAddress(Addr);
+ Entry.setID(ID);
+ Entry.setFlags(Flags);
+ } else {
+ OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
+ OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
+ ++OffloadingEntriesNum;
+ }
+}
+
+bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
+ unsigned DeviceID, unsigned FileID, StringRef ParentName,
+ unsigned LineNum) const {
+ auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
+ if (PerDevice == OffloadEntriesTargetRegion.end())
+ return false;
+ auto PerFile = PerDevice->second.find(FileID);
+ if (PerFile == PerDevice->second.end())
+ return false;
+ auto PerParentName = PerFile->second.find(ParentName);
+ if (PerParentName == PerFile->second.end())
+ return false;
+ auto PerLine = PerParentName->second.find(LineNum);
+ if (PerLine == PerParentName->second.end())
+ return false;
+ // Fail if this entry is already registered.
+ if (PerLine->second.getAddress() || PerLine->second.getID())
+ return false;
+ return true;
+}
+
+void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
+ const OffloadTargetRegionEntryInfoActTy &Action) {
+ // Scan all target region entries and perform the provided action.
+ for (const auto &D : OffloadEntriesTargetRegion)
+ for (const auto &F : D.second)
+ for (const auto &P : F.second)
+ for (const auto &L : P.second)
+ Action(D.first, F.first, P.first(), L.first, L.second);
+}
+
+void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
+ initializeDeviceGlobalVarEntryInfo(StringRef Name,
+ OMPTargetGlobalVarEntryKind Flags,
+ unsigned Order) {
+ assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
+ "only required for the device "
+ "code generation.");
+ OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
+ ++OffloadingEntriesNum;
+}
+
+void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
+ registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
+ CharUnits VarSize,
+ OMPTargetGlobalVarEntryKind Flags,
+ llvm::GlobalValue::LinkageTypes Linkage) {
+ if (CGM.getLangOpts().OpenMPIsDevice) {
+ auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
+ assert(Entry.isValid() && Entry.getFlags() == Flags &&
+ "Entry not initialized!");
+ assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
+ "Resetting with the new address.");
+ if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
+ if (Entry.getVarSize().isZero()) {
+ Entry.setVarSize(VarSize);
+ Entry.setLinkage(Linkage);
+ }
+ return;
+ }
+ Entry.setVarSize(VarSize);
+ Entry.setLinkage(Linkage);
+ Entry.setAddress(Addr);
+ } else {
+ if (hasDeviceGlobalVarEntryInfo(VarName)) {
+ auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
+ assert(Entry.isValid() && Entry.getFlags() == Flags &&
+ "Entry not initialized!");
+ assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
+ "Resetting with the new address.");
+ if (Entry.getVarSize().isZero()) {
+ Entry.setVarSize(VarSize);
+ Entry.setLinkage(Linkage);
+ }
+ return;
+ }
+ OffloadEntriesDeviceGlobalVar.try_emplace(
+ VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
+ ++OffloadingEntriesNum;
+ }
+}
+
+void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
+ actOnDeviceGlobalVarEntriesInfo(
+ const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
+ // Scan all target region entries and perform the provided action.
+ for (const auto &E : OffloadEntriesDeviceGlobalVar)
+ Action(E.getKey(), E.getValue());
+}
+
+llvm::Function *
+CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() {
+ // If we don't have entries or if we are emitting code for the device, we
+ // don't need to do anything.
+ if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty())
+ return nullptr;
+
+ llvm::Module &M = CGM.getModule();
+ ASTContext &C = CGM.getContext();
+
+ // Get list of devices we care about
+ const std::vector<llvm::Triple> &Devices = CGM.getLangOpts().OMPTargetTriples;
+
+ // We should be creating an offloading descriptor only if there are devices
+ // specified.
+ assert(!Devices.empty() && "No OpenMP offloading devices??");
+
+ // Create the external variables that will point to the begin and end of the
+ // host entries section. These will be defined by the linker.
+ llvm::Type *OffloadEntryTy =
+ CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy());
+ std::string EntriesBeginName = getName({"omp_offloading", "entries_begin"});
+ auto *HostEntriesBegin = new llvm::GlobalVariable(
+ M, OffloadEntryTy, /*isConstant=*/true,
+ llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr,
+ EntriesBeginName);
+ std::string EntriesEndName = getName({"omp_offloading", "entries_end"});
+ auto *HostEntriesEnd =
+ new llvm::GlobalVariable(M, OffloadEntryTy, /*isConstant=*/true,
+ llvm::GlobalValue::ExternalLinkage,
+ /*Initializer=*/nullptr, EntriesEndName);
+
+ // Create all device images
+ auto *DeviceImageTy = cast<llvm::StructType>(
+ CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy()));
+ ConstantInitBuilder DeviceImagesBuilder(CGM);
+ ConstantArrayBuilder DeviceImagesEntries =
+ DeviceImagesBuilder.beginArray(DeviceImageTy);
+
+ for (const llvm::Triple &Device : Devices) {
+ StringRef T = Device.getTriple();
+ std::string BeginName = getName({"omp_offloading", "img_start", ""});
+ auto *ImgBegin = new llvm::GlobalVariable(
+ M, CGM.Int8Ty, /*isConstant=*/true,
+ llvm::GlobalValue::ExternalWeakLinkage,
+ /*Initializer=*/nullptr, Twine(BeginName).concat(T));
+ std::string EndName = getName({"omp_offloading", "img_end", ""});
+ auto *ImgEnd = new llvm::GlobalVariable(
+ M, CGM.Int8Ty, /*isConstant=*/true,
+ llvm::GlobalValue::ExternalWeakLinkage,
+ /*Initializer=*/nullptr, Twine(EndName).concat(T));
+
+ llvm::Constant *Data[] = {ImgBegin, ImgEnd, HostEntriesBegin,
+ HostEntriesEnd};
+ createConstantGlobalStructAndAddToParent(CGM, getTgtDeviceImageQTy(), Data,
+ DeviceImagesEntries);
+ }
+
+ // Create device images global array.
+ std::string ImagesName = getName({"omp_offloading", "device_images"});
+ llvm::GlobalVariable *DeviceImages =
+ DeviceImagesEntries.finishAndCreateGlobal(ImagesName,
+ CGM.getPointerAlign(),
+ /*isConstant=*/true);
+ DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+
+ // This is a Zero array to be used in the creation of the constant expressions
+ llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty),
+ llvm::Constant::getNullValue(CGM.Int32Ty)};
+
+ // Create the target region descriptor.
+ llvm::Constant *Data[] = {
+ llvm::ConstantInt::get(CGM.Int32Ty, Devices.size()),
+ llvm::ConstantExpr::getGetElementPtr(DeviceImages->getValueType(),
+ DeviceImages, Index),
+ HostEntriesBegin, HostEntriesEnd};
+ std::string Descriptor = getName({"omp_offloading", "descriptor"});
+ llvm::GlobalVariable *Desc = createGlobalStruct(
+ CGM, getTgtBinaryDescriptorQTy(), /*IsConstant=*/true, Data, Descriptor);
+
+ // Emit code to register or unregister the descriptor at execution
+ // startup or closing, respectively.
+
+ llvm::Function *UnRegFn;
+ {
+ FunctionArgList Args;
+ ImplicitParamDecl DummyPtr(C, C.VoidPtrTy, ImplicitParamDecl::Other);
+ Args.push_back(&DummyPtr);
+
+ CodeGenFunction CGF(CGM);
+ // Disable debug info for global (de-)initializer because they are not part
+ // of some particular construct.
+ CGF.disableDebugInfo();
+ const auto &FI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
+ std::string UnregName = getName({"omp_offloading", "descriptor_unreg"});
+ UnRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, UnregName, FI);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, UnRegFn, FI, Args);
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_unregister_lib),
+ Desc);
+ CGF.FinishFunction();
+ }
+ llvm::Function *RegFn;
+ {
+ CodeGenFunction CGF(CGM);
+ // Disable debug info for global (de-)initializer because they are not part
+ // of some particular construct.
+ CGF.disableDebugInfo();
+ const auto &FI = CGM.getTypes().arrangeNullaryFunction();
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
+
+ // Encode offload target triples into the registration function name. It
+ // will serve as a comdat key for the registration/unregistration code for
+ // this particular combination of offloading targets.
+ SmallVector<StringRef, 4U> RegFnNameParts(Devices.size() + 2U);
+ RegFnNameParts[0] = "omp_offloading";
+ RegFnNameParts[1] = "descriptor_reg";
+ llvm::transform(Devices, std::next(RegFnNameParts.begin(), 2),
+ [](const llvm::Triple &T) -> const std::string& {
+ return T.getTriple();
+ });
+ llvm::sort(std::next(RegFnNameParts.begin(), 2), RegFnNameParts.end());
+ std::string Descriptor = getName(RegFnNameParts);
+ RegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, Descriptor, FI);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, RegFn, FI, FunctionArgList());
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_lib), Desc);
+ // Create a variable to drive the registration and unregistration of the
+ // descriptor, so we can reuse the logic that emits Ctors and Dtors.
+ ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(),
+ SourceLocation(), nullptr, C.CharTy,
+ ImplicitParamDecl::Other);
+ CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc);
+ CGF.FinishFunction();
+ }
+ if (CGM.supportsCOMDAT()) {
+ // It is sufficient to call registration function only once, so create a
+ // COMDAT group for registration/unregistration functions and associated
+ // data. That would reduce startup time and code size. Registration
+ // function serves as a COMDAT group key.
+ llvm::Comdat *ComdatKey = M.getOrInsertComdat(RegFn->getName());
+ RegFn->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage);
+ RegFn->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ RegFn->setComdat(ComdatKey);
+ UnRegFn->setComdat(ComdatKey);
+ DeviceImages->setComdat(ComdatKey);
+ Desc->setComdat(ComdatKey);
+ }
+ return RegFn;
+}
+
+void CGOpenMPRuntime::createOffloadEntry(
+ llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
+ llvm::GlobalValue::LinkageTypes Linkage) {
+ StringRef Name = Addr->getName();
+ llvm::Module &M = CGM.getModule();
+ llvm::LLVMContext &C = M.getContext();
+
+ // Create constant string with the name.
+ llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
+
+ std::string StringName = getName({"omp_offloading", "entry_name"});
+ auto *Str = new llvm::GlobalVariable(
+ M, StrPtrInit->getType(), /*isConstant=*/true,
+ llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
+ Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+
+ llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy),
+ llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy),
+ llvm::ConstantInt::get(CGM.SizeTy, Size),
+ llvm::ConstantInt::get(CGM.Int32Ty, Flags),
+ llvm::ConstantInt::get(CGM.Int32Ty, 0)};
+ std::string EntryName = getName({"omp_offloading", "entry", ""});
+ llvm::GlobalVariable *Entry = createGlobalStruct(
+ CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
+ Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
+
+ // The entry has to be created in the section the linker expects it to be.
+ std::string Section = getName({"omp_offloading", "entries"});
+ Entry->setSection(Section);
+}
+
+void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
+ // Emit the offloading entries and metadata so that the device codegen side
+ // can easily figure out what to emit. The produced metadata looks like
+ // this:
+ //
+ // !omp_offload.info = !{!1, ...}
+ //
+ // Right now we only generate metadata for function that contain target
+ // regions.
+
+ // If we do not have entries, we don't need to do anything.
+ if (OffloadEntriesInfoManager.empty())
+ return;
+
+ llvm::Module &M = CGM.getModule();
+ llvm::LLVMContext &C = M.getContext();
+ SmallVector<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16>
+ OrderedEntries(OffloadEntriesInfoManager.size());
+ llvm::SmallVector<StringRef, 16> ParentFunctions(
+ OffloadEntriesInfoManager.size());
+
+ // Auxiliary methods to create metadata values and strings.
+ auto &&GetMDInt = [this](unsigned V) {
+ return llvm::ConstantAsMetadata::get(
+ llvm::ConstantInt::get(CGM.Int32Ty, V));
+ };
+
+ auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
+
+ // Create the offloading info metadata node.
+ llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
+
+ // Create function that emits metadata for each target region entry;
+ auto &&TargetRegionMetadataEmitter =
+ [&C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt, &GetMDString](
+ unsigned DeviceID, unsigned FileID, StringRef ParentName,
+ unsigned Line,
+ const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
+ // Generate metadata for target regions. Each entry of this metadata
+ // contains:
+ // - Entry 0 -> Kind of this type of metadata (0).
+ // - Entry 1 -> Device ID of the file where the entry was identified.
+ // - Entry 2 -> File ID of the file where the entry was identified.
+ // - Entry 3 -> Mangled name of the function where the entry was
+ // identified.
+ // - Entry 4 -> Line in the file where the entry was identified.
+ // - Entry 5 -> Order the entry was created.
+ // The first element of the metadata node is the kind.
+ llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
+ GetMDInt(FileID), GetMDString(ParentName),
+ GetMDInt(Line), GetMDInt(E.getOrder())};
+
+ // Save this entry in the right position of the ordered entries array.
+ OrderedEntries[E.getOrder()] = &E;
+ ParentFunctions[E.getOrder()] = ParentName;
+
+ // Add metadata to the named metadata node.
+ MD->addOperand(llvm::MDNode::get(C, Ops));
+ };
+
+ OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
+ TargetRegionMetadataEmitter);
+
+ // Create function that emits metadata for each device global variable entry;
+ auto &&DeviceGlobalVarMetadataEmitter =
+ [&C, &OrderedEntries, &GetMDInt, &GetMDString,
+ MD](StringRef MangledName,
+ const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
+ &E) {
+ // Generate metadata for global variables. Each entry of this metadata
+ // contains:
+ // - Entry 0 -> Kind of this type of metadata (1).
+ // - Entry 1 -> Mangled name of the variable.
+ // - Entry 2 -> Declare target kind.
+ // - Entry 3 -> Order the entry was created.
+ // The first element of the metadata node is the kind.
+ llvm::Metadata *Ops[] = {
+ GetMDInt(E.getKind()), GetMDString(MangledName),
+ GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
+
+ // Save this entry in the right position of the ordered entries array.
+ OrderedEntries[E.getOrder()] = &E;
+
+ // Add metadata to the named metadata node.
+ MD->addOperand(llvm::MDNode::get(C, Ops));
+ };
+
+ OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
+ DeviceGlobalVarMetadataEmitter);
+
+ for (const auto *E : OrderedEntries) {
+ assert(E && "All ordered entries must exist!");
+ if (const auto *CE =
+ dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
+ E)) {
+ if (!CE->getID() || !CE->getAddress()) {
+ // Do not blame the entry if the parent funtion is not emitted.
+ StringRef FnName = ParentFunctions[CE->getOrder()];
+ if (!CGM.GetGlobalValue(FnName))
+ continue;
+ unsigned DiagID = CGM.getDiags().getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "Offloading entry for target region is incorrect: either the "
+ "address or the ID is invalid.");
+ CGM.getDiags().Report(DiagID);
+ continue;
+ }
+ createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
+ CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
+ } else if (const auto *CE =
+ dyn_cast<OffloadEntriesInfoManagerTy::
+ OffloadEntryInfoDeviceGlobalVar>(E)) {
+ OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
+ static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
+ CE->getFlags());
+ switch (Flags) {
+ case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
+ if (CGM.getLangOpts().OpenMPIsDevice &&
+ CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
+ continue;
+ if (!CE->getAddress()) {
+ unsigned DiagID = CGM.getDiags().getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "Offloading entry for declare target variable is incorrect: the "
+ "address is invalid.");
+ CGM.getDiags().Report(DiagID);
+ continue;
+ }
+ // The vaiable has no definition - no need to add the entry.
+ if (CE->getVarSize().isZero())
+ continue;
+ break;
+ }
+ case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
+ assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
+ (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
+ "Declaret target link address is set.");
+ if (CGM.getLangOpts().OpenMPIsDevice)
+ continue;
+ if (!CE->getAddress()) {
+ unsigned DiagID = CGM.getDiags().getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "Offloading entry for declare target variable is incorrect: the "
+ "address is invalid.");
+ CGM.getDiags().Report(DiagID);
+ continue;
+ }
+ break;
+ }
+ createOffloadEntry(CE->getAddress(), CE->getAddress(),
+ CE->getVarSize().getQuantity(), Flags,
+ CE->getLinkage());
+ } else {
+ llvm_unreachable("Unsupported entry kind.");
+ }
+ }
+}
+
+/// Loads all the offload entries information from the host IR
+/// metadata.
+void CGOpenMPRuntime::loadOffloadInfoMetadata() {
+ // If we are in target mode, load the metadata from the host IR. This code has
+ // to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
+
+ if (!CGM.getLangOpts().OpenMPIsDevice)
+ return;
+
+ if (CGM.getLangOpts().OMPHostIRFile.empty())
+ return;
+
+ auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
+ if (auto EC = Buf.getError()) {
+ CGM.getDiags().Report(diag::err_cannot_open_file)
+ << CGM.getLangOpts().OMPHostIRFile << EC.message();
+ return;
+ }
+
+ llvm::LLVMContext C;
+ auto ME = expectedToErrorOrAndEmitErrors(
+ C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
+
+ if (auto EC = ME.getError()) {
+ unsigned DiagID = CGM.getDiags().getCustomDiagID(
+ DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
+ CGM.getDiags().Report(DiagID)
+ << CGM.getLangOpts().OMPHostIRFile << EC.message();
+ return;
+ }
+
+ llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
+ if (!MD)
+ return;
+
+ for (llvm::MDNode *MN : MD->operands()) {
+ auto &&GetMDInt = [MN](unsigned Idx) {
+ auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
+ return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
+ };
+
+ auto &&GetMDString = [MN](unsigned Idx) {
+ auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
+ return V->getString();
+ };
+
+ switch (GetMDInt(0)) {
+ default:
+ llvm_unreachable("Unexpected metadata!");
+ break;
+ case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
+ OffloadingEntryInfoTargetRegion:
+ OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
+ /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
+ /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
+ /*Order=*/GetMDInt(5));
+ break;
+ case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
+ OffloadingEntryInfoDeviceGlobalVar:
+ OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
+ /*MangledName=*/GetMDString(1),
+ static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
+ /*Flags=*/GetMDInt(2)),
+ /*Order=*/GetMDInt(3));
+ break;
+ }
+ }
+}
+
+void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
+ if (!KmpRoutineEntryPtrTy) {
+ // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
+ ASTContext &C = CGM.getContext();
+ QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
+ FunctionProtoType::ExtProtoInfo EPI;
+ KmpRoutineEntryPtrQTy = C.getPointerType(
+ C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
+ KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
+ }
+}
+
+QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
+ // Make sure the type of the entry is already created. This is the type we
+ // have to create:
+ // struct __tgt_offload_entry{
+ // void *addr; // Pointer to the offload entry info.
+ // // (function or global)
+ // char *name; // Name of the function or global.
+ // size_t size; // Size of the entry info (0 if it a function).
+ // int32_t flags; // Flags associated with the entry, e.g. 'link'.
+ // int32_t reserved; // Reserved, to use by the runtime library.
+ // };
+ if (TgtOffloadEntryQTy.isNull()) {
+ ASTContext &C = CGM.getContext();
+ RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
+ addFieldToRecordDecl(C, RD, C.getSizeType());
+ addFieldToRecordDecl(
+ C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
+ addFieldToRecordDecl(
+ C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
+ RD->completeDefinition();
+ RD->addAttr(PackedAttr::CreateImplicit(C));
+ TgtOffloadEntryQTy = C.getRecordType(RD);
+ }
+ return TgtOffloadEntryQTy;
+}
+
+QualType CGOpenMPRuntime::getTgtDeviceImageQTy() {
+ // These are the types we need to build:
+ // struct __tgt_device_image{
+ // void *ImageStart; // Pointer to the target code start.
+ // void *ImageEnd; // Pointer to the target code end.
+ // // We also add the host entries to the device image, as it may be useful
+ // // for the target runtime to have access to that information.
+ // __tgt_offload_entry *EntriesBegin; // Begin of the table with all
+ // // the entries.
+ // __tgt_offload_entry *EntriesEnd; // End of the table with all the
+ // // entries (non inclusive).
+ // };
+ if (TgtDeviceImageQTy.isNull()) {
+ ASTContext &C = CGM.getContext();
+ RecordDecl *RD = C.buildImplicitRecord("__tgt_device_image");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
+ addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
+ RD->completeDefinition();
+ TgtDeviceImageQTy = C.getRecordType(RD);
+ }
+ return TgtDeviceImageQTy;
+}
+
+QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() {
+ // struct __tgt_bin_desc{
+ // int32_t NumDevices; // Number of devices supported.
+ // __tgt_device_image *DeviceImages; // Arrays of device images
+ // // (one per device).
+ // __tgt_offload_entry *EntriesBegin; // Begin of the table with all the
+ // // entries.
+ // __tgt_offload_entry *EntriesEnd; // End of the table with all the
+ // // entries (non inclusive).
+ // };
+ if (TgtBinaryDescriptorQTy.isNull()) {
+ ASTContext &C = CGM.getContext();
+ RecordDecl *RD = C.buildImplicitRecord("__tgt_bin_desc");
+ RD->startDefinition();
+ addFieldToRecordDecl(
+ C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
+ addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy()));
+ addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
+ addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy()));
+ RD->completeDefinition();
+ TgtBinaryDescriptorQTy = C.getRecordType(RD);
+ }
+ return TgtBinaryDescriptorQTy;
+}
+
+namespace {
+struct PrivateHelpersTy {
+ PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
+ const VarDecl *PrivateElemInit)
+ : Original(Original), PrivateCopy(PrivateCopy),
+ PrivateElemInit(PrivateElemInit) {}
+ const VarDecl *Original;
+ const VarDecl *PrivateCopy;
+ const VarDecl *PrivateElemInit;
+};
+typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
+} // anonymous namespace
+
+static RecordDecl *
+createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
+ if (!Privates.empty()) {
+ ASTContext &C = CGM.getContext();
+ // Build struct .kmp_privates_t. {
+ // /* private vars */
+ // };
+ RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
+ RD->startDefinition();
+ for (const auto &Pair : Privates) {
+ const VarDecl *VD = Pair.second.Original;
+ QualType Type = VD->getType().getNonReferenceType();
+ FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
+ if (VD->hasAttrs()) {
+ for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
+ E(VD->getAttrs().end());
+ I != E; ++I)
+ FD->addAttr(*I);
+ }
+ }
+ RD->completeDefinition();
+ return RD;
+ }
+ return nullptr;
+}
+
+static RecordDecl *
+createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
+ QualType KmpInt32Ty,
+ QualType KmpRoutineEntryPointerQTy) {
+ ASTContext &C = CGM.getContext();
+ // Build struct kmp_task_t {
+ // void * shareds;
+ // kmp_routine_entry_t routine;
+ // kmp_int32 part_id;
+ // kmp_cmplrdata_t data1;
+ // kmp_cmplrdata_t data2;
+ // For taskloops additional fields:
+ // kmp_uint64 lb;
+ // kmp_uint64 ub;
+ // kmp_int64 st;
+ // kmp_int32 liter;
+ // void * reductions;
+ // };
+ RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
+ UD->startDefinition();
+ addFieldToRecordDecl(C, UD, KmpInt32Ty);
+ addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
+ UD->completeDefinition();
+ QualType KmpCmplrdataTy = C.getRecordType(UD);
+ RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
+ addFieldToRecordDecl(C, RD, KmpInt32Ty);
+ addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
+ addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
+ if (isOpenMPTaskLoopDirective(Kind)) {
+ QualType KmpUInt64Ty =
+ CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
+ QualType KmpInt64Ty =
+ CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
+ addFieldToRecordDecl(C, RD, KmpUInt64Ty);
+ addFieldToRecordDecl(C, RD, KmpUInt64Ty);
+ addFieldToRecordDecl(C, RD, KmpInt64Ty);
+ addFieldToRecordDecl(C, RD, KmpInt32Ty);
+ addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ }
+ RD->completeDefinition();
+ return RD;
+}
+
+static RecordDecl *
+createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
+ ArrayRef<PrivateDataTy> Privates) {
+ ASTContext &C = CGM.getContext();
+ // Build struct kmp_task_t_with_privates {
+ // kmp_task_t task_data;
+ // .kmp_privates_t. privates;
+ // };
+ RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, KmpTaskTQTy);
+ if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
+ addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
+ RD->completeDefinition();
+ return RD;
+}
+
+/// Emit a proxy function which accepts kmp_task_t as the second
+/// argument.
