diff options
Diffstat (limited to 'contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h')
-rw-r--r-- | contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h | 1324 |
1 files changed, 1324 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h b/contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h new file mode 100644 index 000000000000..11e1e7d03258 --- /dev/null +++ b/contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h @@ -0,0 +1,1324 @@ +/*===---- __clang_hip_math.h - Device-side HIP math support ----------------=== + * + * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. + * See https://llvm.org/LICENSE.txt for license information. + * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception + * + *===-----------------------------------------------------------------------=== + */ +#ifndef __CLANG_HIP_MATH_H__ +#define __CLANG_HIP_MATH_H__ + +#if !defined(__HIP__) && !defined(__OPENMP_AMDGCN__) +#error "This file is for HIP and OpenMP AMDGCN device compilation only." +#endif + +#if !defined(__HIPCC_RTC__) +#include <limits.h> +#include <stdint.h> +#ifdef __OPENMP_AMDGCN__ +#include <omp.h> +#endif +#endif // !defined(__HIPCC_RTC__) + +#pragma push_macro("__DEVICE__") + +#ifdef __OPENMP_AMDGCN__ +#define __DEVICE__ static inline __attribute__((always_inline, nothrow)) +#else +#define __DEVICE__ static __device__ inline __attribute__((always_inline)) +#endif + +// Device library provides fast low precision and slow full-recision +// implementations for some functions. Which one gets selected depends on +// __CLANG_GPU_APPROX_TRANSCENDENTALS__ which gets defined by clang if +// -ffast-math or -fgpu-approx-transcendentals are in effect. +#pragma push_macro("__FAST_OR_SLOW") +#if defined(__CLANG_GPU_APPROX_TRANSCENDENTALS__) +#define __FAST_OR_SLOW(fast, slow) fast +#else +#define __FAST_OR_SLOW(fast, slow) slow +#endif + +// A few functions return bool type starting only in C++11. +#pragma push_macro("__RETURN_TYPE") +#ifdef __OPENMP_AMDGCN__ +#define __RETURN_TYPE int +#else +#if defined(__cplusplus) +#define __RETURN_TYPE bool +#else +#define __RETURN_TYPE int +#endif +#endif // __OPENMP_AMDGCN__ + +#if defined (__cplusplus) && __cplusplus < 201103L +// emulate static_assert on type sizes +template<bool> +struct __compare_result{}; +template<> +struct __compare_result<true> { + static const __device__ bool valid; +}; + +__DEVICE__ +void __suppress_unused_warning(bool b){}; +template <unsigned int S, unsigned int T> +__DEVICE__ void __static_assert_equal_size() { + __suppress_unused_warning(__compare_result<S == T>::valid); +} + +#define __static_assert_type_size_equal(A, B) \ + __static_assert_equal_size<A,B>() + +#else +#define __static_assert_type_size_equal(A,B) \ + static_assert((A) == (B), "") + +#endif + +__DEVICE__ +uint64_t __make_mantissa_base8(const char *__tagp __attribute__((nonnull))) { + uint64_t __r = 0; + while (*__tagp != '\0') { + char __tmp = *__tagp; + + if (__tmp >= '0' && __tmp <= '7') + __r = (__r * 8u) + __tmp - '0'; + else + return 0; + + ++__tagp; + } + + return __r; +} + +__DEVICE__ +uint64_t __make_mantissa_base10(const char *__tagp __attribute__((nonnull))) { + uint64_t __r = 0; + while (*__tagp != '\0') { + char __tmp = *__tagp; + + if (__tmp >= '0' && __tmp <= '9') + __r = (__r * 10u) + __tmp - '0'; + else + return 0; + + ++__tagp; + } + + return __r; +} + +__DEVICE__ +uint64_t __make_mantissa_base16(const char *__tagp __attribute__((nonnull))) { + uint64_t __r = 0; + while (*__tagp != '\0') { + char __tmp = *__tagp; + + if (__tmp >= '0' && __tmp <= '9') + __r = (__r * 16u) + __tmp - '0'; + else if (__tmp >= 'a' && __tmp <= 'f') + __r = (__r * 16u) + __tmp - 'a' + 10; + else if (__tmp >= 'A' && __tmp <= 'F') + __r = (__r * 16u) + __tmp - 'A' + 10; + else + return 0; + + ++__tagp; + } + + return __r; +} + +__DEVICE__ +uint64_t __make_mantissa(const char *__tagp __attribute__((nonnull))) { + if (*__tagp == '0') { + ++__tagp; + + if (*__tagp == 'x' || *__tagp == 'X') + return __make_mantissa_base16(__tagp); + else + return __make_mantissa_base8(__tagp); + } + + return __make_mantissa_base10(__tagp); +} + +// BEGIN FLOAT + +// BEGIN INTRINSICS + +__DEVICE__ +float __cosf(float __x) { return __ocml_native_cos_f32(__x); } + +__DEVICE__ +float __exp10f(float __x) { + const float __log2_10 = 0x1.a934f0p+1f; + return __builtin_amdgcn_exp2f(__log2_10 * __x); +} + +__DEVICE__ +float __expf(float __x) { + const float __log2_e = 0x1.715476p+0; + return __builtin_amdgcn_exp2f(__log2_e * __x); +} + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +float __fadd_rd(float __x, float __y) { return __ocml_add_rtn_f32(__x, __y); } +__DEVICE__ +float __fadd_rn(float __x, float __y) { return __ocml_add_rte_f32(__x, __y); } +__DEVICE__ +float __fadd_ru(float __x, float __y) { return __ocml_add_rtp_f32(__x, __y); } +__DEVICE__ +float __fadd_rz(float __x, float __y) { return __ocml_add_rtz_f32(__x, __y); } +#else +__DEVICE__ +float __fadd_rn(float __x, float __y) { return __x + __y; } +#endif + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +float __fdiv_rd(float __x, float __y) { return __ocml_div_rtn_f32(__x, __y); } +__DEVICE__ +float __fdiv_rn(float __x, float __y) { return __ocml_div_rte_f32(__x, __y); } +__DEVICE__ +float __fdiv_ru(float __x, float __y) { return __ocml_div_rtp_f32(__x, __y); } +__DEVICE__ +float __fdiv_rz(float __x, float __y) { return __ocml_div_rtz_f32(__x, __y); } +#else +__DEVICE__ +float __fdiv_rn(float __x, float __y) { return __x / __y; } +#endif + +__DEVICE__ +float __fdividef(float __x, float __y) { return __x / __y; } + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +float __fmaf_rd(float __x, float __y, float __z) { + return __ocml_fma_rtn_f32(__x, __y, __z); +} +__DEVICE__ +float __fmaf_rn(float __x, float __y, float __z) { + return __ocml_fma_rte_f32(__x, __y, __z); +} +__DEVICE__ +float __fmaf_ru(float __x, float __y, float __z) { + return __ocml_fma_rtp_f32(__x, __y, __z); +} +__DEVICE__ +float __fmaf_rz(float __x, float __y, float __z) { + return __ocml_fma_rtz_f32(__x, __y, __z); +} +#else +__DEVICE__ +float __fmaf_rn(float __x, float __y, float __z) { + return __builtin_fmaf(__x, __y, __z); +} +#endif + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +float __fmul_rd(float __x, float __y) { return __ocml_mul_rtn_f32(__x, __y); } +__DEVICE__ +float __fmul_rn(float __x, float __y) { return __ocml_mul_rte_f32(__x, __y); } +__DEVICE__ +float __fmul_ru(float __x, float __y) { return __ocml_mul_rtp_f32(__x, __y); } +__DEVICE__ +float __fmul_rz(float __x, float __y) { return __ocml_mul_rtz_f32(__x, __y); } +#else +__DEVICE__ +float __fmul_rn(float __x, float __y) { return __x * __y; } +#endif + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +float __frcp_rd(float __x) { return __ocml_div_rtn_f32(1.0f, __x); } +__DEVICE__ +float __frcp_rn(float __x) { return __ocml_div_rte_f32(1.0f, __x); } +__DEVICE__ +float __frcp_ru(float __x) { return __ocml_div_rtp_f32(1.0f, __x); } +__DEVICE__ +float __frcp_rz(float __x) { return __ocml_div_rtz_f32(1.0f, __x); } +#else +__DEVICE__ +float __frcp_rn(float __x) { return 1.0f / __x; } +#endif + +__DEVICE__ +float __frsqrt_rn(float __x) { return __builtin_amdgcn_rsqf(__x); } + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +float __fsqrt_rd(float __x) { return __ocml_sqrt_rtn_f32(__x); } +__DEVICE__ +float __fsqrt_rn(float __x) { return __ocml_sqrt_rte_f32(__x); } +__DEVICE__ +float __fsqrt_ru(float __x) { return __ocml_sqrt_rtp_f32(__x); } +__DEVICE__ +float __fsqrt_rz(float __x) { return __ocml_sqrt_rtz_f32(__x); } +#else +__DEVICE__ +float __fsqrt_rn(float __x) { return __ocml_native_sqrt_f32(__x); } +#endif + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +float __fsub_rd(float __x, float __y) { return __ocml_sub_rtn_f32(__x, __y); } +__DEVICE__ +float __fsub_rn(float __x, float __y) { return __ocml_sub_rte_f32(__x, __y); } +__DEVICE__ +float __fsub_ru(float __x, float __y) { return __ocml_sub_rtp_f32(__x, __y); } +__DEVICE__ +float __fsub_rz(float __x, float __y) { return __ocml_sub_rtz_f32(__x, __y); } +#else +__DEVICE__ +float __fsub_rn(float __x, float __y) { return __x - __y; } +#endif + +__DEVICE__ +float __log10f(float __x) { return __builtin_log10f(__x); } + +__DEVICE__ +float __log2f(float __x) { return __builtin_amdgcn_logf(__x); } + +__DEVICE__ +float __logf(float __x) { return __builtin_logf(__x); } + +__DEVICE__ +float __powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); } + +__DEVICE__ +float __saturatef(float __x) { return (__x < 0) ? 