aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp3697
1 files changed, 3697 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp b/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp
new file mode 100644
index 000000000000..fe202c79ed62
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/StaticAnalyzer/Checkers/MallocChecker.cpp
@@ -0,0 +1,3697 @@
+//=== MallocChecker.cpp - A malloc/free checker -------------------*- C++ -*--//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a variety of memory management related checkers, such as
+// leak, double free, and use-after-free.
+//
+// The following checkers are defined here:
+//
+// * MallocChecker
+// Despite its name, it models all sorts of memory allocations and
+// de- or reallocation, including but not limited to malloc, free,
+// relloc, new, delete. It also reports on a variety of memory misuse
+// errors.
+// Many other checkers interact very closely with this checker, in fact,
+// most are merely options to this one. Other checkers may register
+// MallocChecker, but do not enable MallocChecker's reports (more details
+// to follow around its field, ChecksEnabled).
+// It also has a boolean "Optimistic" checker option, which if set to true
+// will cause the checker to model user defined memory management related
+// functions annotated via the attribute ownership_takes, ownership_holds
+// and ownership_returns.
+//
+// * NewDeleteChecker
+// Enables the modeling of new, new[], delete, delete[] in MallocChecker,
+// and checks for related double-free and use-after-free errors.
+//
+// * NewDeleteLeaksChecker
+// Checks for leaks related to new, new[], delete, delete[].
+// Depends on NewDeleteChecker.
+//
+// * MismatchedDeallocatorChecker
+// Enables checking whether memory is deallocated with the correspending
+// allocation function in MallocChecker, such as malloc() allocated
+// regions are only freed by free(), new by delete, new[] by delete[].
+//
+// InnerPointerChecker interacts very closely with MallocChecker, but unlike
+// the above checkers, it has it's own file, hence the many InnerPointerChecker
+// related headers and non-static functions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AllocationState.h"
+#include "InterCheckerAPI.h"
+#include "NoOwnershipChangeVisitor.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ParentMap.h"
+#include "clang/ASTMatchers/ASTMatchFinder.h"
+#include "clang/ASTMatchers/ASTMatchers.h"
+#include "clang/Analysis/ProgramPoint.h"
+#include "clang/Basic/LLVM.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Lexer.h"
+#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
+#include "clang/StaticAnalyzer/Checkers/Taint.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
+#include "clang/StaticAnalyzer/Core/BugReporter/CommonBugCategories.h"
+#include "clang/StaticAnalyzer/Core/Checker.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <functional>
+#include <optional>
+#include <utility>
+
+using namespace clang;
+using namespace ento;
+using namespace std::placeholders;
+
+//===----------------------------------------------------------------------===//
+// The types of allocation we're modeling. This is used to check whether a
+// dynamically allocated object is deallocated with the correct function, like
+// not using operator delete on an object created by malloc(), or alloca regions
+// aren't ever deallocated manually.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+// Used to check correspondence between allocators and deallocators.
+enum AllocationFamily {
+ AF_None,
+ AF_Malloc,
+ AF_CXXNew,
+ AF_CXXNewArray,
+ AF_IfNameIndex,
+ AF_Alloca,
+ AF_InnerBuffer
+};
+
+} // end of anonymous namespace
+
+/// Print names of allocators and deallocators.
+///
+/// \returns true on success.
+static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E);
+
+/// Print expected name of an allocator based on the deallocator's family
+/// derived from the DeallocExpr.
+static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family);
+
+/// Print expected name of a deallocator based on the allocator's
+/// family.
+static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family);
+
+//===----------------------------------------------------------------------===//
+// The state of a symbol, in terms of memory management.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class RefState {
+ enum Kind {
+ // Reference to allocated memory.
+ Allocated,
+ // Reference to zero-allocated memory.
+ AllocatedOfSizeZero,
+ // Reference to released/freed memory.
+ Released,
+ // The responsibility for freeing resources has transferred from
+ // this reference. A relinquished symbol should not be freed.
+ Relinquished,
+ // We are no longer guaranteed to have observed all manipulations
+ // of this pointer/memory. For example, it could have been
+ // passed as a parameter to an opaque function.
+ Escaped
+ };
+
+ const Stmt *S;
+
+ Kind K;
+ AllocationFamily Family;
+
+ RefState(Kind k, const Stmt *s, AllocationFamily family)
+ : S(s), K(k), Family(family) {
+ assert(family != AF_None);
+ }
+
+public:
+ bool isAllocated() const { return K == Allocated; }
+ bool isAllocatedOfSizeZero() const { return K == AllocatedOfSizeZero; }
+ bool isReleased() const { return K == Released; }
+ bool isRelinquished() const { return K == Relinquished; }
+ bool isEscaped() const { return K == Escaped; }
+ AllocationFamily getAllocationFamily() const { return Family; }
+ const Stmt *getStmt() const { return S; }
+
+ bool operator==(const RefState &X) const {
+ return K == X.K && S == X.S && Family == X.Family;
+ }
+
+ static RefState getAllocated(AllocationFamily family, const Stmt *s) {
+ return RefState(Allocated, s, family);
+ }
+ static RefState getAllocatedOfSizeZero(const RefState *RS) {
+ return RefState(AllocatedOfSizeZero, RS->getStmt(),
+ RS->getAllocationFamily());
+ }
+ static RefState getReleased(AllocationFamily family, const Stmt *s) {
+ return RefState(Released, s, family);
+ }
+ static RefState getRelinquished(AllocationFamily family, const Stmt *s) {
+ return RefState(Relinquished, s, family);
+ }
+ static RefState getEscaped(const RefState *RS) {
+ return RefState(Escaped, RS->getStmt(), RS->getAllocationFamily());
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(K);
+ ID.AddPointer(S);
+ ID.AddInteger(Family);
+ }
+
+ LLVM_DUMP_METHOD void dump(raw_ostream &OS) const {
+ switch (K) {
+#define CASE(ID) case ID: OS << #ID; break;
+ CASE(Allocated)
+ CASE(AllocatedOfSizeZero)
+ CASE(Released)
+ CASE(Relinquished)
+ CASE(Escaped)
+ }
+ }
+
+ LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
+};
+
+} // end of anonymous namespace
+
+REGISTER_MAP_WITH_PROGRAMSTATE(RegionState, SymbolRef, RefState)
+
+/// Check if the memory associated with this symbol was released.
+static bool isReleased(SymbolRef Sym, CheckerContext &C);
+
+/// Update the RefState to reflect the new memory allocation.
+/// The optional \p RetVal parameter specifies the newly allocated pointer
+/// value; if unspecified, the value of expression \p E is used.
+static ProgramStateRef
+MallocUpdateRefState(CheckerContext &C, const Expr *E, ProgramStateRef State,
+ AllocationFamily Family,
+ std::optional<SVal> RetVal = std::nullopt);
+
+//===----------------------------------------------------------------------===//
+// The modeling of memory reallocation.
+//
+// The terminology 'toPtr' and 'fromPtr' will be used:
+// toPtr = realloc(fromPtr, 20);
+//===----------------------------------------------------------------------===//
+
+REGISTER_SET_WITH_PROGRAMSTATE(ReallocSizeZeroSymbols, SymbolRef)
+
+namespace {
+
+/// The state of 'fromPtr' after reallocation is known to have failed.
+enum OwnershipAfterReallocKind {
+ // The symbol needs to be freed (e.g.: realloc)
+ OAR_ToBeFreedAfterFailure,
+ // The symbol has been freed (e.g.: reallocf)
+ OAR_FreeOnFailure,
+ // The symbol doesn't have to freed (e.g.: we aren't sure if, how and where
+ // 'fromPtr' was allocated:
+ // void Haha(int *ptr) {
+ // ptr = realloc(ptr, 67);
+ // // ...
+ // }
+ // ).
+ OAR_DoNotTrackAfterFailure
+};
+
+/// Stores information about the 'fromPtr' symbol after reallocation.
+///
+/// This is important because realloc may fail, and that needs special modeling.
+/// Whether reallocation failed or not will not be known until later, so we'll
+/// store whether upon failure 'fromPtr' will be freed, or needs to be freed
+/// later, etc.
+struct ReallocPair {
+
+ // The 'fromPtr'.
+ SymbolRef ReallocatedSym;
+ OwnershipAfterReallocKind Kind;
+
+ ReallocPair(SymbolRef S, OwnershipAfterReallocKind K)
+ : ReallocatedSym(S), Kind(K) {}
+ void Profile(llvm::FoldingSetNodeID &ID) const {
+ ID.AddInteger(Kind);
+ ID.AddPointer(ReallocatedSym);
+ }
+ bool operator==(const ReallocPair &X) const {
+ return ReallocatedSym == X.ReallocatedSym &&
+ Kind == X.Kind;
+ }
+};
+
+} // end of anonymous namespace
+
+REGISTER_MAP_WITH_PROGRAMSTATE(ReallocPairs, SymbolRef, ReallocPair)
+
+/// Tells if the callee is one of the builtin new/delete operators, including
+/// placement operators and other standard overloads.
+static bool isStandardNewDelete(const FunctionDecl *FD);
+static bool isStandardNewDelete(const CallEvent &Call) {
+ if (!Call.getDecl() || !isa<FunctionDecl>(Call.getDecl()))
+ return false;
+ return isStandardNewDelete(cast<FunctionDecl>(Call.getDecl()));
+}
+
+//===----------------------------------------------------------------------===//
+// Definition of the MallocChecker class.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class MallocChecker
+ : public Checker<check::DeadSymbols, check::PointerEscape,
+ check::ConstPointerEscape, check::PreStmt<ReturnStmt>,
+ check::EndFunction, check::PreCall, check::PostCall,
+ check::NewAllocator, check::PostStmt<BlockExpr>,
+ check::PostObjCMessage, check::Location, eval::Assume> {
+public:
+ /// In pessimistic mode, the checker assumes that it does not know which
+ /// functions might free the memory.
+ /// In optimistic mode, the checker assumes that all user-defined functions
+ /// which might free a pointer are annotated.
+ bool ShouldIncludeOwnershipAnnotatedFunctions = false;
+
+ bool ShouldRegisterNoOwnershipChangeVisitor = false;
+
+ /// Many checkers are essentially built into this one, so enabling them will
+ /// make MallocChecker perform additional modeling and reporting.
+ enum CheckKind {
+ /// When a subchecker is enabled but MallocChecker isn't, model memory
+ /// management but do not emit warnings emitted with MallocChecker only
+ /// enabled.
+ CK_MallocChecker,
+ CK_NewDeleteChecker,
+ CK_NewDeleteLeaksChecker,
+ CK_MismatchedDeallocatorChecker,
+ CK_InnerPointerChecker,
+ CK_TaintedAllocChecker,
+ CK_NumCheckKinds
+ };
+
+ using LeakInfo = std::pair<const ExplodedNode *, const MemRegion *>;
+
+ bool ChecksEnabled[CK_NumCheckKinds] = {false};
+ CheckerNameRef CheckNames[CK_NumCheckKinds];
+
+ void checkPreCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkPostCall(const CallEvent &Call, CheckerContext &C) const;
+ void checkNewAllocator(const CXXAllocatorCall &Call, CheckerContext &C) const;
+ void checkPostObjCMessage(const ObjCMethodCall &Call, CheckerContext &C) const;
+ void checkPostStmt(const BlockExpr *BE, CheckerContext &C) const;
+ void checkDeadSymbols(SymbolReaper &SymReaper, CheckerContext &C) const;
+ void checkPreStmt(const ReturnStmt *S, CheckerContext &C) const;
+ void checkEndFunction(const ReturnStmt *S, CheckerContext &C) const;
+ ProgramStateRef evalAssume(ProgramStateRef state, SVal Cond,
+ bool Assumption) const;
+ void checkLocation(SVal l, bool isLoad, const Stmt *S,
+ CheckerContext &C) const;
+
+ ProgramStateRef checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const;
+ ProgramStateRef checkConstPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const;
+
+ void printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const override;
+
+private:
+ mutable std::unique_ptr<BugType> BT_DoubleFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_DoubleDelete;
+ mutable std::unique_ptr<BugType> BT_Leak[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_UseFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_BadFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_FreeAlloca[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_MismatchedDealloc;
+ mutable std::unique_ptr<BugType> BT_OffsetFree[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_UseZerroAllocated[CK_NumCheckKinds];
+ mutable std::unique_ptr<BugType> BT_TaintedAlloc;
+
+#define CHECK_FN(NAME) \
+ void NAME(const CallEvent &Call, CheckerContext &C) const;
+
+ CHECK_FN(checkFree)
+ CHECK_FN(checkIfNameIndex)
+ CHECK_FN(checkBasicAlloc)
+ CHECK_FN(checkKernelMalloc)
+ CHECK_FN(checkCalloc)
+ CHECK_FN(checkAlloca)
+ CHECK_FN(checkStrdup)
+ CHECK_FN(checkIfFreeNameIndex)
+ CHECK_FN(checkCXXNewOrCXXDelete)
+ CHECK_FN(checkGMalloc0)
+ CHECK_FN(checkGMemdup)
+ CHECK_FN(checkGMallocN)
+ CHECK_FN(checkGMallocN0)
+ CHECK_FN(preGetdelim)
+ CHECK_FN(checkGetdelim)
+ CHECK_FN(checkReallocN)
+ CHECK_FN(checkOwnershipAttr)
+
+ void checkRealloc(const CallEvent &Call, CheckerContext &C,
+ bool ShouldFreeOnFail) const;
+
+ using CheckFn = std::function<void(const MallocChecker *,
+ const CallEvent &Call, CheckerContext &C)>;
+
+ const CallDescriptionMap<CheckFn> PreFnMap{
+ // NOTE: the following CallDescription also matches the C++ standard
+ // library function std::getline(); the callback will filter it out.
+ {{CDM::CLibrary, {"getline"}, 3}, &MallocChecker::preGetdelim},
+ {{CDM::CLibrary, {"getdelim"}, 4}, &MallocChecker::preGetdelim},
+ };
+
+ const CallDescriptionMap<CheckFn> FreeingMemFnMap{
+ {{CDM::CLibrary, {"free"}, 1}, &MallocChecker::checkFree},
+ {{CDM::CLibrary, {"if_freenameindex"}, 1},
+ &MallocChecker::checkIfFreeNameIndex},
+ {{CDM::CLibrary, {"kfree"}, 1}, &MallocChecker::checkFree},
+ {{CDM::CLibrary, {"g_free"}, 1}, &MallocChecker::checkFree},
+ };
+
+ bool isFreeingCall(const CallEvent &Call) const;
+ static bool isFreeingOwnershipAttrCall(const FunctionDecl *Func);
+
+ friend class NoMemOwnershipChangeVisitor;
+
+ CallDescriptionMap<CheckFn> AllocatingMemFnMap{
+ {{CDM::CLibrary, {"alloca"}, 1}, &MallocChecker::checkAlloca},
+ {{CDM::CLibrary, {"_alloca"}, 1}, &MallocChecker::checkAlloca},
+ // The line for "alloca" also covers "__builtin_alloca", but the
+ // _with_align variant must be listed separately because it takes an
+ // extra argument:
+ {{CDM::CLibrary, {"__builtin_alloca_with_align"}, 2},
+ &MallocChecker::checkAlloca},
+ {{CDM::CLibrary, {"malloc"}, 1}, &MallocChecker::checkBasicAlloc},
+ {{CDM::CLibrary, {"malloc"}, 3}, &MallocChecker::checkKernelMalloc},
+ {{CDM::CLibrary, {"calloc"}, 2}, &MallocChecker::checkCalloc},
+ {{CDM::CLibrary, {"valloc"}, 1}, &MallocChecker::checkBasicAlloc},
+ {{CDM::CLibrary, {"strndup"}, 2}, &MallocChecker::checkStrdup},
+ {{CDM::CLibrary, {"strdup"}, 1}, &MallocChecker::checkStrdup},
+ {{CDM::CLibrary, {"_strdup"}, 1}, &MallocChecker::checkStrdup},
+ {{CDM::CLibrary, {"kmalloc"}, 2}, &MallocChecker::checkKernelMalloc},
+ {{CDM::CLibrary, {"if_nameindex"}, 1}, &MallocChecker::checkIfNameIndex},
+ {{CDM::CLibrary, {"wcsdup"}, 1}, &MallocChecker::checkStrdup},
+ {{CDM::CLibrary, {"_wcsdup"}, 1}, &MallocChecker::checkStrdup},
+ {{CDM::CLibrary, {"g_malloc"}, 1}, &MallocChecker::checkBasicAlloc},
+ {{CDM::CLibrary, {"g_malloc0"}, 1}, &MallocChecker::checkGMalloc0},
+ {{CDM::CLibrary, {"g_try_malloc"}, 1}, &MallocChecker::checkBasicAlloc},
+ {{CDM::CLibrary, {"g_try_malloc0"}, 1}, &MallocChecker::checkGMalloc0},
+ {{CDM::CLibrary, {"g_memdup"}, 2}, &MallocChecker::checkGMemdup},
+ {{CDM::CLibrary, {"g_malloc_n"}, 2}, &MallocChecker::checkGMallocN},
+ {{CDM::CLibrary, {"g_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0},
+ {{CDM::CLibrary, {"g_try_malloc_n"}, 2}, &MallocChecker::checkGMallocN},
+ {{CDM::CLibrary, {"g_try_malloc0_n"}, 2}, &MallocChecker::checkGMallocN0},
+ };
+
+ CallDescriptionMap<CheckFn> ReallocatingMemFnMap{
+ {{CDM::CLibrary, {"realloc"}, 2},
+ std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
+ {{CDM::CLibrary, {"reallocf"}, 2},
+ std::bind(&MallocChecker::checkRealloc, _1, _2, _3, true)},
+ {{CDM::CLibrary, {"g_realloc"}, 2},
+ std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
+ {{CDM::CLibrary, {"g_try_realloc"}, 2},
+ std::bind(&MallocChecker::checkRealloc, _1, _2, _3, false)},
+ {{CDM::CLibrary, {"g_realloc_n"}, 3}, &MallocChecker::checkReallocN},
+ {{CDM::CLibrary, {"g_try_realloc_n"}, 3}, &MallocChecker::checkReallocN},
+
+ // NOTE: the following CallDescription also matches the C++ standard
+ // library function std::getline(); the callback will filter it out.
