aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp1163
1 files changed, 1163 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp b/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp
new file mode 100644
index 000000000000..f436650fbdd9
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp
@@ -0,0 +1,1163 @@
+//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines ExprEngine's support for C expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/StaticAnalyzer/Core/CheckerManager.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
+
+using namespace clang;
+using namespace ento;
+using llvm::APSInt;
+
+/// Optionally conjure and return a symbol for offset when processing
+/// an expression \p Expression.
+/// If \p Other is a location, conjure a symbol for \p Symbol
+/// (offset) if it is unknown so that memory arithmetic always
+/// results in an ElementRegion.
+/// \p Count The number of times the current basic block was visited.
+static SVal conjureOffsetSymbolOnLocation(
+ SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder,
+ unsigned Count, const LocationContext *LCtx) {
+ QualType Ty = Expression->getType();
+ if (Other.getAs<Loc>() &&
+ Ty->isIntegralOrEnumerationType() &&
+ Symbol.isUnknown()) {
+ return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count);
+ }
+ return Symbol;
+}
+
+void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ Expr *LHS = B->getLHS()->IgnoreParens();
+ Expr *RHS = B->getRHS()->IgnoreParens();
+
+ // FIXME: Prechecks eventually go in ::Visit().
+ ExplodedNodeSet CheckedSet;
+ ExplodedNodeSet Tmp2;
+ getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
+
+ // With both the LHS and RHS evaluated, process the operation itself.
+ for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
+ it != ei; ++it) {
+
+ ProgramStateRef state = (*it)->getState();
+ const LocationContext *LCtx = (*it)->getLocationContext();
+ SVal LeftV = state->getSVal(LHS, LCtx);
+ SVal RightV = state->getSVal(RHS, LCtx);
+
+ BinaryOperator::Opcode Op = B->getOpcode();
+
+ if (Op == BO_Assign) {
+ // EXPERIMENTAL: "Conjured" symbols.
+ // FIXME: Handle structs.
+ if (RightV.isUnknown()) {
+ unsigned Count = currBldrCtx->blockCount();
+ RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx,
+ Count);
+ }
+ // Simulate the effects of a "store": bind the value of the RHS
+ // to the L-Value represented by the LHS.
+ SVal ExprVal = B->isGLValue() ? LeftV : RightV;
+ evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
+ LeftV, RightV);
+ continue;
+ }
+
+ if (!B->isAssignmentOp()) {
+ StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
+
+ if (B->isAdditiveOp()) {
+ // TODO: This can be removed after we enable history tracking with
+ // SymSymExpr.
+ unsigned Count = currBldrCtx->blockCount();
+ RightV = conjureOffsetSymbolOnLocation(
+ RightV, LeftV, RHS, svalBuilder, Count, LCtx);
+ LeftV = conjureOffsetSymbolOnLocation(
+ LeftV, RightV, LHS, svalBuilder, Count, LCtx);
+ }
+
+ // Although we don't yet model pointers-to-members, we do need to make
+ // sure that the members of temporaries have a valid 'this' pointer for
+ // other checks.
+ if (B->getOpcode() == BO_PtrMemD)
+ state = createTemporaryRegionIfNeeded(state, LCtx, LHS);
+
+ // Process non-assignments except commas or short-circuited
+ // logical expressions (LAnd and LOr).
+ SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
+ if (!Result.isUnknown()) {
+ state = state->BindExpr(B, LCtx, Result);
+ } else {
+ // If we cannot evaluate the operation escape the operands.
+ state = escapeValue(state, LeftV, PSK_EscapeOther);
+ state = escapeValue(state, RightV, PSK_EscapeOther);
+ }
+
+ Bldr.generateNode(B, *it, state);
+ continue;
+ }
+
+ assert (B->isCompoundAssignmentOp());
+
+ switch (Op) {
+ default:
+ llvm_unreachable("Invalid opcode for compound assignment.");
+ case BO_MulAssign: Op = BO_Mul; break;
+ case BO_DivAssign: Op = BO_Div; break;
+ case BO_RemAssign: Op = BO_Rem; break;
+ case BO_AddAssign: Op = BO_Add; break;
+ case BO_SubAssign: Op = BO_Sub; break;
+ case BO_ShlAssign: Op = BO_Shl; break;
+ case BO_ShrAssign: Op = BO_Shr; break;
+ case BO_AndAssign: Op = BO_And; break;
+ case BO_XorAssign: Op = BO_Xor; break;
+ case BO_OrAssign: Op = BO_Or; break;
+ }
+
+ // Perform a load (the LHS). This performs the checks for
+ // null dereferences, and so on.
