aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp2857
1 files changed, 2857 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp b/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp
new file mode 100644
index 000000000000..8dd08f14b272
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/CStringChecker.cpp
@@ -0,0 +1,2857 @@
+//= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This defines CStringChecker, which is an assortment of checks on calls
+// to functions in <string.h>.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InterCheckerAPI.h"
+#include "clang/AST/OperationKinds.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/CharInfo.h"
+#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
+#include "llvm/ADT/APSInt.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/raw_ostream.h"
+#include <functional>
+#include <optional>
+
+using namespace clang;
+using namespace ento;
+using namespace std::placeholders;
+
+namespace {
+struct AnyArgExpr {
+ const Expr *Expression;
+ unsigned ArgumentIndex;
+};
+struct SourceArgExpr : AnyArgExpr {};
+struct DestinationArgExpr : AnyArgExpr {};
+struct SizeArgExpr : AnyArgExpr {};
+
+using ErrorMessage = SmallString<128>;
+enum class AccessKind { write, read };
+
+static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription,
+ AccessKind Access) {
+ ErrorMessage Message;
+ llvm::raw_svector_ostream Os(Message);
+
+ // Function classification like: Memory copy function
+ Os << toUppercase(FunctionDescription.front())
+ << &FunctionDescription.data()[1];
+
+ if (Access == AccessKind::write) {
+ Os << " overflows the destination buffer";
+ } else { // read access
+ Os << " accesses out-of-bound array element";
+ }
+
+ return Message;
+}
+
+enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 };
+
+enum class CharKind { Regular = 0, Wide };
+constexpr CharKind CK_Regular = CharKind::Regular;
+constexpr CharKind CK_Wide = CharKind::Wide;
+
+static QualType getCharPtrType(ASTContext &Ctx, CharKind CK) {
+ return Ctx.getPointerType(CK == CharKind::Regular ? Ctx.CharTy
+ : Ctx.WideCharTy);
+}
+
+class CStringChecker : public Checker< eval::Call,
+ check::PreStmt<DeclStmt>,
+ check::LiveSymbols,
+ check::DeadSymbols,
+ check::RegionChanges
+ > {
+ mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
+ BT_NotCString, BT_AdditionOverflow, BT_UninitRead;
+
+ mutable const char *CurrentFunctionDescription = nullptr;
+
+public:
+ /// The filter is used to filter out the diagnostics which are not enabled by
+ /// the user.
+ struct CStringChecksFilter {
+ bool CheckCStringNullArg = false;
+ bool CheckCStringOutOfBounds = false;
+ bool CheckCStringBufferOverlap = false;
+ bool CheckCStringNotNullTerm = false;
+ bool CheckCStringUninitializedRead = false;
+
+ CheckerNameRef CheckNameCStringNullArg;
+ CheckerNameRef CheckNameCStringOutOfBounds;
+ CheckerNameRef CheckNameCStringBufferOverlap;
+ CheckerNameRef CheckNameCStringNotNullTerm;
+ CheckerNameRef CheckNameCStringUninitializedRead;
+ };
+
+ CStringChecksFilter Filter;
+
+ static void *getTag() { static int tag; return &tag; }
+
+ bool evalCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
+ void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
+ void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
+
+ ProgramStateRef
+ checkRegionChanges(ProgramStateRef state,
+ const InvalidatedSymbols *,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const LocationContext *LCtx,
+ const CallEvent *Call) const;
+
+ using FnCheck = std::function<void(const CStringChecker *, CheckerContext &,
+ const CallEvent &)>;
+
+ CallDescriptionMap<FnCheck> Callbacks = {
+ {{CDM::CLibraryMaybeHardened, {"memcpy"}, 3},
+ std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Regular)},
+ {{CDM::CLibraryMaybeHardened, {"wmemcpy"}, 3},
+ std::bind(&CStringChecker::evalMemcpy, _1, _2, _3, CK_Wide)},
+ {{CDM::CLibraryMaybeHardened, {"mempcpy"}, 3},
+ std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Regular)},
+ {{CDM::CLibraryMaybeHardened, {"wmempcpy"}, 3},
+ std::bind(&CStringChecker::evalMempcpy, _1, _2, _3, CK_Wide)},
+ {{CDM::CLibrary, {"memcmp"}, 3},
+ std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)},
+ {{CDM::CLibrary, {"wmemcmp"}, 3},
+ std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Wide)},
+ {{CDM::CLibraryMaybeHardened, {"memmove"}, 3},
+ std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Regular)},
+ {{CDM::CLibraryMaybeHardened, {"wmemmove"}, 3},
+ std::bind(&CStringChecker::evalMemmove, _1, _2, _3, CK_Wide)},
+ {{CDM::CLibraryMaybeHardened, {"memset"}, 3},
+ &CStringChecker::evalMemset},
+ {{CDM::CLibrary, {"explicit_memset"}, 3}, &CStringChecker::evalMemset},
+ // FIXME: C23 introduces 'memset_explicit', maybe also model that
+ {{CDM::CLibraryMaybeHardened, {"strcpy"}, 2},
+ &CStringChecker::evalStrcpy},
+ {{CDM::CLibraryMaybeHardened, {"strncpy"}, 3},
+ &CStringChecker::evalStrncpy},
+ {{CDM::CLibraryMaybeHardened, {"stpcpy"}, 2},
+ &CStringChecker::evalStpcpy},
+ {{CDM::CLibraryMaybeHardened, {"strlcpy"}, 3},
+ &CStringChecker::evalStrlcpy},
+ {{CDM::CLibraryMaybeHardened, {"strcat"}, 2},
+ &CStringChecker::evalStrcat},
+ {{CDM::CLibraryMaybeHardened, {"strncat"}, 3},
+ &CStringChecker::evalStrncat},
+ {{CDM::CLibraryMaybeHardened, {"strlcat"}, 3},
+ &CStringChecker::evalStrlcat},
+ {{CDM::CLibraryMaybeHardened, {"strlen"}, 1},
+ &CStringChecker::evalstrLength},
+ {{CDM::CLibrary, {"wcslen"}, 1}, &CStringChecker::evalstrLength},
+ {{CDM::CLibraryMaybeHardened, {"strnlen"}, 2},
+ &CStringChecker::evalstrnLength},
+ {{CDM::CLibrary, {"wcsnlen"}, 2}, &CStringChecker::evalstrnLength},
+ {{CDM::CLibrary, {"strcmp"}, 2}, &CStringChecker::evalStrcmp},
+ {{CDM::CLibrary, {"strncmp"}, 3}, &CStringChecker::evalStrncmp},
+ {{CDM::CLibrary, {"strcasecmp"}, 2}, &CStringChecker::evalStrcasecmp},
+ {{CDM::CLibrary, {"strncasecmp"}, 3}, &CStringChecker::evalStrncasecmp},
+ {{CDM::CLibrary, {"strsep"}, 2}, &CStringChecker::evalStrsep},
+ {{CDM::CLibrary, {"bcopy"}, 3}, &CStringChecker::evalBcopy},
+ {{CDM::CLibrary, {"bcmp"}, 3},
+ std::bind(&CStringChecker::evalMemcmp, _1, _2, _3, CK_Regular)},
+ {{CDM::CLibrary, {"bzero"}, 2}, &CStringChecker::evalBzero},
+ {{CDM::CLibraryMaybeHardened, {"explicit_bzero"}, 2},
+ &CStringChecker::evalBzero},
+
+ // When recognizing calls to the following variadic functions, we accept
+ // any number of arguments in the call (std::nullopt = accept any
+ // number), but check that in the declaration there are 2 and 3
+ // parameters respectively. (Note that the parameter count does not
+ // include the "...". Calls where the number of arguments is too small
+ // will be discarded by the callback.)
+ {{CDM::CLibraryMaybeHardened, {"sprintf"}, std::nullopt, 2},
+ &CStringChecker::evalSprintf},
+ {{CDM::CLibraryMaybeHardened, {"snprintf"}, std::nullopt, 3},
+ &CStringChecker::evalSnprintf},
+ };
+
+ // These require a bit of special handling.
+ CallDescription StdCopy{CDM::SimpleFunc, {"std", "copy"}, 3},
+ StdCopyBackward{CDM::SimpleFunc, {"std", "copy_backward"}, 3};
+
+ FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const;
+ void evalMemcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
+ void evalMempcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
+ void evalMemmove(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
+ void evalBcopy(CheckerContext &C, const CallEvent &Call) const;
+ void evalCopyCommon(CheckerContext &C, const CallEvent &Call,
+ ProgramStateRef state, SizeArgExpr Size,
+ DestinationArgExpr Dest, SourceArgExpr Source,
+ bool Restricted, bool IsMempcpy, CharKind CK) const;
+
+ void evalMemcmp(CheckerContext &C, const CallEvent &Call, CharKind CK) const;
+
+ void evalstrLength(CheckerContext &C, const CallEvent &Call) const;
+ void evalstrnLength(CheckerContext &C, const CallEvent &Call) const;
+ void evalstrLengthCommon(CheckerContext &C, const CallEvent &Call,
+ bool IsStrnlen = false) const;
+
+ void evalStrcpy(CheckerContext &C, const CallEvent &Call) const;
+ void evalStrncpy(CheckerContext &C, const CallEvent &Call) const;
+ void evalStpcpy(CheckerContext &C, const CallEvent &Call) const;
+ void evalStrlcpy(CheckerContext &C, const CallEvent &Call) const;
+ void evalStrcpyCommon(CheckerContext &C, const CallEvent &Call,
+ bool ReturnEnd, bool IsBounded, ConcatFnKind appendK,
+ bool returnPtr = true) const;
+
+ void evalStrcat(CheckerContext &C, const CallEvent &Call) const;
+ void evalStrncat(CheckerContext &C, const CallEvent &Call) const;
+ void evalStrlcat(CheckerContext &C, const CallEvent &Call) const;
+
+ void evalStrcmp(CheckerContext &C, const CallEvent &Call) const;
+ void evalStrncmp(CheckerContext &C, const CallEvent &Call) const;
+ void evalStrcasecmp(CheckerContext &C, const CallEvent &Call) const;
+ void evalStrncasecmp(CheckerContext &C, const CallEvent &Call) const;
+ void evalStrcmpCommon(CheckerContext &C, const CallEvent &Call,
+ bool IsBounded = false, bool IgnoreCase = false) const;
+
+ void evalStrsep(CheckerContext &C, const CallEvent &Call) const;
+
+ void evalStdCopy(CheckerContext &C, const CallEvent &Call) const;
+ void evalStdCopyBackward(CheckerContext &C, const CallEvent &Call) const;
+ void evalStdCopyCommon(CheckerContext &C, const CallEvent &Call) const;
+ void evalMemset(CheckerContext &C, const CallEvent &Call) const;
+ void evalBzero(CheckerContext &C, const CallEvent &Call) const;
+
+ void evalSprintf(CheckerContext &C, const CallEvent &Call) const;
+ void evalSnprintf(CheckerContext &C, const CallEvent &Call) const;
+ void evalSprintfCommon(CheckerContext &C, const CallEvent &Call,
+ bool IsBounded) const;
+
+ // Utility methods
+ std::pair<ProgramStateRef , ProgramStateRef >
+ static assumeZero(CheckerContext &C,
+ ProgramStateRef state, SVal V, QualType Ty);
+
+ static ProgramStateRef setCStringLength(ProgramStateRef state,
+ const MemRegion *MR,
+ SVal strLength);
+ static SVal getCStringLengthForRegion(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *Ex,
+ const MemRegion *MR,
+ bool hypothetical);
+ SVal getCStringLength(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *Ex,
+ SVal Buf,
+ bool hypothetical = false) const;
+
+ const StringLiteral *getCStringLiteral(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *expr,
+ SVal val) const;
+
+ /// Invalidate the destination buffer determined by characters copied.
+ static ProgramStateRef
+ invalidateDestinationBufferBySize(CheckerContext &C, ProgramStateRef S,
+ const Expr *BufE, SVal BufV, SVal SizeV,
+ QualType SizeTy);
+
+ /// Operation never overflows, do not invalidate the super region.
+ static ProgramStateRef invalidateDestinationBufferNeverOverflows(
+ CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV);
+
+ /// We do not know whether the operation can overflow (e.g. size is unknown),
+ /// invalidate the super region and escape related pointers.
+ static ProgramStateRef invalidateDestinationBufferAlwaysEscapeSuperRegion(
+ CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV);
+
+ /// Invalidate the source buffer for escaping pointers.
+ static ProgramStateRef invalidateSourceBuffer(CheckerContext &C,
+ ProgramStateRef S,
+ const Expr *BufE, SVal BufV);
+
+ /// @param InvalidationTraitOperations Determine how to invlidate the
+ /// MemRegion by setting the invalidation traits. Return true to cause pointer
+ /// escape, or false otherwise.
+ static ProgramStateRef invalidateBufferAux(
+ CheckerContext &C, ProgramStateRef State, const Expr *Ex, SVal V,
+ llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &,
+ const MemRegion *)>
+ InvalidationTraitOperations);
+
+ static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
+ const MemRegion *MR);
+
+ static bool memsetAux(const Expr *DstBuffer, SVal CharE,
+ const Expr *Size, CheckerContext &C,
+ ProgramStateRef &State);
+
+ // Re-usable checks
+ ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State,
+ AnyArgExpr Arg, SVal l) const;
+ // Check whether the origin region behind \p Element (like the actual array
+ // region \p Element is from) is initialized.