+ {{CDM::CLibrary, {"getline"}, 3}, &MallocChecker::checkGetdelim},
+ {{CDM::CLibrary, {"getdelim"}, 4}, &MallocChecker::checkGetdelim},
+ };
+
+ bool isMemCall(const CallEvent &Call) const;
+ void reportTaintBug(StringRef Msg, ProgramStateRef State, CheckerContext &C,
+ llvm::ArrayRef<SymbolRef> TaintedSyms,
+ AllocationFamily Family) const;
+
+ void checkTaintedness(CheckerContext &C, const CallEvent &Call,
+ const SVal SizeSVal, ProgramStateRef State,
+ AllocationFamily Family) const;
+
+ // TODO: Remove mutable by moving the initializtaion to the registry function.
+ mutable std::optional<uint64_t> KernelZeroFlagVal;
+
+ using KernelZeroSizePtrValueTy = std::optional<int>;
+ /// Store the value of macro called `ZERO_SIZE_PTR`.
+ /// The value is initialized at first use, before first use the outer
+ /// Optional is empty, afterwards it contains another Optional that indicates
+ /// if the macro value could be determined, and if yes the value itself.
+ mutable std::optional<KernelZeroSizePtrValueTy> KernelZeroSizePtrValue;
+
+ /// Process C++ operator new()'s allocation, which is the part of C++
+ /// new-expression that goes before the constructor.
+ [[nodiscard]] ProgramStateRef
+ processNewAllocation(const CXXAllocatorCall &Call, CheckerContext &C,
+ AllocationFamily Family) const;
+
+ /// Perform a zero-allocation check.
+ ///
+ /// \param [in] Call The expression that allocates memory.
+ /// \param [in] IndexOfSizeArg Index of the argument that specifies the size
+ /// of the memory that needs to be allocated. E.g. for malloc, this would be
+ /// 0.
+ /// \param [in] RetVal Specifies the newly allocated pointer value;
+ /// if unspecified, the value of expression \p E is used.
+ [[nodiscard]] static ProgramStateRef
+ ProcessZeroAllocCheck(const CallEvent &Call, const unsigned IndexOfSizeArg,
+ ProgramStateRef State,
+ std::optional<SVal> RetVal = std::nullopt);
+
+ /// Model functions with the ownership_returns attribute.
+ ///
+ /// User-defined function may have the ownership_returns attribute, which
+ /// annotates that the function returns with an object that was allocated on
+ /// the heap, and passes the ownertship to the callee.
+ ///
+ /// void __attribute((ownership_returns(malloc, 1))) *my_malloc(size_t);
+ ///
+ /// It has two parameters:
+ /// - first: name of the resource (e.g. 'malloc')
+ /// - (OPTIONAL) second: size of the allocated region
+ ///
+ /// \param [in] Call The expression that allocates memory.
+ /// \param [in] Att The ownership_returns attribute.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// \returns The ProgramState right after allocation.
+ [[nodiscard]] ProgramStateRef
+ MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call,
+ const OwnershipAttr *Att, ProgramStateRef State) const;
+
+ /// Models memory allocation.
+ ///
+ /// \param [in] Call The expression that allocates memory.
+ /// \param [in] SizeEx Size of the memory that needs to be allocated.
+ /// \param [in] Init The value the allocated memory needs to be initialized.
+ /// with. For example, \c calloc initializes the allocated memory to 0,
+ /// malloc leaves it undefined.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// \returns The ProgramState right after allocation.
+ [[nodiscard]] ProgramStateRef
+ MallocMemAux(CheckerContext &C, const CallEvent &Call, const Expr *SizeEx,
+ SVal Init, ProgramStateRef State, AllocationFamily Family) const;
+
+ /// Models memory allocation.
+ ///
+ /// \param [in] Call The expression that allocates memory.
+ /// \param [in] Size Size of the memory that needs to be allocated.
+ /// \param [in] Init The value the allocated memory needs to be initialized.
+ /// with. For example, \c calloc initializes the allocated memory to 0,
+ /// malloc leaves it undefined.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// \returns The ProgramState right after allocation.
+ [[nodiscard]] ProgramStateRef MallocMemAux(CheckerContext &C,
+ const CallEvent &Call, SVal Size,
+ SVal Init, ProgramStateRef State,
+ AllocationFamily Family) const;
+
+ // Check if this malloc() for special flags. At present that means M_ZERO or
+ // __GFP_ZERO (in which case, treat it like calloc).
+ [[nodiscard]] std::optional<ProgramStateRef>
+ performKernelMalloc(const CallEvent &Call, CheckerContext &C,
+ const ProgramStateRef &State) const;
+
+ /// Model functions with the ownership_takes and ownership_holds attributes.
+ ///
+ /// User-defined function may have the ownership_takes and/or ownership_holds
+ /// attributes, which annotates that the function frees the memory passed as a
+ /// parameter.
+ ///
+ /// void __attribute((ownership_takes(malloc, 1))) my_free(void *);
+ /// void __attribute((ownership_holds(malloc, 1))) my_hold(void *);
+ ///
+ /// They have two parameters:
+ /// - first: name of the resource (e.g. 'malloc')
+ /// - second: index of the parameter the attribute applies to
+ ///
+ /// \param [in] Call The expression that frees memory.
+ /// \param [in] Att The ownership_takes or ownership_holds attribute.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// \returns The ProgramState right after deallocation.
+ [[nodiscard]] ProgramStateRef FreeMemAttr(CheckerContext &C,
+ const CallEvent &Call,
+ const OwnershipAttr *Att,
+ ProgramStateRef State) const;
+
+ /// Models memory deallocation.
+ ///
+ /// \param [in] Call The expression that frees memory.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// \param [in] Num Index of the argument that needs to be freed. This is
+ /// normally 0, but for custom free functions it may be different.
+ /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
+ /// attribute.
+ /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
+ /// to have been allocated, or in other words, the symbol to be freed was
+ /// registered as allocated by this checker. In the following case, \c ptr
+ /// isn't known to be allocated.
+ /// void Haha(int *ptr) {
+ /// ptr = realloc(ptr, 67);
+ /// // ...
+ /// }
+ /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
+ /// we're modeling returns with Null on failure.
+ /// \returns The ProgramState right after deallocation.
+ [[nodiscard]] ProgramStateRef
+ FreeMemAux(CheckerContext &C, const CallEvent &Call, ProgramStateRef State,
+ unsigned Num, bool Hold, bool &IsKnownToBeAllocated,
+ AllocationFamily Family, bool ReturnsNullOnFailure = false) const;
+
+ /// Models memory deallocation.
+ ///
+ /// \param [in] ArgExpr The variable who's pointee needs to be freed.
+ /// \param [in] Call The expression that frees the memory.
+ /// \param [in] State The \c ProgramState right before allocation.
+ /// normally 0, but for custom free functions it may be different.
+ /// \param [in] Hold Whether the parameter at \p Index has the ownership_holds
+ /// attribute.
+ /// \param [out] IsKnownToBeAllocated Whether the memory to be freed is known
+ /// to have been allocated, or in other words, the symbol to be freed was
+ /// registered as allocated by this checker. In the following case, \c ptr
+ /// isn't known to be allocated.
+ /// void Haha(int *ptr) {
+ /// ptr = realloc(ptr, 67);
+ /// // ...
+ /// }
+ /// \param [in] ReturnsNullOnFailure Whether the memory deallocation function
+ /// we're modeling returns with Null on failure.
+ /// \param [in] ArgValOpt Optional value to use for the argument instead of
+ /// the one obtained from ArgExpr.
+ /// \returns The ProgramState right after deallocation.
+ [[nodiscard]] ProgramStateRef
+ FreeMemAux(CheckerContext &C, const Expr *ArgExpr, const CallEvent &Call,
+ ProgramStateRef State, bool Hold, bool &IsKnownToBeAllocated,
+ AllocationFamily Family, bool ReturnsNullOnFailure = false,
+ std::optional<SVal> ArgValOpt = {}) const;
+
+ // TODO: Needs some refactoring, as all other deallocation modeling
+ // functions are suffering from out parameters and messy code due to how
+ // realloc is handled.
+ //
+ /// Models memory reallocation.
+ ///
+ /// \param [in] Call The expression that reallocated memory
+ /// \param [in] ShouldFreeOnFail Whether if reallocation fails, the supplied
+ /// memory should be freed.
+ /// \param [in] State The \c ProgramState right before reallocation.
+ /// \param [in] SuffixWithN Whether the reallocation function we're modeling
+ /// has an '_n' suffix, such as g_realloc_n.
+ /// \returns The ProgramState right after reallocation.
+ [[nodiscard]] ProgramStateRef
+ ReallocMemAux(CheckerContext &C, const CallEvent &Call, bool ShouldFreeOnFail,
+ ProgramStateRef State, AllocationFamily Family,
+ bool SuffixWithN = false) const;
+
+ /// Evaluates the buffer size that needs to be allocated.
+ ///
+ /// \param [in] Blocks The amount of blocks that needs to be allocated.
+ /// \param [in] BlockBytes The size of a block.
+ /// \returns The symbolic value of \p Blocks * \p BlockBytes.
+ [[nodiscard]] static SVal evalMulForBufferSize(CheckerContext &C,
+ const Expr *Blocks,
+ const Expr *BlockBytes);
+
+ /// Models zero initialized array allocation.
+ ///
+ /// \param [in] Call The expression that reallocated memory
+ /// \param [in] State The \c ProgramState right before reallocation.
+ /// \returns The ProgramState right after allocation.
+ [[nodiscard]] ProgramStateRef CallocMem(CheckerContext &C,
+ const CallEvent &Call,
+ ProgramStateRef State) const;
+
+ /// See if deallocation happens in a suspicious context. If so, escape the
+ /// pointers that otherwise would have been deallocated and return true.
+ bool suppressDeallocationsInSuspiciousContexts(const CallEvent &Call,
+ CheckerContext &C) const;
+
+ /// If in \p S \p Sym is used, check whether \p Sym was already freed.
+ bool checkUseAfterFree(SymbolRef Sym, CheckerContext &C, const Stmt *S) const;
+
+ /// If in \p S \p Sym is used, check whether \p Sym was allocated as a zero
+ /// sized memory region.
+ void checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
+ const Stmt *S) const;
+
+ /// If in \p S \p Sym is being freed, check whether \p Sym was already freed.
+ bool checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const;
+
+ /// Check if the function is known to free memory, or if it is
+ /// "interesting" and should be modeled explicitly.
+ ///
+ /// \param [out] EscapingSymbol A function might not free memory in general,
+ /// but could be known to free a particular symbol. In this case, false is
+ /// returned and the single escaping symbol is returned through the out
+ /// parameter.
+ ///
+ /// We assume that pointers do not escape through calls to system functions
+ /// not handled by this checker.
+ bool mayFreeAnyEscapedMemoryOrIsModeledExplicitly(const CallEvent *Call,
+ ProgramStateRef State,
+ SymbolRef &EscapingSymbol) const;
+
+ /// Implementation of the checkPointerEscape callbacks.
+ [[nodiscard]] ProgramStateRef
+ checkPointerEscapeAux(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call, PointerEscapeKind Kind,
+ bool IsConstPointerEscape) const;
+
+ // Implementation of the checkPreStmt and checkEndFunction callbacks.
+ void checkEscapeOnReturn(const ReturnStmt *S, CheckerContext &C) const;
+
+ ///@{
+ /// Tells if a given family/call/symbol is tracked by the current checker.
+ /// Sets CheckKind to the kind of the checker responsible for this
+ /// family/call/symbol.
+ std::optional<CheckKind> getCheckIfTracked(AllocationFamily Family,
+ bool IsALeakCheck = false) const;
+
+ std::optional<CheckKind> getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
+ bool IsALeakCheck = false) const;
+ ///@}
+ static bool SummarizeValue(raw_ostream &os, SVal V);
+ static bool SummarizeRegion(raw_ostream &os, const MemRegion *MR);
+
+ void HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal, SourceRange Range,
+ const Expr *DeallocExpr,
+ AllocationFamily Family) const;
+
+ void HandleFreeAlloca(CheckerContext &C, SVal ArgVal,
+ SourceRange Range) const;
+
+ void HandleMismatchedDealloc(CheckerContext &C, SourceRange Range,
+ const Expr *DeallocExpr, const RefState *RS,
+ SymbolRef Sym, bool OwnershipTransferred) const;
+
+ void HandleOffsetFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
+ const Expr *DeallocExpr, AllocationFamily Family,
+ const Expr *AllocExpr = nullptr) const;
+
+ void HandleUseAfterFree(CheckerContext &C, SourceRange Range,
+ SymbolRef Sym) const;
+
+ void HandleDoubleFree(CheckerContext &C, SourceRange Range, bool Released,
+ SymbolRef Sym, SymbolRef PrevSym) const;
+
+ void HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const;
+
+ void HandleUseZeroAlloc(CheckerContext &C, SourceRange Range,
+ SymbolRef Sym) const;
+
+ void HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal, SourceRange Range,
+ const Expr *FreeExpr,
+ AllocationFamily Family) const;
+
+ /// Find the location of the allocation for Sym on the path leading to the
+ /// exploded node N.
+ static LeakInfo getAllocationSite(const ExplodedNode *N, SymbolRef Sym,
+ CheckerContext &C);
+
+ void HandleLeak(SymbolRef Sym, ExplodedNode *N, CheckerContext &C) const;
+
+ /// Test if value in ArgVal equals to value in macro `ZERO_SIZE_PTR`.
+ bool isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C,
+ SVal ArgVal) const;
+};
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Definition of NoOwnershipChangeVisitor.
+//===----------------------------------------------------------------------===//
+
+namespace {
+class NoMemOwnershipChangeVisitor final : public NoOwnershipChangeVisitor {
+protected:
+ /// Syntactically checks whether the callee is a deallocating function. Since
+ /// we have no path-sensitive information on this call (we would need a
+ /// CallEvent instead of a CallExpr for that), its possible that a
+ /// deallocation function was called indirectly through a function pointer,
+ /// but we are not able to tell, so this is a best effort analysis.
+ /// See namespace `memory_passed_to_fn_call_free_through_fn_ptr` in
+ /// clang/test/Analysis/NewDeleteLeaks.cpp.
+ bool isFreeingCallAsWritten(const CallExpr &Call) const {
+ const auto *MallocChk = static_cast<const MallocChecker *>(&Checker);
+ if (MallocChk->FreeingMemFnMap.lookupAsWritten(Call) ||
+ MallocChk->ReallocatingMemFnMap.lookupAsWritten(Call))
+ return true;
+
+ if (const auto *Func =
+ llvm::dyn_cast_or_null<FunctionDecl>(Call.getCalleeDecl()))
+ return MallocChecker::isFreeingOwnershipAttrCall(Func);
+
+ return false;
+ }
+
+ bool hasResourceStateChanged(ProgramStateRef CallEnterState,
+ ProgramStateRef CallExitEndState) final {
+ return CallEnterState->get<RegionState>(Sym) !=
+ CallExitEndState->get<RegionState>(Sym);
+ }
+
+ /// Heuristically guess whether the callee intended to free memory. This is
+ /// done syntactically, because we are trying to argue about alternative
+ /// paths of execution, and as a consequence we don't have path-sensitive
+ /// information.
+ bool doesFnIntendToHandleOwnership(const Decl *Callee,
+ ASTContext &ACtx) final {
+ using namespace clang::ast_matchers;
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(Callee);
+
+ auto Matches = match(findAll(stmt(anyOf(cxxDeleteExpr().bind("delete"),
+ callExpr().bind("call")))),
+ *FD->getBody(), ACtx);
+ for (BoundNodes Match : Matches) {
+ if (Match.getNodeAs<CXXDeleteExpr>("delete"))
+ return true;
+
+ if (const auto *Call = Match.getNodeAs<CallExpr>("call"))
+ if (isFreeingCallAsWritten(*Call))
+ return true;
+ }
+ // TODO: Ownership might change with an attempt to store the allocated
+ // memory, not only through deallocation. Check for attempted stores as
+ // well.
+ return false;
+ }
+
+ PathDiagnosticPieceRef emitNote(const ExplodedNode *N) final {
+ PathDiagnosticLocation L = PathDiagnosticLocation::create(
+ N->getLocation(),
+ N->getState()->getStateManager().getContext().getSourceManager());
+ return std::make_shared<PathDiagnosticEventPiece>(
+ L, "Returning without deallocating memory or storing the pointer for "
+ "later deallocation");
+ }
+
+public:
+ NoMemOwnershipChangeVisitor(SymbolRef Sym, const MallocChecker *Checker)
+ : NoOwnershipChangeVisitor(Sym, Checker) {}
+
+ void Profile(llvm::FoldingSetNodeID &ID) const override {
+ static int Tag = 0;
+ ID.AddPointer(&Tag);
+ ID.AddPointer(Sym);
+ }
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Definition of MallocBugVisitor.
+//===----------------------------------------------------------------------===//
+
+namespace {
+/// The bug visitor which allows us to print extra diagnostics along the
+/// BugReport path. For example, showing the allocation site of the leaked
+/// region.
+class MallocBugVisitor final : public BugReporterVisitor {
+protected:
+ enum NotificationMode { Normal, ReallocationFailed };
+
+ // The allocated region symbol tracked by the main analysis.
