diff options
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp')
-rw-r--r-- | contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp | 10863 |
1 files changed, 10863 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp b/contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp new file mode 100644 index 000000000000..27e7175da841 --- /dev/null +++ b/contrib/llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp @@ -0,0 +1,10863 @@ +//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This provides a class for OpenMP runtime code generation. +// +//===----------------------------------------------------------------------===// + +#include "CGCXXABI.h" +#include "CGCleanup.h" +#include "CGOpenMPRuntime.h" +#include "CGRecordLayout.h" +#include "CodeGenFunction.h" +#include "clang/CodeGen/ConstantInitBuilder.h" +#include "clang/AST/Decl.h" +#include "clang/AST/StmtOpenMP.h" +#include "clang/Basic/BitmaskEnum.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/Bitcode/BitcodeReader.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> + +using namespace clang; +using namespace CodeGen; + +namespace { +/// Base class for handling code generation inside OpenMP regions. +class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo { +public: + /// Kinds of OpenMP regions used in codegen. + enum CGOpenMPRegionKind { + /// Region with outlined function for standalone 'parallel' + /// directive. + ParallelOutlinedRegion, + /// Region with outlined function for standalone 'task' directive. + TaskOutlinedRegion, + /// Region for constructs that do not require function outlining, + /// like 'for', 'sections', 'atomic' etc. directives. + InlinedRegion, + /// Region with outlined function for standalone 'target' directive. + TargetRegion, + }; + + CGOpenMPRegionInfo(const CapturedStmt &CS, + const CGOpenMPRegionKind RegionKind, + const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, + bool HasCancel) + : CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind), + CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {} + + CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind, + const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind, + bool HasCancel) + : CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen), + Kind(Kind), HasCancel(HasCancel) {} + + /// Get a variable or parameter for storing global thread id + /// inside OpenMP construct. + virtual const VarDecl *getThreadIDVariable() const = 0; + + /// Emit the captured statement body. + void EmitBody(CodeGenFunction &CGF, const Stmt *S) override; + + /// Get an LValue for the current ThreadID variable. + /// \return LValue for thread id variable. This LValue always has type int32*. + virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF); + + virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {} + + CGOpenMPRegionKind getRegionKind() const { return RegionKind; } + + OpenMPDirectiveKind getDirectiveKind() const { return Kind; } + + bool hasCancel() const { return HasCancel; } + + static bool classof(const CGCapturedStmtInfo *Info) { + return Info->getKind() == CR_OpenMP; + } + + ~CGOpenMPRegionInfo() override = default; + +protected: + CGOpenMPRegionKind RegionKind; + RegionCodeGenTy CodeGen; + OpenMPDirectiveKind Kind; + bool HasCancel; +}; + +/// API for captured statement code generation in OpenMP constructs. +class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo { +public: + CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar, + const RegionCodeGenTy &CodeGen, + OpenMPDirectiveKind Kind, bool HasCancel, + StringRef HelperName) + : CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind, + HasCancel), + ThreadIDVar(ThreadIDVar), HelperName(HelperName) { + assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); + } + + /// Get a variable or parameter for storing global thread id + /// inside OpenMP construct. + const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } + + /// Get the name of the capture helper. + StringRef getHelperName() const override { return HelperName; } + + static bool classof(const CGCapturedStmtInfo *Info) { + return CGOpenMPRegionInfo::classof(Info) && + cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == + ParallelOutlinedRegion; + } + +private: + /// A variable or parameter storing global thread id for OpenMP + /// constructs. + const VarDecl *ThreadIDVar; + StringRef HelperName; +}; + +/// API for captured statement code generation in OpenMP constructs. +class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo { +public: + class UntiedTaskActionTy final : public PrePostActionTy { + bool Untied; + const VarDecl *PartIDVar; + const RegionCodeGenTy UntiedCodeGen; + llvm::SwitchInst *UntiedSwitch = nullptr; + + public: + UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar, + const RegionCodeGenTy &UntiedCodeGen) + : Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {} + void Enter(CodeGenFunction &CGF) override { + if (Untied) { + // Emit task switching point. + LValue PartIdLVal = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(PartIDVar), + PartIDVar->getType()->castAs<PointerType>()); + llvm::Value *Res = + CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation()); + llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done."); + UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB); + CGF.EmitBlock(DoneBB); + CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); + CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); + UntiedSwitch->addCase(CGF.Builder.getInt32(0), + CGF.Builder.GetInsertBlock()); + emitUntiedSwitch(CGF); + } + } + void emitUntiedSwitch(CodeGenFunction &CGF) const { + if (Untied) { + LValue PartIdLVal = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(PartIDVar), + PartIDVar->getType()->castAs<PointerType>()); + CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), + PartIdLVal); + UntiedCodeGen(CGF); + CodeGenFunction::JumpDest CurPoint = + CGF.getJumpDestInCurrentScope(".untied.next."); + CGF.EmitBranchThroughCleanup(CGF.ReturnBlock); + CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp.")); + UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()), + CGF.Builder.GetInsertBlock()); + CGF.EmitBranchThroughCleanup(CurPoint); + CGF.EmitBlock(CurPoint.getBlock()); + } + } + unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); } + }; + CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS, + const VarDecl *ThreadIDVar, + const RegionCodeGenTy &CodeGen, + OpenMPDirectiveKind Kind, bool HasCancel, + const UntiedTaskActionTy &Action) + : CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel), + ThreadIDVar(ThreadIDVar), Action(Action) { + assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region."); + } + + /// Get a variable or parameter for storing global thread id + /// inside OpenMP construct. + const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; } + + /// Get an LValue for the current ThreadID variable. + LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override; + + /// Get the name of the capture helper. + StringRef getHelperName() const override { return ".omp_outlined."; } + + void emitUntiedSwitch(CodeGenFunction &CGF) override { + Action.emitUntiedSwitch(CGF); + } + + static bool classof(const CGCapturedStmtInfo *Info) { + return CGOpenMPRegionInfo::classof(Info) && + cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == + TaskOutlinedRegion; + } + +private: + /// A variable or parameter storing global thread id for OpenMP + /// constructs. + const VarDecl *ThreadIDVar; + /// Action for emitting code for untied tasks. + const UntiedTaskActionTy &Action; +}; + +/// API for inlined captured statement code generation in OpenMP +/// constructs. +class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo { +public: + CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI, + const RegionCodeGenTy &CodeGen, + OpenMPDirectiveKind Kind, bool HasCancel) + : CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel), + OldCSI(OldCSI), + OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {} + + // Retrieve the value of the context parameter. + llvm::Value *getContextValue() const override { + if (OuterRegionInfo) + return OuterRegionInfo->getContextValue(); + llvm_unreachable("No context value for inlined OpenMP region"); + } + + void setContextValue(llvm::Value *V) override { + if (OuterRegionInfo) { + OuterRegionInfo->setContextValue(V); + return; + } + llvm_unreachable("No context value for inlined OpenMP region"); + } + + /// Lookup the captured field decl for a variable. + const FieldDecl *lookup(const VarDecl *VD) const override { + if (OuterRegionInfo) + return OuterRegionInfo->lookup(VD); + // If there is no outer outlined region,no need to lookup in a list of + // captured variables, we can use the original one. + return nullptr; + } + + FieldDecl *getThisFieldDecl() const override { + if (OuterRegionInfo) + return OuterRegionInfo->getThisFieldDecl(); + return nullptr; + } + + /// Get a variable or parameter for storing global thread id + /// inside OpenMP construct. + const VarDecl *getThreadIDVariable() const override { + if (OuterRegionInfo) + return OuterRegionInfo->getThreadIDVariable(); + return nullptr; + } + + /// Get an LValue for the current ThreadID variable. + LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override { + if (OuterRegionInfo) + return OuterRegionInfo->getThreadIDVariableLValue(CGF); + llvm_unreachable("No LValue for inlined OpenMP construct"); + } + + /// Get the name of the capture helper. + StringRef getHelperName() const override { + if (auto *OuterRegionInfo = getOldCSI()) + return OuterRegionInfo->getHelperName(); + llvm_unreachable("No helper name for inlined OpenMP construct"); + } + + void emitUntiedSwitch(CodeGenFunction &CGF) override { + if (OuterRegionInfo) + OuterRegionInfo->emitUntiedSwitch(CGF); + } + + CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; } + + static bool classof(const CGCapturedStmtInfo *Info) { + return CGOpenMPRegionInfo::classof(Info) && + cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion; + } + + ~CGOpenMPInlinedRegionInfo() override = default; + +private: + /// CodeGen info about outer OpenMP region. + CodeGenFunction::CGCapturedStmtInfo *OldCSI; + CGOpenMPRegionInfo *OuterRegionInfo; +}; + +/// API for captured statement code generation in OpenMP target +/// constructs. For this captures, implicit parameters are used instead of the +/// captured fields. The name of the target region has to be unique in a given +/// application so it is provided by the client, because only the client has +/// the information to generate that. +class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo { +public: + CGOpenMPTargetRegionInfo(const CapturedStmt &CS, + const RegionCodeGenTy &CodeGen, StringRef HelperName) + : CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target, + /*HasCancel=*/false), + HelperName(HelperName) {} + + /// This is unused for target regions because each starts executing + /// with a single thread. + const VarDecl *getThreadIDVariable() const override { return nullptr; } + + /// Get the name of the capture helper. + StringRef getHelperName() const override { return HelperName; } + + static bool classof(const CGCapturedStmtInfo *Info) { + return CGOpenMPRegionInfo::classof(Info) && + cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion; + } + +private: + StringRef HelperName; +}; + +static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) { + llvm_unreachable("No codegen for expressions"); +} +/// API for generation of expressions captured in a innermost OpenMP +/// region. +class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo { +public: + CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS) + : CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen, + OMPD_unknown, + /*HasCancel=*/false), + PrivScope(CGF) { + // Make sure the globals captured in the provided statement are local by + // using the privatization logic. We assume the same variable is not + // captured more than once. + for (const auto &C : CS.captures()) { + if (!C.capturesVariable() && !C.capturesVariableByCopy()) + continue; + + const VarDecl *VD = C.getCapturedVar(); + if (VD->isLocalVarDeclOrParm()) + continue; + + DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD), + /*RefersToEnclosingVariableOrCapture=*/false, + VD->getType().getNonReferenceType(), VK_LValue, + C.getLocation()); + PrivScope.addPrivate( + VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(); }); + } + (void)PrivScope.Privatize(); + } + + /// Lookup the captured field decl for a variable. + const FieldDecl *lookup(const VarDecl *VD) const override { + if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD)) + return FD; + return nullptr; + } + + /// Emit the captured statement body. + void EmitBody(CodeGenFunction &CGF, const Stmt *S) override { + llvm_unreachable("No body for expressions"); + } + + /// Get a variable or parameter for storing global thread id + /// inside OpenMP construct. + const VarDecl *getThreadIDVariable() const override { + llvm_unreachable("No thread id for expressions"); + } + + /// Get the name of the capture helper. + StringRef getHelperName() const override { + llvm_unreachable("No helper name for expressions"); + } + + static bool classof(const CGCapturedStmtInfo *Info) { return false; } + +private: + /// Private scope to capture global variables. + CodeGenFunction::OMPPrivateScope PrivScope; +}; + +/// RAII for emitting code of OpenMP constructs. +class InlinedOpenMPRegionRAII { + CodeGenFunction &CGF; + llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; + FieldDecl *LambdaThisCaptureField = nullptr; + const CodeGen::CGBlockInfo *BlockInfo = nullptr; + +public: + /// Constructs region for combined constructs. + /// \param CodeGen Code generation sequence for combined directives. Includes + /// a list of functions used for code generation of implicitly inlined + /// regions. + InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen, + OpenMPDirectiveKind Kind, bool HasCancel) + : CGF(CGF) { + // Start emission for the construct. + CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo( + CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel); + std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); + LambdaThisCaptureField = CGF.LambdaThisCaptureField; + CGF.LambdaThisCaptureField = nullptr; + BlockInfo = CGF.BlockInfo; + CGF.BlockInfo = nullptr; + } + + ~InlinedOpenMPRegionRAII() { + // Restore original CapturedStmtInfo only if we're done with code emission. + auto *OldCSI = + cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI(); + delete CGF.CapturedStmtInfo; + CGF.CapturedStmtInfo = OldCSI; + std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields); + CGF.LambdaThisCaptureField = LambdaThisCaptureField; + CGF.BlockInfo = BlockInfo; + } +}; + +/// Values for bit flags used in the ident_t to describe the fields. +/// All enumeric elements are named and described in accordance with the code +/// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h +enum OpenMPLocationFlags : unsigned { + /// Use trampoline for internal microtask. + OMP_IDENT_IMD = 0x01, + /// Use c-style ident structure. + OMP_IDENT_KMPC = 0x02, + /// Atomic reduction option for kmpc_reduce. + OMP_ATOMIC_REDUCE = 0x10, + /// Explicit 'barrier' directive. + OMP_IDENT_BARRIER_EXPL = 0x20, + /// Implicit barrier in code. + OMP_IDENT_BARRIER_IMPL = 0x40, + /// Implicit barrier in 'for' directive. + OMP_IDENT_BARRIER_IMPL_FOR = 0x40, + /// Implicit barrier in 'sections' directive. + OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0, + /// Implicit barrier in 'single' directive. + OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140, + /// Call of __kmp_for_static_init for static loop. + OMP_IDENT_WORK_LOOP = 0x200, + /// Call of __kmp_for_static_init for sections. + OMP_IDENT_WORK_SECTIONS = 0x400, + /// Call of __kmp_for_static_init for distribute. + OMP_IDENT_WORK_DISTRIBUTE = 0x800, + LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE) +}; + +namespace { +LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); +/// Values for bit flags for marking which requires clauses have been used. +enum OpenMPOffloadingRequiresDirFlags : int64_t { + /// flag undefined. + OMP_REQ_UNDEFINED = 0x000, + /// no requires clause present. + OMP_REQ_NONE = 0x001, + /// reverse_offload clause. + OMP_REQ_REVERSE_OFFLOAD = 0x002, + /// unified_address clause. + OMP_REQ_UNIFIED_ADDRESS = 0x004, + /// unified_shared_memory clause. + OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008, + /// dynamic_allocators clause. + OMP_REQ_DYNAMIC_ALLOCATORS = 0x010, + LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS) +}; + +enum OpenMPOffloadingReservedDeviceIDs { + /// Device ID if the device was not defined, runtime should get it + /// from environment variables in the spec. + OMP_DEVICEID_UNDEF = -1, +}; +} // anonymous namespace + +/// Describes ident structure that describes a source location. +/// All descriptions are taken from +/// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h +/// Original structure: +/// typedef struct ident { +/// kmp_int32 reserved_1; /**< might be used in Fortran; +/// see above */ +/// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags; +/// KMP_IDENT_KMPC identifies this union +/// member */ +/// kmp_int32 reserved_2; /**< not really used in Fortran any more; +/// see above */ +///#if USE_ITT_BUILD +/// /* but currently used for storing +/// region-specific ITT */ +/// /* contextual information. */ +///#endif /* USE_ITT_BUILD */ +/// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for +/// C++ */ +/// char const *psource; /**< String describing the source location. +/// The string is composed of semi-colon separated +// fields which describe the source file, +/// the function and a pair of line numbers that +/// delimit the construct. +/// */ +/// } ident_t; +enum IdentFieldIndex { + /// might be used in Fortran + IdentField_Reserved_1, + /// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member. + IdentField_Flags, + /// Not really used in Fortran any more + IdentField_Reserved_2, + /// Source[4] in Fortran, do not use for C++ + IdentField_Reserved_3, + /// String describing the source location. The string is composed of + /// semi-colon separated fields which describe the source file, the function + /// and a pair of line numbers that delimit the construct. + IdentField_PSource +}; + +/// Schedule types for 'omp for' loops (these enumerators are taken from +/// the enum sched_type in kmp.h). +enum OpenMPSchedType { + /// Lower bound for default (unordered) versions. + OMP_sch_lower = 32, + OMP_sch_static_chunked = 33, + OMP_sch_static = 34, + OMP_sch_dynamic_chunked = 35, + OMP_sch_guided_chunked = 36, + OMP_sch_runtime = 37, + OMP_sch_auto = 38, + /// static with chunk adjustment (e.g., simd) + OMP_sch_static_balanced_chunked = 45, + /// Lower bound for 'ordered' versions. + OMP_ord_lower = 64, + OMP_ord_static_chunked = 65, + OMP_ord_static = 66, + OMP_ord_dynamic_chunked = 67, + OMP_ord_guided_chunked = 68, + OMP_ord_runtime = 69, + OMP_ord_auto = 70, + OMP_sch_default = OMP_sch_static, + /// dist_schedule types + OMP_dist_sch_static_chunked = 91, + OMP_dist_sch_static = 92, + /// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers. + /// Set if the monotonic schedule modifier was present. + OMP_sch_modifier_monotonic = (1 << 29), + /// Set if the nonmonotonic schedule modifier was present. + OMP_sch_modifier_nonmonotonic = (1 << 30), +}; + +enum OpenMPRTLFunction { + /// Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, + /// kmpc_micro microtask, ...); + OMPRTL__kmpc_fork_call, + /// Call to void *__kmpc_threadprivate_cached(ident_t *loc, + /// kmp_int32 global_tid, void *data, size_t size, void ***cache); + OMPRTL__kmpc_threadprivate_cached, + /// Call to void __kmpc_threadprivate_register( ident_t *, + /// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor); + OMPRTL__kmpc_threadprivate_register, + // Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc); + OMPRTL__kmpc_global_thread_num, + // Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *crit); + OMPRTL__kmpc_critical, + // Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 + // global_tid, kmp_critical_name *crit, uintptr_t hint); + OMPRTL__kmpc_critical_with_hint, + // Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *crit); + OMPRTL__kmpc_end_critical, + // Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32 + // global_tid); + OMPRTL__kmpc_cancel_barrier, + // Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_barrier, + // Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_for_static_fini, + // Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 + // global_tid); + OMPRTL__kmpc_serialized_parallel, + // Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 + // global_tid); + OMPRTL__kmpc_end_serialized_parallel, + // Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 num_threads); + OMPRTL__kmpc_push_num_threads, + // Call to void __kmpc_flush(ident_t *loc); + OMPRTL__kmpc_flush, + // Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid); + OMPRTL__kmpc_master, + // Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid); + OMPRTL__kmpc_end_master, + // Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid, + // int end_part); + OMPRTL__kmpc_omp_taskyield, + // Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid); + OMPRTL__kmpc_single, + // Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid); + OMPRTL__kmpc_end_single, + // Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, + // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, + // kmp_routine_entry_t *task_entry); + OMPRTL__kmpc_omp_task_alloc, + // Call to kmp_task_t * __kmpc_omp_target_task_alloc(ident_t *, + // kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t, + // size_t sizeof_shareds, kmp_routine_entry_t *task_entry, + // kmp_int64 device_id); + OMPRTL__kmpc_omp_target_task_alloc, + // Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t * + // new_task); + OMPRTL__kmpc_omp_task, + // Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, + // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), + // kmp_int32 didit); + OMPRTL__kmpc_copyprivate, + // Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void + // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck); + OMPRTL__kmpc_reduce, + // Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 + // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, + // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name + // *lck); + OMPRTL__kmpc_reduce_nowait, + // Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *lck); + OMPRTL__kmpc_end_reduce, + // Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *lck); + OMPRTL__kmpc_end_reduce_nowait, + // Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, + // kmp_task_t * new_task); + OMPRTL__kmpc_omp_task_begin_if0, + // Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, + // kmp_task_t * new_task); + OMPRTL__kmpc_omp_task_complete_if0, + // Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_ordered, + // Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_end_ordered, + // Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 + // global_tid); + OMPRTL__kmpc_omp_taskwait, + // Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_taskgroup, + // Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid); + OMPRTL__kmpc_end_taskgroup, + // Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, + // int proc_bind); + OMPRTL__kmpc_push_proc_bind, + // Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32 + // gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t + // *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list); + OMPRTL__kmpc_omp_task_with_deps, + // Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32 + // gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 + // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); + OMPRTL__kmpc_omp_wait_deps, + // Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 + // global_tid, kmp_int32 cncl_kind); + OMPRTL__kmpc_cancellationpoint, + // Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 cncl_kind); + OMPRTL__kmpc_cancel, + // Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 num_teams, kmp_int32 thread_limit); + OMPRTL__kmpc_push_num_teams, + // Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro + // microtask, ...); + OMPRTL__kmpc_fork_teams, + // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int + // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int + // sched, kmp_uint64 grainsize, void *task_dup); + OMPRTL__kmpc_taskloop, + // Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32 + // num_dims, struct kmp_dim *dims); + OMPRTL__kmpc_doacross_init, + // Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); + OMPRTL__kmpc_doacross_fini, + // Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64 + // *vec); + OMPRTL__kmpc_doacross_post, + // Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64 + // *vec); + OMPRTL__kmpc_doacross_wait, + // Call to void *__kmpc_task_reduction_init(int gtid, int num_data, void + // *data); + OMPRTL__kmpc_task_reduction_init, + // Call to void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void + // *d); + OMPRTL__kmpc_task_reduction_get_th_data, + // Call to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al); + OMPRTL__kmpc_alloc, + // Call to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al); + OMPRTL__kmpc_free, + + // + // Offloading related calls + // + // Call to void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64 + // size); + OMPRTL__kmpc_push_target_tripcount, + // Call to int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t + // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t + // *arg_types); + OMPRTL__tgt_target, + // Call to int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr, + // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t + // *arg_types); + OMPRTL__tgt_target_nowait, + // Call to int32_t __tgt_target_teams(int64_t device_id, void *host_ptr, + // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t + // *arg_types, int32_t num_teams, int32_t thread_limit); + OMPRTL__tgt_target_teams, + // Call to int32_t __tgt_target_teams_nowait(int64_t device_id, void + // *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t + // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit); + OMPRTL__tgt_target_teams_nowait, + // Call to void __tgt_register_requires(int64_t flags); + OMPRTL__tgt_register_requires, + // Call to void __tgt_register_lib(__tgt_bin_desc *desc); + OMPRTL__tgt_register_lib, + // Call to void __tgt_unregister_lib(__tgt_bin_desc *desc); + OMPRTL__tgt_unregister_lib, + // Call to void __tgt_target_data_begin(int64_t device_id, int32_t arg_num, + // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types); + OMPRTL__tgt_target_data_begin, + // Call to void __tgt_target_data_begin_nowait(int64_t device_id, int32_t + // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t + // *arg_types); + OMPRTL__tgt_target_data_begin_nowait, + // Call to void __tgt_target_data_end(int64_t device_id, int32_t arg_num, + // void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types); + OMPRTL__tgt_target_data_end, + // Call to void __tgt_target_data_end_nowait(int64_t device_id, int32_t + // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t + // *arg_types); + OMPRTL__tgt_target_data_end_nowait, + // Call to void __tgt_target_data_update(int64_t device_id, int32_t arg_num, + // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types); + OMPRTL__tgt_target_data_update, + // Call to void __tgt_target_data_update_nowait(int64_t device_id, int32_t + // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t + // *arg_types); + OMPRTL__tgt_target_data_update_nowait, +}; + +/// A basic class for pre|post-action for advanced codegen sequence for OpenMP +/// region. +class CleanupTy final : public EHScopeStack::Cleanup { + PrePostActionTy *Action; + +public: + explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {} + void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { + if (!CGF.HaveInsertPoint()) + return; + Action->Exit(CGF); + } +}; + +} // anonymous namespace + +void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const { + CodeGenFunction::RunCleanupsScope Scope(CGF); + if (PrePostAction) { + CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction); + Callback(CodeGen, CGF, *PrePostAction); + } else { + PrePostActionTy Action; + Callback(CodeGen, CGF, Action); + } +} + +/// Check if the combiner is a call to UDR combiner and if it is so return the +/// UDR decl used for reduction. +static const OMPDeclareReductionDecl * +getReductionInit(const Expr *ReductionOp) { + if (const auto *CE = dyn_cast<CallExpr>(ReductionOp)) + if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) + if (const auto *DRE = + dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) + if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) + return DRD; + return nullptr; +} + +static void emitInitWithReductionInitializer(CodeGenFunction &CGF, + const OMPDeclareReductionDecl *DRD, + const Expr *InitOp, + Address Private, Address Original, + QualType Ty) { + if (DRD->getInitializer()) { + std::pair<llvm::Function *, llvm::Function *> Reduction = + CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); + const auto *CE = cast<CallExpr>(InitOp); + const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee()); + const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts(); + const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts(); + const auto *LHSDRE = + cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr()); + const auto *RHSDRE = + cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr()); + CodeGenFunction::OMPPrivateScope PrivateScope(CGF); + PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), + [=]() { return Private; }); + PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), + [=]() { return Original; }); + (void)PrivateScope.Privatize(); + RValue Func = RValue::get(Reduction.second); + CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); + CGF.EmitIgnoredExpr(InitOp); + } else { + llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty); + std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"}); + auto *GV = new llvm::GlobalVariable( + CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true, + llvm::GlobalValue::PrivateLinkage, Init, Name); + LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty); + RValue InitRVal; + switch (CGF.getEvaluationKind(Ty)) { + case TEK_Scalar: + InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation()); + break; + case TEK_Complex: + InitRVal = + RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation())); + break; + case TEK_Aggregate: + InitRVal = RValue::getAggregate(LV.getAddress()); + break; + } + OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue); + CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal); + CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(), + /*IsInitializer=*/false); + } +} + +/// Emit initialization of arrays of complex types. +/// \param DestAddr Address of the array. +/// \param Type Type of array. +/// \param Init Initial expression of array. +/// \param SrcAddr Address of the original array. +static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr, + QualType Type, bool EmitDeclareReductionInit, + const Expr *Init, + const OMPDeclareReductionDecl *DRD, + Address SrcAddr = Address::invalid()) { + // Perform element-by-element initialization. + QualType ElementTy; + + // Drill down to the base element type on both arrays. + const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe(); + llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr); + DestAddr = + CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType()); + if (DRD) + SrcAddr = + CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType()); + + llvm::Value *SrcBegin = nullptr; + if (DRD) + SrcBegin = SrcAddr.getPointer(); + llvm::Value *DestBegin = DestAddr.getPointer(); + // Cast from pointer to array type to pointer to single element. + llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements); + // The basic structure here is a while-do loop. + llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body"); + llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done"); + llvm::Value *IsEmpty = + CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty"); + CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); + + // Enter the loop body, making that address the current address. + llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock(); + CGF.EmitBlock(BodyBB); + + CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); + + llvm::PHINode *SrcElementPHI = nullptr; + Address SrcElementCurrent = Address::invalid(); + if (DRD) { + SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2, + "omp.arraycpy.srcElementPast"); + SrcElementPHI->addIncoming(SrcBegin, EntryBB); + SrcElementCurrent = + Address(SrcElementPHI, + SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize)); + } + llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI( + DestBegin->getType(), 2, "omp.arraycpy.destElementPast"); + DestElementPHI->addIncoming(DestBegin, EntryBB); + Address DestElementCurrent = + Address(DestElementPHI, + DestAddr.getAlignment().alignmentOfArrayElement(ElementSize)); + + // Emit copy. + { + CodeGenFunction::RunCleanupsScope InitScope(CGF); + if (EmitDeclareReductionInit) { + emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent, + SrcElementCurrent, ElementTy); + } else + CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(), + /*IsInitializer=*/false); + } + + if (DRD) { + // Shift the address forward by one element. + llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32( + SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); + SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock()); + } + + // Shift the address forward by one element. + llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32( + DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); + // Check whether we've reached the end. + llvm::Value *Done = + CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done"); + CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); + DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock()); + + // Done. + CGF.EmitBlock(DoneBB, /*IsFinished=*/true); +} + +LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) { + return CGF.EmitOMPSharedLValue(E); +} + +LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF, + const Expr *E) { + if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E)) + return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false); + return LValue(); +} + +void ReductionCodeGen::emitAggregateInitialization( + CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal, + const OMPDeclareReductionDecl *DRD) { + // Emit VarDecl with copy init for arrays. + // Get the address of the original variable captured in current + // captured region. + const auto *PrivateVD = + cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); + bool EmitDeclareReductionInit = + DRD && (DRD->getInitializer() || !PrivateVD->hasInit()); + EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(), + EmitDeclareReductionInit, + EmitDeclareReductionInit ? ClausesData[N].ReductionOp + : PrivateVD->getInit(), + DRD, SharedLVal.getAddress()); +} + +ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds, + ArrayRef<const Expr *> Privates, + ArrayRef<const Expr *> ReductionOps) { + ClausesData.reserve(Shareds.size()); + SharedAddresses.reserve(Shareds.size()); + Sizes.reserve(Shareds.size()); + BaseDecls.reserve(Shareds.size()); + auto IPriv = Privates.begin(); + auto IRed = ReductionOps.begin(); + for (const Expr *Ref : Shareds) { + ClausesData.emplace_back(Ref, *IPriv, *IRed); + std::advance(IPriv, 1); + std::advance(IRed, 1); + } +} + +void ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, unsigned N) { + assert(SharedAddresses.size() == N && + "Number of generated lvalues must be exactly N."); + LValue First = emitSharedLValue(CGF, ClausesData[N].Ref); + LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref); + SharedAddresses.emplace_back(First, Second); +} + +void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) { + const auto *PrivateVD = + cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); + QualType PrivateType = PrivateVD->getType(); + bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref); + if (!PrivateType->isVariablyModifiedType()) { + Sizes.emplace_back( + CGF.getTypeSize( + SharedAddresses[N].first.getType().getNonReferenceType()), + nullptr); + return; + } + llvm::Value *Size; + llvm::Value *SizeInChars; + auto *ElemType = + cast<llvm::PointerType>(SharedAddresses[N].first.getPointer()->getType()) + ->getElementType(); + auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType); + if (AsArraySection) { + Size = CGF.Builder.CreatePtrDiff(SharedAddresses[N].second.getPointer(), + SharedAddresses[N].first.getPointer()); + Size = CGF.Builder.CreateNUWAdd( + Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1)); + SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf); + } else { + SizeInChars = CGF.getTypeSize( + SharedAddresses[N].first.getType().getNonReferenceType()); + Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf); + } + Sizes.emplace_back(SizeInChars, Size); + CodeGenFunction::OpaqueValueMapping OpaqueMap( + CGF, + cast<OpaqueValueExpr>( + CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()), + RValue::get(Size)); + CGF.EmitVariablyModifiedType(PrivateType); +} + +void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N, + llvm::Value *Size) { + const auto *PrivateVD = + cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); + QualType PrivateType = PrivateVD->getType(); + if (!PrivateType->isVariablyModifiedType()) { + assert(!Size && !Sizes[N].second && + "Size should be nullptr for non-variably modified reduction " + "items."); + return; + } + CodeGenFunction::OpaqueValueMapping OpaqueMap( + CGF, + cast<OpaqueValueExpr>( + CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()), + RValue::get(Size)); + CGF.EmitVariablyModifiedType(PrivateType); +} + +void ReductionCodeGen::emitInitialization( + CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal, + llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) { + assert(SharedAddresses.size() > N && "No variable was generated"); + const auto *PrivateVD = + cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); + const OMPDeclareReductionDecl *DRD = + getReductionInit(ClausesData[N].ReductionOp); + QualType PrivateType = PrivateVD->getType(); + PrivateAddr = CGF.Builder.CreateElementBitCast( + PrivateAddr, CGF.ConvertTypeForMem(PrivateType)); + QualType SharedType = SharedAddresses[N].first.getType(); + SharedLVal = CGF.MakeAddrLValue( + CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(), + CGF.ConvertTypeForMem(SharedType)), + SharedType, SharedAddresses[N].first.getBaseInfo(), + CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType)); + if (CGF.getContext().getAsArrayType(PrivateVD->getType())) { + emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD); + } else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) { + emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp, + PrivateAddr, SharedLVal.getAddress(), + SharedLVal.getType()); + } else if (!DefaultInit(CGF) && PrivateVD->hasInit() && + !CGF.isTrivialInitializer(PrivateVD->getInit())) { + CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr, + PrivateVD->getType().getQualifiers(), + /*IsInitializer=*/false); + } +} + +bool ReductionCodeGen::needCleanups(unsigned N) { + const auto *PrivateVD = + cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); + QualType PrivateType = PrivateVD->getType(); + QualType::DestructionKind DTorKind = PrivateType.isDestructedType(); + return DTorKind != QualType::DK_none; +} + +void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N, + Address PrivateAddr) { + const auto *PrivateVD = + cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl()); + QualType PrivateType = PrivateVD->getType(); + QualType::DestructionKind DTorKind = PrivateType.isDestructedType(); + if (needCleanups(N)) { + PrivateAddr = CGF.Builder.CreateElementBitCast( + PrivateAddr, CGF.ConvertTypeForMem(PrivateType)); + CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType); + } +} + +static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, + LValue BaseLV) { + BaseTy = BaseTy.getNonReferenceType(); + while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && + !CGF.getContext().hasSameType(BaseTy, ElTy)) { + if (const auto *PtrTy = BaseTy->getAs<PointerType>()) { + BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy); + } else { + LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(), BaseTy); + BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal); + } + BaseTy = BaseTy->getPointeeType(); + } + return CGF.MakeAddrLValue( + CGF.Builder.CreateElementBitCast(BaseLV.getAddress(), + CGF.ConvertTypeForMem(ElTy)), + BaseLV.getType(), BaseLV.getBaseInfo(), + CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType())); +} + +static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy, + llvm::Type *BaseLVType, CharUnits BaseLVAlignment, + llvm::Value *Addr) { + Address Tmp = Address::invalid(); + Address TopTmp = Address::invalid(); + Address MostTopTmp = Address::invalid(); + BaseTy = BaseTy.getNonReferenceType(); + while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) && + !CGF.getContext().hasSameType(BaseTy, ElTy)) { + Tmp = CGF.CreateMemTemp(BaseTy); + if (TopTmp.isValid()) + CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp); + else + MostTopTmp = Tmp; + TopTmp = Tmp; + BaseTy = BaseTy->getPointeeType(); + } + llvm::Type *Ty = BaseLVType; + if (Tmp.isValid()) + Ty = Tmp.getElementType(); + Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty); + if (Tmp.isValid()) { + CGF.Builder.CreateStore(Addr, Tmp); + return MostTopTmp; + } + return Address(Addr, BaseLVAlignment); +} + +static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) { + const VarDecl *OrigVD = nullptr; + if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) { + const Expr *Base = OASE->getBase()->IgnoreParenImpCasts(); + while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base)) + Base = TempOASE->getBase()->IgnoreParenImpCasts(); + while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) + Base = TempASE->getBase()->IgnoreParenImpCasts(); + DE = cast<DeclRefExpr>(Base); + OrigVD = cast<VarDecl>(DE->getDecl()); + } else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) { + const Expr *Base = ASE->getBase()->IgnoreParenImpCasts(); + while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base)) + Base = TempASE->getBase()->IgnoreParenImpCasts(); + DE = cast<DeclRefExpr>(Base); + OrigVD = cast<VarDecl>(DE->getDecl()); + } + return OrigVD; +} + +Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N, + Address PrivateAddr) { + const DeclRefExpr *DE; + if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) { + BaseDecls.emplace_back(OrigVD); + LValue OriginalBaseLValue = CGF.EmitLValue(DE); + LValue BaseLValue = + loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(), + OriginalBaseLValue); + llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff( + BaseLValue.getPointer(), SharedAddresses[N].first.getPointer()); + llvm::Value *PrivatePointer = + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + PrivateAddr.getPointer(), + SharedAddresses[N].first.getAddress().getType()); + llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment); + return castToBase(CGF, OrigVD->getType(), + SharedAddresses[N].first.getType(), + OriginalBaseLValue.getAddress().getType(), + OriginalBaseLValue.getAlignment(), Ptr); + } + BaseDecls.emplace_back( + cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl())); + return PrivateAddr; +} + +bool ReductionCodeGen::usesReductionInitializer(unsigned N) const { + const OMPDeclareReductionDecl *DRD = + getReductionInit(ClausesData[N].ReductionOp); + return DRD && DRD->getInitializer(); +} + +LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) { + return CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(getThreadIDVariable()), + getThreadIDVariable()->getType()->castAs<PointerType>()); +} + +void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) { + if (!CGF.HaveInsertPoint()) + return; + // 1.2.2 OpenMP Language Terminology + // Structured block - An executable statement with a single entry at the + // top and a single exit at the bottom. + // The point of exit cannot be a branch out of the structured block. + // longjmp() and throw() must not violate the entry/exit criteria. + CGF.EHStack.pushTerminate(); + CodeGen(CGF); + CGF.EHStack.popTerminate(); +} + +LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue( + CodeGenFunction &CGF) { + return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()), + getThreadIDVariable()->getType(), + AlignmentSource::Decl); +} + +static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC, + QualType FieldTy) { + auto *Field = FieldDecl::Create( + C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy, + C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()), + /*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit); + Field->setAccess(AS_public); + DC->addDecl(Field); + return Field; +} + +CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator, + StringRef Separator) + : CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator), + OffloadEntriesInfoManager(CGM) { + ASTContext &C = CGM.getContext(); + RecordDecl *RD = C.buildImplicitRecord("ident_t"); + QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); + RD->startDefinition(); + // reserved_1 + addFieldToRecordDecl(C, RD, KmpInt32Ty); + // flags + addFieldToRecordDecl(C, RD, KmpInt32Ty); + // reserved_2 + addFieldToRecordDecl(C, RD, KmpInt32Ty); + // reserved_3 + addFieldToRecordDecl(C, RD, KmpInt32Ty); + // psource + addFieldToRecordDecl(C, RD, C.VoidPtrTy); + RD->completeDefinition(); + IdentQTy = C.getRecordType(RD); + IdentTy = CGM.getTypes().ConvertRecordDeclType(RD); + KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8); + + loadOffloadInfoMetadata(); +} + +void CGOpenMPRuntime::clear() { + InternalVars.clear(); + // Clean non-target variable declarations possibly used only in debug info. + for (const auto &Data : EmittedNonTargetVariables) { + if (!Data.getValue().pointsToAliveValue()) + continue; + auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue()); + if (!GV) + continue; + if (!GV->isDeclaration() || GV->getNumUses() > 0) + continue; + GV->eraseFromParent(); + } +} + +std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const { + SmallString<128> Buffer; + llvm::raw_svector_ostream OS(Buffer); + StringRef Sep = FirstSeparator; + for (StringRef Part : Parts) { + OS << Sep << Part; + Sep = Separator; + } + return OS.str(); +} + +static llvm::Function * +emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty, + const Expr *CombinerInitializer, const VarDecl *In, + const VarDecl *Out, bool IsCombiner) { + // void .omp_combiner.