+ ProgramStateRef checkInit(CheckerContext &C, ProgramStateRef state,
+ AnyArgExpr Buffer, SVal Element, SVal Size) const;
+ ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state,
+ AnyArgExpr Buffer, SVal Element,
+ AccessKind Access,
+ CharKind CK = CharKind::Regular) const;
+ ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
+ AnyArgExpr Buffer, SizeArgExpr Size,
+ AccessKind Access,
+ CharKind CK = CharKind::Regular) const;
+ ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state,
+ SizeArgExpr Size, AnyArgExpr First,
+ AnyArgExpr Second,
+ CharKind CK = CharKind::Regular) const;
+ void emitOverlapBug(CheckerContext &C,
+ ProgramStateRef state,
+ const Stmt *First,
+ const Stmt *Second) const;
+
+ void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S,
+ StringRef WarningMsg) const;
+ void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State,
+ const Stmt *S, StringRef WarningMsg) const;
+ void emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
+ const Stmt *S, StringRef WarningMsg) const;
+ void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const;
+ void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State,
+ const Expr *E, StringRef Msg) const;
+ ProgramStateRef checkAdditionOverflow(CheckerContext &C,
+ ProgramStateRef state,
+ NonLoc left,
+ NonLoc right) const;
+
+ // Return true if the destination buffer of the copy function may be in bound.
+ // Expects SVal of Size to be positive and unsigned.
+ // Expects SVal of FirstBuf to be a FieldRegion.
+ static bool isFirstBufInBound(CheckerContext &C, ProgramStateRef State,
+ SVal BufVal, QualType BufTy, SVal LengthVal,
+ QualType LengthTy);
+};
+
+} //end anonymous namespace
+
+REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
+
+//===----------------------------------------------------------------------===//
+// Individual checks and utility methods.
+//===----------------------------------------------------------------------===//
+
+std::pair<ProgramStateRef, ProgramStateRef>
+CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef State, SVal V,
+ QualType Ty) {
+ std::optional<DefinedSVal> val = V.getAs<DefinedSVal>();
+ if (!val)
+ return std::pair<ProgramStateRef, ProgramStateRef>(State, State);
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
+ return State->assume(svalBuilder.evalEQ(State, *val, zero));
+}
+
+ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
+ ProgramStateRef State,
+ AnyArgExpr Arg, SVal l) const {
+ // If a previous check has failed, propagate the failure.
+ if (!State)
+ return nullptr;
+
+ ProgramStateRef stateNull, stateNonNull;
+ std::tie(stateNull, stateNonNull) =
+ assumeZero(C, State, l, Arg.Expression->getType());
+
+ if (stateNull && !stateNonNull) {
+ if (Filter.CheckCStringNullArg) {
+ SmallString<80> buf;
+ llvm::raw_svector_ostream OS(buf);
+ assert(CurrentFunctionDescription);
+ OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1)
+ << llvm::getOrdinalSuffix(Arg.ArgumentIndex + 1) << " argument to "
+ << CurrentFunctionDescription;
+
+ emitNullArgBug(C, stateNull, Arg.Expression, OS.str());
+ }
+ return nullptr;
+ }
+
+ // From here on, assume that the value is non-null.
+ assert(stateNonNull);
+ return stateNonNull;
+}
+
+static std::optional<NonLoc> getIndex(ProgramStateRef State,
+ const ElementRegion *ER, CharKind CK) {
+ SValBuilder &SVB = State->getStateManager().getSValBuilder();
+ ASTContext &Ctx = SVB.getContext();
+
+ if (CK == CharKind::Regular) {
+ if (ER->getValueType() != Ctx.CharTy)
+ return {};
+ return ER->getIndex();
+ }
+
+ if (ER->getValueType() != Ctx.WideCharTy)
+ return {};
+
+ QualType SizeTy = Ctx.getSizeType();
+ NonLoc WideSize =
+ SVB.makeIntVal(Ctx.getTypeSizeInChars(Ctx.WideCharTy).getQuantity(),
+ SizeTy)
+ .castAs<NonLoc>();
+ SVal Offset =
+ SVB.evalBinOpNN(State, BO_Mul, ER->getIndex(), WideSize, SizeTy);
+ if (Offset.isUnknown())
+ return {};
+ return Offset.castAs<NonLoc>();
+}
+
+// Basically 1 -> 1st, 12 -> 12th, etc.
+static void printIdxWithOrdinalSuffix(llvm::raw_ostream &Os, unsigned Idx) {
+ Os << Idx << llvm::getOrdinalSuffix(Idx);
+}
+
+ProgramStateRef CStringChecker::checkInit(CheckerContext &C,
+ ProgramStateRef State,
+ AnyArgExpr Buffer, SVal Element,
+ SVal Size) const {
+
+ // If a previous check has failed, propagate the failure.
+ if (!State)
+ return nullptr;
+
+ const MemRegion *R = Element.getAsRegion();
+ const auto *ER = dyn_cast_or_null<ElementRegion>(R);
+ if (!ER)
+ return State;
+
+ const auto *SuperR = ER->getSuperRegion()->getAs<TypedValueRegion>();
+ if (!SuperR)
+ return State;
+
+ // FIXME: We ought to able to check objects as well. Maybe
+ // UninitializedObjectChecker could help?
+ if (!SuperR->getValueType()->isArrayType())
+ return State;
+
+ SValBuilder &SVB = C.getSValBuilder();
+ ASTContext &Ctx = SVB.getContext();
+
+ const QualType ElemTy = Ctx.getBaseElementType(SuperR->getValueType());
+ const NonLoc Zero = SVB.makeZeroArrayIndex();
+
+ std::optional<Loc> FirstElementVal =
+ State->getLValue(ElemTy, Zero, loc::MemRegionVal(SuperR)).getAs<Loc>();
+ if (!FirstElementVal)
+ return State;
+
+ // Ensure that we wouldn't read uninitialized value.
+ if (Filter.CheckCStringUninitializedRead &&
+ State->getSVal(*FirstElementVal).isUndef()) {
+ llvm::SmallString<258> Buf;
+ llvm::raw_svector_ostream OS(Buf);
+ OS << "The first element of the ";
+ printIdxWithOrdinalSuffix(OS, Buffer.ArgumentIndex + 1);
+ OS << " argument is undefined";
+ emitUninitializedReadBug(C, State, Buffer.Expression, OS.str());
+ return nullptr;
+ }
+
+ // We won't check whether the entire region is fully initialized -- lets just
+ // check that the first and the last element is. So, onto checking the last
+ // element:
+ const QualType IdxTy = SVB.getArrayIndexType();
+
+ NonLoc ElemSize =
+ SVB.makeIntVal(Ctx.getTypeSizeInChars(ElemTy).getQuantity(), IdxTy)
+ .castAs<NonLoc>();
+
+ // FIXME: Check that the size arg to the cstring function is divisible by
+ // size of the actual element type?
+
+ // The type of the argument to the cstring function is either char or wchar,
+ // but thats not the type of the original array (or memory region).
+ // Suppose the following:
+ // int t[5];
+ // memcpy(dst, t, sizeof(t) / sizeof(t[0]));
+ // When checking whether t is fully initialized, we see it as char array of
+ // size sizeof(int)*5. If we check the last element as a character, we read
+ // the last byte of an integer, which will be undefined. But just because
+ // that value is undefined, it doesn't mean that the element is uninitialized!
+ // For this reason, we need to retrieve the actual last element with the
+ // correct type.
+
+ // Divide the size argument to the cstring function by the actual element
+ // type. This value will be size of the array, or the index to the
+ // past-the-end element.
+ std::optional<NonLoc> Offset =
+ SVB.evalBinOpNN(State, clang::BO_Div, Size.castAs<NonLoc>(), ElemSize,
+ IdxTy)
+ .getAs<NonLoc>();
+
+ // Retrieve the index of the last element.
+ const NonLoc One = SVB.makeIntVal(1, IdxTy).castAs<NonLoc>();
+ SVal LastIdx = SVB.evalBinOpNN(State, BO_Sub, *Offset, One, IdxTy);
+
+ if (!Offset)
+ return State;
+
+ SVal LastElementVal =
+ State->getLValue(ElemTy, LastIdx, loc::MemRegionVal(SuperR));
+ if (!isa<Loc>(LastElementVal))
+ return State;
+
+ if (Filter.CheckCStringUninitializedRead &&
+ State->getSVal(LastElementVal.castAs<Loc>()).isUndef()) {
+ const llvm::APSInt *IdxInt = LastIdx.getAsInteger();
+ // If we can't get emit a sensible last element index, just bail out --
+ // prefer to emit nothing in favour of emitting garbage quality reports.
+ if (!IdxInt) {
+ C.addSink();
+ return nullptr;
+ }
+ llvm::SmallString<258> Buf;
+ llvm::raw_svector_ostream OS(Buf);
+ OS << "The last accessed element (at index ";
+ OS << IdxInt->getExtValue();
+ OS << ") in the ";
+ printIdxWithOrdinalSuffix(OS, Buffer.ArgumentIndex + 1);
+ OS << " argument is undefined";
+ emitUninitializedReadBug(C, State, Buffer.Expression, OS.str());
+ return nullptr;
+ }
+ return State;
+}
+
+// FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
+ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
+ ProgramStateRef state,
+ AnyArgExpr Buffer, SVal Element,
+ AccessKind Access,
+ CharKind CK) const {
+
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return nullptr;
+
+ // Check for out of bound array element access.
+ const MemRegion *R = Element.getAsRegion();
+ if (!R)
+ return state;
+
+ const auto *ER = dyn_cast<ElementRegion>(R);
+ if (!ER)
+ return state;
+
+ // Get the index of the accessed element.
+ std::optional<NonLoc> Idx = getIndex(state, ER, CK);
+ if (!Idx)
+ return state;
+
+ // Get the size of the array.
+ const auto *superReg = cast<SubRegion>(ER->getSuperRegion());
+ DefinedOrUnknownSVal Size =
+ getDynamicExtent(state, superReg, C.getSValBuilder());
+
+ auto [StInBound, StOutBound] = state->assumeInBoundDual(*Idx, Size);
+ if (StOutBound && !StInBound) {
+ // These checks are either enabled by the CString out-of-bounds checker
+ // explicitly or implicitly by the Malloc checker.
+ // In the latter case we only do modeling but do not emit warning.
+ if (!Filter.CheckCStringOutOfBounds)
+ return nullptr;
+
+ // Emit a bug report.
+ ErrorMessage Message =
+ createOutOfBoundErrorMsg(CurrentFunctionDescription, Access);
+ emitOutOfBoundsBug(C, StOutBound, Buffer.Expression, Message);
+ return nullptr;
+ }
+
+ // Array bound check succeeded. From this point forward the array bound
+ // should always succeed.
+ return StInBound;
+}
+
+ProgramStateRef
+CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef State,
+ AnyArgExpr Buffer, SizeArgExpr Size,
+ AccessKind Access, CharKind CK) const {
+ // If a previous check has failed, propagate the failure.
+ if (!State)
+ return nullptr;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ ASTContext &Ctx = svalBuilder.getContext();
+
+ QualType SizeTy = Size.Expression->getType();
+ QualType PtrTy = getCharPtrType(Ctx, CK);
+
+ // Check that the first buffer is non-null.
+ SVal BufVal = C.getSVal(Buffer.Expression);
+ State = checkNonNull(C, State, Buffer, BufVal);
+ if (!State)
+ return nullptr;
+
+ // If out-of-bounds checking is turned off, skip the rest.
+ if (!Filter.CheckCStringOutOfBounds)
+ return State;
+
+ SVal BufStart =
+ svalBuilder.evalCast(BufVal, PtrTy, Buffer.Expression->getType());
+
+ // Check if the first byte of the buffer is accessible.
+ State = CheckLocation(C, State, Buffer, BufStart, Access, CK);
+
+ if (!State)
+ return nullptr;
+
+ // Get the access length and make sure it is known.
+ // FIXME: This assumes the caller has already checked that the access length
+ // is positive. And that it's unsigned.
+ SVal LengthVal = C.getSVal(Size.Expression);
+ std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
+ if (!Length)
+ return State;
+
+ // Compute the offset of the last element to be accessed: size-1.
+ NonLoc One = svalBuilder.makeIntVal(1, SizeTy).castAs<NonLoc>();
+ SVal Offset = svalBuilder.evalBinOpNN(State, BO_Sub, *Length, One, SizeTy);
+ if (Offset.isUnknown())
+ return nullptr;
+ NonLoc LastOffset = Offset.castAs<NonLoc>();
+
+ // Check that the first buffer is sufficiently long.
+ if (std::optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
+
+ SVal BufEnd =
+ svalBuilder.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
+ State = CheckLocation(C, State, Buffer, BufEnd, Access, CK);
+ if (Access == AccessKind::read)
+ State = checkInit(C, State, Buffer, BufEnd, *Length);
+
+ // If the buffer isn't large enough, abort.
+ if (!State)
+ return nullptr;
+ }
+
+ // Large enough or not, return this state!
