aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h')
-rw-r--r--contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h1324
1 files changed, 1324 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h b/contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h
new file mode 100644
index 000000000000..11e1e7d03258
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h
@@ -0,0 +1,1324 @@
+/*===---- __clang_hip_math.h - Device-side HIP math support ----------------===
+ *
+ * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+ * See https://llvm.org/LICENSE.txt for license information.
+ * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+ *
+ *===-----------------------------------------------------------------------===
+ */
+#ifndef __CLANG_HIP_MATH_H__
+#define __CLANG_HIP_MATH_H__
+
+#if !defined(__HIP__) && !defined(__OPENMP_AMDGCN__)
+#error "This file is for HIP and OpenMP AMDGCN device compilation only."
+#endif
+
+#if !defined(__HIPCC_RTC__)
+#include <limits.h>
+#include <stdint.h>
+#ifdef __OPENMP_AMDGCN__
+#include <omp.h>
+#endif
+#endif // !defined(__HIPCC_RTC__)
+
+#pragma push_macro("__DEVICE__")
+
+#ifdef __OPENMP_AMDGCN__
+#define __DEVICE__ static inline __attribute__((always_inline, nothrow))
+#else
+#define __DEVICE__ static __device__ inline __attribute__((always_inline))
+#endif
+
+// Device library provides fast low precision and slow full-recision
+// implementations for some functions. Which one gets selected depends on
+// __CLANG_GPU_APPROX_TRANSCENDENTALS__ which gets defined by clang if
+// -ffast-math or -fgpu-approx-transcendentals are in effect.
+#pragma push_macro("__FAST_OR_SLOW")
+#if defined(__CLANG_GPU_APPROX_TRANSCENDENTALS__)
+#define __FAST_OR_SLOW(fast, slow) fast
+#else
+#define __FAST_OR_SLOW(fast, slow) slow
+#endif
+
+// A few functions return bool type starting only in C++11.
+#pragma push_macro("__RETURN_TYPE")
+#ifdef __OPENMP_AMDGCN__
+#define __RETURN_TYPE int
+#else
+#if defined(__cplusplus)
+#define __RETURN_TYPE bool
+#else
+#define __RETURN_TYPE int
+#endif
+#endif // __OPENMP_AMDGCN__
+
+#if defined (__cplusplus) && __cplusplus < 201103L
+// emulate static_assert on type sizes
+template<bool>
+struct __compare_result{};
+template<>
+struct __compare_result<true> {
+ static const __device__ bool valid;
+};
+
+__DEVICE__
+void __suppress_unused_warning(bool b){};
+template <unsigned int S, unsigned int T>
+__DEVICE__ void __static_assert_equal_size() {
+ __suppress_unused_warning(__compare_result<S == T>::valid);
+}
+
+#define __static_assert_type_size_equal(A, B) \
+ __static_assert_equal_size<A,B>()
+
+#else
+#define __static_assert_type_size_equal(A,B) \
+ static_assert((A) == (B), "")
+
+#endif
+
+__DEVICE__
+uint64_t __make_mantissa_base8(const char *__tagp __attribute__((nonnull))) {
+ uint64_t __r = 0;
+ while (*__tagp != '\0') {
+ char __tmp = *__tagp;
+
+ if (__tmp >= '0' && __tmp <= '7')
+ __r = (__r * 8u) + __tmp - '0';
+ else
+ return 0;
+
+ ++__tagp;
+ }
+
+ return __r;
+}
+
+__DEVICE__
+uint64_t __make_mantissa_base10(const char *__tagp __attribute__((nonnull))) {
+ uint64_t __r = 0;
+ while (*__tagp != '\0') {
+ char __tmp = *__tagp;
+
+ if (__tmp >= '0' && __tmp <= '9')
+ __r = (__r * 10u) + __tmp - '0';
+ else
+ return 0;
+
+ ++__tagp;
+ }
+
+ return __r;
+}
+
+__DEVICE__
+uint64_t __make_mantissa_base16(const char *__tagp __attribute__((nonnull))) {
+ uint64_t __r = 0;
+ while (*__tagp != '\0') {
+ char __tmp = *__tagp;
+
+ if (__tmp >= '0' && __tmp <= '9')
+ __r = (__r * 16u) + __tmp - '0';
+ else if (__tmp >= 'a' && __tmp <= 'f')
+ __r = (__r * 16u) + __tmp - 'a' + 10;
+ else if (__tmp >= 'A' && __tmp <= 'F')
+ __r = (__r * 16u) + __tmp - 'A' + 10;
+ else
+ return 0;
+
+ ++__tagp;
+ }
+
+ return __r;
+}
+
+__DEVICE__
+uint64_t __make_mantissa(const char *__tagp __attribute__((nonnull))) {
+ if (*__tagp == '0') {
+ ++__tagp;
+
+ if (*__tagp == 'x' || *__tagp == 'X')
+ return __make_mantissa_base16(__tagp);
+ else
+ return __make_mantissa_base8(__tagp);
+ }
+
+ return __make_mantissa_base10(__tagp);
+}
+
+// BEGIN FLOAT
+
+// BEGIN INTRINSICS
+
+__DEVICE__
+float __cosf(float __x) { return __ocml_native_cos_f32(__x); }