(Ty *in, Ty *out); + ASTContext &C = CGM.getContext(); + QualType PtrTy = C.getPointerType(Ty).withRestrict(); + FunctionArgList Args; + ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(), + /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other); + ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(), + /*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other); + Args.push_back(&OmpOutParm); + Args.push_back(&OmpInParm); + const CGFunctionInfo &FnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); + std::string Name = CGM.getOpenMPRuntime().getName( + {IsCombiner ? "omp_combiner" : "omp_initializer", ""}); + auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, + Name, &CGM.getModule()); + CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); + if (CGM.getLangOpts().Optimize) { + Fn->removeFnAttr(llvm::Attribute::NoInline); + Fn->removeFnAttr(llvm::Attribute::OptimizeNone); + Fn->addFnAttr(llvm::Attribute::AlwaysInline); + } + CodeGenFunction CGF(CGM); + // Map "T omp_in;" variable to "*omp_in_parm" value in all expressions. + // Map "T omp_out;" variable to "*omp_out_parm" value in all expressions. + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(), + Out->getLocation()); + CodeGenFunction::OMPPrivateScope Scope(CGF); + Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm); + Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() { + return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>()) + .getAddress(); + }); + Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm); + Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() { + return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>()) + .getAddress(); + }); + (void)Scope.Privatize(); + if (!IsCombiner && Out->hasInit() && + !CGF.isTrivialInitializer(Out->getInit())) { + CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out), + Out->getType().getQualifiers(), + /*IsInitializer=*/true); + } + if (CombinerInitializer) + CGF.EmitIgnoredExpr(CombinerInitializer); + Scope.ForceCleanup(); + CGF.FinishFunction(); + return Fn; +} + +void CGOpenMPRuntime::emitUserDefinedReduction( + CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) { + if (UDRMap.count(D) > 0) + return; + llvm::Function *Combiner = emitCombinerOrInitializer( + CGM, D->getType(), D->getCombiner(), + cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()), + cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()), + /*IsCombiner=*/true); + llvm::Function *Initializer = nullptr; + if (const Expr *Init = D->getInitializer()) { + Initializer = emitCombinerOrInitializer( + CGM, D->getType(), + D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init + : nullptr, + cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()), + cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()), + /*IsCombiner=*/false); + } + UDRMap.try_emplace(D, Combiner, Initializer); + if (CGF) { + auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn); + Decls.second.push_back(D); + } +} + +std::pair<llvm::Function *, llvm::Function *> +CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) { + auto I = UDRMap.find(D); + if (I != UDRMap.end()) + return I->second; + emitUserDefinedReduction(/*CGF=*/nullptr, D); + return UDRMap.lookup(D); +} + +static llvm::Function *emitParallelOrTeamsOutlinedFunction( + CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS, + const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind, + const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) { + assert(ThreadIDVar->getType()->isPointerType() && + "thread id variable must be of type kmp_int32 *"); + CodeGenFunction CGF(CGM, true); + bool HasCancel = false; + if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D)) + HasCancel = OPD->hasCancel(); + else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D)) + HasCancel = OPSD->hasCancel(); + else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D)) + HasCancel = OPFD->hasCancel(); + else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D)) + HasCancel = OPFD->hasCancel(); + else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D)) + HasCancel = OPFD->hasCancel(); + else if (const auto *OPFD = + dyn_cast<OMPTeamsDistributeParallelForDirective>(&D)) + HasCancel = OPFD->hasCancel(); + else if (const auto *OPFD = + dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D)) + HasCancel = OPFD->hasCancel(); + CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind, + HasCancel, OutlinedHelperName); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + return CGF.GenerateOpenMPCapturedStmtFunction(*CS); +} + +llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction( + const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, + OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { + const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel); + return emitParallelOrTeamsOutlinedFunction( + CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); +} + +llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction( + const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, + OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { + const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams); + return emitParallelOrTeamsOutlinedFunction( + CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen); +} + +llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction( + const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, + const VarDecl *PartIDVar, const VarDecl *TaskTVar, + OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, + bool Tied, unsigned &NumberOfParts) { + auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF, + PrePostActionTy &) { + llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc()); + llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc()); + llvm::Value *TaskArgs[] = { + UpLoc, ThreadID, + CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar), + TaskTVar->getType()->castAs<PointerType>()) + .getPointer()}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs); + }; + CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar, + UntiedCodeGen); + CodeGen.setAction(Action); + assert(!ThreadIDVar->getType()->isPointerType() && + "thread id variable must be of type kmp_int32 for tasks"); + const OpenMPDirectiveKind Region = + isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop + : OMPD_task; + const CapturedStmt *CS = D.getCapturedStmt(Region); + const auto *TD = dyn_cast<OMPTaskDirective>(&D); + CodeGenFunction CGF(CGM, true); + CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, + InnermostKind, + TD ? TD->hasCancel() : false, Action); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS); + if (!Tied) + NumberOfParts = Action.getNumberOfParts(); + return Res; +} + +static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM, + const RecordDecl *RD, const CGRecordLayout &RL, + ArrayRef<llvm::Constant *> Data) { + llvm::StructType *StructTy = RL.getLLVMType(); + unsigned PrevIdx = 0; + ConstantInitBuilder CIBuilder(CGM); + auto DI = Data.begin(); + for (const FieldDecl *FD : RD->fields()) { + unsigned Idx = RL.getLLVMFieldNo(FD); + // Fill the alignment. + for (unsigned I = PrevIdx; I < Idx; ++I) + Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I))); + PrevIdx = Idx + 1; + Fields.add(*DI); + ++DI; + } +} + +template <class... As> +static llvm::GlobalVariable * +createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant, + ArrayRef<llvm::Constant *> Data, const Twine &Name, + As &&... Args) { + const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl()); + const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD); + ConstantInitBuilder CIBuilder(CGM); + ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType()); + buildStructValue(Fields, CGM, RD, RL, Data); + return Fields.finishAndCreateGlobal( + Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant, + std::forward<As>(Args)...); +} + +template <typename T> +static void +createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty, + ArrayRef<llvm::Constant *> Data, + T &Parent) { + const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl()); + const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD); + ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType()); + buildStructValue(Fields, CGM, RD, RL, Data); + Fields.finishAndAddTo(Parent); +} + +Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) { + CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy); + unsigned Reserved2Flags = getDefaultLocationReserved2Flags(); + FlagsTy FlagsKey(Flags, Reserved2Flags); + llvm::Value *Entry = OpenMPDefaultLocMap.lookup(FlagsKey); + if (!Entry) { + if (!DefaultOpenMPPSource) { + // Initialize default location for psource field of ident_t structure of + // all ident_t objects. Format is ";file;function;line;column;;". + // Taken from + // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp_str.cpp + DefaultOpenMPPSource = + CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer(); + DefaultOpenMPPSource = + llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy); + } + + llvm::Constant *Data[] = { + llvm::ConstantInt::getNullValue(CGM.Int32Ty), + llvm::ConstantInt::get(CGM.Int32Ty, Flags), + llvm::ConstantInt::get(CGM.Int32Ty, Reserved2Flags), + llvm::ConstantInt::getNullValue(CGM.Int32Ty), DefaultOpenMPPSource}; + llvm::GlobalValue *DefaultOpenMPLocation = + createGlobalStruct(CGM, IdentQTy, isDefaultLocationConstant(), Data, "", + llvm::GlobalValue::PrivateLinkage); + DefaultOpenMPLocation->setUnnamedAddr( + llvm::GlobalValue::UnnamedAddr::Global); + + OpenMPDefaultLocMap[FlagsKey] = Entry = DefaultOpenMPLocation; + } + return Address(Entry, Align); +} + +void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF, + bool AtCurrentPoint) { + auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); + assert(!Elem.second.ServiceInsertPt && "Insert point is set already."); + + llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty); + if (AtCurrentPoint) { + Elem.second.ServiceInsertPt = new llvm::BitCastInst( + Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock()); + } else { + Elem.second.ServiceInsertPt = + new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt"); + Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt); + } +} + +void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) { + auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); + if (Elem.second.ServiceInsertPt) { + llvm::Instruction *Ptr = Elem.second.ServiceInsertPt; + Elem.second.ServiceInsertPt = nullptr; + Ptr->eraseFromParent(); + } +} + +llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF, + SourceLocation Loc, + unsigned Flags) { + Flags |= OMP_IDENT_KMPC; + // If no debug info is generated - return global default location. + if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo || + Loc.isInvalid()) + return getOrCreateDefaultLocation(Flags).getPointer(); + + assert(CGF.CurFn && "No function in current CodeGenFunction."); + + CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy); + Address LocValue = Address::invalid(); + auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); + if (I != OpenMPLocThreadIDMap.end()) + LocValue = Address(I->second.DebugLoc, Align); + + // OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if + // GetOpenMPThreadID was called before this routine. + if (!LocValue.isValid()) { + // Generate "ident_t .kmpc_loc.addr;" + Address AI = CGF.CreateMemTemp(IdentQTy, ".kmpc_loc.addr"); + auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); + Elem.second.DebugLoc = AI.getPointer(); + LocValue = AI; + + if (!Elem.second.ServiceInsertPt) + setLocThreadIdInsertPt(CGF); + CGBuilderTy::InsertPointGuard IPG(CGF.Builder); + CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt); + CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags), + CGF.getTypeSize(IdentQTy)); + } + + // char **psource = &.kmpc_loc_<flags>.addr.psource; + LValue Base = CGF.MakeAddrLValue(LocValue, IdentQTy); + auto Fields = cast<RecordDecl>(IdentQTy->getAsTagDecl())->field_begin(); + LValue PSource = + CGF.EmitLValueForField(Base, *std::next(Fields, IdentField_PSource)); + + llvm::Value *OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding()); + if (OMPDebugLoc == nullptr) { + SmallString<128> Buffer2; + llvm::raw_svector_ostream OS2(Buffer2); + // Build debug location + PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc); + OS2 << ";" << PLoc.getFilename() << ";"; + if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl)) + OS2 << FD->getQualifiedNameAsString(); + OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;"; + OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str()); + OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc; + } + // *psource = ";<File>;<Function>;<Line>;<Column>;;"; + CGF.EmitStoreOfScalar(OMPDebugLoc, PSource); + + // Our callers always pass this to a runtime function, so for + // convenience, go ahead and return a naked pointer. + return LocValue.getPointer(); +} + +llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF, + SourceLocation Loc) { + assert(CGF.CurFn && "No function in current CodeGenFunction."); + + llvm::Value *ThreadID = nullptr; + // Check whether we've already cached a load of the thread id in this + // function. + auto I = OpenMPLocThreadIDMap.find(CGF.CurFn); + if (I != OpenMPLocThreadIDMap.end()) { + ThreadID = I->second.ThreadID; + if (ThreadID != nullptr) + return ThreadID; + } + // If exceptions are enabled, do not use parameter to avoid possible crash. + if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions || + !CGF.getLangOpts().CXXExceptions || + CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) { + if (auto *OMPRegionInfo = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { + if (OMPRegionInfo->getThreadIDVariable()) { + // Check if this an outlined function with thread id passed as argument. + LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF); + ThreadID = CGF.EmitLoadOfScalar(LVal, Loc); + // If value loaded in entry block, cache it and use it everywhere in + // function. + if (CGF.Builder.GetInsertBlock() == CGF.AllocaInsertPt->getParent()) { + auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); + Elem.second.ThreadID = ThreadID; + } + return ThreadID; + } + } + } + + // This is not an outlined function region - need to call __kmpc_int32 + // kmpc_global_thread_num(ident_t *loc). + // Generate thread id value and cache this value for use across the + // function. + auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn); + if (!Elem.second.ServiceInsertPt) + setLocThreadIdInsertPt(CGF); + CGBuilderTy::InsertPointGuard IPG(CGF.Builder); + CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt); + llvm::CallInst *Call = CGF.Builder.CreateCall( + createRuntimeFunction(OMPRTL__kmpc_global_thread_num), + emitUpdateLocation(CGF, Loc)); + Call->setCallingConv(CGF.getRuntimeCC()); + Elem.second.ThreadID = Call; + return Call; +} + +void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) { + assert(CGF.CurFn && "No function in current CodeGenFunction."); + if (OpenMPLocThreadIDMap.count(CGF.CurFn)) { + clearLocThreadIdInsertPt(CGF); + OpenMPLocThreadIDMap.erase(CGF.CurFn); + } + if (FunctionUDRMap.count(CGF.CurFn) > 0) { + for(auto *D : FunctionUDRMap[CGF.CurFn]) + UDRMap.erase(D); + FunctionUDRMap.erase(CGF.CurFn); + } +} + +llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() { + return IdentTy->getPointerTo(); +} + +llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() { + if (!Kmpc_MicroTy) { + // Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...) + llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty), + llvm::PointerType::getUnqual(CGM.Int32Ty)}; + Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true); + } + return llvm::PointerType::getUnqual(Kmpc_MicroTy); +} + +llvm::FunctionCallee CGOpenMPRuntime::createRuntimeFunction(unsigned Function) { + llvm::FunctionCallee RTLFn = nullptr; + switch (static_cast<OpenMPRTLFunction>(Function)) { + case OMPRTL__kmpc_fork_call: { + // Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro + // microtask, ...); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + getKmpc_MicroPointerTy()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call"); + if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) { + if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) { + llvm::LLVMContext &Ctx = F->getContext(); + llvm::MDBuilder MDB(Ctx); + // Annotate the callback behavior of the __kmpc_fork_call: + // - The callback callee is argument number 2 (microtask). + // - The first two arguments of the callback callee are unknown (-1). + // - All variadic arguments to the __kmpc_fork_call are passed to the + // callback callee. + F->addMetadata( + llvm::LLVMContext::MD_callback, + *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( + 2, {-1, -1}, + /* VarArgsArePassed */ true)})); + } + } + break; + } + case OMPRTL__kmpc_global_thread_num: { + // Build kmp_int32 __kmpc_global_thread_num(ident_t *loc); + llvm::Type *TypeParams[] = {getIdentTyPointerTy()}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num"); + break; + } + case OMPRTL__kmpc_threadprivate_cached: { + // Build void *__kmpc_threadprivate_cached(ident_t *loc, + // kmp_int32 global_tid, void *data, size_t size, void ***cache); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.VoidPtrTy, CGM.SizeTy, + CGM.VoidPtrTy->getPointerTo()->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached"); + break; + } + case OMPRTL__kmpc_critical: { + // Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *crit); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical"); + break; + } + case OMPRTL__kmpc_critical_with_hint: { + // Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *crit, uintptr_t hint); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + llvm::PointerType::getUnqual(KmpCriticalNameTy), + CGM.IntPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint"); + break; + } + case OMPRTL__kmpc_threadprivate_register: { + // Build void __kmpc_threadprivate_register(ident_t *, void *data, + // kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor); + // typedef void *(*kmpc_ctor)(void *); + auto *KmpcCtorTy = + llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, + /*isVarArg*/ false)->getPointerTo(); + // typedef void *(*kmpc_cctor)(void *, void *); + llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto *KmpcCopyCtorTy = + llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs, + /*isVarArg*/ false) + ->getPointerTo(); + // typedef void (*kmpc_dtor)(void *); + auto *KmpcDtorTy = + llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false) + ->getPointerTo(); + llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy, + KmpcCopyCtorTy, KmpcDtorTy}; + auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs, + /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register"); + break; + } + case OMPRTL__kmpc_end_critical: { + // Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *crit); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical"); + break; + } + case OMPRTL__kmpc_cancel_barrier: { + // Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32 + // global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier"); + break; + } + case OMPRTL__kmpc_barrier: { + // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier"); + break; + } + case OMPRTL__kmpc_for_static_fini: { + // Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini"); + break; + } + case OMPRTL__kmpc_push_num_threads: { + // Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 num_threads) + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads"); + break; + } + case OMPRTL__kmpc_serialized_parallel: { + // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32 + // global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel"); + break; + } + case OMPRTL__kmpc_end_serialized_parallel: { + // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32 + // global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel"); + break; + } + case OMPRTL__kmpc_flush: { + // Build void __kmpc_flush(ident_t *loc); + llvm::Type *TypeParams[] = {getIdentTyPointerTy()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush"); + break; + } + case OMPRTL__kmpc_master: { + // Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master"); + break; + } + case OMPRTL__kmpc_end_master: { + // Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master"); + break; + } + case OMPRTL__kmpc_omp_taskyield: { + // Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid, + // int end_part); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield"); + break; + } + case OMPRTL__kmpc_single: { + // Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single"); + break; + } + case OMPRTL__kmpc_end_single: { + // Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single"); + break; + } + case OMPRTL__kmpc_omp_task_alloc: { + // Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, + // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, + // kmp_routine_entry_t *task_entry); + assert(KmpRoutineEntryPtrTy != nullptr && + "Type kmp_routine_entry_t must be created."); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, + CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy}; + // Return void * and then cast to particular kmp_task_t type. + auto *FnTy = + llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc"); + break; + } + case OMPRTL__kmpc_omp_target_task_alloc: { + // Build kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *, kmp_int32 gtid, + // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, + // kmp_routine_entry_t *task_entry, kmp_int64 device_id); + assert(KmpRoutineEntryPtrTy != nullptr && + "Type kmp_routine_entry_t must be created."); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, + CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy, + CGM.Int64Ty}; + // Return void * and then cast to particular kmp_task_t type. + auto *FnTy = + llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_target_task_alloc"); + break; + } + case OMPRTL__kmpc_omp_task: { + // Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t + // *new_task); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task"); + break; + } + case OMPRTL__kmpc_copyprivate: { + // Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid, + // size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *), + // kmp_int32 didit); + llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto *CpyFnTy = + llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy, + CGM.VoidPtrTy, CpyFnTy->getPointerTo(), + CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate"); + break; + } + case OMPRTL__kmpc_reduce: { + // Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void + // (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck); + llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams, + /*isVarArg=*/false); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, + CGM.VoidPtrTy, ReduceFnTy->getPointerTo(), + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce"); + break; + } + case OMPRTL__kmpc_reduce_nowait: { + // Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32 + // global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data, + // void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name + // *lck); + llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams, + /*isVarArg=*/false); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy, + CGM.VoidPtrTy, ReduceFnTy->getPointerTo(), + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait"); + break; + } + case OMPRTL__kmpc_end_reduce: { + // Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *lck); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce"); + break; + } + case OMPRTL__kmpc_end_reduce_nowait: { + // Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid, + // kmp_critical_name *lck); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, + llvm::PointerType::getUnqual(KmpCriticalNameTy)}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = + CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait"); + break; + } + case OMPRTL__kmpc_omp_task_begin_if0: { + // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t + // *new_task); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = + CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0"); + break; + } + case OMPRTL__kmpc_omp_task_complete_if0: { + // Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t + // *new_task); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, + /*Name=*/"__kmpc_omp_task_complete_if0"); + break; + } + case OMPRTL__kmpc_ordered: { + // Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered"); + break; + } + case OMPRTL__kmpc_end_ordered: { + // Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered"); + break; + } + case OMPRTL__kmpc_omp_taskwait: { + // Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait"); + break; + } + case OMPRTL__kmpc_taskgroup: { + // Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup"); + break; + } + case OMPRTL__kmpc_end_taskgroup: { + // Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup"); + break; + } + case OMPRTL__kmpc_push_proc_bind: { + // Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid, + // int proc_bind) + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind"); + break; + } + case OMPRTL__kmpc_omp_task_with_deps: { + // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, + // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, + // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty, + CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false); + RTLFn = + CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps"); + break; + } + case OMPRTL__kmpc_omp_wait_deps: { + // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, + // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias, + // kmp_depend_info_t *noalias_dep_list); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.Int32Ty, CGM.VoidPtrTy, + CGM.Int32Ty, CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps"); + break; + } + case OMPRTL__kmpc_cancellationpoint: { + // Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 + // global_tid, kmp_int32 cncl_kind) + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint"); + break; + } + case OMPRTL__kmpc_cancel: { + // Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 cncl_kind) + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel"); + break; + } + case OMPRTL__kmpc_push_num_teams: { + // Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid, + // kmp_int32 num_teams, kmp_int32 num_threads) + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, + CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams"); + break; + } + case OMPRTL__kmpc_fork_teams: { + // Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro + // microtask, ...); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + getKmpc_MicroPointerTy()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams"); + if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) { + if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) { + llvm::LLVMContext &Ctx = F->getContext(); + llvm::MDBuilder MDB(Ctx); + // Annotate the callback behavior of the __kmpc_fork_teams: + // - The callback callee is argument number 2 (microtask). + // - The first two arguments of the callback callee are unknown (-1). + // - All variadic arguments to the __kmpc_fork_teams are passed to the + // callback callee. + F->addMetadata( + llvm::LLVMContext::MD_callback, + *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding( + 2, {-1, -1}, + /* VarArgsArePassed */ true)})); + } + } + break; + } + case OMPRTL__kmpc_taskloop: { + // Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int + // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int + // sched, kmp_uint64 grainsize, void *task_dup); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), + CGM.IntTy, + CGM.VoidPtrTy, + CGM.IntTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty, + CGM.IntTy, + CGM.IntTy, + CGM.Int64Ty, + CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop"); + break; + } + case OMPRTL__kmpc_doacross_init: { + // Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32 + // num_dims, struct kmp_dim *dims); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), + CGM.Int32Ty, + CGM.Int32Ty, + CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init"); + break; + } + case OMPRTL__kmpc_doacross_fini: { + // Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini"); + break; + } + case OMPRTL__kmpc_doacross_post: { + // Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64 + // *vec); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.Int64Ty->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post"); + break; + } + case OMPRTL__kmpc_doacross_wait: { + // Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64 + // *vec); + llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, + CGM.Int64Ty->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait"); + break; + } + case OMPRTL__kmpc_task_reduction_init: { + // Build void *__kmpc_task_reduction_init(int gtid, int num_data, void + // *data); + llvm::Type *TypeParams[] = {CGM.IntTy, CGM.IntTy, CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); + RTLFn = + CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_task_reduction_init"); + break; + } + case OMPRTL__kmpc_task_reduction_get_th_data: { + // Build void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void + // *d); + llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction( + FnTy, /*Name=*/"__kmpc_task_reduction_get_th_data"); + break; + } + case OMPRTL__kmpc_alloc: { + // Build to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t + // al); omp_allocator_handle_t type is void *. + llvm::Type *TypeParams[] = {CGM.IntTy, CGM.SizeTy, CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_alloc"); + break; + } + case OMPRTL__kmpc_free: { + // Build to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t + // al); omp_allocator_handle_t type is void *. + llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_free"); + break; + } + case OMPRTL__kmpc_push_target_tripcount: { + // Build void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64 + // size); + llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int64Ty}; + llvm::FunctionType *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_target_tripcount"); + break; + } + case OMPRTL__tgt_target: { + // Build int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t + // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t + // *arg_types); + llvm::Type *TypeParams[] = {CGM.Int64Ty, + CGM.VoidPtrTy, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target"); + break; + } + case OMPRTL__tgt_target_nowait: { + // Build int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr, + // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, + // int64_t *arg_types); + llvm::Type *TypeParams[] = {CGM.Int64Ty, + CGM.VoidPtrTy, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_nowait"); + break; + } + case OMPRTL__tgt_target_teams: { + // Build int32_t __tgt_target_teams(int64_t device_id, void *host_ptr, + // int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, + // int64_t *arg_types, int32_t num_teams, int32_t thread_limit); + llvm::Type *TypeParams[] = {CGM.Int64Ty, + CGM.VoidPtrTy, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo(), + CGM.Int32Ty, + CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams"); + break; + } + case OMPRTL__tgt_target_teams_nowait: { + // Build int32_t __tgt_target_teams_nowait(int64_t device_id, void + // *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t + // *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit); + llvm::Type *TypeParams[] = {CGM.Int64Ty, + CGM.VoidPtrTy, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo(), + CGM.Int32Ty, + CGM.Int32Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams_nowait"); + break; + } + case OMPRTL__tgt_register_requires: { + // Build void __tgt_register_requires(int64_t flags); + llvm::Type *TypeParams[] = {CGM.Int64Ty}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_requires"); + break; + } + case OMPRTL__tgt_register_lib: { + // Build void __tgt_register_lib(__tgt_bin_desc *desc); + QualType ParamTy = + CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy()); + llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_lib"); + break; + } + case OMPRTL__tgt_unregister_lib: { + // Build void __tgt_unregister_lib(__tgt_bin_desc *desc); + QualType ParamTy = + CGM.getContext().getPointerType(getTgtBinaryDescriptorQTy()); + llvm::Type *TypeParams[] = {CGM.getTypes().ConvertTypeForMem(ParamTy)}; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_unregister_lib"); + break; + } + case OMPRTL__tgt_target_data_begin: { + // Build void __tgt_target_data_begin(int64_t device_id, int32_t arg_num, + // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types); + llvm::Type *TypeParams[] = {CGM.Int64Ty, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin"); + break; + } + case OMPRTL__tgt_target_data_begin_nowait: { + // Build void __tgt_target_data_begin_nowait(int64_t device_id, int32_t + // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t + // *arg_types); + llvm::Type *TypeParams[] = {CGM.Int64Ty, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin_nowait"); + break; + } + case OMPRTL__tgt_target_data_end: { + // Build void __tgt_target_data_end(int64_t device_id, int32_t arg_num, + // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types); + llvm::Type *TypeParams[] = {CGM.Int64Ty, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end"); + break; + } + case OMPRTL__tgt_target_data_end_nowait: { + // Build void __tgt_target_data_end_nowait(int64_t device_id, int32_t + // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t + // *arg_types); + llvm::Type *TypeParams[] = {CGM.Int64Ty, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end_nowait"); + break; + } + case OMPRTL__tgt_target_data_update: { + // Build void __tgt_target_data_update(int64_t device_id, int32_t arg_num, + // void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types); + llvm::Type *TypeParams[] = {CGM.Int64Ty, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update"); + break; + } + case OMPRTL__tgt_target_data_update_nowait: { + // Build void __tgt_target_data_update_nowait(int64_t device_id, int32_t + // arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t + // *arg_types); + llvm::Type *TypeParams[] = {CGM.Int64Ty, + CGM.Int32Ty, + CGM.VoidPtrPtrTy, + CGM.VoidPtrPtrTy, + CGM.Int64Ty->getPointerTo(), + CGM.Int64Ty->getPointerTo()}; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update_nowait"); + break; + } + } + assert(RTLFn && "Unable to find OpenMP runtime function"); + return RTLFn; +} + +llvm::FunctionCallee +CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) { + assert((IVSize == 32 || IVSize == 64) && + "IV size is not compatible with the omp runtime"); + StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4" + : "__kmpc_for_static_init_4u") + : (IVSigned ? "__kmpc_for_static_init_8" + : "__kmpc_for_static_init_8u"); + llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; + auto *PtrTy = llvm::PointerType::getUnqual(ITy); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), // loc + CGM.Int32Ty, // tid + CGM.Int32Ty, // schedtype + llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter + PtrTy, // p_lower + PtrTy, // p_upper + PtrTy, // p_stride + ITy, // incr + ITy // chunk + }; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::FunctionCallee +CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) { + assert((IVSize == 32 || IVSize == 64) && + "IV size is not compatible with the omp runtime"); + StringRef Name = + IVSize == 32 + ? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u") + : (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u"); + llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; + llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc + CGM.Int32Ty, // tid + CGM.Int32Ty, // schedtype + ITy, // lower + ITy, // upper + ITy, // stride + ITy // chunk + }; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false); + return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::FunctionCallee +CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) { + assert((IVSize == 32 || IVSize == 64) && + "IV size is not compatible with the omp runtime"); + StringRef Name = + IVSize == 32 + ? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u") + : (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u"); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), // loc + CGM.Int32Ty, // tid + }; + auto *FnTy = + llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false); + return CGM.CreateRuntimeFunction(FnTy, Name); +} + +llvm::FunctionCallee +CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) { + assert((IVSize == 32 || IVSize == 64) && + "IV size is not compatible with the omp runtime"); + StringRef Name = + IVSize == 32 + ? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u") + : (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u"); + llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty; + auto *PtrTy = llvm::PointerType::getUnqual(ITy); + llvm::Type *TypeParams[] = { + getIdentTyPointerTy(), // loc + CGM.Int32Ty, // tid + llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter + PtrTy, // p_lower + PtrTy, // p_upper + PtrTy // p_stride + }; + auto *FnTy = + llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false); + return CGM.CreateRuntimeFunction(FnTy, Name); +} + +Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) { + if (CGM.getLangOpts().OpenMPSimd) + return Address::invalid(); + llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = + OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); + if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link || + (*Res == OMPDeclareTargetDeclAttr::MT_To && + HasRequiresUnifiedSharedMemory))) { + SmallString<64> PtrName; + { + llvm::raw_svector_ostream OS(PtrName); + OS << CGM.getMangledName(GlobalDecl(VD)) << "_decl_tgt_ref_ptr"; + } + llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName); + if (!Ptr) { + QualType PtrTy = CGM.getContext().getPointerType(VD->getType()); + Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy), + PtrName); + if (!CGM.getLangOpts().OpenMPIsDevice) { + auto *GV = cast<llvm::GlobalVariable>(Ptr); + GV->setLinkage(llvm::GlobalValue::ExternalLinkage); + GV->setInitializer(CGM.GetAddrOfGlobal(VD)); + } + CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ptr)); + registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr)); + } + return Address(Ptr, CGM.getContext().getDeclAlign(VD)); + } + return Address::invalid(); +} + +llvm::Constant * +CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) { + assert(!CGM.getLangOpts().OpenMPUseTLS || + !CGM.getContext().getTargetInfo().isTLSSupported()); + // Lookup the entry, lazily creating it if necessary. + std::string Suffix = getName({"cache", ""}); + return getOrCreateInternalVariable( + CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix)); +} + +Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, + const VarDecl *VD, + Address VDAddr, + SourceLocation Loc) { + if (CGM.getLangOpts().OpenMPUseTLS && + CGM.getContext().getTargetInfo().isTLSSupported()) + return VDAddr; + + llvm::Type *VarTy = VDAddr.getElementType(); + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + CGF.Builder.CreatePointerCast(VDAddr.getPointer(), + CGM.Int8PtrTy), + CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)), + getOrCreateThreadPrivateCache(VD)}; + return Address(CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args), + VDAddr.getAlignment()); +} + +void CGOpenMPRuntime::emitThreadPrivateVarInit( + CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor, + llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) { + // Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime + // library. + llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc); + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num), + OMPLoc); + // Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor) + // to register constructor/destructor for variable. + llvm::Value *Args[] = { + OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy), + Ctor, CopyCtor, Dtor}; + CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args); +} + +llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition( + const VarDecl *VD, Address VDAddr, SourceLocation Loc, + bool PerformInit, CodeGenFunction *CGF) { + if (CGM.getLangOpts().OpenMPUseTLS && + CGM.getContext().getTargetInfo().isTLSSupported()) + return nullptr; + + VD = VD->getDefinition(CGM.getContext()); + if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) { + QualType ASTTy = VD->getType(); + + llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr; + const Expr *Init = VD->getAnyInitializer(); + if (CGM.getLangOpts().CPlusPlus && PerformInit) { + // Generate function that re-emits the declaration's initializer into the + // threadprivate copy of the variable VD + CodeGenFunction CtorCGF(CGM); + FunctionArgList Args; + ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc, + /*Id=*/nullptr, CGM.getContext().VoidPtrTy, + ImplicitParamDecl::Other); + Args.push_back(&Dst); + + const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( + CGM.getContext().VoidPtrTy, Args); + llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); + std::string Name = getName({"__kmpc_global_ctor_", ""}); + llvm::Function *Fn = + CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc); + CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI, + Args, Loc, Loc); + llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar( + CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, + CGM.getContext().VoidPtrTy, Dst.getLocation()); + Address Arg = Address(ArgVal, VDAddr.getAlignment()); + Arg = CtorCGF.Builder.CreateElementBitCast( + Arg, CtorCGF.ConvertTypeForMem(ASTTy)); + CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(), + /*IsInitializer=*/true); + ArgVal = CtorCGF.EmitLoadOfScalar( + CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false, + CGM.getContext().VoidPtrTy, Dst.getLocation()); + CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue); + CtorCGF.FinishFunction(); + Ctor = Fn; + } + if (VD->getType().isDestructedType() != QualType::DK_none) { + // Generate function that emits destructor call for the threadprivate copy + // of the variable VD + CodeGenFunction DtorCGF(CGM); + FunctionArgList Args; + ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc, + /*Id=*/nullptr, CGM.getContext().VoidPtrTy, + ImplicitParamDecl::Other); + Args.push_back(&Dst); + + const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( + CGM.getContext().VoidTy, Args); + llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); + std::string Name = getName({"__kmpc_global_dtor_", ""}); + llvm::Function *Fn = + CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc); + auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); + DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args, + Loc, Loc); + // Create a scope with an artificial location for the body of this function. + auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); + llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar( + DtorCGF.GetAddrOfLocalVar(&Dst), + /*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation()); + DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy, + DtorCGF.getDestroyer(ASTTy.isDestructedType()), + DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); + DtorCGF.FinishFunction(); + Dtor = Fn; + } + // Do not emit init function if it is not required. + if (!Ctor && !Dtor) + return nullptr; + + llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy}; + auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs, + /*isVarArg=*/false) + ->getPointerTo(); + // Copying constructor for the threadprivate variable. + // Must be NULL - reserved by runtime, but currently it requires that this + // parameter is always NULL. Otherwise it fires assertion. + CopyCtor = llvm::Constant::getNullValue(CopyCtorTy); + if (Ctor == nullptr) { + auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy, + /*isVarArg=*/false) + ->getPointerTo(); + Ctor = llvm::Constant::getNullValue(CtorTy); + } + if (Dtor == nullptr) { + auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, + /*isVarArg=*/false) + ->getPointerTo(); + Dtor = llvm::Constant::getNullValue(DtorTy); + } + if (!CGF) { + auto *InitFunctionTy = + llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false); + std::string Name = getName({"__omp_threadprivate_init_", ""}); + llvm::Function *InitFunction = CGM.CreateGlobalInitOrDestructFunction( + InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction()); + CodeGenFunction InitCGF(CGM); + FunctionArgList ArgList; + InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction, + CGM.getTypes().arrangeNullaryFunction(), ArgList, + Loc, Loc); + emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); + InitCGF.FinishFunction(); + return InitFunction; + } + emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc); + } + return nullptr; +} + +/// Obtain information that uniquely identifies a target entry. This +/// consists of the file and device IDs as well as line number associated with +/// the relevant entry source location. +static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc, + unsigned &DeviceID, unsigned &FileID, + unsigned &LineNum) { + SourceManager &SM = C.getSourceManager(); + + // The loc should be always valid and have a file ID (the user cannot use + // #pragma directives in macros) + + assert(Loc.isValid() && "Source location is expected to be always valid."); + + PresumedLoc PLoc = SM.getPresumedLoc(Loc); + assert(PLoc.isValid() && "Source location is expected to be always valid."); + + llvm::sys::fs::UniqueID ID; + if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) + SM.getDiagnostics().Report(diag::err_cannot_open_file) + << PLoc.getFilename() << EC.message(); + + DeviceID = ID.getDevice(); + FileID = ID.getFile(); + LineNum = PLoc.getLine(); +} + +bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD, + llvm::GlobalVariable *Addr, + bool PerformInit) { + Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = + OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); + if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link || + (*Res == OMPDeclareTargetDeclAttr::MT_To && + HasRequiresUnifiedSharedMemory)) + return CGM.getLangOpts().OpenMPIsDevice; + VD = VD->getDefinition(CGM.getContext()); + if (VD && !DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second) + return CGM.getLangOpts().OpenMPIsDevice; + + QualType ASTTy = VD->getType(); + + SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc(); + // Produce the unique prefix to identify the new target regions. We use + // the source location of the variable declaration which we know to not + // conflict with any target region. + unsigned DeviceID; + unsigned FileID; + unsigned Line; + getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line); + SmallString<128> Buffer, Out; + { + llvm::raw_svector_ostream OS(Buffer); + OS << "__omp_offloading_" << llvm::format("_%x", DeviceID) + << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line; + } + + const Expr *Init = VD->getAnyInitializer(); + if (CGM.getLangOpts().CPlusPlus && PerformInit) { + llvm::Constant *Ctor; + llvm::Constant *ID; + if (CGM.getLangOpts().OpenMPIsDevice) { + // Generate function that re-emits the declaration's initializer into + // the threadprivate copy of the variable VD + CodeGenFunction CtorCGF(CGM); + + const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); + llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); + llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction( + FTy, Twine(Buffer, "_ctor"), FI, Loc); + auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF); + CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, + FunctionArgList(), Loc, Loc); + auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF); + CtorCGF.EmitAnyExprToMem(Init, + Address(Addr, CGM.getContext().getDeclAlign(VD)), + Init->getType().getQualifiers(), + /*IsInitializer=*/true); + CtorCGF.FinishFunction(); + Ctor = Fn; + ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); + CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor)); + } else { + Ctor = new llvm::GlobalVariable( + CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, + llvm::GlobalValue::PrivateLinkage, + llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor")); + ID = Ctor; + } + + // Register the information for the entry associated with the constructor. + Out.clear(); + OffloadEntriesInfoManager.registerTargetRegionEntryInfo( + DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor, + ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor); + } + if (VD->getType().isDestructedType() != QualType::DK_none) { + llvm::Constant *Dtor; + llvm::Constant *ID; + if (CGM.getLangOpts().OpenMPIsDevice) { + // Generate function that emits destructor call for the threadprivate + // copy of the variable VD + CodeGenFunction DtorCGF(CGM); + + const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); + llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); + llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction( + FTy, Twine(Buffer, "_dtor"), FI, Loc); + auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF); + DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, + FunctionArgList(), Loc, Loc); + // Create a scope with an artificial location for the body of this + // function. + auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF); + DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)), + ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()), + DtorCGF.needsEHCleanup(ASTTy.isDestructedType())); + DtorCGF.FinishFunction(); + Dtor = Fn; + ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy); + CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor)); + } else { + Dtor = new llvm::GlobalVariable( + CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, + llvm::GlobalValue::PrivateLinkage, + llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor")); + ID = Dtor; + } + // Register the information for the entry associated with the destructor. + Out.clear(); + OffloadEntriesInfoManager.registerTargetRegionEntryInfo( + DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor, + ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor); + } + return CGM.getLangOpts().OpenMPIsDevice; +} + +Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF, + QualType VarType, + StringRef Name) { + std::string Suffix = getName({"artificial", ""}); + std::string CacheSuffix = getName({"cache", ""}); + llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType); + llvm::Value *GAddr = + getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix)); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, SourceLocation()), + getThreadID(CGF, SourceLocation()), + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy), + CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy, + /*isSigned=*/false), + getOrCreateInternalVariable( + CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))}; + return Address( + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args), + VarLVType->getPointerTo(/*AddrSpace=*/0)), + CGM.getPointerAlign()); +} + +void CGOpenMPRuntime::emitOMPIfClause(CodeGenFunction &CGF, const Expr *Cond, + const RegionCodeGenTy &ThenGen, + const RegionCodeGenTy &ElseGen) { + CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange()); + + // If the condition constant folds and can be elided, try to avoid emitting + // the condition and the dead arm of the if/else. + bool CondConstant; + if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) { + if (CondConstant) + ThenGen(CGF); + else + ElseGen(CGF); + return; + } + + // Otherwise, the condition did not fold, or we couldn't elide it. Just + // emit the conditional branch. + llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then"); + llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else"); + llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end"); + CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0); + + // Emit the 'then' code. + CGF.EmitBlock(ThenBlock); + ThenGen(CGF); + CGF.EmitBranch(ContBlock); + // Emit the 'else' code if present. + // There is no need to emit line number for unconditional branch. + (void)ApplyDebugLocation::CreateEmpty(CGF); + CGF.EmitBlock(ElseBlock); + ElseGen(CGF); + // There is no need to emit line number for unconditional branch. + (void)ApplyDebugLocation::CreateEmpty(CGF); + CGF.EmitBranch(ContBlock); + // Emit the continuation block for code after the if. + CGF.EmitBlock(ContBlock, /*IsFinished=*/true); +} + +void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc, + llvm::Function *OutlinedFn, + ArrayRef<llvm::Value *> CapturedVars, + const Expr *IfCond) { + if (!CGF.HaveInsertPoint()) + return; + llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); + auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF, + PrePostActionTy &) { + // Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn); + CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); + llvm::Value *Args[] = { + RTLoc, + CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars + CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())}; + llvm::SmallVector<llvm::Value *, 16> RealArgs; + RealArgs.append(std::begin(Args), std::end(Args)); + RealArgs.append(CapturedVars.begin(), CapturedVars.end()); + + llvm::FunctionCallee RTLFn = + RT.createRuntimeFunction(OMPRTL__kmpc_fork_call); + CGF.EmitRuntimeCall(RTLFn, RealArgs); + }; + auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF, + PrePostActionTy &) { + CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); + llvm::Value *ThreadID = RT.getThreadID(CGF, Loc); + // Build calls: + // __kmpc_serialized_parallel(&Loc, GTid); + llvm::Value *Args[] = {RTLoc, ThreadID}; + CGF.EmitRuntimeCall( + RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args); + + // OutlinedFn(>id, &zero, CapturedStruct); + Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty, + /*Name*/ ".zero.addr"); + CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0)); + llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs; + // ThreadId for serialized parallels is 0. + OutlinedFnArgs.push_back(ZeroAddr.getPointer()); + OutlinedFnArgs.push_back(ZeroAddr.getPointer()); + OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end()); + RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs); + + // __kmpc_end_serialized_parallel(&Loc, GTid); + llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID}; + CGF.EmitRuntimeCall( + RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel), + EndArgs); + }; + if (IfCond) { + emitOMPIfClause(CGF, IfCond, ThenGen, ElseGen); + } else { + RegionCodeGenTy ThenRCG(ThenGen); + ThenRCG(CGF); + } +} + +// If we're inside an (outlined) parallel region, use the region info's +// thread-ID variable (it is passed in a first argument of the outlined function +// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in +// regular serial code region, get thread ID by calling kmp_int32 +// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and +// return the address of that temp. +Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF, + SourceLocation Loc) { + if (auto *OMPRegionInfo = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) + if (OMPRegionInfo->getThreadIDVariable()) + return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(); + + llvm::Value *ThreadID = getThreadID(CGF, Loc); + QualType Int32Ty = + CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true); + Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp."); + CGF.EmitStoreOfScalar(ThreadID, + CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty)); + + return ThreadIDTemp; +} + +llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable( + llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) { + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + Out << Name; + StringRef RuntimeName = Out.str(); + auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first; + if (Elem.second) { + assert(Elem.second->getType()->getPointerElementType() == Ty && + "OMP internal variable has different type than requested"); + return &*Elem.second; + } + + return Elem.second = new llvm::GlobalVariable( + CGM.getModule(), Ty, /*IsConstant*/ false, + llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty), + Elem.first(), /*InsertBefore=*/nullptr, + llvm::GlobalValue::NotThreadLocal, AddressSpace); +} + +llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) { + std::string Prefix = Twine("gomp_critical_user_", CriticalName).str(); + std::string Name = getName({Prefix, "var"}); + return getOrCreateInternalVariable(KmpCriticalNameTy, Name); +} + +namespace { +/// Common pre(post)-action for different OpenMP constructs. +class CommonActionTy final : public PrePostActionTy { + llvm::FunctionCallee EnterCallee; + ArrayRef<llvm::Value *> EnterArgs; + llvm::FunctionCallee ExitCallee; + ArrayRef<llvm::Value *> ExitArgs; + bool Conditional; + llvm::BasicBlock *ContBlock = nullptr; + +public: + CommonActionTy(llvm::FunctionCallee EnterCallee, + ArrayRef<llvm::Value *> EnterArgs, + llvm::FunctionCallee ExitCallee, + ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false) + : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee), + ExitArgs(ExitArgs), Conditional(Conditional) {} + void Enter(CodeGenFunction &CGF) override { + llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs); + if (Conditional) { + llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes); + auto *ThenBlock = CGF.createBasicBlock("omp_if.then"); + ContBlock = CGF.createBasicBlock("omp_if.end"); + // Generate the branch (If-stmt) + CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock); + CGF.EmitBlock(ThenBlock); + } + } + void Done(CodeGenFunction &CGF) { + // Emit the rest of blocks/branches + CGF.EmitBranch(ContBlock); + CGF.EmitBlock(ContBlock, true); + } + void Exit(CodeGenFunction &CGF) override { + CGF.EmitRuntimeCall(ExitCallee, ExitArgs); + } +}; +} // anonymous namespace + +void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF, + StringRef CriticalName, + const RegionCodeGenTy &CriticalOpGen, + SourceLocation Loc, const Expr *Hint) { + // __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]); + // CriticalOpGen(); + // __kmpc_end_critical(ident_t *, gtid, Lock); + // Prepare arguments and build a call to __kmpc_critical + if (!CGF.HaveInsertPoint()) + return; + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + getCriticalRegionLock(CriticalName)}; + llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), + std::end(Args)); + if (Hint) { + EnterArgs.push_back(CGF.Builder.CreateIntCast( + CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false)); + } + CommonActionTy Action( + createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint + : OMPRTL__kmpc_critical), + EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args); + CriticalOpGen.setAction(Action); + emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen); +} + +void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF, + const RegionCodeGenTy &MasterOpGen, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // if(__kmpc_master(ident_t *, gtid)) { + // MasterOpGen(); + // __kmpc_end_master(ident_t *, gtid); + // } + // Prepare arguments and build a call to __kmpc_master + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args, + createRuntimeFunction(OMPRTL__kmpc_end_master), Args, + /*Conditional=*/true); + MasterOpGen.setAction(Action); + emitInlinedDirective(CGF, OMPD_master, MasterOpGen); + Action.Done(CGF); +} + +void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Build call __kmpc_omp_taskyield(loc, thread_id, 0); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args); + if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) + Region->emitUntiedSwitch(CGF); +} + +void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF, + const RegionCodeGenTy &TaskgroupOpGen, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // __kmpc_taskgroup(ident_t *, gtid); + // TaskgroupOpGen(); + // __kmpc_end_taskgroup(ident_t *, gtid); + // Prepare arguments and build a call to __kmpc_taskgroup + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args, + createRuntimeFunction(OMPRTL__kmpc_end_taskgroup), + Args); + TaskgroupOpGen.setAction(Action); + emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen); +} + +/// Given an array of pointers to variables, project the address of a +/// given variable. +static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array, + unsigned Index, const VarDecl *Var) { + // Pull out the pointer to the variable. + Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index); + llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr); + + Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var)); + Addr = CGF.Builder.CreateElementBitCast( + Addr, CGF.ConvertTypeForMem(Var->getType())); + return Addr; +} + +static llvm::Value *emitCopyprivateCopyFunction( + CodeGenModule &CGM, llvm::Type *ArgsType, + ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs, + ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps, + SourceLocation Loc) { + ASTContext &C = CGM.getContext(); + // void copy_func(void *LHSArg, void *RHSArg); + FunctionArgList Args; + ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, + ImplicitParamDecl::Other); + ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, + ImplicitParamDecl::Other); + Args.push_back(&LHSArg); + Args.push_back(&RHSArg); + const auto &CGFI = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + std::string Name = + CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"}); + auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), + llvm::GlobalValue::InternalLinkage, Name, + &CGM.getModule()); + CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); + Fn->setDoesNotRecurse(); + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); + // Dest = (void*[n])(LHSArg); + // Src = (void*[n])(RHSArg); + Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), + ArgsType), CGF.getPointerAlign()); + Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), + ArgsType), CGF.getPointerAlign()); + // *(Type0*)Dst[0] = *(Type0*)Src[0]; + // *(Type1*)Dst[1] = *(Type1*)Src[1]; + // ... + // *(Typen*)Dst[n] = *(Typen*)Src[n]; + for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) { + const auto *DestVar = + cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl()); + Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar); + + const auto *SrcVar = + cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl()); + Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar); + + const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl(); + QualType Type = VD->getType(); + CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]); + } + CGF.FinishFunction(); + return Fn; +} + +void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF, + const RegionCodeGenTy &SingleOpGen, + SourceLocation Loc, + ArrayRef<const Expr *> CopyprivateVars, + ArrayRef<const Expr *> SrcExprs, + ArrayRef<const Expr *> DstExprs, + ArrayRef<const Expr *> AssignmentOps) { + if (!CGF.HaveInsertPoint()) + return; + assert(CopyprivateVars.size() == SrcExprs.size() && + CopyprivateVars.size() == DstExprs.size() && + CopyprivateVars.size() == AssignmentOps.size()); + ASTContext &C = CGM.getContext(); + // int32 did_it = 0; + // if(__kmpc_single(ident_t *, gtid)) { + // SingleOpGen(); + // __kmpc_end_single(ident_t *, gtid); + // did_it = 1; + // } + // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>, + // <copy_func>, did_it); + + Address DidIt = Address::invalid(); + if (!CopyprivateVars.empty()) { + // int32 did_it = 0; + QualType KmpInt32Ty = + C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); + DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it"); + CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt); + } + // Prepare arguments and build a call to __kmpc_single + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args, + createRuntimeFunction(OMPRTL__kmpc_end_single), Args, + /*Conditional=*/true); + SingleOpGen.setAction(Action); + emitInlinedDirective(CGF, OMPD_single, SingleOpGen); + if (DidIt.isValid()) { + // did_it = 1; + CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt); + } + Action.Done(CGF); + // call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>, + // <copy_func>, did_it); + if (DidIt.isValid()) { + llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size()); + QualType CopyprivateArrayTy = + C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, + /*IndexTypeQuals=*/0); + // Create a list of all private variables for copyprivate. + Address CopyprivateList = + CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list"); + for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) { + Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I); + CGF.Builder.CreateStore( + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.EmitLValue(CopyprivateVars[I]).getPointer(), CGF.VoidPtrTy), + Elem); + } + // Build function that copies private values from single region to all other + // threads in the corresponding parallel region. + llvm::Value *CpyFn = emitCopyprivateCopyFunction( + CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(), + CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc); + llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy); + Address CL = + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList, + CGF.VoidPtrTy); + llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), // ident_t *<loc> + getThreadID(CGF, Loc), // i32 <gtid> + BufSize, // size_t <buf_size> + CL.getPointer(), // void *<copyprivate list> + CpyFn, // void (*) (void *, void *) <copy_func> + DidItVal // i32 did_it + }; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args); + } +} + +void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF, + const RegionCodeGenTy &OrderedOpGen, + SourceLocation Loc, bool IsThreads) { + if (!CGF.HaveInsertPoint()) + return; + // __kmpc_ordered(ident_t *, gtid); + // OrderedOpGen(); + // __kmpc_end_ordered(ident_t *, gtid); + // Prepare arguments and build a call to __kmpc_ordered + if (IsThreads) { + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args, + createRuntimeFunction(OMPRTL__kmpc_end_ordered), + Args); + OrderedOpGen.setAction(Action); + emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); + return; + } + emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen); +} + +unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) { + unsigned Flags; + if (Kind == OMPD_for) + Flags = OMP_IDENT_BARRIER_IMPL_FOR; + else if (Kind == OMPD_sections) + Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS; + else if (Kind == OMPD_single) + Flags = OMP_IDENT_BARRIER_IMPL_SINGLE; + else if (Kind == OMPD_barrier) + Flags = OMP_IDENT_BARRIER_EXPL; + else + Flags = OMP_IDENT_BARRIER_IMPL; + return Flags; +} + +void CGOpenMPRuntime::getDefaultScheduleAndChunk( + CodeGenFunction &CGF, const OMPLoopDirective &S, + OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const { + // Check if the loop directive is actually a doacross loop directive. In this + // case choose static, 1 schedule. + if (llvm::any_of( + S.getClausesOfKind<OMPOrderedClause>(), + [](const OMPOrderedClause *C) { return C->getNumForLoops(); })) { + ScheduleKind = OMPC_SCHEDULE_static; + // Chunk size is 1 in this case. + llvm::APInt ChunkSize(32, 1); + ChunkExpr = IntegerLiteral::Create( + CGF.getContext(), ChunkSize, + CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0), + SourceLocation()); + } +} + +void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc, + OpenMPDirectiveKind Kind, bool EmitChecks, + bool ForceSimpleCall) { + if (!CGF.HaveInsertPoint()) + return; + // Build call __kmpc_cancel_barrier(loc, thread_id); + // Build call __kmpc_barrier(loc, thread_id); + unsigned Flags = getDefaultFlagsForBarriers(Kind); + // Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc, + // thread_id); + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags), + getThreadID(CGF, Loc)}; + if (auto *OMPRegionInfo = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { + if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) { + llvm::Value *Result = CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args); + if (EmitChecks) { + // if (__kmpc_cancel_barrier()) { + // exit from construct; + // } + llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); + llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); + llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); + CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); + CGF.EmitBlock(ExitBB); + // exit from construct; + CodeGenFunction::JumpDest CancelDestination = + CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); + CGF.EmitBranchThroughCleanup(CancelDestination); + CGF.EmitBlock(ContBB, /*IsFinished=*/true); + } + return; + } + } + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args); +} + +/// Map the OpenMP loop schedule to the runtime enumeration. +static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind, + bool Chunked, bool Ordered) { + switch (ScheduleKind) { + case OMPC_SCHEDULE_static: + return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked) + : (Ordered ? OMP_ord_static : OMP_sch_static); + case OMPC_SCHEDULE_dynamic: + return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked; + case OMPC_SCHEDULE_guided: + return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked; + case OMPC_SCHEDULE_runtime: + return Ordered ? OMP_ord_runtime : OMP_sch_runtime; + case OMPC_SCHEDULE_auto: + return Ordered ? OMP_ord_auto : OMP_sch_auto; + case OMPC_SCHEDULE_unknown: + assert(!Chunked && "chunk was specified but schedule kind not known"); + return Ordered ? OMP_ord_static : OMP_sch_static; + } + llvm_unreachable("Unexpected runtime schedule"); +} + +/// Map the OpenMP distribute schedule to the runtime enumeration. +static OpenMPSchedType +getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) { + // only static is allowed for dist_schedule + return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static; +} + +bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind, + bool Chunked) const { + OpenMPSchedType Schedule = + getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); + return Schedule == OMP_sch_static; +} + +bool CGOpenMPRuntime::isStaticNonchunked( + OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { + OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked); + return Schedule == OMP_dist_sch_static; +} + +bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind, + bool Chunked) const { + OpenMPSchedType Schedule = + getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false); + return Schedule == OMP_sch_static_chunked; +} + +bool CGOpenMPRuntime::isStaticChunked( + OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const { + OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked); + return Schedule == OMP_dist_sch_static_chunked; +} + +bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const { + OpenMPSchedType Schedule = + getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false); + assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here"); + return Schedule != OMP_sch_static; +} + +static int addMonoNonMonoModifier(OpenMPSchedType Schedule, + OpenMPScheduleClauseModifier M1, + OpenMPScheduleClauseModifier M2) { + int Modifier = 0; + switch (M1) { + case OMPC_SCHEDULE_MODIFIER_monotonic: + Modifier = OMP_sch_modifier_monotonic; + break; + case OMPC_SCHEDULE_MODIFIER_nonmonotonic: + Modifier = OMP_sch_modifier_nonmonotonic; + break; + case OMPC_SCHEDULE_MODIFIER_simd: + if (Schedule == OMP_sch_static_chunked) + Schedule = OMP_sch_static_balanced_chunked; + break; + case OMPC_SCHEDULE_MODIFIER_last: + case OMPC_SCHEDULE_MODIFIER_unknown: + break; + } + switch (M2) { + case OMPC_SCHEDULE_MODIFIER_monotonic: + Modifier = OMP_sch_modifier_monotonic; + break; + case OMPC_SCHEDULE_MODIFIER_nonmonotonic: + Modifier = OMP_sch_modifier_nonmonotonic; + break; + case OMPC_SCHEDULE_MODIFIER_simd: + if (Schedule == OMP_sch_static_chunked) + Schedule = OMP_sch_static_balanced_chunked; + break; + case OMPC_SCHEDULE_MODIFIER_last: + case OMPC_SCHEDULE_MODIFIER_unknown: + break; + } + return Schedule | Modifier; +} + +void CGOpenMPRuntime::emitForDispatchInit( + CodeGenFunction &CGF, SourceLocation Loc, + const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, + bool Ordered, const DispatchRTInput &DispatchValues) { + if (!CGF.HaveInsertPoint()) + return; + OpenMPSchedType Schedule = getRuntimeSchedule( + ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered); + assert(Ordered || + (Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked && + Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked && + Schedule != OMP_sch_static_balanced_chunked)); + // Call __kmpc_dispatch_init( + // ident_t *loc, kmp_int32 tid, kmp_int32 schedule, + // kmp_int[32|64] lower, kmp_int[32|64] upper, + // kmp_int[32|64] stride, kmp_int[32|64] chunk); + + // If the Chunk was not specified in the clause - use default value 1. + llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk + : CGF.Builder.getIntN(IVSize, 1); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + CGF.Builder.getInt32(addMonoNonMonoModifier( + Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type + DispatchValues.LB, // Lower + DispatchValues.UB, // Upper + CGF.Builder.getIntN(IVSize, 1), // Stride + Chunk // Chunk + }; + CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args); +} + +static void emitForStaticInitCall( + CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId, + llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule, + OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2, + const CGOpenMPRuntime::StaticRTInput &Values) { + if (!CGF.HaveInsertPoint()) + return; + + assert(!Values.Ordered); + assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked || + Schedule == OMP_sch_static_balanced_chunked || + Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked || + Schedule == OMP_dist_sch_static || + Schedule == OMP_dist_sch_static_chunked); + + // Call __kmpc_for_static_init( + // ident_t *loc, kmp_int32 tid, kmp_int32 schedtype, + // kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower, + // kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride, + // kmp_int[32|64] incr, kmp_int[32|64] chunk); + llvm::Value *Chunk = Values.Chunk; + if (Chunk == nullptr) { + assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static || + Schedule == OMP_dist_sch_static) && + "expected static non-chunked schedule"); + // If the Chunk was not specified in the clause - use default value 1. + Chunk = CGF.Builder.getIntN(Values.IVSize, 1); + } else { + assert((Schedule == OMP_sch_static_chunked || + Schedule == OMP_sch_static_balanced_chunked || + Schedule == OMP_ord_static_chunked || + Schedule == OMP_dist_sch_static_chunked) && + "expected static chunked schedule"); + } + llvm::Value *Args[] = { + UpdateLocation, + ThreadId, + CGF.Builder.getInt32(addMonoNonMonoModifier(Schedule, M1, + M2)), // Schedule type + Values.IL.getPointer(), // &isLastIter + Values.LB.getPointer(), // &LB + Values.UB.getPointer(), // &UB + Values.ST.getPointer(), // &Stride + CGF.Builder.getIntN(Values.IVSize, 1), // Incr + Chunk // Chunk + }; + CGF.EmitRuntimeCall(ForStaticInitFunction, Args); +} + +void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF, + SourceLocation Loc, + OpenMPDirectiveKind DKind, + const OpenMPScheduleTy &ScheduleKind, + const StaticRTInput &Values) { + OpenMPSchedType ScheduleNum = getRuntimeSchedule( + ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered); + assert(isOpenMPWorksharingDirective(DKind) && + "Expected loop-based or sections-based directive."); + llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc, + isOpenMPLoopDirective(DKind) + ? OMP_IDENT_WORK_LOOP + : OMP_IDENT_WORK_SECTIONS); + llvm::Value *ThreadId = getThreadID(CGF, Loc); + llvm::FunctionCallee StaticInitFunction = + createForStaticInitFunction(Values.IVSize, Values.IVSigned); + emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, + ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values); +} + +void CGOpenMPRuntime::emitDistributeStaticInit( + CodeGenFunction &CGF, SourceLocation Loc, + OpenMPDistScheduleClauseKind SchedKind, + const CGOpenMPRuntime::StaticRTInput &Values) { + OpenMPSchedType ScheduleNum = + getRuntimeSchedule(SchedKind, Values.Chunk != nullptr); + llvm::Value *UpdatedLocation = + emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE); + llvm::Value *ThreadId = getThreadID(CGF, Loc); + llvm::FunctionCallee StaticInitFunction = + createForStaticInitFunction(Values.IVSize, Values.IVSigned); + emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction, + ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown, + OMPC_SCHEDULE_MODIFIER_unknown, Values); +} + +void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF, + SourceLocation Loc, + OpenMPDirectiveKind DKind) { + if (!CGF.HaveInsertPoint()) + return; + // Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc, + isOpenMPDistributeDirective(DKind) + ? OMP_IDENT_WORK_DISTRIBUTE + : isOpenMPLoopDirective(DKind) + ? OMP_IDENT_WORK_LOOP + : OMP_IDENT_WORK_SECTIONS), + getThreadID(CGF, Loc)}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini), + Args); +} + +void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, + SourceLocation Loc, + unsigned IVSize, + bool IVSigned) { + if (!CGF.HaveInsertPoint()) + return; + // Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid); + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args); +} + +llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF, + SourceLocation Loc, unsigned IVSize, + bool IVSigned, Address IL, + Address LB, Address UB, + Address ST) { + // Call __kmpc_dispatch_next( + // ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter, + // kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper, + // kmp_int[32|64] *p_stride); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), + getThreadID(CGF, Loc), + IL.getPointer(), // &isLastIter + LB.getPointer(), // &Lower + UB.getPointer(), // &Upper + ST.getPointer() // &Stride + }; + llvm::Value *Call = + CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args); + return CGF.EmitScalarConversion( + Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1), + CGF.getContext().BoolTy, Loc); +} + +void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF, + llvm::Value *NumThreads, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Build call __kmpc_push_num_threads(&loc, global_tid, num_threads) + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads), + Args); +} + +void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF, + OpenMPProcBindClauseKind ProcBind, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Constants for proc bind value accepted by the runtime. + enum ProcBindTy { + ProcBindFalse = 0, + ProcBindTrue, + ProcBindMaster, + ProcBindClose, + ProcBindSpread, + ProcBindIntel, + ProcBindDefault + } RuntimeProcBind; + switch (ProcBind) { + case OMPC_PROC_BIND_master: + RuntimeProcBind = ProcBindMaster; + break; + case OMPC_PROC_BIND_close: + RuntimeProcBind = ProcBindClose; + break; + case OMPC_PROC_BIND_spread: + RuntimeProcBind = ProcBindSpread; + break; + case OMPC_PROC_BIND_unknown: + llvm_unreachable("Unsupported proc_bind value."); + } + // Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind) + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + llvm::ConstantInt::get(CGM.IntTy, RuntimeProcBind, /*isSigned=*/true)}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args); +} + +void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Build call void __kmpc_flush(ident_t *loc) + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush), + emitUpdateLocation(CGF, Loc)); +} + +namespace { +/// Indexes of fields for type kmp_task_t. +enum KmpTaskTFields { + /// List of shared variables. + KmpTaskTShareds, + /// Task routine. + KmpTaskTRoutine, + /// Partition id for the untied tasks. + KmpTaskTPartId, + /// Function with call of destructors for private variables. + Data1, + /// Task priority. + Data2, + /// (Taskloops only) Lower bound. + KmpTaskTLowerBound, + /// (Taskloops only) Upper bound. + KmpTaskTUpperBound, + /// (Taskloops only) Stride. + KmpTaskTStride, + /// (Taskloops only) Is last iteration flag. + KmpTaskTLastIter, + /// (Taskloops only) Reduction data. + KmpTaskTReductions, +}; +} // anonymous namespace + +bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const { + return OffloadEntriesTargetRegion.empty() && + OffloadEntriesDeviceGlobalVar.empty(); +} + +/// Initialize target region entry. +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: + initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, + StringRef ParentName, unsigned LineNum, + unsigned Order) { + assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is " + "only required for the device " + "code generation."); + OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = + OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr, + OMPTargetRegionEntryTargetRegion); + ++OffloadingEntriesNum; +} + +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: + registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID, + StringRef ParentName, unsigned LineNum, + llvm::Constant *Addr, llvm::Constant *ID, + OMPTargetRegionEntryKind Flags) { + // If we are emitting code for a target, the entry is already initialized, + // only has to be registered. + if (CGM.getLangOpts().OpenMPIsDevice) { + if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) { + unsigned DiagID = CGM.getDiags().getCustomDiagID( + DiagnosticsEngine::Error, + "Unable to find target region on line '%0' in the device code."); + CGM.getDiags().Report(DiagID) << LineNum; + return; + } + auto &Entry = + OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum]; + assert(Entry.isValid() && "Entry not initialized!"); + Entry.setAddress(Addr); + Entry.setID(ID); + Entry.setFlags(Flags); + } else { + OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags); + OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry; + ++OffloadingEntriesNum; + } +} + +bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo( + unsigned DeviceID, unsigned FileID, StringRef ParentName, + unsigned LineNum) const { + auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID); + if (PerDevice == OffloadEntriesTargetRegion.end()) + return false; + auto PerFile = PerDevice->second.find(FileID); + if (PerFile == PerDevice->second.end()) + return false; + auto PerParentName = PerFile->second.find(ParentName); + if (PerParentName == PerFile->second.end()) + return false; + auto PerLine = PerParentName->second.find(LineNum); + if (PerLine == PerParentName->second.end()) + return false; + // Fail if this entry is already registered. + if (PerLine->second.getAddress() || PerLine->second.getID()) + return false; + return true; +} + +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo( + const OffloadTargetRegionEntryInfoActTy &Action) { + // Scan all target region entries and perform the provided action. + for (const auto &D : OffloadEntriesTargetRegion) + for (const auto &F : D.second) + for (const auto &P : F.second) + for (const auto &L : P.second) + Action(D.first, F.first, P.first(), L.first, L.second); +} + +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: + initializeDeviceGlobalVarEntryInfo(StringRef Name, + OMPTargetGlobalVarEntryKind Flags, + unsigned Order) { + assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is " + "only required for the device " + "code generation."); + OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags); + ++OffloadingEntriesNum; +} + +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: + registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr, + CharUnits VarSize, + OMPTargetGlobalVarEntryKind Flags, + llvm::GlobalValue::LinkageTypes Linkage) { + if (CGM.getLangOpts().OpenMPIsDevice) { + auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; + assert(Entry.isValid() && Entry.getFlags() == Flags && + "Entry not initialized!"); + assert((!Entry.getAddress() || Entry.getAddress() == Addr) && + "Resetting with the new address."); + if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) { + if (Entry.getVarSize().isZero()) { + Entry.setVarSize(VarSize); + Entry.setLinkage(Linkage); + } + return; + } + Entry.setVarSize(VarSize); + Entry.setLinkage(Linkage); + Entry.setAddress(Addr); + } else { + if (hasDeviceGlobalVarEntryInfo(VarName)) { + auto &Entry = OffloadEntriesDeviceGlobalVar[VarName]; + assert(Entry.isValid() && Entry.getFlags() == Flags && + "Entry not initialized!"); + assert((!Entry.getAddress() || Entry.getAddress() == Addr) && + "Resetting with the new address."); + if (Entry.getVarSize().isZero()) { + Entry.setVarSize(VarSize); + Entry.setLinkage(Linkage); + } + return; + } + OffloadEntriesDeviceGlobalVar.try_emplace( + VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage); + ++OffloadingEntriesNum; + } +} + +void CGOpenMPRuntime::OffloadEntriesInfoManagerTy:: + actOnDeviceGlobalVarEntriesInfo( + const OffloadDeviceGlobalVarEntryInfoActTy &Action) { + // Scan all target region entries and perform the provided action. + for (const auto &E : OffloadEntriesDeviceGlobalVar) + Action(E.getKey(), E.getValue()); +} + +llvm::Function * +CGOpenMPRuntime::createOffloadingBinaryDescriptorRegistration() { + // If we don't have entries or if we are emitting code for the device, we + // don't need to do anything. + if (CGM.getLangOpts().OpenMPIsDevice || OffloadEntriesInfoManager.empty()) + return nullptr; + + llvm::Module &M = CGM.getModule(); + ASTContext &C = CGM.getContext(); + + // Get list of devices we care about + const std::vector<llvm::Triple> &Devices = CGM.getLangOpts().OMPTargetTriples; + + // We should be creating an offloading descriptor only if there are devices + // specified. + assert(!Devices.empty() && "No OpenMP offloading devices??"); + + // Create the external variables that will point to the begin and end of the + // host entries section. These will be defined by the linker. + llvm::Type *OffloadEntryTy = + CGM.getTypes().ConvertTypeForMem(getTgtOffloadEntryQTy()); + std::string EntriesBeginName = getName({"omp_offloading", "entries_begin"}); + auto *HostEntriesBegin = new llvm::GlobalVariable( + M, OffloadEntryTy, /*isConstant=*/true, + llvm::GlobalValue::ExternalLinkage, /*Initializer=*/nullptr, + EntriesBeginName); + std::string EntriesEndName = getName({"omp_offloading", "entries_end"}); + auto *HostEntriesEnd = + new llvm::GlobalVariable(M, OffloadEntryTy, /*isConstant=*/true, + llvm::GlobalValue::ExternalLinkage, + /*Initializer=*/nullptr, EntriesEndName); + + // Create all device images + auto *DeviceImageTy = cast<llvm::StructType>( + CGM.getTypes().ConvertTypeForMem(getTgtDeviceImageQTy())); + ConstantInitBuilder DeviceImagesBuilder(CGM); + ConstantArrayBuilder DeviceImagesEntries = + DeviceImagesBuilder.beginArray(DeviceImageTy); + + for (const llvm::Triple &Device : Devices) { + StringRef T = Device.getTriple(); + std::string BeginName = getName({"omp_offloading", "img_start", ""}); + auto *ImgBegin = new llvm::GlobalVariable( + M, CGM.Int8Ty, /*isConstant=*/true, + llvm::GlobalValue::ExternalWeakLinkage, + /*Initializer=*/nullptr, Twine(BeginName).concat(T)); + std::string EndName = getName({"omp_offloading", "img_end", ""}); + auto *ImgEnd = new llvm::GlobalVariable( + M, CGM.Int8Ty, /*isConstant=*/true, + llvm::GlobalValue::ExternalWeakLinkage, + /*Initializer=*/nullptr, Twine(EndName).concat(T)); + + llvm::Constant *Data[] = {ImgBegin, ImgEnd, HostEntriesBegin, + HostEntriesEnd}; + createConstantGlobalStructAndAddToParent(CGM, getTgtDeviceImageQTy(), Data, + DeviceImagesEntries); + } + + // Create device images global array. + std::string ImagesName = getName({"omp_offloading", "device_images"}); + llvm::GlobalVariable *DeviceImages = + DeviceImagesEntries.finishAndCreateGlobal(ImagesName, + CGM.getPointerAlign(), + /*isConstant=*/true); + DeviceImages->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + + // This is a Zero array to be used in the creation of the constant expressions + llvm::Constant *Index[] = {llvm::Constant::getNullValue(CGM.Int32Ty), + llvm::Constant::getNullValue(CGM.Int32Ty)}; + + // Create the target region descriptor. + llvm::Constant *Data[] = { + llvm::ConstantInt::get(CGM.Int32Ty, Devices.size()), + llvm::ConstantExpr::getGetElementPtr(DeviceImages->getValueType(), + DeviceImages, Index), + HostEntriesBegin, HostEntriesEnd}; + std::string Descriptor = getName({"omp_offloading", "descriptor"}); + llvm::GlobalVariable *Desc = createGlobalStruct( + CGM, getTgtBinaryDescriptorQTy(), /*IsConstant=*/true, Data, Descriptor); + + // Emit code to register or unregister the descriptor at execution + // startup or closing, respectively. + + llvm::Function *UnRegFn; + { + FunctionArgList Args; + ImplicitParamDecl DummyPtr(C, C.VoidPtrTy, ImplicitParamDecl::Other); + Args.push_back(&DummyPtr); + + CodeGenFunction CGF(CGM); + // Disable debug info for global (de-)initializer because they are not part + // of some particular construct. + CGF.disableDebugInfo(); + const auto &FI = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); + std::string UnregName = getName({"omp_offloading", "descriptor_unreg"}); + UnRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, UnregName, FI); + CGF.StartFunction(GlobalDecl(), C.VoidTy, UnRegFn, FI, Args); + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_unregister_lib), + Desc); + CGF.FinishFunction(); + } + llvm::Function *RegFn; + { + CodeGenFunction CGF(CGM); + // Disable debug info for global (de-)initializer because they are not part + // of some particular construct. + CGF.disableDebugInfo(); + const auto &FI = CGM.getTypes().arrangeNullaryFunction(); + llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); + + // Encode offload target triples into the registration function name. It + // will serve as a comdat key for the registration/unregistration code for + // this particular combination of offloading targets. + SmallVector<StringRef, 4U> RegFnNameParts(Devices.size() + 2U); + RegFnNameParts[0] = "omp_offloading"; + RegFnNameParts[1] = "descriptor_reg"; + llvm::transform(Devices, std::next(RegFnNameParts.begin(), 2), + [](const llvm::Triple &T) -> const std::string& { + return T.getTriple(); + }); + llvm::sort(std::next(RegFnNameParts.begin(), 2), RegFnNameParts.end()); + std::string Descriptor = getName(RegFnNameParts); + RegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, Descriptor, FI); + CGF.StartFunction(GlobalDecl(), C.VoidTy, RegFn, FI, FunctionArgList()); + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_lib), Desc); + // Create a variable to drive the registration and unregistration of the + // descriptor, so we can reuse the logic that emits Ctors and Dtors. + ImplicitParamDecl RegUnregVar(C, C.getTranslationUnitDecl(), + SourceLocation(), nullptr, C.CharTy, + ImplicitParamDecl::Other); + CGM.getCXXABI().registerGlobalDtor(CGF, RegUnregVar, UnRegFn, Desc); + CGF.FinishFunction(); + } + if (CGM.supportsCOMDAT()) { + // It is sufficient to call registration function only once, so create a + // COMDAT group for registration/unregistration functions and associated + // data. That would reduce startup time and code size. Registration + // function serves as a COMDAT group key. + llvm::Comdat *ComdatKey = M.getOrInsertComdat(RegFn->getName()); + RegFn->setLinkage(llvm::GlobalValue::LinkOnceAnyLinkage); + RegFn->setVisibility(llvm::GlobalValue::HiddenVisibility); + RegFn->setComdat(ComdatKey); + UnRegFn->setComdat(ComdatKey); + DeviceImages->setComdat(ComdatKey); + Desc->setComdat(ComdatKey); + } + return RegFn; +} + +void CGOpenMPRuntime::createOffloadEntry( + llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags, + llvm::GlobalValue::LinkageTypes Linkage) { + StringRef Name = Addr->getName(); + llvm::Module &M = CGM.getModule(); + llvm::LLVMContext &C = M.getContext(); + + // Create constant string with the name. + llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name); + + std::string StringName = getName({"omp_offloading", "entry_name"}); + auto *Str = new llvm::GlobalVariable( + M, StrPtrInit->getType(), /*isConstant=*/true, + llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName); + Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + + llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy), + llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy), + llvm::ConstantInt::get(CGM.SizeTy, Size), + llvm::ConstantInt::get(CGM.Int32Ty, Flags), + llvm::ConstantInt::get(CGM.Int32Ty, 0)}; + std::string EntryName = getName({"omp_offloading", "entry", ""}); + llvm::GlobalVariable *Entry = createGlobalStruct( + CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data, + Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage); + + // The entry has to be created in the section the linker expects it to be. + std::string Section = getName({"omp_offloading", "entries"}); + Entry->setSection(Section); +} + +void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() { + // Emit the offloading entries and metadata so that the device codegen side + // can easily figure out what to emit. The produced metadata looks like + // this: + // + // !omp_offload.info = !{!1, ...