+ return State;
+}
+
+ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
+ ProgramStateRef state,
+ SizeArgExpr Size, AnyArgExpr First,
+ AnyArgExpr Second,
+ CharKind CK) const {
+ if (!Filter.CheckCStringBufferOverlap)
+ return state;
+
+ // Do a simple check for overlap: if the two arguments are from the same
+ // buffer, see if the end of the first is greater than the start of the second
+ // or vice versa.
+
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return nullptr;
+
+ ProgramStateRef stateTrue, stateFalse;
+
+ // Assume different address spaces cannot overlap.
+ if (First.Expression->getType()->getPointeeType().getAddressSpace() !=
+ Second.Expression->getType()->getPointeeType().getAddressSpace())
+ return state;
+
+ // Get the buffer values and make sure they're known locations.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal firstVal = state->getSVal(First.Expression, LCtx);
+ SVal secondVal = state->getSVal(Second.Expression, LCtx);
+
+ std::optional<Loc> firstLoc = firstVal.getAs<Loc>();
+ if (!firstLoc)
+ return state;
+
+ std::optional<Loc> secondLoc = secondVal.getAs<Loc>();
+ if (!secondLoc)
+ return state;
+
+ // Are the two values the same?
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ std::tie(stateTrue, stateFalse) =
+ state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
+
+ if (stateTrue && !stateFalse) {
+ // If the values are known to be equal, that's automatically an overlap.
+ emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
+ return nullptr;
+ }
+
+ // assume the two expressions are not equal.
+ assert(stateFalse);
+ state = stateFalse;
+
+ // Which value comes first?
+ QualType cmpTy = svalBuilder.getConditionType();
+ SVal reverse =
+ svalBuilder.evalBinOpLL(state, BO_GT, *firstLoc, *secondLoc, cmpTy);
+ std::optional<DefinedOrUnknownSVal> reverseTest =
+ reverse.getAs<DefinedOrUnknownSVal>();
+ if (!reverseTest)
+ return state;
+
+ std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
+ if (stateTrue) {
+ if (stateFalse) {
+ // If we don't know which one comes first, we can't perform this test.
+ return state;
+ } else {
+ // Switch the values so that firstVal is before secondVal.
+ std::swap(firstLoc, secondLoc);
+
+ // Switch the Exprs as well, so that they still correspond.
+ std::swap(First, Second);
+ }
+ }
+
+ // Get the length, and make sure it too is known.
+ SVal LengthVal = state->getSVal(Size.Expression, LCtx);
+ std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
+ if (!Length)
+ return state;
+
+ // Convert the first buffer's start address to char*.
+ // Bail out if the cast fails.
+ ASTContext &Ctx = svalBuilder.getContext();
+ QualType CharPtrTy = getCharPtrType(Ctx, CK);
+ SVal FirstStart =
+ svalBuilder.evalCast(*firstLoc, CharPtrTy, First.Expression->getType());
+ std::optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
+ if (!FirstStartLoc)
+ return state;
+
+ // Compute the end of the first buffer. Bail out if THAT fails.
+ SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add, *FirstStartLoc,
+ *Length, CharPtrTy);
+ std::optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
+ if (!FirstEndLoc)
+ return state;
+
+ // Is the end of the first buffer past the start of the second buffer?
+ SVal Overlap =
+ svalBuilder.evalBinOpLL(state, BO_GT, *FirstEndLoc, *secondLoc, cmpTy);
+ std::optional<DefinedOrUnknownSVal> OverlapTest =
+ Overlap.getAs<DefinedOrUnknownSVal>();
+ if (!OverlapTest)
+ return state;
+
+ std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
+
+ if (stateTrue && !stateFalse) {
+ // Overlap!
+ emitOverlapBug(C, stateTrue, First.Expression, Second.Expression);
+ return nullptr;
+ }
+
+ // assume the two expressions don't overlap.
+ assert(stateFalse);
+ return stateFalse;
+}
+
+void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
+ const Stmt *First, const Stmt *Second) const {
+ ExplodedNode *N = C.generateErrorNode(state);
+ if (!N)
+ return;
+
+ if (!BT_Overlap)
+ BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
+ categories::UnixAPI, "Improper arguments"));
+
+ // Generate a report for this bug.
+ auto report = std::make_unique<PathSensitiveBugReport>(
+ *BT_Overlap, "Arguments must not be overlapping buffers", N);
+ report->addRange(First->getSourceRange());
+ report->addRange(Second->getSourceRange());
+
+ C.emitReport(std::move(report));
+}
+
+void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State,
+ const Stmt *S, StringRef WarningMsg) const {
+ if (ExplodedNode *N = C.generateErrorNode(State)) {
+ if (!BT_Null) {
+ // FIXME: This call uses the string constant 'categories::UnixAPI' as the
+ // description of the bug; it should be replaced by a real description.
+ BT_Null.reset(
+ new BugType(Filter.CheckNameCStringNullArg, categories::UnixAPI));
+ }
+
+ auto Report =
+ std::make_unique<PathSensitiveBugReport>(*BT_Null, WarningMsg, N);
+ Report->addRange(S->getSourceRange());
+ if (const auto *Ex = dyn_cast<Expr>(S))
+ bugreporter::trackExpressionValue(N, Ex, *Report);
+ C.emitReport(std::move(Report));
+ }
+}
+
+void CStringChecker::emitUninitializedReadBug(CheckerContext &C,
+ ProgramStateRef State,
+ const Expr *E,
+ StringRef Msg) const {
+ if (ExplodedNode *N = C.generateErrorNode(State)) {
+ if (!BT_UninitRead)
+ BT_UninitRead.reset(new BugType(Filter.CheckNameCStringUninitializedRead,
+ "Accessing unitialized/garbage values"));
+
+ auto Report =
+ std::make_unique<PathSensitiveBugReport>(*BT_UninitRead, Msg, N);
+ Report->addNote("Other elements might also be undefined",
+ Report->getLocation());
+ Report->addRange(E->getSourceRange());
+ bugreporter::trackExpressionValue(N, E, *Report);
+ C.emitReport(std::move(Report));
+ }
+}
+
+void CStringChecker::emitOutOfBoundsBug(CheckerContext &C,
+ ProgramStateRef State, const Stmt *S,
+ StringRef WarningMsg) const {
+ if (ExplodedNode *N = C.generateErrorNode(State)) {
+ if (!BT_Bounds)
+ BT_Bounds.reset(new BugType(Filter.CheckCStringOutOfBounds
+ ? Filter.CheckNameCStringOutOfBounds
+ : Filter.CheckNameCStringNullArg,
+ "Out-of-bound array access"));
+
+ // FIXME: It would be nice to eventually make this diagnostic more clear,
+ // e.g., by referencing the original declaration or by saying *why* this
+ // reference is outside the range.
+ auto Report =
+ std::make_unique<PathSensitiveBugReport>(*BT_Bounds, WarningMsg, N);
+ Report->addRange(S->getSourceRange());
+ C.emitReport(std::move(Report));
+ }
+}
+
+void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State,
+ const Stmt *S,
+ StringRef WarningMsg) const {
+ if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) {
+ if (!BT_NotCString) {
+ // FIXME: This call uses the string constant 'categories::UnixAPI' as the
+ // description of the bug; it should be replaced by a real description.
+ BT_NotCString.reset(
+ new BugType(Filter.CheckNameCStringNotNullTerm, categories::UnixAPI));
+ }
+
+ auto Report =
+ std::make_unique<PathSensitiveBugReport>(*BT_NotCString, WarningMsg, N);
+
+ Report->addRange(S->getSourceRange());
+ C.emitReport(std::move(Report));
+ }
+}
+
+void CStringChecker::emitAdditionOverflowBug(CheckerContext &C,
+ ProgramStateRef State) const {
+ if (ExplodedNode *N = C.generateErrorNode(State)) {
+ if (!BT_AdditionOverflow) {
+ // FIXME: This call uses the word "API" as the description of the bug;
+ // it should be replaced by a better error message (if this unlikely
+ // situation continues to exist as a separate bug type).
+ BT_AdditionOverflow.reset(
+ new BugType(Filter.CheckNameCStringOutOfBounds, "API"));
+ }
+
+ // This isn't a great error message, but this should never occur in real
+ // code anyway -- you'd have to create a buffer longer than a size_t can
+ // represent, which is sort of a contradiction.
+ const char *WarningMsg =
+ "This expression will create a string whose length is too big to "
+ "be represented as a size_t";
+
+ auto Report = std::make_unique<PathSensitiveBugReport>(*BT_AdditionOverflow,
+ WarningMsg, N);
+ C.emitReport(std::move(Report));
+ }
+}
+
+ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
+ ProgramStateRef state,
+ NonLoc left,
+ NonLoc right) const {
+ // If out-of-bounds checking is turned off, skip the rest.
+ if (!Filter.CheckCStringOutOfBounds)
+ return state;
+
+ // If a previous check has failed, propagate the failure.
+ if (!state)
+ return nullptr;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
+
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+ const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
+ NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
+
+ SVal maxMinusRight;
+ if (isa<nonloc::ConcreteInt>(right)) {
+ maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
+ sizeTy);
+ } else {
+ // Try switching the operands. (The order of these two assignments is
+ // important!)
+ maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
+ sizeTy);
+ left = right;
+ }
+
+ if (std::optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
+ QualType cmpTy = svalBuilder.getConditionType();
+ // If left > max - right, we have an overflow.
+ SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
+ *maxMinusRightNL, cmpTy);
+
+ ProgramStateRef stateOverflow, stateOkay;
+ std::tie(stateOverflow, stateOkay) =
+ state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
+
+ if (stateOverflow && !stateOkay) {
+ // We have an overflow. Emit a bug report.
+ emitAdditionOverflowBug(C, stateOverflow);
+ return nullptr;
+ }
+
+ // From now on, assume an overflow didn't occur.
+ assert(stateOkay);
+ state = stateOkay;
+ }
+
+ return state;
+}
+
+ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
+ const MemRegion *MR,
+ SVal strLength) {
+ assert(!strLength.isUndef() && "Attempt to set an undefined string length");
+
+ MR = MR->StripCasts();
+
+ switch (MR->getKind()) {
+ case MemRegion::StringRegionKind:
+ // FIXME: This can happen if we strcpy() into a string region. This is
+ // undefined [C99 6.4.5p6], but we should still warn about it.
+ return state;
+
+ case MemRegion::SymbolicRegionKind:
+ case MemRegion::AllocaRegionKind:
+ case MemRegion::NonParamVarRegionKind:
+ case MemRegion::ParamVarRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ // These are the types we can currently track string lengths for.
+ break;
+
+ case MemRegion::ElementRegionKind:
+ // FIXME: Handle element regions by upper-bounding the parent region's
+ // string length.
+ return state;
+
+ default:
+ // Other regions (mostly non-data) can't have a reliable C string length.
+ // For now, just ignore the change.
+ // FIXME: These are rare but not impossible. We should output some kind of
+ // warning for things like strcpy((char[]){'a', 0}, "b");
+ return state;
+ }
+
+ if (strLength.isUnknown())
+ return state->remove<CStringLength>(MR);
+
+ return state->set<CStringLength>(MR, strLength);
+}
+
+SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
+ ProgramStateRef &state,
+ const Expr *Ex,
+ const MemRegion *MR,
+ bool hypothetical) {
+ if (!hypothetical) {
+ // If there's a recorded length, go ahead and return it.
+ const SVal *Recorded = state->get<CStringLength>(MR);
+ if (Recorded)
+ return *Recorded;
+ }
+
+ // Otherwise, get a new symbol and update the state.
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+ SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
+ MR, Ex, sizeTy,
+ C.getLocationContext(),
+ C.blockCount());
+
+ if (!hypothetical) {
+ if (std::optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
+ // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
+ BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
+ const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
+ llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
+ const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
+ fourInt);
+ NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
+ SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn, maxLength,
+ svalBuilder.getConditionType());
+ state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
+ }
+ state = state->set<CStringLength>(MR, strLength);
+ }
+
+ return strLength;
+}
+
+SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
+ const Expr *Ex, SVal Buf,
+ bool hypothetical) const {
+ const MemRegion *MR = Buf.getAsRegion();
+ if (!MR) {
+ // If we can't get a region, see if it's something we /know/ isn't a
+ // C string. In the context of locations, the only time we can issue such
+ // a warning is for labels.
+ if (std::optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
+ if (Filter.CheckCStringNotNullTerm) {
+ SmallString<120> buf;
+ llvm::raw_svector_ostream os(buf);
+ assert(CurrentFunctionDescription);
+ os << "Argument to " << CurrentFunctionDescription
+ << " is the address of the label '" << Label->getLabel()->getName()
+ << "', which is not a null-terminated string";
+
+ emitNotCStringBug(C, state, Ex, os.str());
+ }
+ return UndefinedVal();
+ }
+
+ // If it's not a region and not a label, give up.
+ return UnknownVal();
+ }
+
+ // If we have a region, strip casts from it and see if we can figure out
+ // its length. For anything we can't figure out, just return UnknownVal.
+ MR = MR->StripCasts();
+
+ switch (MR->getKind()) {
+ case MemRegion::StringRegionKind: {
+ // Modifying the contents of string regions is undefined [C99 6.4.5p6],
+ // so we can assume that the byte length is the correct C string length.