0 : ((__x > 1) ? 1 : __x); } + +__DEVICE__ +void __sincosf(float __x, float *__sinptr, float *__cosptr) { + *__sinptr = __ocml_native_sin_f32(__x); + *__cosptr = __ocml_native_cos_f32(__x); +} + +__DEVICE__ +float __sinf(float __x) { return __ocml_native_sin_f32(__x); } + +__DEVICE__ +float __tanf(float __x) { + return __sinf(__x) * __builtin_amdgcn_rcpf(__cosf(__x)); +} +// END INTRINSICS + +#if defined(__cplusplus) +__DEVICE__ +int abs(int __x) { + return __builtin_abs(__x); +} +__DEVICE__ +long labs(long __x) { + return __builtin_labs(__x); +} +__DEVICE__ +long long llabs(long long __x) { + return __builtin_llabs(__x); +} +#endif + +__DEVICE__ +float acosf(float __x) { return __ocml_acos_f32(__x); } + +__DEVICE__ +float acoshf(float __x) { return __ocml_acosh_f32(__x); } + +__DEVICE__ +float asinf(float __x) { return __ocml_asin_f32(__x); } + +__DEVICE__ +float asinhf(float __x) { return __ocml_asinh_f32(__x); } + +__DEVICE__ +float atan2f(float __x, float __y) { return __ocml_atan2_f32(__x, __y); } + +__DEVICE__ +float atanf(float __x) { return __ocml_atan_f32(__x); } + +__DEVICE__ +float atanhf(float __x) { return __ocml_atanh_f32(__x); } + +__DEVICE__ +float cbrtf(float __x) { return __ocml_cbrt_f32(__x); } + +__DEVICE__ +float ceilf(float __x) { return __builtin_ceilf(__x); } + +__DEVICE__ +float copysignf(float __x, float __y) { return __builtin_copysignf(__x, __y); } + +__DEVICE__ +float cosf(float __x) { return __FAST_OR_SLOW(__cosf, __ocml_cos_f32)(__x); } + +__DEVICE__ +float coshf(float __x) { return __ocml_cosh_f32(__x); } + +__DEVICE__ +float cospif(float __x) { return __ocml_cospi_f32(__x); } + +__DEVICE__ +float cyl_bessel_i0f(float __x) { return __ocml_i0_f32(__x); } + +__DEVICE__ +float cyl_bessel_i1f(float __x) { return __ocml_i1_f32(__x); } + +__DEVICE__ +float erfcf(float __x) { return __ocml_erfc_f32(__x); } + +__DEVICE__ +float erfcinvf(float __x) { return __ocml_erfcinv_f32(__x); } + +__DEVICE__ +float erfcxf(float __x) { return __ocml_erfcx_f32(__x); } + +__DEVICE__ +float erff(float __x) { return __ocml_erf_f32(__x); } + +__DEVICE__ +float erfinvf(float __x) { return __ocml_erfinv_f32(__x); } + +__DEVICE__ +float exp10f(float __x) { return __ocml_exp10_f32(__x); } + +__DEVICE__ +float exp2f(float __x) { return __builtin_exp2f(__x); } + +__DEVICE__ +float expf(float __x) { return __builtin_expf(__x); } + +__DEVICE__ +float expm1f(float __x) { return __ocml_expm1_f32(__x); } + +__DEVICE__ +float fabsf(float __x) { return __builtin_fabsf(__x); } + +__DEVICE__ +float fdimf(float __x, float __y) { return __ocml_fdim_f32(__x, __y); } + +__DEVICE__ +float fdividef(float __x, float __y) { return __x / __y; } + +__DEVICE__ +float floorf(float __x) { return __builtin_floorf(__x); } + +__DEVICE__ +float fmaf(float __x, float __y, float __z) { + return __builtin_fmaf(__x, __y, __z); +} + +__DEVICE__ +float fmaxf(float __x, float __y) { return __builtin_fmaxf(__x, __y); } + +__DEVICE__ +float fminf(float __x, float __y) { return __builtin_fminf(__x, __y); } + +__DEVICE__ +float fmodf(float __x, float __y) { return __ocml_fmod_f32(__x, __y); } + +__DEVICE__ +float frexpf(float __x, int *__nptr) { + return __builtin_frexpf(__x, __nptr); +} + +__DEVICE__ +float hypotf(float __x, float __y) { return __ocml_hypot_f32(__x, __y); } + +__DEVICE__ +int ilogbf(float __x) { return __ocml_ilogb_f32(__x); } + +__DEVICE__ +__RETURN_TYPE __finitef(float __x) { return __builtin_isfinite(__x); } + +__DEVICE__ +__RETURN_TYPE __isinff(float __x) { return __builtin_isinf(__x); } + +__DEVICE__ +__RETURN_TYPE __isnanf(float __x) { return __builtin_isnan(__x); } + +__DEVICE__ +float j0f(float __x) { return __ocml_j0_f32(__x); } + +__DEVICE__ +float j1f(float __x) { return __ocml_j1_f32(__x); } + +__DEVICE__ +float jnf(int __n, float __x) { // TODO: we could use Ahmes multiplication + // and the Miller & Brown algorithm + // for linear recurrences to get O(log n) steps, but it's unclear if + // it'd be beneficial in this case. + if (__n == 0) + return j0f(__x); + if (__n == 1) + return j1f(__x); + + float __x0 = j0f(__x); + float __x1 = j1f(__x); + for (int __i = 1; __i < __n; ++__i) { + float __x2 = (2 * __i) / __x * __x1 - __x0; + __x0 = __x1; + __x1 = __x2; + } + + return __x1; +} + +__DEVICE__ +float