+
+__DEVICE__
+float __exp10f(float __x) {
+ const float __log2_10 = 0x1.a934f0p+1f;
+ return __builtin_amdgcn_exp2f(__log2_10 * __x);
+}
+
+__DEVICE__
+float __expf(float __x) {
+ const float __log2_e = 0x1.715476p+0;
+ return __builtin_amdgcn_exp2f(__log2_e * __x);
+}
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+float __fadd_rd(float __x, float __y) { return __ocml_add_rtn_f32(__x, __y); }
+__DEVICE__
+float __fadd_rn(float __x, float __y) { return __ocml_add_rte_f32(__x, __y); }
+__DEVICE__
+float __fadd_ru(float __x, float __y) { return __ocml_add_rtp_f32(__x, __y); }
+__DEVICE__
+float __fadd_rz(float __x, float __y) { return __ocml_add_rtz_f32(__x, __y); }
+#else
+__DEVICE__
+float __fadd_rn(float __x, float __y) { return __x + __y; }
+#endif
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+float __fdiv_rd(float __x, float __y) { return __ocml_div_rtn_f32(__x, __y); }
+__DEVICE__
+float __fdiv_rn(float __x, float __y) { return __ocml_div_rte_f32(__x, __y); }
+__DEVICE__
+float __fdiv_ru(float __x, float __y) { return __ocml_div_rtp_f32(__x, __y); }
+__DEVICE__
+float __fdiv_rz(float __x, float __y) { return __ocml_div_rtz_f32(__x, __y); }
+#else
+__DEVICE__
+float __fdiv_rn(float __x, float __y) { return __x / __y; }
+#endif
+
+__DEVICE__
+float __fdividef(float __x, float __y) { return __x / __y; }
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+float __fmaf_rd(float __x, float __y, float __z) {
+ return __ocml_fma_rtn_f32(__x, __y, __z);
+}
+__DEVICE__
+float __fmaf_rn(float __x, float __y, float __z) {
+ return __ocml_fma_rte_f32(__x, __y, __z);
+}
+__DEVICE__
+float __fmaf_ru(float __x, float __y, float __z) {
+ return __ocml_fma_rtp_f32(__x, __y, __z);
+}
+__DEVICE__
+float __fmaf_rz(float __x, float __y, float __z) {
+ return __ocml_fma_rtz_f32(__x, __y, __z);
+}
+#else
+__DEVICE__
+float __fmaf_rn(float __x, float __y, float __z) {
+ return __builtin_fmaf(__x, __y, __z);
+}
+#endif
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+float __fmul_rd(float __x, float __y) { return __ocml_mul_rtn_f32(__x, __y); }
+__DEVICE__
+float __fmul_rn(float __x, float __y) { return __ocml_mul_rte_f32(__x, __y); }
+__DEVICE__
+float __fmul_ru(float __x, float __y) { return __ocml_mul_rtp_f32(__x, __y); }
+__DEVICE__
+float __fmul_rz(float __x, float __y) { return __ocml_mul_rtz_f32(__x, __y); }
+#else
+__DEVICE__
+float __fmul_rn(float __x, float __y) { return __x * __y; }
+#endif
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+float __frcp_rd(float __x) { return __ocml_div_rtn_f32(1.0f, __x); }
+__DEVICE__
+float __frcp_rn(float __x) { return __ocml_div_rte_f32(1.0f, __x); }
+__DEVICE__
+float __frcp_ru(float __x) { return __ocml_div_rtp_f32(1.0f, __x); }
+__DEVICE__
+float __frcp_rz(float __x) { return __ocml_div_rtz_f32(1.0f, __x); }
+#else
+__DEVICE__
+float __frcp_rn(float __x) { return 1.0f / __x; }
+#endif
+
+__DEVICE__
+float __frsqrt_rn(float __x) { return __builtin_amdgcn_rsqf(__x); }
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+float __fsqrt_rd(float __x) { return __ocml_sqrt_rtn_f32(__x); }
+__DEVICE__
+float __fsqrt_rn(float __x) { return __ocml_sqrt_rte_f32(__x); }
+__DEVICE__
+float __fsqrt_ru(float __x) { return __ocml_sqrt_rtp_f32(__x); }
+__DEVICE__
+float __fsqrt_rz(float __x) { return __ocml_sqrt_rtz_f32(__x); }
+#else
+__DEVICE__
+float __fsqrt_rn(float __x) { return __ocml_native_sqrt_f32(__x); }
+#endif
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+float __fsub_rd(float __x, float __y) { return __ocml_sub_rtn_f32(__x, __y); }
+__DEVICE__
+float __fsub_rn(float __x, float __y) { return __ocml_sub_rte_f32(__x, __y); }
+__DEVICE__
+float __fsub_ru(float __x, float __y) { return __ocml_sub_rtp_f32(__x, __y); }
+__DEVICE__
+float __fsub_rz(float __x, float __y) { return __ocml_sub_rtz_f32(__x, __y); }
+#else
+__DEVICE__
+float __fsub_rn(float __x, float __y) { return __x - __y; }
+#endif
+
+__DEVICE__
+float __log10f(float __x) { return __builtin_log10f(__x); }
+
+__DEVICE__
+float __log2f(float __x) { return __builtin_amdgcn_logf(__x); }
+
+__DEVICE__
+float __logf(float __x) { return __builtin_logf(__x); }