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+ const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
+ return svalBuilder.makeIntVal(strLit->getLength(), sizeTy);
+ }
+ case MemRegion::NonParamVarRegionKind: {
+ // If we have a global constant with a string literal initializer,
+ // compute the initializer's length.
+ const VarDecl *Decl = cast<NonParamVarRegion>(MR)->getDecl();
+ if (Decl->getType().isConstQualified() && Decl->hasGlobalStorage()) {
+ if (const Expr *Init = Decl->getInit()) {
+ if (auto *StrLit = dyn_cast<StringLiteral>(Init)) {
+ SValBuilder &SvalBuilder = C.getSValBuilder();
+ QualType SizeTy = SvalBuilder.getContext().getSizeType();
+ return SvalBuilder.makeIntVal(StrLit->getLength(), SizeTy);
+ }
+ }
+ }
+ [[fallthrough]];
+ }
+ case MemRegion::SymbolicRegionKind:
+ case MemRegion::AllocaRegionKind:
+ case MemRegion::ParamVarRegionKind:
+ case MemRegion::FieldRegionKind:
+ case MemRegion::ObjCIvarRegionKind:
+ return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
+ case MemRegion::CompoundLiteralRegionKind:
+ // FIXME: Can we track this? Is it necessary?
+ return UnknownVal();
+ case MemRegion::ElementRegionKind:
+ // FIXME: How can we handle this? It's not good enough to subtract the
+ // offset from the base string length; consider "123\x00567" and &a[5].
+ return UnknownVal();
+ default:
+ // Other regions (mostly non-data) can't have a reliable C string length.
+ // In this case, an error is emitted and UndefinedVal is returned.
+ // The caller should always be prepared to handle this case.
+ if (Filter.CheckCStringNotNullTerm) {
+ SmallString<120> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ assert(CurrentFunctionDescription);
+ os << "Argument to " << CurrentFunctionDescription << " is ";
+
+ if (SummarizeRegion(os, C.getASTContext(), MR))
+ os << ", which is not a null-terminated string";
+ else
+ os << "not a null-terminated string";
+
+ emitNotCStringBug(C, state, Ex, os.str());
+ }
+ return UndefinedVal();
+ }
+}
+
+const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
+ ProgramStateRef &state, const Expr *expr, SVal val) const {
+
+ // Get the memory region pointed to by the val.
+ const MemRegion *bufRegion = val.getAsRegion();
+ if (!bufRegion)
+ return nullptr;
+
+ // Strip casts off the memory region.
+ bufRegion = bufRegion->StripCasts();
+
+ // Cast the memory region to a string region.
+ const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
+ if (!strRegion)
+ return nullptr;
+
+ // Return the actual string in the string region.
+ return strRegion->getStringLiteral();
+}
+
+bool CStringChecker::isFirstBufInBound(CheckerContext &C, ProgramStateRef State,
+ SVal BufVal, QualType BufTy,
+ SVal LengthVal, QualType LengthTy) {
+ // If we do not know that the buffer is long enough we return 'true'.
+ // Otherwise the parent region of this field region would also get
+ // invalidated, which would lead to warnings based on an unknown state.
+
+ if (LengthVal.isUnknown())
+ return false;
+
+ // Originally copied from CheckBufferAccess and CheckLocation.
+ SValBuilder &SB = C.getSValBuilder();
+ ASTContext &Ctx = C.getASTContext();
+
+ QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
+
+ std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
+ if (!Length)
+ return true; // cf top comment.
+
+ // Compute the offset of the last element to be accessed: size-1.
+ NonLoc One = SB.makeIntVal(1, LengthTy).castAs<NonLoc>();
+ SVal Offset = SB.evalBinOpNN(State, BO_Sub, *Length, One, LengthTy);
+ if (Offset.isUnknown())
+ return true; // cf top comment
+ NonLoc LastOffset = Offset.castAs<NonLoc>();
+
+ // Check that the first buffer is sufficiently long.
+ SVal BufStart = SB.evalCast(BufVal, PtrTy, BufTy);
+ std::optional<Loc> BufLoc = BufStart.getAs<Loc>();
+ if (!BufLoc)
+ return true; // cf top comment.
+
+ SVal BufEnd = SB.evalBinOpLN(State, BO_Add, *BufLoc, LastOffset, PtrTy);
+
+ // Check for out of bound array element access.
+ const MemRegion *R = BufEnd.getAsRegion();
+ if (!R)
+ return true; // cf top comment.
+
+ const ElementRegion *ER = dyn_cast<ElementRegion>(R);
+ if (!ER)
+ return true; // cf top comment.
+
+ // FIXME: Does this crash when a non-standard definition
+ // of a library function is encountered?
+ assert(ER->getValueType() == C.getASTContext().CharTy &&
+ "isFirstBufInBound should only be called with char* ElementRegions");
+
+ // Get the size of the array.
+ const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
+ DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, superReg, SB);
+
+ // Get the index of the accessed element.
+ DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
+
+ ProgramStateRef StInBound = State->assumeInBound(Idx, SizeDV, true);
+
+ return static_cast<bool>(StInBound);
+}
+
+ProgramStateRef CStringChecker::invalidateDestinationBufferBySize(
+ CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV,
+ SVal SizeV, QualType SizeTy) {
+ auto InvalidationTraitOperations =
+ [&C, S, BufTy = BufE->getType(), BufV, SizeV,
+ SizeTy](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) {
+ // If destination buffer is a field region and access is in bound, do
+ // not invalidate its super region.
+ if (MemRegion::FieldRegionKind == R->getKind() &&
+ isFirstBufInBound(C, S, BufV, BufTy, SizeV, SizeTy)) {
+ ITraits.setTrait(
+ R,
+ RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
+ }
+ return false;
+ };
+
+ return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
+}
+
+ProgramStateRef
+CStringChecker::invalidateDestinationBufferAlwaysEscapeSuperRegion(
+ CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV) {
+ auto InvalidationTraitOperations = [](RegionAndSymbolInvalidationTraits &,
+ const MemRegion *R) {
+ return isa<FieldRegion>(R);
+ };
+
+ return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
+}
+
+ProgramStateRef CStringChecker::invalidateDestinationBufferNeverOverflows(
+ CheckerContext &C, ProgramStateRef S, const Expr *BufE, SVal BufV) {
+ auto InvalidationTraitOperations =
+ [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) {
+ if (MemRegion::FieldRegionKind == R->getKind())
+ ITraits.setTrait(
+ R,
+ RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
+ return false;
+ };
+
+ return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
+}
+
+ProgramStateRef CStringChecker::invalidateSourceBuffer(CheckerContext &C,
+ ProgramStateRef S,
+ const Expr *BufE,
+ SVal BufV) {
+ auto InvalidationTraitOperations =
+ [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) {
+ ITraits.setTrait(
+ R->getBaseRegion(),
+ RegionAndSymbolInvalidationTraits::TK_PreserveContents);
+ ITraits.setTrait(R,
+ RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
+ return true;
+ };
+
+ return invalidateBufferAux(C, S, BufE, BufV, InvalidationTraitOperations);
+}
+
+ProgramStateRef CStringChecker::invalidateBufferAux(
+ CheckerContext &C, ProgramStateRef State, const Expr *E, SVal V,
+ llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &,
+ const MemRegion *)>
+ InvalidationTraitOperations) {
+ std::optional<Loc> L = V.getAs<Loc>();
+ if (!L)
+ return State;
+
+ // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
+ // some assumptions about the value that CFRefCount can't. Even so, it should
+ // probably be refactored.
+ if (std::optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
+ const MemRegion *R = MR->getRegion()->StripCasts();
+
+ // Are we dealing with an ElementRegion? If so, we should be invalidating
+ // the super-region.
+ if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
+ R = ER->getSuperRegion();
+ // FIXME: What about layers of ElementRegions?
+ }
+
+ // Invalidate this region.
+ const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
+ RegionAndSymbolInvalidationTraits ITraits;
+ bool CausesPointerEscape = InvalidationTraitOperations(ITraits, R);
+
+ return State->invalidateRegions(R, E, C.blockCount(), LCtx,
+ CausesPointerEscape, nullptr, nullptr,
+ &ITraits);
+ }
+
+ // If we have a non-region value by chance, just remove the binding.
+ // FIXME: is this necessary or correct? This handles the non-Region
+ // cases. Is it ever valid to store to these?
+ return State->killBinding(*L);
+}
+
+bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
+ const MemRegion *MR) {
+ switch (MR->getKind()) {
+ case MemRegion::FunctionCodeRegionKind: {
+ if (const auto *FD = cast<FunctionCodeRegion>(MR)->getDecl())
+ os << "the address of the function '" << *FD << '\'';
+ else
+ os << "the address of a function";
+ return true;
+ }
+ case MemRegion::BlockCodeRegionKind:
+ os << "block text";
+ return true;
+ case MemRegion::BlockDataRegionKind:
+ os << "a block";
+ return true;
+ case MemRegion::CXXThisRegionKind:
+ case MemRegion::CXXTempObjectRegionKind:
+ os << "a C++ temp object of type "
+ << cast<TypedValueRegion>(MR)->getValueType();
+ return true;
+ case MemRegion::NonParamVarRegionKind:
+ os << "a variable of type" << cast<TypedValueRegion>(MR)->getValueType();
+ return true;
+ case MemRegion::ParamVarRegionKind:
+ os << "a parameter of type" << cast<TypedValueRegion>(MR)->getValueType();
+ return true;
+ case MemRegion::FieldRegionKind:
+ os << "a field of type " << cast<TypedValueRegion>(MR)->getValueType();
+ return true;
+ case MemRegion::ObjCIvarRegionKind:
+ os << "an instance variable of type "
+ << cast<TypedValueRegion>(MR)->getValueType();
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool CStringChecker::memsetAux(const Expr *DstBuffer, SVal CharVal,
+ const Expr *Size, CheckerContext &C,
+ ProgramStateRef &State) {
+ SVal MemVal = C.getSVal(DstBuffer);
+ SVal SizeVal = C.getSVal(Size);
+ const MemRegion *MR = MemVal.getAsRegion();
+ if (!MR)
+ return false;
+
+ // We're about to model memset by producing a "default binding" in the Store.
+ // Our current implementation - RegionStore - doesn't support default bindings
+ // that don't cover the whole base region. So we should first get the offset
+ // and the base region to figure out whether the offset of buffer is 0.
+ RegionOffset Offset = MR->getAsOffset();
+ const MemRegion *BR = Offset.getRegion();
+
+ std::optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>();
+ if (!SizeNL)
+ return false;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ ASTContext &Ctx = C.getASTContext();
+
+ // void *memset(void *dest, int ch, size_t count);
+ // For now we can only handle the case of offset is 0 and concrete char value.
+ if (Offset.isValid() && !Offset.hasSymbolicOffset() &&
+ Offset.getOffset() == 0) {
+ // Get the base region's size.
+ DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, BR, svalBuilder);
+
+ ProgramStateRef StateWholeReg, StateNotWholeReg;
+ std::tie(StateWholeReg, StateNotWholeReg) =
+ State->assume(svalBuilder.evalEQ(State, SizeDV, *SizeNL));
+
+ // With the semantic of 'memset()', we should convert the CharVal to
+ // unsigned char.
+ CharVal = svalBuilder.evalCast(CharVal, Ctx.UnsignedCharTy, Ctx.IntTy);
+
+ ProgramStateRef StateNullChar, StateNonNullChar;
+ std::tie(StateNullChar, StateNonNullChar) =
+ assumeZero(C, State, CharVal, Ctx.UnsignedCharTy);
+
+ if (StateWholeReg && !StateNotWholeReg && StateNullChar &&
+ !StateNonNullChar) {
+ // If the 'memset()' acts on the whole region of destination buffer and
+ // the value of the second argument of 'memset()' is zero, bind the second
+ // argument's value to the destination buffer with 'default binding'.
+ // FIXME: Since there is no perfect way to bind the non-zero character, we
+ // can only deal with zero value here. In the future, we need to deal with
+ // the binding of non-zero value in the case of whole region.
+ State = State->bindDefaultZero(svalBuilder.makeLoc(BR),
+ C.getLocationContext());
+ } else {
+ // If the destination buffer's extent is not equal to the value of
+ // third argument, just invalidate buffer.
+ State = invalidateDestinationBufferBySize(C, State, DstBuffer, MemVal,
+ SizeVal, Size->getType());
+ }
+
+ if (StateNullChar && !StateNonNullChar) {
+ // If the value of the second argument of 'memset()' is zero, set the
+ // string length of destination buffer to 0 directly.
+ State = setCStringLength(State, MR,
+ svalBuilder.makeZeroVal(Ctx.getSizeType()));
+ } else if (!StateNullChar && StateNonNullChar) {
+ SVal NewStrLen = svalBuilder.getMetadataSymbolVal(
+ CStringChecker::getTag(), MR, DstBuffer, Ctx.getSizeType(),
+ C.getLocationContext(), C.blockCount());
+
+ // If the value of second argument is not zero, then the string length
+ // is at least the size argument.