+ ExplodedNodeSet Tmp;
+ SVal location = LeftV;
+ evalLoad(Tmp, B, LHS, *it, state, location);
+
+ for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
+ ++I) {
+
+ state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ SVal V = state->getSVal(LHS, LCtx);
+
+ // Get the computation type.
+ QualType CTy =
+ cast<CompoundAssignOperator>(B)->getComputationResultType();
+ CTy = getContext().getCanonicalType(CTy);
+
+ QualType CLHSTy =
+ cast<CompoundAssignOperator>(B)->getComputationLHSType();
+ CLHSTy = getContext().getCanonicalType(CLHSTy);
+
+ QualType LTy = getContext().getCanonicalType(LHS->getType());
+
+ // Promote LHS.
+ V = svalBuilder.evalCast(V, CLHSTy, LTy);
+
+ // Compute the result of the operation.
+ SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
+ B->getType(), CTy);
+
+ // EXPERIMENTAL: "Conjured" symbols.
+ // FIXME: Handle structs.
+
+ SVal LHSVal;
+
+ if (Result.isUnknown()) {
+ // The symbolic value is actually for the type of the left-hand side
+ // expression, not the computation type, as this is the value the
+ // LValue on the LHS will bind to.
+ LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy,
+ currBldrCtx->blockCount());
+ // However, we need to convert the symbol to the computation type.
+ Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
+ }
+ else {
+ // The left-hand side may bind to a different value then the
+ // computation type.
+ LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
+ }
+
+ // In C++, assignment and compound assignment operators return an
+ // lvalue.
+ if (B->isGLValue())
+ state = state->BindExpr(B, LCtx, location);
+ else
+ state = state->BindExpr(B, LCtx, Result);
+
+ evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
+ }
+ }
+
+ // FIXME: postvisits eventually go in ::Visit()
+ getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
+}
+
+void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+
+ CanQualType T = getContext().getCanonicalType(BE->getType());
+
+ const BlockDecl *BD = BE->getBlockDecl();
+ // Get the value of the block itself.
+ SVal V = svalBuilder.getBlockPointer(BD, T,
+ Pred->getLocationContext(),
+ currBldrCtx->blockCount());
+
+ ProgramStateRef State = Pred->getState();
+
+ // If we created a new MemRegion for the block, we should explicitly bind
+ // the captured variables.
+ if (const BlockDataRegion *BDR =
+ dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
+
+ BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
+ E = BDR->referenced_vars_end();
+
+ auto CI = BD->capture_begin();
+ auto CE = BD->capture_end();
+ for (; I != E; ++I) {
+ const VarRegion *capturedR = I.getCapturedRegion();
+ const VarRegion *originalR = I.getOriginalRegion();
+
+ // If the capture had a copy expression, use the result of evaluating
+ // that expression, otherwise use the original value.
+ // We rely on the invariant that the block declaration's capture variables
+ // are a prefix of the BlockDataRegion's referenced vars (which may include
+ // referenced globals, etc.) to enable fast lookup of the capture for a
+ // given referenced var.
+ const Expr *copyExpr = nullptr;
+ if (CI != CE) {
+ assert(CI->getVariable() == capturedR->getDecl());
+ copyExpr = CI->getCopyExpr();
+ CI++;
+ }
+
+ if (capturedR != originalR) {
+ SVal originalV;
+ const LocationContext *LCtx = Pred->getLocationContext();
+ if (copyExpr) {
+ originalV = State->getSVal(copyExpr, LCtx);
+ } else {
+ originalV = State->getSVal(loc::MemRegionVal(originalR));
+ }
+ State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx);
+ }
+ }
+ }
+
+ ExplodedNodeSet Tmp;
+ StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
+ Bldr.generateNode(BE, Pred,
+ State->BindExpr(BE, Pred->getLocationContext(), V),
+ nullptr, ProgramPoint::PostLValueKind);
+
+ // FIXME: Move all post/pre visits to ::Visit().
+ getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
+}
+
+ProgramStateRef ExprEngine::handleLValueBitCast(
+ ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx,
+ QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr,
+ ExplodedNode* Pred) {
+ if (T->isLValueReferenceType()) {
+ assert(!CastE->getType()->isLValueReferenceType());
+ ExTy = getContext().getLValueReferenceType(ExTy);
+ } else if (T->isRValueReferenceType()) {
+ assert(!CastE->getType()->isRValueReferenceType());
+ ExTy = getContext().getRValueReferenceType(ExTy);
+ }
+ // Delegate to SValBuilder to process.
+ SVal OrigV = state->getSVal(Ex, LCtx);
+ SVal V = svalBuilder.evalCast(OrigV, T, ExTy);
+ // Negate the result if we're treating the boolean as a signed i1
+ if (CastE->getCastKind() == CK_BooleanToSignedIntegral)
+ V = evalMinus(V);
+ state = state->BindExpr(CastE, LCtx, V);
+ if (V.isUnknown() && !OrigV.isUnknown()) {
+ state = escapeValue(state, OrigV, PSK_EscapeOther);
+ }
+ Bldr.generateNode(CastE, Pred, state);
+
+ return state;
+}
+
+ProgramStateRef ExprEngine::handleLVectorSplat(
+ ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE,
+ StmtNodeBuilder &Bldr, ExplodedNode* Pred) {
+ // Recover some path sensitivity by conjuring a new value.
+ QualType resultType = CastE->getType();
+ if (CastE->isGLValue())
+ resultType = getContext().getPointerType(resultType);
+ SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx,
+ resultType,
+ currBldrCtx->blockCount());
+ state = state->BindExpr(CastE, LCtx, result);
+ Bldr.generateNode(CastE, Pred, state);
+
+ return state;
+}
+
+void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {
+
+ ExplodedNodeSet dstPreStmt;
+ getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
+
+ if (CastE->getCastKind() == CK_LValueToRValue) {
+ for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
+ I!=E; ++I) {
+ ExplodedNode *subExprNode = *I;
+ ProgramStateRef state = subExprNode->getState();
+ const LocationContext *LCtx = subExprNode->getLocationContext();
+ evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
+ }
+ return;
+ }
+
+ // All other casts.
+ QualType T = CastE->getType();
+ QualType ExTy = Ex->getType();
+
+ if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
+ T = ExCast->getTypeAsWritten();
+
+ StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
+ for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
+ I != E; ++I) {
+
+ Pred = *I;
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ switch (CastE->getCastKind()) {
+ case CK_LValueToRValue:
+ llvm_unreachable("LValueToRValue casts handled earlier.");
+ case CK_ToVoid:
+ continue;
+ // The analyzer doesn't do anything special with these casts,
+ // since it understands retain/release semantics already.
+ case CK_ARCProduceObject:
+ case CK_ARCConsumeObject:
+ case CK_ARCReclaimReturnedObject:
+ case CK_ARCExtendBlockObject: // Fall-through.
+ case CK_CopyAndAutoreleaseBlockObject:
+ // The analyser can ignore atomic casts for now, although some future
+ // checkers may want to make certain that you're not modifying the same
+ // value through atomic and nonatomic pointers.
+ case CK_AtomicToNonAtomic:
+ case CK_NonAtomicToAtomic:
+ // True no-ops.
+ case CK_NoOp:
+ case CK_ConstructorConversion:
+ case CK_UserDefinedConversion:
+ case CK_FunctionToPointerDecay:
+ case CK_BuiltinFnToFnPtr: {
+ // Copy the SVal of Ex to CastE.