+
+__DEVICE__
+float __powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
+
+__DEVICE__
+float __saturatef(float __x) { return (__x < 0) ? 0 : ((__x > 1) ? 1 : __x); }
+
+__DEVICE__
+void __sincosf(float __x, float *__sinptr, float *__cosptr) {
+ *__sinptr = __ocml_native_sin_f32(__x);
+ *__cosptr = __ocml_native_cos_f32(__x);
+}
+
+__DEVICE__
+float __sinf(float __x) { return __ocml_native_sin_f32(__x); }
+
+__DEVICE__
+float __tanf(float __x) {
+ return __sinf(__x) * __builtin_amdgcn_rcpf(__cosf(__x));
+}
+// END INTRINSICS
+
+#if defined(__cplusplus)
+__DEVICE__
+int abs(int __x) {
+ return __builtin_abs(__x);
+}
+__DEVICE__
+long labs(long __x) {
+ return __builtin_labs(__x);
+}
+__DEVICE__
+long long llabs(long long __x) {
+ return __builtin_llabs(__x);
+}
+#endif
+
+__DEVICE__
+float acosf(float __x) { return __ocml_acos_f32(__x); }
+
+__DEVICE__
+float acoshf(float __x) { return __ocml_acosh_f32(__x); }
+
+__DEVICE__
+float asinf(float __x) { return __ocml_asin_f32(__x); }
+
+__DEVICE__
+float asinhf(float __x) { return __ocml_asinh_f32(__x); }
+
+__DEVICE__
+float atan2f(float __x, float __y) { return __ocml_atan2_f32(__x, __y); }
+
+__DEVICE__
+float atanf(float __x) { return __ocml_atan_f32(__x); }
+
+__DEVICE__
+float atanhf(float __x) { return __ocml_atanh_f32(__x); }
+
+__DEVICE__
+float cbrtf(float __x) { return __ocml_cbrt_f32(__x); }
+
+__DEVICE__
+float ceilf(float __x) { return __builtin_ceilf(__x); }
+
+__DEVICE__
+float copysignf(float __x, float __y) { return __builtin_copysignf(__x, __y); }
+
+__DEVICE__
+float cosf(float __x) { return __FAST_OR_SLOW(__cosf, __ocml_cos_f32)(__x); }
+
+__DEVICE__
+float coshf(float __x) { return __ocml_cosh_f32(__x); }
+
+__DEVICE__
+float cospif(float __x) { return __ocml_cospi_f32(__x); }
+
+__DEVICE__
+float cyl_bessel_i0f(float __x) { return __ocml_i0_f32(__x); }
+
+__DEVICE__
+float cyl_bessel_i1f(float __x) { return __ocml_i1_f32(__x); }
+
+__DEVICE__
+float erfcf(float __x) { return __ocml_erfc_f32(__x); }
+
+__DEVICE__
+float erfcinvf(float __x) { return __ocml_erfcinv_f32(__x); }
+
+__DEVICE__
+float erfcxf(float __x) { return __ocml_erfcx_f32(__x); }
+
+__DEVICE__
+float erff(float __x) { return __ocml_erf_f32(__x); }
+
+__DEVICE__
+float erfinvf(float __x) { return __ocml_erfinv_f32(__x); }
+
+__DEVICE__
+float exp10f(float __x) { return __ocml_exp10_f32(__x); }
+
+__DEVICE__
+float exp2f(float __x) { return __builtin_exp2f(__x); }
+
+__DEVICE__
+float expf(float __x) { return __builtin_expf(__x); }
+
+__DEVICE__
+float expm1f(float __x) { return __ocml_expm1_f32(__x); }
+
+__DEVICE__
+float fabsf(float __x) { return __builtin_fabsf(__x); }
+
+__DEVICE__
+float fdimf(float __x, float __y) { return __ocml_fdim_f32(__x, __y); }
+
+__DEVICE__
+float fdividef(float __x, float __y) { return __x / __y; }
+
+__DEVICE__
+float floorf(float __x) { return __builtin_floorf(__x); }
+
+__DEVICE__
+float fmaf(float __x, float __y, float __z) {
+ return __builtin_fmaf(__x, __y, __z);
+}
+
+__DEVICE__
+float fmaxf(float __x, float __y) { return __builtin_fmaxf(__x, __y); }
+
+__DEVICE__
+float fminf(float __x, float __y) { return __builtin_fminf(__x, __y); }
+
+__DEVICE__
+float fmodf(float __x, float __y) { return __ocml_fmod_f32(__x, __y); }
+
+__DEVICE__
+float frexpf(float __x, int *__nptr) {
+ return __builtin_frexpf(__x, __nptr);
+}
+
+__DEVICE__
+float hypotf(float __x, float __y) { return __ocml_hypot_f32(__x, __y); }
+
+__DEVICE__
+int ilogbf(float __x) { return __ocml_ilogb_f32(__x); }
+
+__DEVICE__
+__RETURN_TYPE __finitef(float __x) { return __builtin_isfinite(__x); }
+
+__DEVICE__
+__RETURN_TYPE __isinff(float __x) { return __builtin_isinf(__x); }
+
+__DEVICE__
+__RETURN_TYPE __isnanf(float __x) { return __builtin_isnan(__x); }
+
+__DEVICE__
+float j0f(float __x) { return __ocml_j0_f32(__x); }
+
+__DEVICE__
+float j1f(float __x) { return __ocml_j1_f32(__x); }
+
+__DEVICE__
+float jnf(int __n, float __x) { // TODO: we could use Ahmes multiplication
+ // and the Miller & Brown algorithm
+ // for linear recurrences to get O(log n) steps, but it's unclear if
+ // it'd be beneficial in this case.