+/// \code
+/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
+/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
+/// For taskloops:
+/// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
+/// tt->reductions, tt->shareds);
+/// return 0;
+/// }
+/// \endcode
+static llvm::Function *
+emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
+ OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
+ QualType KmpTaskTWithPrivatesPtrQTy,
+ QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
+ QualType SharedsPtrTy, llvm::Function *TaskFunction,
+ llvm::Value *TaskPrivatesMap) {
+ ASTContext &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
+ ImplicitParamDecl::Other);
+ ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ KmpTaskTWithPrivatesPtrQTy.withRestrict(),
+ ImplicitParamDecl::Other);
+ Args.push_back(&GtidArg);
+ Args.push_back(&TaskTypeArg);
+ const auto &TaskEntryFnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
+ llvm::FunctionType *TaskEntryTy =
+ CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
+ std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
+ auto *TaskEntry = llvm::Function::Create(
+ TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
+ TaskEntry->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
+ Loc, Loc);
+
+ // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
+ // tt,
+ // For taskloops:
+ // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
+ // tt->task_data.shareds);
+ llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
+ CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
+ LValue TDBase = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(&TaskTypeArg),
+ KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
+ const auto *KmpTaskTWithPrivatesQTyRD =
+ cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
+ LValue Base =
+ CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
+ const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
+ auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
+ LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
+ llvm::Value *PartidParam = PartIdLVal.getPointer();
+
+ auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
+ LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
+ llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(SharedsLVal, Loc),
+ CGF.ConvertTypeForMem(SharedsPtrTy));
+
+ auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
+ llvm::Value *PrivatesParam;
+ if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
+ LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
+ PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ PrivatesLVal.getPointer(), CGF.VoidPtrTy);
+ } else {
+ PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
+ }
+
+ llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
+ TaskPrivatesMap,
+ CGF.Builder
+ .CreatePointerBitCastOrAddrSpaceCast(
+ TDBase.getAddress(), CGF.VoidPtrTy)
+ .getPointer()};
+ SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
+ std::end(CommonArgs));
+ if (isOpenMPTaskLoopDirective(Kind)) {
+ auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
+ LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
+ llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
+ auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
+ LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
+ llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
+ auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
+ LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
+ llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
+ auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
+ LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
+ llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
+ auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
+ LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
+ llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
+ CallArgs.push_back(LBParam);
+ CallArgs.push_back(UBParam);
+ CallArgs.push_back(StParam);
+ CallArgs.push_back(LIParam);
+ CallArgs.push_back(RParam);
+ }
+ CallArgs.push_back(SharedsParam);
+
+ CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
+ CallArgs);
+ CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
+ CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
+ CGF.FinishFunction();
+ return TaskEntry;
+}
+
+static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
+ SourceLocation Loc,
+ QualType KmpInt32Ty,
+ QualType KmpTaskTWithPrivatesPtrQTy,
+ QualType KmpTaskTWithPrivatesQTy) {
+ ASTContext &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
+ ImplicitParamDecl::Other);
+ ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ KmpTaskTWithPrivatesPtrQTy.withRestrict(),
+ ImplicitParamDecl::Other);
+ Args.push_back(&GtidArg);
+ Args.push_back(&TaskTypeArg);
+ const auto &DestructorFnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
+ llvm::FunctionType *DestructorFnTy =
+ CGM.getTypes().GetFunctionType(DestructorFnInfo);
+ std::string Name =
+ CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
+ auto *DestructorFn =
+ llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
+ Name, &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
+ DestructorFnInfo);
+ DestructorFn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
+ Args, Loc, Loc);
+
+ LValue Base = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(&TaskTypeArg),
+ KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
+ const auto *KmpTaskTWithPrivatesQTyRD =
+ cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
+ Base = CGF.EmitLValueForField(Base, *FI);
+ for (const auto *Field :
+ cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
+ if (QualType::DestructionKind DtorKind =
+ Field->getType().isDestructedType()) {
+ LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
+ CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
+ }
+ }
+ CGF.FinishFunction();
+ return DestructorFn;
+}
+
+/// Emit a privates mapping function for correct handling of private and
+/// firstprivate variables.
+/// \code
+/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
+/// **noalias priv1,..., <tyn> **noalias privn) {
+/// *priv1 = &.privates.priv1;
+/// ...;
+/// *privn = &.privates.privn;
+/// }
+/// \endcode
+static llvm::Value *
+emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
+ ArrayRef<const Expr *> PrivateVars,
+ ArrayRef<const Expr *> FirstprivateVars,
+ ArrayRef<const Expr *> LastprivateVars,
+ QualType PrivatesQTy,
+ ArrayRef<PrivateDataTy> Privates) {
+ ASTContext &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl TaskPrivatesArg(
+ C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.getPointerType(PrivatesQTy).withConst().withRestrict(),
+ ImplicitParamDecl::Other);
+ Args.push_back(&TaskPrivatesArg);
+ llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
+ unsigned Counter = 1;
+ for (const Expr *E : PrivateVars) {
+ Args.push_back(ImplicitParamDecl::Create(
+ C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.getPointerType(C.getPointerType(E->getType()))
+ .withConst()
+ .withRestrict(),
+ ImplicitParamDecl::Other));
+ const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ PrivateVarsPos[VD] = Counter;
+ ++Counter;
+ }
+ for (const Expr *E : FirstprivateVars) {
+ Args.push_back(ImplicitParamDecl::Create(
+ C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.getPointerType(C.getPointerType(E->getType()))
+ .withConst()
+ .withRestrict(),
+ ImplicitParamDecl::Other));
+ const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ PrivateVarsPos[VD] = Counter;
+ ++Counter;
+ }
+ for (const Expr *E : LastprivateVars) {
+ Args.push_back(ImplicitParamDecl::Create(
+ C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.getPointerType(C.getPointerType(E->getType()))
+ .withConst()
+ .withRestrict(),
+ ImplicitParamDecl::Other));
+ const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ PrivateVarsPos[VD] = Counter;
+ ++Counter;
+ }
+ const auto &TaskPrivatesMapFnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ llvm::FunctionType *TaskPrivatesMapTy =
+ CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
+ std::string Name =
+ CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
+ auto *TaskPrivatesMap = llvm::Function::Create(
+ TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
+ &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
+ TaskPrivatesMapFnInfo);
+ if (CGM.getLangOpts().Optimize) {
+ TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
+ TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
+ TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
+ }
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
+ TaskPrivatesMapFnInfo, Args, Loc, Loc);
+
+ // *privi = &.privates.privi;
+ LValue Base = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
+ TaskPrivatesArg.getType()->castAs<PointerType>());
+ const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
+ Counter = 0;
+ for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
+ LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
+ const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
+ LValue RefLVal =
+ CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
+ LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
+ RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>());
+ CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal);
+ ++Counter;
+ }
+ CGF.FinishFunction();
+ return TaskPrivatesMap;
+}
+
+/// Emit initialization for private variables in task-based directives.
+static void emitPrivatesInit(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ Address KmpTaskSharedsPtr, LValue TDBase,
+ const RecordDecl *KmpTaskTWithPrivatesQTyRD,
+ QualType SharedsTy, QualType SharedsPtrTy,
+ const OMPTaskDataTy &Data,
+ ArrayRef<PrivateDataTy> Privates, bool ForDup) {
+ ASTContext &C = CGF.getContext();
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
+ LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
+ OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
+ ? OMPD_taskloop
+ : OMPD_task;
+ const CapturedStmt &CS = *D.getCapturedStmt(Kind);
+ CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
+ LValue SrcBase;
+ bool IsTargetTask =
+ isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
+ isOpenMPTargetExecutionDirective(D.getDirectiveKind());
+ // For target-based directives skip 3 firstprivate arrays BasePointersArray,
+ // PointersArray and SizesArray. The original variables for these arrays are
+ // not captured and we get their addresses explicitly.
+ if ((!IsTargetTask && !Data.FirstprivateVars.empty()) ||
+ (IsTargetTask && KmpTaskSharedsPtr.isValid())) {
+ SrcBase = CGF.MakeAddrLValue(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
+ SharedsTy);
+ }
+ FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
+ for (const PrivateDataTy &Pair : Privates) {
+ const VarDecl *VD = Pair.second.PrivateCopy;
+ const Expr *Init = VD->getAnyInitializer();
+ if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
+ !CGF.isTrivialInitializer(Init)))) {
+ LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
+ if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
+ const VarDecl *OriginalVD = Pair.second.Original;
+ // Check if the variable is the target-based BasePointersArray,
+ // PointersArray or SizesArray.
+ LValue SharedRefLValue;
+ QualType Type = PrivateLValue.getType();
+ const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
+ if (IsTargetTask && !SharedField) {
+ assert(isa<ImplicitParamDecl>(OriginalVD) &&
+ isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
+ cast<CapturedDecl>(OriginalVD->getDeclContext())
+ ->getNumParams() == 0 &&
+ isa<TranslationUnitDecl>(
+ cast<CapturedDecl>(OriginalVD->getDeclContext())
+ ->getDeclContext()) &&
+ "Expected artificial target data variable.");
+ SharedRefLValue =
+ CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
+ } else {
+ SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
+ SharedRefLValue = CGF.MakeAddrLValue(
+ Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)),
+ SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
+ SharedRefLValue.getTBAAInfo());
+ }
+ if (Type->isArrayType()) {
+ // Initialize firstprivate array.
+ if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
+ // Perform simple memcpy.
+ CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
+ } else {
+ // Initialize firstprivate array using element-by-element
+ // initialization.
+ CGF.EmitOMPAggregateAssign(
+ PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type,
+ [&CGF, Elem, Init, &CapturesInfo](Address DestElement,
+ Address SrcElement) {
+ // Clean up any temporaries needed by the initialization.
+ CodeGenFunction::OMPPrivateScope InitScope(CGF);
+ InitScope.addPrivate(
+ Elem, [SrcElement]() -> Address { return SrcElement; });
+ (void)InitScope.Privatize();
+ // Emit initialization for single element.
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
+ CGF, &CapturesInfo);
+ CGF.EmitAnyExprToMem(Init, DestElement,
+ Init->getType().getQualifiers(),
+ /*IsInitializer=*/false);
+ });
+ }
+ } else {
+ CodeGenFunction::OMPPrivateScope InitScope(CGF);
+ InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address {
+ return SharedRefLValue.getAddress();
+ });
+ (void)InitScope.Privatize();
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
+ CGF.EmitExprAsInit(Init, VD, PrivateLValue,
+ /*capturedByInit=*/false);
+ }
+ } else {
+ CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
+ }
+ }
+ ++FI;
+ }
+}
+
+/// Check if duplication function is required for taskloops.
+static bool checkInitIsRequired(CodeGenFunction &CGF,
+ ArrayRef<PrivateDataTy> Privates) {
+ bool InitRequired = false;
+ for (const PrivateDataTy &Pair : Privates) {
+ const VarDecl *VD = Pair.second.PrivateCopy;
+ const Expr *Init = VD->getAnyInitializer();
+ InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
+ !CGF.isTrivialInitializer(Init));
+ if (InitRequired)
+ break;
+ }
+ return InitRequired;
+}
+
+
+/// Emit task_dup function (for initialization of
+/// private/firstprivate/lastprivate vars and last_iter flag)
+/// \code
+/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
+/// lastpriv) {
+/// // setup lastprivate flag
+/// task_dst->last = lastpriv;
+/// // could be constructor calls here...
+/// }
+/// \endcode
+static llvm::Value *
+emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
+ const OMPExecutableDirective &D,
+ QualType KmpTaskTWithPrivatesPtrQTy,
+ const RecordDecl *KmpTaskTWithPrivatesQTyRD,
+ const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
+ QualType SharedsPtrTy, const OMPTaskDataTy &Data,
+ ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
+ ASTContext &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ KmpTaskTWithPrivatesPtrQTy,
+ ImplicitParamDecl::Other);
+ ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ KmpTaskTWithPrivatesPtrQTy,
+ ImplicitParamDecl::Other);
+ ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
+ ImplicitParamDecl::Other);
+ Args.push_back(&DstArg);
+ Args.push_back(&SrcArg);
+ Args.push_back(&LastprivArg);
+ const auto &TaskDupFnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
+ std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
+ auto *TaskDup = llvm::Function::Create(
+ TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
+ TaskDup->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
+ Loc);
+
+ LValue TDBase = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(&DstArg),
+ KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
+ // task_dst->liter = lastpriv;
+ if (WithLastIter) {
+ auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
+ LValue Base = CGF.EmitLValueForField(
+ TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
+ LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
+ llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
+ CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
+ CGF.EmitStoreOfScalar(Lastpriv, LILVal);
+ }
+
+ // Emit initial values for private copies (if any).
+ assert(!Privates.empty());
+ Address KmpTaskSharedsPtr = Address::invalid();
+ if (!Data.FirstprivateVars.empty()) {
+ LValue TDBase = CGF.EmitLoadOfPointerLValue(
+ CGF.GetAddrOfLocalVar(&SrcArg),
+ KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
+ LValue Base = CGF.EmitLValueForField(
+ TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
+ KmpTaskSharedsPtr = Address(
+ CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
+ Base, *std::next(KmpTaskTQTyRD->field_begin(),
+ KmpTaskTShareds)),
+ Loc),
+ CGF.getNaturalTypeAlignment(SharedsTy));
+ }
+ emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
+ SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
+ CGF.FinishFunction();
+ return TaskDup;
+}
+
+/// Checks if destructor function is required to be generated.
+/// \return true if cleanups are required, false otherwise.
+static bool
+checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
+ bool NeedsCleanup = false;
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
+ const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
+ for (const FieldDecl *FD : PrivateRD->fields()) {
+ NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
+ if (NeedsCleanup)
+ break;
+ }
+ return NeedsCleanup;
+}
+
+CGOpenMPRuntime::TaskResultTy
+CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
+ const OMPExecutableDirective &D,
+ llvm::Function *TaskFunction, QualType SharedsTy,
+ Address Shareds, const OMPTaskDataTy &Data) {
+ ASTContext &C = CGM.getContext();
+ llvm::SmallVector<PrivateDataTy, 4> Privates;
+ // Aggregate privates and sort them by the alignment.
+ auto I = Data.PrivateCopies.begin();
+ for (const Expr *E : Data.PrivateVars) {
+ const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ Privates.emplace_back(
+ C.getDeclAlign(VD),
+ PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
+ /*PrivateElemInit=*/nullptr));
+ ++I;
+ }
+ I = Data.FirstprivateCopies.begin();
+ auto IElemInitRef = Data.FirstprivateInits.begin();
+ for (const Expr *E : Data.FirstprivateVars) {
+ const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ Privates.emplace_back(
+ C.getDeclAlign(VD),
+ PrivateHelpersTy(
+ VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
+ cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
+ ++I;
+ ++IElemInitRef;
+ }
+ I = Data.LastprivateCopies.begin();
+ for (const Expr *E : Data.LastprivateVars) {
+ const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
+ Privates.emplace_back(
+ C.getDeclAlign(VD),
+ PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
+ /*PrivateElemInit=*/nullptr));
+ ++I;
+ }
+ llvm::stable_sort(Privates, [](PrivateDataTy L, PrivateDataTy R) {
+ return L.first > R.first;
+ });
+ QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
+ // Build type kmp_routine_entry_t (if not built yet).
+ emitKmpRoutineEntryT(KmpInt32Ty);
+ // Build type kmp_task_t (if not built yet).
+ if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
+ if (SavedKmpTaskloopTQTy.isNull()) {
+ SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
+ CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
+ }
+ KmpTaskTQTy = SavedKmpTaskloopTQTy;
+ } else {
+ assert((D.getDirectiveKind() == OMPD_task ||
+ isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
+ isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
+ "Expected taskloop, task or target directive");
+ if (SavedKmpTaskTQTy.isNull()) {
+ SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
+ CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
+ }
+ KmpTaskTQTy = SavedKmpTaskTQTy;
+ }
+ const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
+ // Build particular struct kmp_task_t for the given task.
+ const RecordDecl *KmpTaskTWithPrivatesQTyRD =
+ createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
+ QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
+ QualType KmpTaskTWithPrivatesPtrQTy =
+ C.getPointerType(KmpTaskTWithPrivatesQTy);
+ llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
+ llvm::Type *KmpTaskTWithPrivatesPtrTy =
+ KmpTaskTWithPrivatesTy->getPointerTo();
+ llvm::Value *KmpTaskTWithPrivatesTySize =
+ CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
+ QualType SharedsPtrTy = C.getPointerType(SharedsTy);
+
+ // Emit initial values for private copies (if any).
+ llvm::Value *TaskPrivatesMap = nullptr;
+ llvm::Type *TaskPrivatesMapTy =
+ std::next(TaskFunction->arg_begin(), 3)->getType();
+ if (!Privates.empty()) {
+ auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
+ TaskPrivatesMap = emitTaskPrivateMappingFunction(
+ CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
+ FI->getType(), Privates);
+ TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ TaskPrivatesMap, TaskPrivatesMapTy);
+ } else {
+ TaskPrivatesMap = llvm::ConstantPointerNull::get(
+ cast<llvm::PointerType>(TaskPrivatesMapTy));
+ }
+ // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
+ // kmp_task_t *tt);
+ llvm::Function *TaskEntry = emitProxyTaskFunction(
+ CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
+ KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
+ TaskPrivatesMap);
+
+ // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
+ // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
+ // kmp_routine_entry_t *task_entry);
+ // Task flags. Format is taken from
+ // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
+ // description of kmp_tasking_flags struct.
+ enum {
+ TiedFlag = 0x1,
+ FinalFlag = 0x2,
+ DestructorsFlag = 0x8,
+ PriorityFlag = 0x20
+ };
+ unsigned Flags = Data.Tied ? TiedFlag : 0;
+ bool NeedsCleanup = false;
+ if (!Privates.empty()) {
+ NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
+ if (NeedsCleanup)
+ Flags = Flags | DestructorsFlag;
+ }
+ if (Data.Priority.getInt())
+ Flags = Flags | PriorityFlag;
+ llvm::Value *TaskFlags =
+ Data.Final.getPointer()
+ ? CGF.Builder.CreateSelect(Data.Final.getPointer(),
+ CGF.Builder.getInt32(FinalFlag),
+ CGF.Builder.getInt32(/*C=*/0))
+ : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
+ TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
+ llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
+ SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
+ getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
+ SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ TaskEntry, KmpRoutineEntryPtrTy)};
+ llvm::Value *NewTask;
+ if (D.hasClausesOfKind<OMPNowaitClause>()) {
+ // Check if we have any device clause associated with the directive.
+ const Expr *Device = nullptr;
+ if (auto *C = D.getSingleClause<OMPDeviceClause>())
+ Device = C->getDevice();
+ // Emit device ID if any otherwise use default value.
+ llvm::Value *DeviceID;
+ if (Device)
+ DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
+ CGF.Int64Ty, /*isSigned=*/true);
+ else
+ DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
+ AllocArgs.push_back(DeviceID);
+ NewTask = CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_omp_target_task_alloc), AllocArgs);
+ } else {
+ NewTask = CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
+ }
+ llvm::Value *NewTaskNewTaskTTy =
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ NewTask, KmpTaskTWithPrivatesPtrTy);
+ LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
+ KmpTaskTWithPrivatesQTy);
+ LValue TDBase =
+ CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
+ // Fill the data in the resulting kmp_task_t record.
+ // Copy shareds if there are any.
+ Address KmpTaskSharedsPtr = Address::invalid();
+ if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
+ KmpTaskSharedsPtr =
+ Address(CGF.EmitLoadOfScalar(
+ CGF.EmitLValueForField(
+ TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
+ KmpTaskTShareds)),
+ Loc),
+ CGF.getNaturalTypeAlignment(SharedsTy));
+ LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
+ LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
+ CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
+ }
+ // Emit initial values for private copies (if any).
+ TaskResultTy Result;
+ if (!Privates.empty()) {
+ emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
+ SharedsTy, SharedsPtrTy, Data, Privates,
+ /*ForDup=*/false);
+ if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
+ (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
+ Result.TaskDupFn = emitTaskDupFunction(
+ CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
+ KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
+ /*WithLastIter=*/!Data.LastprivateVars.empty());
+ }
+ }
+ // Fields of union "kmp_cmplrdata_t" for destructors and priority.
+ enum { Priority = 0, Destructors = 1 };
+ // Provide pointer to function with destructors for privates.
+ auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
+ const RecordDecl *KmpCmplrdataUD =
+ (*FI)->getType()->getAsUnionType()->getDecl();
+ if (NeedsCleanup) {
+ llvm::Value *DestructorFn = emitDestructorsFunction(
+ CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
+ KmpTaskTWithPrivatesQTy);
+ LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
+ LValue DestructorsLV = CGF.EmitLValueForField(
+ Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
+ CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ DestructorFn, KmpRoutineEntryPtrTy),
+ DestructorsLV);
+ }
+ // Set priority.
+ if (Data.Priority.getInt()) {
+ LValue Data2LV = CGF.EmitLValueForField(
+ TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
+ LValue PriorityLV = CGF.EmitLValueForField(
+ Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
+ CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
+ }
+ Result.NewTask = NewTask;
+ Result.TaskEntry = TaskEntry;
+ Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
+ Result.TDBase = TDBase;
+ Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
+ return Result;
+}
+
+void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
+ const OMPExecutableDirective &D,
+ llvm::Function *TaskFunction,
+ QualType SharedsTy, Address Shareds,
+ const Expr *IfCond,
+ const OMPTaskDataTy &Data) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ TaskResultTy Result =
+ emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
+ llvm::Value *NewTask = Result.NewTask;
+ llvm::Function *TaskEntry = Result.TaskEntry;
+ llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
+ LValue TDBase = Result.TDBase;
+ const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
+ ASTContext &C = CGM.getContext();
+ // Process list of dependences.
+ Address DependenciesArray = Address::invalid();
+ unsigned NumDependencies = Data.Dependences.size();
+ if (NumDependencies) {
+ // Dependence kind for RTL.
+ enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3, DepMutexInOutSet = 0x4 };
+ enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
+ RecordDecl *KmpDependInfoRD;
+ QualType FlagsTy =
+ C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
+ llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
+ if (KmpDependInfoTy.isNull()) {
+ KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
+ KmpDependInfoRD->startDefinition();
+ addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
+ addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
+ addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
+ KmpDependInfoRD->completeDefinition();
+ KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
+ } else {
+ KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
+ }
+ // Define type kmp_depend_info[<Dependences.size()>];
+ QualType KmpDependInfoArrayTy = C.getConstantArrayType(
+ KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
+ ArrayType::Normal, /*IndexTypeQuals=*/0);
+ // kmp_depend_info[<Dependences.size()>] deps;
+ DependenciesArray =
+ CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
+ for (unsigned I = 0; I < NumDependencies; ++I) {
+ const Expr *E = Data.Dependences[I].second;
+ LValue Addr = CGF.EmitLValue(E);
+ llvm::Value *Size;
+ QualType Ty = E->getType();
+ if (const auto *ASE =
+ dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
+ LValue UpAddrLVal =
+ CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
+ llvm::Value *UpAddr =
+ CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1);
+ llvm::Value *LowIntPtr =
+ CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy);
+ llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
+ Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
+ } else {
+ Size = CGF.getTypeSize(Ty);
+ }
+ LValue Base = CGF.MakeAddrLValue(
+ CGF.Builder.CreateConstArrayGEP(DependenciesArray, I),
+ KmpDependInfoTy);
+ // deps[i].base_addr = &<Dependences[i].second>;
+ LValue BaseAddrLVal = CGF.EmitLValueForField(
+ Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
+ CGF.EmitStoreOfScalar(
+ CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy),
+ BaseAddrLVal);
+ // deps[i].len = sizeof(<Dependences[i].second>);
+ LValue LenLVal = CGF.EmitLValueForField(
+ Base, *std::next(KmpDependInfoRD->field_begin(), Len));
+ CGF.EmitStoreOfScalar(Size, LenLVal);
+ // deps[i].flags = <Dependences[i].first>;
+ RTLDependenceKindTy DepKind;
+ switch (Data.Dependences[I].first) {
+ case OMPC_DEPEND_in:
+ DepKind = DepIn;
+ break;
+ // Out and InOut dependencies must use the same code.
+ case OMPC_DEPEND_out:
+ case OMPC_DEPEND_inout:
+ DepKind = DepInOut;
+ break;
+ case OMPC_DEPEND_mutexinoutset:
+ DepKind = DepMutexInOutSet;
+ break;
+ case OMPC_DEPEND_source:
+ case OMPC_DEPEND_sink:
+ case OMPC_DEPEND_unknown:
+ llvm_unreachable("Unknown task dependence type");
+ }
+ LValue FlagsLVal = CGF.EmitLValueForField(
+ Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
+ CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
+ FlagsLVal);
+ }
+ DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0), CGF.VoidPtrTy);
+ }
+
+ // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
+ // libcall.
+ // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
+ // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
+ // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
+ // list is not empty
+ llvm::Value *ThreadID = getThreadID(CGF, Loc);
+ llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
+ llvm::Value *DepTaskArgs[7];
+ if (NumDependencies) {
+ DepTaskArgs[0] = UpLoc;
+ DepTaskArgs[1] = ThreadID;
+ DepTaskArgs[2] = NewTask;
+ DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
+ DepTaskArgs[4] = DependenciesArray.getPointer();
+ DepTaskArgs[5] = CGF.Builder.getInt32(0);
+ DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
+ }
+ auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies,
+ &TaskArgs,
+ &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
+ if (!Data.Tied) {
+ auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
+ LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
+ CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
+ }
+ if (NumDependencies) {
+ CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
+ } else {
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
+ TaskArgs);
+ }
+ // Check if parent region is untied and build return for untied task;
+ if (auto *Region =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
+ Region->emitUntiedSwitch(CGF);
+ };
+
+ llvm::Value *DepWaitTaskArgs[6];
+ if (NumDependencies) {
+ DepWaitTaskArgs[0] = UpLoc;
+ DepWaitTaskArgs[1] = ThreadID;
+ DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
+ DepWaitTaskArgs[3] = DependenciesArray.getPointer();
+ DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
+ DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
+ }
+ auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
+ NumDependencies, &DepWaitTaskArgs,
+ Loc](CodeGenFunction &CGF, PrePostActionTy &) {
+ CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
+ CodeGenFunction::RunCleanupsScope LocalScope(CGF);
+ // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
+ // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
+ // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
+ // is specified.
+ if (NumDependencies)
+ CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
+ DepWaitTaskArgs);
+ // Call proxy_task_entry(gtid, new_task);
+ auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
+ Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
+ Action.Enter(CGF);
+ llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
+ CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
+ OutlinedFnArgs);
+ };
+
+ // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t *new_task);
+ // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
+ // kmp_task_t *new_task);
+ RegionCodeGenTy RCG(CodeGen);
+ CommonActionTy Action(
+ RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
+ RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
+ RCG.setAction(Action);
+ RCG(CGF);
+ };
+
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
+ } else {
+ RegionCodeGenTy ThenRCG(ThenCodeGen);
+ ThenRCG(CGF);
+ }
+}
+
+void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
+ const OMPLoopDirective &D,
+ llvm::Function *TaskFunction,
+ QualType SharedsTy, Address Shareds,
+ const Expr *IfCond,
+ const OMPTaskDataTy &Data) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ TaskResultTy Result =
+ emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
+ // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
+ // libcall.
+ // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
+ // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
+ // sched, kmp_uint64 grainsize, void *task_dup);
+ llvm::Value *ThreadID = getThreadID(CGF, Loc);
+ llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *IfVal;
+ if (IfCond) {
+ IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
+ /*isSigned=*/true);
+ } else {
+ IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
+ }
+
+ LValue LBLVal = CGF.EmitLValueForField(
+ Result.TDBase,
+ *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
+ const auto *LBVar =
+ cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
+ CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(),
+ /*IsInitializer=*/true);
+ LValue UBLVal = CGF.EmitLValueForField(
+ Result.TDBase,
+ *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
+ const auto *UBVar =
+ cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
+ CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(),
+ /*IsInitializer=*/true);
+ LValue StLVal = CGF.EmitLValueForField(
+ Result.TDBase,
+ *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
+ const auto *StVar =
+ cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
+ CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(),
+ /*IsInitializer=*/true);
+ // Store reductions address.
+ LValue RedLVal = CGF.EmitLValueForField(
+ Result.TDBase,
+ *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
+ if (Data.Reductions) {
+ CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
+ } else {
+ CGF.EmitNullInitialization(RedLVal.getAddress(),
+ CGF.getContext().VoidPtrTy);
+ }
+ enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
+ llvm::Value *TaskArgs[] = {
+ UpLoc,
+ ThreadID,
+ Result.NewTask,
+ IfVal,
+ LBLVal.getPointer(),
+ UBLVal.getPointer(),
+ CGF.EmitLoadOfScalar(StLVal, Loc),
+ llvm::ConstantInt::getSigned(
+ CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
+ llvm::ConstantInt::getSigned(
+ CGF.IntTy, Data.Schedule.getPointer()
+ ? Data.Schedule.getInt() ? NumTasks : Grainsize
+ : NoSchedule),
+ Data.Schedule.getPointer()
+ ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
+ /*isSigned=*/false)
+ : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
+ Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ Result.TaskDupFn, CGF.VoidPtrTy)
+ : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
+}
+
+/// Emit reduction operation for each element of array (required for
+/// array sections) LHS op = RHS.
+/// \param Type Type of array.
+/// \param LHSVar Variable on the left side of the reduction operation
+/// (references element of array in original variable).
+/// \param RHSVar Variable on the right side of the reduction operation
+/// (references element of array in original variable).
+/// \param RedOpGen Generator of reduction operation with use of LHSVar and
+/// RHSVar.
+static void EmitOMPAggregateReduction(
+ CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
+ const VarDecl *RHSVar,
+ const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
+ const Expr *, const Expr *)> &RedOpGen,
+ const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
+ const Expr *UpExpr = nullptr) {
+ // Perform element-by-element initialization.
+ QualType ElementTy;
+ Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
+ Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
+
+ // Drill down to the base element type on both arrays.
+ const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
+ llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
+
+ llvm::Value *RHSBegin = RHSAddr.getPointer();
+ llvm::Value *LHSBegin = LHSAddr.getPointer();
+ // Cast from pointer to array type to pointer to single element.
+ llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
+ // The basic structure here is a while-do loop.
+ llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
+ llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
+ llvm::Value *IsEmpty =
+ CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
+ CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
+
+ // Enter the loop body, making that address the current address.
+ llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
+ CGF.EmitBlock(BodyBB);
+
+ CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
+
+ llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
+ RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
+ RHSElementPHI->addIncoming(RHSBegin, EntryBB);
+ Address RHSElementCurrent =
+ Address(RHSElementPHI,
+ RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
+
+ llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
+ LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
+ LHSElementPHI->addIncoming(LHSBegin, EntryBB);
+ Address LHSElementCurrent =
+ Address(LHSElementPHI,
+ LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
+
+ // Emit copy.
+ CodeGenFunction::OMPPrivateScope Scope(CGF);
+ Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
+ Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
+ Scope.Privatize();
+ RedOpGen(CGF, XExpr, EExpr, UpExpr);
+ Scope.ForceCleanup();
+
+ // Shift the address forward by one element.
+ llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
+ LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
+ llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
+ RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
+ // Check whether we've reached the end.
+ llvm::Value *Done =
+ CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
+ CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
+ LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
+ RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
+
+ // Done.
+ CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
+}
+
+/// Emit reduction combiner. If the combiner is a simple expression emit it as
+/// is, otherwise consider it as combiner of UDR decl and emit it as a call of
+/// UDR combiner function.
+static void emitReductionCombiner(CodeGenFunction &CGF,
+ const Expr *ReductionOp) {
+ if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
+ if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
+ if (const auto *DRE =
+ dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
+ if (const auto *DRD =
+ dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
+ std::pair<llvm::Function *, llvm::Function *> Reduction =
+ CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
+ RValue Func = RValue::get(Reduction.first);
+ CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
+ CGF.EmitIgnoredExpr(ReductionOp);
+ return;
+ }
+ CGF.EmitIgnoredExpr(ReductionOp);
+}
+
+llvm::Function *CGOpenMPRuntime::emitReductionFunction(
+ SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
+ ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps) {
+ ASTContext &C = CGM.getContext();
+
+ // void reduction_func(void *LHSArg, void *RHSArg);
+ FunctionArgList Args;
+ ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
+ ImplicitParamDecl::Other);
+ ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
+ ImplicitParamDecl::Other);
+ Args.push_back(&LHSArg);
+ Args.push_back(&RHSArg);
+ const auto &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ std::string Name = getName({"omp", "reduction", "reduction_func"});
+ auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
+ llvm::GlobalValue::InternalLinkage, Name,
+ &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+ // Dst = (void*[n])(LHSArg);
+ // Src = (void*[n])(RHSArg);
+ Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
+ ArgsType), CGF.getPointerAlign());
+ Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
+ ArgsType), CGF.getPointerAlign());
+
+ // ...
+ // *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
+ // ...
+ CodeGenFunction::OMPPrivateScope Scope(CGF);
+ auto IPriv = Privates.begin();
+ unsigned Idx = 0;
+ for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
+ const auto *RHSVar =
+ cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
+ Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
+ return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
+ });
+ const auto *LHSVar =
+ cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
+ Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
+ return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
+ });
+ QualType PrivTy = (*IPriv)->getType();
+ if (PrivTy->isVariablyModifiedType()) {
+ // Get array size and emit VLA type.
+ ++Idx;
+ Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
+ llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
+ const VariableArrayType *VLA =
+ CGF.getContext().getAsVariableArrayType(PrivTy);
+ const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
+ CodeGenFunction::OpaqueValueMapping OpaqueMap(
+ CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
+ CGF.EmitVariablyModifiedType(PrivTy);
+ }
+ }
+ Scope.Privatize();
+ IPriv = Privates.begin();
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ for (const Expr *E : ReductionOps) {
+ if ((*IPriv)->getType()->isArrayType()) {
+ // Emit reduction for array section.
+ const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
+ const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
+ EmitOMPAggregateReduction(
+ CGF, (*IPriv)->getType(), LHSVar, RHSVar,
+ [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
+ emitReductionCombiner(CGF, E);
+ });
+ } else {
+ // Emit reduction for array subscript or single variable.
+ emitReductionCombiner(CGF, E);
+ }
+ ++IPriv;
+ ++ILHS;
+ ++IRHS;
+ }
+ Scope.ForceCleanup();
+ CGF.FinishFunction();
+ return Fn;
+}
+
+void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
+ const Expr *ReductionOp,
+ const Expr *PrivateRef,
+ const DeclRefExpr *LHS,
+ const DeclRefExpr *RHS) {
+ if (PrivateRef->getType()->isArrayType()) {
+ // Emit reduction for array section.
+ const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
+ const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
+ EmitOMPAggregateReduction(
+ CGF, PrivateRef->getType(), LHSVar, RHSVar,
+ [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
+ emitReductionCombiner(CGF, ReductionOp);
+ });
+ } else {
+ // Emit reduction for array subscript or single variable.
+ emitReductionCombiner(CGF, ReductionOp);
+ }
+}
+
+void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
+ ArrayRef<const Expr *> Privates,
+ ArrayRef<const Expr *> LHSExprs,
+ ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps,
+ ReductionOptionsTy Options) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ bool WithNowait = Options.WithNowait;
+ bool SimpleReduction = Options.SimpleReduction;
+
+ // Next code should be emitted for reduction:
+ //
+ // static kmp_critical_name lock = { 0 };
+ //
+ // void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
+ // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
+ // ...
+ // *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
+ // *(Type<n>-1*)rhs[<n>-1]);
+ // }
+ //
+ // ...
+ // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
+ // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
+ // RedList, reduce_func, &<lock>)) {
+ // case 1:
+ // ...
+ // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
+ // ...
+ // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
+ // break;
+ // case 2:
+ // ...
+ // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
+ // ...
+ // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
+ // break;
+ // default:;
+ // }
+ //
+ // if SimpleReduction is true, only the next code is generated:
+ // ...
+ // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
+ // ...
+
+ ASTContext &C = CGM.getContext();
+
+ if (SimpleReduction) {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ auto IPriv = Privates.begin();
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ for (const Expr *E : ReductionOps) {
+ emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
+ cast<DeclRefExpr>(*IRHS));
+ ++IPriv;
+ ++ILHS;
+ ++IRHS;
+ }
+ return;
+ }
+
+ // 1. Build a list of reduction variables.
+ // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+ auto Size = RHSExprs.size();
+ for (const Expr *E : Privates) {
+ if (E->getType()->isVariablyModifiedType())
+ // Reserve place for array size.
+ ++Size;
+ }
+ llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
+ QualType ReductionArrayTy =
+ C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ Address ReductionList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+ auto IPriv = Privates.begin();
+ unsigned Idx = 0;
+ for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
+ Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+ CGF.Builder.CreateStore(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
+ Elem);
+ if ((*IPriv)->getType()->isVariablyModifiedType()) {
+ // Store array size.
+ ++Idx;
+ Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
+ llvm::Value *Size = CGF.Builder.CreateIntCast(
+ CGF.getVLASize(
+ CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+ .NumElts,
+ CGF.SizeTy, /*isSigned=*/false);
+ CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+ Elem);
+ }
+ }
+
+ // 2. Emit reduce_func().
+ llvm::Function *ReductionFn = emitReductionFunction(
+ Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
+ LHSExprs, RHSExprs, ReductionOps);
+
+ // 3. Create static kmp_critical_name lock = { 0 };
+ std::string Name = getName({"reduction"});
+ llvm::Value *Lock = getCriticalRegionLock(Name);
+
+ // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
+ // RedList, reduce_func, &<lock>);
+ llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
+ llvm::Value *ThreadId = getThreadID(CGF, Loc);
+ llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
+ llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ ReductionList.getPointer(), CGF.VoidPtrTy);
+ llvm::Value *Args[] = {
+ IdentTLoc, // ident_t *<loc>
+ ThreadId, // i32 <gtid>
+ CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
+ ReductionArrayTySize, // size_type sizeof(RedList)
+ RL, // void *RedList
+ ReductionFn, // void (*) (void *, void *) <reduce_func>
+ Lock // kmp_critical_name *&<lock>
+ };
+ llvm::Value *Res = CGF.EmitRuntimeCall(
+ createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
+ : OMPRTL__kmpc_reduce),
+ Args);
+
+ // 5. Build switch(res)
+ llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
+ llvm::SwitchInst *SwInst =
+ CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
+
+ // 6. Build case 1:
+ // ...
+ // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
+ // ...
+ // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
+ // break;
+ llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
+ SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
+ CGF.EmitBlock(Case1BB);
+
+ // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
+ llvm::Value *EndArgs[] = {
+ IdentTLoc, // ident_t *<loc>
+ ThreadId, // i32 <gtid>
+ Lock // kmp_critical_name *&<lock>
+ };
+ auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
+ CodeGenFunction &CGF, PrePostActionTy &Action) {
+ CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
+ auto IPriv = Privates.begin();
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ for (const Expr *E : ReductionOps) {
+ RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
+ cast<DeclRefExpr>(*IRHS));
+ ++IPriv;
+ ++ILHS;
+ ++IRHS;
+ }
+ };
+ RegionCodeGenTy RCG(CodeGen);
+ CommonActionTy Action(
+ nullptr, llvm::None,
+ createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
+ : OMPRTL__kmpc_end_reduce),
+ EndArgs);
+ RCG.setAction(Action);
+ RCG(CGF);
+
+ CGF.EmitBranch(DefaultBB);
+
+ // 7. Build case 2:
+ // ...
+ // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
+ // ...
+ // break;
+ llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
+ SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
+ CGF.EmitBlock(Case2BB);
+
+ auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
+ CodeGenFunction &CGF, PrePostActionTy &Action) {
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ auto IPriv = Privates.begin();
+ for (const Expr *E : ReductionOps) {
+ const Expr *XExpr = nullptr;
+ const Expr *EExpr = nullptr;
+ const Expr *UpExpr = nullptr;
+ BinaryOperatorKind BO = BO_Comma;
+ if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
+ if (BO->getOpcode() == BO_Assign) {
+ XExpr = BO->getLHS();
+ UpExpr = BO->getRHS();
+ }
+ }
+ // Try to emit update expression as a simple atomic.
+ const Expr *RHSExpr = UpExpr;
+ if (RHSExpr) {
+ // Analyze RHS part of the whole expression.
+ if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
+ RHSExpr->IgnoreParenImpCasts())) {
+ // If this is a conditional operator, analyze its condition for
+ // min/max reduction operator.
+ RHSExpr = ACO->getCond();
+ }
+ if (const auto *BORHS =
+ dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
+ EExpr = BORHS->getRHS();
+ BO = BORHS->getOpcode();
+ }
+ }
+ if (XExpr) {
+ const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
+ auto &&AtomicRedGen = [BO, VD,
+ Loc](CodeGenFunction &CGF, const Expr *XExpr,
+ const Expr *EExpr, const Expr *UpExpr) {
+ LValue X = CGF.EmitLValue(XExpr);
+ RValue E;
+ if (EExpr)
+ E = CGF.EmitAnyExpr(EExpr);
+ CGF.EmitOMPAtomicSimpleUpdateExpr(
+ X, E, BO, /*IsXLHSInRHSPart=*/true,
+ llvm::AtomicOrdering::Monotonic, Loc,
+ [&CGF, UpExpr, VD, Loc](RValue XRValue) {
+ CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
+ PrivateScope.addPrivate(
+ VD, [&CGF, VD, XRValue, Loc]() {
+ Address LHSTemp = CGF.CreateMemTemp(VD->getType());
+ CGF.emitOMPSimpleStore(
+ CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
+ VD->getType().getNonReferenceType(), Loc);
+ return LHSTemp;
+ });
+ (void)PrivateScope.Privatize();
+ return CGF.EmitAnyExpr(UpExpr);
+ });
+ };
+ if ((*IPriv)->getType()->isArrayType()) {
+ // Emit atomic reduction for array section.
+ const auto *RHSVar =
+ cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
+ EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
+ AtomicRedGen, XExpr, EExpr, UpExpr);
+ } else {
+ // Emit atomic reduction for array subscript or single variable.
+ AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
+ }
+ } else {
+ // Emit as a critical region.
+ auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
+ const Expr *, const Expr *) {
+ CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
+ std::string Name = RT.getName({"atomic_reduction"});
+ RT.emitCriticalRegion(
+ CGF, Name,
+ [=](CodeGenFunction &CGF, PrePostActionTy &Action) {
+ Action.Enter(CGF);
+ emitReductionCombiner(CGF, E);
+ },
+ Loc);
+ };
+ if ((*IPriv)->getType()->isArrayType()) {
+ const auto *LHSVar =
+ cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
+ const auto *RHSVar =
+ cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
+ EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
+ CritRedGen);
+ } else {
+ CritRedGen(CGF, nullptr, nullptr, nullptr);
+ }
+ }
+ ++ILHS;
+ ++IRHS;
+ ++IPriv;
+ }
+ };
+ RegionCodeGenTy AtomicRCG(AtomicCodeGen);
+ if (!WithNowait) {
+ // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
+ llvm::Value *EndArgs[] = {
+ IdentTLoc, // ident_t *<loc>
+ ThreadId, // i32 <gtid>
+ Lock // kmp_critical_name *&<lock>
+ };
+ CommonActionTy Action(nullptr, llvm::None,
+ createRuntimeFunction(OMPRTL__kmpc_end_reduce),
+ EndArgs);
+ AtomicRCG.setAction(Action);
+ AtomicRCG(CGF);
+ } else {
+ AtomicRCG(CGF);
+ }
+
+ CGF.EmitBranch(DefaultBB);
+ CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
+}
+
+/// Generates unique name for artificial threadprivate variables.
+/// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
+static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
+ const Expr *Ref) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ const clang::DeclRefExpr *DE;
+ const VarDecl *D = ::getBaseDecl(Ref, DE);
+ if (!D)
+ D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
+ D = D->getCanonicalDecl();
+ std::string Name = CGM.getOpenMPRuntime().getName(
+ {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
+ Out << Prefix << Name << "_"
+ << D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
+ return Out.str();
+}
+
+/// Emits reduction initializer function:
+/// \code
+/// void @.red_init(void* %arg) {
+/// %0 = bitcast void* %arg to <type>*
+/// store <type> <init>, <type>* %0
+/// ret void
+/// }
+/// \endcode
+static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
+ SourceLocation Loc,
+ ReductionCodeGen &RCG, unsigned N) {
+ ASTContext &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
+ ImplicitParamDecl::Other);
+ Args.emplace_back(&Param);
+ const auto &FnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
+ std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
+ auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
+ Name, &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
+ Address PrivateAddr = CGF.EmitLoadOfPointer(
+ CGF.GetAddrOfLocalVar(&Param),
+ C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
+ llvm::Value *Size = nullptr;
+ // If the size of the reduction item is non-constant, load it from global
+ // threadprivate variable.
+ if (RCG.getSizes(N).second) {
+ Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
+ CGF, CGM.getContext().getSizeType(),
+ generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
+ Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
+ CGM.getContext().getSizeType(), Loc);
+ }
+ RCG.emitAggregateType(CGF, N, Size);
+ LValue SharedLVal;
+ // If initializer uses initializer from declare reduction construct, emit a
+ // pointer to the address of the original reduction item (reuired by reduction
+ // initializer)
+ if (RCG.usesReductionInitializer(N)) {
+ Address SharedAddr =
+ CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
+ CGF, CGM.getContext().VoidPtrTy,
+ generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
+ SharedAddr = CGF.EmitLoadOfPointer(
+ SharedAddr,
+ CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
+ SharedLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
+ } else {
+ SharedLVal = CGF.MakeNaturalAlignAddrLValue(
+ llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
+ CGM.getContext().VoidPtrTy);
+ }
+ // Emit the initializer:
+ // %0 = bitcast void* %arg to <type>*
+ // store <type> <init>, <type>* %0
+ RCG.emitInitialization(CGF, N, PrivateAddr, SharedLVal,
+ [](CodeGenFunction &) { return false; });
+ CGF.FinishFunction();
+ return Fn;
+}
+
+/// Emits reduction combiner function:
+/// \code
+/// void @.red_comb(void* %arg0, void* %arg1) {
+/// %lhs = bitcast void* %arg0 to <type>*
+/// %rhs = bitcast void* %arg1 to <type>*
+/// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
+/// store <type> %2, <type>* %lhs
+/// ret void
+/// }
+/// \endcode
+static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
+ SourceLocation Loc,
+ ReductionCodeGen &RCG, unsigned N,
+ const Expr *ReductionOp,
+ const Expr *LHS, const Expr *RHS,
+ const Expr *PrivateRef) {
+ ASTContext &C = CGM.getContext();
+ const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
+ const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
+ FunctionArgList Args;
+ ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
+ ImplicitParamDecl::Other);
+ Args.emplace_back(&ParamInOut);
+ Args.emplace_back(&ParamIn);
+ const auto &FnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
+ std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
+ auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
+ Name, &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
+ llvm::Value *Size = nullptr;
+ // If the size of the reduction item is non-constant, load it from global
+ // threadprivate variable.
+ if (RCG.getSizes(N).second) {
+ Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
+ CGF, CGM.getContext().getSizeType(),
+ generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
+ Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
+ CGM.getContext().getSizeType(), Loc);
+ }
+ RCG.emitAggregateType(CGF, N, Size);
+ // Remap lhs and rhs variables to the addresses of the function arguments.
+ // %lhs = bitcast void* %arg0 to <type>*
+ // %rhs = bitcast void* %arg1 to <type>*
+ CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
+ PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
+ // Pull out the pointer to the variable.
+ Address PtrAddr = CGF.EmitLoadOfPointer(
+ CGF.GetAddrOfLocalVar(&ParamInOut),
+ C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
+ return CGF.Builder.CreateElementBitCast(
+ PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
+ });
+ PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
+ // Pull out the pointer to the variable.
+ Address PtrAddr = CGF.EmitLoadOfPointer(
+ CGF.GetAddrOfLocalVar(&ParamIn),
+ C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
+ return CGF.Builder.CreateElementBitCast(
+ PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
+ });
+ PrivateScope.Privatize();
+ // Emit the combiner body:
+ // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
+ // store <type> %2, <type>* %lhs
+ CGM.getOpenMPRuntime().emitSingleReductionCombiner(
+ CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
+ cast<DeclRefExpr>(RHS));
+ CGF.FinishFunction();
+ return Fn;
+}
+
+/// Emits reduction finalizer function:
+/// \code
+/// void @.red_fini(void* %arg) {
+/// %0 = bitcast void* %arg to <type>*
+/// <destroy>(<type>* %0)
+/// ret void
+/// }
+/// \endcode
+static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
+ SourceLocation Loc,
+ ReductionCodeGen &RCG, unsigned N) {
+ if (!RCG.needCleanups(N))
+ return nullptr;
+ ASTContext &C = CGM.getContext();
+ FunctionArgList Args;
+ ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
+ ImplicitParamDecl::Other);
+ Args.emplace_back(&Param);
+ const auto &FnInfo =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
+ std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
+ auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
+ Name, &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
+ Address PrivateAddr = CGF.EmitLoadOfPointer(
+ CGF.GetAddrOfLocalVar(&Param),
+ C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
+ llvm::Value *Size = nullptr;
+ // If the size of the reduction item is non-constant, load it from global
+ // threadprivate variable.
+ if (RCG.getSizes(N).second) {
+ Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
+ CGF, CGM.getContext().getSizeType(),
+ generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
+ Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
+ CGM.getContext().getSizeType(), Loc);
+ }
+ RCG.emitAggregateType(CGF, N, Size);
+ // Emit the finalizer body:
+ // <destroy>(<type>* %0)
+ RCG.emitCleanups(CGF, N, PrivateAddr);
+ CGF.FinishFunction();
+ return Fn;
+}
+
+llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
+ CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
+ ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
+ if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
+ return nullptr;
+
+ // Build typedef struct:
+ // kmp_task_red_input {
+ // void *reduce_shar; // shared reduction item
+ // size_t reduce_size; // size of data item
+ // void *reduce_init; // data initialization routine
+ // void *reduce_fini; // data finalization routine
+ // void *reduce_comb; // data combiner routine
+ // kmp_task_red_flags_t flags; // flags for additional info from compiler
+ // } kmp_task_red_input_t;
+ ASTContext &C = CGM.getContext();
+ RecordDecl *RD = C.buildImplicitRecord("kmp_task_red_input_t");
+ RD->startDefinition();
+ const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
+ const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
+ const FieldDecl *FlagsFD = addFieldToRecordDecl(
+ C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
+ RD->completeDefinition();
+ QualType RDType = C.getRecordType(RD);
+ unsigned Size = Data.ReductionVars.size();
+ llvm::APInt ArraySize(/*numBits=*/64, Size);
+ QualType ArrayRDType = C.getConstantArrayType(
+ RDType, ArraySize, ArrayType::Normal, /*IndexTypeQuals=*/0);
+ // kmp_task_red_input_t .rd_input.[Size];
+ Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
+ ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionCopies,
+ Data.ReductionOps);
+ for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
+ // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
+ llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
+ llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
+ llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
+ TaskRedInput.getPointer(), Idxs,
+ /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
+ ".rd_input.gep.");
+ LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
+ // ElemLVal.reduce_shar = &Shareds[Cnt];
+ LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
+ RCG.emitSharedLValue(CGF, Cnt);
+ llvm::Value *CastedShared =
+ CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer());
+ CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
+ RCG.emitAggregateType(CGF, Cnt);
+ llvm::Value *SizeValInChars;
+ llvm::Value *SizeVal;
+ std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
+ // We use delayed creation/initialization for VLAs, array sections and
+ // custom reduction initializations. It is required because runtime does not
+ // provide the way to pass the sizes of VLAs/array sections to
+ // initializer/combiner/finalizer functions and does not pass the pointer to
+ // original reduction item to the initializer. Instead threadprivate global
+ // variables are used to store these values and use them in the functions.
+ bool DelayedCreation = !!SizeVal;
+ SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
+ /*isSigned=*/false);
+ LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
+ CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
+ // ElemLVal.reduce_init = init;
+ LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
+ llvm::Value *InitAddr =
+ CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
+ CGF.EmitStoreOfScalar(InitAddr, InitLVal);
+ DelayedCreation = DelayedCreation || RCG.usesReductionInitializer(Cnt);
+ // ElemLVal.reduce_fini = fini;
+ LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
+ llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
+ llvm::Value *FiniAddr = Fini
+ ? CGF.EmitCastToVoidPtr(Fini)
+ : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
+ CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
+ // ElemLVal.reduce_comb = comb;
+ LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
+ llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
+ CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
+ RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
+ CGF.EmitStoreOfScalar(CombAddr, CombLVal);
+ // ElemLVal.flags = 0;
+ LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
+ if (DelayedCreation) {
+ CGF.EmitStoreOfScalar(
+ llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
+ FlagsLVal);
+ } else
+ CGF.EmitNullInitialization(FlagsLVal.getAddress(), FlagsLVal.getType());
+ }
+ // Build call void *__kmpc_task_reduction_init(int gtid, int num_data, void
+ // *data);
+ llvm::Value *Args[] = {
+ CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
+ /*isSigned=*/true),
+ llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
+ CGM.VoidPtrTy)};
+ return CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_task_reduction_init), Args);
+}
+
+void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ ReductionCodeGen &RCG,
+ unsigned N) {
+ auto Sizes = RCG.getSizes(N);
+ // Emit threadprivate global variable if the type is non-constant
+ // (Sizes.second = nullptr).