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ SVal V = state->getSVal(Ex, LCtx);
+ state = state->BindExpr(CastE, LCtx, V);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_MemberPointerToBoolean:
+ case CK_PointerToBoolean: {
+ SVal V = state->getSVal(Ex, LCtx);
+ auto PTMSV = V.getAs<nonloc::PointerToMember>();
+ if (PTMSV)
+ V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy);
+ if (V.isUndef() || PTMSV) {
+ state = state->BindExpr(CastE, LCtx, V);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ // Explicitly proceed with default handler for this case cascade.
+ state =
+ handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
+ continue;
+ }
+ case CK_Dependent:
+ case CK_ArrayToPointerDecay:
+ case CK_BitCast:
+ case CK_LValueToRValueBitCast:
+ case CK_AddressSpaceConversion:
+ case CK_BooleanToSignedIntegral:
+ case CK_IntegralToPointer:
+ case CK_PointerToIntegral: {
+ SVal V = state->getSVal(Ex, LCtx);
+ if (V.getAs<nonloc::PointerToMember>()) {
+ state = state->BindExpr(CastE, LCtx, UnknownVal());
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ // Explicitly proceed with default handler for this case cascade.
+ state =
+ handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
+ continue;
+ }
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ case CK_FloatingRealToComplex:
+ case CK_FloatingComplexToReal:
+ case CK_FloatingComplexToBoolean:
+ case CK_FloatingComplexCast:
+ case CK_FloatingComplexToIntegralComplex:
+ case CK_IntegralRealToComplex:
+ case CK_IntegralComplexToReal:
+ case CK_IntegralComplexToBoolean:
+ case CK_IntegralComplexCast:
+ case CK_IntegralComplexToFloatingComplex:
+ case CK_CPointerToObjCPointerCast:
+ case CK_BlockPointerToObjCPointerCast:
+ case CK_AnyPointerToBlockPointerCast:
+ case CK_ObjCObjectLValueCast:
+ case CK_ZeroToOCLOpaqueType:
+ case CK_IntToOCLSampler:
+ case CK_LValueBitCast:
+ case CK_FixedPointCast:
+ case CK_FixedPointToBoolean:
+ case CK_FixedPointToIntegral:
+ case CK_IntegralToFixedPoint: {
+ state =
+ handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred);
+ continue;
+ }
+ case CK_IntegralCast: {
+ // Delegate to SValBuilder to process.
+ SVal V = state->getSVal(Ex, LCtx);
+ V = svalBuilder.evalIntegralCast(state, V, T, ExTy);
+ state = state->BindExpr(CastE, LCtx, V);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_DerivedToBase:
+ case CK_UncheckedDerivedToBase: {
+ // For DerivedToBase cast, delegate to the store manager.
+ SVal val = state->getSVal(Ex, LCtx);
+ val = getStoreManager().evalDerivedToBase(val, CastE);
+ state = state->BindExpr(CastE, LCtx, val);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ // Handle C++ dyn_cast.
+ case CK_Dynamic: {
+ SVal val = state->getSVal(Ex, LCtx);
+
+ // Compute the type of the result.
+ QualType resultType = CastE->getType();
+ if (CastE->isGLValue())
+ resultType = getContext().getPointerType(resultType);
+
+ bool Failed = false;
+
+ // Check if the value being cast evaluates to 0.
+ if (val.isZeroConstant())
+ Failed = true;
+ // Else, evaluate the cast.
+ else
+ val = getStoreManager().attemptDownCast(val, T, Failed);
+
+ if (Failed) {
+ if (T->isReferenceType()) {
+ // A bad_cast exception is thrown if input value is a reference.
+ // Currently, we model this, by generating a sink.
+ Bldr.generateSink(CastE, Pred, state);
+ continue;
+ } else {
+ // If the cast fails on a pointer, bind to 0.
+ state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
+ }
+ } else {
+ // If we don't know if the cast succeeded, conjure a new symbol.
+ if (val.isUnknown()) {
+ DefinedOrUnknownSVal NewSym =
+ svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
+ currBldrCtx->blockCount());
+ state = state->BindExpr(CastE, LCtx, NewSym);
+ } else
+ // Else, bind to the derived region value.