+ SymbolRef Sym;
+
+ // The mode we are in, i.e. what kind of diagnostics will be emitted.
+ NotificationMode Mode;
+
+ // A symbol from when the primary region should have been reallocated.
+ SymbolRef FailedReallocSymbol;
+
+ // A C++ destructor stack frame in which memory was released. Used for
+ // miscellaneous false positive suppression.
+ const StackFrameContext *ReleaseDestructorLC;
+
+ bool IsLeak;
+
+public:
+ MallocBugVisitor(SymbolRef S, bool isLeak = false)
+ : Sym(S), Mode(Normal), FailedReallocSymbol(nullptr),
+ ReleaseDestructorLC(nullptr), IsLeak(isLeak) {}
+
+ static void *getTag() {
+ static int Tag = 0;
+ return &Tag;
+ }
+
+ void Profile(llvm::FoldingSetNodeID &ID) const override {
+ ID.AddPointer(getTag());
+ ID.AddPointer(Sym);
+ }
+
+ /// Did not track -> allocated. Other state (released) -> allocated.
+ static inline bool isAllocated(const RefState *RSCurr, const RefState *RSPrev,
+ const Stmt *Stmt) {
+ return (isa_and_nonnull<CallExpr, CXXNewExpr>(Stmt) &&
+ (RSCurr &&
+ (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
+ (!RSPrev ||
+ !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
+ }
+
+ /// Did not track -> released. Other state (allocated) -> released.
+ /// The statement associated with the release might be missing.
+ static inline bool isReleased(const RefState *RSCurr, const RefState *RSPrev,
+ const Stmt *Stmt) {
+ bool IsReleased =
+ (RSCurr && RSCurr->isReleased()) && (!RSPrev || !RSPrev->isReleased());
+ assert(!IsReleased || (isa_and_nonnull<CallExpr, CXXDeleteExpr>(Stmt)) ||
+ (!Stmt && RSCurr->getAllocationFamily() == AF_InnerBuffer));
+ return IsReleased;
+ }
+
+ /// Did not track -> relinquished. Other state (allocated) -> relinquished.
+ static inline bool isRelinquished(const RefState *RSCurr,
+ const RefState *RSPrev, const Stmt *Stmt) {
+ return (
+ isa_and_nonnull<CallExpr, ObjCMessageExpr, ObjCPropertyRefExpr>(Stmt) &&
+ (RSCurr && RSCurr->isRelinquished()) &&
+ (!RSPrev || !RSPrev->isRelinquished()));
+ }
+
+ /// If the expression is not a call, and the state change is
+ /// released -> allocated, it must be the realloc return value
+ /// check. If we have to handle more cases here, it might be cleaner just
+ /// to track this extra bit in the state itself.
+ static inline bool hasReallocFailed(const RefState *RSCurr,
+ const RefState *RSPrev,
+ const Stmt *Stmt) {
+ return ((!isa_and_nonnull<CallExpr>(Stmt)) &&
+ (RSCurr &&
+ (RSCurr->isAllocated() || RSCurr->isAllocatedOfSizeZero())) &&
+ (RSPrev &&
+ !(RSPrev->isAllocated() || RSPrev->isAllocatedOfSizeZero())));
+ }
+
+ PathDiagnosticPieceRef VisitNode(const ExplodedNode *N,
+ BugReporterContext &BRC,
+ PathSensitiveBugReport &BR) override;
+
+ PathDiagnosticPieceRef getEndPath(BugReporterContext &BRC,
+ const ExplodedNode *EndPathNode,
+ PathSensitiveBugReport &BR) override {
+ if (!IsLeak)
+ return nullptr;
+
+ PathDiagnosticLocation L = BR.getLocation();
+ // Do not add the statement itself as a range in case of leak.
+ return std::make_shared<PathDiagnosticEventPiece>(L, BR.getDescription(),
+ false);
+ }
+
+private:
+ class StackHintGeneratorForReallocationFailed
+ : public StackHintGeneratorForSymbol {
+ public:
+ StackHintGeneratorForReallocationFailed(SymbolRef S, StringRef M)
+ : StackHintGeneratorForSymbol(S, M) {}
+
+ std::string getMessageForArg(const Expr *ArgE, unsigned ArgIndex) override {
+ // Printed parameters start at 1, not 0.
+ ++ArgIndex;
+
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ os << "Reallocation of " << ArgIndex << llvm::getOrdinalSuffix(ArgIndex)
+ << " parameter failed";
+
+ return std::string(os.str());
+ }
+
+ std::string getMessageForReturn(const CallExpr *CallExpr) override {
+ return "Reallocation of returned value failed";
+ }
+ };
+};
+} // end anonymous namespace
+
+// A map from the freed symbol to the symbol representing the return value of
+// the free function.
+REGISTER_MAP_WITH_PROGRAMSTATE(FreeReturnValue, SymbolRef, SymbolRef)
+
+namespace {
+class StopTrackingCallback final : public SymbolVisitor {
+ ProgramStateRef state;
+
+public:
+ StopTrackingCallback(ProgramStateRef st) : state(std::move(st)) {}
+ ProgramStateRef getState() const { return state; }
+
+ bool VisitSymbol(SymbolRef sym) override {
+ state = state->remove<RegionState>(sym);
+ return true;
+ }
+};
+} // end anonymous namespace
+
+static bool isStandardNewDelete(const FunctionDecl *FD) {
+ if (!FD)
+ return false;
+
+ OverloadedOperatorKind Kind = FD->getOverloadedOperator();
+ if (Kind != OO_New && Kind != OO_Array_New && Kind != OO_Delete &&
+ Kind != OO_Array_Delete)
+ return false;
+
+ // This is standard if and only if it's not defined in a user file.
+ SourceLocation L = FD->getLocation();
+ // If the header for operator delete is not included, it's still defined
+ // in an invalid source location. Check to make sure we don't crash.
+ return !L.isValid() ||
+ FD->getASTContext().getSourceManager().isInSystemHeader(L);
+}
+
+//===----------------------------------------------------------------------===//
+// Methods of MallocChecker and MallocBugVisitor.
+//===----------------------------------------------------------------------===//
+
+bool MallocChecker::isFreeingOwnershipAttrCall(const FunctionDecl *Func) {
+ if (Func->hasAttrs()) {
+ for (const auto *I : Func->specific_attrs<OwnershipAttr>()) {
+ OwnershipAttr::OwnershipKind OwnKind = I->getOwnKind();
+ if (OwnKind == OwnershipAttr::Takes || OwnKind == OwnershipAttr::Holds)
+ return true;
+ }
+ }
+ return false;
+}
+
+bool MallocChecker::isFreeingCall(const CallEvent &Call) const {
+ if (FreeingMemFnMap.lookup(Call) || ReallocatingMemFnMap.lookup(Call))
+ return true;
+
+ if (const auto *Func = dyn_cast_or_null<FunctionDecl>(Call.getDecl()))
+ return isFreeingOwnershipAttrCall(Func);
+
+ return false;
+}
+
+bool MallocChecker::isMemCall(const CallEvent &Call) const {
+ if (FreeingMemFnMap.lookup(Call) || AllocatingMemFnMap.lookup(Call) ||
+ ReallocatingMemFnMap.lookup(Call))
+ return true;
+
+ if (!ShouldIncludeOwnershipAnnotatedFunctions)
+ return false;
+
+ const auto *Func = dyn_cast<FunctionDecl>(Call.getDecl());
+ return Func && Func->hasAttr<OwnershipAttr>();
+}
+
+std::optional<ProgramStateRef>
+MallocChecker::performKernelMalloc(const CallEvent &Call, CheckerContext &C,
+ const ProgramStateRef &State) const {
+ // 3-argument malloc(), as commonly used in {Free,Net,Open}BSD Kernels:
+ //
+ // void *malloc(unsigned long size, struct malloc_type *mtp, int flags);
+ //
+ // One of the possible flags is M_ZERO, which means 'give me back an
+ // allocation which is already zeroed', like calloc.
+
+ // 2-argument kmalloc(), as used in the Linux kernel:
+ //
+ // void *kmalloc(size_t size, gfp_t flags);
+ //
+ // Has the similar flag value __GFP_ZERO.
+
+ // This logic is largely cloned from O_CREAT in UnixAPIChecker, maybe some
+ // code could be shared.
+
+ ASTContext &Ctx = C.getASTContext();
+ llvm::Triple::OSType OS = Ctx.getTargetInfo().getTriple().getOS();
+
+ if (!KernelZeroFlagVal) {
+ switch (OS) {
+ case llvm::Triple::FreeBSD:
+ KernelZeroFlagVal = 0x0100;
+ break;
+ case llvm::Triple::NetBSD:
+ KernelZeroFlagVal = 0x0002;
+ break;
+ case llvm::Triple::OpenBSD:
+ KernelZeroFlagVal = 0x0008;
+ break;
+ case llvm::Triple::Linux:
+ // __GFP_ZERO
+ KernelZeroFlagVal = 0x8000;
+ break;
+ default:
+ // FIXME: We need a more general way of getting the M_ZERO value.
+ // See also: O_CREAT in UnixAPIChecker.cpp.
+
+ // Fall back to normal malloc behavior on platforms where we don't
+ // know M_ZERO.
+ return std::nullopt;
+ }
+ }
+
+ // We treat the last argument as the flags argument, and callers fall-back to
+ // normal malloc on a None return. This works for the FreeBSD kernel malloc
+ // as well as Linux kmalloc.
+ if (Call.getNumArgs() < 2)
+ return std::nullopt;
+
+ const Expr *FlagsEx = Call.getArgExpr(Call.getNumArgs() - 1);
+ const SVal V = C.getSVal(FlagsEx);
+ if (!isa<NonLoc>(V)) {
+ // The case where 'V' can be a location can only be due to a bad header,
+ // so in this case bail out.
+ return std::nullopt;
+ }
+
+ NonLoc Flags = V.castAs<NonLoc>();
+ NonLoc ZeroFlag = C.getSValBuilder()
+ .makeIntVal(*KernelZeroFlagVal, FlagsEx->getType())
+ .castAs<NonLoc>();
+ SVal MaskedFlagsUC = C.getSValBuilder().evalBinOpNN(State, BO_And,
+ Flags, ZeroFlag,
+ FlagsEx->getType());
+ if (MaskedFlagsUC.isUnknownOrUndef())
+ return std::nullopt;
+ DefinedSVal MaskedFlags = MaskedFlagsUC.castAs<DefinedSVal>();
+
+ // Check if maskedFlags is non-zero.
+ ProgramStateRef TrueState, FalseState;
+ std::tie(TrueState, FalseState) = State->assume(MaskedFlags);
+
+ // If M_ZERO is set, treat this like calloc (initialized).
+ if (TrueState && !FalseState) {
+ SVal ZeroVal = C.getSValBuilder().makeZeroVal(Ctx.CharTy);
+ return MallocMemAux(C, Call, Call.getArgExpr(0), ZeroVal, TrueState,
+ AF_Malloc);
+ }
+
+ return std::nullopt;
+}
+
+SVal MallocChecker::evalMulForBufferSize(CheckerContext &C, const Expr *Blocks,
+ const Expr *BlockBytes) {
+ SValBuilder &SB = C.getSValBuilder();
+ SVal BlocksVal = C.getSVal(Blocks);
+ SVal BlockBytesVal = C.getSVal(BlockBytes);
+ ProgramStateRef State = C.getState();
+ SVal TotalSize = SB.evalBinOp(State, BO_Mul, BlocksVal, BlockBytesVal,
+ SB.getContext().getSizeType());
+ return TotalSize;
+}
+
+void MallocChecker::checkBasicAlloc(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
+ AF_Malloc);
+ State = ProcessZeroAllocCheck(Call, 0, State);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkKernelMalloc(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ std::optional<ProgramStateRef> MaybeState =
+ performKernelMalloc(Call, C, State);
+ if (MaybeState)
+ State = *MaybeState;
+ else
+ State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
+ AF_Malloc);
+ C.addTransition(State);
+}
+
+static bool isStandardRealloc(const CallEvent &Call) {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl());
+ assert(FD);
+ ASTContext &AC = FD->getASTContext();
+
+ return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy &&
+ FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy &&
+ FD->getParamDecl(1)->getType().getDesugaredType(AC) ==
+ AC.getSizeType();
+}
+
+static bool isGRealloc(const CallEvent &Call) {
+ const FunctionDecl *FD = dyn_cast<FunctionDecl>(Call.getDecl());
+ assert(FD);
+ ASTContext &AC = FD->getASTContext();
+
+ return FD->getDeclaredReturnType().getDesugaredType(AC) == AC.VoidPtrTy &&
+ FD->getParamDecl(0)->getType().getDesugaredType(AC) == AC.VoidPtrTy &&
+ FD->getParamDecl(1)->getType().getDesugaredType(AC) ==
+ AC.UnsignedLongTy;
+}
+
+void MallocChecker::checkRealloc(const CallEvent &Call, CheckerContext &C,
+ bool ShouldFreeOnFail) const {
+ // Ignore calls to functions whose type does not match the expected type of
+ // either the standard realloc or g_realloc from GLib.
+ // FIXME: Should we perform this kind of checking consistently for each
+ // function? If yes, then perhaps extend the `CallDescription` interface to
+ // handle this.
+ if (!isStandardRealloc(Call) && !isGRealloc(Call))
+ return;
+
+ ProgramStateRef State = C.getState();
+ State = ReallocMemAux(C, Call, ShouldFreeOnFail, State, AF_Malloc);
+ State = ProcessZeroAllocCheck(Call, 1, State);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkCalloc(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ State = CallocMem(C, Call, State);
+ State = ProcessZeroAllocCheck(Call, 0, State);
+ State = ProcessZeroAllocCheck(Call, 1, State);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkFree(const CallEvent &Call, CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ bool IsKnownToBeAllocatedMemory = false;
+ if (suppressDeallocationsInSuspiciousContexts(Call, C))
+ return;
+ State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
+ AF_Malloc);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkAlloca(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ State = MallocMemAux(C, Call, Call.getArgExpr(0), UndefinedVal(), State,
+ AF_Alloca);
+ State = ProcessZeroAllocCheck(Call, 0, State);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkStrdup(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
+ if (!CE)
+ return;
+ State = MallocUpdateRefState(C, CE, State, AF_Malloc);
+
+ C.addTransition(State);
+}
+
+void MallocChecker::checkIfNameIndex(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ // Should we model this differently? We can allocate a fixed number of
+ // elements with zeros in the last one.
+ State =
+ MallocMemAux(C, Call, UnknownVal(), UnknownVal(), State, AF_IfNameIndex);
+
+ C.addTransition(State);
+}
+
+void MallocChecker::checkIfFreeNameIndex(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ bool IsKnownToBeAllocatedMemory = false;
+ State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
+ AF_IfNameIndex);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkCXXNewOrCXXDelete(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ bool IsKnownToBeAllocatedMemory = false;
+ const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
+ if (!CE)
+ return;
+
+ assert(isStandardNewDelete(Call));
+
+ // Process direct calls to operator new/new[]/delete/delete[] functions
+ // as distinct from new/new[]/delete/delete[] expressions that are
+ // processed by the checkPostStmt callbacks for CXXNewExpr and
+ // CXXDeleteExpr.
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ switch (FD->getOverloadedOperator()) {
+ case OO_New:
+ State =
+ MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State, AF_CXXNew);
+ State = ProcessZeroAllocCheck(Call, 0, State);
+ break;
+ case OO_Array_New:
+ State = MallocMemAux(C, Call, CE->getArg(0), UndefinedVal(), State,
+ AF_CXXNewArray);
+ State = ProcessZeroAllocCheck(Call, 0, State);
+ break;
+ case OO_Delete:
+ State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
+ AF_CXXNew);
+ break;
+ case OO_Array_Delete:
+ State = FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocatedMemory,
+ AF_CXXNewArray);
+ break;
+ default:
+ llvm_unreachable("not a new/delete operator");
+ }
+
+ C.addTransition(State);
+}
+
+void MallocChecker::checkGMalloc0(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
+ State = MallocMemAux(C, Call, Call.getArgExpr(0), zeroVal, State, AF_Malloc);
+ State = ProcessZeroAllocCheck(Call, 0, State);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkGMemdup(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ State =
+ MallocMemAux(C, Call, Call.getArgExpr(1), UnknownVal(), State, AF_Malloc);
+ State = ProcessZeroAllocCheck(Call, 1, State);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkGMallocN(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ SVal Init = UndefinedVal();
+ SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
+ State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc);
+ State = ProcessZeroAllocCheck(Call, 0, State);
+ State = ProcessZeroAllocCheck(Call, 1, State);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkGMallocN0(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ SValBuilder &SB = C.getSValBuilder();
+ SVal Init = SB.makeZeroVal(SB.getContext().CharTy);
+ SVal TotalSize = evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
+ State = MallocMemAux(C, Call, TotalSize, Init, State, AF_Malloc);
+ State = ProcessZeroAllocCheck(Call, 0, State);
+ State = ProcessZeroAllocCheck(Call, 1, State);
+ C.addTransition(State);
+}
+
+static bool isFromStdNamespace(const CallEvent &Call) {
+ const Decl *FD = Call.getDecl();
+ assert(FD && "a CallDescription cannot match a call without a Decl");
+ return FD->isInStdNamespace();
+}
+
+void MallocChecker::preGetdelim(const CallEvent &Call,
+ CheckerContext &C) const {
+ // Discard calls to the C++ standard library function std::getline(), which
+ // is completely unrelated to the POSIX getline() that we're checking.
+ if (isFromStdNamespace(Call))
+ return;
+
+ ProgramStateRef State = C.getState();
+ const auto LinePtr = getPointeeVal(Call.getArgSVal(0), State);
+ if (!LinePtr)
+ return;
+
+ // FreeMemAux takes IsKnownToBeAllocated as an output parameter, and it will
+ // be true after the call if the symbol was registered by this checker.