+ if (Sizes.second) {
+ llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
+ /*isSigned=*/false);
+ Address SizeAddr = getAddrOfArtificialThreadPrivate(
+ CGF, CGM.getContext().getSizeType(),
+ generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
+ CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
+ }
+ // Store address of the original reduction item if custom initializer is used.
+ if (RCG.usesReductionInitializer(N)) {
+ Address SharedAddr = getAddrOfArtificialThreadPrivate(
+ CGF, CGM.getContext().VoidPtrTy,
+ generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
+ CGF.Builder.CreateStore(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ RCG.getSharedLValue(N).getPointer(), CGM.VoidPtrTy),
+ SharedAddr, /*IsVolatile=*/false);
+ }
+}
+
+Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ llvm::Value *ReductionsPtr,
+ LValue SharedLVal) {
+ // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
+ // *d);
+ llvm::Value *Args[] = {
+ CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
+ /*isSigned=*/true),
+ ReductionsPtr,
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(SharedLVal.getPointer(),
+ CGM.VoidPtrTy)};
+ return Address(
+ CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_task_reduction_get_th_data), Args),
+ SharedLVal.getAlignment());
+}
+
+void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
+ // Ignore return result until untied tasks are supported.
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
+ if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
+ Region->emitUntiedSwitch(CGF);
+}
+
+void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
+ OpenMPDirectiveKind InnerKind,
+ const RegionCodeGenTy &CodeGen,
+ bool HasCancel) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
+ CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
+}
+
+namespace {
+enum RTCancelKind {
+ CancelNoreq = 0,
+ CancelParallel = 1,
+ CancelLoop = 2,
+ CancelSections = 3,
+ CancelTaskgroup = 4
+};
+} // anonymous namespace
+
+static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
+ RTCancelKind CancelKind = CancelNoreq;
+ if (CancelRegion == OMPD_parallel)
+ CancelKind = CancelParallel;
+ else if (CancelRegion == OMPD_for)
+ CancelKind = CancelLoop;
+ else if (CancelRegion == OMPD_sections)
+ CancelKind = CancelSections;
+ else {
+ assert(CancelRegion == OMPD_taskgroup);
+ CancelKind = CancelTaskgroup;
+ }
+ return CancelKind;
+}
+
+void CGOpenMPRuntime::emitCancellationPointCall(
+ CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPDirectiveKind CancelRegion) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
+ // global_tid, kmp_int32 cncl_kind);
+ if (auto *OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
+ // For 'cancellation point taskgroup', the task region info may not have a
+ // cancel. This may instead happen in another adjacent task.
+ if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
+ CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
+ // Ignore return result until untied tasks are supported.
+ llvm::Value *Result = CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
+ // if (__kmpc_cancellationpoint()) {
+ // exit from construct;
+ // }
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
+ llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
+ llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
+ CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
+ CGF.EmitBlock(ExitBB);
+ // exit from construct;
+ CodeGenFunction::JumpDest CancelDest =
+ CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
+ CGF.EmitBranchThroughCleanup(CancelDest);
+ CGF.EmitBlock(ContBB, /*IsFinished=*/true);
+ }
+ }
+}
+
+void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
+ const Expr *IfCond,
+ OpenMPDirectiveKind CancelRegion) {
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
+ // kmp_int32 cncl_kind);
+ if (auto *OMPRegionInfo =
+ dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
+ auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
+ llvm::Value *Args[] = {
+ RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
+ CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
+ // Ignore return result until untied tasks are supported.
+ llvm::Value *Result = CGF.EmitRuntimeCall(
+ RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
+ // if (__kmpc_cancel()) {
+ // exit from construct;
+ // }
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
+ llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
+ llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
+ CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
+ CGF.EmitBlock(ExitBB);
+ // exit from construct;
+ CodeGenFunction::JumpDest CancelDest =
+ CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
+ CGF.EmitBranchThroughCleanup(CancelDest);
+ CGF.EmitBlock(ContBB, /*IsFinished=*/true);
+ };
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, ThenGen,
+ [](CodeGenFunction &, PrePostActionTy &) {});
+ } else {
+ RegionCodeGenTy ThenRCG(ThenGen);
+ ThenRCG(CGF);
+ }
+ }
+}
+
+void CGOpenMPRuntime::emitTargetOutlinedFunction(
+ const OMPExecutableDirective &D, StringRef ParentName,
+ llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
+ assert(!ParentName.empty() && "Invalid target region parent name!");
+ HasEmittedTargetRegion = true;
+ emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
+ IsOffloadEntry, CodeGen);
+}
+
+void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
+ const OMPExecutableDirective &D, StringRef ParentName,
+ llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
+ // Create a unique name for the entry function using the source location
+ // information of the current target region. The name will be something like:
+ //
+ // __omp_offloading_DD_FFFF_PP_lBB
+ //
+ // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
+ // mangled name of the function that encloses the target region and BB is the
+ // line number of the target region.
+
+ unsigned DeviceID;
+ unsigned FileID;
+ unsigned Line;
+ getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
+ Line);
+ SmallString<64> EntryFnName;
+ {
+ llvm::raw_svector_ostream OS(EntryFnName);
+ OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
+ << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
+ }
+
+ const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
+
+ CodeGenFunction CGF(CGM, true);
+ CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+
+ OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS);
+
+ // If this target outline function is not an offload entry, we don't need to
+ // register it.
+ if (!IsOffloadEntry)
+ return;
+
+ // The target region ID is used by the runtime library to identify the current
+ // target region, so it only has to be unique and not necessarily point to
+ // anything. It could be the pointer to the outlined function that implements
+ // the target region, but we aren't using that so that the compiler doesn't
+ // need to keep that, and could therefore inline the host function if proven
+ // worthwhile during optimization. In the other hand, if emitting code for the
+ // device, the ID has to be the function address so that it can retrieved from
+ // the offloading entry and launched by the runtime library. We also mark the
+ // outlined function to have external linkage in case we are emitting code for
+ // the device, because these functions will be entry points to the device.
+
+ if (CGM.getLangOpts().OpenMPIsDevice) {
+ OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
+ OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
+ OutlinedFn->setDSOLocal(false);
+ } else {
+ std::string Name = getName({EntryFnName, "region_id"});
+ OutlinedFnID = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
+ llvm::GlobalValue::WeakAnyLinkage,
+ llvm::Constant::getNullValue(CGM.Int8Ty), Name);
+ }
+
+ // Register the information for the entry associated with this target region.
+ OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
+ DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
+ OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
+}
+
+/// Checks if the expression is constant or does not have non-trivial function
+/// calls.
+static bool isTrivial(ASTContext &Ctx, const Expr * E) {
+ // We can skip constant expressions.
+ // We can skip expressions with trivial calls or simple expressions.
+ return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
+ !E->hasNonTrivialCall(Ctx)) &&
+ !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
+}
+
+const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
+ const Stmt *Body) {
+ const Stmt *Child = Body->IgnoreContainers();
+ while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
+ Child = nullptr;
+ for (const Stmt *S : C->body()) {
+ if (const auto *E = dyn_cast<Expr>(S)) {
+ if (isTrivial(Ctx, E))
+ continue;
+ }
+ // Some of the statements can be ignored.
+ if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
+ isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
+ continue;
+ // Analyze declarations.
+ if (const auto *DS = dyn_cast<DeclStmt>(S)) {
+ if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
+ if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
+ isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
+ isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
+ isa<UsingDirectiveDecl>(D) ||
+ isa<OMPDeclareReductionDecl>(D) ||
+ isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
+ return true;
+ const auto *VD = dyn_cast<VarDecl>(D);
+ if (!VD)
+ return false;
+ return VD->isConstexpr() ||
+ ((VD->getType().isTrivialType(Ctx) ||
+ VD->getType()->isReferenceType()) &&
+ (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
+ }))
+ continue;
+ }
+ // Found multiple children - cannot get the one child only.
+ if (Child)
+ return nullptr;
+ Child = S;
+ }
+ if (Child)
+ Child = Child->IgnoreContainers();
+ }
+ return Child;
+}
+
+/// Emit the number of teams for a target directive. Inspect the num_teams
+/// clause associated with a teams construct combined or closely nested
+/// with the target directive.
+///
+/// Emit a team of size one for directives such as 'target parallel' that
+/// have no associated teams construct.
+///
+/// Otherwise, return nullptr.
+static llvm::Value *
+emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D) {
+ assert(!CGF.getLangOpts().OpenMPIsDevice &&
+ "Clauses associated with the teams directive expected to be emitted "
+ "only for the host!");
+ OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
+ assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
+ "Expected target-based executable directive.");
+ CGBuilderTy &Bld = CGF.Builder;
+ switch (DirectiveKind) {
+ case OMPD_target: {
+ const auto *CS = D.getInnermostCapturedStmt();
+ const auto *Body =
+ CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
+ const Stmt *ChildStmt =
+ CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
+ if (const auto *NestedDir =
+ dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+ if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
+ if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
+ CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+ const Expr *NumTeams =
+ NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
+ llvm::Value *NumTeamsVal =
+ CGF.EmitScalarExpr(NumTeams,
+ /*IgnoreResultAssign*/ true);
+ return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
+ /*isSigned=*/true);
+ }
+ return Bld.getInt32(0);
+ }
+ if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
+ isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
+ return Bld.getInt32(1);
+ return Bld.getInt32(0);
+ }
+ return nullptr;
+ }
+ case OMPD_target_teams:
+ case OMPD_target_teams_distribute:
+ case OMPD_target_teams_distribute_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd: {
+ if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
+ CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
+ const Expr *NumTeams =
+ D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
+ llvm::Value *NumTeamsVal =
+ CGF.EmitScalarExpr(NumTeams,
+ /*IgnoreResultAssign*/ true);
+ return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
+ /*isSigned=*/true);
+ }
+ return Bld.getInt32(0);
+ }
+ case OMPD_target_parallel:
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_target_simd:
+ return Bld.getInt32(1);
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_allocate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_declare_mapper:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ break;
+ }
+ llvm_unreachable("Unexpected directive kind.");
+}
+
+static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
+ llvm::Value *DefaultThreadLimitVal) {
+ const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
+ CGF.getContext(), CS->getCapturedStmt());
+ if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
+ if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
+ llvm::Value *NumThreads = nullptr;
+ llvm::Value *CondVal = nullptr;
+ // Handle if clause. If if clause present, the number of threads is
+ // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
+ if (Dir->hasClausesOfKind<OMPIfClause>()) {
+ CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+ const OMPIfClause *IfClause = nullptr;
+ for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
+ if (C->getNameModifier() == OMPD_unknown ||
+ C->getNameModifier() == OMPD_parallel) {
+ IfClause = C;
+ break;
+ }
+ }
+ if (IfClause) {
+ const Expr *Cond = IfClause->getCondition();
+ bool Result;
+ if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
+ if (!Result)
+ return CGF.Builder.getInt32(1);
+ } else {
+ CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
+ if (const auto *PreInit =
+ cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
+ for (const auto *I : PreInit->decls()) {
+ if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
+ CGF.EmitVarDecl(cast<VarDecl>(*I));
+ } else {
+ CodeGenFunction::AutoVarEmission Emission =
+ CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
+ CGF.EmitAutoVarCleanups(Emission);
+ }
+ }
+ }
+ CondVal = CGF.EvaluateExprAsBool(Cond);
+ }
+ }
+ }
+ // Check the value of num_threads clause iff if clause was not specified
+ // or is not evaluated to false.
+ if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
+ CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+ const auto *NumThreadsClause =
+ Dir->getSingleClause<OMPNumThreadsClause>();
+ CodeGenFunction::LexicalScope Scope(
+ CGF, NumThreadsClause->getNumThreads()->getSourceRange());
+ if (const auto *PreInit =
+ cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
+ for (const auto *I : PreInit->decls()) {
+ if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
+ CGF.EmitVarDecl(cast<VarDecl>(*I));
+ } else {
+ CodeGenFunction::AutoVarEmission Emission =
+ CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
+ CGF.EmitAutoVarCleanups(Emission);
+ }
+ }
+ }
+ NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
+ NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
+ /*isSigned=*/false);
+ if (DefaultThreadLimitVal)
+ NumThreads = CGF.Builder.CreateSelect(
+ CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
+ DefaultThreadLimitVal, NumThreads);
+ } else {
+ NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
+ : CGF.Builder.getInt32(0);
+ }
+ // Process condition of the if clause.
+ if (CondVal) {
+ NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
+ CGF.Builder.getInt32(1));
+ }
+ return NumThreads;
+ }
+ if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
+ return CGF.Builder.getInt32(1);
+ return DefaultThreadLimitVal;
+ }
+ return DefaultThreadLimitVal ? DefaultThreadLimitVal
+ : CGF.Builder.getInt32(0);
+}
+
+/// Emit the number of threads for a target directive. Inspect the
+/// thread_limit clause associated with a teams construct combined or closely
+/// nested with the target directive.
+///
+/// Emit the num_threads clause for directives such as 'target parallel' that
+/// have no associated teams construct.
+///
+/// Otherwise, return nullptr.
+static llvm::Value *
+emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D) {
+ assert(!CGF.getLangOpts().OpenMPIsDevice &&
+ "Clauses associated with the teams directive expected to be emitted "
+ "only for the host!");
+ OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
+ assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
+ "Expected target-based executable directive.");
+ CGBuilderTy &Bld = CGF.Builder;
+ llvm::Value *ThreadLimitVal = nullptr;
+ llvm::Value *NumThreadsVal = nullptr;
+ switch (DirectiveKind) {
+ case OMPD_target: {
+ const CapturedStmt *CS = D.getInnermostCapturedStmt();
+ if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
+ return NumThreads;
+ const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
+ CGF.getContext(), CS->getCapturedStmt());
+ if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
+ if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
+ CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
+ CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
+ const auto *ThreadLimitClause =
+ Dir->getSingleClause<OMPThreadLimitClause>();
+ CodeGenFunction::LexicalScope Scope(
+ CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
+ if (const auto *PreInit =
+ cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
+ for (const auto *I : PreInit->decls()) {
+ if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
+ CGF.EmitVarDecl(cast<VarDecl>(*I));
+ } else {
+ CodeGenFunction::AutoVarEmission Emission =
+ CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
+ CGF.EmitAutoVarCleanups(Emission);
+ }
+ }
+ }
+ llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
+ ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
+ ThreadLimitVal =
+ Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
+ }
+ if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
+ !isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
+ CS = Dir->getInnermostCapturedStmt();
+ const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
+ CGF.getContext(), CS->getCapturedStmt());
+ Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
+ }
+ if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
+ !isOpenMPSimdDirective(Dir->getDirectiveKind())) {
+ CS = Dir->getInnermostCapturedStmt();
+ if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
+ return NumThreads;
+ }
+ if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
+ return Bld.getInt32(1);
+ }
+ return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
+ }
+ case OMPD_target_teams: {
+ if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
+ CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
+ const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
+ llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
+ ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
+ ThreadLimitVal =
+ Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
+ }
+ const CapturedStmt *CS = D.getInnermostCapturedStmt();
+ if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
+ return NumThreads;
+ const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
+ CGF.getContext(), CS->getCapturedStmt());
+ if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
+ if (Dir->getDirectiveKind() == OMPD_distribute) {
+ CS = Dir->getInnermostCapturedStmt();
+ if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
+ return NumThreads;
+ }
+ }
+ return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
+ }
+ case OMPD_target_teams_distribute:
+ if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
+ CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
+ const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
+ llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
+ ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
+ ThreadLimitVal =
+ Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
+ }
+ return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
+ case OMPD_target_parallel:
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd: {
+ llvm::Value *CondVal = nullptr;
+ // Handle if clause. If if clause present, the number of threads is
+ // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
+ if (D.hasClausesOfKind<OMPIfClause>()) {
+ const OMPIfClause *IfClause = nullptr;
+ for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
+ if (C->getNameModifier() == OMPD_unknown ||
+ C->getNameModifier() == OMPD_parallel) {
+ IfClause = C;
+ break;
+ }
+ }
+ if (IfClause) {
+ const Expr *Cond = IfClause->getCondition();
+ bool Result;
+ if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
+ if (!Result)
+ return Bld.getInt32(1);
+ } else {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ CondVal = CGF.EvaluateExprAsBool(Cond);
+ }
+ }
+ }
+ if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
+ CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
+ const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
+ llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
+ ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
+ ThreadLimitVal =
+ Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
+ }
+ if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
+ CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
+ const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
+ llvm::Value *NumThreads = CGF.EmitScalarExpr(
+ NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
+ NumThreadsVal =
+ Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
+ ThreadLimitVal = ThreadLimitVal
+ ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
+ ThreadLimitVal),
+ NumThreadsVal, ThreadLimitVal)
+ : NumThreadsVal;
+ }
+ if (!ThreadLimitVal)
+ ThreadLimitVal = Bld.getInt32(0);
+ if (CondVal)
+ return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
+ return ThreadLimitVal;
+ }
+ case OMPD_target_teams_distribute_simd:
+ case OMPD_target_simd:
+ return Bld.getInt32(1);
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_allocate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_declare_mapper:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ break;
+ }
+ llvm_unreachable("Unsupported directive kind.");
+}
+
+namespace {
+LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
+
+// Utility to handle information from clauses associated with a given
+// construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
+// It provides a convenient interface to obtain the information and generate
+// code for that information.
+class MappableExprsHandler {
+public:
+ /// Values for bit flags used to specify the mapping type for
+ /// offloading.
+ enum OpenMPOffloadMappingFlags : uint64_t {
+ /// No flags
+ OMP_MAP_NONE = 0x0,
+ /// Allocate memory on the device and move data from host to device.
+ OMP_MAP_TO = 0x01,
+ /// Allocate memory on the device and move data from device to host.
+ OMP_MAP_FROM = 0x02,
+ /// Always perform the requested mapping action on the element, even
+ /// if it was already mapped before.
+ OMP_MAP_ALWAYS = 0x04,
+ /// Delete the element from the device environment, ignoring the
+ /// current reference count associated with the element.
+ OMP_MAP_DELETE = 0x08,
+ /// The element being mapped is a pointer-pointee pair; both the
+ /// pointer and the pointee should be mapped.
+ OMP_MAP_PTR_AND_OBJ = 0x10,
+ /// This flags signals that the base address of an entry should be
+ /// passed to the target kernel as an argument.
+ OMP_MAP_TARGET_PARAM = 0x20,
+ /// Signal that the runtime library has to return the device pointer
+ /// in the current position for the data being mapped. Used when we have the
+ /// use_device_ptr clause.
+ OMP_MAP_RETURN_PARAM = 0x40,
+ /// This flag signals that the reference being passed is a pointer to
+ /// private data.
+ OMP_MAP_PRIVATE = 0x80,
+ /// Pass the element to the device by value.
+ OMP_MAP_LITERAL = 0x100,
+ /// Implicit map
+ OMP_MAP_IMPLICIT = 0x200,
+ /// The 16 MSBs of the flags indicate whether the entry is member of some
+ /// struct/class.
+ OMP_MAP_MEMBER_OF = 0xffff000000000000,
+ LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
+ };
+
+ /// Class that associates information with a base pointer to be passed to the
+ /// runtime library.
+ class BasePointerInfo {
+ /// The base pointer.
+ llvm::Value *Ptr = nullptr;
+ /// The base declaration that refers to this device pointer, or null if
+ /// there is none.
+ const ValueDecl *DevPtrDecl = nullptr;
+
+ public:
+ BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
+ : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
+ llvm::Value *operator*() const { return Ptr; }
+ const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
+ void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
+ };
+
+ using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
+ using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
+ using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
+
+ /// Map between a struct and the its lowest & highest elements which have been
+ /// mapped.
+ /// [ValueDecl *] --> {LE(FieldIndex, Pointer),
+ /// HE(FieldIndex, Pointer)}
+ struct StructRangeInfoTy {
+ std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
+ 0, Address::invalid()};
+ std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
+ 0, Address::invalid()};
+ Address Base = Address::invalid();
+ };
+
+private:
+ /// Kind that defines how a device pointer has to be returned.
+ struct MapInfo {
+ OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
+ OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
+ ArrayRef<OpenMPMapModifierKind> MapModifiers;
+ bool ReturnDevicePointer = false;
+ bool IsImplicit = false;
+
+ MapInfo() = default;
+ MapInfo(
+ OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
+ OpenMPMapClauseKind MapType,
+ ArrayRef<OpenMPMapModifierKind> MapModifiers,
+ bool ReturnDevicePointer, bool IsImplicit)
+ : Components(Components), MapType(MapType), MapModifiers(MapModifiers),
+ ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit) {}
+ };
+
+ /// If use_device_ptr is used on a pointer which is a struct member and there
+ /// is no map information about it, then emission of that entry is deferred
+ /// until the whole struct has been processed.
+ struct DeferredDevicePtrEntryTy {
+ const Expr *IE = nullptr;
+ const ValueDecl *VD = nullptr;
+
+ DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD)
+ : IE(IE), VD(VD) {}
+ };
+
+ /// Directive from where the map clauses were extracted.
+ const OMPExecutableDirective &CurDir;
+
+ /// Function the directive is being generated for.
+ CodeGenFunction &CGF;
+
+ /// Set of all first private variables in the current directive.
+ /// bool data is set to true if the variable is implicitly marked as
+ /// firstprivate, false otherwise.
+ llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
+
+ /// Map between device pointer declarations and their expression components.
+ /// The key value for declarations in 'this' is null.
+ llvm::DenseMap<
+ const ValueDecl *,
+ SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
+ DevPointersMap;
+
+ llvm::Value *getExprTypeSize(const Expr *E) const {
+ QualType ExprTy = E->getType().getCanonicalType();
+
+ // Reference types are ignored for mapping purposes.
+ if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
+ ExprTy = RefTy->getPointeeType().getCanonicalType();
+
+ // Given that an array section is considered a built-in type, we need to
+ // do the calculation based on the length of the section instead of relying
+ // on CGF.getTypeSize(E->getType()).
+ if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
+ QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
+ OAE->getBase()->IgnoreParenImpCasts())
+ .getCanonicalType();
+
+ // If there is no length associated with the expression, that means we
+ // are using the whole length of the base.
+ if (!OAE->getLength() && OAE->getColonLoc().isValid())
+ return CGF.getTypeSize(BaseTy);
+
+ llvm::Value *ElemSize;
+ if (const auto *PTy = BaseTy->getAs<PointerType>()) {
+ ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
+ } else {
+ const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
+ assert(ATy && "Expecting array type if not a pointer type.");
+ ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
+ }
+
+ // If we don't have a length at this point, that is because we have an
+ // array section with a single element.
+ if (!OAE->getLength())
+ return ElemSize;
+
+ llvm::Value *LengthVal = CGF.EmitScalarExpr(OAE->getLength());
+ LengthVal =
+ CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false);
+ return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
+ }
+ return CGF.getTypeSize(ExprTy);
+ }
+
+ /// Return the corresponding bits for a given map clause modifier. Add
+ /// a flag marking the map as a pointer if requested. Add a flag marking the
+ /// map as the first one of a series of maps that relate to the same map
+ /// expression.
+ OpenMPOffloadMappingFlags getMapTypeBits(
+ OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
+ bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const {
+ OpenMPOffloadMappingFlags Bits =
+ IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
+ switch (MapType) {
+ case OMPC_MAP_alloc:
+ case OMPC_MAP_release:
+ // alloc and release is the default behavior in the runtime library, i.e.
+ // if we don't pass any bits alloc/release that is what the runtime is
+ // going to do. Therefore, we don't need to signal anything for these two
+ // type modifiers.
+ break;
+ case OMPC_MAP_to:
+ Bits |= OMP_MAP_TO;
+ break;
+ case OMPC_MAP_from:
+ Bits |= OMP_MAP_FROM;
+ break;
+ case OMPC_MAP_tofrom:
+ Bits |= OMP_MAP_TO | OMP_MAP_FROM;
+ break;
+ case OMPC_MAP_delete:
+ Bits |= OMP_MAP_DELETE;
+ break;
+ case OMPC_MAP_unknown:
+ llvm_unreachable("Unexpected map type!");
+ }
+ if (AddPtrFlag)
+ Bits |= OMP_MAP_PTR_AND_OBJ;
+ if (AddIsTargetParamFlag)
+ Bits |= OMP_MAP_TARGET_PARAM;
+ if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
+ != MapModifiers.end())
+ Bits |= OMP_MAP_ALWAYS;
+ return Bits;
+ }
+
+ /// Return true if the provided expression is a final array section. A
+ /// final array section, is one whose length can't be proved to be one.
+ bool isFinalArraySectionExpression(const Expr *E) const {
+ const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
+
+ // It is not an array section and therefore not a unity-size one.
+ if (!OASE)
+ return false;
+
+ // An array section with no colon always refer to a single element.
+ if (OASE->getColonLoc().isInvalid())
+ return false;
+
+ const Expr *Length = OASE->getLength();
+
+ // If we don't have a length we have to check if the array has size 1
+ // for this dimension. Also, we should always expect a length if the
+ // base type is pointer.
+ if (!Length) {
+ QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
+ OASE->getBase()->IgnoreParenImpCasts())
+ .getCanonicalType();
+ if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
+ return ATy->getSize().getSExtValue() != 1;
+ // If we don't have a constant dimension length, we have to consider
+ // the current section as having any size, so it is not necessarily
+ // unitary. If it happen to be unity size, that's user fault.
+ return true;
+ }
+
+ // Check if the length evaluates to 1.
+ Expr::EvalResult Result;
+ if (!Length->EvaluateAsInt(Result, CGF.getContext()))
+ return true; // Can have more that size 1.
+
+ llvm::APSInt ConstLength = Result.Val.getInt();
+ return ConstLength.getSExtValue() != 1;
+ }
+
+ /// Generate the base pointers, section pointers, sizes and map type
+ /// bits for the provided map type, map modifier, and expression components.
+ /// \a IsFirstComponent should be set to true if the provided set of
+ /// components is the first associated with a capture.