+ state = state->BindExpr(CastE, LCtx, val);
+ }
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_BaseToDerived: {
+ SVal val = state->getSVal(Ex, LCtx);
+ QualType resultType = CastE->getType();
+ if (CastE->isGLValue())
+ resultType = getContext().getPointerType(resultType);
+
+ bool Failed = false;
+
+ if (!val.isConstant()) {
+ val = getStoreManager().attemptDownCast(val, T, Failed);
+ }
+
+ // Failed to cast or the result is unknown, fall back to conservative.
+ if (Failed || val.isUnknown()) {
+ val =
+ svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType,
+ currBldrCtx->blockCount());
+ }
+ state = state->BindExpr(CastE, LCtx, val);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_NullToPointer: {
+ SVal V = svalBuilder.makeNull();
+ state = state->BindExpr(CastE, LCtx, V);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_NullToMemberPointer: {
+ SVal V = svalBuilder.getMemberPointer(nullptr);
+ state = state->BindExpr(CastE, LCtx, V);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ case CK_DerivedToBaseMemberPointer:
+ case CK_BaseToDerivedMemberPointer:
+ case CK_ReinterpretMemberPointer: {
+ SVal V = state->getSVal(Ex, LCtx);
+ if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) {
+ SVal CastedPTMSV = svalBuilder.makePointerToMember(
+ getBasicVals().accumCXXBase(
+ llvm::make_range<CastExpr::path_const_iterator>(
+ CastE->path_begin(), CastE->path_end()), *PTMSV));
+ state = state->BindExpr(CastE, LCtx, CastedPTMSV);
+ Bldr.generateNode(CastE, Pred, state);
+ continue;
+ }
+ // Explicitly proceed with default handler for this case cascade.
+ state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
+ continue;
+ }
+ // Various C++ casts that are not handled yet.
+ case CK_ToUnion:
+ case CK_VectorSplat: {
+ state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred);
+ continue;
+ }
+ }
+ }
+}
+
+void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
+
+ ProgramStateRef State = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+
+ const Expr *Init = CL->getInitializer();
+ SVal V = State->getSVal(CL->getInitializer(), LCtx);
+
+ if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) {
+ // No work needed. Just pass the value up to this expression.
+ } else {
+ assert(isa<InitListExpr>(Init));
+ Loc CLLoc = State->getLValue(CL, LCtx);
+ State = State->bindLoc(CLLoc, V, LCtx);
+
+ if (CL->isGLValue())
+ V = CLLoc;
+ }
+
+ B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
+}
+
+void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // Assumption: The CFG has one DeclStmt per Decl.
+ const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
+
+ if (!VD) {
+ //TODO:AZ: remove explicit insertion after refactoring is done.
+ Dst.insert(Pred);
+ return;
+ }
+
+ // FIXME: all pre/post visits should eventually be handled by ::Visit().
+ ExplodedNodeSet dstPreVisit;
+ getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
+
+ ExplodedNodeSet dstEvaluated;
+ StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx);
+ for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
+ I!=E; ++I) {
+ ExplodedNode *N = *I;
+ ProgramStateRef state = N->getState();
+ const LocationContext *LC = N->getLocationContext();
+
+ // Decls without InitExpr are not initialized explicitly.
+ if (const Expr *InitEx = VD->getInit()) {
+
+ // Note in the state that the initialization has occurred.
+ ExplodedNode *UpdatedN = N;
+ SVal InitVal = state->getSVal(InitEx, LC);
+
+ assert(DS->isSingleDecl());
+ if (getObjectUnderConstruction(state, DS, LC)) {
+ state = finishObjectConstruction(state, DS, LC);
+ // We constructed the object directly in the variable.
+ // No need to bind anything.
+ B.generateNode(DS, UpdatedN, state);
+ } else {
+ // Recover some path-sensitivity if a scalar value evaluated to
+ // UnknownVal.