+ if (__n == 0)
+ return j0f(__x);
+ if (__n == 1)
+ return j1f(__x);
+
+ float __x0 = j0f(__x);
+ float __x1 = j1f(__x);
+ for (int __i = 1; __i < __n; ++__i) {
+ float __x2 = (2 * __i) / __x * __x1 - __x0;
+ __x0 = __x1;
+ __x1 = __x2;
+ }
+
+ return __x1;
+}
+
+__DEVICE__
+float ldexpf(float __x, int __e) { return __builtin_amdgcn_ldexpf(__x, __e); }
+
+__DEVICE__
+float lgammaf(float __x) { return __ocml_lgamma_f32(__x); }
+
+__DEVICE__
+long long int llrintf(float __x) { return __builtin_rintf(__x); }
+
+__DEVICE__
+long long int llroundf(float __x) { return __builtin_roundf(__x); }
+
+__DEVICE__
+float log10f(float __x) { return __builtin_log10f(__x); }
+
+__DEVICE__
+float log1pf(float __x) { return __ocml_log1p_f32(__x); }
+
+__DEVICE__
+float log2f(float __x) { return __FAST_OR_SLOW(__log2f, __ocml_log2_f32)(__x); }
+
+__DEVICE__
+float logbf(float __x) { return __ocml_logb_f32(__x); }
+
+__DEVICE__
+float logf(float __x) { return __FAST_OR_SLOW(__logf, __ocml_log_f32)(__x); }
+
+__DEVICE__
+long int lrintf(float __x) { return __builtin_rintf(__x); }
+
+__DEVICE__
+long int lroundf(float __x) { return __builtin_roundf(__x); }
+
+__DEVICE__
+float modff(float __x, float *__iptr) {
+ float __tmp;
+#ifdef __OPENMP_AMDGCN__
+#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
+#endif
+ float __r =
+ __ocml_modf_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
+ *__iptr = __tmp;
+ return __r;
+}
+
+__DEVICE__
+float nanf(const char *__tagp __attribute__((nonnull))) {
+ union {
+ float val;
+ struct ieee_float {
+ unsigned int mantissa : 22;
+ unsigned int quiet : 1;
+ unsigned int exponent : 8;
+ unsigned int sign : 1;
+ } bits;
+ } __tmp;
+ __static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits));
+
+ __tmp.bits.sign = 0u;
+ __tmp.bits.exponent = ~0u;
+ __tmp.bits.quiet = 1u;
+ __tmp.bits.mantissa = __make_mantissa(__tagp);
+
+ return __tmp.val;
+}
+
+__DEVICE__
+float nearbyintf(float __x) { return __builtin_nearbyintf(__x); }
+
+__DEVICE__
+float nextafterf(float __x, float __y) {
+ return __ocml_nextafter_f32(__x, __y);
+}
+
+__DEVICE__
+float norm3df(float __x, float __y, float __z) {
+ return __ocml_len3_f32(__x, __y, __z);
+}
+
+__DEVICE__
+float norm4df(float __x, float __y, float __z, float __w) {
+ return __ocml_len4_f32(__x, __y, __z, __w);
+}
+
+__DEVICE__
+float normcdff(float __x) { return __ocml_ncdf_f32(__x); }
+
+__DEVICE__
+float normcdfinvf(float __x) { return __ocml_ncdfinv_f32(__x); }
+
+__DEVICE__
+float normf(int __dim,
+ const float *__a) { // TODO: placeholder until OCML adds support.
+ float __r = 0;
+ while (__dim--) {
+ __r += __a[0] * __a[0];
+ ++__a;
+ }
+
+ return __builtin_sqrtf(__r);
+}
+
+__DEVICE__
+float powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
+
+__DEVICE__
+float powif(float __x, int __y) { return __ocml_pown_f32(__x, __y); }
+
+__DEVICE__
+float rcbrtf(float __x) { return __ocml_rcbrt_f32(__x); }
+
+__DEVICE__
+float remainderf(float __x, float __y) {
+ return __ocml_remainder_f32(__x, __y);
+}
+
+__DEVICE__
+float remquof(float __x, float __y, int *__quo) {
+ int __tmp;
+#ifdef __OPENMP_AMDGCN__
+#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
+#endif
+ float __r = __ocml_remquo_f32(
+ __x, __y, (__attribute__((address_space(5))) int *)&__tmp);
+ *__quo = __tmp;
+
+ return __r;
+}
+
+__DEVICE__
+float rhypotf(float __x, float __y) { return __ocml_rhypot_f32(__x, __y); }
+
+__DEVICE__
+float rintf(float __x) { return __builtin_rintf(__x); }
+
+__DEVICE__
+float rnorm3df(float __x, float __y, float __z) {
+ return __ocml_rlen3_f32(__x, __y, __z);
+}
+
+__DEVICE__
+float rnorm4df(float __x, float __y, float __z, float __w) {
+ return __ocml_rlen4_f32(__x, __y, __z, __w);
+}
+
+__DEVICE__
+float rnormf(int __dim,
+ const float *__a) { // TODO: placeholder until OCML adds support.