+ void generateInfoForComponentList(
+ OpenMPMapClauseKind MapType,
+ ArrayRef<OpenMPMapModifierKind> MapModifiers,
+ OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
+ MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
+ MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
+ StructRangeInfoTy &PartialStruct, bool IsFirstComponentList,
+ bool IsImplicit,
+ ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
+ OverlappedElements = llvm::None) const {
+ // The following summarizes what has to be generated for each map and the
+ // types below. The generated information is expressed in this order:
+ // base pointer, section pointer, size, flags
+ // (to add to the ones that come from the map type and modifier).
+ //
+ // double d;
+ // int i[100];
+ // float *p;
+ //
+ // struct S1 {
+ // int i;
+ // float f[50];
+ // }
+ // struct S2 {
+ // int i;
+ // float f[50];
+ // S1 s;
+ // double *p;
+ // struct S2 *ps;
+ // }
+ // S2 s;
+ // S2 *ps;
+ //
+ // map(d)
+ // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
+ //
+ // map(i)
+ // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
+ //
+ // map(i[1:23])
+ // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
+ //
+ // map(p)
+ // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
+ //
+ // map(p[1:24])
+ // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
+ //
+ // map(s)
+ // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
+ //
+ // map(s.i)
+ // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
+ //
+ // map(s.s.f)
+ // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
+ //
+ // map(s.p)
+ // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
+ //
+ // map(to: s.p[:22])
+ // &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
+ // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
+ // &(s.p), &(s.p[0]), 22*sizeof(double),
+ // MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
+ // (*) alloc space for struct members, only this is a target parameter
+ // (**) map the pointer (nothing to be mapped in this example) (the compiler
+ // optimizes this entry out, same in the examples below)
+ // (***) map the pointee (map: to)
+ //
+ // map(s.ps)
+ // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
+ //
+ // map(from: s.ps->s.i)
+ // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
+ // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
+ // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
+ //
+ // map(to: s.ps->ps)
+ // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
+ // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
+ // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO
+ //
+ // map(s.ps->ps->ps)
+ // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
+ // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
+ // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
+ // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
+ //
+ // map(to: s.ps->ps->s.f[:22])
+ // &s, &(s.ps), sizeof(S2*), TARGET_PARAM
+ // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
+ // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
+ // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
+ //
+ // map(ps)
+ // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
+ //
+ // map(ps->i)
+ // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
+ //
+ // map(ps->s.f)
+ // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
+ //
+ // map(from: ps->p)
+ // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
+ //
+ // map(to: ps->p[:22])
+ // ps, &(ps->p), sizeof(double*), TARGET_PARAM
+ // ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
+ // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
+ //
+ // map(ps->ps)
+ // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
+ //
+ // map(from: ps->ps->s.i)
+ // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
+ // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
+ // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
+ //
+ // map(from: ps->ps->ps)
+ // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
+ // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
+ // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
+ //
+ // map(ps->ps->ps->ps)
+ // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
+ // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
+ // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
+ // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
+ //
+ // map(to: ps->ps->ps->s.f[:22])
+ // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
+ // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
+ // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
+ // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
+ //
+ // map(to: s.f[:22]) map(from: s.p[:33])
+ // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
+ // sizeof(double*) (**), TARGET_PARAM
+ // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
+ // &s, &(s.p), sizeof(double*), MEMBER_OF(1)
+ // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
+ // (*) allocate contiguous space needed to fit all mapped members even if
+ // we allocate space for members not mapped (in this example,
+ // s.f[22..49] and s.s are not mapped, yet we must allocate space for
+ // them as well because they fall between &s.f[0] and &s.p)
+ //
+ // map(from: s.f[:22]) map(to: ps->p[:33])
+ // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
+ // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
+ // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
+ // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
+ // (*) the struct this entry pertains to is the 2nd element in the list of
+ // arguments, hence MEMBER_OF(2)
+ //
+ // map(from: s.f[:22], s.s) map(to: ps->p[:33])
+ // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
+ // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
+ // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
+ // ps, &(ps->p), sizeof(S2*), TARGET_PARAM
+ // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
+ // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
+ // (*) the struct this entry pertains to is the 4th element in the list
+ // of arguments, hence MEMBER_OF(4)
+
+ // Track if the map information being generated is the first for a capture.
+ bool IsCaptureFirstInfo = IsFirstComponentList;
+ // When the variable is on a declare target link or in a to clause with
+ // unified memory, a reference is needed to hold the host/device address
+ // of the variable.
+ bool RequiresReference = false;
+
+ // Scan the components from the base to the complete expression.
+ auto CI = Components.rbegin();
+ auto CE = Components.rend();
+ auto I = CI;
+
+ // Track if the map information being generated is the first for a list of
+ // components.
+ bool IsExpressionFirstInfo = true;
+ Address BP = Address::invalid();
+ const Expr *AssocExpr = I->getAssociatedExpression();
+ const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
+ const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
+
+ if (isa<MemberExpr>(AssocExpr)) {
+ // The base is the 'this' pointer. The content of the pointer is going
+ // to be the base of the field being mapped.
+ BP = CGF.LoadCXXThisAddress();
+ } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
+ (OASE &&
+ isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
+ BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
+ } else {
+ // The base is the reference to the variable.
+ // BP = &Var.
+ BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
+ if (const auto *VD =
+ dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
+ if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
+ if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
+ (*Res == OMPDeclareTargetDeclAttr::MT_To &&
+ CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
+ RequiresReference = true;
+ BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
+ }
+ }
+ }
+
+ // If the variable is a pointer and is being dereferenced (i.e. is not
+ // the last component), the base has to be the pointer itself, not its
+ // reference. References are ignored for mapping purposes.
+ QualType Ty =
+ I->getAssociatedDeclaration()->getType().getNonReferenceType();
+ if (Ty->isAnyPointerType() && std::next(I) != CE) {
+ BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
+
+ // We do not need to generate individual map information for the
+ // pointer, it can be associated with the combined storage.
+ ++I;
+ }
+ }
+
+ // Track whether a component of the list should be marked as MEMBER_OF some
+ // combined entry (for partial structs). Only the first PTR_AND_OBJ entry
+ // in a component list should be marked as MEMBER_OF, all subsequent entries
+ // do not belong to the base struct. E.g.
+ // struct S2 s;
+ // s.ps->ps->ps->f[:]
+ // (1) (2) (3) (4)
+ // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
+ // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
+ // is the pointee of ps(2) which is not member of struct s, so it should not
+ // be marked as such (it is still PTR_AND_OBJ).
+ // The variable is initialized to false so that PTR_AND_OBJ entries which
+ // are not struct members are not considered (e.g. array of pointers to
+ // data).
+ bool ShouldBeMemberOf = false;
+
+ // Variable keeping track of whether or not we have encountered a component
+ // in the component list which is a member expression. Useful when we have a
+ // pointer or a final array section, in which case it is the previous
+ // component in the list which tells us whether we have a member expression.
+ // E.g. X.f[:]
+ // While processing the final array section "[:]" it is "f" which tells us
+ // whether we are dealing with a member of a declared struct.
+ const MemberExpr *EncounteredME = nullptr;
+
+ for (; I != CE; ++I) {
+ // If the current component is member of a struct (parent struct) mark it.
+ if (!EncounteredME) {
+ EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
+ // If we encounter a PTR_AND_OBJ entry from now on it should be marked
+ // as MEMBER_OF the parent struct.
+ if (EncounteredME)
+ ShouldBeMemberOf = true;
+ }
+
+ auto Next = std::next(I);
+
+ // We need to generate the addresses and sizes if this is the last
+ // component, if the component is a pointer or if it is an array section
+ // whose length can't be proved to be one. If this is a pointer, it
+ // becomes the base address for the following components.
+
+ // A final array section, is one whose length can't be proved to be one.
+ bool IsFinalArraySection =
+ isFinalArraySectionExpression(I->getAssociatedExpression());
+
+ // Get information on whether the element is a pointer. Have to do a
+ // special treatment for array sections given that they are built-in
+ // types.
+ const auto *OASE =
+ dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
+ bool IsPointer =
+ (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
+ .getCanonicalType()
+ ->isAnyPointerType()) ||
+ I->getAssociatedExpression()->getType()->isAnyPointerType();
+
+ if (Next == CE || IsPointer || IsFinalArraySection) {
+ // If this is not the last component, we expect the pointer to be
+ // associated with an array expression or member expression.
+ assert((Next == CE ||
+ isa<MemberExpr>(Next->getAssociatedExpression()) ||
+ isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
+ isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
+ "Unexpected expression");
+
+ Address LB =
+ CGF.EmitOMPSharedLValue(I->getAssociatedExpression()).getAddress();
+
+ // If this component is a pointer inside the base struct then we don't
+ // need to create any entry for it - it will be combined with the object
+ // it is pointing to into a single PTR_AND_OBJ entry.
+ bool IsMemberPointer =
+ IsPointer && EncounteredME &&
+ (dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
+ EncounteredME);
+ if (!OverlappedElements.empty()) {
+ // Handle base element with the info for overlapped elements.
+ assert(!PartialStruct.Base.isValid() && "The base element is set.");
+ assert(Next == CE &&
+ "Expected last element for the overlapped elements.");
+ assert(!IsPointer &&
+ "Unexpected base element with the pointer type.");
+ // Mark the whole struct as the struct that requires allocation on the
+ // device.
+ PartialStruct.LowestElem = {0, LB};
+ CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
+ I->getAssociatedExpression()->getType());
+ Address HB = CGF.Builder.CreateConstGEP(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
+ CGF.VoidPtrTy),
+ TypeSize.getQuantity() - 1);
+ PartialStruct.HighestElem = {
+ std::numeric_limits<decltype(
+ PartialStruct.HighestElem.first)>::max(),
+ HB};
+ PartialStruct.Base = BP;
+ // Emit data for non-overlapped data.
+ OpenMPOffloadMappingFlags Flags =
+ OMP_MAP_MEMBER_OF |
+ getMapTypeBits(MapType, MapModifiers, IsImplicit,
+ /*AddPtrFlag=*/false,
+ /*AddIsTargetParamFlag=*/false);
+ LB = BP;
+ llvm::Value *Size = nullptr;
+ // Do bitcopy of all non-overlapped structure elements.
+ for (OMPClauseMappableExprCommon::MappableExprComponentListRef
+ Component : OverlappedElements) {
+ Address ComponentLB = Address::invalid();
+ for (const OMPClauseMappableExprCommon::MappableComponent &MC :
+ Component) {
+ if (MC.getAssociatedDeclaration()) {
+ ComponentLB =
+ CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
+ .getAddress();
+ Size = CGF.Builder.CreatePtrDiff(
+ CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
+ CGF.EmitCastToVoidPtr(LB.getPointer()));
+ break;
+ }
+ }
+ BasePointers.push_back(BP.getPointer());
+ Pointers.push_back(LB.getPointer());
+ Sizes.push_back(CGF.Builder.CreateIntCast(Size, CGF.Int64Ty,
+ /*isSigned=*/true));
+ Types.push_back(Flags);
+ LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
+ }
+ BasePointers.push_back(BP.getPointer());
+ Pointers.push_back(LB.getPointer());
+ Size = CGF.Builder.CreatePtrDiff(
+ CGF.EmitCastToVoidPtr(
+ CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
+ CGF.EmitCastToVoidPtr(LB.getPointer()));
+ Sizes.push_back(
+ CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
+ Types.push_back(Flags);
+ break;
+ }
+ llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
+ if (!IsMemberPointer) {
+ BasePointers.push_back(BP.getPointer());
+ Pointers.push_back(LB.getPointer());
+ Sizes.push_back(
+ CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
+
+ // We need to add a pointer flag for each map that comes from the
+ // same expression except for the first one. We also need to signal
+ // this map is the first one that relates with the current capture
+ // (there is a set of entries for each capture).
+ OpenMPOffloadMappingFlags Flags = getMapTypeBits(
+ MapType, MapModifiers, IsImplicit,
+ !IsExpressionFirstInfo || RequiresReference,
+ IsCaptureFirstInfo && !RequiresReference);
+
+ if (!IsExpressionFirstInfo) {
+ // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
+ // then we reset the TO/FROM/ALWAYS/DELETE flags.
+ if (IsPointer)
+ Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
+ OMP_MAP_DELETE);
+
+ if (ShouldBeMemberOf) {
+ // Set placeholder value MEMBER_OF=FFFF to indicate that the flag
+ // should be later updated with the correct value of MEMBER_OF.
+ Flags |= OMP_MAP_MEMBER_OF;
+ // From now on, all subsequent PTR_AND_OBJ entries should not be
+ // marked as MEMBER_OF.
+ ShouldBeMemberOf = false;
+ }
+ }
+
+ Types.push_back(Flags);
+ }
+
+ // If we have encountered a member expression so far, keep track of the
+ // mapped member. If the parent is "*this", then the value declaration
+ // is nullptr.
+ if (EncounteredME) {
+ const auto *FD = dyn_cast<FieldDecl>(EncounteredME->getMemberDecl());
+ unsigned FieldIndex = FD->getFieldIndex();
+
+ // Update info about the lowest and highest elements for this struct
+ if (!PartialStruct.Base.isValid()) {
+ PartialStruct.LowestElem = {FieldIndex, LB};
+ PartialStruct.HighestElem = {FieldIndex, LB};
+ PartialStruct.Base = BP;
+ } else if (FieldIndex < PartialStruct.LowestElem.first) {
+ PartialStruct.LowestElem = {FieldIndex, LB};
+ } else if (FieldIndex > PartialStruct.HighestElem.first) {
+ PartialStruct.HighestElem = {FieldIndex, LB};
+ }
+ }
+
+ // If we have a final array section, we are done with this expression.
+ if (IsFinalArraySection)
+ break;
+
+ // The pointer becomes the base for the next element.
+ if (Next != CE)
+ BP = LB;
+
+ IsExpressionFirstInfo = false;
+ IsCaptureFirstInfo = false;
+ }
+ }
+ }
+
+ /// Return the adjusted map modifiers if the declaration a capture refers to
+ /// appears in a first-private clause. This is expected to be used only with
+ /// directives that start with 'target'.
+ MappableExprsHandler::OpenMPOffloadMappingFlags
+ getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
+ assert(Cap.capturesVariable() && "Expected capture by reference only!");
+
+ // A first private variable captured by reference will use only the
+ // 'private ptr' and 'map to' flag. Return the right flags if the captured
+ // declaration is known as first-private in this handler.
+ if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
+ if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
+ Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
+ return MappableExprsHandler::OMP_MAP_ALWAYS |
+ MappableExprsHandler::OMP_MAP_TO;
+ if (Cap.getCapturedVar()->getType()->isAnyPointerType())
+ return MappableExprsHandler::OMP_MAP_TO |
+ MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
+ return MappableExprsHandler::OMP_MAP_PRIVATE |
+ MappableExprsHandler::OMP_MAP_TO;
+ }
+ return MappableExprsHandler::OMP_MAP_TO |
+ MappableExprsHandler::OMP_MAP_FROM;
+ }
+
+ static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
+ // Member of is given by the 16 MSB of the flag, so rotate by 48 bits.
+ return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
+ << 48);
+ }
+
+ static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
+ OpenMPOffloadMappingFlags MemberOfFlag) {
+ // If the entry is PTR_AND_OBJ but has not been marked with the special
+ // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
+ // marked as MEMBER_OF.
+ if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
+ ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
+ return;
+
+ // Reset the placeholder value to prepare the flag for the assignment of the
+ // proper MEMBER_OF value.
+ Flags &= ~OMP_MAP_MEMBER_OF;
+ Flags |= MemberOfFlag;
+ }
+
+ void getPlainLayout(const CXXRecordDecl *RD,
+ llvm::SmallVectorImpl<const FieldDecl *> &Layout,
+ bool AsBase) const {
+ const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
+
+ llvm::StructType *St =
+ AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
+
+ unsigned NumElements = St->getNumElements();
+ llvm::SmallVector<
+ llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
+ RecordLayout(NumElements);
+
+ // Fill bases.
+ for (const auto &I : RD->bases()) {
+ if (I.isVirtual())
+ continue;
+ const auto *Base = I.getType()->getAsCXXRecordDecl();
+ // Ignore empty bases.
+ if (Base->isEmpty() || CGF.getContext()
+ .getASTRecordLayout(Base)
+ .getNonVirtualSize()
+ .isZero())
+ continue;
+
+ unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
+ RecordLayout[FieldIndex] = Base;
+ }
+ // Fill in virtual bases.
+ for (const auto &I : RD->vbases()) {
+ const auto *Base = I.getType()->getAsCXXRecordDecl();
+ // Ignore empty bases.
+ if (Base->isEmpty())
+ continue;
+ unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
+ if (RecordLayout[FieldIndex])
+ continue;
+ RecordLayout[FieldIndex] = Base;
+ }
+ // Fill in all the fields.
+ assert(!RD->isUnion() && "Unexpected union.");
+ for (const auto *Field : RD->fields()) {
+ // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
+ // will fill in later.)
+ if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
+ unsigned FieldIndex = RL.getLLVMFieldNo(Field);
+ RecordLayout[FieldIndex] = Field;
+ }
+ }
+ for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
+ &Data : RecordLayout) {
+ if (Data.isNull())
+ continue;
+ if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
+ getPlainLayout(Base, Layout, /*AsBase=*/true);
+ else
+ Layout.push_back(Data.get<const FieldDecl *>());
+ }
+ }
+
+public:
+ MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
+ : CurDir(Dir), CGF(CGF) {
+ // Extract firstprivate clause information.
+ for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
+ for (const auto *D : C->varlists())
+ FirstPrivateDecls.try_emplace(
+ cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
+ // Extract device pointer clause information.
+ for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
+ for (auto L : C->component_lists())
+ DevPointersMap[L.first].push_back(L.second);
+ }
+
+ /// Generate code for the combined entry if we have a partially mapped struct
+ /// and take care of the mapping flags of the arguments corresponding to
+ /// individual struct members.
+ void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers,
+ MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
+ MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes,
+ const StructRangeInfoTy &PartialStruct) const {
+ // Base is the base of the struct
+ BasePointers.push_back(PartialStruct.Base.getPointer());
+ // Pointer is the address of the lowest element
+ llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
+ Pointers.push_back(LB);
+ // Size is (addr of {highest+1} element) - (addr of lowest element)
+ llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
+ llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
+ llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
+ llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
+ llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
+ llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
+ /*isSigned=*/false);
+ Sizes.push_back(Size);
+ // Map type is always TARGET_PARAM
+ Types.push_back(OMP_MAP_TARGET_PARAM);
+ // Remove TARGET_PARAM flag from the first element
+ (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM;
+
+ // All other current entries will be MEMBER_OF the combined entry
+ // (except for PTR_AND_OBJ entries which do not have a placeholder value
+ // 0xFFFF in the MEMBER_OF field).
+ OpenMPOffloadMappingFlags MemberOfFlag =
+ getMemberOfFlag(BasePointers.size() - 1);
+ for (auto &M : CurTypes)
+ setCorrectMemberOfFlag(M, MemberOfFlag);
+ }
+
+ /// Generate all the base pointers, section pointers, sizes and map
+ /// types for the extracted mappable expressions. Also, for each item that
+ /// relates with a device pointer, a pair of the relevant declaration and
+ /// index where it occurs is appended to the device pointers info array.
+ void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
+ MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
+ MapFlagsArrayTy &Types) const {
+ // We have to process the component lists that relate with the same
+ // declaration in a single chunk so that we can generate the map flags
+ // correctly. Therefore, we organize all lists in a map.
+ llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
+
+ // Helper function to fill the information map for the different supported
+ // clauses.
+ auto &&InfoGen = [&Info](
+ const ValueDecl *D,
+ OMPClauseMappableExprCommon::MappableExprComponentListRef L,
+ OpenMPMapClauseKind MapType,
+ ArrayRef<OpenMPMapModifierKind> MapModifiers,
+ bool ReturnDevicePointer, bool IsImplicit) {
+ const ValueDecl *VD =
+ D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
+ Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
+ IsImplicit);
+ };
+
+ // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
+ for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>())
+ for (const auto &L : C->component_lists()) {
+ InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(),
+ /*ReturnDevicePointer=*/false, C->isImplicit());
+ }
+ for (const auto *C : this->CurDir.getClausesOfKind<OMPToClause>())
+ for (const auto &L : C->component_lists()) {
+ InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None,
+ /*ReturnDevicePointer=*/false, C->isImplicit());
+ }
+ for (const auto *C : this->CurDir.getClausesOfKind<OMPFromClause>())
+ for (const auto &L : C->component_lists()) {
+ InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None,
+ /*ReturnDevicePointer=*/false, C->isImplicit());
+ }
+
+ // Look at the use_device_ptr clause information and mark the existing map
+ // entries as such. If there is no map information for an entry in the
+ // use_device_ptr list, we create one with map type 'alloc' and zero size
+ // section. It is the user fault if that was not mapped before. If there is
+ // no map information and the pointer is a struct member, then we defer the
+ // emission of that entry until the whole struct has been processed.
+ llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
+ DeferredInfo;
+
+ // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
+ for (const auto *C :
+ this->CurDir.getClausesOfKind<OMPUseDevicePtrClause>()) {
+ for (const auto &L : C->component_lists()) {
+ assert(!L.second.empty() && "Not expecting empty list of components!");
+ const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
+ VD = cast<ValueDecl>(VD->getCanonicalDecl());
+ const Expr *IE = L.second.back().getAssociatedExpression();
+ // If the first component is a member expression, we have to look into
+ // 'this', which maps to null in the map of map information. Otherwise
+ // look directly for the information.
+ auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
+
+ // We potentially have map information for this declaration already.
+ // Look for the first set of components that refer to it.
+ if (It != Info.end()) {
+ auto CI = std::find_if(
+ It->second.begin(), It->second.end(), [VD](const MapInfo &MI) {
+ return MI.Components.back().getAssociatedDeclaration() == VD;
+ });
+ // If we found a map entry, signal that the pointer has to be returned
+ // and move on to the next declaration.
+ if (CI != It->second.end()) {
+ CI->ReturnDevicePointer = true;
+ continue;
+ }
+ }
+
+ // We didn't find any match in our map information - generate a zero
+ // size array section - if the pointer is a struct member we defer this
+ // action until the whole struct has been processed.
+ // FIXME: MSVC 2013 seems to require this-> to find member CGF.
+ if (isa<MemberExpr>(IE)) {
+ // Insert the pointer into Info to be processed by
+ // generateInfoForComponentList. Because it is a member pointer
+ // without a pointee, no entry will be generated for it, therefore
+ // we need to generate one after the whole struct has been processed.
+ // Nonetheless, generateInfoForComponentList must be called to take
+ // the pointer into account for the calculation of the range of the
+ // partial struct.
+ InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None,
+ /*ReturnDevicePointer=*/false, C->isImplicit());
+ DeferredInfo[nullptr].emplace_back(IE, VD);
+ } else {
+ llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
+ this->CGF.EmitLValue(IE), IE->getExprLoc());
+ BasePointers.emplace_back(Ptr, VD);
+ Pointers.push_back(Ptr);
+ Sizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty));
+ Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_TARGET_PARAM);
+ }
+ }
+ }
+
+ for (const auto &M : Info) {
+ // We need to know when we generate information for the first component
+ // associated with a capture, because the mapping flags depend on it.
+ bool IsFirstComponentList = true;
+
+ // Temporary versions of arrays
+ MapBaseValuesArrayTy CurBasePointers;
+ MapValuesArrayTy CurPointers;
+ MapValuesArrayTy CurSizes;
+ MapFlagsArrayTy CurTypes;
+ StructRangeInfoTy PartialStruct;
+
+ for (const MapInfo &L : M.second) {
+ assert(!L.Components.empty() &&
+ "Not expecting declaration with no component lists.");
+
+ // Remember the current base pointer index.
+ unsigned CurrentBasePointersIdx = CurBasePointers.size();
+ // FIXME: MSVC 2013 seems to require this-> to find the member method.
+ this->generateInfoForComponentList(
+ L.MapType, L.MapModifiers, L.Components, CurBasePointers,
+ CurPointers, CurSizes, CurTypes, PartialStruct,
+ IsFirstComponentList, L.IsImplicit);
+
+ // If this entry relates with a device pointer, set the relevant
+ // declaration and add the 'return pointer' flag.
+ if (L.ReturnDevicePointer) {
+ assert(CurBasePointers.size() > CurrentBasePointersIdx &&
+ "Unexpected number of mapped base pointers.");
+
+ const ValueDecl *RelevantVD =
+ L.Components.back().getAssociatedDeclaration();
+ assert(RelevantVD &&
+ "No relevant declaration related with device pointer??");
+
+ CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
+ CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
+ }
+ IsFirstComponentList = false;
+ }
+
+ // Append any pending zero-length pointers which are struct members and
+ // used with use_device_ptr.
+ auto CI = DeferredInfo.find(M.first);
+ if (CI != DeferredInfo.end()) {
+ for (const DeferredDevicePtrEntryTy &L : CI->second) {
+ llvm::Value *BasePtr = this->CGF.EmitLValue(L.IE).getPointer();
+ llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
+ this->CGF.EmitLValue(L.IE), L.IE->getExprLoc());
+ CurBasePointers.emplace_back(BasePtr, L.VD);
+ CurPointers.push_back(Ptr);
+ CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty));
+ // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
+ // value MEMBER_OF=FFFF so that the entry is later updated with the
+ // correct value of MEMBER_OF.
+ CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
+ OMP_MAP_MEMBER_OF);
+ }
+ }
+
+ // If there is an entry in PartialStruct it means we have a struct with
+ // individual members mapped. Emit an extra combined entry.
+ if (PartialStruct.Base.isValid())
+ emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
+ PartialStruct);
+
+ // We need to append the results of this capture to what we already have.
+ BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
+ Pointers.append(CurPointers.begin(), CurPointers.end());
+ Sizes.append(CurSizes.begin(), CurSizes.end());
+ Types.append(CurTypes.begin(), CurTypes.end());
+ }
+ }
+
+ /// Emit capture info for lambdas for variables captured by reference.