+ if (InitVal.isUnknown()) {
+ QualType Ty = InitEx->getType();
+ if (InitEx->isGLValue()) {
+ Ty = getContext().getPointerType(Ty);
+ }
+
+ InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty,
+ currBldrCtx->blockCount());
+ }
+
+
+ B.takeNodes(UpdatedN);
+ ExplodedNodeSet Dst2;
+ evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
+ B.addNodes(Dst2);
+ }
+ }
+ else {
+ B.generateNode(DS, N, state);
+ }
+ }
+
+ getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this);
+}
+
+void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // This method acts upon CFG elements for logical operators && and ||
+ // and attaches the value (true or false) to them as expressions.
+ // It doesn't produce any state splits.
+ // If we made it that far, we're past the point when we modeled the short
+ // circuit. It means that we should have precise knowledge about whether
+ // we've short-circuited. If we did, we already know the value we need to
+ // bind. If we didn't, the value of the RHS (casted to the boolean type)
+ // is the answer.
+ // Currently this method tries to figure out whether we've short-circuited
+ // by looking at the ExplodedGraph. This method is imperfect because there
+ // could inevitably have been merges that would have resulted in multiple
+ // potential path traversal histories. We bail out when we fail.
+ // Due to this ambiguity, a more reliable solution would have been to
+ // track the short circuit operation history path-sensitively until
+ // we evaluate the respective logical operator.
+ assert(B->getOpcode() == BO_LAnd ||
+ B->getOpcode() == BO_LOr);
+
+ StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
+ ProgramStateRef state = Pred->getState();
+
+ if (B->getType()->isVectorType()) {
+ // FIXME: We do not model vector arithmetic yet. When adding support for
+ // that, note that the CFG-based reasoning below does not apply, because
+ // logical operators on vectors are not short-circuit. Currently they are
+ // modeled as short-circuit in Clang CFG but this is incorrect.
+ // Do not set the value for the expression. It'd be UnknownVal by default.
+ Bldr.generateNode(B, Pred, state);
+ return;
+ }
+
+ ExplodedNode *N = Pred;
+ while (!N->getLocation().getAs<BlockEntrance>()) {
+ ProgramPoint P = N->getLocation();
+ assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
+ (void) P;
+ if (N->pred_size() != 1) {
+ // We failed to track back where we came from.
+ Bldr.generateNode(B, Pred, state);
+ return;
+ }
+ N = *N->pred_begin();
+ }
+
+ if (N->pred_size() != 1) {
+ // We failed to track back where we came from.
+ Bldr.generateNode(B, Pred, state);
+ return;
+ }
+
+ N = *N->pred_begin();
+ BlockEdge BE = N->getLocation().castAs<BlockEdge>();
+ SVal X;
+
+ // Determine the value of the expression by introspecting how we
+ // got this location in the CFG. This requires looking at the previous
+ // block we were in and what kind of control-flow transfer was involved.
+ const CFGBlock *SrcBlock = BE.getSrc();
+ // The only terminator (if there is one) that makes sense is a logical op.
+ CFGTerminator T = SrcBlock->getTerminator();
+ if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
+ (void) Term;
+ assert(Term->isLogicalOp());
+ assert(SrcBlock->succ_size() == 2);
+ // Did we take the true or false branch?
+ unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
+ X = svalBuilder.makeIntVal(constant, B->getType());
+ }
+ else {
+ // If there is no terminator, by construction the last statement
+ // in SrcBlock is the value of the enclosing expression.
+ // However, we still need to constrain that value to be 0 or 1.
+ assert(!SrcBlock->empty());
+ CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
+ const Expr *RHS = cast<Expr>(Elem.getStmt());
+ SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
+
+ if (RHSVal.isUndef()) {
+ X = RHSVal;
+ } else {
+ // We evaluate "RHSVal != 0" expression which result in 0 if the value is
+ // known to be false, 1 if the value is known to be true and a new symbol
+ // when the assumption is unknown.
+ nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType()));
+ X = evalBinOp(N->getState(), BO_NE,
+ svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()),
+ Zero, B->getType());
+ }
+ }
+ Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
+}
+
+void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
+
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ QualType T = getContext().getCanonicalType(IE->getType());
+ unsigned NumInitElements = IE->getNumInits();
+
+ if (!IE->isGLValue() && !IE->isTransparent() &&
+ (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
+ T->isAnyComplexType())) {
+ llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
+
+ // Handle base case where the initializer has no elements.