} + // + // Right now we only generate metadata for function that contain target + // regions. + + // If we do not have entries, we don't need to do anything. + if (OffloadEntriesInfoManager.empty()) + return; + + llvm::Module &M = CGM.getModule(); + llvm::LLVMContext &C = M.getContext(); + SmallVector<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *, 16> + OrderedEntries(OffloadEntriesInfoManager.size()); + llvm::SmallVector<StringRef, 16> ParentFunctions( + OffloadEntriesInfoManager.size()); + + // Auxiliary methods to create metadata values and strings. + auto &&GetMDInt = [this](unsigned V) { + return llvm::ConstantAsMetadata::get( + llvm::ConstantInt::get(CGM.Int32Ty, V)); + }; + + auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); }; + + // Create the offloading info metadata node. + llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info"); + + // Create function that emits metadata for each target region entry; + auto &&TargetRegionMetadataEmitter = + [&C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt, &GetMDString]( + unsigned DeviceID, unsigned FileID, StringRef ParentName, + unsigned Line, + const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) { + // Generate metadata for target regions. Each entry of this metadata + // contains: + // - Entry 0 -> Kind of this type of metadata (0). + // - Entry 1 -> Device ID of the file where the entry was identified. + // - Entry 2 -> File ID of the file where the entry was identified. + // - Entry 3 -> Mangled name of the function where the entry was + // identified. + // - Entry 4 -> Line in the file where the entry was identified. + // - Entry 5 -> Order the entry was created. + // The first element of the metadata node is the kind. + llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID), + GetMDInt(FileID), GetMDString(ParentName), + GetMDInt(Line), GetMDInt(E.getOrder())}; + + // Save this entry in the right position of the ordered entries array. + OrderedEntries[E.getOrder()] = &E; + ParentFunctions[E.getOrder()] = ParentName; + + // Add metadata to the named metadata node. + MD->addOperand(llvm::MDNode::get(C, Ops)); + }; + + OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo( + TargetRegionMetadataEmitter); + + // Create function that emits metadata for each device global variable entry; + auto &&DeviceGlobalVarMetadataEmitter = + [&C, &OrderedEntries, &GetMDInt, &GetMDString, + MD](StringRef MangledName, + const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar + &E) { + // Generate metadata for global variables. Each entry of this metadata + // contains: + // - Entry 0 -> Kind of this type of metadata (1). + // - Entry 1 -> Mangled name of the variable. + // - Entry 2 -> Declare target kind. + // - Entry 3 -> Order the entry was created. + // The first element of the metadata node is the kind. + llvm::Metadata *Ops[] = { + GetMDInt(E.getKind()), GetMDString(MangledName), + GetMDInt(E.getFlags()), GetMDInt(E.getOrder())}; + + // Save this entry in the right position of the ordered entries array. + OrderedEntries[E.getOrder()] = &E; + + // Add metadata to the named metadata node. + MD->addOperand(llvm::MDNode::get(C, Ops)); + }; + + OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo( + DeviceGlobalVarMetadataEmitter); + + for (const auto *E : OrderedEntries) { + assert(E && "All ordered entries must exist!"); + if (const auto *CE = + dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>( + E)) { + if (!CE->getID() || !CE->getAddress()) { + // Do not blame the entry if the parent funtion is not emitted. + StringRef FnName = ParentFunctions[CE->getOrder()]; + if (!CGM.GetGlobalValue(FnName)) + continue; + unsigned DiagID = CGM.getDiags().getCustomDiagID( + DiagnosticsEngine::Error, + "Offloading entry for target region is incorrect: either the " + "address or the ID is invalid."); + CGM.getDiags().Report(DiagID); + continue; + } + createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0, + CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage); + } else if (const auto *CE = + dyn_cast<OffloadEntriesInfoManagerTy:: + OffloadEntryInfoDeviceGlobalVar>(E)) { + OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags = + static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>( + CE->getFlags()); + switch (Flags) { + case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: { + if (CGM.getLangOpts().OpenMPIsDevice && + CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()) + continue; + if (!CE->getAddress()) { + unsigned DiagID = CGM.getDiags().getCustomDiagID( + DiagnosticsEngine::Error, + "Offloading entry for declare target variable is incorrect: the " + "address is invalid."); + CGM.getDiags().Report(DiagID); + continue; + } + // The vaiable has no definition - no need to add the entry. + if (CE->getVarSize().isZero()) + continue; + break; + } + case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink: + assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) || + (!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) && + "Declaret target link address is set."); + if (CGM.getLangOpts().OpenMPIsDevice) + continue; + if (!CE->getAddress()) { + unsigned DiagID = CGM.getDiags().getCustomDiagID( + DiagnosticsEngine::Error, + "Offloading entry for declare target variable is incorrect: the " + "address is invalid."); + CGM.getDiags().Report(DiagID); + continue; + } + break; + } + createOffloadEntry(CE->getAddress(), CE->getAddress(), + CE->getVarSize().getQuantity(), Flags, + CE->getLinkage()); + } else { + llvm_unreachable("Unsupported entry kind."); + } + } +} + +/// Loads all the offload entries information from the host IR +/// metadata. +void CGOpenMPRuntime::loadOffloadInfoMetadata() { + // If we are in target mode, load the metadata from the host IR. This code has + // to match the metadaata creation in createOffloadEntriesAndInfoMetadata(). + + if (!CGM.getLangOpts().OpenMPIsDevice) + return; + + if (CGM.getLangOpts().OMPHostIRFile.empty()) + return; + + auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile); + if (auto EC = Buf.getError()) { + CGM.getDiags().Report(diag::err_cannot_open_file) + << CGM.getLangOpts().OMPHostIRFile << EC.message(); + return; + } + + llvm::LLVMContext C; + auto ME = expectedToErrorOrAndEmitErrors( + C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C)); + + if (auto EC = ME.getError()) { + unsigned DiagID = CGM.getDiags().getCustomDiagID( + DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'"); + CGM.getDiags().Report(DiagID) + << CGM.getLangOpts().OMPHostIRFile << EC.message(); + return; + } + + llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info"); + if (!MD) + return; + + for (llvm::MDNode *MN : MD->operands()) { + auto &&GetMDInt = [MN](unsigned Idx) { + auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx)); + return cast<llvm::ConstantInt>(V->getValue())->getZExtValue(); + }; + + auto &&GetMDString = [MN](unsigned Idx) { + auto *V = cast<llvm::MDString>(MN->getOperand(Idx)); + return V->getString(); + }; + + switch (GetMDInt(0)) { + default: + llvm_unreachable("Unexpected metadata!"); + break; + case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: + OffloadingEntryInfoTargetRegion: + OffloadEntriesInfoManager.initializeTargetRegionEntryInfo( + /*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2), + /*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4), + /*Order=*/GetMDInt(5)); + break; + case OffloadEntriesInfoManagerTy::OffloadEntryInfo:: + OffloadingEntryInfoDeviceGlobalVar: + OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo( + /*MangledName=*/GetMDString(1), + static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>( + /*Flags=*/GetMDInt(2)), + /*Order=*/GetMDInt(3)); + break; + } + } +} + +void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) { + if (!KmpRoutineEntryPtrTy) { + // Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type. + ASTContext &C = CGM.getContext(); + QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy}; + FunctionProtoType::ExtProtoInfo EPI; + KmpRoutineEntryPtrQTy = C.getPointerType( + C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI)); + KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy); + } +} + +QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() { + // Make sure the type of the entry is already created. This is the type we + // have to create: + // struct __tgt_offload_entry{ + // void *addr; // Pointer to the offload entry info. + // // (function or global) + // char *name; // Name of the function or global. + // size_t size; // Size of the entry info (0 if it a function). + // int32_t flags; // Flags associated with the entry, e.g. 'link'. + // int32_t reserved; // Reserved, to use by the runtime library. + // }; + if (TgtOffloadEntryQTy.isNull()) { + ASTContext &C = CGM.getContext(); + RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry"); + RD->startDefinition(); + addFieldToRecordDecl(C, RD, C.VoidPtrTy); + addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy)); + addFieldToRecordDecl(C, RD, C.getSizeType()); + addFieldToRecordDecl( + C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); + addFieldToRecordDecl( + C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); + RD->completeDefinition(); + RD->addAttr(PackedAttr::CreateImplicit(C)); + TgtOffloadEntryQTy = C.getRecordType(RD); + } + return TgtOffloadEntryQTy; +} + +QualType CGOpenMPRuntime::getTgtDeviceImageQTy() { + // These are the types we need to build: + // struct __tgt_device_image{ + // void *ImageStart; // Pointer to the target code start. + // void *ImageEnd; // Pointer to the target code end. + // // We also add the host entries to the device image, as it may be useful + // // for the target runtime to have access to that information. + // __tgt_offload_entry *EntriesBegin; // Begin of the table with all + // // the entries. + // __tgt_offload_entry *EntriesEnd; // End of the table with all the + // // entries (non inclusive). + // }; + if (TgtDeviceImageQTy.isNull()) { + ASTContext &C = CGM.getContext(); + RecordDecl *RD = C.buildImplicitRecord("__tgt_device_image"); + RD->startDefinition(); + addFieldToRecordDecl(C, RD, C.VoidPtrTy); + addFieldToRecordDecl(C, RD, C.VoidPtrTy); + addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); + addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); + RD->completeDefinition(); + TgtDeviceImageQTy = C.getRecordType(RD); + } + return TgtDeviceImageQTy; +} + +QualType CGOpenMPRuntime::getTgtBinaryDescriptorQTy() { + // struct __tgt_bin_desc{ + // int32_t NumDevices; // Number of devices supported. + // __tgt_device_image *DeviceImages; // Arrays of device images + // // (one per device). + // __tgt_offload_entry *EntriesBegin; // Begin of the table with all the + // // entries. + // __tgt_offload_entry *EntriesEnd; // End of the table with all the + // // entries (non inclusive). + // }; + if (TgtBinaryDescriptorQTy.isNull()) { + ASTContext &C = CGM.getContext(); + RecordDecl *RD = C.buildImplicitRecord("__tgt_bin_desc"); + RD->startDefinition(); + addFieldToRecordDecl( + C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true)); + addFieldToRecordDecl(C, RD, C.getPointerType(getTgtDeviceImageQTy())); + addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); + addFieldToRecordDecl(C, RD, C.getPointerType(getTgtOffloadEntryQTy())); + RD->completeDefinition(); + TgtBinaryDescriptorQTy = C.getRecordType(RD); + } + return TgtBinaryDescriptorQTy; +} + +namespace { +struct PrivateHelpersTy { + PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy, + const VarDecl *PrivateElemInit) + : Original(Original), PrivateCopy(PrivateCopy), + PrivateElemInit(PrivateElemInit) {} + const VarDecl *Original; + const VarDecl *PrivateCopy; + const VarDecl *PrivateElemInit; +}; +typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy; +} // anonymous namespace + +static RecordDecl * +createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) { + if (!Privates.empty()) { + ASTContext &C = CGM.getContext(); + // Build struct .kmp_privates_t. { + // /* private vars */ + // }; + RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t"); + RD->startDefinition(); + for (const auto &Pair : Privates) { + const VarDecl *VD = Pair.second.Original; + QualType Type = VD->getType().getNonReferenceType(); + FieldDecl *FD = addFieldToRecordDecl(C, RD, Type); + if (VD->hasAttrs()) { + for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()), + E(VD->getAttrs().end()); + I != E; ++I) + FD->addAttr(*I); + } + } + RD->completeDefinition(); + return RD; + } + return nullptr; +} + +static RecordDecl * +createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind, + QualType KmpInt32Ty, + QualType KmpRoutineEntryPointerQTy) { + ASTContext &C = CGM.getContext(); + // Build struct kmp_task_t { + // void * shareds; + // kmp_routine_entry_t routine; + // kmp_int32 part_id; + // kmp_cmplrdata_t data1; + // kmp_cmplrdata_t data2; + // For taskloops additional fields: + // kmp_uint64 lb; + // kmp_uint64 ub; + // kmp_int64 st; + // kmp_int32 liter; + // void * reductions; + // }; + RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union); + UD->startDefinition(); + addFieldToRecordDecl(C, UD, KmpInt32Ty); + addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy); + UD->completeDefinition(); + QualType KmpCmplrdataTy = C.getRecordType(UD); + RecordDecl *RD = C.buildImplicitRecord("kmp_task_t"); + RD->startDefinition(); + addFieldToRecordDecl(C, RD, C.VoidPtrTy); + addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy); + addFieldToRecordDecl(C, RD, KmpInt32Ty); + addFieldToRecordDecl(C, RD, KmpCmplrdataTy); + addFieldToRecordDecl(C, RD, KmpCmplrdataTy); + if (isOpenMPTaskLoopDirective(Kind)) { + QualType KmpUInt64Ty = + CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0); + QualType KmpInt64Ty = + CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); + addFieldToRecordDecl(C, RD, KmpUInt64Ty); + addFieldToRecordDecl(C, RD, KmpUInt64Ty); + addFieldToRecordDecl(C, RD, KmpInt64Ty); + addFieldToRecordDecl(C, RD, KmpInt32Ty); + addFieldToRecordDecl(C, RD, C.VoidPtrTy); + } + RD->completeDefinition(); + return RD; +} + +static RecordDecl * +createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy, + ArrayRef<PrivateDataTy> Privates) { + ASTContext &C = CGM.getContext(); + // Build struct kmp_task_t_with_privates { + // kmp_task_t task_data; + // .kmp_privates_t. privates; + // }; + RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates"); + RD->startDefinition(); + addFieldToRecordDecl(C, RD, KmpTaskTQTy); + if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates)) + addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD)); + RD->completeDefinition(); + return RD; +} + +/// Emit a proxy function which accepts kmp_task_t as the second +/// argument. +/// \code +/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) { +/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt, +/// For taskloops: +/// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, +/// tt->reductions, tt->shareds); +/// return 0; +/// } +/// \endcode +static llvm::Function * +emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc, + OpenMPDirectiveKind Kind, QualType KmpInt32Ty, + QualType KmpTaskTWithPrivatesPtrQTy, + QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy, + QualType SharedsPtrTy, llvm::Function *TaskFunction, + llvm::Value *TaskPrivatesMap) { + ASTContext &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty, + ImplicitParamDecl::Other); + ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, + KmpTaskTWithPrivatesPtrQTy.withRestrict(), + ImplicitParamDecl::Other); + Args.push_back(&GtidArg); + Args.push_back(&TaskTypeArg); + const auto &TaskEntryFnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); + llvm::FunctionType *TaskEntryTy = + CGM.getTypes().GetFunctionType(TaskEntryFnInfo); + std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""}); + auto *TaskEntry = llvm::Function::Create( + TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); + CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo); + TaskEntry->setDoesNotRecurse(); + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args, + Loc, Loc); + + // TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map, + // tt, + // For taskloops: + // tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter, + // tt->task_data.shareds); + llvm::Value *GtidParam = CGF.EmitLoadOfScalar( + CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc); + LValue TDBase = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(&TaskTypeArg), + KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); + const auto *KmpTaskTWithPrivatesQTyRD = + cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl()); + LValue Base = + CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); + const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl()); + auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); + LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI); + llvm::Value *PartidParam = PartIdLVal.getPointer(); + + auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds); + LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI); + llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.EmitLoadOfScalar(SharedsLVal, Loc), + CGF.ConvertTypeForMem(SharedsPtrTy)); + + auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1); + llvm::Value *PrivatesParam; + if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) { + LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI); + PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + PrivatesLVal.getPointer(), CGF.VoidPtrTy); + } else { + PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); + } + + llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam, + TaskPrivatesMap, + CGF.Builder + .CreatePointerBitCastOrAddrSpaceCast( + TDBase.getAddress(), CGF.VoidPtrTy) + .getPointer()}; + SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs), + std::end(CommonArgs)); + if (isOpenMPTaskLoopDirective(Kind)) { + auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound); + LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI); + llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc); + auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound); + LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI); + llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc); + auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride); + LValue StLVal = CGF.EmitLValueForField(Base, *StFI); + llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc); + auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); + LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); + llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc); + auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions); + LValue RLVal = CGF.EmitLValueForField(Base, *RFI); + llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc); + CallArgs.push_back(LBParam); + CallArgs.push_back(UBParam); + CallArgs.push_back(StParam); + CallArgs.push_back(LIParam); + CallArgs.push_back(RParam); + } + CallArgs.push_back(SharedsParam); + + CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction, + CallArgs); + CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)), + CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty)); + CGF.FinishFunction(); + return TaskEntry; +} + +static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM, + SourceLocation Loc, + QualType KmpInt32Ty, + QualType KmpTaskTWithPrivatesPtrQTy, + QualType KmpTaskTWithPrivatesQTy) { + ASTContext &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty, + ImplicitParamDecl::Other); + ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, + KmpTaskTWithPrivatesPtrQTy.withRestrict(), + ImplicitParamDecl::Other); + Args.push_back(&GtidArg); + Args.push_back(&TaskTypeArg); + const auto &DestructorFnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args); + llvm::FunctionType *DestructorFnTy = + CGM.getTypes().GetFunctionType(DestructorFnInfo); + std::string Name = + CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""}); + auto *DestructorFn = + llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage, + Name, &CGM.getModule()); + CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn, + DestructorFnInfo); + DestructorFn->setDoesNotRecurse(); + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo, + Args, Loc, Loc); + + LValue Base = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(&TaskTypeArg), + KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); + const auto *KmpTaskTWithPrivatesQTyRD = + cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl()); + auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); + Base = CGF.EmitLValueForField(Base, *FI); + for (const auto *Field : + cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) { + if (QualType::DestructionKind DtorKind = + Field->getType().isDestructedType()) { + LValue FieldLValue = CGF.EmitLValueForField(Base, Field); + CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType()); + } + } + CGF.FinishFunction(); + return DestructorFn; +} + +/// Emit a privates mapping function for correct handling of private and +/// firstprivate variables. +/// \code +/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1> +/// **noalias priv1,..., <tyn> **noalias privn) { +/// *priv1 = &.privates.priv1; +/// ...; +/// *privn = &.privates.privn; +/// } +/// \endcode +static llvm::Value * +emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc, + ArrayRef<const Expr *> PrivateVars, + ArrayRef<const Expr *> FirstprivateVars, + ArrayRef<const Expr *> LastprivateVars, + QualType PrivatesQTy, + ArrayRef<PrivateDataTy> Privates) { + ASTContext &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl TaskPrivatesArg( + C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, + C.getPointerType(PrivatesQTy).withConst().withRestrict(), + ImplicitParamDecl::Other); + Args.push_back(&TaskPrivatesArg); + llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos; + unsigned Counter = 1; + for (const Expr *E : PrivateVars) { + Args.push_back(ImplicitParamDecl::Create( + C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, + C.getPointerType(C.getPointerType(E->getType())) + .withConst() + .withRestrict(), + ImplicitParamDecl::Other)); + const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + PrivateVarsPos[VD] = Counter; + ++Counter; + } + for (const Expr *E : FirstprivateVars) { + Args.push_back(ImplicitParamDecl::Create( + C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, + C.getPointerType(C.getPointerType(E->getType())) + .withConst() + .withRestrict(), + ImplicitParamDecl::Other)); + const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + PrivateVarsPos[VD] = Counter; + ++Counter; + } + for (const Expr *E : LastprivateVars) { + Args.push_back(ImplicitParamDecl::Create( + C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, + C.getPointerType(C.getPointerType(E->getType())) + .withConst() + .withRestrict(), + ImplicitParamDecl::Other)); + const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + PrivateVarsPos[VD] = Counter; + ++Counter; + } + const auto &TaskPrivatesMapFnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + llvm::FunctionType *TaskPrivatesMapTy = + CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo); + std::string Name = + CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""}); + auto *TaskPrivatesMap = llvm::Function::Create( + TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name, + &CGM.getModule()); + CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap, + TaskPrivatesMapFnInfo); + if (CGM.getLangOpts().Optimize) { + TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline); + TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone); + TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline); + } + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap, + TaskPrivatesMapFnInfo, Args, Loc, Loc); + + // *privi = &.privates.privi; + LValue Base = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(&TaskPrivatesArg), + TaskPrivatesArg.getType()->castAs<PointerType>()); + const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl()); + Counter = 0; + for (const FieldDecl *Field : PrivatesQTyRD->fields()) { + LValue FieldLVal = CGF.EmitLValueForField(Base, Field); + const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]]; + LValue RefLVal = + CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType()); + LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue( + RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>()); + CGF.EmitStoreOfScalar(FieldLVal.getPointer(), RefLoadLVal); + ++Counter; + } + CGF.FinishFunction(); + return TaskPrivatesMap; +} + +/// Emit initialization for private variables in task-based directives. +static void emitPrivatesInit(CodeGenFunction &CGF, + const OMPExecutableDirective &D, + Address KmpTaskSharedsPtr, LValue TDBase, + const RecordDecl *KmpTaskTWithPrivatesQTyRD, + QualType SharedsTy, QualType SharedsPtrTy, + const OMPTaskDataTy &Data, + ArrayRef<PrivateDataTy> Privates, bool ForDup) { + ASTContext &C = CGF.getContext(); + auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); + LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI); + OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind()) + ? OMPD_taskloop + : OMPD_task; + const CapturedStmt &CS = *D.getCapturedStmt(Kind); + CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS); + LValue SrcBase; + bool IsTargetTask = + isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) || + isOpenMPTargetExecutionDirective(D.getDirectiveKind()); + // For target-based directives skip 3 firstprivate arrays BasePointersArray, + // PointersArray and SizesArray. The original variables for these arrays are + // not captured and we get their addresses explicitly. + if ((!IsTargetTask && !Data.FirstprivateVars.empty()) || + (IsTargetTask && KmpTaskSharedsPtr.isValid())) { + SrcBase = CGF.MakeAddrLValue( + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)), + SharedsTy); + } + FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin(); + for (const PrivateDataTy &Pair : Privates) { + const VarDecl *VD = Pair.second.PrivateCopy; + const Expr *Init = VD->getAnyInitializer(); + if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) && + !CGF.isTrivialInitializer(Init)))) { + LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI); + if (const VarDecl *Elem = Pair.second.PrivateElemInit) { + const VarDecl *OriginalVD = Pair.second.Original; + // Check if the variable is the target-based BasePointersArray, + // PointersArray or SizesArray. + LValue SharedRefLValue; + QualType Type = PrivateLValue.getType(); + const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD); + if (IsTargetTask && !SharedField) { + assert(isa<ImplicitParamDecl>(OriginalVD) && + isa<CapturedDecl>(OriginalVD->getDeclContext()) && + cast<CapturedDecl>(OriginalVD->getDeclContext()) + ->getNumParams() == 0 && + isa<TranslationUnitDecl>( + cast<CapturedDecl>(OriginalVD->getDeclContext()) + ->getDeclContext()) && + "Expected artificial target data variable."); + SharedRefLValue = + CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type); + } else { + SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField); + SharedRefLValue = CGF.MakeAddrLValue( + Address(SharedRefLValue.getPointer(), C.getDeclAlign(OriginalVD)), + SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl), + SharedRefLValue.getTBAAInfo()); + } + if (Type->isArrayType()) { + // Initialize firstprivate array. + if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) { + // Perform simple memcpy. + CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type); + } else { + // Initialize firstprivate array using element-by-element + // initialization. + CGF.EmitOMPAggregateAssign( + PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type, + [&CGF, Elem, Init, &CapturesInfo](Address DestElement, + Address SrcElement) { + // Clean up any temporaries needed by the initialization. + CodeGenFunction::OMPPrivateScope InitScope(CGF); + InitScope.addPrivate( + Elem, [SrcElement]() -> Address { return SrcElement; }); + (void)InitScope.Privatize(); + // Emit initialization for single element. + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII( + CGF, &CapturesInfo); + CGF.EmitAnyExprToMem(Init, DestElement, + Init->getType().getQualifiers(), + /*IsInitializer=*/false); + }); + } + } else { + CodeGenFunction::OMPPrivateScope InitScope(CGF); + InitScope.addPrivate(Elem, [SharedRefLValue]() -> Address { + return SharedRefLValue.getAddress(); + }); + (void)InitScope.Privatize(); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo); + CGF.EmitExprAsInit(Init, VD, PrivateLValue, + /*capturedByInit=*/false); + } + } else { + CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false); + } + } + ++FI; + } +} + +/// Check if duplication function is required for taskloops. +static bool checkInitIsRequired(CodeGenFunction &CGF, + ArrayRef<PrivateDataTy> Privates) { + bool InitRequired = false; + for (const PrivateDataTy &Pair : Privates) { + const VarDecl *VD = Pair.second.PrivateCopy; + const Expr *Init = VD->getAnyInitializer(); + InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) && + !CGF.isTrivialInitializer(Init)); + if (InitRequired) + break; + } + return InitRequired; +} + + +/// Emit task_dup function (for initialization of +/// private/firstprivate/lastprivate vars and last_iter flag) +/// \code +/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int +/// lastpriv) { +/// // setup lastprivate flag +/// task_dst->last = lastpriv; +/// // could be constructor calls here... +/// } +/// \endcode +static llvm::Value * +emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc, + const OMPExecutableDirective &D, + QualType KmpTaskTWithPrivatesPtrQTy, + const RecordDecl *KmpTaskTWithPrivatesQTyRD, + const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy, + QualType SharedsPtrTy, const OMPTaskDataTy &Data, + ArrayRef<PrivateDataTy> Privates, bool WithLastIter) { + ASTContext &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, + KmpTaskTWithPrivatesPtrQTy, + ImplicitParamDecl::Other); + ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, + KmpTaskTWithPrivatesPtrQTy, + ImplicitParamDecl::Other); + ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy, + ImplicitParamDecl::Other); + Args.push_back(&DstArg); + Args.push_back(&SrcArg); + Args.push_back(&LastprivArg); + const auto &TaskDupFnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo); + std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""}); + auto *TaskDup = llvm::Function::Create( + TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule()); + CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo); + TaskDup->setDoesNotRecurse(); + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc, + Loc); + + LValue TDBase = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(&DstArg), + KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); + // task_dst->liter = lastpriv; + if (WithLastIter) { + auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter); + LValue Base = CGF.EmitLValueForField( + TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); + LValue LILVal = CGF.EmitLValueForField(Base, *LIFI); + llvm::Value *Lastpriv = CGF.EmitLoadOfScalar( + CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc); + CGF.EmitStoreOfScalar(Lastpriv, LILVal); + } + + // Emit initial values for private copies (if any). + assert(!Privates.empty()); + Address KmpTaskSharedsPtr = Address::invalid(); + if (!Data.FirstprivateVars.empty()) { + LValue TDBase = CGF.EmitLoadOfPointerLValue( + CGF.GetAddrOfLocalVar(&SrcArg), + KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>()); + LValue Base = CGF.EmitLValueForField( + TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin()); + KmpTaskSharedsPtr = Address( + CGF.EmitLoadOfScalar(CGF.EmitLValueForField( + Base, *std::next(KmpTaskTQTyRD->field_begin(), + KmpTaskTShareds)), + Loc), + CGF.getNaturalTypeAlignment(SharedsTy)); + } + emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD, + SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true); + CGF.FinishFunction(); + return TaskDup; +} + +/// Checks if destructor function is required to be generated. +/// \return true if cleanups are required, false otherwise. +static bool +checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) { + bool NeedsCleanup = false; + auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1); + const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl()); + for (const FieldDecl *FD : PrivateRD->fields()) { + NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType(); + if (NeedsCleanup) + break; + } + return NeedsCleanup; +} + +CGOpenMPRuntime::TaskResultTy +CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc, + const OMPExecutableDirective &D, + llvm::Function *TaskFunction, QualType SharedsTy, + Address Shareds, const OMPTaskDataTy &Data) { + ASTContext &C = CGM.getContext(); + llvm::SmallVector<PrivateDataTy, 4> Privates; + // Aggregate privates and sort them by the alignment. + auto I = Data.PrivateCopies.begin(); + for (const Expr *E : Data.PrivateVars) { + const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + Privates.emplace_back( + C.getDeclAlign(VD), + PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), + /*PrivateElemInit=*/nullptr)); + ++I; + } + I = Data.FirstprivateCopies.begin(); + auto IElemInitRef = Data.FirstprivateInits.begin(); + for (const Expr *E : Data.FirstprivateVars) { + const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + Privates.emplace_back( + C.getDeclAlign(VD), + PrivateHelpersTy( + VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), + cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl()))); + ++I; + ++IElemInitRef; + } + I = Data.LastprivateCopies.begin(); + for (const Expr *E : Data.LastprivateVars) { + const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl()); + Privates.emplace_back( + C.getDeclAlign(VD), + PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()), + /*PrivateElemInit=*/nullptr)); + ++I; + } + llvm::stable_sort(Privates, [](PrivateDataTy L, PrivateDataTy R) { + return L.first > R.first; + }); + QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1); + // Build type kmp_routine_entry_t (if not built yet). + emitKmpRoutineEntryT(KmpInt32Ty); + // Build type kmp_task_t (if not built yet). + if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) { + if (SavedKmpTaskloopTQTy.isNull()) { + SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl( + CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); + } + KmpTaskTQTy = SavedKmpTaskloopTQTy; + } else { + assert((D.getDirectiveKind() == OMPD_task || + isOpenMPTargetExecutionDirective(D.getDirectiveKind()) || + isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) && + "Expected taskloop, task or target directive"); + if (SavedKmpTaskTQTy.isNull()) { + SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl( + CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy)); + } + KmpTaskTQTy = SavedKmpTaskTQTy; + } + const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl()); + // Build particular struct kmp_task_t for the given task. + const RecordDecl *KmpTaskTWithPrivatesQTyRD = + createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates); + QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD); + QualType KmpTaskTWithPrivatesPtrQTy = + C.getPointerType(KmpTaskTWithPrivatesQTy); + llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy); + llvm::Type *KmpTaskTWithPrivatesPtrTy = + KmpTaskTWithPrivatesTy->getPointerTo(); + llvm::Value *KmpTaskTWithPrivatesTySize = + CGF.getTypeSize(KmpTaskTWithPrivatesQTy); + QualType SharedsPtrTy = C.getPointerType(SharedsTy); + + // Emit initial values for private copies (if any). + llvm::Value *TaskPrivatesMap = nullptr; + llvm::Type *TaskPrivatesMapTy = + std::next(TaskFunction->arg_begin(), 3)->getType(); + if (!Privates.empty()) { + auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin()); + TaskPrivatesMap = emitTaskPrivateMappingFunction( + CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars, + FI->getType(), Privates); + TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + TaskPrivatesMap, TaskPrivatesMapTy); + } else { + TaskPrivatesMap = llvm::ConstantPointerNull::get( + cast<llvm::PointerType>(TaskPrivatesMapTy)); + } + // Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid, + // kmp_task_t *tt); + llvm::Function *TaskEntry = emitProxyTaskFunction( + CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, + KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction, + TaskPrivatesMap); + + // Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid, + // kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds, + // kmp_routine_entry_t *task_entry); + // Task flags. Format is taken from + // https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h, + // description of kmp_tasking_flags struct. + enum { + TiedFlag = 0x1, + FinalFlag = 0x2, + DestructorsFlag = 0x8, + PriorityFlag = 0x20 + }; + unsigned Flags = Data.Tied ? TiedFlag : 0; + bool NeedsCleanup = false; + if (!Privates.empty()) { + NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD); + if (NeedsCleanup) + Flags = Flags | DestructorsFlag; + } + if (Data.Priority.getInt()) + Flags = Flags | PriorityFlag; + llvm::Value *TaskFlags = + Data.Final.getPointer() + ? CGF.Builder.CreateSelect(Data.Final.getPointer(), + CGF.Builder.getInt32(FinalFlag), + CGF.Builder.getInt32(/*C=*/0)) + : CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0); + TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags)); + llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy)); + SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc), + getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize, + SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + TaskEntry, KmpRoutineEntryPtrTy)}; + llvm::Value *NewTask; + if (D.hasClausesOfKind<OMPNowaitClause>()) { + // Check if we have any device clause associated with the directive. + const Expr *Device = nullptr; + if (auto *C = D.getSingleClause<OMPDeviceClause>()) + Device = C->getDevice(); + // Emit device ID if any otherwise use default value. + llvm::Value *DeviceID; + if (Device) + DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), + CGF.Int64Ty, /*isSigned=*/true); + else + DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); + AllocArgs.push_back(DeviceID); + NewTask = CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_omp_target_task_alloc), AllocArgs); + } else { + NewTask = CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs); + } + llvm::Value *NewTaskNewTaskTTy = + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + NewTask, KmpTaskTWithPrivatesPtrTy); + LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy, + KmpTaskTWithPrivatesQTy); + LValue TDBase = + CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin()); + // Fill the data in the resulting kmp_task_t record. + // Copy shareds if there are any. + Address KmpTaskSharedsPtr = Address::invalid(); + if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) { + KmpTaskSharedsPtr = + Address(CGF.EmitLoadOfScalar( + CGF.EmitLValueForField( + TDBase, *std::next(KmpTaskTQTyRD->field_begin(), + KmpTaskTShareds)), + Loc), + CGF.getNaturalTypeAlignment(SharedsTy)); + LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy); + LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy); + CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap); + } + // Emit initial values for private copies (if any). + TaskResultTy Result; + if (!Privates.empty()) { + emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD, + SharedsTy, SharedsPtrTy, Data, Privates, + /*ForDup=*/false); + if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) && + (!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) { + Result.TaskDupFn = emitTaskDupFunction( + CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD, + KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates, + /*WithLastIter=*/!Data.LastprivateVars.empty()); + } + } + // Fields of union "kmp_cmplrdata_t" for destructors and priority. + enum { Priority = 0, Destructors = 1 }; + // Provide pointer to function with destructors for privates. + auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1); + const RecordDecl *KmpCmplrdataUD = + (*FI)->getType()->getAsUnionType()->getDecl(); + if (NeedsCleanup) { + llvm::Value *DestructorFn = emitDestructorsFunction( + CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy, + KmpTaskTWithPrivatesQTy); + LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI); + LValue DestructorsLV = CGF.EmitLValueForField( + Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors)); + CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + DestructorFn, KmpRoutineEntryPtrTy), + DestructorsLV); + } + // Set priority. + if (Data.Priority.getInt()) { + LValue Data2LV = CGF.EmitLValueForField( + TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2)); + LValue PriorityLV = CGF.EmitLValueForField( + Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority)); + CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV); + } + Result.NewTask = NewTask; + Result.TaskEntry = TaskEntry; + Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy; + Result.TDBase = TDBase; + Result.KmpTaskTQTyRD = KmpTaskTQTyRD; + return Result; +} + +void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, + const OMPExecutableDirective &D, + llvm::Function *TaskFunction, + QualType SharedsTy, Address Shareds, + const Expr *IfCond, + const OMPTaskDataTy &Data) { + if (!CGF.HaveInsertPoint()) + return; + + TaskResultTy Result = + emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); + llvm::Value *NewTask = Result.NewTask; + llvm::Function *TaskEntry = Result.TaskEntry; + llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy; + LValue TDBase = Result.TDBase; + const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD; + ASTContext &C = CGM.getContext(); + // Process list of dependences. + Address DependenciesArray = Address::invalid(); + unsigned NumDependencies = Data.Dependences.size(); + if (NumDependencies) { + // Dependence kind for RTL. + enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3, DepMutexInOutSet = 0x4 }; + enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags }; + RecordDecl *KmpDependInfoRD; + QualType FlagsTy = + C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false); + llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy); + if (KmpDependInfoTy.isNull()) { + KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info"); + KmpDependInfoRD->startDefinition(); + addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType()); + addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType()); + addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy); + KmpDependInfoRD->completeDefinition(); + KmpDependInfoTy = C.getRecordType(KmpDependInfoRD); + } else { + KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl()); + } + // Define type kmp_depend_info[<Dependences.size()>]; + QualType KmpDependInfoArrayTy = C.getConstantArrayType( + KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), + ArrayType::Normal, /*IndexTypeQuals=*/0); + // kmp_depend_info[<Dependences.size()>] deps; + DependenciesArray = + CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr"); + for (unsigned I = 0; I < NumDependencies; ++I) { + const Expr *E = Data.Dependences[I].second; + LValue Addr = CGF.EmitLValue(E); + llvm::Value *Size; + QualType Ty = E->getType(); + if (const auto *ASE = + dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) { + LValue UpAddrLVal = + CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false); + llvm::Value *UpAddr = + CGF.Builder.CreateConstGEP1_32(UpAddrLVal.getPointer(), /*Idx0=*/1); + llvm::Value *LowIntPtr = + CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGM.SizeTy); + llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy); + Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr); + } else { + Size = CGF.getTypeSize(Ty); + } + LValue Base = CGF.MakeAddrLValue( + CGF.Builder.CreateConstArrayGEP(DependenciesArray, I), + KmpDependInfoTy); + // deps[i].base_addr = &<Dependences[i].second>; + LValue BaseAddrLVal = CGF.EmitLValueForField( + Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr)); + CGF.EmitStoreOfScalar( + CGF.Builder.CreatePtrToInt(Addr.getPointer(), CGF.IntPtrTy), + BaseAddrLVal); + // deps[i].len = sizeof(<Dependences[i].second>); + LValue LenLVal = CGF.EmitLValueForField( + Base, *std::next(KmpDependInfoRD->field_begin(), Len)); + CGF.EmitStoreOfScalar(Size, LenLVal); + // deps[i].flags = <Dependences[i].first>; + RTLDependenceKindTy DepKind; + switch (Data.Dependences[I].first) { + case OMPC_DEPEND_in: + DepKind = DepIn; + break; + // Out and InOut dependencies must use the same code. + case OMPC_DEPEND_out: + case OMPC_DEPEND_inout: + DepKind = DepInOut; + break; + case OMPC_DEPEND_mutexinoutset: + DepKind = DepMutexInOutSet; + break; + case OMPC_DEPEND_source: + case OMPC_DEPEND_sink: + case OMPC_DEPEND_unknown: + llvm_unreachable("Unknown task dependence type"); + } + LValue FlagsLVal = CGF.EmitLValueForField( + Base, *std::next(KmpDependInfoRD->field_begin(), Flags)); + CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind), + FlagsLVal); + } + DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0), CGF.VoidPtrTy); + } + + // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc() + // libcall. + // Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid, + // kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list, + // kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence + // list is not empty + llvm::Value *ThreadID = getThreadID(CGF, Loc); + llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); + llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask }; + llvm::Value *DepTaskArgs[7]; + if (NumDependencies) { + DepTaskArgs[0] = UpLoc; + DepTaskArgs[1] = ThreadID; + DepTaskArgs[2] = NewTask; + DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies); + DepTaskArgs[4] = DependenciesArray.getPointer(); + DepTaskArgs[5] = CGF.Builder.getInt32(0); + DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); + } + auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies, + &TaskArgs, + &DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) { + if (!Data.Tied) { + auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId); + LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI); + CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal); + } + if (NumDependencies) { + CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs); + } else { + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), + TaskArgs); + } + // Check if parent region is untied and build return for untied task; + if (auto *Region = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) + Region->emitUntiedSwitch(CGF); + }; + + llvm::Value *DepWaitTaskArgs[6]; + if (NumDependencies) { + DepWaitTaskArgs[0] = UpLoc; + DepWaitTaskArgs[1] = ThreadID; + DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies); + DepWaitTaskArgs[3] = DependenciesArray.getPointer(); + DepWaitTaskArgs[4] = CGF.Builder.getInt32(0); + DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy); + } + auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry, + NumDependencies, &DepWaitTaskArgs, + Loc](CodeGenFunction &CGF, PrePostActionTy &) { + CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); + CodeGenFunction::RunCleanupsScope LocalScope(CGF); + // Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid, + // kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 + // ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info + // is specified. + if (NumDependencies) + CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps), + DepWaitTaskArgs); + // Call proxy_task_entry(gtid, new_task); + auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy, + Loc](CodeGenFunction &CGF, PrePostActionTy &Action) { + Action.Enter(CGF); + llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy}; + CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry, + OutlinedFnArgs); + }; + + // Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid, + // kmp_task_t *new_task); + // Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid, + // kmp_task_t *new_task); + RegionCodeGenTy RCG(CodeGen); + CommonActionTy Action( + RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs, + RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs); + RCG.setAction(Action); + RCG(CGF); + }; + + if (IfCond) { + emitOMPIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen); + } else { + RegionCodeGenTy ThenRCG(ThenCodeGen); + ThenRCG(CGF); + } +} + +void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc, + const OMPLoopDirective &D, + llvm::Function *TaskFunction, + QualType SharedsTy, Address Shareds, + const Expr *IfCond, + const OMPTaskDataTy &Data) { + if (!CGF.HaveInsertPoint()) + return; + TaskResultTy Result = + emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data); + // NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc() + // libcall. + // Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int + // if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int + // sched, kmp_uint64 grainsize, void *task_dup); + llvm::Value *ThreadID = getThreadID(CGF, Loc); + llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc); + llvm::Value *IfVal; + if (IfCond) { + IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy, + /*isSigned=*/true); + } else { + IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1); + } + + LValue LBLVal = CGF.EmitLValueForField( + Result.TDBase, + *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound)); + const auto *LBVar = + cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl()); + CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(), + /*IsInitializer=*/true); + LValue UBLVal = CGF.EmitLValueForField( + Result.TDBase, + *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound)); + const auto *UBVar = + cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl()); + CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(), + /*IsInitializer=*/true); + LValue StLVal = CGF.EmitLValueForField( + Result.TDBase, + *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride)); + const auto *StVar = + cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl()); + CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(), + /*IsInitializer=*/true); + // Store reductions address. + LValue RedLVal = CGF.EmitLValueForField( + Result.TDBase, + *std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions)); + if (Data.Reductions) { + CGF.EmitStoreOfScalar(Data.Reductions, RedLVal); + } else { + CGF.EmitNullInitialization(RedLVal.getAddress(), + CGF.getContext().VoidPtrTy); + } + enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 }; + llvm::Value *TaskArgs[] = { + UpLoc, + ThreadID, + Result.NewTask, + IfVal, + LBLVal.getPointer(), + UBLVal.getPointer(), + CGF.EmitLoadOfScalar(StLVal, Loc), + llvm::ConstantInt::getSigned( + CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler + llvm::ConstantInt::getSigned( + CGF.IntTy, Data.Schedule.getPointer() + ? Data.Schedule.getInt() ? NumTasks : Grainsize + : NoSchedule), + Data.Schedule.getPointer() + ? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty, + /*isSigned=*/false) + : llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0), + Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + Result.TaskDupFn, CGF.VoidPtrTy) + : llvm::ConstantPointerNull::get(CGF.VoidPtrTy)}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs); +} + +/// Emit reduction operation for each element of array (required for +/// array sections) LHS op = RHS. +/// \param Type Type of array. +/// \param LHSVar Variable on the left side of the reduction operation +/// (references element of array in original variable). +/// \param RHSVar Variable on the right side of the reduction operation +/// (references element of array in original variable). +/// \param RedOpGen Generator of reduction operation with use of LHSVar and +/// RHSVar. +static void EmitOMPAggregateReduction( + CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar, + const VarDecl *RHSVar, + const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *, + const Expr *, const Expr *)> &RedOpGen, + const Expr *XExpr = nullptr, const Expr *EExpr = nullptr, + const Expr *UpExpr = nullptr) { + // Perform element-by-element initialization. + QualType ElementTy; + Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar); + Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar); + + // Drill down to the base element type on both arrays. + const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe(); + llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr); + + llvm::Value *RHSBegin = RHSAddr.getPointer(); + llvm::Value *LHSBegin = LHSAddr.getPointer(); + // Cast from pointer to array type to pointer to single element. + llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements); + // The basic structure here is a while-do loop. + llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body"); + llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done"); + llvm::Value *IsEmpty = + CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty"); + CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB); + + // Enter the loop body, making that address the current address. + llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock(); + CGF.EmitBlock(BodyBB); + + CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy); + + llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI( + RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast"); + RHSElementPHI->addIncoming(RHSBegin, EntryBB); + Address RHSElementCurrent = + Address(RHSElementPHI, + RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); + + llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI( + LHSBegin->getType(), 2, "omp.arraycpy.destElementPast"); + LHSElementPHI->addIncoming(LHSBegin, EntryBB); + Address LHSElementCurrent = + Address(LHSElementPHI, + LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize)); + + // Emit copy. + CodeGenFunction::OMPPrivateScope Scope(CGF); + Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; }); + Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; }); + Scope.Privatize(); + RedOpGen(CGF, XExpr, EExpr, UpExpr); + Scope.ForceCleanup(); + + // Shift the address forward by one element. + llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32( + LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element"); + llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32( + RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element"); + // Check whether we've reached the end. + llvm::Value *Done = + CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done"); + CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB); + LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock()); + RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock()); + + // Done. + CGF.EmitBlock(DoneBB, /*IsFinished=*/true); +} + +/// Emit reduction combiner. If the combiner is a simple expression emit it as +/// is, otherwise consider it as combiner of UDR decl and emit it as a call of +/// UDR combiner function. +static void emitReductionCombiner(CodeGenFunction &CGF, + const Expr *ReductionOp) { + if (const auto *CE = dyn_cast<CallExpr>(ReductionOp)) + if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee())) + if (const auto *DRE = + dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts())) + if (const auto *DRD = + dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) { + std::pair<llvm::Function *, llvm::Function *> Reduction = + CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD); + RValue Func = RValue::get(Reduction.first); + CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func); + CGF.EmitIgnoredExpr(ReductionOp); + return; + } + CGF.EmitIgnoredExpr(ReductionOp); +} + +llvm::Function *CGOpenMPRuntime::emitReductionFunction( + SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates, + ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, + ArrayRef<const Expr *> ReductionOps) { + ASTContext &C = CGM.getContext(); + + // void reduction_func(void *LHSArg, void *RHSArg); + FunctionArgList Args; + ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, + ImplicitParamDecl::Other); + ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, + ImplicitParamDecl::Other); + Args.push_back(&LHSArg); + Args.push_back(&RHSArg); + const auto &CGFI = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + std::string Name = getName({"omp", "reduction", "reduction_func"}); + auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI), + llvm::GlobalValue::InternalLinkage, Name, + &CGM.getModule()); + CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI); + Fn->setDoesNotRecurse(); + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc); + + // Dst = (void*[n])(LHSArg); + // Src = (void*[n])(RHSArg); + Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)), + ArgsType), CGF.getPointerAlign()); + Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)), + ArgsType), CGF.getPointerAlign()); + + // ... + // *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]); + // ... + CodeGenFunction::OMPPrivateScope Scope(CGF); + auto IPriv = Privates.begin(); + unsigned Idx = 0; + for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) { + const auto *RHSVar = + cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl()); + Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() { + return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar); + }); + const auto *LHSVar = + cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl()); + Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() { + return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar); + }); + QualType PrivTy = (*IPriv)->getType(); + if (PrivTy->isVariablyModifiedType()) { + // Get array size and emit VLA type. + ++Idx; + Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx); + llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem); + const VariableArrayType *VLA = + CGF.getContext().getAsVariableArrayType(PrivTy); + const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr()); + CodeGenFunction::OpaqueValueMapping OpaqueMap( + CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy))); + CGF.EmitVariablyModifiedType(PrivTy); + } + } + Scope.Privatize(); + IPriv = Privates.begin(); + auto ILHS = LHSExprs.begin(); + auto IRHS = RHSExprs.begin(); + for (const Expr *E : ReductionOps) { + if ((*IPriv)->getType()->isArrayType()) { + // Emit reduction for array section. + const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); + const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); + EmitOMPAggregateReduction( + CGF, (*IPriv)->getType(), LHSVar, RHSVar, + [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { + emitReductionCombiner(CGF, E); + }); + } else { + // Emit reduction for array subscript or single variable. + emitReductionCombiner(CGF, E); + } + ++IPriv; + ++ILHS; + ++IRHS; + } + Scope.ForceCleanup(); + CGF.FinishFunction(); + return Fn; +} + +void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF, + const Expr *ReductionOp, + const Expr *PrivateRef, + const DeclRefExpr *LHS, + const DeclRefExpr *RHS) { + if (PrivateRef->getType()->isArrayType()) { + // Emit reduction for array section. + const auto *LHSVar = cast<VarDecl>(LHS->getDecl()); + const auto *RHSVar = cast<VarDecl>(RHS->getDecl()); + EmitOMPAggregateReduction( + CGF, PrivateRef->getType(), LHSVar, RHSVar, + [=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) { + emitReductionCombiner(CGF, ReductionOp); + }); + } else { + // Emit reduction for array subscript or single variable. + emitReductionCombiner(CGF, ReductionOp); + } +} + +void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc, + ArrayRef<const Expr *> Privates, + ArrayRef<const Expr *> LHSExprs, + ArrayRef<const Expr *> RHSExprs, + ArrayRef<const Expr *> ReductionOps, + ReductionOptionsTy Options) { + if (!CGF.HaveInsertPoint()) + return; + + bool WithNowait = Options.WithNowait; + bool SimpleReduction = Options.SimpleReduction; + + // Next code should be emitted for reduction: + // + // static kmp_critical_name lock = { 0 }; + // + // void reduce_func(void *lhs[<n>], void *rhs[<n>]) { + // *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]); + // ... + // *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1], + // *(Type<n>-1*)rhs[<n>-1]); + // } + // + // ... + // void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]}; + // switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), + // RedList, reduce_func, &<lock>)) { + // case 1: + // ... + // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); + // ... + // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); + // break; + // case 2: + // ... + // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i])); + // ... + // [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);] + // break; + // default:; + // } + // + // if SimpleReduction is true, only the next code is generated: + // ... + // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); + // ... + + ASTContext &C = CGM.getContext(); + + if (SimpleReduction) { + CodeGenFunction::RunCleanupsScope Scope(CGF); + auto IPriv = Privates.begin(); + auto ILHS = LHSExprs.begin(); + auto IRHS = RHSExprs.begin(); + for (const Expr *E : ReductionOps) { + emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), + cast<DeclRefExpr>(*IRHS)); + ++IPriv; + ++ILHS; + ++IRHS; + } + return; + } + + // 1. Build a list of reduction variables. + // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]}; + auto Size = RHSExprs.size(); + for (const Expr *E : Privates) { + if (E->getType()->isVariablyModifiedType()) + // Reserve place for array size. + ++Size; + } + llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size); + QualType ReductionArrayTy = + C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal, + /*IndexTypeQuals=*/0); + Address ReductionList = + CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list"); + auto IPriv = Privates.begin(); + unsigned Idx = 0; + for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) { + Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); + CGF.Builder.CreateStore( + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy), + Elem); + if ((*IPriv)->getType()->isVariablyModifiedType()) { + // Store array size. + ++Idx; + Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx); + llvm::Value *Size = CGF.Builder.CreateIntCast( + CGF.getVLASize( + CGF.getContext().getAsVariableArrayType((*IPriv)->getType())) + .NumElts, + CGF.SizeTy, /*isSigned=*/false); + CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy), + Elem); + } + } + + // 2. Emit reduce_func(). + llvm::Function *ReductionFn = emitReductionFunction( + Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates, + LHSExprs, RHSExprs, ReductionOps); + + // 3. Create static kmp_critical_name lock = { 0 }; + std::string Name = getName({"reduction"}); + llvm::Value *Lock = getCriticalRegionLock(Name); + + // 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList), + // RedList, reduce_func, &<lock>); + llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE); + llvm::Value *ThreadId = getThreadID(CGF, Loc); + llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy); + llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + ReductionList.getPointer(), CGF.VoidPtrTy); + llvm::Value *Args[] = { + IdentTLoc, // ident_t *<loc> + ThreadId, // i32 <gtid> + CGF.Builder.getInt32(RHSExprs.size()), // i32 <n> + ReductionArrayTySize, // size_type sizeof(RedList) + RL, // void *RedList + ReductionFn, // void (*) (void *, void *) <reduce_func> + Lock // kmp_critical_name *&<lock> + }; + llvm::Value *Res = CGF.EmitRuntimeCall( + createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait + : OMPRTL__kmpc_reduce), + Args); + + // 5. Build switch(res) + llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default"); + llvm::SwitchInst *SwInst = + CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2); + + // 6. Build case 1: + // ... + // <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]); + // ... + // __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); + // break; + llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1"); + SwInst->addCase(CGF.Builder.getInt32(1), Case1BB); + CGF.EmitBlock(Case1BB); + + // Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>); + llvm::Value *EndArgs[] = { + IdentTLoc, // ident_t *<loc> + ThreadId, // i32 <gtid> + Lock // kmp_critical_name *&<lock> + }; + auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps]( + CodeGenFunction &CGF, PrePostActionTy &Action) { + CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); + auto IPriv = Privates.begin(); + auto ILHS = LHSExprs.begin(); + auto IRHS = RHSExprs.begin(); + for (const Expr *E : ReductionOps) { + RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS), + cast<DeclRefExpr>(*IRHS)); + ++IPriv; + ++ILHS; + ++IRHS; + } + }; + RegionCodeGenTy RCG(CodeGen); + CommonActionTy Action( + nullptr, llvm::None, + createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait + : OMPRTL__kmpc_end_reduce), + EndArgs); + RCG.setAction(Action); + RCG(CGF); + + CGF.EmitBranch(DefaultBB); + + // 7. Build case 2: + // ... + // Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i])); + // ... + // break; + llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2"); + SwInst->addCase(CGF.Builder.getInt32(2), Case2BB); + CGF.EmitBlock(Case2BB); + + auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps]( + CodeGenFunction &CGF, PrePostActionTy &Action) { + auto ILHS = LHSExprs.begin(); + auto IRHS = RHSExprs.begin(); + auto IPriv = Privates.begin(); + for (const Expr *E : ReductionOps) { + const Expr *XExpr = nullptr; + const Expr *EExpr = nullptr; + const Expr *UpExpr = nullptr; + BinaryOperatorKind BO = BO_Comma; + if (const auto *BO = dyn_cast<BinaryOperator>(E)) { + if (BO->getOpcode() == BO_Assign) { + XExpr = BO->getLHS(); + UpExpr = BO->getRHS(); + } + } + // Try to emit update expression as a simple atomic. + const Expr *RHSExpr = UpExpr; + if (RHSExpr) { + // Analyze RHS part of the whole expression. + if (const auto *ACO = dyn_cast<AbstractConditionalOperator>( + RHSExpr->IgnoreParenImpCasts())) { + // If this is a conditional operator, analyze its condition for + // min/max reduction operator. + RHSExpr = ACO->getCond(); + } + if (const auto *BORHS = + dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) { + EExpr = BORHS->getRHS(); + BO = BORHS->getOpcode(); + } + } + if (XExpr) { + const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); + auto &&AtomicRedGen = [BO, VD, + Loc](CodeGenFunction &CGF, const Expr *XExpr, + const Expr *EExpr, const Expr *UpExpr) { + LValue X = CGF.EmitLValue(XExpr); + RValue E; + if (EExpr) + E = CGF.EmitAnyExpr(EExpr); + CGF.EmitOMPAtomicSimpleUpdateExpr( + X, E, BO, /*IsXLHSInRHSPart=*/true, + llvm::AtomicOrdering::Monotonic, Loc, + [&CGF, UpExpr, VD, Loc](RValue XRValue) { + CodeGenFunction::OMPPrivateScope PrivateScope(CGF); + PrivateScope.addPrivate( + VD, [&CGF, VD, XRValue, Loc]() { + Address LHSTemp = CGF.CreateMemTemp(VD->getType()); + CGF.emitOMPSimpleStore( + CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue, + VD->getType().getNonReferenceType(), Loc); + return LHSTemp; + }); + (void)PrivateScope.Privatize(); + return CGF.EmitAnyExpr(UpExpr); + }); + }; + if ((*IPriv)->getType()->isArrayType()) { + // Emit atomic reduction for array section. + const auto *RHSVar = + cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); + EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar, + AtomicRedGen, XExpr, EExpr, UpExpr); + } else { + // Emit atomic reduction for array subscript or single variable. + AtomicRedGen(CGF, XExpr, EExpr, UpExpr); + } + } else { + // Emit as a critical region. + auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *, + const Expr *, const Expr *) { + CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); + std::string Name = RT.getName({"atomic_reduction"}); + RT.emitCriticalRegion( + CGF, Name, + [=](CodeGenFunction &CGF, PrePostActionTy &Action) { + Action.Enter(CGF); + emitReductionCombiner(CGF, E); + }, + Loc); + }; + if ((*IPriv)->getType()->isArrayType()) { + const auto *LHSVar = + cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl()); + const auto *RHSVar = + cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl()); + EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar, + CritRedGen); + } else { + CritRedGen(CGF, nullptr, nullptr, nullptr); + } + } + ++ILHS; + ++IRHS; + ++IPriv; + } + }; + RegionCodeGenTy AtomicRCG(AtomicCodeGen); + if (!WithNowait) { + // Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>); + llvm::Value *EndArgs[] = { + IdentTLoc, // ident_t *<loc> + ThreadId, // i32 <gtid> + Lock // kmp_critical_name *&<lock> + }; + CommonActionTy Action(nullptr, llvm::None, + createRuntimeFunction(OMPRTL__kmpc_end_reduce), + EndArgs); + AtomicRCG.setAction(Action); + AtomicRCG(CGF); + } else { + AtomicRCG(CGF); + } + + CGF.EmitBranch(DefaultBB); + CGF.EmitBlock(DefaultBB, /*IsFinished=*/true); +} + +/// Generates unique name for artificial threadprivate variables. +/// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>" +static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix, + const Expr *Ref) { + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + const clang::DeclRefExpr *DE; + const VarDecl *D = ::getBaseDecl(Ref, DE); + if (!D) + D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl()); + D = D->getCanonicalDecl(); + std::string Name = CGM.getOpenMPRuntime().getName( + {D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)}); + Out << Prefix << Name << "_" + << D->getCanonicalDecl()->getBeginLoc().getRawEncoding(); + return Out.str(); +} + +/// Emits reduction initializer function: +/// \code +/// void @.red_init(void* %arg) { +/// %0 = bitcast void* %arg to <type>* +/// store <type> <init>, <type>* %0 +/// ret void +/// } +/// \endcode +static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM, + SourceLocation Loc, + ReductionCodeGen &RCG, unsigned N) { + ASTContext &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, + ImplicitParamDecl::Other); + Args.emplace_back(&Param); + const auto &FnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); + std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""}); + auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, + Name, &CGM.getModule()); + CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); + Fn->setDoesNotRecurse(); + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); + Address PrivateAddr = CGF.EmitLoadOfPointer( + CGF.GetAddrOfLocalVar(&Param), + C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); + llvm::Value *Size = nullptr; + // If the size of the reduction item is non-constant, load it from global + // threadprivate variable. + if (RCG.getSizes(N).second) { + Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( + CGF, CGM.getContext().getSizeType(), + generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); + Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, + CGM.getContext().getSizeType(), Loc); + } + RCG.emitAggregateType(CGF, N, Size); + LValue SharedLVal; + // If initializer uses initializer from declare reduction construct, emit a + // pointer to the address of the original reduction item (reuired by reduction + // initializer) + if (RCG.usesReductionInitializer(N)) { + Address SharedAddr = + CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( + CGF, CGM.getContext().VoidPtrTy, + generateUniqueName(CGM, "reduction", RCG.getRefExpr(N))); + SharedAddr = CGF.EmitLoadOfPointer( + SharedAddr, + CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr()); + SharedLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy); + } else { + SharedLVal = CGF.MakeNaturalAlignAddrLValue( + llvm::ConstantPointerNull::get(CGM.VoidPtrTy), + CGM.getContext().VoidPtrTy); + } + // Emit the initializer: + // %0 = bitcast void* %arg to <type>* + // store <type> <init>, <type>* %0 + RCG.emitInitialization(CGF, N, PrivateAddr, SharedLVal, + [](CodeGenFunction &) { return false; }); + CGF.FinishFunction(); + return Fn; +} + +/// Emits reduction combiner function: +/// \code +/// void @.red_comb(void* %arg0, void* %arg1) { +/// %lhs = bitcast void* %arg0 to <type>* +/// %rhs = bitcast void* %arg1 to <type>* +/// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs) +/// store <type> %2, <type>* %lhs +/// ret void +/// } +/// \endcode +static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM, + SourceLocation Loc, + ReductionCodeGen &RCG, unsigned N, + const Expr *ReductionOp, + const Expr *LHS, const Expr *RHS, + const Expr *PrivateRef) { + ASTContext &C = CGM.getContext(); + const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl()); + const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl()); + FunctionArgList Args; + ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, + C.VoidPtrTy, ImplicitParamDecl::Other); + ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, + ImplicitParamDecl::Other); + Args.emplace_back(&ParamInOut); + Args.emplace_back(&ParamIn); + const auto &FnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); + std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""}); + auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, + Name, &CGM.getModule()); + CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); + Fn->setDoesNotRecurse(); + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); + llvm::Value *Size = nullptr; + // If the size of the reduction item is non-constant, load it from global + // threadprivate variable. + if (RCG.getSizes(N).second) { + Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( + CGF, CGM.getContext().getSizeType(), + generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); + Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, + CGM.getContext().getSizeType(), Loc); + } + RCG.emitAggregateType(CGF, N, Size); + // Remap lhs and rhs variables to the addresses of the function arguments. + // %lhs = bitcast void* %arg0 to <type>* + // %rhs = bitcast void* %arg1 to <type>* + CodeGenFunction::OMPPrivateScope PrivateScope(CGF); + PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() { + // Pull out the pointer to the variable. + Address PtrAddr = CGF.EmitLoadOfPointer( + CGF.GetAddrOfLocalVar(&ParamInOut), + C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); + return CGF.Builder.CreateElementBitCast( + PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType())); + }); + PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() { + // Pull out the pointer to the variable. + Address PtrAddr = CGF.EmitLoadOfPointer( + CGF.GetAddrOfLocalVar(&ParamIn), + C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); + return CGF.Builder.CreateElementBitCast( + PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType())); + }); + PrivateScope.Privatize(); + // Emit the combiner body: + // %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs) + // store <type> %2, <type>* %lhs + CGM.getOpenMPRuntime().emitSingleReductionCombiner( + CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS), + cast<DeclRefExpr>(RHS)); + CGF.FinishFunction(); + return Fn; +} + +/// Emits reduction finalizer function: +/// \code +/// void @.red_fini(void* %arg) { +/// %0 = bitcast void* %arg to <type>* +/// <destroy>(<type>* %0) +/// ret void +/// } +/// \endcode +static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM, + SourceLocation Loc, + ReductionCodeGen &RCG, unsigned N) { + if (!RCG.needCleanups(N)) + return nullptr; + ASTContext &C = CGM.getContext(); + FunctionArgList Args; + ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy, + ImplicitParamDecl::Other); + Args.emplace_back(&Param); + const auto &FnInfo = + CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args); + llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo); + std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""}); + auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage, + Name, &CGM.getModule()); + CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo); + Fn->setDoesNotRecurse(); + CodeGenFunction CGF(CGM); + CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc); + Address PrivateAddr = CGF.EmitLoadOfPointer( + CGF.GetAddrOfLocalVar(&Param), + C.getPointerType(C.VoidPtrTy).castAs<PointerType>()); + llvm::Value *Size = nullptr; + // If the size of the reduction item is non-constant, load it from global + // threadprivate variable. + if (RCG.getSizes(N).second) { + Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate( + CGF, CGM.getContext().getSizeType(), + generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); + Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false, + CGM.getContext().getSizeType(), Loc); + } + RCG.emitAggregateType(CGF, N, Size); + // Emit the finalizer body: + // <destroy>(<type>* %0) + RCG.emitCleanups(CGF, N, PrivateAddr); + CGF.FinishFunction(); + return Fn; +} + +llvm::Value *CGOpenMPRuntime::emitTaskReductionInit( + CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs, + ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) { + if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty()) + return nullptr; + + // Build typedef struct: + // kmp_task_red_input { + // void *reduce_shar; // shared reduction item + // size_t reduce_size; // size of data item + // void *reduce_init; // data initialization routine + // void *reduce_fini; // data finalization routine + // void *reduce_comb; // data combiner routine + // kmp_task_red_flags_t flags; // flags for additional info from compiler + // } kmp_task_red_input_t; + ASTContext &C = CGM.getContext(); + RecordDecl *RD = C.buildImplicitRecord("kmp_task_red_input_t"); + RD->startDefinition(); + const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); + const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType()); + const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); + const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); + const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy); + const FieldDecl *FlagsFD = addFieldToRecordDecl( + C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false)); + RD->completeDefinition(); + QualType RDType = C.getRecordType(RD); + unsigned Size = Data.ReductionVars.size(); + llvm::APInt ArraySize(/*numBits=*/64, Size); + QualType ArrayRDType = C.getConstantArrayType( + RDType, ArraySize, ArrayType::Normal, /*IndexTypeQuals=*/0); + // kmp_task_red_input_t .rd_input.[Size]; + Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input."); + ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionCopies, + Data.ReductionOps); + for (unsigned Cnt = 0; Cnt < Size; ++Cnt) { + // kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt]; + llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0), + llvm::ConstantInt::get(CGM.SizeTy, Cnt)}; + llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP( + TaskRedInput.getPointer(), Idxs, + /*SignedIndices=*/false, /*IsSubtraction=*/false, Loc, + ".rd_input.gep."); + LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType); + // ElemLVal.reduce_shar = &Shareds[Cnt]; + LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD); + RCG.emitSharedLValue(CGF, Cnt); + llvm::Value *CastedShared = + CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer()); + CGF.EmitStoreOfScalar(CastedShared, SharedLVal); + RCG.emitAggregateType(CGF, Cnt); + llvm::Value *SizeValInChars; + llvm::Value *SizeVal; + std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt); + // We use delayed creation/initialization for VLAs, array sections and + // custom reduction initializations. It is required because runtime does not + // provide the way to pass the sizes of VLAs/array sections to + // initializer/combiner/finalizer functions and does not pass the pointer to + // original reduction item to the initializer. Instead threadprivate global + // variables are used to store these values and use them in the functions. + bool DelayedCreation = !!SizeVal; + SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy, + /*isSigned=*/false); + LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD); + CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal); + // ElemLVal.reduce_init = init; + LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD); + llvm::Value *InitAddr = + CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt)); + CGF.EmitStoreOfScalar(InitAddr, InitLVal); + DelayedCreation = DelayedCreation || RCG.usesReductionInitializer(Cnt); + // ElemLVal.reduce_fini = fini; + LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD); + llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt); + llvm::Value *FiniAddr = Fini + ? CGF.EmitCastToVoidPtr(Fini) + : llvm::ConstantPointerNull::get(CGM.VoidPtrTy); + CGF.EmitStoreOfScalar(FiniAddr, FiniLVal); + // ElemLVal.reduce_comb = comb; + LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD); + llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction( + CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt], + RHSExprs[Cnt], Data.ReductionCopies[Cnt])); + CGF.EmitStoreOfScalar(CombAddr, CombLVal); + // ElemLVal.flags = 0; + LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD); + if (DelayedCreation) { + CGF.EmitStoreOfScalar( + llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true), + FlagsLVal); + } else + CGF.EmitNullInitialization(FlagsLVal.getAddress(), FlagsLVal.getType()); + } + // Build call void *__kmpc_task_reduction_init(int gtid, int num_data, void + // *data); + llvm::Value *Args[] = { + CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy, + /*isSigned=*/true), + llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true), + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(), + CGM.VoidPtrTy)}; + return CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_task_reduction_init), Args); +} + +void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF, + SourceLocation Loc, + ReductionCodeGen &RCG, + unsigned N) { + auto Sizes = RCG.getSizes(N); + // Emit threadprivate global variable if the type is non-constant + // (Sizes.second = nullptr). + if (Sizes.second) { + llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy, + /*isSigned=*/false); + Address SizeAddr = getAddrOfArtificialThreadPrivate( + CGF, CGM.getContext().getSizeType(), + generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N))); + CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false); + } + // Store address of the original reduction item if custom initializer is used. + if (RCG.usesReductionInitializer(N)) { + Address SharedAddr = getAddrOfArtificialThreadPrivate( + CGF, CGM.getContext().VoidPtrTy, + generateUniqueName(CGM, "reduction", RCG.getRefExpr(N))); + CGF.Builder.CreateStore( + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + RCG.getSharedLValue(N).getPointer(), CGM.VoidPtrTy), + SharedAddr, /*IsVolatile=*/false); + } +} + +Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF, + SourceLocation Loc, + llvm::Value *ReductionsPtr, + LValue SharedLVal) { + // Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void + // *d); + llvm::Value *Args[] = { + CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy, + /*isSigned=*/true), + ReductionsPtr, + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(SharedLVal.getPointer(), + CGM.VoidPtrTy)}; + return Address( + CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_task_reduction_get_th_data), Args), + SharedLVal.getAlignment()); +} + +void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 + // global_tid); + llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)}; + // Ignore return result until untied tasks are supported. + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args); + if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) + Region->emitUntiedSwitch(CGF); +} + +void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF, + OpenMPDirectiveKind InnerKind, + const RegionCodeGenTy &CodeGen, + bool HasCancel) { + if (!CGF.HaveInsertPoint()) + return; + InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel); + CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr); +} + +namespace { +enum RTCancelKind { + CancelNoreq = 0, + CancelParallel = 1, + CancelLoop = 2, + CancelSections = 3, + CancelTaskgroup = 4 +}; +} // anonymous namespace + +static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) { + RTCancelKind CancelKind = CancelNoreq; + if (CancelRegion == OMPD_parallel) + CancelKind = CancelParallel; + else if (CancelRegion == OMPD_for) + CancelKind = CancelLoop; + else if (CancelRegion == OMPD_sections) + CancelKind = CancelSections; + else { + assert(CancelRegion == OMPD_taskgroup); + CancelKind = CancelTaskgroup; + } + return CancelKind; +} + +void CGOpenMPRuntime::emitCancellationPointCall( + CodeGenFunction &CGF, SourceLocation Loc, + OpenMPDirectiveKind CancelRegion) { + if (!CGF.HaveInsertPoint()) + return; + // Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32 + // global_tid, kmp_int32 cncl_kind); + if (auto *OMPRegionInfo = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { + // For 'cancellation point taskgroup', the task region info may not have a + // cancel. This may instead happen in another adjacent task. + if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) { + llvm::Value *Args[] = { + emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc), + CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; + // Ignore return result until untied tasks are supported. + llvm::Value *Result = CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args); + // if (__kmpc_cancellationpoint()) { + // exit from construct; + // } + llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); + llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); + llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); + CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); + CGF.EmitBlock(ExitBB); + // exit from construct; + CodeGenFunction::JumpDest CancelDest = + CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); + CGF.EmitBranchThroughCleanup(CancelDest); + CGF.EmitBlock(ContBB, /*IsFinished=*/true); + } + } +} + +void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc, + const Expr *IfCond, + OpenMPDirectiveKind CancelRegion) { + if (!CGF.HaveInsertPoint()) + return; + // Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid, + // kmp_int32 cncl_kind); + if (auto *OMPRegionInfo = + dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) { + auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF, + PrePostActionTy &) { + CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime(); + llvm::Value *Args[] = { + RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc), + CGF.Builder.getInt32(getCancellationKind(CancelRegion))}; + // Ignore return result until untied tasks are supported. + llvm::Value *Result = CGF.EmitRuntimeCall( + RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args); + // if (__kmpc_cancel()) { + // exit from construct; + // } + llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit"); + llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue"); + llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result); + CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB); + CGF.EmitBlock(ExitBB); + // exit from construct; + CodeGenFunction::JumpDest CancelDest = + CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind()); + CGF.EmitBranchThroughCleanup(CancelDest); + CGF.EmitBlock(ContBB, /*IsFinished=*/true); + }; + if (IfCond) { + emitOMPIfClause(CGF, IfCond, ThenGen, + [](CodeGenFunction &, PrePostActionTy &) {}); + } else { + RegionCodeGenTy ThenRCG(ThenGen); + ThenRCG(CGF); + } + } +} + +void CGOpenMPRuntime::emitTargetOutlinedFunction( + const OMPExecutableDirective &D, StringRef ParentName, + llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, + bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { + assert(!ParentName.empty() && "Invalid target region parent name!"); + HasEmittedTargetRegion = true; + emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID, + IsOffloadEntry, CodeGen); +} + +void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper( + const OMPExecutableDirective &D, StringRef ParentName, + llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, + bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { + // Create a unique name for the entry function using the source location + // information of the current target region. The name will be something like: + // + // __omp_offloading_DD_FFFF_PP_lBB + // + // where DD_FFFF is an ID unique to the file (device and file IDs), PP is the + // mangled name of the function that encloses the target region and BB is the + // line number of the target region. + + unsigned DeviceID; + unsigned FileID; + unsigned Line; + getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID, + Line); + SmallString<64> EntryFnName; + { + llvm::raw_svector_ostream OS(EntryFnName); + OS << "__omp_offloading" << llvm::format("_%x", DeviceID) + << llvm::format("_%x_", FileID) << ParentName << "_l" << Line; + } + + const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target); + + CodeGenFunction CGF(CGM, true); + CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + + OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS); + + // If this target outline function is not an offload entry, we don't need to + // register it. + if (!IsOffloadEntry) + return; + + // The target region ID is used by the runtime library to identify the current + // target region, so it only has to be unique and not necessarily point to + // anything. It could be the pointer to the outlined function that implements + // the target region, but we aren't using that so that the compiler doesn't + // need to keep that, and could therefore inline the host function if proven + // worthwhile during optimization. In the other hand, if emitting code for the + // device, the ID has to be the function address so that it can retrieved from + // the offloading entry and launched by the runtime library. We also mark the + // outlined function to have external linkage in case we are emitting code for + // the device, because these functions will be entry points to the device. + + if (CGM.getLangOpts().OpenMPIsDevice) { + OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy); + OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage); + OutlinedFn->setDSOLocal(false); + } else { + std::string Name = getName({EntryFnName, "region_id"}); + OutlinedFnID = new llvm::GlobalVariable( + CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true, + llvm::GlobalValue::WeakAnyLinkage, + llvm::Constant::getNullValue(CGM.Int8Ty), Name); + } + + // Register the information for the entry associated with this target region. + OffloadEntriesInfoManager.registerTargetRegionEntryInfo( + DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID, + OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion); +} + +/// Checks if the expression is constant or does not have non-trivial function +/// calls. +static bool isTrivial(ASTContext &Ctx, const Expr * E) { + // We can skip constant expressions. + // We can skip expressions with trivial calls or simple expressions. + return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) || + !E->hasNonTrivialCall(Ctx)) && + !