+ void generateInfoForLambdaCaptures(
+ const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers,
+ MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
+ MapFlagsArrayTy &Types,
+ llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
+ const auto *RD = VD->getType()
+ .getCanonicalType()
+ .getNonReferenceType()
+ ->getAsCXXRecordDecl();
+ if (!RD || !RD->isLambda())
+ return;
+ Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
+ LValue VDLVal = CGF.MakeAddrLValue(
+ VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
+ llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
+ FieldDecl *ThisCapture = nullptr;
+ RD->getCaptureFields(Captures, ThisCapture);
+ if (ThisCapture) {
+ LValue ThisLVal =
+ CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
+ LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
+ LambdaPointers.try_emplace(ThisLVal.getPointer(), VDLVal.getPointer());
+ BasePointers.push_back(ThisLVal.getPointer());
+ Pointers.push_back(ThisLValVal.getPointer());
+ Sizes.push_back(
+ CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
+ CGF.Int64Ty, /*isSigned=*/true));
+ Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
+ OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
+ }
+ for (const LambdaCapture &LC : RD->captures()) {
+ if (!LC.capturesVariable())
+ continue;
+ const VarDecl *VD = LC.getCapturedVar();
+ if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
+ continue;
+ auto It = Captures.find(VD);
+ assert(It != Captures.end() && "Found lambda capture without field.");
+ LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
+ if (LC.getCaptureKind() == LCK_ByRef) {
+ LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
+ LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer());
+ BasePointers.push_back(VarLVal.getPointer());
+ Pointers.push_back(VarLValVal.getPointer());
+ Sizes.push_back(CGF.Builder.CreateIntCast(
+ CGF.getTypeSize(
+ VD->getType().getCanonicalType().getNonReferenceType()),
+ CGF.Int64Ty, /*isSigned=*/true));
+ } else {
+ RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
+ LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer());
+ BasePointers.push_back(VarLVal.getPointer());
+ Pointers.push_back(VarRVal.getScalarVal());
+ Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
+ }
+ Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
+ OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
+ }
+ }
+
+ /// Set correct indices for lambdas captures.
+ void adjustMemberOfForLambdaCaptures(
+ const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
+ MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
+ MapFlagsArrayTy &Types) const {
+ for (unsigned I = 0, E = Types.size(); I < E; ++I) {
+ // Set correct member_of idx for all implicit lambda captures.
+ if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
+ OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
+ continue;
+ llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
+ assert(BasePtr && "Unable to find base lambda address.");
+ int TgtIdx = -1;
+ for (unsigned J = I; J > 0; --J) {
+ unsigned Idx = J - 1;
+ if (Pointers[Idx] != BasePtr)
+ continue;
+ TgtIdx = Idx;
+ break;
+ }
+ assert(TgtIdx != -1 && "Unable to find parent lambda.");
+ // All other current entries will be MEMBER_OF the combined entry
+ // (except for PTR_AND_OBJ entries which do not have a placeholder value
+ // 0xFFFF in the MEMBER_OF field).
+ OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
+ setCorrectMemberOfFlag(Types[I], MemberOfFlag);
+ }
+ }
+
+ /// Generate the base pointers, section pointers, sizes and map types
+ /// associated to a given capture.
+ void generateInfoForCapture(const CapturedStmt::Capture *Cap,
+ llvm::Value *Arg,
+ MapBaseValuesArrayTy &BasePointers,
+ MapValuesArrayTy &Pointers,
+ MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
+ StructRangeInfoTy &PartialStruct) const {
+ assert(!Cap->capturesVariableArrayType() &&
+ "Not expecting to generate map info for a variable array type!");
+
+ // We need to know when we generating information for the first component
+ const ValueDecl *VD = Cap->capturesThis()
+ ? nullptr
+ : Cap->getCapturedVar()->getCanonicalDecl();
+
+ // If this declaration appears in a is_device_ptr clause we just have to
+ // pass the pointer by value. If it is a reference to a declaration, we just
+ // pass its value.
+ if (DevPointersMap.count(VD)) {
+ BasePointers.emplace_back(Arg, VD);
+ Pointers.push_back(Arg);
+ Sizes.push_back(
+ CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
+ CGF.Int64Ty, /*isSigned=*/true));
+ Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM);
+ return;
+ }
+
+ using MapData =
+ std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
+ OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>;
+ SmallVector<MapData, 4> DeclComponentLists;
+ // FIXME: MSVC 2013 seems to require this-> to find member CurDir.
+ for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) {
+ for (const auto &L : C->decl_component_lists(VD)) {
+ assert(L.first == VD &&
+ "We got information for the wrong declaration??");
+ assert(!L.second.empty() &&
+ "Not expecting declaration with no component lists.");
+ DeclComponentLists.emplace_back(L.second, C->getMapType(),
+ C->getMapTypeModifiers(),
+ C->isImplicit());
+ }
+ }
+
+ // Find overlapping elements (including the offset from the base element).
+ llvm::SmallDenseMap<
+ const MapData *,
+ llvm::SmallVector<
+ OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
+ 4>
+ OverlappedData;
+ size_t Count = 0;
+ for (const MapData &L : DeclComponentLists) {
+ OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
+ OpenMPMapClauseKind MapType;
+ ArrayRef<OpenMPMapModifierKind> MapModifiers;
+ bool IsImplicit;
+ std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
+ ++Count;
+ for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
+ OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
+ std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1;
+ auto CI = Components.rbegin();
+ auto CE = Components.rend();
+ auto SI = Components1.rbegin();
+ auto SE = Components1.rend();
+ for (; CI != CE && SI != SE; ++CI, ++SI) {
+ if (CI->getAssociatedExpression()->getStmtClass() !=
+ SI->getAssociatedExpression()->getStmtClass())
+ break;
+ // Are we dealing with different variables/fields?
+ if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
+ break;
+ }
+ // Found overlapping if, at least for one component, reached the head of
+ // the components list.
+ if (CI == CE || SI == SE) {
+ assert((CI != CE || SI != SE) &&
+ "Unexpected full match of the mapping components.");
+ const MapData &BaseData = CI == CE ? L : L1;
+ OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
+ SI == SE ? Components : Components1;
+ auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
+ OverlappedElements.getSecond().push_back(SubData);
+ }
+ }
+ }
+ // Sort the overlapped elements for each item.
+ llvm::SmallVector<const FieldDecl *, 4> Layout;
+ if (!OverlappedData.empty()) {
+ if (const auto *CRD =
+ VD->getType().getCanonicalType()->getAsCXXRecordDecl())
+ getPlainLayout(CRD, Layout, /*AsBase=*/false);
+ else {
+ const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
+ Layout.append(RD->field_begin(), RD->field_end());
+ }
+ }
+ for (auto &Pair : OverlappedData) {
+ llvm::sort(
+ Pair.getSecond(),
+ [&Layout](
+ OMPClauseMappableExprCommon::MappableExprComponentListRef First,
+ OMPClauseMappableExprCommon::MappableExprComponentListRef
+ Second) {
+ auto CI = First.rbegin();
+ auto CE = First.rend();
+ auto SI = Second.rbegin();
+ auto SE = Second.rend();
+ for (; CI != CE && SI != SE; ++CI, ++SI) {
+ if (CI->getAssociatedExpression()->getStmtClass() !=
+ SI->getAssociatedExpression()->getStmtClass())
+ break;
+ // Are we dealing with different variables/fields?
+ if (CI->getAssociatedDeclaration() !=
+ SI->getAssociatedDeclaration())
+ break;
+ }
+
+ // Lists contain the same elements.
+ if (CI == CE && SI == SE)
+ return false;
+
+ // List with less elements is less than list with more elements.
+ if (CI == CE || SI == SE)
+ return CI == CE;
+
+ const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
+ const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
+ if (FD1->getParent() == FD2->getParent())
+ return FD1->getFieldIndex() < FD2->getFieldIndex();
+ const auto It =
+ llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
+ return FD == FD1 || FD == FD2;
+ });
+ return *It == FD1;
+ });
+ }
+
+ // Associated with a capture, because the mapping flags depend on it.
+ // Go through all of the elements with the overlapped elements.
+ for (const auto &Pair : OverlappedData) {
+ const MapData &L = *Pair.getFirst();
+ OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
+ OpenMPMapClauseKind MapType;
+ ArrayRef<OpenMPMapModifierKind> MapModifiers;
+ bool IsImplicit;
+ std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
+ ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
+ OverlappedComponents = Pair.getSecond();
+ bool IsFirstComponentList = true;
+ generateInfoForComponentList(MapType, MapModifiers, Components,
+ BasePointers, Pointers, Sizes, Types,
+ PartialStruct, IsFirstComponentList,
+ IsImplicit, OverlappedComponents);
+ }
+ // Go through other elements without overlapped elements.
+ bool IsFirstComponentList = OverlappedData.empty();
+ for (const MapData &L : DeclComponentLists) {
+ OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
+ OpenMPMapClauseKind MapType;
+ ArrayRef<OpenMPMapModifierKind> MapModifiers;
+ bool IsImplicit;
+ std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
+ auto It = OverlappedData.find(&L);
+ if (It == OverlappedData.end())
+ generateInfoForComponentList(MapType, MapModifiers, Components,
+ BasePointers, Pointers, Sizes, Types,
+ PartialStruct, IsFirstComponentList,
+ IsImplicit);
+ IsFirstComponentList = false;
+ }
+ }
+
+ /// Generate the base pointers, section pointers, sizes and map types
+ /// associated with the declare target link variables.
+ void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers,
+ MapValuesArrayTy &Pointers,
+ MapValuesArrayTy &Sizes,
+ MapFlagsArrayTy &Types) const {
+ // Map other list items in the map clause which are not captured variables
+ // but "declare target link" global variables.
+ for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) {
+ for (const auto &L : C->component_lists()) {
+ if (!L.first)
+ continue;
+ const auto *VD = dyn_cast<VarDecl>(L.first);
+ if (!VD)
+ continue;
+ llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
+ if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
+ !Res || *Res != OMPDeclareTargetDeclAttr::MT_Link)
+ continue;
+ StructRangeInfoTy PartialStruct;
+ generateInfoForComponentList(
+ C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers,
+ Pointers, Sizes, Types, PartialStruct,
+ /*IsFirstComponentList=*/true, C->isImplicit());
+ assert(!PartialStruct.Base.isValid() &&
+ "No partial structs for declare target link expected.");
+ }
+ }
+ }
+
+ /// Generate the default map information for a given capture \a CI,
+ /// record field declaration \a RI and captured value \a CV.
+ void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
+ const FieldDecl &RI, llvm::Value *CV,
+ MapBaseValuesArrayTy &CurBasePointers,
+ MapValuesArrayTy &CurPointers,
+ MapValuesArrayTy &CurSizes,
+ MapFlagsArrayTy &CurMapTypes) const {
+ bool IsImplicit = true;
+ // Do the default mapping.
+ if (CI.capturesThis()) {
+ CurBasePointers.push_back(CV);
+ CurPointers.push_back(CV);
+ const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
+ CurSizes.push_back(
+ CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
+ CGF.Int64Ty, /*isSigned=*/true));
+ // Default map type.
+ CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
+ } else if (CI.capturesVariableByCopy()) {
+ CurBasePointers.push_back(CV);
+ CurPointers.push_back(CV);
+ if (!RI.getType()->isAnyPointerType()) {
+ // We have to signal to the runtime captures passed by value that are
+ // not pointers.
+ CurMapTypes.push_back(OMP_MAP_LITERAL);
+ CurSizes.push_back(CGF.Builder.CreateIntCast(
+ CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
+ } else {
+ // Pointers are implicitly mapped with a zero size and no flags
+ // (other than first map that is added for all implicit maps).
+ CurMapTypes.push_back(OMP_MAP_NONE);
+ CurSizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
+ }
+ const VarDecl *VD = CI.getCapturedVar();
+ auto I = FirstPrivateDecls.find(VD);
+ if (I != FirstPrivateDecls.end())
+ IsImplicit = I->getSecond();
+ } else {
+ assert(CI.capturesVariable() && "Expected captured reference.");
+ const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
+ QualType ElementType = PtrTy->getPointeeType();
+ CurSizes.push_back(CGF.Builder.CreateIntCast(
+ CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
+ // The default map type for a scalar/complex type is 'to' because by
+ // default the value doesn't have to be retrieved. For an aggregate
+ // type, the default is 'tofrom'.
+ CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI));
+ const VarDecl *VD = CI.getCapturedVar();
+ auto I = FirstPrivateDecls.find(VD);
+ if (I != FirstPrivateDecls.end() &&
+ VD->getType().isConstant(CGF.getContext())) {
+ llvm::Constant *Addr =
+ CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
+ // Copy the value of the original variable to the new global copy.
+ CGF.Builder.CreateMemCpy(
+ CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(),
+ Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
+ CurSizes.back(), /*IsVolatile=*/false);
+ // Use new global variable as the base pointers.
+ CurBasePointers.push_back(Addr);
+ CurPointers.push_back(Addr);
+ } else {
+ CurBasePointers.push_back(CV);
+ if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
+ Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
+ CV, ElementType, CGF.getContext().getDeclAlign(VD),
+ AlignmentSource::Decl));
+ CurPointers.push_back(PtrAddr.getPointer());
+ } else {
+ CurPointers.push_back(CV);
+ }
+ }
+ if (I != FirstPrivateDecls.end())
+ IsImplicit = I->getSecond();
+ }
+ // Every default map produces a single argument which is a target parameter.
+ CurMapTypes.back() |= OMP_MAP_TARGET_PARAM;
+
+ // Add flag stating this is an implicit map.
+ if (IsImplicit)
+ CurMapTypes.back() |= OMP_MAP_IMPLICIT;
+ }
+};
+} // anonymous namespace
+
+/// Emit the arrays used to pass the captures and map information to the
+/// offloading runtime library. If there is no map or capture information,
+/// return nullptr by reference.
+static void
+emitOffloadingArrays(CodeGenFunction &CGF,
+ MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
+ MappableExprsHandler::MapValuesArrayTy &Pointers,
+ MappableExprsHandler::MapValuesArrayTy &Sizes,
+ MappableExprsHandler::MapFlagsArrayTy &MapTypes,
+ CGOpenMPRuntime::TargetDataInfo &Info) {
+ CodeGenModule &CGM = CGF.CGM;
+ ASTContext &Ctx = CGF.getContext();
+
+ // Reset the array information.
+ Info.clearArrayInfo();
+ Info.NumberOfPtrs = BasePointers.size();
+
+ if (Info.NumberOfPtrs) {
+ // Detect if we have any capture size requiring runtime evaluation of the
+ // size so that a constant array could be eventually used.
+ bool hasRuntimeEvaluationCaptureSize = false;
+ for (llvm::Value *S : Sizes)
+ if (!isa<llvm::Constant>(S)) {
+ hasRuntimeEvaluationCaptureSize = true;
+ break;
+ }
+
+ llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
+ QualType PointerArrayType =
+ Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+
+ Info.BasePointersArray =
+ CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
+ Info.PointersArray =
+ CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
+
+ // If we don't have any VLA types or other types that require runtime
+ // evaluation, we can use a constant array for the map sizes, otherwise we
+ // need to fill up the arrays as we do for the pointers.
+ QualType Int64Ty =
+ Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
+ if (hasRuntimeEvaluationCaptureSize) {
+ QualType SizeArrayType =
+ Ctx.getConstantArrayType(Int64Ty, PointerNumAP, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ Info.SizesArray =
+ CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
+ } else {
+ // We expect all the sizes to be constant, so we collect them to create
+ // a constant array.
+ SmallVector<llvm::Constant *, 16> ConstSizes;
+ for (llvm::Value *S : Sizes)
+ ConstSizes.push_back(cast<llvm::Constant>(S));
+
+ auto *SizesArrayInit = llvm::ConstantArray::get(
+ llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
+ std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
+ auto *SizesArrayGbl = new llvm::GlobalVariable(
+ CGM.getModule(), SizesArrayInit->getType(),
+ /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
+ SizesArrayInit, Name);
+ SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ Info.SizesArray = SizesArrayGbl;
+ }
+
+ // The map types are always constant so we don't need to generate code to
+ // fill arrays. Instead, we create an array constant.
+ SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0);
+ llvm::copy(MapTypes, Mapping.begin());
+ llvm::Constant *MapTypesArrayInit =
+ llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
+ std::string MaptypesName =
+ CGM.getOpenMPRuntime().getName({"offload_maptypes"});
+ auto *MapTypesArrayGbl = new llvm::GlobalVariable(
+ CGM.getModule(), MapTypesArrayInit->getType(),
+ /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
+ MapTypesArrayInit, MaptypesName);
+ MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ Info.MapTypesArray = MapTypesArrayGbl;
+
+ for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
+ llvm::Value *BPVal = *BasePointers[I];
+ llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
+ Info.BasePointersArray, 0, I);
+ BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
+ Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
+ CGF.Builder.CreateStore(BPVal, BPAddr);
+
+ if (Info.requiresDevicePointerInfo())
+ if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl())
+ Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
+
+ llvm::Value *PVal = Pointers[I];
+ llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
+ Info.PointersArray, 0, I);
+ P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
+ Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
+ CGF.Builder.CreateStore(PVal, PAddr);
+
+ if (hasRuntimeEvaluationCaptureSize) {
+ llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
+ Info.SizesArray,
+ /*Idx0=*/0,
+ /*Idx1=*/I);
+ Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
+ CGF.Builder.CreateStore(
+ CGF.Builder.CreateIntCast(Sizes[I], CGM.Int64Ty, /*isSigned=*/true),
+ SAddr);
+ }
+ }
+ }
+}
+/// Emit the arguments to be passed to the runtime library based on the
+/// arrays of pointers, sizes and map types.
+static void emitOffloadingArraysArgument(
+ CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
+ llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
+ llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
+ CodeGenModule &CGM = CGF.CGM;
+ if (Info.NumberOfPtrs) {
+ BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
+ Info.BasePointersArray,
+ /*Idx0=*/0, /*Idx1=*/0);
+ PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
+ Info.PointersArray,
+ /*Idx0=*/0,
+ /*Idx1=*/0);
+ SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
+ /*Idx0=*/0, /*Idx1=*/0);
+ MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
+ llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
+ Info.MapTypesArray,
+ /*Idx0=*/0,
+ /*Idx1=*/0);
+ } else {
+ BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
+ PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
+ SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
+ MapTypesArrayArg =
+ llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
+ }
+}
+
+/// Check for inner distribute directive.
+static const OMPExecutableDirective *
+getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
+ const auto *CS = D.getInnermostCapturedStmt();
+ const auto *Body =
+ CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
+ const Stmt *ChildStmt =
+ CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
+
+ if (const auto *NestedDir =
+ dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+ OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
+ switch (D.getDirectiveKind()) {
+ case OMPD_target:
+ if (isOpenMPDistributeDirective(DKind))
+ return NestedDir;
+ if (DKind == OMPD_teams) {
+ Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return nullptr;
+ ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND =
+ dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPDistributeDirective(DKind))
+ return NND;
+ }
+ }
+ return nullptr;
+ case OMPD_target_teams:
+ if (isOpenMPDistributeDirective(DKind))
+ return NestedDir;
+ return nullptr;
+ case OMPD_target_parallel:
+ case OMPD_target_simd:
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ return nullptr;
+ case OMPD_target_teams_distribute:
+ case OMPD_target_teams_distribute_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_allocate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_declare_mapper:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ llvm_unreachable("Unexpected directive.");
+ }
+ }
+
+ return nullptr;
+}
+
+void CGOpenMPRuntime::emitTargetNumIterationsCall(
+ CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *Device,
+ const llvm::function_ref<llvm::Value *(
+ CodeGenFunction &CGF, const OMPLoopDirective &D)> &SizeEmitter) {
+ OpenMPDirectiveKind Kind = D.getDirectiveKind();
+ const OMPExecutableDirective *TD = &D;
+ // Get nested teams distribute kind directive, if any.
+ if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
+ TD = getNestedDistributeDirective(CGM.getContext(), D);
+ if (!TD)
+ return;
+ const auto *LD = cast<OMPLoopDirective>(TD);
+ auto &&CodeGen = [LD, &Device, &SizeEmitter, this](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ llvm::Value *NumIterations = SizeEmitter(CGF, *LD);
+
+ // Emit device ID if any.
+ llvm::Value *DeviceID;
+ if (Device)
+ DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
+ CGF.Int64Ty, /*isSigned=*/true);
+ else
+ DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
+
+ llvm::Value *Args[] = {DeviceID, NumIterations};
+ CGF.EmitRuntimeCall(
+ createRuntimeFunction(OMPRTL__kmpc_push_target_tripcount), Args);
+ };
+ emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
+}
+
+void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ llvm::Function *OutlinedFn,
+ llvm::Value *OutlinedFnID,
+ const Expr *IfCond, const Expr *Device) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ assert(OutlinedFn && "Invalid outlined function!");
+
+ const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>();
+ llvm::SmallVector<llvm::Value *, 16> CapturedVars;
+ const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
+ auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
+ };
+ emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
+
+ CodeGenFunction::OMPTargetDataInfo InputInfo;
+ llvm::Value *MapTypesArray = nullptr;
+ // Fill up the pointer arrays and transfer execution to the device.
+ auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
+ &MapTypesArray, &CS, RequiresOuterTask,
+ &CapturedVars](CodeGenFunction &CGF, PrePostActionTy &) {
+ // On top of the arrays that were filled up, the target offloading call
+ // takes as arguments the device id as well as the host pointer. The host
+ // pointer is used by the runtime library to identify the current target
+ // region, so it only has to be unique and not necessarily point to
+ // anything. It could be the pointer to the outlined function that
+ // implements the target region, but we aren't using that so that the
+ // compiler doesn't need to keep that, and could therefore inline the host
+ // function if proven worthwhile during optimization.
+
+ // From this point on, we need to have an ID of the target region defined.
+ assert(OutlinedFnID && "Invalid outlined function ID!");
+
+ // Emit device ID if any.
+ llvm::Value *DeviceID;
+ if (Device) {
+ DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
+ CGF.Int64Ty, /*isSigned=*/true);
+ } else {
+ DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
+ }
+
+ // Emit the number of elements in the offloading arrays.
+ llvm::Value *PointerNum =
+ CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
+
+ // Return value of the runtime offloading call.
+ llvm::Value *Return;
+
+ llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
+ llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
+
+ bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
+ // The target region is an outlined function launched by the runtime
+ // via calls __tgt_target() or __tgt_target_teams().
+ //
+ // __tgt_target() launches a target region with one team and one thread,
+ // executing a serial region. This master thread may in turn launch
+ // more threads within its team upon encountering a parallel region,
+ // however, no additional teams can be launched on the device.
+ //
+ // __tgt_target_teams() launches a target region with one or more teams,
+ // each with one or more threads. This call is required for target
+ // constructs such as:
+ // 'target teams'
+ // 'target' / 'teams'
+ // 'target teams distribute parallel for'
+ // 'target parallel'
+ // and so on.
+ //
+ // Note that on the host and CPU targets, the runtime implementation of
+ // these calls simply call the outlined function without forking threads.
+ // The outlined functions themselves have runtime calls to
+ // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
+ // the compiler in emitTeamsCall() and emitParallelCall().
+ //
+ // In contrast, on the NVPTX target, the implementation of
+ // __tgt_target_teams() launches a GPU kernel with the requested number
+ // of teams and threads so no additional calls to the runtime are required.
+ if (NumTeams) {
+ // If we have NumTeams defined this means that we have an enclosed teams
+ // region. Therefore we also expect to have NumThreads defined. These two
+ // values should be defined in the presence of a teams directive,
+ // regardless of having any clauses associated. If the user is using teams
+ // but no clauses, these two values will be the default that should be
+ // passed to the runtime library - a 32-bit integer with the value zero.
+ assert(NumThreads && "Thread limit expression should be available along "
+ "with number of teams.");
+ llvm::Value *OffloadingArgs[] = {DeviceID,
+ OutlinedFnID,
+ PointerNum,
+ InputInfo.BasePointersArray.getPointer(),
+ InputInfo.PointersArray.getPointer(),
+ InputInfo.SizesArray.getPointer(),
+ MapTypesArray,
+ NumTeams,
+ NumThreads};
+ Return = CGF.EmitRuntimeCall(
+ createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_teams_nowait
+ : OMPRTL__tgt_target_teams),
+ OffloadingArgs);
+ } else {
+ llvm::Value *OffloadingArgs[] = {DeviceID,
+ OutlinedFnID,
+ PointerNum,
+ InputInfo.BasePointersArray.getPointer(),
+ InputInfo.PointersArray.getPointer(),
+ InputInfo.SizesArray.getPointer(),
+ MapTypesArray};
+ Return = CGF.EmitRuntimeCall(
+ createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_nowait
+ : OMPRTL__tgt_target),
+ OffloadingArgs);
+ }
+
+ // Check the error code and execute the host version if required.
+ llvm::BasicBlock *OffloadFailedBlock =
+ CGF.createBasicBlock("omp_offload.failed");
+ llvm::BasicBlock *OffloadContBlock =
+ CGF.createBasicBlock("omp_offload.cont");
+ llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
+ CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
+
+ CGF.EmitBlock(OffloadFailedBlock);
+ if (RequiresOuterTask) {
+ CapturedVars.clear();
+ CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
+ }
+ emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
+ CGF.EmitBranch(OffloadContBlock);
+
+ CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
+ };
+
+ // Notify that the host version must be executed.
+ auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
+ RequiresOuterTask](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ if (RequiresOuterTask) {
+ CapturedVars.clear();
+ CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
+ }
+ emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
+ };
+
+ auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
+ &CapturedVars, RequiresOuterTask,
+ &CS](CodeGenFunction &CGF, PrePostActionTy &) {
+ // Fill up the arrays with all the captured variables.
+ MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
+ MappableExprsHandler::MapValuesArrayTy Pointers;
+ MappableExprsHandler::MapValuesArrayTy Sizes;
+ MappableExprsHandler::MapFlagsArrayTy MapTypes;
+
+ // Get mappable expression information.