+ float __r = 0;
+ while (__dim--) {
+ __r += __a[0] * __a[0];
+ ++__a;
+ }
+
+ return __ocml_rsqrt_f32(__r);
+}
+
+__DEVICE__
+float roundf(float __x) { return __builtin_roundf(__x); }
+
+__DEVICE__
+float rsqrtf(float __x) { return __ocml_rsqrt_f32(__x); }
+
+__DEVICE__
+float scalblnf(float __x, long int __n) {
+ return (__n < INT_MAX) ? __builtin_amdgcn_ldexpf(__x, __n)
+ : __ocml_scalb_f32(__x, __n);
+}
+
+__DEVICE__
+float scalbnf(float __x, int __n) { return __builtin_amdgcn_ldexpf(__x, __n); }
+
+__DEVICE__
+__RETURN_TYPE __signbitf(float __x) { return __builtin_signbitf(__x); }
+
+__DEVICE__
+void sincosf(float __x, float *__sinptr, float *__cosptr) {
+ float __tmp;
+#ifdef __OPENMP_AMDGCN__
+#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
+#endif
+#ifdef __CLANG_CUDA_APPROX_TRANSCENDENTALS__
+ __sincosf(__x, __sinptr, __cosptr);
+#else
+ *__sinptr =
+ __ocml_sincos_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
+ *__cosptr = __tmp;
+#endif
+}
+
+__DEVICE__
+void sincospif(float __x, float *__sinptr, float *__cosptr) {
+ float __tmp;
+#ifdef __OPENMP_AMDGCN__
+#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
+#endif
+ *__sinptr = __ocml_sincospi_f32(
+ __x, (__attribute__((address_space(5))) float *)&__tmp);
+ *__cosptr = __tmp;
+}
+
+__DEVICE__
+float sinf(float __x) { return __FAST_OR_SLOW(__sinf, __ocml_sin_f32)(__x); }
+
+__DEVICE__
+float sinhf(float __x) { return __ocml_sinh_f32(__x); }
+
+__DEVICE__
+float sinpif(float __x) { return __ocml_sinpi_f32(__x); }
+
+__DEVICE__
+float sqrtf(float __x) { return __builtin_sqrtf(__x); }
+
+__DEVICE__
+float tanf(float __x) { return __ocml_tan_f32(__x); }
+
+__DEVICE__
+float tanhf(float __x) { return __ocml_tanh_f32(__x); }
+
+__DEVICE__
+float tgammaf(float __x) { return __ocml_tgamma_f32(__x); }
+
+__DEVICE__
+float truncf(float __x) { return __builtin_truncf(__x); }
+
+__DEVICE__
+float y0f(float __x) { return __ocml_y0_f32(__x); }
+
+__DEVICE__
+float y1f(float __x) { return __ocml_y1_f32(__x); }
+
+__DEVICE__
+float ynf(int __n, float __x) { // TODO: we could use Ahmes multiplication
+ // and the Miller & Brown algorithm
+ // for linear recurrences to get O(log n) steps, but it's unclear if
+ // it'd be beneficial in this case. Placeholder until OCML adds
+ // support.
+ if (__n == 0)
+ return y0f(__x);
+ if (__n == 1)
+ return y1f(__x);
+
+ float __x0 = y0f(__x);
+ float __x1 = y1f(__x);
+ for (int __i = 1; __i < __n; ++__i) {
+ float __x2 = (2 * __i) / __x * __x1 - __x0;
+ __x0 = __x1;
+ __x1 = __x2;
+ }
+
+ return __x1;
+}
+
+
+// END FLOAT
+
+// BEGIN DOUBLE
+__DEVICE__
+double acos(double __x) { return __ocml_acos_f64(__x); }
+
+__DEVICE__
+double acosh(double __x) { return __ocml_acosh_f64(__x); }
+
+__DEVICE__
+double asin(double __x) { return __ocml_asin_f64(__x); }
+
+__DEVICE__
+double asinh(double __x) { return __ocml_asinh_f64(__x); }
+
+__DEVICE__
+double atan(double __x) { return __ocml_atan_f64(__x); }
+
+__DEVICE__
+double atan2(double __x, double __y) { return __ocml_atan2_f64(__x, __y); }
+
+__DEVICE__
+double atanh(double __x) { return __ocml_atanh_f64(__x); }
+
+__DEVICE__
+double cbrt(double __x) { return __ocml_cbrt_f64(__x); }
+
+__DEVICE__
+double ceil(double __x) { return __builtin_ceil(__x); }
+
+__DEVICE__
+double copysign(double __x, double __y) {
+ return __builtin_copysign(__x, __y);
+}
+
+__DEVICE__
+double cos(double __x) { return __ocml_cos_f64(__x); }
+
+__DEVICE__
+double cosh(double __x) { return __ocml_cosh_f64(__x); }
+
+__DEVICE__
+double cospi(double __x) { return __ocml_cospi_f64(__x); }
+
+__DEVICE__
+double cyl_bessel_i0(double __x) { return __ocml_i0_f64(__x); }
+
+__DEVICE__
+double cyl_bessel_i1(double __x) { return __ocml_i1_f64(__x); }
+
+__DEVICE__
+double erf(double __x) { return __ocml_erf_f64(__x); }
+
+__DEVICE__
+double erfc(double __x) { return __ocml_erfc_f64(__x); }
+
+__DEVICE__
+double erfcinv(double __x) { return __ocml_erfcinv_f64(__x); }
+
+__DEVICE__
+double erfcx(double __x) { return __ocml_erfcx_f64(__x); }
+
+__DEVICE__
+double erfinv(double __x) { return __ocml_erfinv_f64(__x); }
+
+__DEVICE__
+double exp(double __x) { return __ocml_exp_f64(__x); }
+
+__DEVICE__
+double exp10(double __x) { return __ocml_exp10_f64(__x); }
+
+__DEVICE__
+double exp2(double __x) { return __ocml_exp2_f64(__x); }
+
+__DEVICE__
+double expm1(double __x) { return __ocml_expm1_f64(__x); }
+
+__DEVICE__
+double fabs(double __x) { return __builtin_fabs(__x); }
+
+__DEVICE__
+double fdim(double __x, double __y) { return __ocml_fdim_f64(__x, __y); }
+
+__DEVICE__
+double floor(double __x) { return __builtin_floor(__x); }
+
+__DEVICE__
+double fma(double __x, double __y, double __z) {
+ return __builtin_fma(__x, __y, __z);
+}
+
+__DEVICE__
+double fmax(double __x, double __y) { return __builtin_fmax(__x, __y); }
+
+__DEVICE__
+double fmin(double __x, double __y) { return __builtin_fmin(__x, __y); }
+
+__DEVICE__
+double fmod(double __x, double __y) { return __ocml_fmod_f64(__x, __y); }
+
+__DEVICE__
+double frexp(double __x, int *__nptr) {
+ return __builtin_frexp(__x, __nptr);
+}
+
+__DEVICE__
+double hypot(double __x, double __y) { return __ocml_hypot_f64(__x, __y); }
+
+__DEVICE__
+int ilogb(double __x) { return __ocml_ilogb_f64(__x); }
+
+__DEVICE__
+__RETURN_TYPE __finite(double __x) { return __builtin_isfinite(__x); }
+
+__DEVICE__
+__RETURN_TYPE __isinf(double __x) { return __builtin_isinf(__x); }
+
+__DEVICE__
+__RETURN_TYPE __isnan(double __x) { return __builtin_isnan(__x); }
+
+__DEVICE__
+double j0(double __x) { return __ocml_j0_f64(__x); }
+
+__DEVICE__
+double j1(double __x) { return __ocml_j1_f64(__x); }
+
+__DEVICE__
+double jn(int __n, double __x) { // TODO: we could use Ahmes multiplication
+ // and the Miller & Brown algorithm
+ // for linear recurrences to get O(log n) steps, but it's unclear if
+ // it'd be beneficial in this case. Placeholder until OCML adds
+ // support.