+ SVal NewStrLenGESize = svalBuilder.evalBinOp(
+ State, BO_GE, NewStrLen, SizeVal, svalBuilder.getConditionType());
+
+ State = setCStringLength(
+ State->assume(NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), true),
+ MR, NewStrLen);
+ }
+ } else {
+ // If the offset is not zero and char value is not concrete, we can do
+ // nothing but invalidate the buffer.
+ State = invalidateDestinationBufferBySize(C, State, DstBuffer, MemVal,
+ SizeVal, Size->getType());
+ }
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// evaluation of individual function calls.
+//===----------------------------------------------------------------------===//
+
+void CStringChecker::evalCopyCommon(CheckerContext &C, const CallEvent &Call,
+ ProgramStateRef state, SizeArgExpr Size,
+ DestinationArgExpr Dest,
+ SourceArgExpr Source, bool Restricted,
+ bool IsMempcpy, CharKind CK) const {
+ CurrentFunctionDescription = "memory copy function";
+
+ // See if the size argument is zero.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal sizeVal = state->getSVal(Size.Expression, LCtx);
+ QualType sizeTy = Size.Expression->getType();
+
+ ProgramStateRef stateZeroSize, stateNonZeroSize;
+ std::tie(stateZeroSize, stateNonZeroSize) =
+ assumeZero(C, state, sizeVal, sizeTy);
+
+ // Get the value of the Dest.
+ SVal destVal = state->getSVal(Dest.Expression, LCtx);
+
+ // If the size is zero, there won't be any actual memory access, so
+ // just bind the return value to the destination buffer and return.
+ if (stateZeroSize && !stateNonZeroSize) {
+ stateZeroSize =
+ stateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, destVal);
+ C.addTransition(stateZeroSize);
+ return;
+ }
+
+ // If the size can be nonzero, we have to check the other arguments.
+ if (stateNonZeroSize) {
+ // TODO: If Size is tainted and we cannot prove that it is smaller or equal
+ // to the size of the destination buffer, then emit a warning
+ // that an attacker may provoke a buffer overflow error.
+ state = stateNonZeroSize;
+
+ // Ensure the destination is not null. If it is NULL there will be a
+ // NULL pointer dereference.
+ state = checkNonNull(C, state, Dest, destVal);
+ if (!state)
+ return;
+
+ // Get the value of the Src.
+ SVal srcVal = state->getSVal(Source.Expression, LCtx);
+
+ // Ensure the source is not null. If it is NULL there will be a
+ // NULL pointer dereference.
+ state = checkNonNull(C, state, Source, srcVal);
+ if (!state)
+ return;
+
+ // Ensure the accesses are valid and that the buffers do not overlap.
+ state = CheckBufferAccess(C, state, Dest, Size, AccessKind::write, CK);
+ state = CheckBufferAccess(C, state, Source, Size, AccessKind::read, CK);
+
+ if (Restricted)
+ state = CheckOverlap(C, state, Size, Dest, Source, CK);
+
+ if (!state)
+ return;
+
+ // If this is mempcpy, get the byte after the last byte copied and
+ // bind the expr.
+ if (IsMempcpy) {
+ // Get the byte after the last byte copied.
+ SValBuilder &SvalBuilder = C.getSValBuilder();
+ ASTContext &Ctx = SvalBuilder.getContext();
+ QualType CharPtrTy = getCharPtrType(Ctx, CK);
+ SVal DestRegCharVal =
+ SvalBuilder.evalCast(destVal, CharPtrTy, Dest.Expression->getType());
+ SVal lastElement = C.getSValBuilder().evalBinOp(
+ state, BO_Add, DestRegCharVal, sizeVal, Dest.Expression->getType());
+ // If we don't know how much we copied, we can at least
+ // conjure a return value for later.
+ if (lastElement.isUnknown())
+ lastElement = C.getSValBuilder().conjureSymbolVal(
+ nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
+
+ // The byte after the last byte copied is the return value.
+ state = state->BindExpr(Call.getOriginExpr(), LCtx, lastElement);
+ } else {
+ // All other copies return the destination buffer.
+ // (Well, bcopy() has a void return type, but this won't hurt.)
+ state = state->BindExpr(Call.getOriginExpr(), LCtx, destVal);
+ }
+
+ // Invalidate the destination (regular invalidation without pointer-escaping
+ // the address of the top-level region).
+ // FIXME: Even if we can't perfectly model the copy, we should see if we
+ // can use LazyCompoundVals to copy the source values into the destination.
+ // This would probably remove any existing bindings past the end of the
+ // copied region, but that's still an improvement over blank invalidation.
+ state = invalidateDestinationBufferBySize(
+ C, state, Dest.Expression, C.getSVal(Dest.Expression), sizeVal,
+ Size.Expression->getType());
+
+ // Invalidate the source (const-invalidation without const-pointer-escaping
+ // the address of the top-level region).
+ state = invalidateSourceBuffer(C, state, Source.Expression,
+ C.getSVal(Source.Expression));
+
+ C.addTransition(state);
+ }
+}
+
+void CStringChecker::evalMemcpy(CheckerContext &C, const CallEvent &Call,
+ CharKind CK) const {
+ // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
+ // The return value is the address of the destination buffer.
+ DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
+ SourceArgExpr Src = {{Call.getArgExpr(1), 1}};
+ SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
+
+ ProgramStateRef State = C.getState();
+
+ constexpr bool IsRestricted = true;
+ constexpr bool IsMempcpy = false;
+ evalCopyCommon(C, Call, State, Size, Dest, Src, IsRestricted, IsMempcpy, CK);
+}
+
+void CStringChecker::evalMempcpy(CheckerContext &C, const CallEvent &Call,
+ CharKind CK) const {
+ // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
+ // The return value is a pointer to the byte following the last written byte.
+ DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
+ SourceArgExpr Src = {{Call.getArgExpr(1), 1}};
+ SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
+
+ constexpr bool IsRestricted = true;
+ constexpr bool IsMempcpy = true;
+ evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted,
+ IsMempcpy, CK);
+}
+
+void CStringChecker::evalMemmove(CheckerContext &C, const CallEvent &Call,
+ CharKind CK) const {
+ // void *memmove(void *dst, const void *src, size_t n);
+ // The return value is the address of the destination buffer.
+ DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
+ SourceArgExpr Src = {{Call.getArgExpr(1), 1}};
+ SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
+
+ constexpr bool IsRestricted = false;
+ constexpr bool IsMempcpy = false;
+ evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted,
+ IsMempcpy, CK);
+}
+
+void CStringChecker::evalBcopy(CheckerContext &C, const CallEvent &Call) const {
+ // void bcopy(const void *src, void *dst, size_t n);
+ SourceArgExpr Src{{Call.getArgExpr(0), 0}};
+ DestinationArgExpr Dest = {{Call.getArgExpr(1), 1}};
+ SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
+
+ constexpr bool IsRestricted = false;
+ constexpr bool IsMempcpy = false;
+ evalCopyCommon(C, Call, C.getState(), Size, Dest, Src, IsRestricted,
+ IsMempcpy, CharKind::Regular);
+}
+
+void CStringChecker::evalMemcmp(CheckerContext &C, const CallEvent &Call,
+ CharKind CK) const {
+ // int memcmp(const void *s1, const void *s2, size_t n);
+ CurrentFunctionDescription = "memory comparison function";
+
+ AnyArgExpr Left = {Call.getArgExpr(0), 0};
+ AnyArgExpr Right = {Call.getArgExpr(1), 1};
+ SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
+
+ ProgramStateRef State = C.getState();
+ SValBuilder &Builder = C.getSValBuilder();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ // See if the size argument is zero.
+ SVal sizeVal = State->getSVal(Size.Expression, LCtx);
+ QualType sizeTy = Size.Expression->getType();
+
+ ProgramStateRef stateZeroSize, stateNonZeroSize;
+ std::tie(stateZeroSize, stateNonZeroSize) =
+ assumeZero(C, State, sizeVal, sizeTy);
+
+ // If the size can be zero, the result will be 0 in that case, and we don't
+ // have to check either of the buffers.
+ if (stateZeroSize) {
+ State = stateZeroSize;
+ State = State->BindExpr(Call.getOriginExpr(), LCtx,
+ Builder.makeZeroVal(Call.getResultType()));
+ C.addTransition(State);
+ }
+
+ // If the size can be nonzero, we have to check the other arguments.
+ if (stateNonZeroSize) {
+ State = stateNonZeroSize;
+ // If we know the two buffers are the same, we know the result is 0.
+ // First, get the two buffers' addresses. Another checker will have already
+ // made sure they're not undefined.
+ DefinedOrUnknownSVal LV =
+ State->getSVal(Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
+ DefinedOrUnknownSVal RV =
+ State->getSVal(Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>();
+
+ // See if they are the same.
+ ProgramStateRef SameBuffer, NotSameBuffer;
+ std::tie(SameBuffer, NotSameBuffer) =
+ State->assume(Builder.evalEQ(State, LV, RV));
+
+ // If the two arguments are the same buffer, we know the result is 0,
+ // and we only need to check one size.
+ if (SameBuffer && !NotSameBuffer) {
+ State = SameBuffer;
+ State = CheckBufferAccess(C, State, Left, Size, AccessKind::read);
+ if (State) {
+ State = SameBuffer->BindExpr(Call.getOriginExpr(), LCtx,
+ Builder.makeZeroVal(Call.getResultType()));
+ C.addTransition(State);
+ }
+ return;
+ }
+
+ // If the two arguments might be different buffers, we have to check
+ // the size of both of them.
+ assert(NotSameBuffer);
+ State = CheckBufferAccess(C, State, Right, Size, AccessKind::read, CK);
+ State = CheckBufferAccess(C, State, Left, Size, AccessKind::read, CK);
+ if (State) {
+ // The return value is the comparison result, which we don't know.
+ SVal CmpV = Builder.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx,
+ C.blockCount());
+ State = State->BindExpr(Call.getOriginExpr(), LCtx, CmpV);
+ C.addTransition(State);
+ }
+ }
+}
+
+void CStringChecker::evalstrLength(CheckerContext &C,
+ const CallEvent &Call) const {
+ // size_t strlen(const char *s);
+ evalstrLengthCommon(C, Call, /* IsStrnlen = */ false);
+}
+
+void CStringChecker::evalstrnLength(CheckerContext &C,
+ const CallEvent &Call) const {
+ // size_t strnlen(const char *s, size_t maxlen);
+ evalstrLengthCommon(C, Call, /* IsStrnlen = */ true);
+}
+
+void CStringChecker::evalstrLengthCommon(CheckerContext &C,
+ const CallEvent &Call,
+ bool IsStrnlen) const {
+ CurrentFunctionDescription = "string length function";
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ if (IsStrnlen) {
+ const Expr *maxlenExpr = Call.getArgExpr(1);
+ SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
+
+ ProgramStateRef stateZeroSize, stateNonZeroSize;
+ std::tie(stateZeroSize, stateNonZeroSize) =
+ assumeZero(C, state, maxlenVal, maxlenExpr->getType());
+
+ // If the size can be zero, the result will be 0 in that case, and we don't
+ // have to check the string itself.
+ if (stateZeroSize) {
+ SVal zero = C.getSValBuilder().makeZeroVal(Call.getResultType());
+ stateZeroSize = stateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, zero);
+ C.addTransition(stateZeroSize);
+ }
+
+ // If the size is GUARANTEED to be zero, we're done!
+ if (!stateNonZeroSize)
+ return;
+
+ // Otherwise, record the assumption that the size is nonzero.
+ state = stateNonZeroSize;
+ }
+
+ // Check that the string argument is non-null.
+ AnyArgExpr Arg = {Call.getArgExpr(0), 0};
+ SVal ArgVal = state->getSVal(Arg.Expression, LCtx);
+ state = checkNonNull(C, state, Arg, ArgVal);
+
+ if (!state)
+ return;
+
+ SVal strLength = getCStringLength(C, state, Arg.Expression, ArgVal);
+
+ // If the argument isn't a valid C string, there's no valid state to
+ // transition to.
+ if (strLength.isUndef())
+ return;
+
+ DefinedOrUnknownSVal result = UnknownVal();
+
+ // If the check is for strnlen() then bind the return value to no more than
+ // the maxlen value.
+ if (IsStrnlen) {
+ QualType cmpTy = C.getSValBuilder().getConditionType();
+
+ // It's a little unfortunate to be getting this again,
+ // but it's not that expensive...
+ const Expr *maxlenExpr = Call.getArgExpr(1);
+ SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
+
+ std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
+ std::optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
+
+ if (strLengthNL && maxlenValNL) {
+ ProgramStateRef stateStringTooLong, stateStringNotTooLong;
+
+ // Check if the strLength is greater than the maxlen.
+ std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
+ C.getSValBuilder()
+ .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
+ .castAs<DefinedOrUnknownSVal>());
+
+ if (stateStringTooLong && !stateStringNotTooLong) {
+ // If the string is longer than maxlen, return maxlen.
+ result = *maxlenValNL;
+ } else if (stateStringNotTooLong && !stateStringTooLong) {
+ // If the string is shorter than maxlen, return its length.
+ result = *strLengthNL;
+ }
+ }
+
+ if (result.isUnknown()) {
+ // If we don't have enough information for a comparison, there's
+ // no guarantee the full string length will actually be returned.