+ // e.g: static int* myArray[] = {};
+ if (NumInitElements == 0) {
+ SVal V = svalBuilder.makeCompoundVal(T, vals);
+ B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
+ return;
+ }
+
+ for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
+ ei = IE->rend(); it != ei; ++it) {
+ SVal V = state->getSVal(cast<Expr>(*it), LCtx);
+ vals = getBasicVals().prependSVal(V, vals);
+ }
+
+ B.generateNode(IE, Pred,
+ state->BindExpr(IE, LCtx,
+ svalBuilder.makeCompoundVal(T, vals)));
+ return;
+ }
+
+ // Handle scalars: int{5} and int{} and GLvalues.
+ // Note, if the InitListExpr is a GLvalue, it means that there is an address
+ // representing it, so it must have a single init element.
+ assert(NumInitElements <= 1);
+
+ SVal V;
+ if (NumInitElements == 0)
+ V = getSValBuilder().makeZeroVal(T);
+ else
+ V = state->getSVal(IE->getInit(0), LCtx);
+
+ B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
+}
+
+void ExprEngine::VisitGuardedExpr(const Expr *Ex,
+ const Expr *L,
+ const Expr *R,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ assert(L && R);
+
+ StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
+ ProgramStateRef state = Pred->getState();
+ const LocationContext *LCtx = Pred->getLocationContext();
+ const CFGBlock *SrcBlock = nullptr;
+
+ // Find the predecessor block.
+ ProgramStateRef SrcState = state;
+ for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
+ ProgramPoint PP = N->getLocation();
+ if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
+ // If the state N has multiple predecessors P, it means that successors
+ // of P are all equivalent.
+ // In turn, that means that all nodes at P are equivalent in terms
+ // of observable behavior at N, and we can follow any of them.
+ // FIXME: a more robust solution which does not walk up the tree.
+ continue;
+ }
+ SrcBlock = PP.castAs<BlockEdge>().getSrc();
+ SrcState = N->getState();
+ break;
+ }
+
+ assert(SrcBlock && "missing function entry");
+
+ // Find the last expression in the predecessor block. That is the
+ // expression that is used for the value of the ternary expression.
+ bool hasValue = false;
+ SVal V;
+
+ for (CFGElement CE : llvm::reverse(*SrcBlock)) {
+ if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
+ const Expr *ValEx = cast<Expr>(CS->getStmt());
+ ValEx = ValEx->IgnoreParens();
+
+ // For GNU extension '?:' operator, the left hand side will be an
+ // OpaqueValueExpr, so get the underlying expression.
+ if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
+ L = OpaqueEx->getSourceExpr();
+
+ // If the last expression in the predecessor block matches true or false
+ // subexpression, get its the value.
+ if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
+ hasValue = true;
+ V = SrcState->getSVal(ValEx, LCtx);
+ }
+ break;
+ }
+ }
+
+ if (!hasValue)
+ V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx,
+ currBldrCtx->blockCount());
+
+ // Generate a new node with the binding from the appropriate path.
+ B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
+}
+
+void ExprEngine::
+VisitOffsetOfExpr(const OffsetOfExpr *OOE,
+ ExplodedNode *Pred, ExplodedNodeSet &Dst) {
+ StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
+ Expr::EvalResult Result;
+ if (OOE->EvaluateAsInt(Result, getContext())) {
+ APSInt IV = Result.Val.getInt();
+ assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
+ assert(OOE->getType()->isBuiltinType());
+ assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
+ assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
+ SVal X = svalBuilder.makeIntVal(IV);
+ B.generateNode(OOE, Pred,
+ Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
+ X));
+ }
+ // FIXME: Handle the case where __builtin_offsetof is not a constant.
+}
+
+
+void ExprEngine::
+VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // FIXME: Prechecks eventually go in ::Visit().