+ if (__n == 0)
+ return j0(__x);
+ if (__n == 1)
+ return j1(__x);
+
+ double __x0 = j0(__x);
+ double __x1 = j1(__x);
+ for (int __i = 1; __i < __n; ++__i) {
+ double __x2 = (2 * __i) / __x * __x1 - __x0;
+ __x0 = __x1;
+ __x1 = __x2;
+ }
+ return __x1;
+}
+
+__DEVICE__
+double ldexp(double __x, int __e) { return __builtin_amdgcn_ldexp(__x, __e); }
+
+__DEVICE__
+double lgamma(double __x) { return __ocml_lgamma_f64(__x); }
+
+__DEVICE__
+long long int llrint(double __x) { return __builtin_rint(__x); }
+
+__DEVICE__
+long long int llround(double __x) { return __builtin_round(__x); }
+
+__DEVICE__
+double log(double __x) { return __ocml_log_f64(__x); }
+
+__DEVICE__
+double log10(double __x) { return __ocml_log10_f64(__x); }
+
+__DEVICE__
+double log1p(double __x) { return __ocml_log1p_f64(__x); }
+
+__DEVICE__
+double log2(double __x) { return __ocml_log2_f64(__x); }
+
+__DEVICE__
+double logb(double __x) { return __ocml_logb_f64(__x); }
+
+__DEVICE__
+long int lrint(double __x) { return __builtin_rint(__x); }
+
+__DEVICE__
+long int lround(double __x) { return __builtin_round(__x); }
+
+__DEVICE__
+double modf(double __x, double *__iptr) {
+ double __tmp;
+#ifdef __OPENMP_AMDGCN__
+#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
+#endif
+ double __r =
+ __ocml_modf_f64(__x, (__attribute__((address_space(5))) double *)&__tmp);
+ *__iptr = __tmp;
+
+ return __r;
+}
+
+__DEVICE__
+double nan(const char *__tagp) {
+#if !_WIN32
+ union {
+ double val;
+ struct ieee_double {
+ uint64_t mantissa : 51;
+ uint32_t quiet : 1;
+ uint32_t exponent : 11;
+ uint32_t sign : 1;
+ } bits;
+ } __tmp;
+ __static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits));
+
+ __tmp.bits.sign = 0u;
+ __tmp.bits.exponent = ~0u;
+ __tmp.bits.quiet = 1u;
+ __tmp.bits.mantissa = __make_mantissa(__tagp);
+
+ return __tmp.val;
+#else
+ __static_assert_type_size_equal(sizeof(uint64_t), sizeof(double));
+ uint64_t __val = __make_mantissa(__tagp);
+ __val |= 0xFFF << 51;
+ return *reinterpret_cast<double *>(&__val);
+#endif
+}
+
+__DEVICE__
+double nearbyint(double __x) { return __builtin_nearbyint(__x); }
+
+__DEVICE__
+double nextafter(double __x, double __y) {
+ return __ocml_nextafter_f64(__x, __y);
+}
+
+__DEVICE__
+double norm(int __dim,
+ const double *__a) { // TODO: placeholder until OCML adds support.
+ double __r = 0;
+ while (__dim--) {
+ __r += __a[0] * __a[0];
+ ++__a;
+ }
+
+ return __builtin_sqrt(__r);
+}
+
+__DEVICE__
+double norm3d(double __x, double __y, double __z) {
+ return __ocml_len3_f64(__x, __y, __z);
+}
+
+__DEVICE__
+double norm4d(double __x, double __y, double __z, double __w) {
+ return __ocml_len4_f64(__x, __y, __z, __w);
+}
+
+__DEVICE__
+double normcdf(double __x) { return __ocml_ncdf_f64(__x); }
+
+__DEVICE__
+double normcdfinv(double __x) { return __ocml_ncdfinv_f64(__x); }
+
+__DEVICE__
+double pow(double __x, double __y) { return __ocml_pow_f64(__x, __y); }
+
+__DEVICE__
+double powi(double __x, int __y) { return __ocml_pown_f64(__x, __y); }
+
+__DEVICE__
+double rcbrt(double __x) { return __ocml_rcbrt_f64(__x); }
+
+__DEVICE__
+double remainder(double __x, double __y) {
+ return __ocml_remainder_f64(__x, __y);
+}
+
+__DEVICE__
+double remquo(double __x, double __y, int *__quo) {
+ int __tmp;
+#ifdef __OPENMP_AMDGCN__
+#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
+#endif
+ double __r = __ocml_remquo_f64(
+ __x, __y, (__attribute__((address_space(5))) int *)&__tmp);
+ *__quo = __tmp;
+
+ return __r;
+}
+
+__DEVICE__
+double rhypot(double __x, double __y) { return __ocml_rhypot_f64(__x, __y); }
+
+__DEVICE__
+double rint(double __x) { return __builtin_rint(__x); }
+
+__DEVICE__
+double rnorm(int __dim,
+ const double *__a) { // TODO: placeholder until OCML adds support.