+ // All we know is the return value is the min of the string length
+ // and the limit. This is better than nothing.
+ result = C.getSValBuilder().conjureSymbolVal(
+ nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
+ NonLoc resultNL = result.castAs<NonLoc>();
+
+ if (strLengthNL) {
+ state = state->assume(C.getSValBuilder().evalBinOpNN(
+ state, BO_LE, resultNL, *strLengthNL, cmpTy)
+ .castAs<DefinedOrUnknownSVal>(), true);
+ }
+
+ if (maxlenValNL) {
+ state = state->assume(C.getSValBuilder().evalBinOpNN(
+ state, BO_LE, resultNL, *maxlenValNL, cmpTy)
+ .castAs<DefinedOrUnknownSVal>(), true);
+ }
+ }
+
+ } else {
+ // This is a plain strlen(), not strnlen().
+ result = strLength.castAs<DefinedOrUnknownSVal>();
+
+ // If we don't know the length of the string, conjure a return
+ // value, so it can be used in constraints, at least.
+ if (result.isUnknown()) {
+ result = C.getSValBuilder().conjureSymbolVal(
+ nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
+ }
+ }
+
+ // Bind the return value.
+ assert(!result.isUnknown() && "Should have conjured a value by now");
+ state = state->BindExpr(Call.getOriginExpr(), LCtx, result);
+ C.addTransition(state);
+}
+
+void CStringChecker::evalStrcpy(CheckerContext &C,
+ const CallEvent &Call) const {
+ // char *strcpy(char *restrict dst, const char *restrict src);
+ evalStrcpyCommon(C, Call,
+ /* ReturnEnd = */ false,
+ /* IsBounded = */ false,
+ /* appendK = */ ConcatFnKind::none);
+}
+
+void CStringChecker::evalStrncpy(CheckerContext &C,
+ const CallEvent &Call) const {
+ // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
+ evalStrcpyCommon(C, Call,
+ /* ReturnEnd = */ false,
+ /* IsBounded = */ true,
+ /* appendK = */ ConcatFnKind::none);
+}
+
+void CStringChecker::evalStpcpy(CheckerContext &C,
+ const CallEvent &Call) const {
+ // char *stpcpy(char *restrict dst, const char *restrict src);
+ evalStrcpyCommon(C, Call,
+ /* ReturnEnd = */ true,
+ /* IsBounded = */ false,
+ /* appendK = */ ConcatFnKind::none);
+}
+
+void CStringChecker::evalStrlcpy(CheckerContext &C,
+ const CallEvent &Call) const {
+ // size_t strlcpy(char *dest, const char *src, size_t size);
+ evalStrcpyCommon(C, Call,
+ /* ReturnEnd = */ true,
+ /* IsBounded = */ true,
+ /* appendK = */ ConcatFnKind::none,
+ /* returnPtr = */ false);
+}
+
+void CStringChecker::evalStrcat(CheckerContext &C,
+ const CallEvent &Call) const {
+ // char *strcat(char *restrict s1, const char *restrict s2);
+ evalStrcpyCommon(C, Call,
+ /* ReturnEnd = */ false,
+ /* IsBounded = */ false,
+ /* appendK = */ ConcatFnKind::strcat);
+}
+
+void CStringChecker::evalStrncat(CheckerContext &C,
+ const CallEvent &Call) const {
+ // char *strncat(char *restrict s1, const char *restrict s2, size_t n);
+ evalStrcpyCommon(C, Call,
+ /* ReturnEnd = */ false,
+ /* IsBounded = */ true,
+ /* appendK = */ ConcatFnKind::strcat);
+}
+
+void CStringChecker::evalStrlcat(CheckerContext &C,
+ const CallEvent &Call) const {
+ // size_t strlcat(char *dst, const char *src, size_t size);
+ // It will append at most size - strlen(dst) - 1 bytes,
+ // NULL-terminating the result.
+ evalStrcpyCommon(C, Call,
+ /* ReturnEnd = */ false,
+ /* IsBounded = */ true,
+ /* appendK = */ ConcatFnKind::strlcat,
+ /* returnPtr = */ false);
+}
+
+void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallEvent &Call,
+ bool ReturnEnd, bool IsBounded,
+ ConcatFnKind appendK,
+ bool returnPtr) const {
+ if (appendK == ConcatFnKind::none)
+ CurrentFunctionDescription = "string copy function";
+ else
+ CurrentFunctionDescription = "string concatenation function";
+
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ // Check that the destination is non-null.
+ DestinationArgExpr Dst = {{Call.getArgExpr(0), 0}};
+ SVal DstVal = state->getSVal(Dst.Expression, LCtx);
+ state = checkNonNull(C, state, Dst, DstVal);
+ if (!state)
+ return;
+
+ // Check that the source is non-null.
+ SourceArgExpr srcExpr = {{Call.getArgExpr(1), 1}};
+ SVal srcVal = state->getSVal(srcExpr.Expression, LCtx);
+ state = checkNonNull(C, state, srcExpr, srcVal);
+ if (!state)
+ return;
+
+ // Get the string length of the source.
+ SVal strLength = getCStringLength(C, state, srcExpr.Expression, srcVal);
+ std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
+
+ // Get the string length of the destination buffer.
+ SVal dstStrLength = getCStringLength(C, state, Dst.Expression, DstVal);
+ std::optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
+
+ // If the source isn't a valid C string, give up.
+ if (strLength.isUndef())
+ return;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ QualType cmpTy = svalBuilder.getConditionType();
+ QualType sizeTy = svalBuilder.getContext().getSizeType();
+
+ // These two values allow checking two kinds of errors:
+ // - actual overflows caused by a source that doesn't fit in the destination
+ // - potential overflows caused by a bound that could exceed the destination
+ SVal amountCopied = UnknownVal();
+ SVal maxLastElementIndex = UnknownVal();
+ const char *boundWarning = nullptr;
+
+ // FIXME: Why do we choose the srcExpr if the access has no size?
+ // Note that the 3rd argument of the call would be the size parameter.
+ SizeArgExpr SrcExprAsSizeDummy = {
+ {srcExpr.Expression, srcExpr.ArgumentIndex}};
+ state = CheckOverlap(
+ C, state,
+ (IsBounded ? SizeArgExpr{{Call.getArgExpr(2), 2}} : SrcExprAsSizeDummy),
+ Dst, srcExpr);
+
+ if (!state)
+ return;
+
+ // If the function is strncpy, strncat, etc... it is bounded.
+ if (IsBounded) {
+ // Get the max number of characters to copy.
+ SizeArgExpr lenExpr = {{Call.getArgExpr(2), 2}};
+ SVal lenVal = state->getSVal(lenExpr.Expression, LCtx);
+
+ // Protect against misdeclared strncpy().
+ lenVal =
+ svalBuilder.evalCast(lenVal, sizeTy, lenExpr.Expression->getType());
+
+ std::optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
+
+ // If we know both values, we might be able to figure out how much
+ // we're copying.
+ if (strLengthNL && lenValNL) {
+ switch (appendK) {
+ case ConcatFnKind::none:
+ case ConcatFnKind::strcat: {
+ ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
+ // Check if the max number to copy is less than the length of the src.
+ // If the bound is equal to the source length, strncpy won't null-
+ // terminate the result!
+ std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
+ svalBuilder
+ .evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
+ .castAs<DefinedOrUnknownSVal>());
+
+ if (stateSourceTooLong && !stateSourceNotTooLong) {
+ // Max number to copy is less than the length of the src, so the
+ // actual strLength copied is the max number arg.
+ state = stateSourceTooLong;
+ amountCopied = lenVal;
+
+ } else if (!stateSourceTooLong && stateSourceNotTooLong) {
+ // The source buffer entirely fits in the bound.
+ state = stateSourceNotTooLong;
+ amountCopied = strLength;
+ }
+ break;
+ }
+ case ConcatFnKind::strlcat:
+ if (!dstStrLengthNL)
+ return;
+
+ // amountCopied = min (size - dstLen - 1 , srcLen)
+ SVal freeSpace = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
+ *dstStrLengthNL, sizeTy);
+ if (!isa<NonLoc>(freeSpace))
+ return;
+ freeSpace =
+ svalBuilder.evalBinOp(state, BO_Sub, freeSpace,
+ svalBuilder.makeIntVal(1, sizeTy), sizeTy);
+ std::optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>();
+
+ // While unlikely, it is possible that the subtraction is
+ // too complex to compute, let's check whether it succeeded.
+ if (!freeSpaceNL)
+ return;
+ SVal hasEnoughSpace = svalBuilder.evalBinOpNN(
+ state, BO_LE, *strLengthNL, *freeSpaceNL, cmpTy);
+
+ ProgramStateRef TrueState, FalseState;
+ std::tie(TrueState, FalseState) =
+ state->assume(hasEnoughSpace.castAs<DefinedOrUnknownSVal>());
+
+ // srcStrLength <= size - dstStrLength -1
+ if (TrueState && !FalseState) {
+ amountCopied = strLength;
+ }
+
+ // srcStrLength > size - dstStrLength -1
+ if (!TrueState && FalseState) {
+ amountCopied = freeSpace;
+ }
+
+ if (TrueState && FalseState)
+ amountCopied = UnknownVal();
+ break;
+ }
+ }
+ // We still want to know if the bound is known to be too large.
+ if (lenValNL) {
+ switch (appendK) {
+ case ConcatFnKind::strcat:
+ // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
+
+ // Get the string length of the destination. If the destination is
+ // memory that can't have a string length, we shouldn't be copying
+ // into it anyway.
+ if (dstStrLength.isUndef())
+ return;
+
+ if (dstStrLengthNL) {
+ maxLastElementIndex = svalBuilder.evalBinOpNN(
+ state, BO_Add, *lenValNL, *dstStrLengthNL, sizeTy);
+
+ boundWarning = "Size argument is greater than the free space in the "
+ "destination buffer";
+ }
+ break;
+ case ConcatFnKind::none:
+ case ConcatFnKind::strlcat:
+ // For strncpy and strlcat, this is just checking
+ // that lenVal <= sizeof(dst).
+ // (Yes, strncpy and strncat differ in how they treat termination.
+ // strncat ALWAYS terminates, but strncpy doesn't.)
+
+ // We need a special case for when the copy size is zero, in which
+ // case strncpy will do no work at all. Our bounds check uses n-1
+ // as the last element accessed, so n == 0 is problematic.
+ ProgramStateRef StateZeroSize, StateNonZeroSize;
+ std::tie(StateZeroSize, StateNonZeroSize) =
+ assumeZero(C, state, *lenValNL, sizeTy);
+
+ // If the size is known to be zero, we're done.
+ if (StateZeroSize && !StateNonZeroSize) {
+ if (returnPtr) {
+ StateZeroSize =
+ StateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, DstVal);
+ } else {
+ if (appendK == ConcatFnKind::none) {
+ // strlcpy returns strlen(src)
+ StateZeroSize = StateZeroSize->BindExpr(Call.getOriginExpr(),
+ LCtx, strLength);
+ } else {
+ // strlcat returns strlen(src) + strlen(dst)
+ SVal retSize = svalBuilder.evalBinOp(
+ state, BO_Add, strLength, dstStrLength, sizeTy);
+ StateZeroSize =
+ StateZeroSize->BindExpr(Call.getOriginExpr(), LCtx, retSize);
+ }
+ }
+ C.addTransition(StateZeroSize);
+ return;
+ }
+
+ // Otherwise, go ahead and figure out the last element we'll touch.
+ // We don't record the non-zero assumption here because we can't
+ // be sure. We won't warn on a possible zero.
+ NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
+ maxLastElementIndex =
+ svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL, one, sizeTy);
+ boundWarning = "Size argument is greater than the length of the "
+ "destination buffer";
+ break;
+ }
+ }
+ } else {
+ // The function isn't bounded. The amount copied should match the length
+ // of the source buffer.
+ amountCopied = strLength;
+ }
+
+ assert(state);
+
+ // This represents the number of characters copied into the destination
+ // buffer. (It may not actually be the strlen if the destination buffer
+ // is not terminated.)
+ SVal finalStrLength = UnknownVal();
+ SVal strlRetVal = UnknownVal();
+
+ if (appendK == ConcatFnKind::none && !returnPtr) {
+ // strlcpy returns the sizeof(src)
+ strlRetVal = strLength;
+ }
+
+ // If this is an appending function (strcat, strncat...) then set the
+ // string length to strlen(src) + strlen(dst) since the buffer will
+ // ultimately contain both.
+ if (appendK != ConcatFnKind::none) {
+ // Get the string length of the destination. If the destination is memory
+ // that can't have a string length, we shouldn't be copying into it anyway.
+ if (dstStrLength.isUndef())
+ return;
+
+ if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) {
+ strlRetVal = svalBuilder.evalBinOpNN(state, BO_Add, *strLengthNL,
+ *dstStrLengthNL, sizeTy);
+ }
+
+ std::optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>();
+
+ // If we know both string lengths, we might know the final string length.
+ if (amountCopiedNL && dstStrLengthNL) {
+ // Make sure the two lengths together don't overflow a size_t.
+ state = checkAdditionOverflow(C, state, *amountCopiedNL, *dstStrLengthNL);
+ if (!state)
+ return;
+
+ finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *amountCopiedNL,
+ *dstStrLengthNL, sizeTy);
+ }
+
+ // If we couldn't get a single value for the final string length,
+ // we can at least bound it by the individual lengths.