+ // We do not need this value here, as FreeMemAux will take care
+ // of reporting any violation of the preconditions.
+ bool IsKnownToBeAllocated = false;
+ State = FreeMemAux(C, Call.getArgExpr(0), Call, State, false,
+ IsKnownToBeAllocated, AF_Malloc, false, LinePtr);
+ if (State)
+ C.addTransition(State);
+}
+
+void MallocChecker::checkGetdelim(const CallEvent &Call,
+ CheckerContext &C) const {
+ // Discard calls to the C++ standard library function std::getline(), which
+ // is completely unrelated to the POSIX getline() that we're checking.
+ if (isFromStdNamespace(Call))
+ return;
+
+ ProgramStateRef State = C.getState();
+ // Handle the post-conditions of getline and getdelim:
+ // Register the new conjured value as an allocated buffer.
+ const CallExpr *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
+ if (!CE)
+ return;
+
+ SValBuilder &SVB = C.getSValBuilder();
+
+ const auto LinePtr =
+ getPointeeVal(Call.getArgSVal(0), State)->getAs<DefinedSVal>();
+ const auto Size =
+ getPointeeVal(Call.getArgSVal(1), State)->getAs<DefinedSVal>();
+ if (!LinePtr || !Size || !LinePtr->getAsRegion())
+ return;
+
+ State = setDynamicExtent(State, LinePtr->getAsRegion(), *Size, SVB);
+ C.addTransition(MallocUpdateRefState(C, CE, State, AF_Malloc, *LinePtr));
+}
+
+void MallocChecker::checkReallocN(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ State = ReallocMemAux(C, Call, /*ShouldFreeOnFail=*/false, State, AF_Malloc,
+ /*SuffixWithN=*/true);
+ State = ProcessZeroAllocCheck(Call, 1, State);
+ State = ProcessZeroAllocCheck(Call, 2, State);
+ C.addTransition(State);
+}
+
+void MallocChecker::checkOwnershipAttr(const CallEvent &Call,
+ CheckerContext &C) const {
+ ProgramStateRef State = C.getState();
+ const auto *CE = dyn_cast_or_null<CallExpr>(Call.getOriginExpr());
+ if (!CE)
+ return;
+ const FunctionDecl *FD = C.getCalleeDecl(CE);
+ if (!FD)
+ return;
+ if (ShouldIncludeOwnershipAnnotatedFunctions ||
+ ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
+ // Check all the attributes, if there are any.
+ // There can be multiple of these attributes.
+ if (FD->hasAttrs())
+ for (const auto *I : FD->specific_attrs<OwnershipAttr>()) {
+ switch (I->getOwnKind()) {
+ case OwnershipAttr::Returns:
+ State = MallocMemReturnsAttr(C, Call, I, State);
+ break;
+ case OwnershipAttr::Takes:
+ case OwnershipAttr::Holds:
+ State = FreeMemAttr(C, Call, I, State);
+ break;
+ }
+ }
+ }
+ C.addTransition(State);
+}
+
+void MallocChecker::checkPostCall(const CallEvent &Call,
+ CheckerContext &C) const {
+ if (C.wasInlined)
+ return;
+ if (!Call.getOriginExpr())
+ return;
+
+ ProgramStateRef State = C.getState();
+
+ if (const CheckFn *Callback = FreeingMemFnMap.lookup(Call)) {
+ (*Callback)(this, Call, C);
+ return;
+ }
+
+ if (const CheckFn *Callback = AllocatingMemFnMap.lookup(Call)) {
+ (*Callback)(this, Call, C);
+ return;
+ }
+
+ if (const CheckFn *Callback = ReallocatingMemFnMap.lookup(Call)) {
+ (*Callback)(this, Call, C);
+ return;
+ }
+
+ if (isStandardNewDelete(Call)) {
+ checkCXXNewOrCXXDelete(Call, C);
+ return;
+ }
+
+ checkOwnershipAttr(Call, C);
+}
+
+// Performs a 0-sized allocations check.
+ProgramStateRef MallocChecker::ProcessZeroAllocCheck(
+ const CallEvent &Call, const unsigned IndexOfSizeArg, ProgramStateRef State,
+ std::optional<SVal> RetVal) {
+ if (!State)
+ return nullptr;
+
+ if (!RetVal)
+ RetVal = Call.getReturnValue();
+
+ const Expr *Arg = nullptr;
+
+ if (const CallExpr *CE = dyn_cast<CallExpr>(Call.getOriginExpr())) {
+ Arg = CE->getArg(IndexOfSizeArg);
+ } else if (const CXXNewExpr *NE =
+ dyn_cast<CXXNewExpr>(Call.getOriginExpr())) {
+ if (NE->isArray()) {
+ Arg = *NE->getArraySize();
+ } else {
+ return State;
+ }
+ } else
+ llvm_unreachable("not a CallExpr or CXXNewExpr");
+
+ assert(Arg);
+
+ auto DefArgVal =
+ State->getSVal(Arg, Call.getLocationContext()).getAs<DefinedSVal>();
+
+ if (!DefArgVal)
+ return State;
+
+ // Check if the allocation size is 0.
+ ProgramStateRef TrueState, FalseState;
+ SValBuilder &SvalBuilder = State->getStateManager().getSValBuilder();
+ DefinedSVal Zero =
+ SvalBuilder.makeZeroVal(Arg->getType()).castAs<DefinedSVal>();
+
+ std::tie(TrueState, FalseState) =
+ State->assume(SvalBuilder.evalEQ(State, *DefArgVal, Zero));
+
+ if (TrueState && !FalseState) {
+ SymbolRef Sym = RetVal->getAsLocSymbol();
+ if (!Sym)
+ return State;
+
+ const RefState *RS = State->get<RegionState>(Sym);
+ if (RS) {
+ if (RS->isAllocated())
+ return TrueState->set<RegionState>(Sym,
+ RefState::getAllocatedOfSizeZero(RS));
+ else
+ return State;
+ } else {
+ // Case of zero-size realloc. Historically 'realloc(ptr, 0)' is treated as
+ // 'free(ptr)' and the returned value from 'realloc(ptr, 0)' is not
+ // tracked. Add zero-reallocated Sym to the state to catch references
+ // to zero-allocated memory.
+ return TrueState->add<ReallocSizeZeroSymbols>(Sym);
+ }
+ }
+
+ // Assume the value is non-zero going forward.
+ assert(FalseState);
+ return FalseState;
+}
+
+static QualType getDeepPointeeType(QualType T) {
+ QualType Result = T, PointeeType = T->getPointeeType();
+ while (!PointeeType.isNull()) {
+ Result = PointeeType;
+ PointeeType = PointeeType->getPointeeType();
+ }
+ return Result;
+}
+
+/// \returns true if the constructor invoked by \p NE has an argument of a
+/// pointer/reference to a record type.
+static bool hasNonTrivialConstructorCall(const CXXNewExpr *NE) {
+
+ const CXXConstructExpr *ConstructE = NE->getConstructExpr();
+ if (!ConstructE)
+ return false;
+
+ if (!NE->getAllocatedType()->getAsCXXRecordDecl())
+ return false;
+
+ const CXXConstructorDecl *CtorD = ConstructE->getConstructor();
+
+ // Iterate over the constructor parameters.
+ for (const auto *CtorParam : CtorD->parameters()) {
+
+ QualType CtorParamPointeeT = CtorParam->getType()->getPointeeType();
+ if (CtorParamPointeeT.isNull())
+ continue;
+
+ CtorParamPointeeT = getDeepPointeeType(CtorParamPointeeT);
+
+ if (CtorParamPointeeT->getAsCXXRecordDecl())
+ return true;
+ }
+
+ return false;
+}
+
+ProgramStateRef
+MallocChecker::processNewAllocation(const CXXAllocatorCall &Call,
+ CheckerContext &C,
+ AllocationFamily Family) const {
+ if (!isStandardNewDelete(Call))
+ return nullptr;
+
+ const CXXNewExpr *NE = Call.getOriginExpr();
+ const ParentMap &PM = C.getLocationContext()->getParentMap();
+ ProgramStateRef State = C.getState();
+
+ // Non-trivial constructors have a chance to escape 'this', but marking all
+ // invocations of trivial constructors as escaped would cause too great of
+ // reduction of true positives, so let's just do that for constructors that
+ // have an argument of a pointer-to-record type.
+ if (!PM.isConsumedExpr(NE) && hasNonTrivialConstructorCall(NE))
+ return State;
+
+ // The return value from operator new is bound to a specified initialization
+ // value (if any) and we don't want to loose this value. So we call
+ // MallocUpdateRefState() instead of MallocMemAux() which breaks the
+ // existing binding.
+ SVal Target = Call.getObjectUnderConstruction();
+ if (Call.getOriginExpr()->isArray()) {
+ if (auto SizeEx = NE->getArraySize())
+ checkTaintedness(C, Call, C.getSVal(*SizeEx), State, AF_CXXNewArray);
+ }
+
+ State = MallocUpdateRefState(C, NE, State, Family, Target);
+ State = ProcessZeroAllocCheck(Call, 0, State, Target);
+ return State;
+}
+
+void MallocChecker::checkNewAllocator(const CXXAllocatorCall &Call,
+ CheckerContext &C) const {
+ if (!C.wasInlined) {
+ ProgramStateRef State = processNewAllocation(
+ Call, C,
+ (Call.getOriginExpr()->isArray() ? AF_CXXNewArray : AF_CXXNew));
+ C.addTransition(State);
+ }
+}
+
+static bool isKnownDeallocObjCMethodName(const ObjCMethodCall &Call) {
+ // If the first selector piece is one of the names below, assume that the
+ // object takes ownership of the memory, promising to eventually deallocate it
+ // with free().
+ // Ex: [NSData dataWithBytesNoCopy:bytes length:10];
+ // (...unless a 'freeWhenDone' parameter is false, but that's checked later.)
+ StringRef FirstSlot = Call.getSelector().getNameForSlot(0);
+ return FirstSlot == "dataWithBytesNoCopy" ||
+ FirstSlot == "initWithBytesNoCopy" ||
+ FirstSlot == "initWithCharactersNoCopy";
+}
+
+static std::optional<bool> getFreeWhenDoneArg(const ObjCMethodCall &Call) {
+ Selector S = Call.getSelector();
+
+ // FIXME: We should not rely on fully-constrained symbols being folded.
+ for (unsigned i = 1; i < S.getNumArgs(); ++i)
+ if (S.getNameForSlot(i) == "freeWhenDone")
+ return !Call.getArgSVal(i).isZeroConstant();
+
+ return std::nullopt;
+}
+
+void MallocChecker::checkPostObjCMessage(const ObjCMethodCall &Call,
+ CheckerContext &C) const {
+ if (C.wasInlined)
+ return;
+
+ if (!isKnownDeallocObjCMethodName(Call))
+ return;
+
+ if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(Call))
+ if (!*FreeWhenDone)
+ return;
+
+ if (Call.hasNonZeroCallbackArg())
+ return;
+
+ bool IsKnownToBeAllocatedMemory;
+ ProgramStateRef State =
+ FreeMemAux(C, Call.getArgExpr(0), Call, C.getState(),
+ /*Hold=*/true, IsKnownToBeAllocatedMemory, AF_Malloc,
+ /*ReturnsNullOnFailure=*/true);
+
+ C.addTransition(State);
+}
+
+ProgramStateRef
+MallocChecker::MallocMemReturnsAttr(CheckerContext &C, const CallEvent &Call,
+ const OwnershipAttr *Att,
+ ProgramStateRef State) const {
+ if (!State)
+ return nullptr;
+
+ if (Att->getModule()->getName() != "malloc")
+ return nullptr;
+
+ if (!Att->args().empty()) {
+ return MallocMemAux(C, Call,
+ Call.getArgExpr(Att->args_begin()->getASTIndex()),
+ UndefinedVal(), State, AF_Malloc);
+ }
+ return MallocMemAux(C, Call, UnknownVal(), UndefinedVal(), State, AF_Malloc);
+}
+
+ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
+ const CallEvent &Call,
+ const Expr *SizeEx, SVal Init,
+ ProgramStateRef State,
+ AllocationFamily Family) const {
+ if (!State)
+ return nullptr;
+
+ assert(SizeEx);
+ return MallocMemAux(C, Call, C.getSVal(SizeEx), Init, State, Family);
+}
+
+void MallocChecker::reportTaintBug(StringRef Msg, ProgramStateRef State,
+ CheckerContext &C,
+ llvm::ArrayRef<SymbolRef> TaintedSyms,
+ AllocationFamily Family) const {
+ if (ExplodedNode *N = C.generateNonFatalErrorNode(State, this)) {
+ if (!BT_TaintedAlloc)
+ BT_TaintedAlloc.reset(new BugType(CheckNames[CK_TaintedAllocChecker],
+ "Tainted Memory Allocation",
+ categories::TaintedData));
+ auto R = std::make_unique<PathSensitiveBugReport>(*BT_TaintedAlloc, Msg, N);
+ for (auto TaintedSym : TaintedSyms) {
+ R->markInteresting(TaintedSym);
+ }
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::checkTaintedness(CheckerContext &C, const CallEvent &Call,
+ const SVal SizeSVal, ProgramStateRef State,
+ AllocationFamily Family) const {
+ if (!ChecksEnabled[CK_TaintedAllocChecker])
+ return;
+ std::vector<SymbolRef> TaintedSyms =
+ taint::getTaintedSymbols(State, SizeSVal);
+ if (TaintedSyms.empty())
+ return;
+
+ SValBuilder &SVB = C.getSValBuilder();
+ QualType SizeTy = SVB.getContext().getSizeType();
+ QualType CmpTy = SVB.getConditionType();
+ // In case the symbol is tainted, we give a warning if the
+ // size is larger than SIZE_MAX/4
+ BasicValueFactory &BVF = SVB.getBasicValueFactory();
+ const llvm::APSInt MaxValInt = BVF.getMaxValue(SizeTy);
+ NonLoc MaxLength =
+ SVB.makeIntVal(MaxValInt / APSIntType(MaxValInt).getValue(4));
+ std::optional<NonLoc> SizeNL = SizeSVal.getAs<NonLoc>();
+ auto Cmp = SVB.evalBinOpNN(State, BO_GE, *SizeNL, MaxLength, CmpTy)
+ .getAs<DefinedOrUnknownSVal>();
+ if (!Cmp)
+ return;
+ auto [StateTooLarge, StateNotTooLarge] = State->assume(*Cmp);
+ if (!StateTooLarge && StateNotTooLarge) {
+ // We can prove that size is not too large so there is no issue.
+ return;
+ }
+
+ std::string Callee = "Memory allocation function";
+ if (Call.getCalleeIdentifier())
+ Callee = Call.getCalleeIdentifier()->getName().str();
+ reportTaintBug(
+ Callee + " is called with a tainted (potentially attacker controlled) "
+ "value. Make sure the value is bound checked.",
+ State, C, TaintedSyms, Family);
+}
+
+ProgramStateRef MallocChecker::MallocMemAux(CheckerContext &C,
+ const CallEvent &Call, SVal Size,
+ SVal Init, ProgramStateRef State,
+ AllocationFamily Family) const {
+ if (!State)
+ return nullptr;
+
+ const Expr *CE = Call.getOriginExpr();
+
+ // We expect the malloc functions to return a pointer.
+ if (!Loc::isLocType(CE->getType()))
+ return nullptr;
+
+ // Bind the return value to the symbolic value from the heap region.
+ // TODO: move use of this functions to an EvalCall callback, becasue
+ // BindExpr() should'nt be used elsewhere.
+ unsigned Count = C.blockCount();
+ SValBuilder &SVB = C.getSValBuilder();
+ const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
+ DefinedSVal RetVal =
+ ((Family == AF_Alloca) ? SVB.getAllocaRegionVal(CE, LCtx, Count)
+ : SVB.getConjuredHeapSymbolVal(CE, LCtx, Count)
+ .castAs<DefinedSVal>());
+ State = State->BindExpr(CE, C.getLocationContext(), RetVal);
+
+ // Fill the region with the initialization value.
+ State = State->bindDefaultInitial(RetVal, Init, LCtx);
+
+ // If Size is somehow undefined at this point, this line prevents a crash.
+ if (Size.isUndef())
+ Size = UnknownVal();
+
+ checkTaintedness(C, Call, Size, State, AF_Malloc);
+
+ // Set the region's extent.
+ State = setDynamicExtent(State, RetVal.getAsRegion(),
+ Size.castAs<DefinedOrUnknownSVal>(), SVB);
+
+ return MallocUpdateRefState(C, CE, State, Family);
+}
+
+static ProgramStateRef MallocUpdateRefState(CheckerContext &C, const Expr *E,
+ ProgramStateRef State,
+ AllocationFamily Family,
+ std::optional<SVal> RetVal) {
+ if (!State)
+ return nullptr;
+
+ // Get the return value.
+ if (!RetVal)
+ RetVal = C.getSVal(E);
+
+ // We expect the malloc functions to return a pointer.
+ if (!RetVal->getAs<Loc>())
+ return nullptr;
+
+ SymbolRef Sym = RetVal->getAsLocSymbol();
+
+ // This is a return value of a function that was not inlined, such as malloc()
+ // or new(). We've checked that in the caller. Therefore, it must be a symbol.
+ assert(Sym);
+ // FIXME: In theory this assertion should fail for `alloca()` calls (because
+ // `AllocaRegion`s are not symbolic); but in practice this does not happen.
+ // As the current code appears to work correctly, I'm not touching this issue
+ // now, but it would be good to investigate and clarify this.
+ // Also note that perhaps the special `AllocaRegion` should be replaced by
+ // `SymbolicRegion` (or turned into a subclass of `SymbolicRegion`) to enable
+ // proper tracking of memory allocated by `alloca()` -- and after that change
+ // this assertion would become valid again.