+ double __r = 0;
+ while (__dim--) {
+ __r += __a[0] * __a[0];
+ ++__a;
+ }
+
+ return __ocml_rsqrt_f64(__r);
+}
+
+__DEVICE__
+double rnorm3d(double __x, double __y, double __z) {
+ return __ocml_rlen3_f64(__x, __y, __z);
+}
+
+__DEVICE__
+double rnorm4d(double __x, double __y, double __z, double __w) {
+ return __ocml_rlen4_f64(__x, __y, __z, __w);
+}
+
+__DEVICE__
+double round(double __x) { return __builtin_round(__x); }
+
+__DEVICE__
+double rsqrt(double __x) { return __ocml_rsqrt_f64(__x); }
+
+__DEVICE__
+double scalbln(double __x, long int __n) {
+ return (__n < INT_MAX) ? __builtin_amdgcn_ldexp(__x, __n)
+ : __ocml_scalb_f64(__x, __n);
+}
+__DEVICE__
+double scalbn(double __x, int __n) { return __builtin_amdgcn_ldexp(__x, __n); }
+
+__DEVICE__
+__RETURN_TYPE __signbit(double __x) { return __builtin_signbit(__x); }
+
+__DEVICE__
+double sin(double __x) { return __ocml_sin_f64(__x); }
+
+__DEVICE__
+void sincos(double __x, double *__sinptr, double *__cosptr) {
+ double __tmp;
+#ifdef __OPENMP_AMDGCN__
+#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
+#endif
+ *__sinptr = __ocml_sincos_f64(
+ __x, (__attribute__((address_space(5))) double *)&__tmp);
+ *__cosptr = __tmp;
+}
+
+__DEVICE__
+void sincospi(double __x, double *__sinptr, double *__cosptr) {
+ double __tmp;
+#ifdef __OPENMP_AMDGCN__
+#pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
+#endif
+ *__sinptr = __ocml_sincospi_f64(
+ __x, (__attribute__((address_space(5))) double *)&__tmp);
+ *__cosptr = __tmp;
+}
+
+__DEVICE__
+double sinh(double __x) { return __ocml_sinh_f64(__x); }
+
+__DEVICE__
+double sinpi(double __x) { return __ocml_sinpi_f64(__x); }
+
+__DEVICE__
+double sqrt(double __x) { return __builtin_sqrt(__x); }
+
+__DEVICE__
+double tan(double __x) { return __ocml_tan_f64(__x); }
+
+__DEVICE__
+double tanh(double __x) { return __ocml_tanh_f64(__x); }
+
+__DEVICE__
+double tgamma(double __x) { return __ocml_tgamma_f64(__x); }
+
+__DEVICE__
+double trunc(double __x) { return __builtin_trunc(__x); }
+
+__DEVICE__
+double y0(double __x) { return __ocml_y0_f64(__x); }
+
+__DEVICE__
+double y1(double __x) { return __ocml_y1_f64(__x); }
+
+__DEVICE__
+double yn(int __n, double __x) { // TODO: we could use Ahmes multiplication
+ // and the Miller & Brown algorithm
+ // for linear recurrences to get O(log n) steps, but it's unclear if
+ // it'd be beneficial in this case. Placeholder until OCML adds
+ // support.
+ if (__n == 0)
+ return y0(__x);
+ if (__n == 1)
+ return y1(__x);
+
+ double __x0 = y0(__x);
+ double __x1 = y1(__x);
+ for (int __i = 1; __i < __n; ++__i) {
+ double __x2 = (2 * __i) / __x * __x1 - __x0;
+ __x0 = __x1;
+ __x1 = __x2;
+ }
+
+ return __x1;
+}
+
+// BEGIN INTRINSICS
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+double __dadd_rd(double __x, double __y) {
+ return __ocml_add_rtn_f64(__x, __y);
+}
+__DEVICE__
+double __dadd_rn(double __x, double __y) {
+ return __ocml_add_rte_f64(__x, __y);
+}
+__DEVICE__
+double __dadd_ru(double __x, double __y) {
+ return __ocml_add_rtp_f64(__x, __y);
+}
+__DEVICE__
+double __dadd_rz(double __x, double __y) {
+ return __ocml_add_rtz_f64(__x, __y);
+}
+#else
+__DEVICE__
+double __dadd_rn(double __x, double __y) { return __x + __y; }
+#endif
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+double __ddiv_rd(double __x, double __y) {
+ return __ocml_div_rtn_f64(__x, __y);
+}
+__DEVICE__
+double __ddiv_rn(double __x, double __y) {
+ return __ocml_div_rte_f64(__x, __y);
+}
+__DEVICE__
+double __ddiv_ru(double __x, double __y) {
+ return __ocml_div_rtp_f64(__x, __y);
+}
+__DEVICE__
+double __ddiv_rz(double __x, double __y) {
+ return __ocml_div_rtz_f64(__x, __y);
+}
+#else
+__DEVICE__
+double __ddiv_rn(double __x, double __y) { return __x / __y; }
+#endif
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+double __dmul_rd(double __x, double __y) {
+ return __ocml_mul_rtn_f64(__x, __y);
+}
+__DEVICE__
+double __dmul_rn(double __x, double __y) {
+ return __ocml_mul_rte_f64(__x, __y);
+}
+__DEVICE__
+double __dmul_ru(double __x, double __y) {