+ if (finalStrLength.isUnknown()) {
+ // Try to get a "hypothetical" string length symbol, which we can later
+ // set as a real value if that turns out to be the case.
+ finalStrLength =
+ getCStringLength(C, state, Call.getOriginExpr(), DstVal, true);
+ assert(!finalStrLength.isUndef());
+
+ if (std::optional<NonLoc> finalStrLengthNL =
+ finalStrLength.getAs<NonLoc>()) {
+ if (amountCopiedNL && appendK == ConcatFnKind::none) {
+ // we overwrite dst string with the src
+ // finalStrLength >= srcStrLength
+ SVal sourceInResult = svalBuilder.evalBinOpNN(
+ state, BO_GE, *finalStrLengthNL, *amountCopiedNL, cmpTy);
+ state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
+ true);
+ if (!state)
+ return;
+ }
+
+ if (dstStrLengthNL && appendK != ConcatFnKind::none) {
+ // we extend the dst string with the src
+ // finalStrLength >= dstStrLength
+ SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
+ *finalStrLengthNL,
+ *dstStrLengthNL,
+ cmpTy);
+ state =
+ state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
+ if (!state)
+ return;
+ }
+ }
+ }
+
+ } else {
+ // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
+ // the final string length will match the input string length.
+ finalStrLength = amountCopied;
+ }
+
+ SVal Result;
+
+ if (returnPtr) {
+ // The final result of the function will either be a pointer past the last
+ // copied element, or a pointer to the start of the destination buffer.
+ Result = (ReturnEnd ? UnknownVal() : DstVal);
+ } else {
+ if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none)
+ //strlcpy, strlcat
+ Result = strlRetVal;
+ else
+ Result = finalStrLength;
+ }
+
+ assert(state);
+
+ // If the destination is a MemRegion, try to check for a buffer overflow and
+ // record the new string length.
+ if (std::optional<loc::MemRegionVal> dstRegVal =
+ DstVal.getAs<loc::MemRegionVal>()) {
+ QualType ptrTy = Dst.Expression->getType();
+
+ // If we have an exact value on a bounded copy, use that to check for
+ // overflows, rather than our estimate about how much is actually copied.
+ if (std::optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
+ SVal maxLastElement =
+ svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal, *maxLastNL, ptrTy);
+
+ // Check if the first byte of the destination is writable.
+ state = CheckLocation(C, state, Dst, DstVal, AccessKind::write);
+ if (!state)
+ return;
+ // Check if the last byte of the destination is writable.
+ state = CheckLocation(C, state, Dst, maxLastElement, AccessKind::write);
+ if (!state)
+ return;
+ }
+
+ // Then, if the final length is known...
+ if (std::optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
+ SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
+ *knownStrLength, ptrTy);
+
+ // ...and we haven't checked the bound, we'll check the actual copy.
+ if (!boundWarning) {
+ // Check if the first byte of the destination is writable.
+ state = CheckLocation(C, state, Dst, DstVal, AccessKind::write);
+ if (!state)
+ return;
+ // Check if the last byte of the destination is writable.
+ state = CheckLocation(C, state, Dst, lastElement, AccessKind::write);
+ if (!state)
+ return;
+ }
+
+ // If this is a stpcpy-style copy, the last element is the return value.
+ if (returnPtr && ReturnEnd)
+ Result = lastElement;
+ }
+
+ // Invalidate the destination (regular invalidation without pointer-escaping
+ // the address of the top-level region). This must happen before we set the
+ // C string length because invalidation will clear the length.
+ // FIXME: Even if we can't perfectly model the copy, we should see if we
+ // can use LazyCompoundVals to copy the source values into the destination.
+ // This would probably remove any existing bindings past the end of the
+ // string, but that's still an improvement over blank invalidation.
+ state = invalidateDestinationBufferBySize(C, state, Dst.Expression,
+ *dstRegVal, amountCopied,
+ C.getASTContext().getSizeType());
+
+ // Invalidate the source (const-invalidation without const-pointer-escaping
+ // the address of the top-level region).
+ state = invalidateSourceBuffer(C, state, srcExpr.Expression, srcVal);
+
+ // Set the C string length of the destination, if we know it.
+ if (IsBounded && (appendK == ConcatFnKind::none)) {
+ // strncpy is annoying in that it doesn't guarantee to null-terminate
+ // the result string. If the original string didn't fit entirely inside
+ // the bound (including the null-terminator), we don't know how long the
+ // result is.
+ if (amountCopied != strLength)
+ finalStrLength = UnknownVal();
+ }
+ state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
+ }
+
+ assert(state);
+
+ if (returnPtr) {
+ // If this is a stpcpy-style copy, but we were unable to check for a buffer
+ // overflow, we still need a result. Conjure a return value.
+ if (ReturnEnd && Result.isUnknown()) {
+ Result = svalBuilder.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx,
+ C.blockCount());
+ }
+ }
+ // Set the return value.
+ state = state->BindExpr(Call.getOriginExpr(), LCtx, Result);
+ C.addTransition(state);
+}
+
+void CStringChecker::evalStrcmp(CheckerContext &C,
+ const CallEvent &Call) const {
+ //int strcmp(const char *s1, const char *s2);
+ evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ false);
+}
+
+void CStringChecker::evalStrncmp(CheckerContext &C,
+ const CallEvent &Call) const {
+ //int strncmp(const char *s1, const char *s2, size_t n);
+ evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ false);
+}
+
+void CStringChecker::evalStrcasecmp(CheckerContext &C,
+ const CallEvent &Call) const {
+ //int strcasecmp(const char *s1, const char *s2);
+ evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ true);
+}
+
+void CStringChecker::evalStrncasecmp(CheckerContext &C,
+ const CallEvent &Call) const {
+ //int strncasecmp(const char *s1, const char *s2, size_t n);
+ evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ true);
+}
+
+void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallEvent &Call,
+ bool IsBounded, bool IgnoreCase) const {
+ CurrentFunctionDescription = "string comparison function";
+ ProgramStateRef state = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ // Check that the first string is non-null
+ AnyArgExpr Left = {Call.getArgExpr(0), 0};
+ SVal LeftVal = state->getSVal(Left.Expression, LCtx);
+ state = checkNonNull(C, state, Left, LeftVal);
+ if (!state)
+ return;
+
+ // Check that the second string is non-null.
+ AnyArgExpr Right = {Call.getArgExpr(1), 1};
+ SVal RightVal = state->getSVal(Right.Expression, LCtx);
+ state = checkNonNull(C, state, Right, RightVal);
+ if (!state)
+ return;
+
+ // Get the string length of the first string or give up.
+ SVal LeftLength = getCStringLength(C, state, Left.Expression, LeftVal);
+ if (LeftLength.isUndef())
+ return;
+
+ // Get the string length of the second string or give up.
+ SVal RightLength = getCStringLength(C, state, Right.Expression, RightVal);
+ if (RightLength.isUndef())
+ return;
+
+ // If we know the two buffers are the same, we know the result is 0.
+ // First, get the two buffers' addresses. Another checker will have already
+ // made sure they're not undefined.
+ DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>();
+ DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>();
+
+ // See if they are the same.
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
+ ProgramStateRef StSameBuf, StNotSameBuf;
+ std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
+
+ // If the two arguments might be the same buffer, we know the result is 0,
+ // and we only need to check one size.
+ if (StSameBuf) {
+ StSameBuf =
+ StSameBuf->BindExpr(Call.getOriginExpr(), LCtx,
+ svalBuilder.makeZeroVal(Call.getResultType()));
+ C.addTransition(StSameBuf);
+
+ // If the two arguments are GUARANTEED to be the same, we're done!
+ if (!StNotSameBuf)
+ return;
+ }
+
+ assert(StNotSameBuf);
+ state = StNotSameBuf;
+
+ // At this point we can go about comparing the two buffers.
+ // For now, we only do this if they're both known string literals.
+
+ // Attempt to extract string literals from both expressions.
+ const StringLiteral *LeftStrLiteral =
+ getCStringLiteral(C, state, Left.Expression, LeftVal);
+ const StringLiteral *RightStrLiteral =
+ getCStringLiteral(C, state, Right.Expression, RightVal);
+ bool canComputeResult = false;
+ SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, Call.getOriginExpr(),
+ LCtx, C.blockCount());
+
+ if (LeftStrLiteral && RightStrLiteral) {
+ StringRef LeftStrRef = LeftStrLiteral->getString();
+ StringRef RightStrRef = RightStrLiteral->getString();
+
+ if (IsBounded) {
+ // Get the max number of characters to compare.
+ const Expr *lenExpr = Call.getArgExpr(2);
+ SVal lenVal = state->getSVal(lenExpr, LCtx);
+
+ // If the length is known, we can get the right substrings.
+ if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
+ // Create substrings of each to compare the prefix.
+ LeftStrRef = LeftStrRef.substr(0, (size_t)len->getZExtValue());
+ RightStrRef = RightStrRef.substr(0, (size_t)len->getZExtValue());
+ canComputeResult = true;
+ }
+ } else {
+ // This is a normal, unbounded strcmp.
+ canComputeResult = true;
+ }
+
+ if (canComputeResult) {
+ // Real strcmp stops at null characters.
+ size_t s1Term = LeftStrRef.find('\0');
+ if (s1Term != StringRef::npos)
+ LeftStrRef = LeftStrRef.substr(0, s1Term);
+
+ size_t s2Term = RightStrRef.find('\0');
+ if (s2Term != StringRef::npos)
+ RightStrRef = RightStrRef.substr(0, s2Term);
+
+ // Use StringRef's comparison methods to compute the actual result.
+ int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RightStrRef)
+ : LeftStrRef.compare(RightStrRef);
+
+ // The strcmp function returns an integer greater than, equal to, or less
+ // than zero, [c11, p7.24.4.2].
+ if (compareRes == 0) {
+ resultVal = svalBuilder.makeIntVal(compareRes, Call.getResultType());
+ }
+ else {
+ DefinedSVal zeroVal = svalBuilder.makeIntVal(0, Call.getResultType());
+ // Constrain strcmp's result range based on the result of StringRef's
+ // comparison methods.
+ BinaryOperatorKind op = (compareRes > 0) ? BO_GT : BO_LT;
+ SVal compareWithZero =
+ svalBuilder.evalBinOp(state, op, resultVal, zeroVal,
+ svalBuilder.getConditionType());
+ DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>();
+ state = state->assume(compareWithZeroVal, true);
+ }
+ }
+ }
+
+ state = state->BindExpr(Call.getOriginExpr(), LCtx, resultVal);
+
+ // Record this as a possible path.
+ C.addTransition(state);
+}
+
+void CStringChecker::evalStrsep(CheckerContext &C,
+ const CallEvent &Call) const {
+ // char *strsep(char **stringp, const char *delim);
+ // Verify whether the search string parameter matches the return type.
+ SourceArgExpr SearchStrPtr = {{Call.getArgExpr(0), 0}};
+
+ QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType();
+ if (CharPtrTy.isNull() || Call.getResultType().getUnqualifiedType() !=
+ CharPtrTy.getUnqualifiedType())
+ return;
+
+ CurrentFunctionDescription = "strsep()";
+ ProgramStateRef State = C.getState();
+ const LocationContext *LCtx = C.getLocationContext();
+
+ // Check that the search string pointer is non-null (though it may point to
+ // a null string).
+ SVal SearchStrVal = State->getSVal(SearchStrPtr.Expression, LCtx);
+ State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
+ if (!State)
+ return;
+
+ // Check that the delimiter string is non-null.
+ AnyArgExpr DelimStr = {Call.getArgExpr(1), 1};
+ SVal DelimStrVal = State->getSVal(DelimStr.Expression, LCtx);
+ State = checkNonNull(C, State, DelimStr, DelimStrVal);
+ if (!State)
+ return;
+
+ SValBuilder &SVB = C.getSValBuilder();
+ SVal Result;
+ if (std::optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
+ // Get the current value of the search string pointer, as a char*.
+ Result = State->getSVal(*SearchStrLoc, CharPtrTy);
+
+ // Invalidate the search string, representing the change of one delimiter
+ // character to NUL.
+ // As the replacement never overflows, do not invalidate its super region.
+ State = invalidateDestinationBufferNeverOverflows(
+ C, State, SearchStrPtr.Expression, Result);
+
+ // Overwrite the search string pointer. The new value is either an address
+ // further along in the same string, or NULL if there are no more tokens.
+ State =
+ State->bindLoc(*SearchStrLoc,
+ SVB.conjureSymbolVal(getTag(), Call.getOriginExpr(),
+ LCtx, CharPtrTy, C.blockCount()),
+ LCtx);
+ } else {
+ assert(SearchStrVal.isUnknown());
+ // Conjure a symbolic value. It's the best we can do.
+ Result = SVB.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx,
+ C.blockCount());
+ }
+
+ // Set the return value, and finish.
+ State = State->BindExpr(Call.getOriginExpr(), LCtx, Result);
+ C.addTransition(State);
+}
+
+// These should probably be moved into a C++ standard library checker.