+ MappableExprsHandler MEHandler(D, CGF);
+ llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
+
+ auto RI = CS.getCapturedRecordDecl()->field_begin();
+ auto CV = CapturedVars.begin();
+ for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
+ CE = CS.capture_end();
+ CI != CE; ++CI, ++RI, ++CV) {
+ MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
+ MappableExprsHandler::MapValuesArrayTy CurPointers;
+ MappableExprsHandler::MapValuesArrayTy CurSizes;
+ MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
+ MappableExprsHandler::StructRangeInfoTy PartialStruct;
+
+ // VLA sizes are passed to the outlined region by copy and do not have map
+ // information associated.
+ if (CI->capturesVariableArrayType()) {
+ CurBasePointers.push_back(*CV);
+ CurPointers.push_back(*CV);
+ CurSizes.push_back(CGF.Builder.CreateIntCast(
+ CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
+ // Copy to the device as an argument. No need to retrieve it.
+ CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
+ MappableExprsHandler::OMP_MAP_TARGET_PARAM |
+ MappableExprsHandler::OMP_MAP_IMPLICIT);
+ } else {
+ // If we have any information in the map clause, we use it, otherwise we
+ // just do a default mapping.
+ MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
+ CurSizes, CurMapTypes, PartialStruct);
+ if (CurBasePointers.empty())
+ MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
+ CurPointers, CurSizes, CurMapTypes);
+ // Generate correct mapping for variables captured by reference in
+ // lambdas.
+ if (CI->capturesVariable())
+ MEHandler.generateInfoForLambdaCaptures(
+ CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes,
+ CurMapTypes, LambdaPointers);
+ }
+ // We expect to have at least an element of information for this capture.
+ assert(!CurBasePointers.empty() &&
+ "Non-existing map pointer for capture!");
+ assert(CurBasePointers.size() == CurPointers.size() &&
+ CurBasePointers.size() == CurSizes.size() &&
+ CurBasePointers.size() == CurMapTypes.size() &&
+ "Inconsistent map information sizes!");
+
+ // If there is an entry in PartialStruct it means we have a struct with
+ // individual members mapped. Emit an extra combined entry.
+ if (PartialStruct.Base.isValid())
+ MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes,
+ CurMapTypes, PartialStruct);
+
+ // We need to append the results of this capture to what we already have.
+ BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
+ Pointers.append(CurPointers.begin(), CurPointers.end());
+ Sizes.append(CurSizes.begin(), CurSizes.end());
+ MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
+ }
+ // Adjust MEMBER_OF flags for the lambdas captures.
+ MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers,
+ Pointers, MapTypes);
+ // Map other list items in the map clause which are not captured variables
+ // but "declare target link" global variables.
+ MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes,
+ MapTypes);
+
+ TargetDataInfo Info;
+ // Fill up the arrays and create the arguments.
+ emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
+ emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
+ Info.PointersArray, Info.SizesArray,
+ Info.MapTypesArray, Info);
+ InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
+ InputInfo.BasePointersArray =
+ Address(Info.BasePointersArray, CGM.getPointerAlign());
+ InputInfo.PointersArray =
+ Address(Info.PointersArray, CGM.getPointerAlign());
+ InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
+ MapTypesArray = Info.MapTypesArray;
+ if (RequiresOuterTask)
+ CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
+ else
+ emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
+ };
+
+ auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
+ CodeGenFunction &CGF, PrePostActionTy &) {
+ if (RequiresOuterTask) {
+ CodeGenFunction::OMPTargetDataInfo InputInfo;
+ CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
+ } else {
+ emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
+ }
+ };
+
+ // If we have a target function ID it means that we need to support
+ // offloading, otherwise, just execute on the host. We need to execute on host
+ // regardless of the conditional in the if clause if, e.g., the user do not
+ // specify target triples.
+ if (OutlinedFnID) {
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
+ } else {
+ RegionCodeGenTy ThenRCG(TargetThenGen);
+ ThenRCG(CGF);
+ }
+ } else {
+ RegionCodeGenTy ElseRCG(TargetElseGen);
+ ElseRCG(CGF);
+ }
+}
+
+void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
+ StringRef ParentName) {
+ if (!S)
+ return;
+
+ // Codegen OMP target directives that offload compute to the device.
+ bool RequiresDeviceCodegen =
+ isa<OMPExecutableDirective>(S) &&
+ isOpenMPTargetExecutionDirective(
+ cast<OMPExecutableDirective>(S)->getDirectiveKind());
+
+ if (RequiresDeviceCodegen) {
+ const auto &E = *cast<OMPExecutableDirective>(S);
+ unsigned DeviceID;
+ unsigned FileID;
+ unsigned Line;
+ getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
+ FileID, Line);
+
+ // Is this a target region that should not be emitted as an entry point? If
+ // so just signal we are done with this target region.
+ if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
+ ParentName, Line))
+ return;
+
+ switch (E.getDirectiveKind()) {
+ case OMPD_target:
+ CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
+ cast<OMPTargetDirective>(E));
+ break;
+ case OMPD_target_parallel:
+ CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
+ CGM, ParentName, cast<OMPTargetParallelDirective>(E));
+ break;
+ case OMPD_target_teams:
+ CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
+ CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
+ break;
+ case OMPD_target_teams_distribute:
+ CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
+ CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
+ break;
+ case OMPD_target_teams_distribute_simd:
+ CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
+ CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
+ break;
+ case OMPD_target_parallel_for:
+ CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
+ CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
+ break;
+ case OMPD_target_parallel_for_simd:
+ CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
+ CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
+ break;
+ case OMPD_target_simd:
+ CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
+ CGM, ParentName, cast<OMPTargetSimdDirective>(E));
+ break;
+ case OMPD_target_teams_distribute_parallel_for:
+ CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
+ CGM, ParentName,
+ cast<OMPTargetTeamsDistributeParallelForDirective>(E));
+ break;
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ CodeGenFunction::
+ EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
+ CGM, ParentName,
+ cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
+ break;
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_allocate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_declare_mapper:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ llvm_unreachable("Unknown target directive for OpenMP device codegen.");
+ }
+ return;
+ }
+
+ if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
+ if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
+ return;
+
+ scanForTargetRegionsFunctions(
+ E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName);
+ return;
+ }
+
+ // If this is a lambda function, look into its body.
+ if (const auto *L = dyn_cast<LambdaExpr>(S))
+ S = L->getBody();
+
+ // Keep looking for target regions recursively.
+ for (const Stmt *II : S->children())
+ scanForTargetRegionsFunctions(II, ParentName);
+}
+
+bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
+ // If emitting code for the host, we do not process FD here. Instead we do
+ // the normal code generation.
+ if (!CGM.getLangOpts().OpenMPIsDevice)
+ return false;
+
+ const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
+ StringRef Name = CGM.getMangledName(GD);
+ // Try to detect target regions in the function.
+ if (const auto *FD = dyn_cast<FunctionDecl>(VD))
+ scanForTargetRegionsFunctions(FD->getBody(), Name);
+
+ // Do not to emit function if it is not marked as declare target.
+ return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
+ AlreadyEmittedTargetFunctions.count(Name) == 0;
+}
+
+bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
+ if (!CGM.getLangOpts().OpenMPIsDevice)
+ return false;
+
+ // Check if there are Ctors/Dtors in this declaration and look for target
+ // regions in it. We use the complete variant to produce the kernel name
+ // mangling.
+ QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
+ if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
+ for (const CXXConstructorDecl *Ctor : RD->ctors()) {
+ StringRef ParentName =
+ CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
+ scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
+ }
+ if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
+ StringRef ParentName =
+ CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
+ scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
+ }
+ }
+
+ // Do not to emit variable if it is not marked as declare target.
+ llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
+ cast<VarDecl>(GD.getDecl()));
+ if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
+ (*Res == OMPDeclareTargetDeclAttr::MT_To &&
+ HasRequiresUnifiedSharedMemory)) {
+ DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
+ return true;
+ }
+ return false;
+}
+
+llvm::Constant *
+CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
+ const VarDecl *VD) {
+ assert(VD->getType().isConstant(CGM.getContext()) &&
+ "Expected constant variable.");
+ StringRef VarName;
+ llvm::Constant *Addr;
+ llvm::GlobalValue::LinkageTypes Linkage;
+ QualType Ty = VD->getType();
+ SmallString<128> Buffer;
+ {
+ unsigned DeviceID;
+ unsigned FileID;
+ unsigned Line;
+ getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
+ FileID, Line);
+ llvm::raw_svector_ostream OS(Buffer);
+ OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
+ << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
+ VarName = OS.str();
+ }
+ Linkage = llvm::GlobalValue::InternalLinkage;
+ Addr =
+ getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
+ getDefaultFirstprivateAddressSpace());
+ cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
+ CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
+ CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
+ OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
+ VarName, Addr, VarSize,
+ OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
+ return Addr;
+}
+
+void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
+ llvm::Constant *Addr) {
+ llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
+ if (!Res) {
+ if (CGM.getLangOpts().OpenMPIsDevice) {
+ // Register non-target variables being emitted in device code (debug info
+ // may cause this).
+ StringRef VarName = CGM.getMangledName(VD);
+ EmittedNonTargetVariables.try_emplace(VarName, Addr);
+ }
+ return;
+ }
+ // Register declare target variables.
+ OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
+ StringRef VarName;
+ CharUnits VarSize;
+ llvm::GlobalValue::LinkageTypes Linkage;
+
+ if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
+ !HasRequiresUnifiedSharedMemory) {
+ Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
+ VarName = CGM.getMangledName(VD);
+ if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
+ VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
+ assert(!VarSize.isZero() && "Expected non-zero size of the variable");
+ } else {
+ VarSize = CharUnits::Zero();
+ }
+ Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
+ // Temp solution to prevent optimizations of the internal variables.
+ if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
+ std::string RefName = getName({VarName, "ref"});
+ if (!CGM.GetGlobalValue(RefName)) {
+ llvm::Constant *AddrRef =
+ getOrCreateInternalVariable(Addr->getType(), RefName);
+ auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
+ GVAddrRef->setConstant(/*Val=*/true);
+ GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
+ GVAddrRef->setInitializer(Addr);
+ CGM.addCompilerUsedGlobal(GVAddrRef);
+ }
+ }
+ } else {
+ assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
+ (*Res == OMPDeclareTargetDeclAttr::MT_To &&
+ HasRequiresUnifiedSharedMemory)) &&
+ "Declare target attribute must link or to with unified memory.");
+ if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
+ Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
+ else
+ Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
+
+ if (CGM.getLangOpts().OpenMPIsDevice) {
+ VarName = Addr->getName();
+ Addr = nullptr;
+ } else {
+ VarName = getAddrOfDeclareTargetVar(VD).getName();
+ Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
+ }
+ VarSize = CGM.getPointerSize();
+ Linkage = llvm::GlobalValue::WeakAnyLinkage;
+ }
+
+ OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
+ VarName, Addr, VarSize, Flags, Linkage);
+}
+
+bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
+ if (isa<FunctionDecl>(GD.getDecl()) ||
+ isa<OMPDeclareReductionDecl>(GD.getDecl()))
+ return emitTargetFunctions(GD);
+
+ return emitTargetGlobalVariable(GD);
+}
+
+void CGOpenMPRuntime::emitDeferredTargetDecls() const {
+ for (const VarDecl *VD : DeferredGlobalVariables) {
+ llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
+ if (!Res)
+ continue;
+ if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
+ !HasRequiresUnifiedSharedMemory) {
+ CGM.EmitGlobal(VD);
+ } else {
+ assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
+ (*Res == OMPDeclareTargetDeclAttr::MT_To &&
+ HasRequiresUnifiedSharedMemory)) &&
+ "Expected link clause or to clause with unified memory.");
+ (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
+ }
+ }
+}
+
+void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
+ CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
+ assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
+ " Expected target-based directive.");
+}
+
+void CGOpenMPRuntime::checkArchForUnifiedAddressing(
+ const OMPRequiresDecl *D) {
+ for (const OMPClause *Clause : D->clauselists()) {
+ if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
+ HasRequiresUnifiedSharedMemory = true;
+ break;
+ }
+ }
+}
+
+bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
+ LangAS &AS) {
+ if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
+ return false;
+ const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
+ switch(A->getAllocatorType()) {
+ case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
+ // Not supported, fallback to the default mem space.
+ case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
+ case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
+ case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
+ case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
+ case OMPAllocateDeclAttr::OMPThreadMemAlloc:
+ case OMPAllocateDeclAttr::OMPConstMemAlloc:
+ case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
+ AS = LangAS::Default;
+ return true;
+ case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
+ llvm_unreachable("Expected predefined allocator for the variables with the "
+ "static storage.");
+ }
+ return false;
+}
+
+bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
+ return HasRequiresUnifiedSharedMemory;
+}
+
+CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
+ CodeGenModule &CGM)
+ : CGM(CGM) {
+ if (CGM.getLangOpts().OpenMPIsDevice) {
+ SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
+ CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
+ }
+}
+
+CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
+ if (CGM.getLangOpts().OpenMPIsDevice)
+ CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
+}
+
+bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
+ if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
+ return true;
+
+ StringRef Name = CGM.getMangledName(GD);
+ const auto *D = cast<FunctionDecl>(GD.getDecl());
+ // Do not to emit function if it is marked as declare target as it was already
+ // emitted.
+ if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
+ if (D->hasBody() && AlreadyEmittedTargetFunctions.count(Name) == 0) {
+ if (auto *F = dyn_cast_or_null<llvm::Function>(CGM.GetGlobalValue(Name)))
+ return !F->isDeclaration();
+ return false;
+ }
+ return true;
+ }
+
+ return !AlreadyEmittedTargetFunctions.insert(Name).second;
+}
+
+llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
+ // If we don't have entries or if we are emitting code for the device, we
+ // don't need to do anything.
+ if (CGM.getLangOpts().OMPTargetTriples.empty() ||
+ CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
+ (OffloadEntriesInfoManager.empty() &&
+ !HasEmittedDeclareTargetRegion &&
+ !HasEmittedTargetRegion))
+ return nullptr;
+
+ // Create and register the function that handles the requires directives.
+ ASTContext &C = CGM.getContext();
+
+ llvm::Function *RequiresRegFn;
+ {
+ CodeGenFunction CGF(CGM);
+ const auto &FI = CGM.getTypes().arrangeNullaryFunction();
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
+ std::string ReqName = getName({"omp_offloading", "requires_reg"});
+ RequiresRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, ReqName, FI);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
+ OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
+ // TODO: check for other requires clauses.
+ // The requires directive takes effect only when a target region is
+ // present in the compilation unit. Otherwise it is ignored and not
+ // passed to the runtime. This avoids the runtime from throwing an error
+ // for mismatching requires clauses across compilation units that don't
+ // contain at least 1 target region.
+ assert((HasEmittedTargetRegion ||
+ HasEmittedDeclareTargetRegion ||
+ !OffloadEntriesInfoManager.empty()) &&
+ "Target or declare target region expected.");
+ if (HasRequiresUnifiedSharedMemory)
+ Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_requires),
+ llvm::ConstantInt::get(CGM.Int64Ty, Flags));
+ CGF.FinishFunction();
+ }
+ return RequiresRegFn;
+}
+
+llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() {
+ // If we have offloading in the current module, we need to emit the entries
+ // now and register the offloading descriptor.
+ createOffloadEntriesAndInfoMetadata();
+
+ // Create and register the offloading binary descriptors. This is the main
+ // entity that captures all the information about offloading in the current
+ // compilation unit.
+ return createOffloadingBinaryDescriptorRegistration();
+}
+
+void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ SourceLocation Loc,
+ llvm::Function *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+
+ // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
+ llvm::Value *Args[] = {
+ RTLoc,
+ CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
+ CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
+ llvm::SmallVector<llvm::Value *, 16> RealArgs;
+ RealArgs.append(std::begin(Args), std::end(Args));
+ RealArgs.append(CapturedVars.begin(), CapturedVars.end());
+
+ llvm::FunctionCallee RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
+ CGF.EmitRuntimeCall(RTLFn, RealArgs);
+}
+
+void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
+ const Expr *NumTeams,
+ const Expr *ThreadLimit,
+ SourceLocation Loc) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+
+ llvm::Value *NumTeamsVal =
+ NumTeams
+ ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
+ CGF.CGM.Int32Ty, /* isSigned = */ true)
+ : CGF.Builder.getInt32(0);
+
+ llvm::Value *ThreadLimitVal =
+ ThreadLimit
+ ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
+ CGF.CGM.Int32Ty, /* isSigned = */ true)
+ : CGF.Builder.getInt32(0);
+
+ // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
+ llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
+ ThreadLimitVal};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
+ PushNumTeamsArgs);
+}
+
+void CGOpenMPRuntime::emitTargetDataCalls(
+ CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
+ const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ // Action used to replace the default codegen action and turn privatization
+ // off.
+ PrePostActionTy NoPrivAction;
+
+ // Generate the code for the opening of the data environment. Capture all the
+ // arguments of the runtime call by reference because they are used in the
+ // closing of the region.
+ auto &&BeginThenGen = [this, &D, Device, &Info,
+ &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
+ // Fill up the arrays with all the mapped variables.
+ MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
+ MappableExprsHandler::MapValuesArrayTy Pointers;
+ MappableExprsHandler::MapValuesArrayTy Sizes;
+ MappableExprsHandler::MapFlagsArrayTy MapTypes;
+
+ // Get map clause information.
+ MappableExprsHandler MCHandler(D, CGF);
+ MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
+
+ // Fill up the arrays and create the arguments.
+ emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
+
+ llvm::Value *BasePointersArrayArg = nullptr;
+ llvm::Value *PointersArrayArg = nullptr;
+ llvm::Value *SizesArrayArg = nullptr;
+ llvm::Value *MapTypesArrayArg = nullptr;
+ emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
+ SizesArrayArg, MapTypesArrayArg, Info);
+
+ // Emit device ID if any.
+ llvm::Value *DeviceID = nullptr;
+ if (Device) {
+ DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
+ CGF.Int64Ty, /*isSigned=*/true);
+ } else {
+ DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
+ }
+
+ // Emit the number of elements in the offloading arrays.
+ llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
+
+ llvm::Value *OffloadingArgs[] = {
+ DeviceID, PointerNum, BasePointersArrayArg,
+ PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_begin),
+ OffloadingArgs);
+
+ // If device pointer privatization is required, emit the body of the region
+ // here. It will have to be duplicated: with and without privatization.
+ if (!Info.CaptureDeviceAddrMap.empty())
+ CodeGen(CGF);
+ };
+
+ // Generate code for the closing of the data region.
+ auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ assert(Info.isValid() && "Invalid data environment closing arguments.");
+
+ llvm::Value *BasePointersArrayArg = nullptr;
+ llvm::Value *PointersArrayArg = nullptr;
+ llvm::Value *SizesArrayArg = nullptr;
+ llvm::Value *MapTypesArrayArg = nullptr;
+ emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
+ SizesArrayArg, MapTypesArrayArg, Info);
+
+ // Emit device ID if any.
+ llvm::Value *DeviceID = nullptr;
+ if (Device) {
+ DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
+ CGF.Int64Ty, /*isSigned=*/true);
+ } else {
+ DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
+ }
+
+ // Emit the number of elements in the offloading arrays.
+ llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
+
+ llvm::Value *OffloadingArgs[] = {
+ DeviceID, PointerNum, BasePointersArrayArg,
+ PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_end),
+ OffloadingArgs);
+ };
+
+ // If we need device pointer privatization, we need to emit the body of the
+ // region with no privatization in the 'else' branch of the conditional.
+ // Otherwise, we don't have to do anything.
+ auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+ if (!Info.CaptureDeviceAddrMap.empty()) {
+ CodeGen.setAction(NoPrivAction);
+ CodeGen(CGF);
+ }
+ };
+
+ // We don't have to do anything to close the region if the if clause evaluates
+ // to false.
+ auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
+
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
+ } else {
+ RegionCodeGenTy RCG(BeginThenGen);
+ RCG(CGF);
+ }
+
+ // If we don't require privatization of device pointers, we emit the body in
+ // between the runtime calls. This avoids duplicating the body code.
+ if (Info.CaptureDeviceAddrMap.empty()) {
+ CodeGen.setAction(NoPrivAction);
+ CodeGen(CGF);
+ }
+
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen);
+ } else {
+ RegionCodeGenTy RCG(EndThenGen);
+ RCG(CGF);
+ }
+}
+
+void CGOpenMPRuntime::emitTargetDataStandAloneCall(
+ CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
+ const Expr *Device) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ assert((isa<OMPTargetEnterDataDirective>(D) ||
+ isa<OMPTargetExitDataDirective>(D) ||
+ isa<OMPTargetUpdateDirective>(D)) &&
+ "Expecting either target enter, exit data, or update directives.");
+
+ CodeGenFunction::OMPTargetDataInfo InputInfo;
+ llvm::Value *MapTypesArray = nullptr;
+ // Generate the code for the opening of the data environment.
+ auto &&ThenGen = [this, &D, Device, &InputInfo,
+ &MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) {
+ // Emit device ID if any.
+ llvm::Value *DeviceID = nullptr;
+ if (Device) {
+ DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
+ CGF.Int64Ty, /*isSigned=*/true);
+ } else {
+ DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
+ }
+
+ // Emit the number of elements in the offloading arrays.
+ llvm::Constant *PointerNum =
+ CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
+
+ llvm::Value *OffloadingArgs[] = {DeviceID,
+ PointerNum,
+ InputInfo.BasePointersArray.getPointer(),
+ InputInfo.PointersArray.getPointer(),
+ InputInfo.SizesArray.getPointer(),
+ MapTypesArray};
+
+ // Select the right runtime function call for each expected standalone
+ // directive.
+ const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
+ OpenMPRTLFunction RTLFn;
+ switch (D.getDirectiveKind()) {
+ case OMPD_target_enter_data:
+ RTLFn = HasNowait ? OMPRTL__tgt_target_data_begin_nowait
+ : OMPRTL__tgt_target_data_begin;
+ break;
+ case OMPD_target_exit_data:
+ RTLFn = HasNowait ? OMPRTL__tgt_target_data_end_nowait
+ : OMPRTL__tgt_target_data_end;
+ break;
+ case OMPD_target_update:
+ RTLFn = HasNowait ? OMPRTL__tgt_target_data_update_nowait
+ : OMPRTL__tgt_target_data_update;
+ break;
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_allocate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_declare_simd:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_declare_mapper:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_target:
+ case OMPD_target_simd:
+ case OMPD_target_teams_distribute:
+ case OMPD_target_teams_distribute_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ case OMPD_target_teams:
+ case OMPD_target_parallel:
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ llvm_unreachable("Unexpected standalone target data directive.");
+ break;
+ }
+ CGF.EmitRuntimeCall(createRuntimeFunction(RTLFn), OffloadingArgs);
+ };
+
+ auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray](
+ CodeGenFunction &CGF, PrePostActionTy &) {
+ // Fill up the arrays with all the mapped variables.
+ MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
+ MappableExprsHandler::MapValuesArrayTy Pointers;
+ MappableExprsHandler::MapValuesArrayTy Sizes;
+ MappableExprsHandler::MapFlagsArrayTy MapTypes;
+
+ // Get map clause information.
+ MappableExprsHandler MEHandler(D, CGF);
+ MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
+
+ TargetDataInfo Info;
+ // Fill up the arrays and create the arguments.
+ emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
+ emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
+ Info.PointersArray, Info.SizesArray,
+ Info.MapTypesArray, Info);
+ InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
+ InputInfo.BasePointersArray =
+ Address(Info.BasePointersArray, CGM.getPointerAlign());
+ InputInfo.PointersArray =
+ Address(Info.PointersArray, CGM.getPointerAlign());
+ InputInfo.SizesArray =
+ Address(Info.SizesArray, CGM.getPointerAlign());
+ MapTypesArray = Info.MapTypesArray;
+ if (D.hasClausesOfKind<OMPDependClause>())
+ CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
+ else
+ emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
+ };
+
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, TargetThenGen,
+ [](CodeGenFunction &CGF, PrePostActionTy &) {});
+ } else {
+ RegionCodeGenTy ThenRCG(TargetThenGen);
+ ThenRCG(CGF);
+ }
+}
+
+namespace {
+ /// Kind of parameter in a function with 'declare simd' directive.
+ enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
+ /// Attribute set of the parameter.
+ struct ParamAttrTy {
+ ParamKindTy Kind = Vector;
+ llvm::APSInt StrideOrArg;
+ llvm::APSInt Alignment;
+ };
+} // namespace
+
+static unsigned evaluateCDTSize(const FunctionDecl *FD,
+ ArrayRef<ParamAttrTy> ParamAttrs) {
+ // Every vector variant of a SIMD-enabled function has a vector length (VLEN).
+ // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
+ // of that clause. The VLEN value must be power of 2.
+ // In other case the notion of the function`s "characteristic data type" (CDT)
+ // is used to compute the vector length.
+ // CDT is defined in the following order:
+ // a) For non-void function, the CDT is the return type.
+ // b) If the function has any non-uniform, non-linear parameters, then the
+ // CDT is the type of the first such parameter.
+ // c) If the CDT determined by a) or b) above is struct, union, or class
+ // type which is pass-by-value (except for the type that maps to the
+ // built-in complex data type), the characteristic data type is int.
+ // d) If none of the above three cases is applicable, the CDT is int.
+ // The VLEN is then determined based on the CDT and the size of vector
+ // register of that ISA for which current vector version is generated. The
+ // VLEN is computed using the formula below:
+ // VLEN = sizeof(vector_register) / sizeof(CDT),
+ // where vector register size specified in section 3.2.1 Registers and the
+ // Stack Frame of original AMD64 ABI document.