+ return __ocml_mul_rtp_f64(__x, __y);
+}
+__DEVICE__
+double __dmul_rz(double __x, double __y) {
+ return __ocml_mul_rtz_f64(__x, __y);
+}
+#else
+__DEVICE__
+double __dmul_rn(double __x, double __y) { return __x * __y; }
+#endif
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+double __drcp_rd(double __x) { return __ocml_div_rtn_f64(1.0, __x); }
+__DEVICE__
+double __drcp_rn(double __x) { return __ocml_div_rte_f64(1.0, __x); }
+__DEVICE__
+double __drcp_ru(double __x) { return __ocml_div_rtp_f64(1.0, __x); }
+__DEVICE__
+double __drcp_rz(double __x) { return __ocml_div_rtz_f64(1.0, __x); }
+#else
+__DEVICE__
+double __drcp_rn(double __x) { return 1.0 / __x; }
+#endif
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+double __dsqrt_rd(double __x) { return __ocml_sqrt_rtn_f64(__x); }
+__DEVICE__
+double __dsqrt_rn(double __x) { return __ocml_sqrt_rte_f64(__x); }
+__DEVICE__
+double __dsqrt_ru(double __x) { return __ocml_sqrt_rtp_f64(__x); }
+__DEVICE__
+double __dsqrt_rz(double __x) { return __ocml_sqrt_rtz_f64(__x); }
+#else
+__DEVICE__
+double __dsqrt_rn(double __x) { return __builtin_sqrt(__x); }
+#endif
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+double __dsub_rd(double __x, double __y) {
+ return __ocml_sub_rtn_f64(__x, __y);
+}
+__DEVICE__
+double __dsub_rn(double __x, double __y) {
+ return __ocml_sub_rte_f64(__x, __y);
+}
+__DEVICE__
+double __dsub_ru(double __x, double __y) {
+ return __ocml_sub_rtp_f64(__x, __y);
+}
+__DEVICE__
+double __dsub_rz(double __x, double __y) {
+ return __ocml_sub_rtz_f64(__x, __y);
+}
+#else
+__DEVICE__
+double __dsub_rn(double __x, double __y) { return __x - __y; }
+#endif
+
+#if defined OCML_BASIC_ROUNDED_OPERATIONS
+__DEVICE__
+double __fma_rd(double __x, double __y, double __z) {
+ return __ocml_fma_rtn_f64(__x, __y, __z);
+}
+__DEVICE__
+double __fma_rn(double __x, double __y, double __z) {
+ return __ocml_fma_rte_f64(__x, __y, __z);
+}
+__DEVICE__
+double __fma_ru(double __x, double __y, double __z) {
+ return __ocml_fma_rtp_f64(__x, __y, __z);
+}
+__DEVICE__
+double __fma_rz(double __x, double __y, double __z) {
+ return __ocml_fma_rtz_f64(__x, __y, __z);
+}
+#else
+__DEVICE__
+double __fma_rn(double __x, double __y, double __z) {
+ return __builtin_fma(__x, __y, __z);
+}
+#endif
+// END INTRINSICS
+// END DOUBLE
+
+// C only macros
+#if !defined(__cplusplus) && __STDC_VERSION__ >= 201112L
+#define isfinite(__x) _Generic((__x), float : __finitef, double : __finite)(__x)
+#define isinf(__x) _Generic((__x), float : __isinff, double : __isinf)(__x)
+#define isnan(__x) _Generic((__x), float : __isnanf, double : __isnan)(__x)
+#define signbit(__x) \
+ _Generic((__x), float : __signbitf, double : __signbit)(__x)
+#endif // !defined(__cplusplus) && __STDC_VERSION__ >= 201112L
+
+#if defined(__cplusplus)
+template <class T> __DEVICE__ T min(T __arg1, T __arg2) {
+ return (__arg1 < __arg2) ? __arg1 : __arg2;
+}
+
+template <class T> __DEVICE__ T max(T __arg1, T __arg2) {
+ return (__arg1 > __arg2) ? __arg1 : __arg2;
+}
+
+__DEVICE__ int min(int __arg1, int __arg2) {
+ return (__arg1 < __arg2) ? __arg1 : __arg2;
+}
+__DEVICE__ int max(int __arg1, int __arg2) {
+ return (__arg1 > __arg2) ? __arg1 : __arg2;
+}
+
+__DEVICE__
+float max(float __x, float __y) { return __builtin_fmaxf(__x, __y); }
+
+__DEVICE__
+double max(double __x, double __y) { return __builtin_fmax(__x, __y); }
+
+__DEVICE__
+float min(float __x, float __y) { return __builtin_fminf(__x, __y); }
+
+__DEVICE__
+double min(double __x, double __y) { return __builtin_fmin(__x, __y); }
+
+#if !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__)
+__host__ inline static int min(int __arg1, int __arg2) {
+ return __arg1 < __arg2 ? __arg1 : __arg2;
+}
+
+__host__ inline static int max(int __arg1, int __arg2) {
+ return __arg1 > __arg2 ? __arg1 : __arg2;
+}
+#endif // !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__)
+#endif
+
+#pragma pop_macro("__DEVICE__")
+#pragma pop_macro("__RETURN_TYPE")
+#pragma pop_macro("__FAST_OR_SLOW")
+
+#endif // __CLANG_HIP_MATH_H__