ldexpf(float __x, int __e) { return __builtin_amdgcn_ldexpf(__x, __e); } + +__DEVICE__ +float lgammaf(float __x) { return __ocml_lgamma_f32(__x); } + +__DEVICE__ +long long int llrintf(float __x) { return __builtin_rintf(__x); } + +__DEVICE__ +long long int llroundf(float __x) { return __builtin_roundf(__x); } + +__DEVICE__ +float log10f(float __x) { return __builtin_log10f(__x); } + +__DEVICE__ +float log1pf(float __x) { return __ocml_log1p_f32(__x); } + +__DEVICE__ +float log2f(float __x) { return __FAST_OR_SLOW(__log2f, __ocml_log2_f32)(__x); } + +__DEVICE__ +float logbf(float __x) { return __ocml_logb_f32(__x); } + +__DEVICE__ +float logf(float __x) { return __FAST_OR_SLOW(__logf, __ocml_log_f32)(__x); } + +__DEVICE__ +long int lrintf(float __x) { return __builtin_rintf(__x); } + +__DEVICE__ +long int lroundf(float __x) { return __builtin_roundf(__x); } + +__DEVICE__ +float modff(float __x, float *__iptr) { + float __tmp; +#ifdef __OPENMP_AMDGCN__ +#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) +#endif + float __r = + __ocml_modf_f32(__x, (__attribute__((address_space(5))) float *)&__tmp); + *__iptr = __tmp; + return __r; +} + +__DEVICE__ +float nanf(const char *__tagp __attribute__((nonnull))) { + union { + float val; + struct ieee_float { + unsigned int mantissa : 22; + unsigned int quiet : 1; + unsigned int exponent : 8; + unsigned int sign : 1; + } bits; + } __tmp; + __static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits)); + + __tmp.bits.sign = 0u; + __tmp.bits.exponent = ~0u; + __tmp.bits.quiet = 1u; + __tmp.bits.mantissa = __make_mantissa(__tagp); + + return __tmp.val; +} + +__DEVICE__ +float nearbyintf(float __x) { return __builtin_nearbyintf(__x); } + +__DEVICE__ +float nextafterf(float __x, float __y) { + return __ocml_nextafter_f32(__x, __y); +} + +__DEVICE__ +float norm3df(float __x, float __y, float __z) { + return __ocml_len3_f32(__x, __y, __z); +} + +__DEVICE__ +float norm4df(float __x, float __y, float __z, float __w) { + return __ocml_len4_f32(__x, __y, __z, __w); +} + +__DEVICE__ +float normcdff(float __x) { return __ocml_ncdf_f32(__x); } + +__DEVICE__ +float normcdfinvf(float __x) { return __ocml_ncdfinv_f32(__x); } + +__DEVICE__ +float normf(int __dim, + const float *__a) { // TODO: placeholder until OCML adds support. + float __r = 0; + while (__dim--) { + __r += __a[0] * __a[0]; + ++__a; + } + + return __builtin_sqrtf(__r); +} + +__DEVICE__ +float powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); } + +__DEVICE__ +float powif(float __x, int __y) { return __ocml_pown_f32(__x, __y); } + +__DEVICE__ +float rcbrtf(float __x) { return __ocml_rcbrt_f32(__x); } + +__DEVICE__ +float remainderf(float __x, float __y) { + return __ocml_remainder_f32(__x, __y); +} + +__DEVICE__ +float remquof(float __x, float __y, int *__quo) { + int __tmp; +#ifdef __OPENMP_AMDGCN__ +#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) +#endif + float __r = __ocml_remquo_f32( + __x, __y, (__attribute__((address_space(5))) int *)&__tmp); + *__quo = __tmp; + + return __r; +} + +__DEVICE__ +float rhypotf(float __x, float __y) { return __ocml_rhypot_f32(__x, __y); } + +__DEVICE__ +float rintf(float __x) { return __builtin_rintf(__x); } + +__DEVICE__ +float rnorm3df(float __x, float __y, float __z) { + return __ocml_rlen3_f32(__x, __y, __z); +} + +__DEVICE__ +float rnorm4df(float __x, float __y, float __z, float __w) { + return __ocml_rlen4_f32(__x, __y, __z, __w); +} + +__DEVICE__ +float rnormf(int __dim, + const float *__a) { // TODO: placeholder until OCML adds support. + float __r = 0; + while (__dim--) { + __r += __a[0] * __a[0]; + ++__a; + } + + return __ocml_rsqrt_f32(__r); +} + +__DEVICE__ +float roundf(float __x) { return __builtin_roundf(__x); } + +__DEVICE__ +float rsqrtf(float __x) { return __ocml_rsqrt_f32(__x); } + +__DEVICE__ +float scalblnf(float __x, long int __n) { + return (__n < INT_MAX) ? __builtin_amdgcn_ldexpf(__x, __n) + : __ocml_scalb_f32(__x, __n); +} + +__DEVICE__ +float scalbnf(float __x, int __n) { return __builtin_amdgcn_ldexpf(__x, __n); } + +__DEVICE__ +__RETURN_TYPE __signbitf(float __x) { return __builtin_signbitf(__x); } + +__DEVICE__ +void sincosf(float __x, float *__sinptr, float *__cosptr) { + float __tmp; +#ifdef __OPENMP_AMDGCN__ +#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) +#endif +#ifdef __CLANG_CUDA_APPROX_TRANSCENDENTALS__ + __sincosf(__x, __sinptr, __cosptr); +#else + *__sinptr = + __ocml_sincos_f32(__x, (__attribute__((address_space(5))) float *)&__tmp); + *__cosptr = __tmp; +#endif +} + +__DEVICE__ +void sincospif(float __x, float *__sinptr, float *__cosptr) { + float __tmp; +#ifdef __OPENMP_AMDGCN__ +#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) +#endif + *__sinptr = __ocml_sincospi_f32( + __x, (__attribute__((address_space(5))) float *)&__tmp); + *__cosptr = __tmp; +} + +__DEVICE__ +float sinf(float __x) { return __FAST_OR_SLOW(__sinf, __ocml_sin_f32)(__x); } + +__DEVICE__ +float sinhf(float __x) { return __ocml_sinh_f32(__x); } + +__DEVICE__ +float sinpif(float __x) { return __ocml_sinpi_f32(__x); } + +__DEVICE__ +float sqrtf(float __x) { return __builtin_sqrtf(__x); } + +__DEVICE__ +float tanf(float __x) { return __ocml_tan_f32(__x); } + +__DEVICE__ +float tanhf(float __x) { return __ocml_tanh_f32(__x); } + +__DEVICE__ +float tgammaf(float __x) { return __ocml_tgamma_f32(__x); } + +__DEVICE__ +float truncf(float __x) { return __builtin_truncf(__x); } + +__DEVICE__ +float y0f(float __x) { return __ocml_y0_f32(__x); } + +__DEVICE__ +float y1f(float __x) { return __ocml_y1_f32(__x); } + +__DEVICE__ +float ynf(int __n, float __x) { // TODO: we could use Ahmes multiplication + // and the Miller & Brown algorithm + // for linear recurrences to get O(log n) steps, but it's unclear if + // it'd be beneficial in this case. Placeholder until OCML adds + // support. + if (__n == 0) + return y0f(__x); + if (__n == 1) + return y1f(__x); + + float __x0 = y0f(__x); + float __x1 = y1f(__x); + for (int __i = 1; __i < __n; ++__i) { + float __x2 = (2 * __i) / __x * __x1 - __x0; + __x0 = __x1; + __x1 = __x2; + } + + return __x1; +} + + +// END FLOAT + +// BEGIN DOUBLE +__DEVICE__ +double acos(double __x) { return __ocml_acos_f64(__x); } + +__DEVICE__ +double acosh(double __x) { return __ocml_acosh_f64(__x); } + +__DEVICE__ +double asin(double __x) { return __ocml_asin_f64(__x); } + +__DEVICE__ +double asinh(double __x) { return __ocml_asinh_f64(__x); } + +__DEVICE__ +double atan(double __x) { return __ocml_atan_f64(__x); } + +__DEVICE__ +double atan2(double __x, double __y) { return __ocml_atan2_f64(__x, __y); } + +__DEVICE__ +double atanh(double __x) { return __ocml_atanh_f64(__x); } + +__DEVICE__ +double cbrt(double __x) { return __ocml_cbrt_f64(__x); } + +__DEVICE__ +double ceil(double __x) { return __builtin_ceil(__x); } + +__DEVICE__ +double copysign(double __x, double __y) { + return __builtin_copysign(__x, __y); +} + +__DEVICE__ +double cos(double __x) { return __ocml_cos_f64(__x); } + +__DEVICE__ +double cosh(double __x) { return __ocml_cosh_f64(__x); } + +__DEVICE__ +double cospi(double __x) { return __ocml_cospi_f64(__x); } + +__DEVICE__ +double cyl_bessel_i0(double __x) { return __ocml_i0_f64(__x); } + +__DEVICE__ +double cyl_bessel_i1(double __x) { return __ocml_i1_f64(__x); } + +__DEVICE__ +double erf(double __x) { return __ocml_erf_f64(__x); } + +__DEVICE__ +double erfc(double __x) { return __ocml_erfc_f64(__x); } + +__DEVICE__ +double erfcinv(double __x) { return __ocml_erfcinv_f64(__x); } + +__DEVICE__ +double erfcx(double __x) { return __ocml_erfcx_f64(__x); } + +__DEVICE__ +double erfinv(double __x) { return __ocml_erfinv_f64(__x); } + +__DEVICE__ +double exp(double __x) { return __ocml_exp_f64(__x); } + +__DEVICE__ +double exp10(double __x) { return __ocml_exp10_f64(__x); } + +__DEVICE__ +double exp2(double __x) { return __ocml_exp2_f64(__x); } + +__DEVICE__ +double expm1(double __x) { return __ocml_expm1_f64(__x); } + +__DEVICE__ +double fabs(double __x) { return __builtin_fabs(__x); } + +__DEVICE__ +double fdim(double __x, double __y) { return __ocml_fdim_f64(__x, __y); } + +__DEVICE__ +double floor(double __x) { return __builtin_floor(__x); } + +__DEVICE__ +double fma(double __x, double __y, double __z) { + return __builtin_fma(__x, __y, __z); +} + +__DEVICE__ +double fmax(double __x, double __y) { return __builtin_fmax(__x, __y); } + +__DEVICE__ +double fmin(double __x, double __y) { return __builtin_fmin(__x, __y); } + +__DEVICE__ +double fmod(double __x, double __y) { return __ocml_fmod_f64(__x, __y); } + +__DEVICE__ +double frexp(double __x, int *__nptr) { + return __builtin_frexp(__x, __nptr); +} + +__DEVICE__ +double hypot(double __x, double __y) { return __ocml_hypot_f64(__x, __y); } + +__DEVICE__ +int ilogb(double __x) { return __ocml_ilogb_f64(__x); } + +__DEVICE__ +__RETURN_TYPE __finite(double __x) { return __builtin_isfinite(__x); } + +__DEVICE__ +__RETURN_TYPE __isinf(double __x) { return __builtin_isinf(__x); } + +__DEVICE__ +__RETURN_TYPE __isnan(double __x) { return __builtin_isnan(__x); } + +__DEVICE__ +double j0(double __x) { return __ocml_j0_f64(__x); } + +__DEVICE__ +double j1(double __x) { return __ocml_j1_f64(__x); } + +__DEVICE__ +double jn(int __n, double __x) { // TODO: we could use Ahmes multiplication + // and the Miller & Brown algorithm + // for linear recurrences to get O(log n) steps, but it's unclear if + // it'd be beneficial in this case. Placeholder until OCML adds + // support. + if (__n == 0) + return j0(__x); + if (__n == 1) + return j1(__x); + + double __x0 = j0(__x); + double __x1 = j1(__x); + for (int __i = 1; __i < __n; ++__i) { + double __x2 = (2 * __i) / __x * __x1 - __x0; + __x0 = __x1; + __x1 = __x2; + } + return __x1; +} + +__DEVICE__ +double ldexp(double __x, int __e) { return __builtin_amdgcn_ldexp(__x, __e); } + +__DEVICE__ +double lgamma(double __x) { return __ocml_lgamma_f64(__x); } + +__DEVICE__ +long long int llrint(double __x) { return __builtin_rint(__x); } + +__DEVICE__ +long long int llround(double __x) { return __builtin_round(__x); } + +__DEVICE__ +double log(double __x) { return __ocml_log_f64(__x); } + +__DEVICE__ +double log10(double __x) { return __ocml_log10_f64(__x); } + +__DEVICE__ +double log1p(double __x) { return __ocml_log1p_f64(__x); } + +__DEVICE__ +double log2(double __x) { return __ocml_log2_f64(__x); } + +__DEVICE__ +double logb(double __x) { return __ocml_logb_f64(__x); } + +__DEVICE__ +long int lrint(double __x) { return __builtin_rint(__x); } + +__DEVICE__ +long int lround(double __x) { return __builtin_round(__x); } + +__DEVICE__ +double modf(double __x, double *__iptr) { + double __tmp; +#ifdef __OPENMP_AMDGCN__ +#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) +#endif + double __r = + __ocml_modf_f64(__x, (__attribute__((address_space(5))) double *)&__tmp); + *__iptr = __tmp; + + return __r; +} + +__DEVICE__ +double nan(const char *__tagp) { +#if !_WIN32 + union { + double val; + struct ieee_double { + uint64_t mantissa : 51; + uint32_t quiet : 1; + uint32_t exponent : 11; + uint32_t sign : 1; + } bits; + } __tmp; + __static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits)); + + __tmp.bits.sign = 0u; + __tmp.bits.exponent = ~0u; + __tmp.bits.quiet = 1u; + __tmp.bits.mantissa = __make_mantissa(__tagp); + + return __tmp.val; +#else + __static_assert_type_size_equal(sizeof(uint64_t), sizeof(double)); + uint64_t __val = __make_mantissa(__tagp); + __val |= 0xFFF << 51; + return *reinterpret_cast<double *>(&__val); +#endif +} + +__DEVICE__ +double nearbyint(double __x) { return __builtin_nearbyint(__x); } + +__DEVICE__ +double nextafter(double __x, double __y) { + return __ocml_nextafter_f64(__x, __y); +} + +__DEVICE__ +double norm(int __dim, + const double *__a) { // TODO: placeholder until OCML adds support. + double __r = 0; + while (__dim--) { + __r += __a[0] * __a[0]; + ++__a; + } + + return __builtin_sqrt(__r); +} + +__DEVICE__ +double norm3d(double __x, double __y, double __z) { + return __ocml_len3_f64(__x, __y, __z); +} + +__DEVICE__ +double norm4d(double __x, double __y, double __z, double __w) { + return __ocml_len4_f64(__x, __y, __z, __w); +} + +__DEVICE__ +double normcdf(double __x) { return __ocml_ncdf_f64(__x); } + +__DEVICE__ +double normcdfinv(double __x) { return __ocml_ncdfinv_f64(__x); } + +__DEVICE__ +double pow(double __x, double __y) { return __ocml_pow_f64(__x, __y); } + +__DEVICE__ +double powi(double __x, int __y) { return __ocml_pown_f64(__x, __y); } + +__DEVICE__ +double rcbrt(double __x) { return __ocml_rcbrt_f64(__x); } + +__DEVICE__ +double remainder(double __x, double __y) { + return __ocml_remainder_f64(__x, __y); +} + +__DEVICE__ +double remquo(double __x, double __y, int *__quo) { + int __tmp; +#ifdef __OPENMP_AMDGCN__ +#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) +#endif + double __r = __ocml_remquo_f64( + __x, __y, (__attribute__((address_space(5))) int *)&__tmp); + *__quo = __tmp; + + return __r; +} + +__DEVICE__ +double rhypot(double __x, double __y) { return __ocml_rhypot_f64(__x, __y); } + +__DEVICE__ +double rint(double __x) { return __builtin_rint(__x); } + +__DEVICE__ +double rnorm(int __dim, + const double *__a) { // TODO: placeholder until OCML adds support. + double __r = 0; + while (__dim--) { + __r += __a[0] * __a[0]; + ++__a; + } + + return __ocml_rsqrt_f64(__r); +} + +__DEVICE__ +double rnorm3d(double __x, double __y, double __z) { + return __ocml_rlen3_f64(__x, __y, __z); +} + +__DEVICE__ +double rnorm4d(double __x, double __y, double __z, double __w) { + return __ocml_rlen4_f64(__x, __y, __z, __w); +} + +__DEVICE__ +double round(double __x) { return __builtin_round(__x); } + +__DEVICE__ +double rsqrt(double __x) { return __ocml_rsqrt_f64(__x); } + +__DEVICE__ +double scalbln(double __x, long int __n) { + return (__n < INT_MAX) ? __builtin_amdgcn_ldexp(__x, __n) + : __ocml_scalb_f64(__x, __n); +} +__DEVICE__ +double scalbn(double __x, int __n) { return __builtin_amdgcn_ldexp(__x, __n); } + +__DEVICE__ +__RETURN_TYPE __signbit(double __x) { return __builtin_signbit(__x); } + +__DEVICE__ +double sin(double __x) { return __ocml_sin_f64(__x); } + +__DEVICE__ +void sincos(double __x, double *__sinptr, double *__cosptr) { + double __tmp; +#ifdef __OPENMP_AMDGCN__ +#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) +#endif + *__sinptr = __ocml_sincos_f64( + __x, (__attribute__((address_space(5))) double *)&__tmp); + *__cosptr = __tmp; +} + +__DEVICE__ +void sincospi(double __x, double *__sinptr, double *__cosptr) { + double __tmp; +#ifdef __OPENMP_AMDGCN__ +#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc) +#endif + *__sinptr = __ocml_sincospi_f64( + __x, (__attribute__((address_space(5))) double *)&__tmp); + *__cosptr = __tmp; +} + +__DEVICE__ +double sinh(double __x) { return __ocml_sinh_f64(__x); } + +__DEVICE__ +double sinpi(double __x) { return __ocml_sinpi_f64(__x); } + +__DEVICE__ +double sqrt(double __x) { return __builtin_sqrt(__x); } + +__DEVICE__ +double tan(double __x) { return __ocml_tan_f64(__x); } + +__DEVICE__ +double tanh(double __x) { return __ocml_tanh_f64(__x); } + +__DEVICE__ +double tgamma(double __x) { return __ocml_tgamma_f64(__x); } + +__DEVICE__ +double trunc(double __x) { return __builtin_trunc(__x); } + +__DEVICE__ +double y0(double __x) { return __ocml_y0_f64(__x); } + +__DEVICE__ +double y1(double __x) { return __ocml_y1_f64(__x); } + +__DEVICE__ +double yn(int __n, double __x) { // TODO: we could use Ahmes multiplication + // and the Miller & Brown algorithm + // for linear recurrences to get O(log n) steps, but it's unclear if + // it'd be beneficial in this case. Placeholder until OCML adds + // support. + if (__n == 0) + return y0(__x); + if (__n == 1) + return y1(__x); + + double __x0 = y0(__x); + double __x1 = y1(__x); + for (int __i = 1; __i < __n; ++__i) { + double __x2 = (2 * __i) / __x * __x1 - __x0; + __x0 = __x1; + __x1 = __x2; + } + + return __x1; +} + +// BEGIN INTRINSICS +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +double __dadd_rd(double __x, double __y) { + return __ocml_add_rtn_f64(__x, __y); +} +__DEVICE__ +double __dadd_rn(double __x, double __y) { + return __ocml_add_rte_f64(__x, __y); +} +__DEVICE__ +double __dadd_ru(double __x, double __y) { + return __ocml_add_rtp_f64(__x, __y); +} +__DEVICE__ +double __dadd_rz(double __x, double __y) { + return __ocml_add_rtz_f64(__x, __y); +} +#else +__DEVICE__ +double __dadd_rn(double __x, double __y) { return __x + __y; } +#endif + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +double __ddiv_rd(double __x, double __y) { + return __ocml_div_rtn_f64(__x, __y); +} +__DEVICE__ +double __ddiv_rn(double __x, double __y) { + return __ocml_div_rte_f64(__x, __y); +} +__DEVICE__ +double __ddiv_ru(double __x, double __y) { + return __ocml_div_rtp_f64(__x, __y); +} +__DEVICE__ +double __ddiv_rz(double __x, double __y) { + return __ocml_div_rtz_f64(__x, __y); +} +#else +__DEVICE__ +double __ddiv_rn(double __x, double __y) { return __x / __y; } +#endif + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +double __dmul_rd(double __x, double __y) { + return __ocml_mul_rtn_f64(__x, __y); +} +__DEVICE__ +double __dmul_rn(double __x, double __y) { + return __ocml_mul_rte_f64(__x, __y); +} +__DEVICE__ +double __dmul_ru(double __x, double __y) { + return __ocml_mul_rtp_f64(__x, __y); +} +__DEVICE__ +double __dmul_rz(double __x, double __y) { + return __ocml_mul_rtz_f64(__x, __y); +} +#else +__DEVICE__ +double __dmul_rn(double __x, double __y) { return __x * __y; } +#endif + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +double __drcp_rd(double __x) { return __ocml_div_rtn_f64(1.0, __x); } +__DEVICE__ +double __drcp_rn(double __x) { return __ocml_div_rte_f64(1.0, __x); } +__DEVICE__ +double __drcp_ru(double __x) { return __ocml_div_rtp_f64(1.0, __x); } +__DEVICE__ +double __drcp_rz(double __x) { return __ocml_div_rtz_f64(1.0, __x); } +#else +__DEVICE__ +double __drcp_rn(double __x) { return 1.0 / __x; } +#endif + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +double __dsqrt_rd(double __x) { return __ocml_sqrt_rtn_f64(__x); } +__DEVICE__ +double __dsqrt_rn(double __x) { return __ocml_sqrt_rte_f64(__x); } +__DEVICE__ +double __dsqrt_ru(double __x) { return __ocml_sqrt_rtp_f64(__x); } +__DEVICE__ +double __dsqrt_rz(double __x) { return __ocml_sqrt_rtz_f64(__x); } +#else +__DEVICE__ +double __dsqrt_rn(double __x) { return __builtin_sqrt(__x); } +#endif + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +double __dsub_rd(double __x, double __y) { + return __ocml_sub_rtn_f64(__x, __y); +} +__DEVICE__ +double __dsub_rn(double __x, double __y) { + return __ocml_sub_rte_f64(__x, __y); +} +__DEVICE__ +double __dsub_ru(double __x, double __y) { + return __ocml_sub_rtp_f64(__x, __y); +} +__DEVICE__ +double __dsub_rz(double __x, double __y) { + return __ocml_sub_rtz_f64(__x, __y); +} +#else +__DEVICE__ +double __dsub_rn(double __x, double __y) { return __x - __y; } +#endif + +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +double __fma_rd(double __x, double __y, double __z) { + return __ocml_fma_rtn_f64(__x, __y, __z); +} +__DEVICE__ +double __fma_rn(double __x, double __y, double __z) { + return __ocml_fma_rte_f64(__x, __y, __z); +} +__DEVICE__ +double __fma_ru(double __x, double __y, double __z) { + return __ocml_fma_rtp_f64(__x, __y, __z); +} +__DEVICE__ +double __fma_rz(double __x, double __y, double __z) { + return __ocml_fma_rtz_f64(__x, __y, __z); +} +#else +__DEVICE__ +double __fma_rn(double __x, double __y, double __z) { + return __builtin_fma(__x, __y, __z); +} +#endif +// END INTRINSICS +// END DOUBLE + +// C only macros +#if !defined(__cplusplus) && __STDC_VERSION__ >= 201112L +#define isfinite(__x) _Generic((__x), float : __finitef, double : __finite)(__x) +#define isinf(__x) _Generic((__x), float : __isinff, double : __isinf)(__x) +#define isnan(__x) _Generic((__x), float : __isnanf, double : __isnan)(__x) +#define signbit(__x) \ + _Generic((__x), float : __signbitf, double : __signbit)(__x) +#endif // !defined(__cplusplus) && __STDC_VERSION__ >= 201112L + +#if defined(__cplusplus) +template <class T> __DEVICE__ T min(T __arg1, T __arg2) { + return (__arg1 < __arg2) ? __arg1 : __arg2; +} + +template <class T> __DEVICE__ T max(T __arg1, T __arg2) { + return (__arg1 > __arg2) ? __arg1 : __arg2; +} + +__DEVICE__ int min(int __arg1, int __arg2) { + return (__arg1 < __arg2) ? __arg1 : __arg2; +} +__DEVICE__ int max(int __arg1, int __arg2) { + return (__arg1 > __arg2) ? __arg1 : __arg2; +} + +__DEVICE__ +float max(float __x, float __y) { return __builtin_fmaxf(__x, __y); } + +__DEVICE__ +double max(double __x, double __y) { return __builtin_fmax(__x, __y); } + +__DEVICE__ +float min(float __x, float __y) { return __builtin_fminf(__x, __y); } + +__DEVICE__ +double min(double __x, double __y) { return __builtin_fmin(__x, __y); } + +#if !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__) +__host__ inline static int min(int __arg1, int __arg2) { + return __arg1 < __arg2 ? __arg1 : __arg2; +} + +__host__ inline static int max(int __arg1, int __arg2) { + return __arg1 > __arg2 ? __arg1 : __arg2; +} +#endif // !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__) +#endif + +#pragma pop_macro("__DEVICE__") +#pragma pop_macro("__RETURN_TYPE") +#pragma pop_macro("__FAST_OR_SLOW") + +#endif // __CLANG_HIP_MATH_H__ |