+
+ // Set the symbol's state to Allocated.
+ return State->set<RegionState>(Sym, RefState::getAllocated(Family, E));
+}
+
+ProgramStateRef MallocChecker::FreeMemAttr(CheckerContext &C,
+ const CallEvent &Call,
+ const OwnershipAttr *Att,
+ ProgramStateRef State) const {
+ if (!State)
+ return nullptr;
+
+ if (Att->getModule()->getName() != "malloc")
+ return nullptr;
+
+ bool IsKnownToBeAllocated = false;
+
+ for (const auto &Arg : Att->args()) {
+ ProgramStateRef StateI =
+ FreeMemAux(C, Call, State, Arg.getASTIndex(),
+ Att->getOwnKind() == OwnershipAttr::Holds,
+ IsKnownToBeAllocated, AF_Malloc);
+ if (StateI)
+ State = StateI;
+ }
+ return State;
+}
+
+ProgramStateRef MallocChecker::FreeMemAux(CheckerContext &C,
+ const CallEvent &Call,
+ ProgramStateRef State, unsigned Num,
+ bool Hold, bool &IsKnownToBeAllocated,
+ AllocationFamily Family,
+ bool ReturnsNullOnFailure) const {
+ if (!State)
+ return nullptr;
+
+ if (Call.getNumArgs() < (Num + 1))
+ return nullptr;
+
+ return FreeMemAux(C, Call.getArgExpr(Num), Call, State, Hold,
+ IsKnownToBeAllocated, Family, ReturnsNullOnFailure);
+}
+
+/// Checks if the previous call to free on the given symbol failed - if free
+/// failed, returns true. Also, returns the corresponding return value symbol.
+static bool didPreviousFreeFail(ProgramStateRef State,
+ SymbolRef Sym, SymbolRef &RetStatusSymbol) {
+ const SymbolRef *Ret = State->get<FreeReturnValue>(Sym);
+ if (Ret) {
+ assert(*Ret && "We should not store the null return symbol");
+ ConstraintManager &CMgr = State->getConstraintManager();
+ ConditionTruthVal FreeFailed = CMgr.isNull(State, *Ret);
+ RetStatusSymbol = *Ret;
+ return FreeFailed.isConstrainedTrue();
+ }
+ return false;
+}
+
+static bool printMemFnName(raw_ostream &os, CheckerContext &C, const Expr *E) {
+ if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ // FIXME: This doesn't handle indirect calls.
+ const FunctionDecl *FD = CE->getDirectCallee();
+ if (!FD)
+ return false;
+
+ os << *FD;
+ if (!FD->isOverloadedOperator())
+ os << "()";
+ return true;
+ }
+
+ if (const ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E)) {
+ if (Msg->isInstanceMessage())
+ os << "-";
+ else
+ os << "+";
+ Msg->getSelector().print(os);
+ return true;
+ }
+
+ if (const CXXNewExpr *NE = dyn_cast<CXXNewExpr>(E)) {
+ os << "'"
+ << getOperatorSpelling(NE->getOperatorNew()->getOverloadedOperator())
+ << "'";
+ return true;
+ }
+
+ if (const CXXDeleteExpr *DE = dyn_cast<CXXDeleteExpr>(E)) {
+ os << "'"
+ << getOperatorSpelling(DE->getOperatorDelete()->getOverloadedOperator())
+ << "'";
+ return true;
+ }
+
+ return false;
+}
+
+static void printExpectedAllocName(raw_ostream &os, AllocationFamily Family) {
+
+ switch(Family) {
+ case AF_Malloc: os << "malloc()"; return;
+ case AF_CXXNew: os << "'new'"; return;
+ case AF_CXXNewArray: os << "'new[]'"; return;
+ case AF_IfNameIndex: os << "'if_nameindex()'"; return;
+ case AF_InnerBuffer: os << "container-specific allocator"; return;
+ case AF_Alloca:
+ case AF_None: llvm_unreachable("not a deallocation expression");
+ }
+}
+
+static void printExpectedDeallocName(raw_ostream &os, AllocationFamily Family) {
+ switch(Family) {
+ case AF_Malloc: os << "free()"; return;
+ case AF_CXXNew: os << "'delete'"; return;
+ case AF_CXXNewArray: os << "'delete[]'"; return;
+ case AF_IfNameIndex: os << "'if_freenameindex()'"; return;
+ case AF_InnerBuffer: os << "container-specific deallocator"; return;
+ case AF_Alloca:
+ case AF_None: llvm_unreachable("suspicious argument");
+ }
+}
+
+ProgramStateRef
+MallocChecker::FreeMemAux(CheckerContext &C, const Expr *ArgExpr,
+ const CallEvent &Call, ProgramStateRef State,
+ bool Hold, bool &IsKnownToBeAllocated,
+ AllocationFamily Family, bool ReturnsNullOnFailure,
+ std::optional<SVal> ArgValOpt) const {
+
+ if (!State)
+ return nullptr;
+
+ SVal ArgVal = ArgValOpt.value_or(C.getSVal(ArgExpr));
+ if (!isa<DefinedOrUnknownSVal>(ArgVal))
+ return nullptr;
+ DefinedOrUnknownSVal location = ArgVal.castAs<DefinedOrUnknownSVal>();
+
+ // Check for null dereferences.
+ if (!isa<Loc>(location))
+ return nullptr;
+
+ // The explicit NULL case, no operation is performed.
+ ProgramStateRef notNullState, nullState;
+ std::tie(notNullState, nullState) = State->assume(location);
+ if (nullState && !notNullState)
+ return nullptr;
+
+ // Unknown values could easily be okay
+ // Undefined values are handled elsewhere
+ if (ArgVal.isUnknownOrUndef())
+ return nullptr;
+
+ const MemRegion *R = ArgVal.getAsRegion();
+ const Expr *ParentExpr = Call.getOriginExpr();
+
+ // NOTE: We detected a bug, but the checker under whose name we would emit the
+ // error could be disabled. Generally speaking, the MallocChecker family is an
+ // integral part of the Static Analyzer, and disabling any part of it should
+ // only be done under exceptional circumstances, such as frequent false
+ // positives. If this is the case, we can reasonably believe that there are
+ // serious faults in our understanding of the source code, and even if we
+ // don't emit an warning, we should terminate further analysis with a sink
+ // node.
+
+ // Nonlocs can't be freed, of course.
+ // Non-region locations (labels and fixed addresses) also shouldn't be freed.
+ if (!R) {
+ // Exception:
+ // If the macro ZERO_SIZE_PTR is defined, this could be a kernel source
+ // code. In that case, the ZERO_SIZE_PTR defines a special value used for a
+ // zero-sized memory block which is allowed to be freed, despite not being a
+ // null pointer.
+ if (Family != AF_Malloc || !isArgZERO_SIZE_PTR(State, C, ArgVal))
+ HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
+ Family);
+ return nullptr;
+ }
+
+ R = R->StripCasts();
+
+ // Blocks might show up as heap data, but should not be free()d
+ if (isa<BlockDataRegion>(R)) {
+ HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
+ Family);
+ return nullptr;
+ }
+
+ const MemSpaceRegion *MS = R->getMemorySpace();
+
+ // Parameters, locals, statics, globals, and memory returned by
+ // __builtin_alloca() shouldn't be freed.
+ if (!isa<UnknownSpaceRegion, HeapSpaceRegion>(MS)) {
+ // Regions returned by malloc() are represented by SymbolicRegion objects
+ // within HeapSpaceRegion. Of course, free() can work on memory allocated
+ // outside the current function, so UnknownSpaceRegion is also a
+ // possibility here.
+
+ if (isa<AllocaRegion>(R))
+ HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
+ else
+ HandleNonHeapDealloc(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
+ Family);
+
+ return nullptr;
+ }
+
+ const SymbolicRegion *SrBase = dyn_cast<SymbolicRegion>(R->getBaseRegion());
+ // Various cases could lead to non-symbol values here.
+ // For now, ignore them.
+ if (!SrBase)
+ return nullptr;
+
+ SymbolRef SymBase = SrBase->getSymbol();
+ const RefState *RsBase = State->get<RegionState>(SymBase);
+ SymbolRef PreviousRetStatusSymbol = nullptr;
+
+ IsKnownToBeAllocated =
+ RsBase && (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero());
+
+ if (RsBase) {
+
+ // Memory returned by alloca() shouldn't be freed.
+ if (RsBase->getAllocationFamily() == AF_Alloca) {
+ HandleFreeAlloca(C, ArgVal, ArgExpr->getSourceRange());
+ return nullptr;
+ }
+
+ // Check for double free first.
+ if ((RsBase->isReleased() || RsBase->isRelinquished()) &&
+ !didPreviousFreeFail(State, SymBase, PreviousRetStatusSymbol)) {
+ HandleDoubleFree(C, ParentExpr->getSourceRange(), RsBase->isReleased(),
+ SymBase, PreviousRetStatusSymbol);
+ return nullptr;
+
+ // If the pointer is allocated or escaped, but we are now trying to free it,
+ // check that the call to free is proper.
+ } else if (RsBase->isAllocated() || RsBase->isAllocatedOfSizeZero() ||
+ RsBase->isEscaped()) {
+
+ // Check if an expected deallocation function matches the real one.
+ bool DeallocMatchesAlloc = RsBase->getAllocationFamily() == Family;
+ if (!DeallocMatchesAlloc) {
+ HandleMismatchedDealloc(C, ArgExpr->getSourceRange(), ParentExpr,
+ RsBase, SymBase, Hold);
+ return nullptr;
+ }
+
+ // Check if the memory location being freed is the actual location
+ // allocated, or an offset.
+ RegionOffset Offset = R->getAsOffset();
+ if (Offset.isValid() &&
+ !Offset.hasSymbolicOffset() &&
+ Offset.getOffset() != 0) {
+ const Expr *AllocExpr = cast<Expr>(RsBase->getStmt());
+ HandleOffsetFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
+ Family, AllocExpr);
+ return nullptr;
+ }
+ }
+ }
+
+ if (SymBase->getType()->isFunctionPointerType()) {
+ HandleFunctionPtrFree(C, ArgVal, ArgExpr->getSourceRange(), ParentExpr,
+ Family);
+ return nullptr;
+ }
+
+ // Clean out the info on previous call to free return info.
+ State = State->remove<FreeReturnValue>(SymBase);
+
+ // Keep track of the return value. If it is NULL, we will know that free
+ // failed.
+ if (ReturnsNullOnFailure) {
+ SVal RetVal = C.getSVal(ParentExpr);
+ SymbolRef RetStatusSymbol = RetVal.getAsSymbol();
+ if (RetStatusSymbol) {
+ C.getSymbolManager().addSymbolDependency(SymBase, RetStatusSymbol);
+ State = State->set<FreeReturnValue>(SymBase, RetStatusSymbol);
+ }
+ }
+
+ // If we don't know anything about this symbol, a free on it may be totally
+ // valid. If this is the case, lets assume that the allocation family of the
+ // freeing function is the same as the symbols allocation family, and go with
+ // that.
+ assert(!RsBase || (RsBase && RsBase->getAllocationFamily() == Family));
+
+ // Normal free.
+ if (Hold)
+ return State->set<RegionState>(SymBase,
+ RefState::getRelinquished(Family,
+ ParentExpr));
+
+ return State->set<RegionState>(SymBase,
+ RefState::getReleased(Family, ParentExpr));
+}
+
+std::optional<MallocChecker::CheckKind>
+MallocChecker::getCheckIfTracked(AllocationFamily Family,
+ bool IsALeakCheck) const {
+ switch (Family) {
+ case AF_Malloc:
+ case AF_Alloca:
+ case AF_IfNameIndex: {
+ if (ChecksEnabled[CK_MallocChecker])
+ return CK_MallocChecker;
+ return std::nullopt;
+ }
+ case AF_CXXNew:
+ case AF_CXXNewArray: {
+ if (IsALeakCheck) {
+ if (ChecksEnabled[CK_NewDeleteLeaksChecker])
+ return CK_NewDeleteLeaksChecker;
+ }
+ else {
+ if (ChecksEnabled[CK_NewDeleteChecker])
+ return CK_NewDeleteChecker;
+ }
+ return std::nullopt;
+ }
+ case AF_InnerBuffer: {
+ if (ChecksEnabled[CK_InnerPointerChecker])
+ return CK_InnerPointerChecker;
+ return std::nullopt;
+ }
+ case AF_None: {
+ llvm_unreachable("no family");
+ }
+ }
+ llvm_unreachable("unhandled family");
+}
+
+std::optional<MallocChecker::CheckKind>
+MallocChecker::getCheckIfTracked(CheckerContext &C, SymbolRef Sym,
+ bool IsALeakCheck) const {
+ if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym))
+ return CK_MallocChecker;
+
+ const RefState *RS = C.getState()->get<RegionState>(Sym);
+ assert(RS);
+ return getCheckIfTracked(RS->getAllocationFamily(), IsALeakCheck);
+}
+
+bool MallocChecker::SummarizeValue(raw_ostream &os, SVal V) {
+ if (std::optional<nonloc::ConcreteInt> IntVal =
+ V.getAs<nonloc::ConcreteInt>())
+ os << "an integer (" << IntVal->getValue() << ")";
+ else if (std::optional<loc::ConcreteInt> ConstAddr =
+ V.getAs<loc::ConcreteInt>())
+ os << "a constant address (" << ConstAddr->getValue() << ")";
+ else if (std::optional<loc::GotoLabel> Label = V.getAs<loc::GotoLabel>())
+ os << "the address of the label '" << Label->getLabel()->getName() << "'";
+ else
+ return false;
+
+ return true;
+}
+
+bool MallocChecker::SummarizeRegion(raw_ostream &os,
+ const MemRegion *MR) {
+ switch (MR->getKind()) {
+ case MemRegion::FunctionCodeRegionKind: {
+ const NamedDecl *FD = cast<FunctionCodeRegion>(MR)->getDecl();
+ if (FD)
+ os << "the address of the function '" << *FD << '\'';
+ else
+ os << "the address of a function";
+ return true;
+ }
+ case MemRegion::BlockCodeRegionKind:
+ os << "block text";
+ return true;
+ case MemRegion::BlockDataRegionKind:
+ // FIXME: where the block came from?