+void CStringChecker::evalStdCopy(CheckerContext &C,
+ const CallEvent &Call) const {
+ evalStdCopyCommon(C, Call);
+}
+
+void CStringChecker::evalStdCopyBackward(CheckerContext &C,
+ const CallEvent &Call) const {
+ evalStdCopyCommon(C, Call);
+}
+
+void CStringChecker::evalStdCopyCommon(CheckerContext &C,
+ const CallEvent &Call) const {
+ if (!Call.getArgExpr(2)->getType()->isPointerType())
+ return;
+
+ ProgramStateRef State = C.getState();
+
+ const LocationContext *LCtx = C.getLocationContext();
+
+ // template <class _InputIterator, class _OutputIterator>
+ // _OutputIterator
+ // copy(_InputIterator __first, _InputIterator __last,
+ // _OutputIterator __result)
+
+ // Invalidate the destination buffer
+ const Expr *Dst = Call.getArgExpr(2);
+ SVal DstVal = State->getSVal(Dst, LCtx);
+ // FIXME: As we do not know how many items are copied, we also invalidate the
+ // super region containing the target location.
+ State =
+ invalidateDestinationBufferAlwaysEscapeSuperRegion(C, State, Dst, DstVal);
+
+ SValBuilder &SVB = C.getSValBuilder();
+
+ SVal ResultVal =
+ SVB.conjureSymbolVal(nullptr, Call.getOriginExpr(), LCtx, C.blockCount());
+ State = State->BindExpr(Call.getOriginExpr(), LCtx, ResultVal);
+
+ C.addTransition(State);
+}
+
+void CStringChecker::evalMemset(CheckerContext &C,
+ const CallEvent &Call) const {
+ // void *memset(void *s, int c, size_t n);
+ CurrentFunctionDescription = "memory set function";
+
+ DestinationArgExpr Buffer = {{Call.getArgExpr(0), 0}};
+ AnyArgExpr CharE = {Call.getArgExpr(1), 1};
+ SizeArgExpr Size = {{Call.getArgExpr(2), 2}};
+
+ ProgramStateRef State = C.getState();
+
+ // See if the size argument is zero.
+ const LocationContext *LCtx = C.getLocationContext();
+ SVal SizeVal = C.getSVal(Size.Expression);
+ QualType SizeTy = Size.Expression->getType();
+
+ ProgramStateRef ZeroSize, NonZeroSize;
+ std::tie(ZeroSize, NonZeroSize) = assumeZero(C, State, SizeVal, SizeTy);
+
+ // Get the value of the memory area.
+ SVal BufferPtrVal = C.getSVal(Buffer.Expression);
+
+ // If the size is zero, there won't be any actual memory access, so
+ // just bind the return value to the buffer and return.
+ if (ZeroSize && !NonZeroSize) {
+ ZeroSize = ZeroSize->BindExpr(Call.getOriginExpr(), LCtx, BufferPtrVal);
+ C.addTransition(ZeroSize);
+ return;
+ }
+
+ // Ensure the memory area is not null.
+ // If it is NULL there will be a NULL pointer dereference.
+ State = checkNonNull(C, NonZeroSize, Buffer, BufferPtrVal);
+ if (!State)
+ return;
+
+ State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
+ if (!State)
+ return;
+
+ // According to the values of the arguments, bind the value of the second
+ // argument to the destination buffer and set string length, or just
+ // invalidate the destination buffer.
+ if (!memsetAux(Buffer.Expression, C.getSVal(CharE.Expression),
+ Size.Expression, C, State))
+ return;
+
+ State = State->BindExpr(Call.getOriginExpr(), LCtx, BufferPtrVal);
+ C.addTransition(State);
+}
+
+void CStringChecker::evalBzero(CheckerContext &C, const CallEvent &Call) const {
+ CurrentFunctionDescription = "memory clearance function";
+
+ DestinationArgExpr Buffer = {{Call.getArgExpr(0), 0}};
+ SizeArgExpr Size = {{Call.getArgExpr(1), 1}};
+ SVal Zero = C.getSValBuilder().makeZeroVal(C.getASTContext().IntTy);
+
+ ProgramStateRef State = C.getState();
+
+ // See if the size argument is zero.
+ SVal SizeVal = C.getSVal(Size.Expression);
+ QualType SizeTy = Size.Expression->getType();
+
+ ProgramStateRef StateZeroSize, StateNonZeroSize;
+ std::tie(StateZeroSize, StateNonZeroSize) =
+ assumeZero(C, State, SizeVal, SizeTy);
+
+ // If the size is zero, there won't be any actual memory access,
+ // In this case we just return.
+ if (StateZeroSize && !StateNonZeroSize) {
+ C.addTransition(StateZeroSize);
+ return;
+ }
+
+ // Get the value of the memory area.
+ SVal MemVal = C.getSVal(Buffer.Expression);
+
+ // Ensure the memory area is not null.
+ // If it is NULL there will be a NULL pointer dereference.
+ State = checkNonNull(C, StateNonZeroSize, Buffer, MemVal);
+ if (!State)
+ return;
+
+ State = CheckBufferAccess(C, State, Buffer, Size, AccessKind::write);
+ if (!State)
+ return;
+
+ if (!memsetAux(Buffer.Expression, Zero, Size.Expression, C, State))
+ return;
+
+ C.addTransition(State);
+}
+
+void CStringChecker::evalSprintf(CheckerContext &C,
+ const CallEvent &Call) const {
+ CurrentFunctionDescription = "'sprintf'";
+ evalSprintfCommon(C, Call, /* IsBounded = */ false);
+}
+
+void CStringChecker::evalSnprintf(CheckerContext &C,
+ const CallEvent &Call) const {
+ CurrentFunctionDescription = "'snprintf'";
+ evalSprintfCommon(C, Call, /* IsBounded = */ true);
+}
+
+void CStringChecker::evalSprintfCommon(CheckerContext &C, const CallEvent &Call,
+ bool IsBounded) const {
+ ProgramStateRef State = C.getState();
+ const auto *CE = cast<CallExpr>(Call.getOriginExpr());
+ DestinationArgExpr Dest = {{Call.getArgExpr(0), 0}};
+
+ const auto NumParams = Call.parameters().size();
+ if (CE->getNumArgs() < NumParams) {
+ // This is an invalid call, let's just ignore it.
+ return;
+ }
+
+ const auto AllArguments =
+ llvm::make_range(CE->getArgs(), CE->getArgs() + CE->getNumArgs());
+ const auto VariadicArguments = drop_begin(enumerate(AllArguments), NumParams);
+
+ for (const auto &[ArgIdx, ArgExpr] : VariadicArguments) {
+ // We consider only string buffers
+ if (const QualType type = ArgExpr->getType();
+ !type->isAnyPointerType() ||
+ !type->getPointeeType()->isAnyCharacterType())
+ continue;
+ SourceArgExpr Source = {{ArgExpr, unsigned(ArgIdx)}};
+
+ // Ensure the buffers do not overlap.
+ SizeArgExpr SrcExprAsSizeDummy = {
+ {Source.Expression, Source.ArgumentIndex}};
+ State = CheckOverlap(
+ C, State,
+ (IsBounded ? SizeArgExpr{{Call.getArgExpr(1), 1}} : SrcExprAsSizeDummy),
+ Dest, Source);
+ if (!State)
+ return;
+ }
+
+ C.addTransition(State);
+}
+
+//===----------------------------------------------------------------------===//
+// The driver method, and other Checker callbacks.
+//===----------------------------------------------------------------------===//
+
+CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
+ if (!CE)
+ return nullptr;
+
+ const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
+ if (!FD)
+ return nullptr;
+
+ if (StdCopy.matches(Call))
+ return &CStringChecker::evalStdCopy;
+ if (StdCopyBackward.matches(Call))
+ return &CStringChecker::evalStdCopyBackward;
+
+ // Pro-actively check that argument types are safe to do arithmetic upon.
+ // We do not want to crash if someone accidentally passes a structure
+ // into, say, a C++ overload of any of these functions. We could not check
+ // that for std::copy because they may have arguments of other types.
+ for (auto I : CE->arguments()) {
+ QualType T = I->getType();
+ if (!T->isIntegralOrEnumerationType() && !T->isPointerType())
+ return nullptr;
+ }
+
+ const FnCheck *Callback = Callbacks.lookup(Call);
+ if (Callback)
+ return *Callback;
+
+ return nullptr;
+}
+
+bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const {
+ FnCheck Callback = identifyCall(Call, C);
+
+ // If the callee isn't a string function, let another checker handle it.
+ if (!Callback)
+ return false;
+
+ // Check and evaluate the call.
+ assert(isa<CallExpr>(Call.getOriginExpr()));
+ Callback(this, C, Call);
+
+ // If the evaluate call resulted in no change, chain to the next eval call
+ // handler.
+ // Note, the custom CString evaluation calls assume that basic safety
+ // properties are held. However, if the user chooses to turn off some of these
+ // checks, we ignore the issues and leave the call evaluation to a generic
+ // handler.
+ return C.isDifferent();
+}
+
+void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
+ // Record string length for char a[] = "abc";
+ ProgramStateRef state = C.getState();
+
+ for (const auto *I : DS->decls()) {
+ const VarDecl *D = dyn_cast<VarDecl>(I);
+ if (!D)
+ continue;
+
+ // FIXME: Handle array fields of structs.
+ if (!D->getType()->isArrayType())
+ continue;
+
+ const Expr *Init = D->getInit();
+ if (!Init)
+ continue;
+ if (!isa<StringLiteral>(Init))
+ continue;
+
+ Loc VarLoc = state->getLValue(D, C.getLocationContext());
+ const MemRegion *MR = VarLoc.getAsRegion();
+ if (!MR)
+ continue;
+
+ SVal StrVal = C.getSVal(Init);
+ assert(StrVal.isValid() && "Initializer string is unknown or undefined");
+ DefinedOrUnknownSVal strLength =
+ getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
+
+ state = state->set<CStringLength>(MR, strLength);
+ }
+
+ C.addTransition(state);
+}
+
+ProgramStateRef
+CStringChecker::checkRegionChanges(ProgramStateRef state,
+ const InvalidatedSymbols *,
+ ArrayRef<const MemRegion *> ExplicitRegions,
+ ArrayRef<const MemRegion *> Regions,
+ const LocationContext *LCtx,
+ const CallEvent *Call) const {
+ CStringLengthTy Entries = state->get<CStringLength>();
+ if (Entries.isEmpty())
+ return state;
+
+ llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
+ llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
+
+ // First build sets for the changed regions and their super-regions.
+ for (const MemRegion *MR : Regions) {
+ Invalidated.insert(MR);
+
+ SuperRegions.insert(MR);
+ while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
+ MR = SR->getSuperRegion();
+ SuperRegions.insert(MR);
+ }
+ }
+
+ CStringLengthTy::Factory &F = state->get_context<CStringLength>();
+
+ // Then loop over the entries in the current state.
+ for (const MemRegion *MR : llvm::make_first_range(Entries)) {
+ // Is this entry for a super-region of a changed region?
+ if (SuperRegions.count(MR)) {
+ Entries = F.remove(Entries, MR);
+ continue;
+ }
+
+ // Is this entry for a sub-region of a changed region?
+ const MemRegion *Super = MR;
+ while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
+ Super = SR->getSuperRegion();
+ if (Invalidated.count(Super)) {
+ Entries = F.remove(Entries, MR);
+ break;
+ }
+ }
+ }
+
+ return state->set<CStringLength>(Entries);
+}
+
+void CStringChecker::checkLiveSymbols(ProgramStateRef state,
+ SymbolReaper &SR) const {
+ // Mark all symbols in our string length map as valid.
+ CStringLengthTy Entries = state->get<CStringLength>();
+
+ for (SVal Len : llvm::make_second_range(Entries)) {
+ for (SymbolRef Sym : Len.symbols())
+ SR.markInUse(Sym);
+ }
+}
+
+void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
+ CheckerContext &C) const {
+ ProgramStateRef state = C.getState();
+ CStringLengthTy Entries = state->get<CStringLength>();
+ if (Entries.isEmpty())
+ return;
+
+ CStringLengthTy::Factory &F = state->get_context<CStringLength>();
+ for (auto [Reg, Len] : Entries) {
+ if (SymbolRef Sym = Len.getAsSymbol()) {
+ if (SR.isDead(Sym))
+ Entries = F.remove(Entries, Reg);
+ }
+ }
+
+ state = state->set<CStringLength>(Entries);
+ C.addTransition(state);
+}
+
+void ento::registerCStringModeling(CheckerManager &Mgr) {
+ Mgr.registerChecker<CStringChecker>();
+}
+
+bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) {
+ return true;
+}
+
+#define REGISTER_CHECKER(name) \
+ void ento::register##name(CheckerManager &mgr) { \
+ CStringChecker *checker = mgr.getChecker<CStringChecker>(); \
+ checker->Filter.Check##name = true; \
+ checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \
+ } \
+ \
+ bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
+
+REGISTER_CHECKER(CStringNullArg)
+REGISTER_CHECKER(CStringOutOfBounds)
+REGISTER_CHECKER(CStringBufferOverlap)
+REGISTER_CHECKER(CStringNotNullTerm)
+REGISTER_CHECKER(CStringUninitializedRead)