+ QualType RetType = FD->getReturnType();
+ if (RetType.isNull())
+ return 0;
+ ASTContext &C = FD->getASTContext();
+ QualType CDT;
+ if (!RetType.isNull() && !RetType->isVoidType()) {
+ CDT = RetType;
+ } else {
+ unsigned Offset = 0;
+ if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
+ if (ParamAttrs[Offset].Kind == Vector)
+ CDT = C.getPointerType(C.getRecordType(MD->getParent()));
+ ++Offset;
+ }
+ if (CDT.isNull()) {
+ for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
+ if (ParamAttrs[I + Offset].Kind == Vector) {
+ CDT = FD->getParamDecl(I)->getType();
+ break;
+ }
+ }
+ }
+ }
+ if (CDT.isNull())
+ CDT = C.IntTy;
+ CDT = CDT->getCanonicalTypeUnqualified();
+ if (CDT->isRecordType() || CDT->isUnionType())
+ CDT = C.IntTy;
+ return C.getTypeSize(CDT);
+}
+
+static void
+emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
+ const llvm::APSInt &VLENVal,
+ ArrayRef<ParamAttrTy> ParamAttrs,
+ OMPDeclareSimdDeclAttr::BranchStateTy State) {
+ struct ISADataTy {
+ char ISA;
+ unsigned VecRegSize;
+ };
+ ISADataTy ISAData[] = {
+ {
+ 'b', 128
+ }, // SSE
+ {
+ 'c', 256
+ }, // AVX
+ {
+ 'd', 256
+ }, // AVX2
+ {
+ 'e', 512
+ }, // AVX512
+ };
+ llvm::SmallVector<char, 2> Masked;
+ switch (State) {
+ case OMPDeclareSimdDeclAttr::BS_Undefined:
+ Masked.push_back('N');
+ Masked.push_back('M');
+ break;
+ case OMPDeclareSimdDeclAttr::BS_Notinbranch:
+ Masked.push_back('N');
+ break;
+ case OMPDeclareSimdDeclAttr::BS_Inbranch:
+ Masked.push_back('M');
+ break;
+ }
+ for (char Mask : Masked) {
+ for (const ISADataTy &Data : ISAData) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ Out << "_ZGV" << Data.ISA << Mask;
+ if (!VLENVal) {
+ unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
+ assert(NumElts && "Non-zero simdlen/cdtsize expected");
+ Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
+ } else {
+ Out << VLENVal;
+ }
+ for (const ParamAttrTy &ParamAttr : ParamAttrs) {
+ switch (ParamAttr.Kind){
+ case LinearWithVarStride:
+ Out << 's' << ParamAttr.StrideOrArg;
+ break;
+ case Linear:
+ Out << 'l';
+ if (!!ParamAttr.StrideOrArg)
+ Out << ParamAttr.StrideOrArg;
+ break;
+ case Uniform:
+ Out << 'u';
+ break;
+ case Vector:
+ Out << 'v';
+ break;
+ }
+ if (!!ParamAttr.Alignment)
+ Out << 'a' << ParamAttr.Alignment;
+ }
+ Out << '_' << Fn->getName();
+ Fn->addFnAttr(Out.str());
+ }
+ }
+}
+
+// This are the Functions that are needed to mangle the name of the
+// vector functions generated by the compiler, according to the rules
+// defined in the "Vector Function ABI specifications for AArch64",
+// available at
+// https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
+
+/// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
+///
+/// TODO: Need to implement the behavior for reference marked with a
+/// var or no linear modifiers (1.b in the section). For this, we
+/// need to extend ParamKindTy to support the linear modifiers.
+static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
+ QT = QT.getCanonicalType();
+
+ if (QT->isVoidType())
+ return false;
+
+ if (Kind == ParamKindTy::Uniform)
+ return false;
+
+ if (Kind == ParamKindTy::Linear)
+ return false;
+
+ // TODO: Handle linear references with modifiers
+
+ if (Kind == ParamKindTy::LinearWithVarStride)
+ return false;
+
+ return true;
+}
+
+/// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
+static bool getAArch64PBV(QualType QT, ASTContext &C) {
+ QT = QT.getCanonicalType();
+ unsigned Size = C.getTypeSize(QT);
+
+ // Only scalars and complex within 16 bytes wide set PVB to true.
+ if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
+ return false;
+
+ if (QT->isFloatingType())
+ return true;
+
+ if (QT->isIntegerType())
+ return true;
+
+ if (QT->isPointerType())
+ return true;
+
+ // TODO: Add support for complex types (section 3.1.2, item 2).
+
+ return false;
+}
+
+/// Computes the lane size (LS) of a return type or of an input parameter,
+/// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
+/// TODO: Add support for references, section 3.2.1, item 1.
+static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
+ if (getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
+ QualType PTy = QT.getCanonicalType()->getPointeeType();
+ if (getAArch64PBV(PTy, C))
+ return C.getTypeSize(PTy);
+ }
+ if (getAArch64PBV(QT, C))
+ return C.getTypeSize(QT);
+
+ return C.getTypeSize(C.getUIntPtrType());
+}
+
+// Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
+// signature of the scalar function, as defined in 3.2.2 of the
+// AAVFABI.
+static std::tuple<unsigned, unsigned, bool>
+getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
+ QualType RetType = FD->getReturnType().getCanonicalType();
+
+ ASTContext &C = FD->getASTContext();
+
+ bool OutputBecomesInput = false;
+
+ llvm::SmallVector<unsigned, 8> Sizes;
+ if (!RetType->isVoidType()) {
+ Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
+ if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
+ OutputBecomesInput = true;
+ }
+ for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
+ QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
+ Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
+ }
+
+ assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
+ // The LS of a function parameter / return value can only be a power
+ // of 2, starting from 8 bits, up to 128.
+ assert(std::all_of(Sizes.begin(), Sizes.end(),
+ [](unsigned Size) {
+ return Size == 8 || Size == 16 || Size == 32 ||
+ Size == 64 || Size == 128;
+ }) &&
+ "Invalid size");
+
+ return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
+ *std::max_element(std::begin(Sizes), std::end(Sizes)),
+ OutputBecomesInput);
+}
+
+/// Mangle the parameter part of the vector function name according to
+/// their OpenMP classification. The mangling function is defined in
+/// section 3.5 of the AAVFABI.
+static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ for (const auto &ParamAttr : ParamAttrs) {
+ switch (ParamAttr.Kind) {
+ case LinearWithVarStride:
+ Out << "ls" << ParamAttr.StrideOrArg;
+ break;
+ case Linear:
+ Out << 'l';
+ // Don't print the step value if it is not present or if it is
+ // equal to 1.
+ if (!!ParamAttr.StrideOrArg && ParamAttr.StrideOrArg != 1)
+ Out << ParamAttr.StrideOrArg;
+ break;
+ case Uniform:
+ Out << 'u';
+ break;
+ case Vector:
+ Out << 'v';
+ break;
+ }
+
+ if (!!ParamAttr.Alignment)
+ Out << 'a' << ParamAttr.Alignment;
+ }
+
+ return Out.str();
+}
+
+// Function used to add the attribute. The parameter `VLEN` is
+// templated to allow the use of "x" when targeting scalable functions
+// for SVE.
+template <typename T>
+static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
+ char ISA, StringRef ParSeq,
+ StringRef MangledName, bool OutputBecomesInput,
+ llvm::Function *Fn) {
+ SmallString<256> Buffer;
+ llvm::raw_svector_ostream Out(Buffer);
+ Out << Prefix << ISA << LMask << VLEN;
+ if (OutputBecomesInput)
+ Out << "v";
+ Out << ParSeq << "_" << MangledName;
+ Fn->addFnAttr(Out.str());
+}
+
+// Helper function to generate the Advanced SIMD names depending on
+// the value of the NDS when simdlen is not present.
+static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
+ StringRef Prefix, char ISA,
+ StringRef ParSeq, StringRef MangledName,
+ bool OutputBecomesInput,
+ llvm::Function *Fn) {
+ switch (NDS) {
+ case 8:
+ addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ break;
+ case 16:
+ addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ break;
+ case 32:
+ addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ break;
+ case 64:
+ case 128:
+ addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ break;
+ default:
+ llvm_unreachable("Scalar type is too wide.");
+ }
+}
+
+/// Emit vector function attributes for AArch64, as defined in the AAVFABI.
+static void emitAArch64DeclareSimdFunction(
+ CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
+ ArrayRef<ParamAttrTy> ParamAttrs,
+ OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
+ char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
+
+ // Get basic data for building the vector signature.
+ const auto Data = getNDSWDS(FD, ParamAttrs);
+ const unsigned NDS = std::get<0>(Data);
+ const unsigned WDS = std::get<1>(Data);
+ const bool OutputBecomesInput = std::get<2>(Data);
+
+ // Check the values provided via `simdlen` by the user.
+ // 1. A `simdlen(1)` doesn't produce vector signatures,
+ if (UserVLEN == 1) {
+ unsigned DiagID = CGM.getDiags().getCustomDiagID(
+ DiagnosticsEngine::Warning,
+ "The clause simdlen(1) has no effect when targeting aarch64.");
+ CGM.getDiags().Report(SLoc, DiagID);
+ return;
+ }
+
+ // 2. Section 3.3.1, item 1: user input must be a power of 2 for
+ // Advanced SIMD output.
+ if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
+ unsigned DiagID = CGM.getDiags().getCustomDiagID(
+ DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
+ "power of 2 when targeting Advanced SIMD.");
+ CGM.getDiags().Report(SLoc, DiagID);
+ return;
+ }
+
+ // 3. Section 3.4.1. SVE fixed lengh must obey the architectural
+ // limits.
+ if (ISA == 's' && UserVLEN != 0) {
+ if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
+ unsigned DiagID = CGM.getDiags().getCustomDiagID(
+ DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
+ "lanes in the architectural constraints "
+ "for SVE (min is 128-bit, max is "
+ "2048-bit, by steps of 128-bit)");
+ CGM.getDiags().Report(SLoc, DiagID) << WDS;
+ return;
+ }
+ }
+
+ // Sort out parameter sequence.
+ const std::string ParSeq = mangleVectorParameters(ParamAttrs);
+ StringRef Prefix = "_ZGV";
+ // Generate simdlen from user input (if any).
+ if (UserVLEN) {
+ if (ISA == 's') {
+ // SVE generates only a masked function.
+ addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ } else {
+ assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
+ // Advanced SIMD generates one or two functions, depending on
+ // the `[not]inbranch` clause.
+ switch (State) {
+ case OMPDeclareSimdDeclAttr::BS_Undefined:
+ addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ break;
+ case OMPDeclareSimdDeclAttr::BS_Notinbranch:
+ addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ break;
+ case OMPDeclareSimdDeclAttr::BS_Inbranch:
+ addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ break;
+ }
+ }
+ } else {
+ // If no user simdlen is provided, follow the AAVFABI rules for
+ // generating the vector length.
+ if (ISA == 's') {
+ // SVE, section 3.4.1, item 1.
+ addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ } else {
+ assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
+ // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
+ // two vector names depending on the use of the clause
+ // `[not]inbranch`.
+ switch (State) {
+ case OMPDeclareSimdDeclAttr::BS_Undefined:
+ addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ break;
+ case OMPDeclareSimdDeclAttr::BS_Notinbranch:
+ addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ break;
+ case OMPDeclareSimdDeclAttr::BS_Inbranch:
+ addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
+ OutputBecomesInput, Fn);
+ break;
+ }
+ }
+ }
+}
+
+void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
+ llvm::Function *Fn) {
+ ASTContext &C = CGM.getContext();
+ FD = FD->getMostRecentDecl();
+ // Map params to their positions in function decl.
+ llvm::DenseMap<const Decl *, unsigned> ParamPositions;
+ if (isa<CXXMethodDecl>(FD))
+ ParamPositions.try_emplace(FD, 0);
+ unsigned ParamPos = ParamPositions.size();
+ for (const ParmVarDecl *P : FD->parameters()) {
+ ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
+ ++ParamPos;
+ }
+ while (FD) {
+ for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
+ llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
+ // Mark uniform parameters.
+ for (const Expr *E : Attr->uniforms()) {
+ E = E->IgnoreParenImpCasts();
+ unsigned Pos;
+ if (isa<CXXThisExpr>(E)) {
+ Pos = ParamPositions[FD];
+ } else {
+ const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
+ ->getCanonicalDecl();
+ Pos = ParamPositions[PVD];
+ }
+ ParamAttrs[Pos].Kind = Uniform;
+ }
+ // Get alignment info.
+ auto NI = Attr->alignments_begin();
+ for (const Expr *E : Attr->aligneds()) {
+ E = E->IgnoreParenImpCasts();
+ unsigned Pos;
+ QualType ParmTy;
+ if (isa<CXXThisExpr>(E)) {
+ Pos = ParamPositions[FD];
+ ParmTy = E->getType();
+ } else {
+ const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
+ ->getCanonicalDecl();
+ Pos = ParamPositions[PVD];
+ ParmTy = PVD->getType();
+ }
+ ParamAttrs[Pos].Alignment =
+ (*NI)
+ ? (*NI)->EvaluateKnownConstInt(C)
+ : llvm::APSInt::getUnsigned(
+ C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
+ .getQuantity());
+ ++NI;
+ }
+ // Mark linear parameters.
+ auto SI = Attr->steps_begin();
+ auto MI = Attr->modifiers_begin();
+ for (const Expr *E : Attr->linears()) {
+ E = E->IgnoreParenImpCasts();
+ unsigned Pos;
+ if (isa<CXXThisExpr>(E)) {
+ Pos = ParamPositions[FD];
+ } else {
+ const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
+ ->getCanonicalDecl();
+ Pos = ParamPositions[PVD];
+ }
+ ParamAttrTy &ParamAttr = ParamAttrs[Pos];
+ ParamAttr.Kind = Linear;
+ if (*SI) {
+ Expr::EvalResult Result;
+ if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
+ if (const auto *DRE =
+ cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
+ if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
+ ParamAttr.Kind = LinearWithVarStride;
+ ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
+ ParamPositions[StridePVD->getCanonicalDecl()]);
+ }
+ }
+ } else {
+ ParamAttr.StrideOrArg = Result.Val.getInt();
+ }
+ }
+ ++SI;
+ ++MI;
+ }
+ llvm::APSInt VLENVal;
+ SourceLocation ExprLoc;
+ const Expr *VLENExpr = Attr->getSimdlen();
+ if (VLENExpr) {
+ VLENVal = VLENExpr->EvaluateKnownConstInt(C);
+ ExprLoc = VLENExpr->getExprLoc();
+ }
+ OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
+ if (CGM.getTriple().getArch() == llvm::Triple::x86 ||
+ CGM.getTriple().getArch() == llvm::Triple::x86_64) {
+ emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
+ } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
+ unsigned VLEN = VLENVal.getExtValue();
+ StringRef MangledName = Fn->getName();
+ if (CGM.getTarget().hasFeature("sve"))
+ emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
+ MangledName, 's', 128, Fn, ExprLoc);
+ if (CGM.getTarget().hasFeature("neon"))
+ emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
+ MangledName, 'n', 128, Fn, ExprLoc);
+ }
+ }
+ FD = FD->getPreviousDecl();
+ }
+}
+
+namespace {
+/// Cleanup action for doacross support.
+class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
+public:
+ static const int DoacrossFinArgs = 2;
+
+private:
+ llvm::FunctionCallee RTLFn;
+ llvm::Value *Args[DoacrossFinArgs];
+
+public:
+ DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
+ ArrayRef<llvm::Value *> CallArgs)
+ : RTLFn(RTLFn) {
+ assert(CallArgs.size() == DoacrossFinArgs);
+ std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
+ }
+ void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
+ if (!CGF.HaveInsertPoint())
+ return;
+ CGF.EmitRuntimeCall(RTLFn, Args);
+ }
+};
+} // namespace
+
+void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
+ const OMPLoopDirective &D,
+ ArrayRef<Expr *> NumIterations) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ ASTContext &C = CGM.getContext();
+ QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
+ RecordDecl *RD;
+ if (KmpDimTy.isNull()) {
+ // Build struct kmp_dim { // loop bounds info casted to kmp_int64
+ // kmp_int64 lo; // lower
+ // kmp_int64 up; // upper
+ // kmp_int64 st; // stride
+ // };
+ RD = C.buildImplicitRecord("kmp_dim");
+ RD->startDefinition();
+ addFieldToRecordDecl(C, RD, Int64Ty);
+ addFieldToRecordDecl(C, RD, Int64Ty);
+ addFieldToRecordDecl(C, RD, Int64Ty);
+ RD->completeDefinition();
+ KmpDimTy = C.getRecordType(RD);
+ } else {
+ RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
+ }
+ llvm::APInt Size(/*numBits=*/32, NumIterations.size());
+ QualType ArrayTy =
+ C.getConstantArrayType(KmpDimTy, Size, ArrayType::Normal, 0);
+
+ Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
+ CGF.EmitNullInitialization(DimsAddr, ArrayTy);
+ enum { LowerFD = 0, UpperFD, StrideFD };
+ // Fill dims with data.
+ for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
+ LValue DimsLVal = CGF.MakeAddrLValue(
+ CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
+ // dims.upper = num_iterations;
+ LValue UpperLVal = CGF.EmitLValueForField(
+ DimsLVal, *std::next(RD->field_begin(), UpperFD));
+ llvm::Value *NumIterVal =
+ CGF.EmitScalarConversion(CGF.EmitScalarExpr(NumIterations[I]),
+ D.getNumIterations()->getType(), Int64Ty,
+ D.getNumIterations()->getExprLoc());
+ CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
+ // dims.stride = 1;
+ LValue StrideLVal = CGF.EmitLValueForField(
+ DimsLVal, *std::next(RD->field_begin(), StrideFD));
+ CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
+ StrideLVal);
+ }
+
+ // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
+ // kmp_int32 num_dims, struct kmp_dim * dims);
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, D.getBeginLoc()),
+ getThreadID(CGF, D.getBeginLoc()),
+ llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
+ CGM.VoidPtrTy)};
+
+ llvm::FunctionCallee RTLFn =
+ createRuntimeFunction(OMPRTL__kmpc_doacross_init);
+ CGF.EmitRuntimeCall(RTLFn, Args);
+ llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
+ emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
+ llvm::FunctionCallee FiniRTLFn =
+ createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
+ CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
+ llvm::makeArrayRef(FiniArgs));
+}
+
+void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
+ const OMPDependClause *C) {
+ QualType Int64Ty =
+ CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
+ llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
+ QualType ArrayTy = CGM.getContext().getConstantArrayType(
+ Int64Ty, Size, ArrayType::Normal, 0);
+ Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
+ for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
+ const Expr *CounterVal = C->getLoopData(I);
+ assert(CounterVal);
+ llvm::Value *CntVal = CGF.EmitScalarConversion(
+ CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
+ CounterVal->getExprLoc());
+ CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
+ /*Volatile=*/false, Int64Ty);
+ }
+ llvm::Value *Args[] = {
+ emitUpdateLocation(CGF, C->getBeginLoc()),
+ getThreadID(CGF, C->getBeginLoc()),
+ CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
+ llvm::FunctionCallee RTLFn;
+ if (C->getDependencyKind() == OMPC_DEPEND_source) {
+ RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
+ } else {
+ assert(C->getDependencyKind() == OMPC_DEPEND_sink);
+ RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
+ }
+ CGF.EmitRuntimeCall(RTLFn, Args);
+}
+
+void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
+ llvm::FunctionCallee Callee,
+ ArrayRef<llvm::Value *> Args) const {
+ assert(Loc.isValid() && "Outlined function call location must be valid.");
+ auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
+
+ if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
+ if (Fn->doesNotThrow()) {
+ CGF.EmitNounwindRuntimeCall(Fn, Args);
+ return;
+ }
+ }
+ CGF.EmitRuntimeCall(Callee, Args);
+}
+
+void CGOpenMPRuntime::emitOutlinedFunctionCall(
+ CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
+ ArrayRef<llvm::Value *> Args) const {
+ emitCall(CGF, Loc, OutlinedFn, Args);
+}
+
+void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
+ if (const auto *FD = dyn_cast<FunctionDecl>(D))
+ if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
+ HasEmittedDeclareTargetRegion = true;
+}
+
+Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
+ const VarDecl *NativeParam,
+ const VarDecl *TargetParam) const {
+ return CGF.GetAddrOfLocalVar(NativeParam);
+}
+
+namespace {
+/// Cleanup action for allocate support.
+class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
+public:
+ static const int CleanupArgs = 3;
+
+private:
+ llvm::FunctionCallee RTLFn;
+ llvm::Value *Args[CleanupArgs];
+
+public:
+ OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,
+ ArrayRef<llvm::Value *> CallArgs)
+ : RTLFn(RTLFn) {
+ assert(CallArgs.size() == CleanupArgs &&
+ "Size of arguments does not match.");
+ std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
+ }
+ void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
+ if (!CGF.HaveInsertPoint())
+ return;
+ CGF.EmitRuntimeCall(RTLFn, Args);
+ }
+};
+} // namespace
+
+Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
+ const VarDecl *VD) {
+ if (!VD)
+ return Address::invalid();
+ const VarDecl *CVD = VD->getCanonicalDecl();
+ if (!CVD->hasAttr<OMPAllocateDeclAttr>())
+ return Address::invalid();
+ const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
+ // Use the default allocation.
+ if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc &&
+ !AA->getAllocator())
+ return Address::invalid();
+ llvm::Value *Size;
+ CharUnits Align = CGM.getContext().getDeclAlign(CVD);
+ if (CVD->getType()->isVariablyModifiedType()) {
+ Size = CGF.getTypeSize(CVD->getType());
+ // Align the size: ((size + align - 1) / align) * align
+ Size = CGF.Builder.CreateNUWAdd(
+ Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
+ Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
+ Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
+ } else {
+ CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
+ Size = CGM.getSize(Sz.alignTo(Align));
+ }
+ llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
+ assert(AA->getAllocator() &&
+ "Expected allocator expression for non-default allocator.");
+ llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
+ // According to the standard, the original allocator type is a enum (integer).
+ // Convert to pointer type, if required.
+ if (Allocator->getType()->isIntegerTy())
+ Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
+ else if (Allocator->getType()->isPointerTy())
+ Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
+ CGM.VoidPtrTy);
+ llvm::Value *Args[] = {ThreadID, Size, Allocator};
+
+ llvm::Value *Addr =
+ CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_alloc), Args,
+ CVD->getName() + ".void.addr");
+ llvm::Value *FiniArgs[OMPAllocateCleanupTy::CleanupArgs] = {ThreadID, Addr,
+ Allocator};
+ llvm::FunctionCallee FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_free);
+
+ CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
+ llvm::makeArrayRef(FiniArgs));
+ Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ Addr,
+ CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
+ CVD->getName() + ".addr");
+ return Address(Addr, Align);
+}
+
+llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ const VarDecl *PartIDVar, const VarDecl *TaskTVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
+ bool Tied, unsigned &NumberOfParts) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ llvm::Function *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars,
+ const Expr *IfCond) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitCriticalRegion(
+ CodeGenFunction &CGF, StringRef CriticalName,
+ const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
+ const Expr *Hint) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &MasterOpGen,
+ SourceLocation Loc) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
+ CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
+ SourceLocation Loc) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitSingleRegion(
+ CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
+ SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
+ ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
+ ArrayRef<const Expr *> AssignmentOps) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
+ const RegionCodeGenTy &OrderedOpGen,
+ SourceLocation Loc,
+ bool IsThreads) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ OpenMPDirectiveKind Kind,
+ bool EmitChecks,
+ bool ForceSimpleCall) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitForDispatchInit(
+ CodeGenFunction &CGF, SourceLocation Loc,
+ const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
+ bool Ordered, const DispatchRTInput &DispatchValues) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitForStaticInit(
+ CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
+ const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
+ CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ unsigned IVSize,
+ bool IVSigned) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ OpenMPDirectiveKind DKind) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ unsigned IVSize, bool IVSigned,
+ Address IL, Address LB,
+ Address UB, Address ST) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
+ llvm::Value *NumThreads,
+ SourceLocation Loc) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
+ OpenMPProcBindClauseKind ProcBind,
+ SourceLocation Loc) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
+ const VarDecl *VD,
+ Address VDAddr,
+ SourceLocation Loc) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
+ const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
+ CodeGenFunction *CGF) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
+ CodeGenFunction &CGF, QualType VarType, StringRef Name) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
+ ArrayRef<const Expr *> Vars,
+ SourceLocation Loc) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
+ const OMPExecutableDirective &D,
+ llvm::Function *TaskFunction,
+ QualType SharedsTy, Address Shareds,
+ const Expr *IfCond,
+ const OMPTaskDataTy &Data) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitTaskLoopCall(
+ CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
+ llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
+ const Expr *IfCond, const OMPTaskDataTy &Data) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitReduction(
+ CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
+ ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
+ assert(Options.SimpleReduction && "Only simple reduction is expected.");
+ CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
+ ReductionOps, Options);
+}
+
+llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
+ CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
+ ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ ReductionCodeGen &RCG,
+ unsigned N) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ llvm::Value *ReductionsPtr,
+ LValue SharedLVal) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
+ SourceLocation Loc) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitCancellationPointCall(
+ CodeGenFunction &CGF, SourceLocation Loc,
+ OpenMPDirectiveKind CancelRegion) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
+ SourceLocation Loc, const Expr *IfCond,
+ OpenMPDirectiveKind CancelRegion) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
+ const OMPExecutableDirective &D, StringRef ParentName,
+ llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitTargetCall(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ llvm::Function *OutlinedFn,
+ llvm::Value *OutlinedFnID,
+ const Expr *IfCond,
+ const Expr *Device) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
+ return false;
+}
+
+llvm::Function *CGOpenMPSIMDRuntime::emitRegistrationFunction() {
+ return nullptr;
+}
+
+void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ SourceLocation Loc,
+ llvm::Function *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
+ const Expr *NumTeams,
+ const Expr *ThreadLimit,
+ SourceLocation Loc) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitTargetDataCalls(
+ CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
+ const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
+ CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
+ const Expr *Device) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
+ const OMPLoopDirective &D,
+ ArrayRef<Expr *> NumIterations) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
+ const OMPDependClause *C) {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+const VarDecl *
+CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
+ const VarDecl *NativeParam) const {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}
+
+Address
+CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
+ const VarDecl *NativeParam,
+ const VarDecl *TargetParam) const {
+ llvm_unreachable("Not supported in SIMD-only mode");
+}