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true); +} + +const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx, + const Stmt *Body) { + const Stmt *Child = Body->IgnoreContainers(); + while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) { + Child = nullptr; + for (const Stmt *S : C->body()) { + if (const auto *E = dyn_cast<Expr>(S)) { + if (isTrivial(Ctx, E)) + continue; + } + // Some of the statements can be ignored. + if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) || + isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S)) + continue; + // Analyze declarations. + if (const auto *DS = dyn_cast<DeclStmt>(S)) { + if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) { + if (isa<EmptyDecl>(D) || isa<DeclContext>(D) || + isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) || + isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) || + isa<UsingDirectiveDecl>(D) || + isa<OMPDeclareReductionDecl>(D) || + isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D)) + return true; + const auto *VD = dyn_cast<VarDecl>(D); + if (!VD) + return false; + return VD->isConstexpr() || + ((VD->getType().isTrivialType(Ctx) || + VD->getType()->isReferenceType()) && + (!VD->hasInit() || isTrivial(Ctx, VD->getInit()))); + })) + continue; + } + // Found multiple children - cannot get the one child only. + if (Child) + return nullptr; + Child = S; + } + if (Child) + Child = Child->IgnoreContainers(); + } + return Child; +} + +/// Emit the number of teams for a target directive. Inspect the num_teams +/// clause associated with a teams construct combined or closely nested +/// with the target directive. +/// +/// Emit a team of size one for directives such as 'target parallel' that +/// have no associated teams construct. +/// +/// Otherwise, return nullptr. +static llvm::Value * +emitNumTeamsForTargetDirective(CodeGenFunction &CGF, + const OMPExecutableDirective &D) { + assert(!CGF.getLangOpts().OpenMPIsDevice && + "Clauses associated with the teams directive expected to be emitted " + "only for the host!"); + OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); + assert(isOpenMPTargetExecutionDirective(DirectiveKind) && + "Expected target-based executable directive."); + CGBuilderTy &Bld = CGF.Builder; + switch (DirectiveKind) { + case OMPD_target: { + const auto *CS = D.getInnermostCapturedStmt(); + const auto *Body = + CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); + const Stmt *ChildStmt = + CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body); + if (const auto *NestedDir = + dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { + if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) { + if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) { + CGOpenMPInnerExprInfo CGInfo(CGF, *CS); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + const Expr *NumTeams = + NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams(); + llvm::Value *NumTeamsVal = + CGF.EmitScalarExpr(NumTeams, + /*IgnoreResultAssign*/ true); + return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty, + /*isSigned=*/true); + } + return Bld.getInt32(0); + } + if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) || + isOpenMPSimdDirective(NestedDir->getDirectiveKind())) + return Bld.getInt32(1); + return Bld.getInt32(0); + } + return nullptr; + } + case OMPD_target_teams: + case OMPD_target_teams_distribute: + case OMPD_target_teams_distribute_simd: + case OMPD_target_teams_distribute_parallel_for: + case OMPD_target_teams_distribute_parallel_for_simd: { + if (D.hasClausesOfKind<OMPNumTeamsClause>()) { + CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF); + const Expr *NumTeams = + D.getSingleClause<OMPNumTeamsClause>()->getNumTeams(); + llvm::Value *NumTeamsVal = + CGF.EmitScalarExpr(NumTeams, + /*IgnoreResultAssign*/ true); + return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty, + /*isSigned=*/true); + } + return Bld.getInt32(0); + } + case OMPD_target_parallel: + case OMPD_target_parallel_for: + case OMPD_target_parallel_for_simd: + case OMPD_target_simd: + return Bld.getInt32(1); + case OMPD_parallel: + case OMPD_for: + case OMPD_parallel_for: + case OMPD_parallel_sections: + case OMPD_for_simd: + case OMPD_parallel_for_simd: + case OMPD_cancel: + case OMPD_cancellation_point: + case OMPD_ordered: + case OMPD_threadprivate: + case OMPD_allocate: + case OMPD_task: + case OMPD_simd: + case OMPD_sections: + case OMPD_section: + case OMPD_single: + case OMPD_master: + case OMPD_critical: + case OMPD_taskyield: + case OMPD_barrier: + case OMPD_taskwait: + case OMPD_taskgroup: + case OMPD_atomic: + case OMPD_flush: + case OMPD_teams: + case OMPD_target_data: + case OMPD_target_exit_data: + case OMPD_target_enter_data: + case OMPD_distribute: + case OMPD_distribute_simd: + case OMPD_distribute_parallel_for: + case OMPD_distribute_parallel_for_simd: + case OMPD_teams_distribute: + case OMPD_teams_distribute_simd: + case OMPD_teams_distribute_parallel_for: + case OMPD_teams_distribute_parallel_for_simd: + case OMPD_target_update: + case OMPD_declare_simd: + case OMPD_declare_target: + case OMPD_end_declare_target: + case OMPD_declare_reduction: + case OMPD_declare_mapper: + case OMPD_taskloop: + case OMPD_taskloop_simd: + case OMPD_requires: + case OMPD_unknown: + break; + } + llvm_unreachable("Unexpected directive kind."); +} + +static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS, + llvm::Value *DefaultThreadLimitVal) { + const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( + CGF.getContext(), CS->getCapturedStmt()); + if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) { + if (isOpenMPParallelDirective(Dir->getDirectiveKind())) { + llvm::Value *NumThreads = nullptr; + llvm::Value *CondVal = nullptr; + // Handle if clause. If if clause present, the number of threads is + // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1. + if (Dir->hasClausesOfKind<OMPIfClause>()) { + CGOpenMPInnerExprInfo CGInfo(CGF, *CS); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + const OMPIfClause *IfClause = nullptr; + for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) { + if (C->getNameModifier() == OMPD_unknown || + C->getNameModifier() == OMPD_parallel) { + IfClause = C; + break; + } + } + if (IfClause) { + const Expr *Cond = IfClause->getCondition(); + bool Result; + if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) { + if (!Result) + return CGF.Builder.getInt32(1); + } else { + CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange()); + if (const auto *PreInit = + cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) { + for (const auto *I : PreInit->decls()) { + if (!I->hasAttr<OMPCaptureNoInitAttr>()) { + CGF.EmitVarDecl(cast<VarDecl>(*I)); + } else { + CodeGenFunction::AutoVarEmission Emission = + CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); + CGF.EmitAutoVarCleanups(Emission); + } + } + } + CondVal = CGF.EvaluateExprAsBool(Cond); + } + } + } + // Check the value of num_threads clause iff if clause was not specified + // or is not evaluated to false. + if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) { + CGOpenMPInnerExprInfo CGInfo(CGF, *CS); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + const auto *NumThreadsClause = + Dir->getSingleClause<OMPNumThreadsClause>(); + CodeGenFunction::LexicalScope Scope( + CGF, NumThreadsClause->getNumThreads()->getSourceRange()); + if (const auto *PreInit = + cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) { + for (const auto *I : PreInit->decls()) { + if (!I->hasAttr<OMPCaptureNoInitAttr>()) { + CGF.EmitVarDecl(cast<VarDecl>(*I)); + } else { + CodeGenFunction::AutoVarEmission Emission = + CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); + CGF.EmitAutoVarCleanups(Emission); + } + } + } + NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads()); + NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, + /*isSigned=*/false); + if (DefaultThreadLimitVal) + NumThreads = CGF.Builder.CreateSelect( + CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads), + DefaultThreadLimitVal, NumThreads); + } else { + NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal + : CGF.Builder.getInt32(0); + } + // Process condition of the if clause. + if (CondVal) { + NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads, + CGF.Builder.getInt32(1)); + } + return NumThreads; + } + if (isOpenMPSimdDirective(Dir->getDirectiveKind())) + return CGF.Builder.getInt32(1); + return DefaultThreadLimitVal; + } + return DefaultThreadLimitVal ? DefaultThreadLimitVal + : CGF.Builder.getInt32(0); +} + +/// Emit the number of threads for a target directive. Inspect the +/// thread_limit clause associated with a teams construct combined or closely +/// nested with the target directive. +/// +/// Emit the num_threads clause for directives such as 'target parallel' that +/// have no associated teams construct. +/// +/// Otherwise, return nullptr. +static llvm::Value * +emitNumThreadsForTargetDirective(CodeGenFunction &CGF, + const OMPExecutableDirective &D) { + assert(!CGF.getLangOpts().OpenMPIsDevice && + "Clauses associated with the teams directive expected to be emitted " + "only for the host!"); + OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind(); + assert(isOpenMPTargetExecutionDirective(DirectiveKind) && + "Expected target-based executable directive."); + CGBuilderTy &Bld = CGF.Builder; + llvm::Value *ThreadLimitVal = nullptr; + llvm::Value *NumThreadsVal = nullptr; + switch (DirectiveKind) { + case OMPD_target: { + const CapturedStmt *CS = D.getInnermostCapturedStmt(); + if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) + return NumThreads; + const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( + CGF.getContext(), CS->getCapturedStmt()); + if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) { + if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) { + CGOpenMPInnerExprInfo CGInfo(CGF, *CS); + CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo); + const auto *ThreadLimitClause = + Dir->getSingleClause<OMPThreadLimitClause>(); + CodeGenFunction::LexicalScope Scope( + CGF, ThreadLimitClause->getThreadLimit()->getSourceRange()); + if (const auto *PreInit = + cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) { + for (const auto *I : PreInit->decls()) { + if (!I->hasAttr<OMPCaptureNoInitAttr>()) { + CGF.EmitVarDecl(cast<VarDecl>(*I)); + } else { + CodeGenFunction::AutoVarEmission Emission = + CGF.EmitAutoVarAlloca(cast<VarDecl>(*I)); + CGF.EmitAutoVarCleanups(Emission); + } + } + } + llvm::Value *ThreadLimit = CGF.EmitScalarExpr( + ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); + ThreadLimitVal = + Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); + } + if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) && + !isOpenMPDistributeDirective(Dir->getDirectiveKind())) { + CS = Dir->getInnermostCapturedStmt(); + const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( + CGF.getContext(), CS->getCapturedStmt()); + Dir = dyn_cast_or_null<OMPExecutableDirective>(Child); + } + if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) && + !isOpenMPSimdDirective(Dir->getDirectiveKind())) { + CS = Dir->getInnermostCapturedStmt(); + if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) + return NumThreads; + } + if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind())) + return Bld.getInt32(1); + } + return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0); + } + case OMPD_target_teams: { + if (D.hasClausesOfKind<OMPThreadLimitClause>()) { + CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); + const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); + llvm::Value *ThreadLimit = CGF.EmitScalarExpr( + ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); + ThreadLimitVal = + Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); + } + const CapturedStmt *CS = D.getInnermostCapturedStmt(); + if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) + return NumThreads; + const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild( + CGF.getContext(), CS->getCapturedStmt()); + if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) { + if (Dir->getDirectiveKind() == OMPD_distribute) { + CS = Dir->getInnermostCapturedStmt(); + if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal)) + return NumThreads; + } + } + return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0); + } + case OMPD_target_teams_distribute: + if (D.hasClausesOfKind<OMPThreadLimitClause>()) { + CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); + const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); + llvm::Value *ThreadLimit = CGF.EmitScalarExpr( + ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); + ThreadLimitVal = + Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); + } + return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal); + case OMPD_target_parallel: + case OMPD_target_parallel_for: + case OMPD_target_parallel_for_simd: + case OMPD_target_teams_distribute_parallel_for: + case OMPD_target_teams_distribute_parallel_for_simd: { + llvm::Value *CondVal = nullptr; + // Handle if clause. If if clause present, the number of threads is + // calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1. + if (D.hasClausesOfKind<OMPIfClause>()) { + const OMPIfClause *IfClause = nullptr; + for (const auto *C : D.getClausesOfKind<OMPIfClause>()) { + if (C->getNameModifier() == OMPD_unknown || + C->getNameModifier() == OMPD_parallel) { + IfClause = C; + break; + } + } + if (IfClause) { + const Expr *Cond = IfClause->getCondition(); + bool Result; + if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) { + if (!Result) + return Bld.getInt32(1); + } else { + CodeGenFunction::RunCleanupsScope Scope(CGF); + CondVal = CGF.EvaluateExprAsBool(Cond); + } + } + } + if (D.hasClausesOfKind<OMPThreadLimitClause>()) { + CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF); + const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>(); + llvm::Value *ThreadLimit = CGF.EmitScalarExpr( + ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true); + ThreadLimitVal = + Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false); + } + if (D.hasClausesOfKind<OMPNumThreadsClause>()) { + CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF); + const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>(); + llvm::Value *NumThreads = CGF.EmitScalarExpr( + NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true); + NumThreadsVal = + Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false); + ThreadLimitVal = ThreadLimitVal + ? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal, + ThreadLimitVal), + NumThreadsVal, ThreadLimitVal) + : NumThreadsVal; + } + if (!ThreadLimitVal) + ThreadLimitVal = Bld.getInt32(0); + if (CondVal) + return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1)); + return ThreadLimitVal; + } + case OMPD_target_teams_distribute_simd: + case OMPD_target_simd: + return Bld.getInt32(1); + case OMPD_parallel: + case OMPD_for: + case OMPD_parallel_for: + case OMPD_parallel_sections: + case OMPD_for_simd: + case OMPD_parallel_for_simd: + case OMPD_cancel: + case OMPD_cancellation_point: + case OMPD_ordered: + case OMPD_threadprivate: + case OMPD_allocate: + case OMPD_task: + case OMPD_simd: + case OMPD_sections: + case OMPD_section: + case OMPD_single: + case OMPD_master: + case OMPD_critical: + case OMPD_taskyield: + case OMPD_barrier: + case OMPD_taskwait: + case OMPD_taskgroup: + case OMPD_atomic: + case OMPD_flush: + case OMPD_teams: + case OMPD_target_data: + case OMPD_target_exit_data: + case OMPD_target_enter_data: + case OMPD_distribute: + case OMPD_distribute_simd: + case OMPD_distribute_parallel_for: + case OMPD_distribute_parallel_for_simd: + case OMPD_teams_distribute: + case OMPD_teams_distribute_simd: + case OMPD_teams_distribute_parallel_for: + case OMPD_teams_distribute_parallel_for_simd: + case OMPD_target_update: + case OMPD_declare_simd: + case OMPD_declare_target: + case OMPD_end_declare_target: + case OMPD_declare_reduction: + case OMPD_declare_mapper: + case OMPD_taskloop: + case OMPD_taskloop_simd: + case OMPD_requires: + case OMPD_unknown: + break; + } + llvm_unreachable("Unsupported directive kind."); +} + +namespace { +LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE(); + +// Utility to handle information from clauses associated with a given +// construct that use mappable expressions (e.g. 'map' clause, 'to' clause). +// It provides a convenient interface to obtain the information and generate +// code for that information. +class MappableExprsHandler { +public: + /// Values for bit flags used to specify the mapping type for + /// offloading. + enum OpenMPOffloadMappingFlags : uint64_t { + /// No flags + OMP_MAP_NONE = 0x0, + /// Allocate memory on the device and move data from host to device. + OMP_MAP_TO = 0x01, + /// Allocate memory on the device and move data from device to host. + OMP_MAP_FROM = 0x02, + /// Always perform the requested mapping action on the element, even + /// if it was already mapped before. + OMP_MAP_ALWAYS = 0x04, + /// Delete the element from the device environment, ignoring the + /// current reference count associated with the element. + OMP_MAP_DELETE = 0x08, + /// The element being mapped is a pointer-pointee pair; both the + /// pointer and the pointee should be mapped. + OMP_MAP_PTR_AND_OBJ = 0x10, + /// This flags signals that the base address of an entry should be + /// passed to the target kernel as an argument. + OMP_MAP_TARGET_PARAM = 0x20, + /// Signal that the runtime library has to return the device pointer + /// in the current position for the data being mapped. Used when we have the + /// use_device_ptr clause. + OMP_MAP_RETURN_PARAM = 0x40, + /// This flag signals that the reference being passed is a pointer to + /// private data. + OMP_MAP_PRIVATE = 0x80, + /// Pass the element to the device by value. + OMP_MAP_LITERAL = 0x100, + /// Implicit map + OMP_MAP_IMPLICIT = 0x200, + /// The 16 MSBs of the flags indicate whether the entry is member of some + /// struct/class. + OMP_MAP_MEMBER_OF = 0xffff000000000000, + LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF), + }; + + /// Class that associates information with a base pointer to be passed to the + /// runtime library. + class BasePointerInfo { + /// The base pointer. + llvm::Value *Ptr = nullptr; + /// The base declaration that refers to this device pointer, or null if + /// there is none. + const ValueDecl *DevPtrDecl = nullptr; + + public: + BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr) + : Ptr(Ptr), DevPtrDecl(DevPtrDecl) {} + llvm::Value *operator*() const { return Ptr; } + const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; } + void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; } + }; + + using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>; + using MapValuesArrayTy = SmallVector<llvm::Value *, 4>; + using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>; + + /// Map between a struct and the its lowest & highest elements which have been + /// mapped. + /// [ValueDecl *] --> {LE(FieldIndex, Pointer), + /// HE(FieldIndex, Pointer)} + struct StructRangeInfoTy { + std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = { + 0, Address::invalid()}; + std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = { + 0, Address::invalid()}; + Address Base = Address::invalid(); + }; + +private: + /// Kind that defines how a device pointer has to be returned. + struct MapInfo { + OMPClauseMappableExprCommon::MappableExprComponentListRef Components; + OpenMPMapClauseKind MapType = OMPC_MAP_unknown; + ArrayRef<OpenMPMapModifierKind> MapModifiers; + bool ReturnDevicePointer = false; + bool IsImplicit = false; + + MapInfo() = default; + MapInfo( + OMPClauseMappableExprCommon::MappableExprComponentListRef Components, + OpenMPMapClauseKind MapType, + ArrayRef<OpenMPMapModifierKind> MapModifiers, + bool ReturnDevicePointer, bool IsImplicit) + : Components(Components), MapType(MapType), MapModifiers(MapModifiers), + ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit) {} + }; + + /// If use_device_ptr is used on a pointer which is a struct member and there + /// is no map information about it, then emission of that entry is deferred + /// until the whole struct has been processed. + struct DeferredDevicePtrEntryTy { + const Expr *IE = nullptr; + const ValueDecl *VD = nullptr; + + DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD) + : IE(IE), VD(VD) {} + }; + + /// Directive from where the map clauses were extracted. + const OMPExecutableDirective &CurDir; + + /// Function the directive is being generated for. + CodeGenFunction &CGF; + + /// Set of all first private variables in the current directive. + /// bool data is set to true if the variable is implicitly marked as + /// firstprivate, false otherwise. + llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls; + + /// Map between device pointer declarations and their expression components. + /// The key value for declarations in 'this' is null. + llvm::DenseMap< + const ValueDecl *, + SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>> + DevPointersMap; + + llvm::Value *getExprTypeSize(const Expr *E) const { + QualType ExprTy = E->getType().getCanonicalType(); + + // Reference types are ignored for mapping purposes. + if (const auto *RefTy = ExprTy->getAs<ReferenceType>()) + ExprTy = RefTy->getPointeeType().getCanonicalType(); + + // Given that an array section is considered a built-in type, we need to + // do the calculation based on the length of the section instead of relying + // on CGF.getTypeSize(E->getType()). + if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) { + QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType( + OAE->getBase()->IgnoreParenImpCasts()) + .getCanonicalType(); + + // If there is no length associated with the expression, that means we + // are using the whole length of the base. + if (!OAE->getLength() && OAE->getColonLoc().isValid()) + return CGF.getTypeSize(BaseTy); + + llvm::Value *ElemSize; + if (const auto *PTy = BaseTy->getAs<PointerType>()) { + ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType()); + } else { + const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr()); + assert(ATy && "Expecting array type if not a pointer type."); + ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType()); + } + + // If we don't have a length at this point, that is because we have an + // array section with a single element. + if (!OAE->getLength()) + return ElemSize; + + llvm::Value *LengthVal = CGF.EmitScalarExpr(OAE->getLength()); + LengthVal = + CGF.Builder.CreateIntCast(LengthVal, CGF.SizeTy, /*isSigned=*/false); + return CGF.Builder.CreateNUWMul(LengthVal, ElemSize); + } + return CGF.getTypeSize(ExprTy); + } + + /// Return the corresponding bits for a given map clause modifier. Add + /// a flag marking the map as a pointer if requested. Add a flag marking the + /// map as the first one of a series of maps that relate to the same map + /// expression. + OpenMPOffloadMappingFlags getMapTypeBits( + OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers, + bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const { + OpenMPOffloadMappingFlags Bits = + IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE; + switch (MapType) { + case OMPC_MAP_alloc: + case OMPC_MAP_release: + // alloc and release is the default behavior in the runtime library, i.e. + // if we don't pass any bits alloc/release that is what the runtime is + // going to do. Therefore, we don't need to signal anything for these two + // type modifiers. + break; + case OMPC_MAP_to: + Bits |= OMP_MAP_TO; + break; + case OMPC_MAP_from: + Bits |= OMP_MAP_FROM; + break; + case OMPC_MAP_tofrom: + Bits |= OMP_MAP_TO | OMP_MAP_FROM; + break; + case OMPC_MAP_delete: + Bits |= OMP_MAP_DELETE; + break; + case OMPC_MAP_unknown: + llvm_unreachable("Unexpected map type!"); + } + if (AddPtrFlag) + Bits |= OMP_MAP_PTR_AND_OBJ; + if (AddIsTargetParamFlag) + Bits |= OMP_MAP_TARGET_PARAM; + if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always) + != MapModifiers.end()) + Bits |= OMP_MAP_ALWAYS; + return Bits; + } + + /// Return true if the provided expression is a final array section. A + /// final array section, is one whose length can't be proved to be one. + bool isFinalArraySectionExpression(const Expr *E) const { + const auto *OASE = dyn_cast<OMPArraySectionExpr>(E); + + // It is not an array section and therefore not a unity-size one. + if (!OASE) + return false; + + // An array section with no colon always refer to a single element. + if (OASE->getColonLoc().isInvalid()) + return false; + + const Expr *Length = OASE->getLength(); + + // If we don't have a length we have to check if the array has size 1 + // for this dimension. Also, we should always expect a length if the + // base type is pointer. + if (!Length) { + QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType( + OASE->getBase()->IgnoreParenImpCasts()) + .getCanonicalType(); + if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr())) + return ATy->getSize().getSExtValue() != 1; + // If we don't have a constant dimension length, we have to consider + // the current section as having any size, so it is not necessarily + // unitary. If it happen to be unity size, that's user fault. + return true; + } + + // Check if the length evaluates to 1. + Expr::EvalResult Result; + if (!Length->EvaluateAsInt(Result, CGF.getContext())) + return true; // Can have more that size 1. + + llvm::APSInt ConstLength = Result.Val.getInt(); + return ConstLength.getSExtValue() != 1; + } + + /// Generate the base pointers, section pointers, sizes and map type + /// bits for the provided map type, map modifier, and expression components. + /// \a IsFirstComponent should be set to true if the provided set of + /// components is the first associated with a capture. + void generateInfoForComponentList( + OpenMPMapClauseKind MapType, + ArrayRef<OpenMPMapModifierKind> MapModifiers, + OMPClauseMappableExprCommon::MappableExprComponentListRef Components, + MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, + MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types, + StructRangeInfoTy &PartialStruct, bool IsFirstComponentList, + bool IsImplicit, + ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> + OverlappedElements = llvm::None) const { + // The following summarizes what has to be generated for each map and the + // types below. The generated information is expressed in this order: + // base pointer, section pointer, size, flags + // (to add to the ones that come from the map type and modifier). + // + // double d; + // int i[100]; + // float *p; + // + // struct S1 { + // int i; + // float f[50]; + // } + // struct S2 { + // int i; + // float f[50]; + // S1 s; + // double *p; + // struct S2 *ps; + // } + // S2 s; + // S2 *ps; + // + // map(d) + // &d, &d, sizeof(double), TARGET_PARAM | TO | FROM + // + // map(i) + // &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM + // + // map(i[1:23]) + // &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM + // + // map(p) + // &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM + // + // map(p[1:24]) + // p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM + // + // map(s) + // &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM + // + // map(s.i) + // &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM + // + // map(s.s.f) + // &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM + // + // map(s.p) + // &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM + // + // map(to: s.p[:22]) + // &s, &(s.p), sizeof(double*), TARGET_PARAM (*) + // &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**) + // &(s.p), &(s.p[0]), 22*sizeof(double), + // MEMBER_OF(1) | PTR_AND_OBJ | TO (***) + // (*) alloc space for struct members, only this is a target parameter + // (**) map the pointer (nothing to be mapped in this example) (the compiler + // optimizes this entry out, same in the examples below) + // (***) map the pointee (map: to) + // + // map(s.ps) + // &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM + // + // map(from: s.ps->s.i) + // &s, &(s.ps), sizeof(S2*), TARGET_PARAM + // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) + // &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM + // + // map(to: s.ps->ps) + // &s, &(s.ps), sizeof(S2*), TARGET_PARAM + // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) + // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO + // + // map(s.ps->ps->ps) + // &s, &(s.ps), sizeof(S2*), TARGET_PARAM + // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) + // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ + // &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM + // + // map(to: s.ps->ps->s.f[:22]) + // &s, &(s.ps), sizeof(S2*), TARGET_PARAM + // &s, &(s.ps), sizeof(S2*), MEMBER_OF(1) + // &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ + // &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO + // + // map(ps) + // &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM + // + // map(ps->i) + // ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM + // + // map(ps->s.f) + // ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM + // + // map(from: ps->p) + // ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM + // + // map(to: ps->p[:22]) + // ps, &(ps->p), sizeof(double*), TARGET_PARAM + // ps, &(ps->p), sizeof(double*), MEMBER_OF(1) + // &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO + // + // map(ps->ps) + // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM + // + // map(from: ps->ps->s.i) + // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM + // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) + // &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM + // + // map(from: ps->ps->ps) + // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM + // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) + // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM + // + // map(ps->ps->ps->ps) + // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM + // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) + // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ + // &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM + // + // map(to: ps->ps->ps->s.f[:22]) + // ps, &(ps->ps), sizeof(S2*), TARGET_PARAM + // ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1) + // &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ + // &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO + // + // map(to: s.f[:22]) map(from: s.p[:33]) + // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) + + // sizeof(double*) (**), TARGET_PARAM + // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO + // &s, &(s.p), sizeof(double*), MEMBER_OF(1) + // &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM + // (*) allocate contiguous space needed to fit all mapped members even if + // we allocate space for members not mapped (in this example, + // s.f[22..49] and s.s are not mapped, yet we must allocate space for + // them as well because they fall between &s.f[0] and &s.p) + // + // map(from: s.f[:22]) map(to: ps->p[:33]) + // &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM + // ps, &(ps->p), sizeof(S2*), TARGET_PARAM + // ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*) + // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO + // (*) the struct this entry pertains to is the 2nd element in the list of + // arguments, hence MEMBER_OF(2) + // + // map(from: s.f[:22], s.s) map(to: ps->p[:33]) + // &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM + // &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM + // &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM + // ps, &(ps->p), sizeof(S2*), TARGET_PARAM + // ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*) + // &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO + // (*) the struct this entry pertains to is the 4th element in the list + // of arguments, hence MEMBER_OF(4) + + // Track if the map information being generated is the first for a capture. + bool IsCaptureFirstInfo = IsFirstComponentList; + // When the variable is on a declare target link or in a to clause with + // unified memory, a reference is needed to hold the host/device address + // of the variable. + bool RequiresReference = false; + + // Scan the components from the base to the complete expression. + auto CI = Components.rbegin(); + auto CE = Components.rend(); + auto I = CI; + + // Track if the map information being generated is the first for a list of + // components. + bool IsExpressionFirstInfo = true; + Address BP = Address::invalid(); + const Expr *AssocExpr = I->getAssociatedExpression(); + const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr); + const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr); + + if (isa<MemberExpr>(AssocExpr)) { + // The base is the 'this' pointer. The content of the pointer is going + // to be the base of the field being mapped. + BP = CGF.LoadCXXThisAddress(); + } else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) || + (OASE && + isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) { + BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(); + } else { + // The base is the reference to the variable. + // BP = &Var. + BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(); + if (const auto *VD = + dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) { + if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = + OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) { + if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) || + (*Res == OMPDeclareTargetDeclAttr::MT_To && + CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) { + RequiresReference = true; + BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); + } + } + } + + // If the variable is a pointer and is being dereferenced (i.e. is not + // the last component), the base has to be the pointer itself, not its + // reference. References are ignored for mapping purposes. + QualType Ty = + I->getAssociatedDeclaration()->getType().getNonReferenceType(); + if (Ty->isAnyPointerType() && std::next(I) != CE) { + BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>()); + + // We do not need to generate individual map information for the + // pointer, it can be associated with the combined storage. + ++I; + } + } + + // Track whether a component of the list should be marked as MEMBER_OF some + // combined entry (for partial structs). Only the first PTR_AND_OBJ entry + // in a component list should be marked as MEMBER_OF, all subsequent entries + // do not belong to the base struct. E.g. + // struct S2 s; + // s.ps->ps->ps->f[:] + // (1) (2) (3) (4) + // ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a + // PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3) + // is the pointee of ps(2) which is not member of struct s, so it should not + // be marked as such (it is still PTR_AND_OBJ). + // The variable is initialized to false so that PTR_AND_OBJ entries which + // are not struct members are not considered (e.g. array of pointers to + // data). + bool ShouldBeMemberOf = false; + + // Variable keeping track of whether or not we have encountered a component + // in the component list which is a member expression. Useful when we have a + // pointer or a final array section, in which case it is the previous + // component in the list which tells us whether we have a member expression. + // E.g. X.f[:] + // While processing the final array section "[:]" it is "f" which tells us + // whether we are dealing with a member of a declared struct. + const MemberExpr *EncounteredME = nullptr; + + for (; I != CE; ++I) { + // If the current component is member of a struct (parent struct) mark it. + if (!EncounteredME) { + EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression()); + // If we encounter a PTR_AND_OBJ entry from now on it should be marked + // as MEMBER_OF the parent struct. + if (EncounteredME) + ShouldBeMemberOf = true; + } + + auto Next = std::next(I); + + // We need to generate the addresses and sizes if this is the last + // component, if the component is a pointer or if it is an array section + // whose length can't be proved to be one. If this is a pointer, it + // becomes the base address for the following components. + + // A final array section, is one whose length can't be proved to be one. + bool IsFinalArraySection = + isFinalArraySectionExpression(I->getAssociatedExpression()); + + // Get information on whether the element is a pointer. Have to do a + // special treatment for array sections given that they are built-in + // types. + const auto *OASE = + dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression()); + bool IsPointer = + (OASE && OMPArraySectionExpr::getBaseOriginalType(OASE) + .getCanonicalType() + ->isAnyPointerType()) || + I->getAssociatedExpression()->getType()->isAnyPointerType(); + + if (Next == CE || IsPointer || IsFinalArraySection) { + // If this is not the last component, we expect the pointer to be + // associated with an array expression or member expression. + assert((Next == CE || + isa<MemberExpr>(Next->getAssociatedExpression()) || + isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) || + isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) && + "Unexpected expression"); + + Address LB = + CGF.EmitOMPSharedLValue(I->getAssociatedExpression()).getAddress(); + + // If this component is a pointer inside the base struct then we don't + // need to create any entry for it - it will be combined with the object + // it is pointing to into a single PTR_AND_OBJ entry. + bool IsMemberPointer = + IsPointer && EncounteredME && + (dyn_cast<MemberExpr>(I->getAssociatedExpression()) == + EncounteredME); + if (!OverlappedElements.empty()) { + // Handle base element with the info for overlapped elements. + assert(!PartialStruct.Base.isValid() && "The base element is set."); + assert(Next == CE && + "Expected last element for the overlapped elements."); + assert(!IsPointer && + "Unexpected base element with the pointer type."); + // Mark the whole struct as the struct that requires allocation on the + // device. + PartialStruct.LowestElem = {0, LB}; + CharUnits TypeSize = CGF.getContext().getTypeSizeInChars( + I->getAssociatedExpression()->getType()); + Address HB = CGF.Builder.CreateConstGEP( + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB, + CGF.VoidPtrTy), + TypeSize.getQuantity() - 1); + PartialStruct.HighestElem = { + std::numeric_limits<decltype( + PartialStruct.HighestElem.first)>::max(), + HB}; + PartialStruct.Base = BP; + // Emit data for non-overlapped data. + OpenMPOffloadMappingFlags Flags = + OMP_MAP_MEMBER_OF | + getMapTypeBits(MapType, MapModifiers, IsImplicit, + /*AddPtrFlag=*/false, + /*AddIsTargetParamFlag=*/false); + LB = BP; + llvm::Value *Size = nullptr; + // Do bitcopy of all non-overlapped structure elements. + for (OMPClauseMappableExprCommon::MappableExprComponentListRef + Component : OverlappedElements) { + Address ComponentLB = Address::invalid(); + for (const OMPClauseMappableExprCommon::MappableComponent &MC : + Component) { + if (MC.getAssociatedDeclaration()) { + ComponentLB = + CGF.EmitOMPSharedLValue(MC.getAssociatedExpression()) + .getAddress(); + Size = CGF.Builder.CreatePtrDiff( + CGF.EmitCastToVoidPtr(ComponentLB.getPointer()), + CGF.EmitCastToVoidPtr(LB.getPointer())); + break; + } + } + BasePointers.push_back(BP.getPointer()); + Pointers.push_back(LB.getPointer()); + Sizes.push_back(CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, + /*isSigned=*/true)); + Types.push_back(Flags); + LB = CGF.Builder.CreateConstGEP(ComponentLB, 1); + } + BasePointers.push_back(BP.getPointer()); + Pointers.push_back(LB.getPointer()); + Size = CGF.Builder.CreatePtrDiff( + CGF.EmitCastToVoidPtr( + CGF.Builder.CreateConstGEP(HB, 1).getPointer()), + CGF.EmitCastToVoidPtr(LB.getPointer())); + Sizes.push_back( + CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true)); + Types.push_back(Flags); + break; + } + llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression()); + if (!IsMemberPointer) { + BasePointers.push_back(BP.getPointer()); + Pointers.push_back(LB.getPointer()); + Sizes.push_back( + CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true)); + + // We need to add a pointer flag for each map that comes from the + // same expression except for the first one. We also need to signal + // this map is the first one that relates with the current capture + // (there is a set of entries for each capture). + OpenMPOffloadMappingFlags Flags = getMapTypeBits( + MapType, MapModifiers, IsImplicit, + !IsExpressionFirstInfo || RequiresReference, + IsCaptureFirstInfo && !RequiresReference); + + if (!IsExpressionFirstInfo) { + // If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well, + // then we reset the TO/FROM/ALWAYS/DELETE flags. + if (IsPointer) + Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS | + OMP_MAP_DELETE); + + if (ShouldBeMemberOf) { + // Set placeholder value MEMBER_OF=FFFF to indicate that the flag + // should be later updated with the correct value of MEMBER_OF. + Flags |= OMP_MAP_MEMBER_OF; + // From now on, all subsequent PTR_AND_OBJ entries should not be + // marked as MEMBER_OF. + ShouldBeMemberOf = false; + } + } + + Types.push_back(Flags); + } + + // If we have encountered a member expression so far, keep track of the + // mapped member. If the parent is "*this", then the value declaration + // is nullptr. + if (EncounteredME) { + const auto *FD = dyn_cast<FieldDecl>(EncounteredME->getMemberDecl()); + unsigned FieldIndex = FD->getFieldIndex(); + + // Update info about the lowest and highest elements for this struct + if (!PartialStruct.Base.isValid()) { + PartialStruct.LowestElem = {FieldIndex, LB}; + PartialStruct.HighestElem = {FieldIndex, LB}; + PartialStruct.Base = BP; + } else if (FieldIndex < PartialStruct.LowestElem.first) { + PartialStruct.LowestElem = {FieldIndex, LB}; + } else if (FieldIndex > PartialStruct.HighestElem.first) { + PartialStruct.HighestElem = {FieldIndex, LB}; + } + } + + // If we have a final array section, we are done with this expression. + if (IsFinalArraySection) + break; + + // The pointer becomes the base for the next element. + if (Next != CE) + BP = LB; + + IsExpressionFirstInfo = false; + IsCaptureFirstInfo = false; + } + } + } + + /// Return the adjusted map modifiers if the declaration a capture refers to + /// appears in a first-private clause. This is expected to be used only with + /// directives that start with 'target'. + MappableExprsHandler::OpenMPOffloadMappingFlags + getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const { + assert(Cap.capturesVariable() && "Expected capture by reference only!"); + + // A first private variable captured by reference will use only the + // 'private ptr' and 'map to' flag. Return the right flags if the captured + // declaration is known as first-private in this handler. + if (FirstPrivateDecls.count(Cap.getCapturedVar())) { + if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) && + Cap.getCaptureKind() == CapturedStmt::VCK_ByRef) + return MappableExprsHandler::OMP_MAP_ALWAYS | + MappableExprsHandler::OMP_MAP_TO; + if (Cap.getCapturedVar()->getType()->isAnyPointerType()) + return MappableExprsHandler::OMP_MAP_TO | + MappableExprsHandler::OMP_MAP_PTR_AND_OBJ; + return MappableExprsHandler::OMP_MAP_PRIVATE | + MappableExprsHandler::OMP_MAP_TO; + } + return MappableExprsHandler::OMP_MAP_TO | + MappableExprsHandler::OMP_MAP_FROM; + } + + static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) { + // Member of is given by the 16 MSB of the flag, so rotate by 48 bits. + return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1) + << 48); + } + + static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags, + OpenMPOffloadMappingFlags MemberOfFlag) { + // If the entry is PTR_AND_OBJ but has not been marked with the special + // placeholder value 0xFFFF in the MEMBER_OF field, then it should not be + // marked as MEMBER_OF. + if ((Flags & OMP_MAP_PTR_AND_OBJ) && + ((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF)) + return; + + // Reset the placeholder value to prepare the flag for the assignment of the + // proper MEMBER_OF value. + Flags &= ~OMP_MAP_MEMBER_OF; + Flags |= MemberOfFlag; + } + + void getPlainLayout(const CXXRecordDecl *RD, + llvm::SmallVectorImpl<const FieldDecl *> &Layout, + bool AsBase) const { + const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD); + + llvm::StructType *St = + AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType(); + + unsigned NumElements = St->getNumElements(); + llvm::SmallVector< + llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4> + RecordLayout(NumElements); + + // Fill bases. + for (const auto &I : RD->bases()) { + if (I.isVirtual()) + continue; + const auto *Base = I.getType()->getAsCXXRecordDecl(); + // Ignore empty bases. + if (Base->isEmpty() || CGF.getContext() + .getASTRecordLayout(Base) + .getNonVirtualSize() + .isZero()) + continue; + + unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base); + RecordLayout[FieldIndex] = Base; + } + // Fill in virtual bases. + for (const auto &I : RD->vbases()) { + const auto *Base = I.getType()->getAsCXXRecordDecl(); + // Ignore empty bases. + if (Base->isEmpty()) + continue; + unsigned FieldIndex = RL.getVirtualBaseIndex(Base); + if (RecordLayout[FieldIndex]) + continue; + RecordLayout[FieldIndex] = Base; + } + // Fill in all the fields. + assert(!RD->isUnion() && "Unexpected union."); + for (const auto *Field : RD->fields()) { + // Fill in non-bitfields. (Bitfields always use a zero pattern, which we + // will fill in later.) + if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) { + unsigned FieldIndex = RL.getLLVMFieldNo(Field); + RecordLayout[FieldIndex] = Field; + } + } + for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *> + &Data : RecordLayout) { + if (Data.isNull()) + continue; + if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>()) + getPlainLayout(Base, Layout, /*AsBase=*/true); + else + Layout.push_back(Data.get<const FieldDecl *>()); + } + } + +public: + MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF) + : CurDir(Dir), CGF(CGF) { + // Extract firstprivate clause information. + for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>()) + for (const auto *D : C->varlists()) + FirstPrivateDecls.try_emplace( + cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit()); + // Extract device pointer clause information. + for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>()) + for (auto L : C->component_lists()) + DevPointersMap[L.first].push_back(L.second); + } + + /// Generate code for the combined entry if we have a partially mapped struct + /// and take care of the mapping flags of the arguments corresponding to + /// individual struct members. + void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers, + MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, + MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes, + const StructRangeInfoTy &PartialStruct) const { + // Base is the base of the struct + BasePointers.push_back(PartialStruct.Base.getPointer()); + // Pointer is the address of the lowest element + llvm::Value *LB = PartialStruct.LowestElem.second.getPointer(); + Pointers.push_back(LB); + // Size is (addr of {highest+1} element) - (addr of lowest element) + llvm::Value *HB = PartialStruct.HighestElem.second.getPointer(); + llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1); + llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy); + llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy); + llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr); + llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty, + /*isSigned=*/false); + Sizes.push_back(Size); + // Map type is always TARGET_PARAM + Types.push_back(OMP_MAP_TARGET_PARAM); + // Remove TARGET_PARAM flag from the first element + (*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM; + + // All other current entries will be MEMBER_OF the combined entry + // (except for PTR_AND_OBJ entries which do not have a placeholder value + // 0xFFFF in the MEMBER_OF field). + OpenMPOffloadMappingFlags MemberOfFlag = + getMemberOfFlag(BasePointers.size() - 1); + for (auto &M : CurTypes) + setCorrectMemberOfFlag(M, MemberOfFlag); + } + + /// Generate all the base pointers, section pointers, sizes and map + /// types for the extracted mappable expressions. Also, for each item that + /// relates with a device pointer, a pair of the relevant declaration and + /// index where it occurs is appended to the device pointers info array. + void generateAllInfo(MapBaseValuesArrayTy &BasePointers, + MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, + MapFlagsArrayTy &Types) const { + // We have to process the component lists that relate with the same + // declaration in a single chunk so that we can generate the map flags + // correctly. Therefore, we organize all lists in a map. + llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info; + + // Helper function to fill the information map for the different supported + // clauses. + auto &&InfoGen = [&Info]( + const ValueDecl *D, + OMPClauseMappableExprCommon::MappableExprComponentListRef L, + OpenMPMapClauseKind MapType, + ArrayRef<OpenMPMapModifierKind> MapModifiers, + bool ReturnDevicePointer, bool IsImplicit) { + const ValueDecl *VD = + D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; + Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer, + IsImplicit); + }; + + // FIXME: MSVC 2013 seems to require this-> to find member CurDir. + for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) + for (const auto &L : C->component_lists()) { + InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(), + /*ReturnDevicePointer=*/false, C->isImplicit()); + } + for (const auto *C : this->CurDir.getClausesOfKind<OMPToClause>()) + for (const auto &L : C->component_lists()) { + InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None, + /*ReturnDevicePointer=*/false, C->isImplicit()); + } + for (const auto *C : this->CurDir.getClausesOfKind<OMPFromClause>()) + for (const auto &L : C->component_lists()) { + InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None, + /*ReturnDevicePointer=*/false, C->isImplicit()); + } + + // Look at the use_device_ptr clause information and mark the existing map + // entries as such. If there is no map information for an entry in the + // use_device_ptr list, we create one with map type 'alloc' and zero size + // section. It is the user fault if that was not mapped before. If there is + // no map information and the pointer is a struct member, then we defer the + // emission of that entry until the whole struct has been processed. + llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>> + DeferredInfo; + + // FIXME: MSVC 2013 seems to require this-> to find member CurDir. + for (const auto *C : + this->CurDir.getClausesOfKind<OMPUseDevicePtrClause>()) { + for (const auto &L : C->component_lists()) { + assert(!L.second.empty() && "Not expecting empty list of components!"); + const ValueDecl *VD = L.second.back().getAssociatedDeclaration(); + VD = cast<ValueDecl>(VD->getCanonicalDecl()); + const Expr *IE = L.second.back().getAssociatedExpression(); + // If the first component is a member expression, we have to look into + // 'this', which maps to null in the map of map information. Otherwise + // look directly for the information. + auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD); + + // We potentially have map information for this declaration already. + // Look for the first set of components that refer to it. + if (It != Info.end()) { + auto CI = std::find_if( + It->second.begin(), It->second.end(), [VD](const MapInfo &MI) { + return MI.Components.back().getAssociatedDeclaration() == VD; + }); + // If we found a map entry, signal that the pointer has to be returned + // and move on to the next declaration. + if (CI != It->second.end()) { + CI->ReturnDevicePointer = true; + continue; + } + } + + // We didn't find any match in our map information - generate a zero + // size array section - if the pointer is a struct member we defer this + // action until the whole struct has been processed. + // FIXME: MSVC 2013 seems to require this-> to find member CGF. + if (isa<MemberExpr>(IE)) { + // Insert the pointer into Info to be processed by + // generateInfoForComponentList. Because it is a member pointer + // without a pointee, no entry will be generated for it, therefore + // we need to generate one after the whole struct has been processed. + // Nonetheless, generateInfoForComponentList must be called to take + // the pointer into account for the calculation of the range of the + // partial struct. + InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None, + /*ReturnDevicePointer=*/false, C->isImplicit()); + DeferredInfo[nullptr].emplace_back(IE, VD); + } else { + llvm::Value *Ptr = this->CGF.EmitLoadOfScalar( + this->CGF.EmitLValue(IE), IE->getExprLoc()); + BasePointers.emplace_back(Ptr, VD); + Pointers.push_back(Ptr); + Sizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty)); + Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_TARGET_PARAM); + } + } + } + + for (const auto &M : Info) { + // We need to know when we generate information for the first component + // associated with a capture, because the mapping flags depend on it. + bool IsFirstComponentList = true; + + // Temporary versions of arrays + MapBaseValuesArrayTy CurBasePointers; + MapValuesArrayTy CurPointers; + MapValuesArrayTy CurSizes; + MapFlagsArrayTy CurTypes; + StructRangeInfoTy PartialStruct; + + for (const MapInfo &L : M.second) { + assert(!L.Components.empty() && + "Not expecting declaration with no component lists."); + + // Remember the current base pointer index. + unsigned CurrentBasePointersIdx = CurBasePointers.size(); + // FIXME: MSVC 2013 seems to require this-> to find the member