+ os << "a block";
+ return true;
+ default: {
+ const MemSpaceRegion *MS = MR->getMemorySpace();
+
+ if (isa<StackLocalsSpaceRegion>(MS)) {
+ const VarRegion *VR = dyn_cast<VarRegion>(MR);
+ const VarDecl *VD;
+ if (VR)
+ VD = VR->getDecl();
+ else
+ VD = nullptr;
+
+ if (VD)
+ os << "the address of the local variable '" << VD->getName() << "'";
+ else
+ os << "the address of a local stack variable";
+ return true;
+ }
+
+ if (isa<StackArgumentsSpaceRegion>(MS)) {
+ const VarRegion *VR = dyn_cast<VarRegion>(MR);
+ const VarDecl *VD;
+ if (VR)
+ VD = VR->getDecl();
+ else
+ VD = nullptr;
+
+ if (VD)
+ os << "the address of the parameter '" << VD->getName() << "'";
+ else
+ os << "the address of a parameter";
+ return true;
+ }
+
+ if (isa<GlobalsSpaceRegion>(MS)) {
+ const VarRegion *VR = dyn_cast<VarRegion>(MR);
+ const VarDecl *VD;
+ if (VR)
+ VD = VR->getDecl();
+ else
+ VD = nullptr;
+
+ if (VD) {
+ if (VD->isStaticLocal())
+ os << "the address of the static variable '" << VD->getName() << "'";
+ else
+ os << "the address of the global variable '" << VD->getName() << "'";
+ } else
+ os << "the address of a global variable";
+ return true;
+ }
+
+ return false;
+ }
+ }
+}
+
+void MallocChecker::HandleNonHeapDealloc(CheckerContext &C, SVal ArgVal,
+ SourceRange Range,
+ const Expr *DeallocExpr,
+ AllocationFamily Family) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
+ C.addSink();
+ return;
+ }
+
+ std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
+ if (!CheckKind)
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_BadFree[*CheckKind])
+ BT_BadFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Bad free", categories::MemoryError));
+
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ const MemRegion *MR = ArgVal.getAsRegion();
+ while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
+ MR = ER->getSuperRegion();
+
+ os << "Argument to ";
+ if (!printMemFnName(os, C, DeallocExpr))
+ os << "deallocator";
+
+ os << " is ";
+ bool Summarized = MR ? SummarizeRegion(os, MR)
+ : SummarizeValue(os, ArgVal);
+ if (Summarized)
+ os << ", which is not memory allocated by ";
+ else
+ os << "not memory allocated by ";
+
+ printExpectedAllocName(os, Family);
+
+ auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
+ os.str(), N);
+ R->markInteresting(MR);
+ R->addRange(Range);
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::HandleFreeAlloca(CheckerContext &C, SVal ArgVal,
+ SourceRange Range) const {
+
+ std::optional<MallocChecker::CheckKind> CheckKind;
+
+ if (ChecksEnabled[CK_MallocChecker])
+ CheckKind = CK_MallocChecker;
+ else if (ChecksEnabled[CK_MismatchedDeallocatorChecker])
+ CheckKind = CK_MismatchedDeallocatorChecker;
+ else {
+ C.addSink();
+ return;
+ }
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_FreeAlloca[*CheckKind])
+ BT_FreeAlloca[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Free alloca()", categories::MemoryError));
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_FreeAlloca[*CheckKind],
+ "Memory allocated by alloca() should not be deallocated", N);
+ R->markInteresting(ArgVal.getAsRegion());
+ R->addRange(Range);
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::HandleMismatchedDealloc(CheckerContext &C,
+ SourceRange Range,
+ const Expr *DeallocExpr,
+ const RefState *RS, SymbolRef Sym,
+ bool OwnershipTransferred) const {
+
+ if (!ChecksEnabled[CK_MismatchedDeallocatorChecker]) {
+ C.addSink();
+ return;
+ }
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_MismatchedDealloc)
+ BT_MismatchedDealloc.reset(
+ new BugType(CheckNames[CK_MismatchedDeallocatorChecker],
+ "Bad deallocator", categories::MemoryError));
+
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+
+ const Expr *AllocExpr = cast<Expr>(RS->getStmt());
+ SmallString<20> AllocBuf;
+ llvm::raw_svector_ostream AllocOs(AllocBuf);
+ SmallString<20> DeallocBuf;
+ llvm::raw_svector_ostream DeallocOs(DeallocBuf);
+
+ if (OwnershipTransferred) {
+ if (printMemFnName(DeallocOs, C, DeallocExpr))
+ os << DeallocOs.str() << " cannot";
+ else
+ os << "Cannot";
+
+ os << " take ownership of memory";
+
+ if (printMemFnName(AllocOs, C, AllocExpr))
+ os << " allocated by " << AllocOs.str();
+ } else {
+ os << "Memory";
+ if (printMemFnName(AllocOs, C, AllocExpr))
+ os << " allocated by " << AllocOs.str();
+
+ os << " should be deallocated by ";
+ printExpectedDeallocName(os, RS->getAllocationFamily());
+
+ if (printMemFnName(DeallocOs, C, DeallocExpr))
+ os << ", not " << DeallocOs.str();
+ }
+
+ auto R = std::make_unique<PathSensitiveBugReport>(*BT_MismatchedDealloc,
+ os.str(), N);
+ R->markInteresting(Sym);
+ R->addRange(Range);
+ R->addVisitor<MallocBugVisitor>(Sym);
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::HandleOffsetFree(CheckerContext &C, SVal ArgVal,
+ SourceRange Range, const Expr *DeallocExpr,
+ AllocationFamily Family,
+ const Expr *AllocExpr) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
+ C.addSink();
+ return;
+ }
+
+ std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
+ if (!CheckKind)
+ return;
+
+ ExplodedNode *N = C.generateErrorNode();
+ if (!N)
+ return;
+
+ if (!BT_OffsetFree[*CheckKind])
+ BT_OffsetFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Offset free", categories::MemoryError));
+
+ SmallString<100> buf;
+ llvm::raw_svector_ostream os(buf);
+ SmallString<20> AllocNameBuf;
+ llvm::raw_svector_ostream AllocNameOs(AllocNameBuf);
+
+ const MemRegion *MR = ArgVal.getAsRegion();
+ assert(MR && "Only MemRegion based symbols can have offset free errors");
+
+ RegionOffset Offset = MR->getAsOffset();
+ assert((Offset.isValid() &&
+ !Offset.hasSymbolicOffset() &&
+ Offset.getOffset() != 0) &&
+ "Only symbols with a valid offset can have offset free errors");
+
+ int offsetBytes = Offset.getOffset() / C.getASTContext().getCharWidth();
+
+ os << "Argument to ";
+ if (!printMemFnName(os, C, DeallocExpr))
+ os << "deallocator";
+ os << " is offset by "
+ << offsetBytes
+ << " "
+ << ((abs(offsetBytes) > 1) ? "bytes" : "byte")
+ << " from the start of ";
+ if (AllocExpr && printMemFnName(AllocNameOs, C, AllocExpr))
+ os << "memory allocated by " << AllocNameOs.str();
+ else
+ os << "allocated memory";
+
+ auto R = std::make_unique<PathSensitiveBugReport>(*BT_OffsetFree[*CheckKind],
+ os.str(), N);
+ R->markInteresting(MR->getBaseRegion());
+ R->addRange(Range);
+ C.emitReport(std::move(R));
+}
+
+void MallocChecker::HandleUseAfterFree(CheckerContext &C, SourceRange Range,
+ SymbolRef Sym) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker] &&
+ !ChecksEnabled[CK_InnerPointerChecker]) {
+ C.addSink();
+ return;
+ }
+
+ std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+ if (!CheckKind)
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_UseFree[*CheckKind])
+ BT_UseFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Use-after-free", categories::MemoryError));
+
+ AllocationFamily AF =
+ C.getState()->get<RegionState>(Sym)->getAllocationFamily();
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_UseFree[*CheckKind],
+ AF == AF_InnerBuffer
+ ? "Inner pointer of container used after re/deallocation"
+ : "Use of memory after it is freed",
+ N);
+
+ R->markInteresting(Sym);
+ R->addRange(Range);
+ R->addVisitor<MallocBugVisitor>(Sym);
+
+ if (AF == AF_InnerBuffer)
+ R->addVisitor(allocation_state::getInnerPointerBRVisitor(Sym));
+
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::HandleDoubleFree(CheckerContext &C, SourceRange Range,
+ bool Released, SymbolRef Sym,
+ SymbolRef PrevSym) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
+ C.addSink();
+ return;
+ }
+
+ std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+ if (!CheckKind)
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_DoubleFree[*CheckKind])
+ BT_DoubleFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Double free", categories::MemoryError));
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_DoubleFree[*CheckKind],
+ (Released ? "Attempt to free released memory"
+ : "Attempt to free non-owned memory"),
+ N);
+ R->addRange(Range);
+ R->markInteresting(Sym);
+ if (PrevSym)
+ R->markInteresting(PrevSym);
+ R->addVisitor<MallocBugVisitor>(Sym);
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::HandleDoubleDelete(CheckerContext &C, SymbolRef Sym) const {
+
+ if (!ChecksEnabled[CK_NewDeleteChecker]) {
+ C.addSink();
+ return;
+ }
+
+ std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+ if (!CheckKind)
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_DoubleDelete)
+ BT_DoubleDelete.reset(new BugType(CheckNames[CK_NewDeleteChecker],
+ "Double delete",
+ categories::MemoryError));
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_DoubleDelete, "Attempt to delete released memory", N);
+
+ R->markInteresting(Sym);
+ R->addVisitor<MallocBugVisitor>(Sym);
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::HandleUseZeroAlloc(CheckerContext &C, SourceRange Range,
+ SymbolRef Sym) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] && !ChecksEnabled[CK_NewDeleteChecker]) {
+ C.addSink();
+ return;
+ }
+
+ std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(C, Sym);
+
+ if (!CheckKind)
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_UseZerroAllocated[*CheckKind])
+ BT_UseZerroAllocated[*CheckKind].reset(
+ new BugType(CheckNames[*CheckKind], "Use of zero allocated",
+ categories::MemoryError));
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_UseZerroAllocated[*CheckKind],
+ "Use of memory allocated with size zero", N);
+
+ R->addRange(Range);
+ if (Sym) {
+ R->markInteresting(Sym);
+ R->addVisitor<MallocBugVisitor>(Sym);
+ }
+ C.emitReport(std::move(R));
+ }
+}
+
+void MallocChecker::HandleFunctionPtrFree(CheckerContext &C, SVal ArgVal,
+ SourceRange Range,
+ const Expr *FreeExpr,
+ AllocationFamily Family) const {
+ if (!ChecksEnabled[CK_MallocChecker]) {
+ C.addSink();
+ return;
+ }
+
+ std::optional<MallocChecker::CheckKind> CheckKind = getCheckIfTracked(Family);
+ if (!CheckKind)
+ return;
+
+ if (ExplodedNode *N = C.generateErrorNode()) {
+ if (!BT_BadFree[*CheckKind])
+ BT_BadFree[*CheckKind].reset(new BugType(
+ CheckNames[*CheckKind], "Bad free", categories::MemoryError));
+
+ SmallString<100> Buf;
+ llvm::raw_svector_ostream Os(Buf);
+
+ const MemRegion *MR = ArgVal.getAsRegion();
+ while (const ElementRegion *ER = dyn_cast_or_null<ElementRegion>(MR))
+ MR = ER->getSuperRegion();
+
+ Os << "Argument to ";
+ if (!printMemFnName(Os, C, FreeExpr))
+ Os << "deallocator";
+
+ Os << " is a function pointer";
+
+ auto R = std::make_unique<PathSensitiveBugReport>(*BT_BadFree[*CheckKind],
+ Os.str(), N);
+ R->markInteresting(MR);
+ R->addRange(Range);
+ C.emitReport(std::move(R));
+ }
+}
+
+ProgramStateRef
+MallocChecker::ReallocMemAux(CheckerContext &C, const CallEvent &Call,
+ bool ShouldFreeOnFail, ProgramStateRef State,
+ AllocationFamily Family, bool SuffixWithN) const {
+ if (!State)
+ return nullptr;
+
+ const CallExpr *CE = cast<CallExpr>(Call.getOriginExpr());
+
+ if (SuffixWithN && CE->getNumArgs() < 3)
+ return nullptr;
+ else if (CE->getNumArgs() < 2)
+ return nullptr;
+
+ const Expr *arg0Expr = CE->getArg(0);
+ SVal Arg0Val = C.getSVal(arg0Expr);
+ if (!isa<DefinedOrUnknownSVal>(Arg0Val))
+ return nullptr;
+ DefinedOrUnknownSVal arg0Val = Arg0Val.castAs<DefinedOrUnknownSVal>();
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+
+ DefinedOrUnknownSVal PtrEQ = svalBuilder.evalEQ(
+ State, arg0Val, svalBuilder.makeNullWithType(arg0Expr->getType()));
+
+ // Get the size argument.
+ const Expr *Arg1 = CE->getArg(1);
+
+ // Get the value of the size argument.
+ SVal TotalSize = C.getSVal(Arg1);
+ if (SuffixWithN)
+ TotalSize = evalMulForBufferSize(C, Arg1, CE->getArg(2));
+ if (!isa<DefinedOrUnknownSVal>(TotalSize))
+ return nullptr;
+
+ // Compare the size argument to 0.
+ DefinedOrUnknownSVal SizeZero =
+ svalBuilder.evalEQ(State, TotalSize.castAs<DefinedOrUnknownSVal>(),
+ svalBuilder.makeIntValWithWidth(
+ svalBuilder.getContext().getSizeType(), 0));
+
+ ProgramStateRef StatePtrIsNull, StatePtrNotNull;
+ std::tie(StatePtrIsNull, StatePtrNotNull) = State->assume(PtrEQ);
+ ProgramStateRef StateSizeIsZero, StateSizeNotZero;
+ std::tie(StateSizeIsZero, StateSizeNotZero) = State->assume(SizeZero);
+ // We only assume exceptional states if they are definitely true; if the
+ // state is under-constrained, assume regular realloc behavior.
+ bool PrtIsNull = StatePtrIsNull && !StatePtrNotNull;
+ bool SizeIsZero = StateSizeIsZero && !StateSizeNotZero;
+
+ // If the ptr is NULL and the size is not 0, the call is equivalent to
+ // malloc(size).
+ if (PrtIsNull && !SizeIsZero) {
+ ProgramStateRef stateMalloc = MallocMemAux(
+ C, Call, TotalSize, UndefinedVal(), StatePtrIsNull, Family);
+ return stateMalloc;
+ }
+
+ if (PrtIsNull && SizeIsZero)
+ return State;
+
+ assert(!PrtIsNull);
+
+ bool IsKnownToBeAllocated = false;
+
+ // If the size is 0, free the memory.
+ if (SizeIsZero)
+ // The semantics of the return value are:
+ // If size was equal to 0, either NULL or a pointer suitable to be passed
+ // to free() is returned. We just free the input pointer and do not add
+ // any constrains on the output pointer.
+ if (ProgramStateRef stateFree = FreeMemAux(
+ C, Call, StateSizeIsZero, 0, false, IsKnownToBeAllocated, Family))
+ return stateFree;
+
+ // Default behavior.
+ if (ProgramStateRef stateFree =
+ FreeMemAux(C, Call, State, 0, false, IsKnownToBeAllocated, Family)) {
+
+ ProgramStateRef stateRealloc =
+ MallocMemAux(C, Call, TotalSize, UnknownVal(), stateFree, Family);
+ if (!stateRealloc)
+ return nullptr;
+
+ OwnershipAfterReallocKind Kind = OAR_ToBeFreedAfterFailure;
+ if (ShouldFreeOnFail)
+ Kind = OAR_FreeOnFailure;
+ else if (!IsKnownToBeAllocated)
+ Kind = OAR_DoNotTrackAfterFailure;
+
+ // Get the from and to pointer symbols as in toPtr = realloc(fromPtr, size).
+ SymbolRef FromPtr = arg0Val.getLocSymbolInBase();
+ SVal RetVal = C.getSVal(CE);
+ SymbolRef ToPtr = RetVal.getAsSymbol();
+ assert(FromPtr && ToPtr &&
+ "By this point, FreeMemAux and MallocMemAux should have checked "
+ "whether the argument or the return value is symbolic!");
+
+ // Record the info about the reallocated symbol so that we could properly
+ // process failed reallocation.
+ stateRealloc = stateRealloc->set<ReallocPairs>(ToPtr,
+ ReallocPair(FromPtr, Kind));
+ // The reallocated symbol should stay alive for as long as the new symbol.
+ C.getSymbolManager().addSymbolDependency(ToPtr, FromPtr);
+ return stateRealloc;
+ }
+ return nullptr;
+}
+
+ProgramStateRef MallocChecker::CallocMem(CheckerContext &C,
+ const CallEvent &Call,
+ ProgramStateRef State) const {
+ if (!State)
+ return nullptr;
+
+ if (Call.getNumArgs() < 2)
+ return nullptr;
+
+ SValBuilder &svalBuilder = C.getSValBuilder();
+ SVal zeroVal = svalBuilder.makeZeroVal(svalBuilder.getContext().CharTy);
+ SVal TotalSize =
+ evalMulForBufferSize(C, Call.getArgExpr(0), Call.getArgExpr(1));
+
+ return MallocMemAux(C, Call, TotalSize, zeroVal, State, AF_Malloc);
+}
+
+MallocChecker::LeakInfo MallocChecker::getAllocationSite(const ExplodedNode *N,
+ SymbolRef Sym,
+ CheckerContext &C) {
+ const LocationContext *LeakContext = N->getLocationContext();
+ // Walk the ExplodedGraph backwards and find the first node that referred to
+ // the tracked symbol.
+ const ExplodedNode *AllocNode = N;
+ const MemRegion *ReferenceRegion = nullptr;
+
+ while (N) {
+ ProgramStateRef State = N->getState();
+ if (!State->get<RegionState>(Sym))
+ break;
+
+ // Find the most recent expression bound to the symbol in the current
+ // context.
+ if (!ReferenceRegion) {
+ if (const MemRegion *MR = C.getLocationRegionIfPostStore(N)) {
+ SVal Val = State->getSVal(MR);
+ if (Val.getAsLocSymbol() == Sym) {
+ const VarRegion *VR = MR->getBaseRegion()->getAs<VarRegion>();
+ // Do not show local variables belonging to a function other than
+ // where the error is reported.
+ if (!VR || (VR->getStackFrame() == LeakContext->getStackFrame()))
+ ReferenceRegion = MR;
+ }
+ }
+ }
+
+ // Allocation node, is the last node in the current or parent context in
+ // which the symbol was tracked.
+ const LocationContext *NContext = N->getLocationContext();
+ if (NContext == LeakContext ||
+ NContext->isParentOf(LeakContext))
+ AllocNode = N;
+ N = N->pred_empty() ? nullptr : *(N->pred_begin());
+ }
+
+ return LeakInfo(AllocNode, ReferenceRegion);
+}
+
+void MallocChecker::HandleLeak(SymbolRef Sym, ExplodedNode *N,
+ CheckerContext &C) const {
+
+ if (!ChecksEnabled[CK_MallocChecker] &&
+ !ChecksEnabled[CK_NewDeleteLeaksChecker])
+ return;
+
+ const RefState *RS = C.getState()->get<RegionState>(Sym);
+ assert(RS && "cannot leak an untracked symbol");
+ AllocationFamily Family = RS->getAllocationFamily();
+
+ if (Family == AF_Alloca)
+ return;
+
+ std::optional<MallocChecker::CheckKind> CheckKind =
+ getCheckIfTracked(Family, true);
+
+ if (!CheckKind)
+ return;
+
+ assert(N);
+ if (!BT_Leak[*CheckKind]) {
+ // Leaks should not be reported if they are post-dominated by a sink:
+ // (1) Sinks are higher importance bugs.
+ // (2) NoReturnFunctionChecker uses sink nodes to represent paths ending
+ // with __noreturn functions such as assert() or exit(). We choose not
+ // to report leaks on such paths.
+ BT_Leak[*CheckKind].reset(new BugType(CheckNames[*CheckKind], "Memory leak",
+ categories::MemoryError,
+ /*SuppressOnSink=*/true));
+ }
+
+ // Most bug reports are cached at the location where they occurred.
+ // With leaks, we want to unique them by the location where they were
+ // allocated, and only report a single path.