method. + this->generateInfoForComponentList( + L.MapType, L.MapModifiers, L.Components, CurBasePointers, + CurPointers, CurSizes, CurTypes, PartialStruct, + IsFirstComponentList, L.IsImplicit); + + // If this entry relates with a device pointer, set the relevant + // declaration and add the 'return pointer' flag. + if (L.ReturnDevicePointer) { + assert(CurBasePointers.size() > CurrentBasePointersIdx && + "Unexpected number of mapped base pointers."); + + const ValueDecl *RelevantVD = + L.Components.back().getAssociatedDeclaration(); + assert(RelevantVD && + "No relevant declaration related with device pointer??"); + + CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD); + CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM; + } + IsFirstComponentList = false; + } + + // Append any pending zero-length pointers which are struct members and + // used with use_device_ptr. + auto CI = DeferredInfo.find(M.first); + if (CI != DeferredInfo.end()) { + for (const DeferredDevicePtrEntryTy &L : CI->second) { + llvm::Value *BasePtr = this->CGF.EmitLValue(L.IE).getPointer(); + llvm::Value *Ptr = this->CGF.EmitLoadOfScalar( + this->CGF.EmitLValue(L.IE), L.IE->getExprLoc()); + CurBasePointers.emplace_back(BasePtr, L.VD); + CurPointers.push_back(Ptr); + CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty)); + // Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder + // value MEMBER_OF=FFFF so that the entry is later updated with the + // correct value of MEMBER_OF. + CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM | + OMP_MAP_MEMBER_OF); + } + } + + // If there is an entry in PartialStruct it means we have a struct with + // individual members mapped. Emit an extra combined entry. + if (PartialStruct.Base.isValid()) + emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes, + PartialStruct); + + // We need to append the results of this capture to what we already have. + BasePointers.append(CurBasePointers.begin(), CurBasePointers.end()); + Pointers.append(CurPointers.begin(), CurPointers.end()); + Sizes.append(CurSizes.begin(), CurSizes.end()); + Types.append(CurTypes.begin(), CurTypes.end()); + } + } + + /// Emit capture info for lambdas for variables captured by reference. + void generateInfoForLambdaCaptures( + const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers, + MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes, + MapFlagsArrayTy &Types, + llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const { + const auto *RD = VD->getType() + .getCanonicalType() + .getNonReferenceType() + ->getAsCXXRecordDecl(); + if (!RD || !RD->isLambda()) + return; + Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD)); + LValue VDLVal = CGF.MakeAddrLValue( + VDAddr, VD->getType().getCanonicalType().getNonReferenceType()); + llvm::DenseMap<const VarDecl *, FieldDecl *> Captures; + FieldDecl *ThisCapture = nullptr; + RD->getCaptureFields(Captures, ThisCapture); + if (ThisCapture) { + LValue ThisLVal = + CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture); + LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture); + LambdaPointers.try_emplace(ThisLVal.getPointer(), VDLVal.getPointer()); + BasePointers.push_back(ThisLVal.getPointer()); + Pointers.push_back(ThisLValVal.getPointer()); + Sizes.push_back( + CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy), + CGF.Int64Ty, /*isSigned=*/true)); + Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | + OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT); + } + for (const LambdaCapture &LC : RD->captures()) { + if (!LC.capturesVariable()) + continue; + const VarDecl *VD = LC.getCapturedVar(); + if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType()) + continue; + auto It = Captures.find(VD); + assert(It != Captures.end() && "Found lambda capture without field."); + LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second); + if (LC.getCaptureKind() == LCK_ByRef) { + LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second); + LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer()); + BasePointers.push_back(VarLVal.getPointer()); + Pointers.push_back(VarLValVal.getPointer()); + Sizes.push_back(CGF.Builder.CreateIntCast( + CGF.getTypeSize( + VD->getType().getCanonicalType().getNonReferenceType()), + CGF.Int64Ty, /*isSigned=*/true)); + } else { + RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation()); + LambdaPointers.try_emplace(VarLVal.getPointer(), VDLVal.getPointer()); + BasePointers.push_back(VarLVal.getPointer()); + Pointers.push_back(VarRVal.getScalarVal()); + Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0)); + } + Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | + OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT); + } + } + + /// Set correct indices for lambdas captures. + void adjustMemberOfForLambdaCaptures( + const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers, + MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers, + MapFlagsArrayTy &Types) const { + for (unsigned I = 0, E = Types.size(); I < E; ++I) { + // Set correct member_of idx for all implicit lambda captures. + if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL | + OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT)) + continue; + llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]); + assert(BasePtr && "Unable to find base lambda address."); + int TgtIdx = -1; + for (unsigned J = I; J > 0; --J) { + unsigned Idx = J - 1; + if (Pointers[Idx] != BasePtr) + continue; + TgtIdx = Idx; + break; + } + assert(TgtIdx != -1 && "Unable to find parent lambda."); + // All other current entries will be MEMBER_OF the combined entry + // (except for PTR_AND_OBJ entries which do not have a placeholder value + // 0xFFFF in the MEMBER_OF field). + OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx); + setCorrectMemberOfFlag(Types[I], MemberOfFlag); + } + } + + /// Generate the base pointers, section pointers, sizes and map types + /// associated to a given capture. + void generateInfoForCapture(const CapturedStmt::Capture *Cap, + llvm::Value *Arg, + MapBaseValuesArrayTy &BasePointers, + MapValuesArrayTy &Pointers, + MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types, + StructRangeInfoTy &PartialStruct) const { + assert(!Cap->capturesVariableArrayType() && + "Not expecting to generate map info for a variable array type!"); + + // We need to know when we generating information for the first component + const ValueDecl *VD = Cap->capturesThis() + ? nullptr + : Cap->getCapturedVar()->getCanonicalDecl(); + + // If this declaration appears in a is_device_ptr clause we just have to + // pass the pointer by value. If it is a reference to a declaration, we just + // pass its value. + if (DevPointersMap.count(VD)) { + BasePointers.emplace_back(Arg, VD); + Pointers.push_back(Arg); + Sizes.push_back( + CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy), + CGF.Int64Ty, /*isSigned=*/true)); + Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM); + return; + } + + using MapData = + std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef, + OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>; + SmallVector<MapData, 4> DeclComponentLists; + // FIXME: MSVC 2013 seems to require this-> to find member CurDir. + for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) { + for (const auto &L : C->decl_component_lists(VD)) { + assert(L.first == VD && + "We got information for the wrong declaration??"); + assert(!L.second.empty() && + "Not expecting declaration with no component lists."); + DeclComponentLists.emplace_back(L.second, C->getMapType(), + C->getMapTypeModifiers(), + C->isImplicit()); + } + } + + // Find overlapping elements (including the offset from the base element). + llvm::SmallDenseMap< + const MapData *, + llvm::SmallVector< + OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>, + 4> + OverlappedData; + size_t Count = 0; + for (const MapData &L : DeclComponentLists) { + OMPClauseMappableExprCommon::MappableExprComponentListRef Components; + OpenMPMapClauseKind MapType; + ArrayRef<OpenMPMapModifierKind> MapModifiers; + bool IsImplicit; + std::tie(Components, MapType, MapModifiers, IsImplicit) = L; + ++Count; + for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) { + OMPClauseMappableExprCommon::MappableExprComponentListRef Components1; + std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1; + auto CI = Components.rbegin(); + auto CE = Components.rend(); + auto SI = Components1.rbegin(); + auto SE = Components1.rend(); + for (; CI != CE && SI != SE; ++CI, ++SI) { + if (CI->getAssociatedExpression()->getStmtClass() != + SI->getAssociatedExpression()->getStmtClass()) + break; + // Are we dealing with different variables/fields? + if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration()) + break; + } + // Found overlapping if, at least for one component, reached the head of + // the components list. + if (CI == CE || SI == SE) { + assert((CI != CE || SI != SE) && + "Unexpected full match of the mapping components."); + const MapData &BaseData = CI == CE ? L : L1; + OMPClauseMappableExprCommon::MappableExprComponentListRef SubData = + SI == SE ? Components : Components1; + auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData); + OverlappedElements.getSecond().push_back(SubData); + } + } + } + // Sort the overlapped elements for each item. + llvm::SmallVector<const FieldDecl *, 4> Layout; + if (!OverlappedData.empty()) { + if (const auto *CRD = + VD->getType().getCanonicalType()->getAsCXXRecordDecl()) + getPlainLayout(CRD, Layout, /*AsBase=*/false); + else { + const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl(); + Layout.append(RD->field_begin(), RD->field_end()); + } + } + for (auto &Pair : OverlappedData) { + llvm::sort( + Pair.getSecond(), + [&Layout]( + OMPClauseMappableExprCommon::MappableExprComponentListRef First, + OMPClauseMappableExprCommon::MappableExprComponentListRef + Second) { + auto CI = First.rbegin(); + auto CE = First.rend(); + auto SI = Second.rbegin(); + auto SE = Second.rend(); + for (; CI != CE && SI != SE; ++CI, ++SI) { + if (CI->getAssociatedExpression()->getStmtClass() != + SI->getAssociatedExpression()->getStmtClass()) + break; + // Are we dealing with different variables/fields? + if (CI->getAssociatedDeclaration() != + SI->getAssociatedDeclaration()) + break; + } + + // Lists contain the same elements. + if (CI == CE && SI == SE) + return false; + + // List with less elements is less than list with more elements. + if (CI == CE || SI == SE) + return CI == CE; + + const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration()); + const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration()); + if (FD1->getParent() == FD2->getParent()) + return FD1->getFieldIndex() < FD2->getFieldIndex(); + const auto It = + llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) { + return FD == FD1 || FD == FD2; + }); + return *It == FD1; + }); + } + + // Associated with a capture, because the mapping flags depend on it. + // Go through all of the elements with the overlapped elements. + for (const auto &Pair : OverlappedData) { + const MapData &L = *Pair.getFirst(); + OMPClauseMappableExprCommon::MappableExprComponentListRef Components; + OpenMPMapClauseKind MapType; + ArrayRef<OpenMPMapModifierKind> MapModifiers; + bool IsImplicit; + std::tie(Components, MapType, MapModifiers, IsImplicit) = L; + ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef> + OverlappedComponents = Pair.getSecond(); + bool IsFirstComponentList = true; + generateInfoForComponentList(MapType, MapModifiers, Components, + BasePointers, Pointers, Sizes, Types, + PartialStruct, IsFirstComponentList, + IsImplicit, OverlappedComponents); + } + // Go through other elements without overlapped elements. + bool IsFirstComponentList = OverlappedData.empty(); + for (const MapData &L : DeclComponentLists) { + OMPClauseMappableExprCommon::MappableExprComponentListRef Components; + OpenMPMapClauseKind MapType; + ArrayRef<OpenMPMapModifierKind> MapModifiers; + bool IsImplicit; + std::tie(Components, MapType, MapModifiers, IsImplicit) = L; + auto It = OverlappedData.find(&L); + if (It == OverlappedData.end()) + generateInfoForComponentList(MapType, MapModifiers, Components, + BasePointers, Pointers, Sizes, Types, + PartialStruct, IsFirstComponentList, + IsImplicit); + IsFirstComponentList = false; + } + } + + /// Generate the base pointers, section pointers, sizes and map types + /// associated with the declare target link variables. + void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers, + MapValuesArrayTy &Pointers, + MapValuesArrayTy &Sizes, + MapFlagsArrayTy &Types) const { + // Map other list items in the map clause which are not captured variables + // but "declare target link" global variables. + for (const auto *C : this->CurDir.getClausesOfKind<OMPMapClause>()) { + for (const auto &L : C->component_lists()) { + if (!L.first) + continue; + const auto *VD = dyn_cast<VarDecl>(L.first); + if (!VD) + continue; + llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = + OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); + if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() || + !Res || *Res != OMPDeclareTargetDeclAttr::MT_Link) + continue; + StructRangeInfoTy PartialStruct; + generateInfoForComponentList( + C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers, + Pointers, Sizes, Types, PartialStruct, + /*IsFirstComponentList=*/true, C->isImplicit()); + assert(!PartialStruct.Base.isValid() && + "No partial structs for declare target link expected."); + } + } + } + + /// Generate the default map information for a given capture \a CI, + /// record field declaration \a RI and captured value \a CV. + void generateDefaultMapInfo(const CapturedStmt::Capture &CI, + const FieldDecl &RI, llvm::Value *CV, + MapBaseValuesArrayTy &CurBasePointers, + MapValuesArrayTy &CurPointers, + MapValuesArrayTy &CurSizes, + MapFlagsArrayTy &CurMapTypes) const { + bool IsImplicit = true; + // Do the default mapping. + if (CI.capturesThis()) { + CurBasePointers.push_back(CV); + CurPointers.push_back(CV); + const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr()); + CurSizes.push_back( + CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()), + CGF.Int64Ty, /*isSigned=*/true)); + // Default map type. + CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM); + } else if (CI.capturesVariableByCopy()) { + CurBasePointers.push_back(CV); + CurPointers.push_back(CV); + if (!RI.getType()->isAnyPointerType()) { + // We have to signal to the runtime captures passed by value that are + // not pointers. + CurMapTypes.push_back(OMP_MAP_LITERAL); + CurSizes.push_back(CGF.Builder.CreateIntCast( + CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true)); + } else { + // Pointers are implicitly mapped with a zero size and no flags + // (other than first map that is added for all implicit maps). + CurMapTypes.push_back(OMP_MAP_NONE); + CurSizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty)); + } + const VarDecl *VD = CI.getCapturedVar(); + auto I = FirstPrivateDecls.find(VD); + if (I != FirstPrivateDecls.end()) + IsImplicit = I->getSecond(); + } else { + assert(CI.capturesVariable() && "Expected captured reference."); + const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr()); + QualType ElementType = PtrTy->getPointeeType(); + CurSizes.push_back(CGF.Builder.CreateIntCast( + CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true)); + // The default map type for a scalar/complex type is 'to' because by + // default the value doesn't have to be retrieved. For an aggregate + // type, the default is 'tofrom'. + CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI)); + const VarDecl *VD = CI.getCapturedVar(); + auto I = FirstPrivateDecls.find(VD); + if (I != FirstPrivateDecls.end() && + VD->getType().isConstant(CGF.getContext())) { + llvm::Constant *Addr = + CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD); + // Copy the value of the original variable to the new global copy. + CGF.Builder.CreateMemCpy( + CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(), + Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)), + CurSizes.back(), /*IsVolatile=*/false); + // Use new global variable as the base pointers. + CurBasePointers.push_back(Addr); + CurPointers.push_back(Addr); + } else { + CurBasePointers.push_back(CV); + if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) { + Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue( + CV, ElementType, CGF.getContext().getDeclAlign(VD), + AlignmentSource::Decl)); + CurPointers.push_back(PtrAddr.getPointer()); + } else { + CurPointers.push_back(CV); + } + } + if (I != FirstPrivateDecls.end()) + IsImplicit = I->getSecond(); + } + // Every default map produces a single argument which is a target parameter. + CurMapTypes.back() |= OMP_MAP_TARGET_PARAM; + + // Add flag stating this is an implicit map. + if (IsImplicit) + CurMapTypes.back() |= OMP_MAP_IMPLICIT; + } +}; +} // anonymous namespace + +/// Emit the arrays used to pass the captures and map information to the +/// offloading runtime library. If there is no map or capture information, +/// return nullptr by reference. +static void +emitOffloadingArrays(CodeGenFunction &CGF, + MappableExprsHandler::MapBaseValuesArrayTy &BasePointers, + MappableExprsHandler::MapValuesArrayTy &Pointers, + MappableExprsHandler::MapValuesArrayTy &Sizes, + MappableExprsHandler::MapFlagsArrayTy &MapTypes, + CGOpenMPRuntime::TargetDataInfo &Info) { + CodeGenModule &CGM = CGF.CGM; + ASTContext &Ctx = CGF.getContext(); + + // Reset the array information. + Info.clearArrayInfo(); + Info.NumberOfPtrs = BasePointers.size(); + + if (Info.NumberOfPtrs) { + // Detect if we have any capture size requiring runtime evaluation of the + // size so that a constant array could be eventually used. + bool hasRuntimeEvaluationCaptureSize = false; + for (llvm::Value *S : Sizes) + if (!isa<llvm::Constant>(S)) { + hasRuntimeEvaluationCaptureSize = true; + break; + } + + llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true); + QualType PointerArrayType = + Ctx.getConstantArrayType(Ctx.VoidPtrTy, PointerNumAP, ArrayType::Normal, + /*IndexTypeQuals=*/0); + + Info.BasePointersArray = + CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer(); + Info.PointersArray = + CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer(); + + // If we don't have any VLA types or other types that require runtime + // evaluation, we can use a constant array for the map sizes, otherwise we + // need to fill up the arrays as we do for the pointers. + QualType Int64Ty = + Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); + if (hasRuntimeEvaluationCaptureSize) { + QualType SizeArrayType = + Ctx.getConstantArrayType(Int64Ty, PointerNumAP, ArrayType::Normal, + /*IndexTypeQuals=*/0); + Info.SizesArray = + CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer(); + } else { + // We expect all the sizes to be constant, so we collect them to create + // a constant array. + SmallVector<llvm::Constant *, 16> ConstSizes; + for (llvm::Value *S : Sizes) + ConstSizes.push_back(cast<llvm::Constant>(S)); + + auto *SizesArrayInit = llvm::ConstantArray::get( + llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes); + std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"}); + auto *SizesArrayGbl = new llvm::GlobalVariable( + CGM.getModule(), SizesArrayInit->getType(), + /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, + SizesArrayInit, Name); + SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + Info.SizesArray = SizesArrayGbl; + } + + // The map types are always constant so we don't need to generate code to + // fill arrays. Instead, we create an array constant. + SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0); + llvm::copy(MapTypes, Mapping.begin()); + llvm::Constant *MapTypesArrayInit = + llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping); + std::string MaptypesName = + CGM.getOpenMPRuntime().getName({"offload_maptypes"}); + auto *MapTypesArrayGbl = new llvm::GlobalVariable( + CGM.getModule(), MapTypesArrayInit->getType(), + /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, + MapTypesArrayInit, MaptypesName); + MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + Info.MapTypesArray = MapTypesArrayGbl; + + for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) { + llvm::Value *BPVal = *BasePointers[I]; + llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), + Info.BasePointersArray, 0, I); + BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0)); + Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); + CGF.Builder.CreateStore(BPVal, BPAddr); + + if (Info.requiresDevicePointerInfo()) + if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl()) + Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr); + + llvm::Value *PVal = Pointers[I]; + llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), + Info.PointersArray, 0, I); + P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + P, PVal->getType()->getPointerTo(/*AddrSpace=*/0)); + Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy)); + CGF.Builder.CreateStore(PVal, PAddr); + + if (hasRuntimeEvaluationCaptureSize) { + llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), + Info.SizesArray, + /*Idx0=*/0, + /*Idx1=*/I); + Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty)); + CGF.Builder.CreateStore( + CGF.Builder.CreateIntCast(Sizes[I], CGM.Int64Ty, /*isSigned=*/true), + SAddr); + } + } + } +} +/// Emit the arguments to be passed to the runtime library based on the +/// arrays of pointers, sizes and map types. +static void emitOffloadingArraysArgument( + CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg, + llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg, + llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) { + CodeGenModule &CGM = CGF.CGM; + if (Info.NumberOfPtrs) { + BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), + Info.BasePointersArray, + /*Idx0=*/0, /*Idx1=*/0); + PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs), + Info.PointersArray, + /*Idx0=*/0, + /*Idx1=*/0); + SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray, + /*Idx0=*/0, /*Idx1=*/0); + MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32( + llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), + Info.MapTypesArray, + /*Idx0=*/0, + /*Idx1=*/0); + } else { + BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); + PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy); + SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo()); + MapTypesArrayArg = + llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo()); + } +} + +/// Check for inner distribute directive. +static const OMPExecutableDirective * +getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) { + const auto *CS = D.getInnermostCapturedStmt(); + const auto *Body = + CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true); + const Stmt *ChildStmt = + CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body); + + if (const auto *NestedDir = + dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { + OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind(); + switch (D.getDirectiveKind()) { + case OMPD_target: + if (isOpenMPDistributeDirective(DKind)) + return NestedDir; + if (DKind == OMPD_teams) { + Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers( + /*IgnoreCaptured=*/true); + if (!Body) + return nullptr; + ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body); + if (const auto *NND = + dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) { + DKind = NND->getDirectiveKind(); + if (isOpenMPDistributeDirective(DKind)) + return NND; + } + } + return nullptr; + case OMPD_target_teams: + if (isOpenMPDistributeDirective(DKind)) + return NestedDir; + return nullptr; + case OMPD_target_parallel: + case OMPD_target_simd: + case OMPD_target_parallel_for: + case OMPD_target_parallel_for_simd: + return nullptr; + case OMPD_target_teams_distribute: + case OMPD_target_teams_distribute_simd: + case OMPD_target_teams_distribute_parallel_for: + case OMPD_target_teams_distribute_parallel_for_simd: + case OMPD_parallel: + case OMPD_for: + case OMPD_parallel_for: + case OMPD_parallel_sections: + case OMPD_for_simd: + case OMPD_parallel_for_simd: + case OMPD_cancel: + case OMPD_cancellation_point: + case OMPD_ordered: + case OMPD_threadprivate: + case OMPD_allocate: + case OMPD_task: + case OMPD_simd: + case OMPD_sections: + case OMPD_section: + case OMPD_single: + case OMPD_master: + case OMPD_critical: + case OMPD_taskyield: + case OMPD_barrier: + case OMPD_taskwait: + case OMPD_taskgroup: + case OMPD_atomic: + case OMPD_flush: + case OMPD_teams: + case OMPD_target_data: + case OMPD_target_exit_data: + case OMPD_target_enter_data: + case OMPD_distribute: + case OMPD_distribute_simd: + case OMPD_distribute_parallel_for: + case OMPD_distribute_parallel_for_simd: + case OMPD_teams_distribute: + case OMPD_teams_distribute_simd: + case OMPD_teams_distribute_parallel_for: + case OMPD_teams_distribute_parallel_for_simd: + case OMPD_target_update: + case OMPD_declare_simd: + case OMPD_declare_target: + case OMPD_end_declare_target: + case OMPD_declare_reduction: + case OMPD_declare_mapper: + case OMPD_taskloop: + case OMPD_taskloop_simd: + case OMPD_requires: + case OMPD_unknown: + llvm_unreachable("Unexpected directive."); + } + } + + return nullptr; +} + +void CGOpenMPRuntime::emitTargetNumIterationsCall( + CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *Device, + const llvm::function_ref<llvm::Value *( + CodeGenFunction &CGF, const OMPLoopDirective &D)> &SizeEmitter) { + OpenMPDirectiveKind Kind = D.getDirectiveKind(); + const OMPExecutableDirective *TD = &D; + // Get nested teams distribute kind directive, if any. + if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind)) + TD = getNestedDistributeDirective(CGM.getContext(), D); + if (!TD) + return; + const auto *LD = cast<OMPLoopDirective>(TD); + auto &&CodeGen = [LD, &Device, &SizeEmitter, this](CodeGenFunction &CGF, + PrePostActionTy &) { + llvm::Value *NumIterations = SizeEmitter(CGF, *LD); + + // Emit device ID if any. + llvm::Value *DeviceID; + if (Device) + DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), + CGF.Int64Ty, /*isSigned=*/true); + else + DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); + + llvm::Value *Args[] = {DeviceID, NumIterations}; + CGF.EmitRuntimeCall( + createRuntimeFunction(OMPRTL__kmpc_push_target_tripcount), Args); + }; + emitInlinedDirective(CGF, OMPD_unknown, CodeGen); +} + +void CGOpenMPRuntime::emitTargetCall(CodeGenFunction &CGF, + const OMPExecutableDirective &D, + llvm::Function *OutlinedFn, + llvm::Value *OutlinedFnID, + const Expr *IfCond, const Expr *Device) { + if (!CGF.HaveInsertPoint()) + return; + + assert(OutlinedFn && "Invalid outlined function!"); + + const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>(); + llvm::SmallVector<llvm::Value *, 16> CapturedVars; + const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target); + auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF, + PrePostActionTy &) { + CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); + }; + emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen); + + CodeGenFunction::OMPTargetDataInfo InputInfo; + llvm::Value *MapTypesArray = nullptr; + // Fill up the pointer arrays and transfer execution to the device. + auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo, + &MapTypesArray, &CS, RequiresOuterTask, + &CapturedVars](CodeGenFunction &CGF, PrePostActionTy &) { + // On top of the arrays that were filled up, the target offloading call + // takes as arguments the device id as well as the host pointer. The host + // pointer is used by the runtime library to identify the current target + // region, so it only has to be unique and not necessarily point to + // anything. It could be the pointer to the outlined function that + // implements the target region, but we aren't using that so that the + // compiler doesn't need to keep that, and could therefore inline the host + // function if proven worthwhile during optimization. + + // From this point on, we need to have an ID of the target region defined. + assert(OutlinedFnID && "Invalid outlined function ID!"); + + // Emit device ID if any. + llvm::Value *DeviceID; + if (Device) { + DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), + CGF.Int64Ty, /*isSigned=*/true); + } else { + DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); + } + + // Emit the number of elements in the offloading arrays. + llvm::Value *PointerNum = + CGF.Builder.getInt32(InputInfo.NumberOfTargetItems); + + // Return value of the runtime offloading call. + llvm::Value *Return; + + llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D); + llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D); + + bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>(); + // The target region is an outlined function launched by the runtime + // via calls __tgt_target() or __tgt_target_teams(). + // + // __tgt_target() launches a target region with one team and one thread, + // executing a serial region. This master thread may in turn launch + // more threads within its team upon encountering a parallel region, + // however, no additional teams can be launched on the device. + // + // __tgt_target_teams() launches a target region with one or more teams, + // each with one or more threads. This call is required for target + // constructs such as: + // 'target teams' + // 'target' / 'teams' + // 'target teams distribute parallel for' + // 'target parallel' + // and so on. + // + // Note that on the host and CPU targets, the runtime implementation of + // these calls simply call the outlined function without forking threads. + // The outlined functions themselves have runtime calls to + // __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by + // the compiler in emitTeamsCall() and emitParallelCall(). + // + // In contrast, on the NVPTX target, the implementation of + // __tgt_target_teams() launches a GPU kernel with the requested number + // of teams and threads so no additional calls to the runtime are required. + if (NumTeams) { + // If we have NumTeams defined this means that we have an enclosed teams + // region. Therefore we also expect to have NumThreads defined. These two + // values should be defined in the presence of a teams directive, + // regardless of having any clauses associated. If the user is using teams + // but no clauses, these two values will be the default that should be + // passed to the runtime library - a 32-bit integer with the value zero. + assert(NumThreads && "Thread limit expression should be available along " + "with number of teams."); + llvm::Value *OffloadingArgs[] = {DeviceID, + OutlinedFnID, + PointerNum, + InputInfo.BasePointersArray.getPointer(), + InputInfo.PointersArray.getPointer(), + InputInfo.SizesArray.getPointer(), + MapTypesArray, + NumTeams, + NumThreads}; + Return = CGF.EmitRuntimeCall( + createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_teams_nowait + : OMPRTL__tgt_target_teams), + OffloadingArgs); + } else { + llvm::Value *OffloadingArgs[] = {DeviceID, + OutlinedFnID, + PointerNum, + InputInfo.BasePointersArray.getPointer(), + InputInfo.PointersArray.getPointer(), + InputInfo.SizesArray.getPointer(), + MapTypesArray}; + Return = CGF.EmitRuntimeCall( + createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_nowait + : OMPRTL__tgt_target), + OffloadingArgs); + } + + // Check the error code and execute the host version if required. + llvm::BasicBlock *OffloadFailedBlock = + CGF.createBasicBlock("omp_offload.failed"); + llvm::BasicBlock *OffloadContBlock = + CGF.createBasicBlock("omp_offload.cont"); + llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return); + CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock); + + CGF.EmitBlock(OffloadFailedBlock); + if (RequiresOuterTask) { + CapturedVars.clear(); + CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); + } + emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars); + CGF.EmitBranch(OffloadContBlock); + + CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true); + }; + + // Notify that the host version must be executed. + auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars, + RequiresOuterTask](CodeGenFunction &CGF, + PrePostActionTy &) { + if (RequiresOuterTask) { + CapturedVars.clear(); + CGF.GenerateOpenMPCapturedVars(CS, CapturedVars); + } + emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars); + }; + + auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray, + &CapturedVars, RequiresOuterTask, + &CS](CodeGenFunction &CGF, PrePostActionTy &) { + // Fill up the arrays with all the captured variables. + MappableExprsHandler::MapBaseValuesArrayTy BasePointers; + MappableExprsHandler::MapValuesArrayTy Pointers; + MappableExprsHandler::MapValuesArrayTy Sizes; + MappableExprsHandler::MapFlagsArrayTy MapTypes; + + // Get mappable expression information. + MappableExprsHandler MEHandler(D, CGF); + llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers; + + auto RI = CS.getCapturedRecordDecl()->field_begin(); + auto CV = CapturedVars.begin(); + for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(), + CE = CS.capture_end(); + CI != CE; ++CI, ++RI, ++CV) { + MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers; + MappableExprsHandler::MapValuesArrayTy CurPointers; + MappableExprsHandler::MapValuesArrayTy CurSizes; + MappableExprsHandler::MapFlagsArrayTy CurMapTypes; + MappableExprsHandler::StructRangeInfoTy PartialStruct; + + // VLA sizes are passed to the outlined region by copy and do not have map + // information associated. + if (CI->capturesVariableArrayType()) { + CurBasePointers.push_back(*CV); + CurPointers.push_back(*CV); + CurSizes.push_back(CGF.Builder.CreateIntCast( + CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true)); + // Copy to the device as an argument. No need to retrieve it. + CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL | + MappableExprsHandler::OMP_MAP_TARGET_PARAM | + MappableExprsHandler::OMP_MAP_IMPLICIT); + } else { + // If we have any information in the map clause, we use it, otherwise we + // just do a default mapping. + MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers, + CurSizes, CurMapTypes, PartialStruct); + if (CurBasePointers.empty()) + MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers, + CurPointers, CurSizes, CurMapTypes); + // Generate correct mapping for variables captured by reference in + // lambdas. + if (CI->capturesVariable()) + MEHandler.generateInfoForLambdaCaptures( + CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes, + CurMapTypes, LambdaPointers); + } + // We expect to have at least an element of information for this capture. + assert(!CurBasePointers.empty() && + "Non-existing map pointer for capture!"); + assert(CurBasePointers.size() == CurPointers.size() && + CurBasePointers.size() == CurSizes.size() && + CurBasePointers.size() == CurMapTypes.size() && + "Inconsistent map information sizes!"); + + // If there is an entry in PartialStruct it means we have a struct with + // individual members mapped. Emit an extra combined entry. + if (PartialStruct.Base.isValid()) + MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes, + CurMapTypes, PartialStruct); + + // We need to append the results of this capture to what we already have. + BasePointers.append(CurBasePointers.begin(), CurBasePointers.end()); + Pointers.append(CurPointers.begin(), CurPointers.end()); + Sizes.append(CurSizes.begin(), CurSizes.end()); + MapTypes.append(CurMapTypes.begin(), CurMapTypes.end()); + } + // Adjust MEMBER_OF flags for the lambdas captures. + MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers, + Pointers, MapTypes); + // Map other list items in the map clause which are not captured variables + // but "declare target link" global variables. + MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes, + MapTypes); + + TargetDataInfo Info; + // Fill up the arrays and create the arguments. + emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); + emitOffloadingArraysArgument(CGF, Info.BasePointersArray, + Info.PointersArray, Info.SizesArray, + Info.MapTypesArray, Info); + InputInfo.NumberOfTargetItems = Info.NumberOfPtrs; + InputInfo.BasePointersArray = + Address(Info.BasePointersArray, CGM.getPointerAlign()); + InputInfo.PointersArray = + Address(Info.PointersArray, CGM.getPointerAlign()); + InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign()); + MapTypesArray = Info.MapTypesArray; + if (RequiresOuterTask) + CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo); + else + emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen); + }; + + auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask]( + CodeGenFunction &CGF, PrePostActionTy &) { + if (RequiresOuterTask) { + CodeGenFunction::OMPTargetDataInfo InputInfo; + CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo); + } else { + emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen); + } + }; + + // If we have a target function ID it means that we need to support + // offloading, otherwise, just execute on the host. We need to execute on host + // regardless of the conditional in the if clause if, e.g., the user do not + // specify target triples. + if (OutlinedFnID) { + if (IfCond) { + emitOMPIfClause(CGF, IfCond, TargetThenGen, TargetElseGen); + } else { + RegionCodeGenTy ThenRCG(TargetThenGen); + ThenRCG(CGF); + } + } else { + RegionCodeGenTy ElseRCG(TargetElseGen); + ElseRCG(CGF); + } +} + +void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S, + StringRef ParentName) { + if (!S) + return; + + // Codegen OMP target directives that offload compute to the device. + bool RequiresDeviceCodegen = + isa<OMPExecutableDirective>(S) && + isOpenMPTargetExecutionDirective( + cast<OMPExecutableDirective>(S)->getDirectiveKind()); + + if (RequiresDeviceCodegen) { + const auto &E = *cast<OMPExecutableDirective>(S); + unsigned DeviceID; + unsigned FileID; + unsigned Line; + getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID, + FileID, Line); + + // Is this a target region that should not be emitted as an entry point? If + // so just signal we are done with this target region. + if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID, + ParentName, Line)) + return; + + switch (E.getDirectiveKind()) { + case OMPD_target: + CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName, + cast<OMPTargetDirective>(E)); + break; + case OMPD_target_parallel: + CodeGenFunction::EmitOMPTargetParallelDeviceFunction( + CGM, ParentName, cast<OMPTargetParallelDirective>(E)); + break; + case OMPD_target_teams: + CodeGenFunction::EmitOMPTargetTeamsDeviceFunction( + CGM, ParentName, cast<OMPTargetTeamsDirective>(E)); + break; + case OMPD_target_teams_distribute: + CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction( + CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E)); + break; + case OMPD_target_teams_distribute_simd: + CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction( + CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E)); + break; + case OMPD_target_parallel_for: + CodeGenFunction::EmitOMPTargetParallelForDeviceFunction( + CGM, ParentName, cast<OMPTargetParallelForDirective>(E)); + break; + case OMPD_target_parallel_for_simd: + CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction( + CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E)); + break; + case OMPD_target_simd: + CodeGenFunction::EmitOMPTargetSimdDeviceFunction( + CGM, ParentName, cast<OMPTargetSimdDirective>(E)); + break; + case OMPD_target_teams_distribute_parallel_for: + CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction( + CGM, ParentName, + cast<OMPTargetTeamsDistributeParallelForDirective>(E)); + break; + case OMPD_target_teams_distribute_parallel_for_simd: + CodeGenFunction:: + EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction( + CGM, ParentName, + cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E)); + break; + case OMPD_parallel: + case OMPD_for: + case OMPD_parallel_for: + case OMPD_parallel_sections: + case OMPD_for_simd: + case OMPD_parallel_for_simd: + case OMPD_cancel: + case OMPD_cancellation_point: + case OMPD_ordered: + case OMPD_threadprivate: + case OMPD_allocate: + case OMPD_task: + case OMPD_simd: + case OMPD_sections: + case OMPD_section: + case OMPD_single: + case OMPD_master: + case OMPD_critical: + case OMPD_taskyield: + case OMPD_barrier: + case OMPD_taskwait: + case OMPD_taskgroup: + case OMPD_atomic: + case OMPD_flush: + case OMPD_teams: + case OMPD_target_data: + case OMPD_target_exit_data: + case OMPD_target_enter_data: + case OMPD_distribute: + case OMPD_distribute_simd: + case OMPD_distribute_parallel_for: + case OMPD_distribute_parallel_for_simd: + case OMPD_teams_distribute: + case OMPD_teams_distribute_simd: + case OMPD_teams_distribute_parallel_for: + case OMPD_teams_distribute_parallel_for_simd: + case OMPD_target_update: + case OMPD_declare_simd: + case OMPD_declare_target: + case OMPD_end_declare_target: + case OMPD_declare_reduction: + case OMPD_declare_mapper: + case OMPD_taskloop: + case OMPD_taskloop_simd: + case OMPD_requires: + case OMPD_unknown: + llvm_unreachable("Unknown target directive for OpenMP device codegen."); + } + return; + } + + if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) { + if (!E->hasAssociatedStmt() || !E->getAssociatedStmt()) + return; + + scanForTargetRegionsFunctions( + E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName); + return; + } + + // If this is a lambda function, look into its body. + if (const auto *L = dyn_cast<LambdaExpr>(S)) + S = L->getBody(); + + // Keep looking for target regions recursively. + for (const Stmt *II : S->children()) + scanForTargetRegionsFunctions(II, ParentName); +} + +bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) { + // If emitting code for the host, we do not process FD here. Instead we do + // the normal code generation. + if (!CGM.getLangOpts().OpenMPIsDevice) + return false; + + const ValueDecl *VD = cast<ValueDecl>(GD.getDecl()); + StringRef Name = CGM.getMangledName(GD); + // Try to detect target regions in the function. + if (const auto *FD = dyn_cast<FunctionDecl>(VD)) + scanForTargetRegionsFunctions(FD->getBody(), Name); + + // Do not to emit function if it is not marked as declare target. + return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) && + AlreadyEmittedTargetFunctions.count(Name) == 0; +} + +bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) { + if (!CGM.getLangOpts().OpenMPIsDevice) + return false; + + // Check if there are Ctors/Dtors in this declaration and look for target + // regions in it. We use the complete variant to produce the kernel name + // mangling. + QualType RDTy = cast<VarDecl>(GD.getDecl())->getType(); + if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) { + for (const CXXConstructorDecl *Ctor : RD->ctors()) { + StringRef ParentName = + CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete)); + scanForTargetRegionsFunctions(Ctor->getBody(), ParentName); + } + if (const CXXDestructorDecl *Dtor = RD->getDestructor()) { + StringRef ParentName = + CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete)); + scanForTargetRegionsFunctions(Dtor->getBody(), ParentName); + } + } + + // Do not to emit variable if it is not marked as declare target. + llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = + OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration( + cast<VarDecl>(GD.getDecl())); + if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link || + (*Res == OMPDeclareTargetDeclAttr::MT_To && + HasRequiresUnifiedSharedMemory)) { + DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl())); + return true; + } + return false; +} + +llvm::Constant * +CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF, + const VarDecl *VD) { + assert(VD->getType().isConstant(CGM.getContext()) && + "Expected constant variable."); + StringRef VarName; + llvm::Constant *Addr; + llvm::GlobalValue::LinkageTypes Linkage; + QualType Ty = VD->getType(); + SmallString<128> Buffer; + { + unsigned DeviceID; + unsigned FileID; + unsigned Line; + getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID, + FileID, Line); + llvm::raw_svector_ostream OS(Buffer); + OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID) + << llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line; + VarName = OS.str(); + } + Linkage = llvm::GlobalValue::InternalLinkage; + Addr = + getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName, + getDefaultFirstprivateAddressSpace()); + cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage); + CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty); + CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr)); + OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo( + VarName, Addr, VarSize, + OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage); + return Addr; +} + +void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD, + llvm::Constant *Addr) { + llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = + OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); + if (!Res) { + if (CGM.getLangOpts().OpenMPIsDevice) { + // Register non-target variables being emitted in device code (debug info + // may cause this). + StringRef VarName = CGM.getMangledName(VD); + EmittedNonTargetVariables.try_emplace(VarName, Addr); + } + return; + } + // Register declare target variables. + OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags; + StringRef VarName; + CharUnits VarSize; + llvm::GlobalValue::LinkageTypes Linkage; + + if (*Res == OMPDeclareTargetDeclAttr::MT_To && + !HasRequiresUnifiedSharedMemory) { + Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo; + VarName = CGM.getMangledName(VD); + if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) { + VarSize = CGM.getContext().getTypeSizeInChars(VD->getType()); + assert(!VarSize.isZero() && "Expected non-zero size of the variable"); + } else { + VarSize = CharUnits::Zero(); + } + Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false); + // Temp solution to prevent optimizations of the internal variables. + if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) { + std::string RefName = getName({VarName, "ref"}); + if (!CGM.GetGlobalValue(RefName)) { + llvm::Constant *AddrRef = + getOrCreateInternalVariable(Addr->getType(), RefName); + auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef); + GVAddrRef->setConstant(/*Val=*/true); + GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage); + GVAddrRef->setInitializer(Addr); + CGM.addCompilerUsedGlobal(GVAddrRef); + } + } + } else { + assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) || + (*Res == OMPDeclareTargetDeclAttr::MT_To && + HasRequiresUnifiedSharedMemory)) && + "Declare target attribute must link or to with unified memory."); + if (*Res == OMPDeclareTargetDeclAttr::MT_Link) + Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink; + else + Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo; + + if (CGM.getLangOpts().OpenMPIsDevice) { + VarName = Addr->getName(); + Addr = nullptr; + } else { + VarName = getAddrOfDeclareTargetVar(VD).getName(); + Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer()); + } + VarSize = CGM.getPointerSize(); + Linkage = llvm::GlobalValue::WeakAnyLinkage; + } + + OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo( + VarName, Addr, VarSize, Flags, Linkage); +} + +bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) { + if (isa<FunctionDecl>(GD.getDecl()) || + isa<OMPDeclareReductionDecl>(GD.getDecl())) + return emitTargetFunctions(GD); + + return emitTargetGlobalVariable(GD); +} + +void CGOpenMPRuntime::emitDeferredTargetDecls() const { + for (const VarDecl *VD : DeferredGlobalVariables) { + llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res = + OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD); + if (!Res) + continue; + if (*Res == OMPDeclareTargetDeclAttr::MT_To && + !HasRequiresUnifiedSharedMemory) { + CGM.EmitGlobal(VD); + } else { + assert((*Res == OMPDeclareTargetDeclAttr::MT_Link || + (*Res == OMPDeclareTargetDeclAttr::MT_To && + HasRequiresUnifiedSharedMemory)) && + "Expected link clause or to clause with unified memory."); + (void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD); + } + } +} + +void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas( + CodeGenFunction &CGF, const OMPExecutableDirective &D) const { + assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) && + " Expected target-based directive."); +} + +void CGOpenMPRuntime::checkArchForUnifiedAddressing( + const OMPRequiresDecl *D) { + for (const OMPClause *Clause : D->clauselists()) { + if (Clause->getClauseKind() == OMPC_unified_shared_memory) { + HasRequiresUnifiedSharedMemory = true; + break; + } + } +} + +bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD, + LangAS &AS) { + if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>()) + return false; + const auto *A = VD->getAttr<OMPAllocateDeclAttr>(); + switch(A->getAllocatorType()) { + case OMPAllocateDeclAttr::OMPDefaultMemAlloc: + // Not supported, fallback to the default mem space. + case OMPAllocateDeclAttr::OMPLargeCapMemAlloc: + case OMPAllocateDeclAttr::OMPCGroupMemAlloc: + case OMPAllocateDeclAttr::OMPHighBWMemAlloc: + case OMPAllocateDeclAttr::OMPLowLatMemAlloc: + case OMPAllocateDeclAttr::OMPThreadMemAlloc: + case OMPAllocateDeclAttr::OMPConstMemAlloc: + case OMPAllocateDeclAttr::OMPPTeamMemAlloc: + AS = LangAS::Default; + return true; + case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc: + llvm_unreachable("Expected predefined allocator for the variables with the " + "static storage."); + } + return false; +} + +bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const { + return HasRequiresUnifiedSharedMemory; +} + +CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII( + CodeGenModule &CGM) + : CGM(CGM) { + if (CGM.getLangOpts().OpenMPIsDevice) { + SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal; + CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false; + } +} + +CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() { + if (CGM.getLangOpts().OpenMPIsDevice) + CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal; +} + +bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) { + if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal) + return true; + + StringRef Name = CGM.getMangledName(GD); + const auto *D = cast<FunctionDecl>(GD.getDecl()); + // Do not to emit function if it is marked as declare target as it was already + // emitted. + if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) { + if (D->hasBody() && AlreadyEmittedTargetFunctions.count(Name) == 0) { + if (auto *F = dyn_cast_or_null<llvm::Function>(CGM.GetGlobalValue(Name))) + return !F->isDeclaration(); + return false; + } + return true; + } + + return !AlreadyEmittedTargetFunctions.insert(Name).second; +} + +llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() { + // If we don't have entries or if we are emitting code for the device, we + // don't need to do anything. + if (CGM.getLangOpts().OMPTargetTriples.empty() || + CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice || + (OffloadEntriesInfoManager.empty() && + !HasEmittedDeclareTargetRegion && + !HasEmittedTargetRegion)) + return nullptr; + + // Create and register the function that handles the requires directives. + ASTContext &C = CGM.getContext(); + + llvm::Function *RequiresRegFn; + { + CodeGenFunction CGF(CGM); + const auto &FI = CGM.getTypes().arrangeNullaryFunction(); + llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI); + std::string ReqName = getName({"omp_offloading", "requires_reg"}); + RequiresRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, ReqName, FI); + CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {}); + OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE; + // TODO: check for other requires clauses. + // The requires directive takes effect only when a target region is + // present in the compilation unit. Otherwise it is ignored and not + // passed to the runtime. This avoids the runtime from throwing an error + // for mismatching requires clauses across compilation units that don't + // contain at least 1 target region. + assert((HasEmittedTargetRegion || + HasEmittedDeclareTargetRegion || + !OffloadEntriesInfoManager.empty()) && + "Target or declare target region expected."); + if (HasRequiresUnifiedSharedMemory) + Flags = OMP_REQ_UNIFIED_SHARED_MEMORY; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_requires), + llvm::ConstantInt::get(CGM.Int64Ty, Flags)); + CGF.FinishFunction(); + } + return RequiresRegFn; +} + +llvm::Function *CGOpenMPRuntime::emitRegistrationFunction() { + // If we have offloading in the current module, we need to emit the entries + // now and register the offloading descriptor. + createOffloadEntriesAndInfoMetadata(); + + // Create and register the offloading binary descriptors. This is the main + // entity that captures all the information about offloading in the current + // compilation unit. + return createOffloadingBinaryDescriptorRegistration(); +} + +void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF, + const OMPExecutableDirective &D, + SourceLocation Loc, + llvm::Function *OutlinedFn, + ArrayRef<llvm::Value *> CapturedVars) { + if (!CGF.HaveInsertPoint()) + return; + + llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); + CodeGenFunction::RunCleanupsScope Scope(CGF); + + // Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn); + llvm::Value *Args[] = { + RTLoc, + CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars + CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())}; + llvm::SmallVector<llvm::Value *, 16> RealArgs; + RealArgs.append(std::begin(Args), std::end(Args)); + RealArgs.append(CapturedVars.begin(), CapturedVars.end()); + + llvm::FunctionCallee RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams); + CGF.EmitRuntimeCall(RTLFn, RealArgs); +} + +void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF, + const Expr *NumTeams, + const Expr *ThreadLimit, + SourceLocation Loc) { + if (!CGF.HaveInsertPoint()) + return; + + llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc); + + llvm::Value *NumTeamsVal = + NumTeams + ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams), + CGF.CGM.Int32Ty, /* isSigned = */ true) + : CGF.Builder.getInt32(0); + + llvm::Value *ThreadLimitVal = + ThreadLimit + ? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit), + CGF.CGM.Int32Ty, /* isSigned = */ true) + : CGF.Builder.getInt32(0); + + // Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit) + llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal, + ThreadLimitVal}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams), + PushNumTeamsArgs); +} + +void CGOpenMPRuntime::emitTargetDataCalls( + CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, + const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) { + if (!CGF.HaveInsertPoint()) + return; + + // Action used to replace the default codegen action and turn privatization + // off. + PrePostActionTy NoPrivAction; + + // Generate the code for the opening of the data environment. Capture all the + // arguments of the runtime call by reference because they are used in the + // closing of the region. + auto &&BeginThenGen = [this, &D, Device, &Info, + &CodeGen](CodeGenFunction &CGF, PrePostActionTy &) { + // Fill up the arrays with all the mapped variables. + MappableExprsHandler::MapBaseValuesArrayTy BasePointers; + MappableExprsHandler::MapValuesArrayTy Pointers; + MappableExprsHandler::MapValuesArrayTy Sizes; + MappableExprsHandler::MapFlagsArrayTy MapTypes; + + // Get map clause information. + MappableExprsHandler MCHandler(D, CGF); + MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes); + + // Fill up the arrays and create the arguments. + emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); + + llvm::Value *BasePointersArrayArg = nullptr; + llvm::Value *PointersArrayArg = nullptr; + llvm::Value *SizesArrayArg = nullptr; + llvm::Value *MapTypesArrayArg = nullptr; + emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, + SizesArrayArg, MapTypesArrayArg, Info); + + // Emit device ID if any. + llvm::Value *DeviceID = nullptr; + if (Device) { + DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), + CGF.Int64Ty, /*isSigned=*/true); + } else { + DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); + } + + // Emit the number of elements in the offloading arrays. + llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); + + llvm::Value *OffloadingArgs[] = { + DeviceID, PointerNum, BasePointersArrayArg, + PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_begin), + OffloadingArgs); + + // If device pointer privatization is required, emit the body of the region + // here. It will have to be duplicated: with and without privatization. + if (!Info.CaptureDeviceAddrMap.empty()) + CodeGen(CGF); + }; + + // Generate code for the closing of the data region. + auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF, + PrePostActionTy &) { + assert(Info.isValid() && "Invalid data environment closing arguments."); + + llvm::Value *BasePointersArrayArg = nullptr; + llvm::Value *PointersArrayArg = nullptr; + llvm::Value *SizesArrayArg = nullptr; + llvm::Value *MapTypesArrayArg = nullptr; + emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg, + SizesArrayArg, MapTypesArrayArg, Info); + + // Emit device ID if any. + llvm::Value *DeviceID = nullptr; + if (Device) { + DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), + CGF.Int64Ty, /*isSigned=*/true); + } else { + DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); + } + + // Emit the number of elements in the offloading arrays. + llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs); + + llvm::Value *OffloadingArgs[] = { + DeviceID, PointerNum, BasePointersArrayArg, + PointersArrayArg, SizesArrayArg, MapTypesArrayArg}; + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_end), + OffloadingArgs); + }; + + // If we need device pointer privatization, we need to emit the body of the + // region with no privatization in the 'else' branch of the conditional. + // Otherwise, we don't have to do anything. + auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF, + PrePostActionTy &) { + if (!Info.CaptureDeviceAddrMap.empty()) { + CodeGen.setAction(NoPrivAction); + CodeGen(CGF); + } + }; + + // We don't have to do anything to close the region if the if clause evaluates + // to false. + auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {}; + + if (IfCond) { + emitOMPIfClause(CGF, IfCond, BeginThenGen, BeginElseGen); + } else { + RegionCodeGenTy RCG(BeginThenGen); + RCG(CGF); + } + + // If we don't require privatization of device pointers, we emit the body in + // between the runtime calls. This avoids duplicating the body code. + if (Info.CaptureDeviceAddrMap.empty()) { + CodeGen.setAction(NoPrivAction); + CodeGen(CGF); + } + + if (IfCond) { + emitOMPIfClause(CGF, IfCond, EndThenGen, EndElseGen); + } else { + RegionCodeGenTy RCG(EndThenGen); + RCG(CGF); + } +} + +void CGOpenMPRuntime::emitTargetDataStandAloneCall( + CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, + const Expr *Device) { + if (!CGF.HaveInsertPoint()) + return; + + assert((isa<OMPTargetEnterDataDirective>(D) || + isa<OMPTargetExitDataDirective>(D) || + isa<OMPTargetUpdateDirective>(D)) && + "Expecting either target enter, exit data, or update directives."); + + CodeGenFunction::OMPTargetDataInfo InputInfo; + llvm::Value *MapTypesArray = nullptr; + // Generate the code for the opening of the data environment. + auto &&ThenGen = [this, &D, Device, &InputInfo, + &MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) { + // Emit device ID if any. + llvm::Value *DeviceID = nullptr; + if (Device) { + DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device), + CGF.Int64Ty, /*isSigned=*/true); + } else { + DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF); + } + + // Emit the number of elements in the offloading arrays. + llvm::Constant *PointerNum = + CGF.Builder.getInt32(InputInfo.NumberOfTargetItems); + + llvm::Value *OffloadingArgs[] = {DeviceID, + PointerNum, + InputInfo.BasePointersArray.getPointer(), + InputInfo.PointersArray.getPointer(), + InputInfo.SizesArray.getPointer(), + MapTypesArray}; + + // Select the right runtime function call for each expected standalone + // directive. + const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>(); + OpenMPRTLFunction RTLFn; + switch (D.getDirectiveKind()) { + case OMPD_target_enter_data: + RTLFn = HasNowait ? OMPRTL__tgt_target_data_begin_nowait + : OMPRTL__tgt_target_data_begin; + break; + case OMPD_target_exit_data: + RTLFn = HasNowait ? OMPRTL__tgt_target_data_end_nowait + : OMPRTL__tgt_target_data_end; + break; + case OMPD_target_update: + RTLFn = HasNowait ? OMPRTL__tgt_target_data_update_nowait + : OMPRTL__tgt_target_data_update; + break; + case OMPD_parallel: + case OMPD_for: + case OMPD_parallel_for: + case OMPD_parallel_sections: + case OMPD_for_simd: + case OMPD_parallel_for_simd: + case OMPD_cancel: + case OMPD_cancellation_point: + case OMPD_ordered: + case OMPD_threadprivate: + case OMPD_allocate: + case OMPD_task: + case OMPD_simd: + case OMPD_sections: + case OMPD_section: + case OMPD_single: + case OMPD_master: + case OMPD_critical: + case OMPD_taskyield: + case OMPD_barrier: + case OMPD_taskwait: + case OMPD_taskgroup: + case OMPD_atomic: + case OMPD_flush: + case OMPD_teams: + case OMPD_target_data: + case OMPD_distribute: + case OMPD_distribute_simd: + case OMPD_distribute_parallel_for: + case OMPD_distribute_parallel_for_simd: + case OMPD_teams_distribute: + case OMPD_teams_distribute_simd: + case OMPD_teams_distribute_parallel_for: + case OMPD_teams_distribute_parallel_for_simd: + case OMPD_declare_simd: + case OMPD_declare_target: + case OMPD_end_declare_target: + case OMPD_declare_reduction: + case OMPD_declare_mapper: + case OMPD_taskloop: + case OMPD_taskloop_simd: + case OMPD_target: + case OMPD_target_simd: + case OMPD_target_teams_distribute: + case OMPD_target_teams_distribute_simd: + case OMPD_target_teams_distribute_parallel_for: + case OMPD_target_teams_distribute_parallel_for_simd: + case OMPD_target_teams: + case OMPD_target_parallel: + case OMPD_target_parallel_for: + case OMPD_target_parallel_for_simd: + case OMPD_requires: + case OMPD_unknown: + llvm_unreachable("Unexpected standalone target data directive."); + break; + } + CGF.EmitRuntimeCall(createRuntimeFunction(RTLFn), OffloadingArgs); + }; + + auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray]( + CodeGenFunction &CGF, PrePostActionTy &) { + // Fill up the arrays with all the mapped variables. + MappableExprsHandler::MapBaseValuesArrayTy BasePointers; + MappableExprsHandler::MapValuesArrayTy Pointers; + MappableExprsHandler::MapValuesArrayTy Sizes; + MappableExprsHandler::MapFlagsArrayTy MapTypes; + + // Get map clause information. + MappableExprsHandler MEHandler(D, CGF); + MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes); + + TargetDataInfo Info; + // Fill up the arrays and create the arguments. + emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info); + emitOffloadingArraysArgument(CGF, Info.BasePointersArray, + Info.PointersArray, Info.SizesArray, + Info.MapTypesArray, Info); + InputInfo.NumberOfTargetItems = Info.NumberOfPtrs; + InputInfo.BasePointersArray = + Address(Info.BasePointersArray, CGM.getPointerAlign()); + InputInfo.PointersArray = + Address(Info.PointersArray, CGM.getPointerAlign()); + InputInfo.SizesArray = + Address(Info.SizesArray, CGM.getPointerAlign()); + MapTypesArray = Info.MapTypesArray; + if (D.hasClausesOfKind<OMPDependClause>()) + CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo); + else + emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen); + }; + + if (IfCond) { + emitOMPIfClause(CGF, IfCond, TargetThenGen, + [](CodeGenFunction &CGF, PrePostActionTy &) {}); + } else { + RegionCodeGenTy ThenRCG(TargetThenGen); + ThenRCG(CGF); + } +} + +namespace { + /// Kind of parameter in a function with 'declare simd' directive. + enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector }; + /// Attribute set of the parameter. + struct ParamAttrTy { + ParamKindTy Kind = Vector; + llvm::APSInt StrideOrArg; + llvm::APSInt Alignment; + }; +} // namespace + +static unsigned evaluateCDTSize(const FunctionDecl *FD, + ArrayRef<ParamAttrTy> ParamAttrs) { + // Every vector variant of a SIMD-enabled function has a vector length (VLEN). + // If OpenMP clause "simdlen" is used, the VLEN is the value of the argument + // of that clause. The VLEN value must be power of 2. + // In other case the notion of the function`s "characteristic data type" (CDT) + // is used to compute the vector length. + // CDT is defined in the following order: + // a) For non-void function, the CDT is the return type. + // b) If the function has any non-uniform, non-linear parameters, then the + // CDT is the type of the first such parameter. + // c) If the CDT determined by a) or b) above is struct, union, or class + // type which is pass-by-value (except for the type that maps to the + // built-in complex data type), the characteristic data type is int. + // d) If none of the above three cases is applicable, the CDT is int. + // The VLEN is then determined based on the CDT and the size of vector + // register of that ISA for which current vector version is generated. The + // VLEN is computed using the formula below: + // VLEN = sizeof(vector_register) / sizeof(CDT), + // where vector register size specified in section 3.2.1 Registers and the + // Stack Frame of original AMD64 ABI document. + QualType RetType = FD->getReturnType(); + if (RetType.isNull()) + return 0; + ASTContext &C = FD->getASTContext(); + QualType CDT; + if (!RetType.isNull() && !RetType->isVoidType()) { + CDT = RetType; + } else { + unsigned Offset = 0; + if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { + if (ParamAttrs[Offset].Kind == Vector) + CDT = C.getPointerType(C.getRecordType(MD->getParent())); + ++Offset; + } + if (CDT.isNull()) { + for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { + if (ParamAttrs[I + Offset].Kind == Vector) { + CDT = FD->getParamDecl(I)->getType(); + break; + } + } + } + } + if (CDT.isNull()) + CDT = C.IntTy; + CDT = CDT->getCanonicalTypeUnqualified(); + if (CDT->isRecordType() || CDT->isUnionType()) + CDT = C.IntTy; + return C.getTypeSize(CDT); +} + +static void +emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn, + const llvm::APSInt &VLENVal, + ArrayRef<ParamAttrTy> ParamAttrs, + OMPDeclareSimdDeclAttr::BranchStateTy State) { + struct ISADataTy { + char ISA; + unsigned VecRegSize; + }; + ISADataTy ISAData[] = { + { + 'b', 128 + }, // SSE + { + 'c', 256 + }, // AVX + { + 'd', 256 + }, // AVX2 + { + 'e', 512 + }, // AVX512 + }; + llvm::SmallVector<char, 2> Masked; + switch (State) { + case OMPDeclareSimdDeclAttr::BS_Undefined: + Masked.push_back('N'); + Masked.push_back('M'); + break; + case OMPDeclareSimdDeclAttr::BS_Notinbranch: + Masked.push_back('N'); + break; + case OMPDeclareSimdDeclAttr::BS_Inbranch: + Masked.push_back('M'); + break; + } + for (char Mask : Masked) { + for (const ISADataTy &Data : ISAData) { + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + Out << "_ZGV" << Data.ISA << Mask; + if (!VLENVal) { + unsigned NumElts = evaluateCDTSize(FD, ParamAttrs); + assert(NumElts && "Non-zero simdlen/cdtsize expected"); + Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts); + } else { + Out << VLENVal; + } + for (const ParamAttrTy &ParamAttr : ParamAttrs) { + switch (ParamAttr.Kind){ + case LinearWithVarStride: + Out << 's' << ParamAttr.StrideOrArg; + break; + case Linear: + Out << 'l'; + if (!!ParamAttr.StrideOrArg) + Out << ParamAttr.StrideOrArg; + break; + case Uniform: + Out << 'u'; + break; + case Vector: + Out << 'v'; + break; + } + if (!!ParamAttr.Alignment) + Out << 'a' << ParamAttr.Alignment; + } + Out << '_' << Fn->getName(); + Fn->addFnAttr(Out.str()); + } + } +} + +// This are the Functions that are needed to mangle the name of the +// vector functions generated by the compiler, according to the rules +// defined in the "Vector Function ABI specifications for AArch64", +// available at +// https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi. + +/// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI. +/// +/// TODO: Need to implement the behavior for reference marked with a +/// var or no linear modifiers (1.b in the section). For this, we +/// need to extend ParamKindTy to support the linear modifiers. +static bool getAArch64MTV(QualType QT, ParamKindTy Kind) { + QT = QT.getCanonicalType(); + + if (QT->isVoidType()) + return false; + + if (Kind == ParamKindTy::Uniform) + return false; + + if (Kind == ParamKindTy::Linear) + return false; + + // TODO: Handle linear references with modifiers + + if (Kind == ParamKindTy::LinearWithVarStride) + return false; + + return true; +} + +/// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI. +static bool getAArch64PBV(QualType QT, ASTContext &C) { + QT = QT.getCanonicalType(); + unsigned Size = C.getTypeSize(QT); + + // Only scalars and complex within 16 bytes wide set PVB to true. + if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128) + return false; + + if (QT->isFloatingType()) + return true; + + if (QT->isIntegerType()) + return true; + + if (QT->isPointerType()) + return true; + + // TODO: Add support for complex types (section 3.1.2, item 2). + + return false; +} + +/// Computes the lane size (LS) of a return type or of an input parameter, +/// as defined by `LS(P)` in 3.2.1 of the AAVFABI. +/// TODO: Add support for references, section 3.2.1, item 1. +static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) { + if (getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) { + QualType PTy = QT.getCanonicalType()->getPointeeType(); + if (getAArch64PBV(PTy, C)) + return C.getTypeSize(PTy); + } + if (getAArch64PBV(QT, C)) + return C.getTypeSize(QT); + + return C.getTypeSize(C.getUIntPtrType()); +} + +// Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the +// signature of the scalar function, as defined in 3.2.2 of the +// AAVFABI. +static std::tuple<unsigned, unsigned, bool> +getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) { + QualType RetType = FD->getReturnType().getCanonicalType(); + + ASTContext &C = FD->getASTContext(); + + bool OutputBecomesInput = false; + + llvm::SmallVector<unsigned, 8> Sizes; + if (!RetType->isVoidType()) { + Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C)); + if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {})) + OutputBecomesInput = true; + } + for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) { + QualType QT = FD->getParamDecl(I)->getType().getCanonicalType(); + Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C)); + } + + assert(!Sizes.empty() && "Unable to determine NDS and WDS."); + // The LS of a function parameter / return value can only be a power + // of 2, starting from 8 bits, up to 128. + assert(std::all_of(Sizes.begin(), Sizes.end(), + [](unsigned Size) { + return Size == 8 || Size == 16 || Size == 32 || + Size == 64 || Size == 128; + }) && + "Invalid size"); + + return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)), + *std::max_element(std::begin(Sizes), std::end(Sizes)), + OutputBecomesInput); +} + +/// Mangle the parameter part of the vector function name according to +/// their OpenMP classification. The mangling function is defined in +/// section 3.5 of the AAVFABI. +static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) { + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + for (const auto &ParamAttr : ParamAttrs) { + switch (ParamAttr.Kind) { + case LinearWithVarStride: + Out << "ls" << ParamAttr.StrideOrArg; + break; + case Linear: + Out << 'l'; + // Don't print the step value if it is not present or if it is + // equal to 1. + if (!!ParamAttr.StrideOrArg && ParamAttr.StrideOrArg != 1) + Out << ParamAttr.StrideOrArg; + break; + case Uniform: + Out << 'u'; + break; + case Vector: + Out << 'v'; + break; + } + + if (!!ParamAttr.Alignment) + Out << 'a' << ParamAttr.Alignment; + } + + return Out.str(); +} + +// Function used to add the attribute. The parameter `VLEN` is +// templated to allow the use of "x" when targeting scalable functions +// for SVE. +template <typename T> +static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix, + char ISA, StringRef ParSeq, + StringRef MangledName, bool OutputBecomesInput, + llvm::Function *Fn) { + SmallString<256> Buffer; + llvm::raw_svector_ostream Out(Buffer); + Out << Prefix << ISA << LMask << VLEN; + if (OutputBecomesInput) + Out << "v"; + Out << ParSeq << "_" << MangledName; + Fn->addFnAttr(Out.str()); +} + +// Helper function to generate the Advanced SIMD names depending on +// the value of the NDS when simdlen is not present. +static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask, + StringRef Prefix, char ISA, + StringRef ParSeq, StringRef MangledName, + bool OutputBecomesInput, + llvm::Function *Fn) { + switch (NDS) { + case 8: + addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + break; + case 16: + addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + break; + case 32: + addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + break; + case 64: + case 128: + addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + break; + default: + llvm_unreachable("Scalar type is too wide."); + } +} + +/// Emit vector function attributes for AArch64, as defined in the AAVFABI. +static void emitAArch64DeclareSimdFunction( + CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN, + ArrayRef<ParamAttrTy> ParamAttrs, + OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName, + char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) { + + // Get basic data for building the vector signature. + const auto Data = getNDSWDS(FD, ParamAttrs); + const unsigned NDS = std::get<0>(Data); + const unsigned WDS = std::get<1>(Data); + const bool OutputBecomesInput = std::get<2>(Data); + + // Check the values provided via `simdlen` by the user. + // 1. A `simdlen(1)` doesn't produce vector signatures, + if (UserVLEN == 1) { + unsigned DiagID = CGM.getDiags().getCustomDiagID( + DiagnosticsEngine::Warning, + "The clause simdlen(1) has no effect when targeting aarch64."); + CGM.getDiags().Report(SLoc, DiagID); + return; + } + + // 2. Section 3.3.1, item 1: user input must be a power of 2 for + // Advanced SIMD output. + if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) { + unsigned DiagID = CGM.getDiags().getCustomDiagID( + DiagnosticsEngine::Warning, "The value specified in simdlen must be a " + "power of 2 when targeting Advanced SIMD."); + CGM.getDiags().Report(SLoc, DiagID); + return; + } + + // 3. Section 3.4.1. SVE fixed lengh must obey the architectural + // limits. + if (ISA == 's' && UserVLEN != 0) { + if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) { + unsigned DiagID = CGM.getDiags().getCustomDiagID( + DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit " + "lanes in the architectural constraints " + "for SVE (min is 128-bit, max is " + "2048-bit, by steps of 128-bit)"); + CGM.getDiags().Report(SLoc, DiagID) << WDS; + return; + } + } + + // Sort out parameter sequence. + const std::string ParSeq = mangleVectorParameters(ParamAttrs); + StringRef Prefix = "_ZGV"; + // Generate simdlen from user input (if any). + if (UserVLEN) { + if (ISA == 's') { + // SVE generates only a masked function. + addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + } else { + assert(ISA == 'n' && "Expected ISA either 's' or 'n'."); + // Advanced SIMD generates one or two functions, depending on + // the `[not]inbranch` clause. + switch (State) { + case OMPDeclareSimdDeclAttr::BS_Undefined: + addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + break; + case OMPDeclareSimdDeclAttr::BS_Notinbranch: + addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + break; + case OMPDeclareSimdDeclAttr::BS_Inbranch: + addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + break; + } + } + } else { + // If no user simdlen is provided, follow the AAVFABI rules for + // generating the vector length. + if (ISA == 's') { + // SVE, section 3.4.1, item 1. + addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + } else { + assert(ISA == 'n' && "Expected ISA either 's' or 'n'."); + // Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or + // two vector names depending on the use of the clause + // `[not]inbranch`. + switch (State) { + case OMPDeclareSimdDeclAttr::BS_Undefined: + addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + break; + case OMPDeclareSimdDeclAttr::BS_Notinbranch: + addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + break; + case OMPDeclareSimdDeclAttr::BS_Inbranch: + addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName, + OutputBecomesInput, Fn); + break; + } + } + } +} + +void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD, + llvm::Function *Fn) { + ASTContext &C = CGM.getContext(); + FD = FD->getMostRecentDecl(); + // Map params to their positions in function decl. + llvm::DenseMap<const Decl *, unsigned> ParamPositions; + if (isa<CXXMethodDecl>(FD)) + ParamPositions.try_emplace(FD, 0); + unsigned ParamPos = ParamPositions.size(); + for (const ParmVarDecl *P : FD->parameters()) { + ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos); + ++ParamPos; + } + while (FD) { + for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) { + llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size()); + // Mark uniform parameters. + for (const Expr *E : Attr->uniforms()) { + E = E->IgnoreParenImpCasts(); + unsigned Pos; + if (isa<CXXThisExpr>(E)) { + Pos = ParamPositions[FD]; + } else { + const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) + ->getCanonicalDecl(); + Pos = ParamPositions[PVD]; + } + ParamAttrs[Pos].Kind = Uniform; + } + // Get alignment info. + auto NI = Attr->alignments_begin(); + for (const Expr *E : Attr->aligneds()) { + E = E->IgnoreParenImpCasts(); + unsigned Pos; + QualType ParmTy; + if (isa<CXXThisExpr>(E)) { + Pos = ParamPositions[FD]; + ParmTy = E->getType(); + } else { + const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) + ->getCanonicalDecl(); + Pos = ParamPositions[PVD]; + ParmTy = PVD->getType(); + } + ParamAttrs[Pos].Alignment = + (*NI) + ? (*NI)->EvaluateKnownConstInt(C) + : llvm::APSInt::getUnsigned( + C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy)) + .getQuantity()); + ++NI; + } + // Mark linear parameters. + auto SI = Attr->steps_begin(); + auto MI = Attr->modifiers_begin(); + for (const Expr *E : Attr->linears()) { + E = E->IgnoreParenImpCasts(); + unsigned Pos; + if (isa<CXXThisExpr>(E)) { + Pos = ParamPositions[FD]; + } else { + const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl()) + ->getCanonicalDecl(); + Pos = ParamPositions[PVD]; + } + ParamAttrTy &ParamAttr = ParamAttrs[Pos]; + ParamAttr.Kind = Linear; + if (*SI) { + Expr::EvalResult Result; + if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) { + if (const auto *DRE = + cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) { + if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) { + ParamAttr.Kind = LinearWithVarStride; + ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned( + ParamPositions[StridePVD->getCanonicalDecl()]); + } + } + } else { + ParamAttr.StrideOrArg = Result.Val.getInt(); + } + } + ++SI; + ++MI; + } + llvm::APSInt VLENVal; + SourceLocation ExprLoc; + const Expr *VLENExpr = Attr->getSimdlen(); + if (VLENExpr) { + VLENVal = VLENExpr->EvaluateKnownConstInt(C); + ExprLoc = VLENExpr->getExprLoc(); + } + OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState(); + if (CGM.getTriple().getArch() == llvm::Triple::x86 || + CGM.getTriple().getArch() == llvm::Triple::x86_64) { + emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State); + } else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) { + unsigned VLEN = VLENVal.getExtValue(); + StringRef MangledName = Fn->getName(); + if (CGM.getTarget().hasFeature("sve")) + emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State, + MangledName, 's', 128, Fn, ExprLoc); + if (CGM.getTarget().hasFeature("neon")) + emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State, + MangledName, 'n', 128, Fn, ExprLoc); + } + } + FD = FD->getPreviousDecl(); + } +} + +namespace { +/// Cleanup action for doacross support. +class DoacrossCleanupTy final : public EHScopeStack::Cleanup { +public: + static const int DoacrossFinArgs = 2; + +private: + llvm::FunctionCallee RTLFn; + llvm::Value *Args[DoacrossFinArgs]; + +public: + DoacrossCleanupTy(llvm::FunctionCallee RTLFn, + ArrayRef<llvm::Value *> CallArgs) + : RTLFn(RTLFn) { + assert(CallArgs.size() == DoacrossFinArgs); + std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args)); + } + void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { + if (!CGF.HaveInsertPoint()) + return; + CGF.EmitRuntimeCall(RTLFn, Args); + } +}; +} // namespace + +void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF, + const OMPLoopDirective &D, + ArrayRef<Expr *> NumIterations) { + if (!CGF.HaveInsertPoint()) + return; + + ASTContext &C = CGM.getContext(); + QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true); + RecordDecl *RD; + if (KmpDimTy.isNull()) { + // Build struct kmp_dim { // loop bounds info casted to kmp_int64 + // kmp_int64 lo; // lower + // kmp_int64 up; // upper + // kmp_int64 st; // stride + // }; + RD = C.buildImplicitRecord("kmp_dim"); + RD->startDefinition(); + addFieldToRecordDecl(C, RD, Int64Ty); + addFieldToRecordDecl(C, RD, Int64Ty); + addFieldToRecordDecl(C, RD, Int64Ty); + RD->completeDefinition(); + KmpDimTy = C.getRecordType(RD); + } else { + RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl()); + } + llvm::APInt Size(/*numBits=*/32, NumIterations.size()); + QualType ArrayTy = + C.getConstantArrayType(KmpDimTy, Size, ArrayType::Normal, 0); + + Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims"); + CGF.EmitNullInitialization(DimsAddr, ArrayTy); + enum { LowerFD = 0, UpperFD, StrideFD }; + // Fill dims with data. + for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) { + LValue DimsLVal = CGF.MakeAddrLValue( + CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy); + // dims.upper = num_iterations; + LValue UpperLVal = CGF.EmitLValueForField( + DimsLVal, *std::next(RD->field_begin(), UpperFD)); + llvm::Value *NumIterVal = + CGF.EmitScalarConversion(CGF.EmitScalarExpr(NumIterations[I]), + D.getNumIterations()->getType(), Int64Ty, + D.getNumIterations()->getExprLoc()); + CGF.EmitStoreOfScalar(NumIterVal, UpperLVal); + // dims.stride = 1; + LValue StrideLVal = CGF.EmitLValueForField( + DimsLVal, *std::next(RD->field_begin(), StrideFD)); + CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1), + StrideLVal); + } + + // Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, + // kmp_int32 num_dims, struct kmp_dim * dims); + llvm::Value *Args[] = { + emitUpdateLocation(CGF, D.getBeginLoc()), + getThreadID(CGF, D.getBeginLoc()), + llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()), + CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(), + CGM.VoidPtrTy)}; + + llvm::FunctionCallee RTLFn = + createRuntimeFunction(OMPRTL__kmpc_doacross_init); + CGF.EmitRuntimeCall(RTLFn, Args); + llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = { + emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())}; + llvm::FunctionCallee FiniRTLFn = + createRuntimeFunction(OMPRTL__kmpc_doacross_fini); + CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn, + llvm::makeArrayRef(FiniArgs)); +} + +void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, + const OMPDependClause *C) { + QualType Int64Ty = + CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1); + llvm::APInt Size(/*numBits=*/32, C->getNumLoops()); + QualType ArrayTy = CGM.getContext().getConstantArrayType( + Int64Ty, Size, ArrayType::Normal, 0); + Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr"); + for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) { + const Expr *CounterVal = C->getLoopData(I); + assert(CounterVal); + llvm::Value *CntVal = CGF.EmitScalarConversion( + CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty, + CounterVal->getExprLoc()); + CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I), + /*Volatile=*/false, Int64Ty); + } + llvm::Value *Args[] = { + emitUpdateLocation(CGF, C->getBeginLoc()), + getThreadID(CGF, C->getBeginLoc()), + CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()}; + llvm::FunctionCallee RTLFn; + if (C->getDependencyKind() == OMPC_DEPEND_source) { + RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post); + } else { + assert(C->getDependencyKind() == OMPC_DEPEND_sink); + RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait); + } + CGF.EmitRuntimeCall(RTLFn, Args); +} + +void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc, + llvm::FunctionCallee Callee, + ArrayRef<llvm::Value *> Args) const { + assert(Loc.isValid() && "Outlined function call location must be valid."); + auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc); + + if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) { + if (Fn->doesNotThrow()) { + CGF.EmitNounwindRuntimeCall(Fn, Args); + return; + } + } + CGF.EmitRuntimeCall(Callee, Args); +} + +void CGOpenMPRuntime::emitOutlinedFunctionCall( + CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn, + ArrayRef<llvm::Value *> Args) const { + emitCall(CGF, Loc, OutlinedFn, Args); +} + +void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) { + if (const auto *FD = dyn_cast<FunctionDecl>(D)) + if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD)) + HasEmittedDeclareTargetRegion = true; +} + +Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF, + const VarDecl *NativeParam, + const VarDecl *TargetParam) const { + return CGF.GetAddrOfLocalVar(NativeParam); +} + +namespace { +/// Cleanup action for allocate support. +class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup { +public: + static const int CleanupArgs = 3; + +private: + llvm::FunctionCallee RTLFn; + llvm::Value *Args[CleanupArgs]; + +public: + OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn, + ArrayRef<llvm::Value *> CallArgs) + : RTLFn(RTLFn) { + assert(CallArgs.size() == CleanupArgs && + "Size of arguments does not match."); + std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args)); + } + void Emit(CodeGenFunction &CGF, Flags /*flags*/) override { + if (!CGF.HaveInsertPoint()) + return; + CGF.EmitRuntimeCall(RTLFn, Args); + } +}; +} // namespace + +Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF, + const VarDecl *VD) { + if (!VD) + return Address::invalid(); + const VarDecl *CVD = VD->getCanonicalDecl(); + if (!CVD->hasAttr<OMPAllocateDeclAttr>()) + return Address::invalid(); + const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>(); + // Use the default allocation. + if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc && + !AA->getAllocator()) + return Address::invalid(); + llvm::Value *Size; + CharUnits Align = CGM.getContext().getDeclAlign(CVD); + if (CVD->getType()->isVariablyModifiedType()) { + Size = CGF.getTypeSize(CVD->getType()); + // Align the size: ((size + align - 1) / align) * align + Size = CGF.Builder.CreateNUWAdd( + Size, CGM.getSize(Align - CharUnits::fromQuantity(1))); + Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align)); + Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align)); + } else { + CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType()); + Size = CGM.getSize(Sz.alignTo(Align)); + } + llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc()); + assert(AA->getAllocator() && + "Expected allocator expression for non-default allocator."); + llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator()); + // According to the standard, the original allocator type is a enum (integer). + // Convert to pointer type, if required. + if (Allocator->getType()->isIntegerTy()) + Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy); + else if (Allocator->getType()->isPointerTy()) + Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator, + CGM.VoidPtrTy); + llvm::Value *Args[] = {ThreadID, Size, Allocator}; + + llvm::Value *Addr = + CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_alloc), Args, + CVD->getName() + ".void.addr"); + llvm::Value *FiniArgs[OMPAllocateCleanupTy::CleanupArgs] = {ThreadID, Addr, + Allocator}; + llvm::FunctionCallee FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_free); + + CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FiniRTLFn, + llvm::makeArrayRef(FiniArgs)); + Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( + Addr, + CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())), + CVD->getName() + ".addr"); + return Address(Addr, Align); +} + +llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction( + const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, + OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction( + const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, + OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction( + const OMPExecutableDirective &D, const VarDecl *ThreadIDVar, + const VarDecl *PartIDVar, const VarDecl *TaskTVar, + OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen, + bool Tied, unsigned &NumberOfParts) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF, + SourceLocation Loc, + llvm::Function *OutlinedFn, + ArrayRef<llvm::Value *> CapturedVars, + const Expr *IfCond) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitCriticalRegion( + CodeGenFunction &CGF, StringRef CriticalName, + const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc, + const Expr *Hint) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF, + const RegionCodeGenTy &MasterOpGen, + SourceLocation Loc) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF, + SourceLocation Loc) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitTaskgroupRegion( + CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen, + SourceLocation Loc) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitSingleRegion( + CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen, + SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars, + ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs, + ArrayRef<const Expr *> AssignmentOps) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF, + const RegionCodeGenTy &OrderedOpGen, + SourceLocation Loc, + bool IsThreads) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF, + SourceLocation Loc, + OpenMPDirectiveKind Kind, + bool EmitChecks, + bool ForceSimpleCall) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitForDispatchInit( + CodeGenFunction &CGF, SourceLocation Loc, + const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned, + bool Ordered, const DispatchRTInput &DispatchValues) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitForStaticInit( + CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind, + const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitDistributeStaticInit( + CodeGenFunction &CGF, SourceLocation Loc, + OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF, + SourceLocation Loc, + unsigned IVSize, + bool IVSigned) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF, + SourceLocation Loc, + OpenMPDirectiveKind DKind) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF, + SourceLocation Loc, + unsigned IVSize, bool IVSigned, + Address IL, Address LB, + Address UB, Address ST) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF, + llvm::Value *NumThreads, + SourceLocation Loc) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF, + OpenMPProcBindClauseKind ProcBind, + SourceLocation Loc) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF, + const VarDecl *VD, + Address VDAddr, + SourceLocation Loc) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition( + const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit, + CodeGenFunction *CGF) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate( + CodeGenFunction &CGF, QualType VarType, StringRef Name) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF, + ArrayRef<const Expr *> Vars, + SourceLocation Loc) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc, + const OMPExecutableDirective &D, + llvm::Function *TaskFunction, + QualType SharedsTy, Address Shareds, + const Expr *IfCond, + const OMPTaskDataTy &Data) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitTaskLoopCall( + CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D, + llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds, + const Expr *IfCond, const OMPTaskDataTy &Data) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitReduction( + CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates, + ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs, + ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) { + assert(Options.SimpleReduction && "Only simple reduction is expected."); + CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs, + ReductionOps, Options); +} + +llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit( + CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs, + ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF, + SourceLocation Loc, + ReductionCodeGen &RCG, + unsigned N) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF, + SourceLocation Loc, + llvm::Value *ReductionsPtr, + LValue SharedLVal) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF, + SourceLocation Loc) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitCancellationPointCall( + CodeGenFunction &CGF, SourceLocation Loc, + OpenMPDirectiveKind CancelRegion) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF, + SourceLocation Loc, const Expr *IfCond, + OpenMPDirectiveKind CancelRegion) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction( + const OMPExecutableDirective &D, StringRef ParentName, + llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID, + bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitTargetCall(CodeGenFunction &CGF, + const OMPExecutableDirective &D, + llvm::Function *OutlinedFn, + llvm::Value *OutlinedFnID, + const Expr *IfCond, + const Expr *Device) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) { + return false; +} + +llvm::Function *CGOpenMPSIMDRuntime::emitRegistrationFunction() { + return nullptr; +} + +void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF, + const OMPExecutableDirective &D, + SourceLocation Loc, + llvm::Function *OutlinedFn, + ArrayRef<llvm::Value *> CapturedVars) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF, + const Expr *NumTeams, + const Expr *ThreadLimit, + SourceLocation Loc) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitTargetDataCalls( + CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, + const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall( + CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond, + const Expr *Device) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF, + const OMPLoopDirective &D, + ArrayRef<Expr *> NumIterations) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF, + const OMPDependClause *C) { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +const VarDecl * +CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD, + const VarDecl *NativeParam) const { + llvm_unreachable("Not supported in SIMD-only mode"); +} + +Address +CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF, + const VarDecl *NativeParam, + const VarDecl *TargetParam) const { + llvm_unreachable("Not supported in SIMD-only mode"); +} |