+ PathDiagnosticLocation LocUsedForUniqueing;
+ const ExplodedNode *AllocNode = nullptr;
+ const MemRegion *Region = nullptr;
+ std::tie(AllocNode, Region) = getAllocationSite(N, Sym, C);
+
+ const Stmt *AllocationStmt = AllocNode->getStmtForDiagnostics();
+ if (AllocationStmt)
+ LocUsedForUniqueing = PathDiagnosticLocation::createBegin(AllocationStmt,
+ C.getSourceManager(),
+ AllocNode->getLocationContext());
+
+ SmallString<200> buf;
+ llvm::raw_svector_ostream os(buf);
+ if (Region && Region->canPrintPretty()) {
+ os << "Potential leak of memory pointed to by ";
+ Region->printPretty(os);
+ } else {
+ os << "Potential memory leak";
+ }
+
+ auto R = std::make_unique<PathSensitiveBugReport>(
+ *BT_Leak[*CheckKind], os.str(), N, LocUsedForUniqueing,
+ AllocNode->getLocationContext()->getDecl());
+ R->markInteresting(Sym);
+ R->addVisitor<MallocBugVisitor>(Sym, true);
+ if (ShouldRegisterNoOwnershipChangeVisitor)
+ R->addVisitor<NoMemOwnershipChangeVisitor>(Sym, this);
+ C.emitReport(std::move(R));
+}
+
+void MallocChecker::checkDeadSymbols(SymbolReaper &SymReaper,
+ CheckerContext &C) const
+{
+ ProgramStateRef state = C.getState();
+ RegionStateTy OldRS = state->get<RegionState>();
+ RegionStateTy::Factory &F = state->get_context<RegionState>();
+
+ RegionStateTy RS = OldRS;
+ SmallVector<SymbolRef, 2> Errors;
+ for (auto [Sym, State] : RS) {
+ if (SymReaper.isDead(Sym)) {
+ if (State.isAllocated() || State.isAllocatedOfSizeZero())
+ Errors.push_back(Sym);
+ // Remove the dead symbol from the map.
+ RS = F.remove(RS, Sym);
+ }
+ }
+
+ if (RS == OldRS) {
+ // We shouldn't have touched other maps yet.
+ assert(state->get<ReallocPairs>() ==
+ C.getState()->get<ReallocPairs>());
+ assert(state->get<FreeReturnValue>() ==
+ C.getState()->get<FreeReturnValue>());
+ return;
+ }
+
+ // Cleanup the Realloc Pairs Map.
+ ReallocPairsTy RP = state->get<ReallocPairs>();
+ for (auto [Sym, ReallocPair] : RP) {
+ if (SymReaper.isDead(Sym) || SymReaper.isDead(ReallocPair.ReallocatedSym)) {
+ state = state->remove<ReallocPairs>(Sym);
+ }
+ }
+
+ // Cleanup the FreeReturnValue Map.
+ FreeReturnValueTy FR = state->get<FreeReturnValue>();
+ for (auto [Sym, RetSym] : FR) {
+ if (SymReaper.isDead(Sym) || SymReaper.isDead(RetSym)) {
+ state = state->remove<FreeReturnValue>(Sym);
+ }
+ }
+
+ // Generate leak node.
+ ExplodedNode *N = C.getPredecessor();
+ if (!Errors.empty()) {
+ static CheckerProgramPointTag Tag("MallocChecker", "DeadSymbolsLeak");
+ N = C.generateNonFatalErrorNode(C.getState(), &Tag);
+ if (N) {
+ for (SymbolRef Sym : Errors) {
+ HandleLeak(Sym, N, C);
+ }
+ }
+ }
+
+ C.addTransition(state->set<RegionState>(RS), N);
+}
+
+void MallocChecker::checkPreCall(const CallEvent &Call,
+ CheckerContext &C) const {
+
+ if (const auto *DC = dyn_cast<CXXDeallocatorCall>(&Call)) {
+ const CXXDeleteExpr *DE = DC->getOriginExpr();
+
+ if (!ChecksEnabled[CK_NewDeleteChecker])
+ if (SymbolRef Sym = C.getSVal(DE->getArgument()).getAsSymbol())
+ checkUseAfterFree(Sym, C, DE->getArgument());
+
+ if (!isStandardNewDelete(DC->getDecl()))
+ return;
+
+ ProgramStateRef State = C.getState();
+ bool IsKnownToBeAllocated;
+ State = FreeMemAux(C, DE->getArgument(), Call, State,
+ /*Hold*/ false, IsKnownToBeAllocated,
+ (DE->isArrayForm() ? AF_CXXNewArray : AF_CXXNew));
+
+ C.addTransition(State);
+ return;
+ }
+
+ if (const auto *DC = dyn_cast<CXXDestructorCall>(&Call)) {
+ SymbolRef Sym = DC->getCXXThisVal().getAsSymbol();
+ if (!Sym || checkDoubleDelete(Sym, C))
+ return;
+ }
+
+ // We need to handle getline pre-conditions here before the pointed region
+ // gets invalidated by StreamChecker
+ if (const auto *PreFN = PreFnMap.lookup(Call)) {
+ (*PreFN)(this, Call, C);
+ return;
+ }
+
+ // We will check for double free in the post visit.
+ if (const AnyFunctionCall *FC = dyn_cast<AnyFunctionCall>(&Call)) {
+ const FunctionDecl *FD = FC->getDecl();
+ if (!FD)
+ return;
+
+ if (ChecksEnabled[CK_MallocChecker] && isFreeingCall(Call))
+ return;
+ }
+
+ // Check if the callee of a method is deleted.
+ if (const CXXInstanceCall *CC = dyn_cast<CXXInstanceCall>(&Call)) {
+ SymbolRef Sym = CC->getCXXThisVal().getAsSymbol();
+ if (!Sym || checkUseAfterFree(Sym, C, CC->getCXXThisExpr()))
+ return;
+ }
+
+ // Check arguments for being used after free.
+ for (unsigned I = 0, E = Call.getNumArgs(); I != E; ++I) {
+ SVal ArgSVal = Call.getArgSVal(I);
+ if (isa<Loc>(ArgSVal)) {
+ SymbolRef Sym = ArgSVal.getAsSymbol();
+ if (!Sym)
+ continue;
+ if (checkUseAfterFree(Sym, C, Call.getArgExpr(I)))
+ return;
+ }
+ }
+}
+
+void MallocChecker::checkPreStmt(const ReturnStmt *S,
+ CheckerContext &C) const {
+ checkEscapeOnReturn(S, C);
+}
+
+// In the CFG, automatic destructors come after the return statement.
+// This callback checks for returning memory that is freed by automatic
+// destructors, as those cannot be reached in checkPreStmt().
+void MallocChecker::checkEndFunction(const ReturnStmt *S,
+ CheckerContext &C) const {
+ checkEscapeOnReturn(S, C);
+}
+
+void MallocChecker::checkEscapeOnReturn(const ReturnStmt *S,
+ CheckerContext &C) const {
+ if (!S)
+ return;
+
+ const Expr *E = S->getRetValue();
+ if (!E)
+ return;
+
+ // Check if we are returning a symbol.
+ ProgramStateRef State = C.getState();
+ SVal RetVal = C.getSVal(E);
+ SymbolRef Sym = RetVal.getAsSymbol();
+ if (!Sym)
+ // If we are returning a field of the allocated struct or an array element,
+ // the callee could still free the memory.
+ // TODO: This logic should be a part of generic symbol escape callback.
+ if (const MemRegion *MR = RetVal.getAsRegion())
+ if (isa<FieldRegion, ElementRegion>(MR))
+ if (const SymbolicRegion *BMR =
+ dyn_cast<SymbolicRegion>(MR->getBaseRegion()))
+ Sym = BMR->getSymbol();
+
+ // Check if we are returning freed memory.
+ if (Sym)
+ checkUseAfterFree(Sym, C, E);
+}
+
+// TODO: Blocks should be either inlined or should call invalidate regions
+// upon invocation. After that's in place, special casing here will not be
+// needed.
+void MallocChecker::checkPostStmt(const BlockExpr *BE,
+ CheckerContext &C) const {
+
+ // Scan the BlockDecRefExprs for any object the retain count checker
+ // may be tracking.
+ if (!BE->getBlockDecl()->hasCaptures())
+ return;
+
+ ProgramStateRef state = C.getState();
+ const BlockDataRegion *R =
+ cast<BlockDataRegion>(C.getSVal(BE).getAsRegion());
+
+ auto ReferencedVars = R->referenced_vars();
+ if (ReferencedVars.empty())
+ return;
+
+ SmallVector<const MemRegion*, 10> Regions;
+ const LocationContext *LC = C.getLocationContext();
+ MemRegionManager &MemMgr = C.getSValBuilder().getRegionManager();
+
+ for (const auto &Var : ReferencedVars) {
+ const VarRegion *VR = Var.getCapturedRegion();
+ if (VR->getSuperRegion() == R) {
+ VR = MemMgr.getVarRegion(VR->getDecl(), LC);
+ }
+ Regions.push_back(VR);
+ }
+
+ state =
+ state->scanReachableSymbols<StopTrackingCallback>(Regions).getState();
+ C.addTransition(state);
+}
+
+static bool isReleased(SymbolRef Sym, CheckerContext &C) {
+ assert(Sym);
+ const RefState *RS = C.getState()->get<RegionState>(Sym);
+ return (RS && RS->isReleased());
+}
+
+bool MallocChecker::suppressDeallocationsInSuspiciousContexts(
+ const CallEvent &Call, CheckerContext &C) const {
+ if (Call.getNumArgs() == 0)
+ return false;
+
+ StringRef FunctionStr = "";
+ if (const auto *FD = dyn_cast<FunctionDecl>(C.getStackFrame()->getDecl()))
+ if (const Stmt *Body = FD->getBody())
+ if (Body->getBeginLoc().isValid())
+ FunctionStr =
+ Lexer::getSourceText(CharSourceRange::getTokenRange(
+ {FD->getBeginLoc(), Body->getBeginLoc()}),
+ C.getSourceManager(), C.getLangOpts());
+
+ // We do not model the Integer Set Library's retain-count based allocation.
+ if (!FunctionStr.contains("__isl_"))
+ return false;
+
+ ProgramStateRef State = C.getState();
+
+ for (const Expr *Arg : cast<CallExpr>(Call.getOriginExpr())->arguments())
+ if (SymbolRef Sym = C.getSVal(Arg).getAsSymbol())
+ if (const RefState *RS = State->get<RegionState>(Sym))
+ State = State->set<RegionState>(Sym, RefState::getEscaped(RS));
+
+ C.addTransition(State);
+ return true;
+}
+
+bool MallocChecker::checkUseAfterFree(SymbolRef Sym, CheckerContext &C,
+ const Stmt *S) const {
+
+ if (isReleased(Sym, C)) {
+ HandleUseAfterFree(C, S->getSourceRange(), Sym);
+ return true;
+ }
+
+ return false;
+}
+
+void MallocChecker::checkUseZeroAllocated(SymbolRef Sym, CheckerContext &C,
+ const Stmt *S) const {
+ assert(Sym);
+
+ if (const RefState *RS = C.getState()->get<RegionState>(Sym)) {
+ if (RS->isAllocatedOfSizeZero())
+ HandleUseZeroAlloc(C, RS->getStmt()->getSourceRange(), Sym);
+ }
+ else if (C.getState()->contains<ReallocSizeZeroSymbols>(Sym)) {
+ HandleUseZeroAlloc(C, S->getSourceRange(), Sym);
+ }
+}
+
+bool MallocChecker::checkDoubleDelete(SymbolRef Sym, CheckerContext &C) const {
+
+ if (isReleased(Sym, C)) {
+ HandleDoubleDelete(C, Sym);
+ return true;
+ }
+ return false;
+}
+
+// Check if the location is a freed symbolic region.
+void MallocChecker::checkLocation(SVal l, bool isLoad, const Stmt *S,
+ CheckerContext &C) const {
+ SymbolRef Sym = l.getLocSymbolInBase();
+ if (Sym) {
+ checkUseAfterFree(Sym, C, S);
+ checkUseZeroAllocated(Sym, C, S);
+ }
+}
+
+// If a symbolic region is assumed to NULL (or another constant), stop tracking
+// it - assuming that allocation failed on this path.
+ProgramStateRef MallocChecker::evalAssume(ProgramStateRef state,
+ SVal Cond,
+ bool Assumption) const {
+ RegionStateTy RS = state->get<RegionState>();
+ for (SymbolRef Sym : llvm::make_first_range(RS)) {
+ // If the symbol is assumed to be NULL, remove it from consideration.
+ ConstraintManager &CMgr = state->getConstraintManager();
+ ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym);
+ if (AllocFailed.isConstrainedTrue())
+ state = state->remove<RegionState>(Sym);
+ }
+
+ // Realloc returns 0 when reallocation fails, which means that we should
+ // restore the state of the pointer being reallocated.
+ ReallocPairsTy RP = state->get<ReallocPairs>();
+ for (auto [Sym, ReallocPair] : RP) {
+ // If the symbol is assumed to be NULL, remove it from consideration.
+ ConstraintManager &CMgr = state->getConstraintManager();
+ ConditionTruthVal AllocFailed = CMgr.isNull(state, Sym);
+ if (!AllocFailed.isConstrainedTrue())
+ continue;
+
+ SymbolRef ReallocSym = ReallocPair.ReallocatedSym;
+ if (const RefState *RS = state->get<RegionState>(ReallocSym)) {
+ if (RS->isReleased()) {
+ switch (ReallocPair.Kind) {
+ case OAR_ToBeFreedAfterFailure:
+ state = state->set<RegionState>(ReallocSym,
+ RefState::getAllocated(RS->getAllocationFamily(), RS->getStmt()));
+ break;
+ case OAR_DoNotTrackAfterFailure:
+ state = state->remove<RegionState>(ReallocSym);
+ break;
+ default:
+ assert(ReallocPair.Kind == OAR_FreeOnFailure);
+ }
+ }
+ }
+ state = state->remove<ReallocPairs>(Sym);
+ }
+
+ return state;
+}
+
+bool MallocChecker::mayFreeAnyEscapedMemoryOrIsModeledExplicitly(
+ const CallEvent *Call,
+ ProgramStateRef State,
+ SymbolRef &EscapingSymbol) const {
+ assert(Call);
+ EscapingSymbol = nullptr;
+
+ // For now, assume that any C++ or block call can free memory.
+ // TODO: If we want to be more optimistic here, we'll need to make sure that
+ // regions escape to C++ containers. They seem to do that even now, but for
+ // mysterious reasons.
+ if (!isa<SimpleFunctionCall, ObjCMethodCall>(Call))
+ return true;
+
+ // Check Objective-C messages by selector name.
+ if (const ObjCMethodCall *Msg = dyn_cast<ObjCMethodCall>(Call)) {
+ // If it's not a framework call, or if it takes a callback, assume it
+ // can free memory.
+ if (!Call->isInSystemHeader() || Call->argumentsMayEscape())
+ return true;
+
+ // If it's a method we know about, handle it explicitly post-call.
+ // This should happen before the "freeWhenDone" check below.
+ if (isKnownDeallocObjCMethodName(*Msg))
+ return false;
+
+ // If there's a "freeWhenDone" parameter, but the method isn't one we know
+ // about, we can't be sure that the object will use free() to deallocate the
+ // memory, so we can't model it explicitly. The best we can do is use it to
+ // decide whether the pointer escapes.
+ if (std::optional<bool> FreeWhenDone = getFreeWhenDoneArg(*Msg))
+ return *FreeWhenDone;
+
+ // If the first selector piece ends with "NoCopy", and there is no
+ // "freeWhenDone" parameter set to zero, we know ownership is being
+ // transferred. Again, though, we can't be sure that the object will use
+ // free() to deallocate the memory, so we can't model it explicitly.
+ StringRef FirstSlot = Msg->getSelector().getNameForSlot(0);
+ if (FirstSlot.ends_with("NoCopy"))
+ return true;
+
+ // If the first selector starts with addPointer, insertPointer,
+ // or replacePointer, assume we are dealing with NSPointerArray or similar.
+ // This is similar to C++ containers (vector); we still might want to check
+ // that the pointers get freed by following the container itself.
+ if (FirstSlot.starts_with("addPointer") ||
+ FirstSlot.starts_with("insertPointer") ||
+ FirstSlot.starts_with("replacePointer") ||
+ FirstSlot == "valueWithPointer") {
+ return true;
+ }
+
+ // We should escape receiver on call to 'init'. This is especially relevant
+ // to the receiver, as the corresponding symbol is usually not referenced
+ // after the call.
+ if (Msg->getMethodFamily() == OMF_init) {
+ EscapingSymbol = Msg->getReceiverSVal().getAsSymbol();
+ return true;
+ }
+
+ // Otherwise, assume that the method does not free memory.
+ // Most framework methods do not free memory.
+ return false;
+ }
+
+ // At this point the only thing left to handle is straight function calls.
+ const FunctionDecl *FD = cast<SimpleFunctionCall>(Call)->getDecl();
+ if (!FD)
+ return true;
+
+ // If it's one of the allocation functions we can reason about, we model
+ // its behavior explicitly.
+ if (isMemCall(*Call))
+ return false;
+
+ // If it's not a system call, assume it frees memory.
+ if (!Call->isInSystemHeader())
+ return true;
+
+ // White list the system functions whose arguments escape.
+ const IdentifierInfo *II = FD->getIdentifier();
+ if (!II)
+ return true;
+ StringRef FName = II->getName();
+
+ // White list the 'XXXNoCopy' CoreFoundation functions.
+ // We specifically check these before
+ if (FName.ends_with("NoCopy")) {
+ // Look for the deallocator argument. We know that the memory ownership
+ // is not transferred only if the deallocator argument is
+ // 'kCFAllocatorNull'.
+ for (unsigned i = 1; i < Call->getNumArgs(); ++i) {
+ const Expr *ArgE = Call->getArgExpr(i)->IgnoreParenCasts();
+ if (const DeclRefExpr *DE = dyn_cast<DeclRefExpr>(ArgE)) {
+ StringRef DeallocatorName = DE->getFoundDecl()->getName();
+ if (DeallocatorName == "kCFAllocatorNull")
+ return false;
+ }
+ }
+ return true;
+ }
+
+ // Associating streams with malloced buffers. The pointer can escape if
+ // 'closefn' is specified (and if that function does free memory),
+ // but it will not if closefn is not specified.
+ // Currently, we do not inspect the 'closefn' function (PR12101).
+ if (FName == "funopen")
+ if (Call->getNumArgs() >= 4 && Call->getArgSVal(4).isConstant(0))
+ return false;
+
+ // Do not warn on pointers passed to 'setbuf' when used with std streams,
+ // these leaks might be intentional when setting the buffer for stdio.
+ // http://stackoverflow.com/questions/2671151/who-frees-setvbuf-buffer
+ if (FName == "setbuf" || FName =="setbuffer" ||
+ FName == "setlinebuf" || FName == "setvbuf") {
+ if (Call->getNumArgs() >= 1) {
+ const Expr *ArgE = Call->getArgExpr(0)->IgnoreParenCasts();
+ if (const DeclRefExpr *ArgDRE = dyn_cast<DeclRefExpr>(ArgE))
+ if (const VarDecl *D = dyn_cast<VarDecl>(ArgDRE->getDecl()))
+ if (D->getCanonicalDecl()->getName().contains("std"))
+ return true;
+ }
+ }
+
+ // A bunch of other functions which either take ownership of a pointer or
+ // wrap the result up in a struct or object, meaning it can be freed later.
+ // (See RetainCountChecker.) Not all the parameters here are invalidated,
+ // but the Malloc checker cannot differentiate between them. The right way
+ // of doing this would be to implement a pointer escapes callback.
+ if (FName == "CGBitmapContextCreate" ||
+ FName == "CGBitmapContextCreateWithData" ||
+ FName == "CVPixelBufferCreateWithBytes" ||
+ FName == "CVPixelBufferCreateWithPlanarBytes" ||
+ FName == "OSAtomicEnqueue") {
+ return true;
+ }
+
+ if (FName == "postEvent" &&
+ FD->getQualifiedNameAsString() == "QCoreApplication::postEvent") {
+ return true;
+ }
+
+ if (FName == "connectImpl" &&
+ FD->getQualifiedNameAsString() == "QObject::connectImpl") {
+ return true;
+ }
+
+ if (FName == "singleShotImpl" &&
+ FD->getQualifiedNameAsString() == "QTimer::singleShotImpl") {
+ return true;
+ }
+
+ // Handle cases where we know a buffer's /address/ can escape.
+ // Note that the above checks handle some special cases where we know that
+ // even though the address escapes, it's still our responsibility to free the
+ // buffer.
+ if (Call->argumentsMayEscape())
+ return true;
+
+ // Otherwise, assume that the function does not free memory.
+ // Most system calls do not free the memory.
+ return false;
+}
+
+ProgramStateRef MallocChecker::checkPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ return checkPointerEscapeAux(State, Escaped, Call, Kind,
+ /*IsConstPointerEscape*/ false);
+}
+
+ProgramStateRef MallocChecker::checkConstPointerEscape(ProgramStateRef State,
+ const InvalidatedSymbols &Escaped,
+ const CallEvent *Call,
+ PointerEscapeKind Kind) const {
+ // If a const pointer escapes, it may not be freed(), but it could be deleted.
+ return checkPointerEscapeAux(State, Escaped, Call, Kind,
+ /*IsConstPointerEscape*/ true);
+}
+
+static bool checkIfNewOrNewArrayFamily(const RefState *RS) {
+ return (RS->getAllocationFamily() == AF_CXXNewArray ||
+ RS->getAllocationFamily() == AF_CXXNew);
+}
+
+ProgramStateRef MallocChecker::checkPointerEscapeAux(
+ ProgramStateRef State, const InvalidatedSymbols &Escaped,
+ const CallEvent *Call, PointerEscapeKind Kind,
+ bool IsConstPointerEscape) const {
+ // If we know that the call does not free memory, or we want to process the
+ // call later, keep tracking the top level arguments.
+ SymbolRef EscapingSymbol = nullptr;
+ if (Kind == PSK_DirectEscapeOnCall &&
+ !mayFreeAnyEscapedMemoryOrIsModeledExplicitly(Call, State,
+ EscapingSymbol) &&
+ !EscapingSymbol) {
+ return State;
+ }
+
+ for (SymbolRef sym : Escaped) {
+ if (EscapingSymbol && EscapingSymbol != sym)
+ continue;
+
+ if (const RefState *RS = State->get<RegionState>(sym))
+ if (RS->isAllocated() || RS->isAllocatedOfSizeZero())
+ if (!IsConstPointerEscape || checkIfNewOrNewArrayFamily(RS))
+ State = State->set<RegionState>(sym, RefState::getEscaped(RS));
+ }
+ return State;
+}
+
+bool MallocChecker::isArgZERO_SIZE_PTR(ProgramStateRef State, CheckerContext &C,
+ SVal ArgVal) const {
+ if (!KernelZeroSizePtrValue)
+ KernelZeroSizePtrValue =
+ tryExpandAsInteger("ZERO_SIZE_PTR", C.getPreprocessor());
+
+ const llvm::APSInt *ArgValKnown =
+ C.getSValBuilder().getKnownValue(State, ArgVal);
+ return ArgValKnown && *KernelZeroSizePtrValue &&
+ ArgValKnown->getSExtValue() == **KernelZeroSizePtrValue;
+}
+
+static SymbolRef findFailedReallocSymbol(ProgramStateRef currState,
+ ProgramStateRef prevState) {
+ ReallocPairsTy currMap = currState->get<ReallocPairs>();
+ ReallocPairsTy prevMap = prevState->get<ReallocPairs>();
+
+ for (const ReallocPairsTy::value_type &Pair : prevMap) {
+ SymbolRef sym = Pair.first;
+ if (!currMap.lookup(sym))
+ return sym;
+ }
+
+ return nullptr;
+}
+
+static bool isReferenceCountingPointerDestructor(const CXXDestructorDecl *DD) {
+ if (const IdentifierInfo *II = DD->getParent()->getIdentifier()) {
+ StringRef N = II->getName();
+ if (N.contains_insensitive("ptr") || N.contains_insensitive("pointer")) {
+ if (N.contains_insensitive("ref") || N.contains_insensitive("cnt") ||
+ N.contains_insensitive("intrusive") ||
+ N.contains_insensitive("shared") || N.ends_with_insensitive("rc")) {
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+PathDiagnosticPieceRef MallocBugVisitor::VisitNode(const ExplodedNode *N,
+ BugReporterContext &BRC,
+ PathSensitiveBugReport &BR) {
+ ProgramStateRef state = N->getState();
+ ProgramStateRef statePrev = N->getFirstPred()->getState();
+
+ const RefState *RSCurr = state->get<RegionState>(Sym);
+ const RefState *RSPrev = statePrev->get<RegionState>(Sym);
+
+ const Stmt *S = N->getStmtForDiagnostics();
+ // When dealing with containers, we sometimes want to give a note
+ // even if the statement is missing.
+ if (!S && (!RSCurr || RSCurr->getAllocationFamily() != AF_InnerBuffer))
+ return nullptr;
+
+ const LocationContext *CurrentLC = N->getLocationContext();
+
+ // If we find an atomic fetch_add or fetch_sub within the destructor in which
+ // the pointer was released (before the release), this is likely a destructor
+ // of a shared pointer.
+ // Because we don't model atomics, and also because we don't know that the
+ // original reference count is positive, we should not report use-after-frees
+ // on objects deleted in such destructors. This can probably be improved
+ // through better shared pointer modeling.
+ if (ReleaseDestructorLC && (ReleaseDestructorLC == CurrentLC ||
+ ReleaseDestructorLC->isParentOf(CurrentLC))) {
+ if (const auto *AE = dyn_cast<AtomicExpr>(S)) {
+ // Check for manual use of atomic builtins.
+ AtomicExpr::AtomicOp Op = AE->getOp();
+ if (Op == AtomicExpr::AO__c11_atomic_fetch_add ||
+ Op == AtomicExpr::AO__c11_atomic_fetch_sub) {
+ BR.markInvalid(getTag(), S);
+ }
+ } else if (const auto *CE = dyn_cast<CallExpr>(S)) {
+ // Check for `std::atomic` and such. This covers both regular method calls
+ // and operator calls.
+ if (const auto *MD =
+ dyn_cast_or_null<CXXMethodDecl>(CE->getDirectCallee())) {
+ const CXXRecordDecl *RD = MD->getParent();
+ // A bit wobbly with ".contains()" because it may be like
+ // "__atomic_base" or something.
+ if (StringRef(RD->getNameAsString()).contains("atomic")) {
+ BR.markInvalid(getTag(), S);
+ }
+ }
+ }
+ }
+
+ // FIXME: We will eventually need to handle non-statement-based events
+ // (__attribute__((cleanup))).
+
+ // Find out if this is an interesting point and what is the kind.
+ StringRef Msg;
+ std::unique_ptr<StackHintGeneratorForSymbol> StackHint = nullptr;
+ SmallString<256> Buf;
+ llvm::raw_svector_ostream OS(Buf);
+
+ if (Mode == Normal) {
+ if (isAllocated(RSCurr, RSPrev, S)) {
+ Msg = "Memory is allocated";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(
+ Sym, "Returned allocated memory");
+ } else if (isReleased(RSCurr, RSPrev, S)) {
+ const auto Family = RSCurr->getAllocationFamily();
+ switch (Family) {
+ case AF_Alloca:
+ case AF_Malloc:
+ case AF_CXXNew:
+ case AF_CXXNewArray:
+ case AF_IfNameIndex:
+ Msg = "Memory is released";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(
+ Sym, "Returning; memory was released");
+ break;
+ case AF_InnerBuffer: {
+ const MemRegion *ObjRegion =
+ allocation_state::getContainerObjRegion(statePrev, Sym);
+ const auto *TypedRegion = cast<TypedValueRegion>(ObjRegion);
+ QualType ObjTy = TypedRegion->getValueType();
+ OS << "Inner buffer of '" << ObjTy << "' ";
+
+ if (N->getLocation().getKind() == ProgramPoint::PostImplicitCallKind) {
+ OS << "deallocated by call to destructor";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(
+ Sym, "Returning; inner buffer was deallocated");
+ } else {
+ OS << "reallocated by call to '";
+ const Stmt *S = RSCurr->getStmt();
+ if (const auto *MemCallE = dyn_cast<CXXMemberCallExpr>(S)) {
+ OS << MemCallE->getMethodDecl()->getDeclName();
+ } else if (const auto *OpCallE = dyn_cast<CXXOperatorCallExpr>(S)) {
+ OS << OpCallE->getDirectCallee()->getDeclName();
+ } else if (const auto *CallE = dyn_cast<CallExpr>(S)) {
+ auto &CEMgr = BRC.getStateManager().getCallEventManager();
+ CallEventRef<> Call =
+ CEMgr.getSimpleCall(CallE, state, CurrentLC, {nullptr, 0});
+ if (const auto *D = dyn_cast_or_null<NamedDecl>(Call->getDecl()))
+ OS << D->getDeclName();
+ else
+ OS << "unknown";
+ }
+ OS << "'";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(
+ Sym, "Returning; inner buffer was reallocated");
+ }
+ Msg = OS.str();
+ break;
+ }
+ case AF_None:
+ llvm_unreachable("Unhandled allocation family!");
+ }
+
+ // See if we're releasing memory while inlining a destructor
+ // (or one of its callees). This turns on various common
+ // false positive suppressions.
+ bool FoundAnyDestructor = false;
+ for (const LocationContext *LC = CurrentLC; LC; LC = LC->getParent()) {
+ if (const auto *DD = dyn_cast<CXXDestructorDecl>(LC->getDecl())) {
+ if (isReferenceCountingPointerDestructor(DD)) {
+ // This immediately looks like a reference-counting destructor.
+ // We're bad at guessing the original reference count of the object,
+ // so suppress the report for now.
+ BR.markInvalid(getTag(), DD);
+ } else if (!FoundAnyDestructor) {
+ assert(!ReleaseDestructorLC &&
+ "There can be only one release point!");
+ // Suspect that it's a reference counting pointer destructor.
+ // On one of the next nodes might find out that it has atomic
+ // reference counting operations within it (see the code above),
+ // and if so, we'd conclude that it likely is a reference counting
+ // pointer destructor.
+ ReleaseDestructorLC = LC->getStackFrame();
+ // It is unlikely that releasing memory is delegated to a destructor
+ // inside a destructor of a shared pointer, because it's fairly hard
+ // to pass the information that the pointer indeed needs to be
+ // released into it. So we're only interested in the innermost
+ // destructor.
+ FoundAnyDestructor = true;
+ }
+ }
+ }
+ } else if (isRelinquished(RSCurr, RSPrev, S)) {
+ Msg = "Memory ownership is transferred";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(Sym, "");
+ } else if (hasReallocFailed(RSCurr, RSPrev, S)) {
+ Mode = ReallocationFailed;
+ Msg = "Reallocation failed";
+ StackHint = std::make_unique<StackHintGeneratorForReallocationFailed>(
+ Sym, "Reallocation failed");
+
+ if (SymbolRef sym = findFailedReallocSymbol(state, statePrev)) {
+ // Is it possible to fail two reallocs WITHOUT testing in between?
+ assert((!FailedReallocSymbol || FailedReallocSymbol == sym) &&
+ "We only support one failed realloc at a time.");
+ BR.markInteresting(sym);
+ FailedReallocSymbol = sym;
+ }
+ }
+
+ // We are in a special mode if a reallocation failed later in the path.
+ } else if (Mode == ReallocationFailed) {
+ assert(FailedReallocSymbol && "No symbol to look for.");
+
+ // Is this is the first appearance of the reallocated symbol?
+ if (!statePrev->get<RegionState>(FailedReallocSymbol)) {
+ // We're at the reallocation point.
+ Msg = "Attempt to reallocate memory";
+ StackHint = std::make_unique<StackHintGeneratorForSymbol>(
+ Sym, "Returned reallocated memory");
+ FailedReallocSymbol = nullptr;
+ Mode = Normal;
+ }
+ }
+
+ if (Msg.empty()) {
+ assert(!StackHint);
+ return nullptr;
+ }
+
+ assert(StackHint);
+
+ // Generate the extra diagnostic.
+ PathDiagnosticLocation Pos;
+ if (!S) {
+ assert(RSCurr->getAllocationFamily() == AF_InnerBuffer);
+ auto PostImplCall = N->getLocation().getAs<PostImplicitCall>();
+ if (!PostImplCall)
+ return nullptr;
+ Pos = PathDiagnosticLocation(PostImplCall->getLocation(),
+ BRC.getSourceManager());
+ } else {
+ Pos = PathDiagnosticLocation(S, BRC.getSourceManager(),
+ N->getLocationContext());
+ }
+
+ auto P = std::make_shared<PathDiagnosticEventPiece>(Pos, Msg, true);
+ BR.addCallStackHint(P, std::move(StackHint));
+ return P;
+}
+
+void MallocChecker::printState(raw_ostream &Out, ProgramStateRef State,
+ const char *NL, const char *Sep) const {
+
+ RegionStateTy RS = State->get<RegionState>();
+
+ if (!RS.isEmpty()) {
+ Out << Sep << "MallocChecker :" << NL;
+ for (auto [Sym, Data] : RS) {
+ const RefState *RefS = State->get<RegionState>(Sym);
+ AllocationFamily Family = RefS->getAllocationFamily();
+ std::optional<MallocChecker::CheckKind> CheckKind =
+ getCheckIfTracked(Family);
+ if (!CheckKind)
+ CheckKind = getCheckIfTracked(Family, true);
+
+ Sym->dumpToStream(Out);
+ Out << " : ";
+ Data.dump(Out);
+ if (CheckKind)
+ Out << " (" << CheckNames[*CheckKind].getName() << ")";
+ Out << NL;
+ }
+ }
+}
+
+namespace clang {
+namespace ento {
+namespace allocation_state {
+
+ProgramStateRef
+markReleased(ProgramStateRef State, SymbolRef Sym, const Expr *Origin) {
+ AllocationFamily Family = AF_InnerBuffer;
+ return State->set<RegionState>(Sym, RefState::getReleased(Family, Origin));
+}
+
+} // end namespace allocation_state
+} // end namespace ento
+} // end namespace clang
+
+// Intended to be used in InnerPointerChecker to register the part of
+// MallocChecker connected to it.
+void ento::registerInnerPointerCheckerAux(CheckerManager &mgr) {
+ MallocChecker *checker = mgr.getChecker<MallocChecker>();
+ checker->ChecksEnabled[MallocChecker::CK_InnerPointerChecker] = true;
+ checker->CheckNames[MallocChecker::CK_InnerPointerChecker] =
+ mgr.getCurrentCheckerName();
+}
+
+void ento::registerDynamicMemoryModeling(CheckerManager &mgr) {
+ auto *checker = mgr.registerChecker<MallocChecker>();
+ checker->ShouldIncludeOwnershipAnnotatedFunctions =
+ mgr.getAnalyzerOptions().getCheckerBooleanOption(checker, "Optimistic");
+ checker->ShouldRegisterNoOwnershipChangeVisitor =
+ mgr.getAnalyzerOptions().getCheckerBooleanOption(
+ checker, "AddNoOwnershipChangeNotes");
+}
+
+bool ento::shouldRegisterDynamicMemoryModeling(const CheckerManager &mgr) {
+ return true;
+}
+
+#define REGISTER_CHECKER(name) \
+ void ento::register##name(CheckerManager &mgr) { \
+ MallocChecker *checker = mgr.getChecker<MallocChecker>(); \
+ checker->ChecksEnabled[MallocChecker::CK_##name] = true; \
+ checker->CheckNames[MallocChecker::CK_##name] = \
+ mgr.getCurrentCheckerName(); \
+ } \
+ \
+ bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; }
+
+REGISTER_CHECKER(MallocChecker)
+REGISTER_CHECKER(NewDeleteChecker)
+REGISTER_CHECKER(NewDeleteLeaksChecker)
+REGISTER_CHECKER(MismatchedDeallocatorChecker)
+REGISTER_CHECKER(TaintedAllocChecker)