+ ExplodedNodeSet CheckedSet;
+ getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this);
+
+ ExplodedNodeSet EvalSet;
+ StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
+
+ QualType T = Ex->getTypeOfArgument();
+
+ for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
+ I != E; ++I) {
+ if (Ex->getKind() == UETT_SizeOf) {
+ if (!T->isIncompleteType() && !T->isConstantSizeType()) {
+ assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
+
+ // FIXME: Add support for VLA type arguments and VLA expressions.
+ // When that happens, we should probably refactor VLASizeChecker's code.
+ continue;
+ } else if (T->getAs<ObjCObjectType>()) {
+ // Some code tries to take the sizeof an ObjCObjectType, relying that
+ // the compiler has laid out its representation. Just report Unknown
+ // for these.
+ continue;
+ }
+ }
+
+ APSInt Value = Ex->EvaluateKnownConstInt(getContext());
+ CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
+
+ ProgramStateRef state = (*I)->getState();
+ state = state->BindExpr(Ex, (*I)->getLocationContext(),
+ svalBuilder.makeIntVal(amt.getQuantity(),
+ Ex->getType()));
+ Bldr.generateNode(Ex, *I, state);
+ }
+
+ getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this);
+}
+
+void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I,
+ const UnaryOperator *U,
+ StmtNodeBuilder &Bldr) {
+ // FIXME: We can probably just have some magic in Environment::getSVal()
+ // that propagates values, instead of creating a new node here.
+ //
+ // Unary "+" is a no-op, similar to a parentheses. We still have places
+ // where it may be a block-level expression, so we need to
+ // generate an extra node that just propagates the value of the
+ // subexpression.
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+ ProgramStateRef state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
+ state->getSVal(Ex, LCtx)));
+}
+
+void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // FIXME: Prechecks eventually go in ::Visit().
+ ExplodedNodeSet CheckedSet;
+ getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this);
+
+ ExplodedNodeSet EvalSet;
+ StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx);
+
+ for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end();
+ I != E; ++I) {
+ switch (U->getOpcode()) {
+ default: {
+ Bldr.takeNodes(*I);
+ ExplodedNodeSet Tmp;
+ VisitIncrementDecrementOperator(U, *I, Tmp);
+ Bldr.addNodes(Tmp);
+ break;
+ }
+ case UO_Real: {
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+
+ // FIXME: We don't have complex SValues yet.
+ if (Ex->getType()->isAnyComplexType()) {
+ // Just report "Unknown."
+ break;
+ }
+
+ // For all other types, UO_Real is an identity operation.
+ assert (U->getType() == Ex->getType());
+ ProgramStateRef state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ Bldr.generateNode(U, *I, state->BindExpr(U, LCtx,
+ state->getSVal(Ex, LCtx)));
+ break;
+ }
+
+ case UO_Imag: {
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+ // FIXME: We don't have complex SValues yet.
+ if (Ex->getType()->isAnyComplexType()) {
+ // Just report "Unknown."
+ break;
+ }
+ // For all other types, UO_Imag returns 0.
+ ProgramStateRef state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ SVal X = svalBuilder.makeZeroVal(Ex->getType());
+ Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X));
+ break;
+ }
+
+ case UO_AddrOf: {
+ // Process pointer-to-member address operation.
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+ if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) {
+ const ValueDecl *VD = DRE->getDecl();
+
+ if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD)) {
+ ProgramStateRef State = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+ SVal SV = svalBuilder.getMemberPointer(cast<DeclaratorDecl>(VD));
+ Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV));
+ break;
+ }
+ }
+ // Explicitly proceed with default handler for this case cascade.
+ handleUOExtension(I, U, Bldr);
+ break;
+ }
+ case UO_Plus:
+ assert(!U->isGLValue());
+ LLVM_FALLTHROUGH;
+ case UO_Deref:
+ case UO_Extension: {
+ handleUOExtension(I, U, Bldr);
+ break;
+ }
+
+ case UO_LNot:
+ case UO_Minus:
+ case UO_Not: {
+ assert (!U->isGLValue());
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+ ProgramStateRef state = (*I)->getState();
+ const LocationContext *LCtx = (*I)->getLocationContext();
+
+ // Get the value of the subexpression.
+ SVal V = state->getSVal(Ex, LCtx);
+
+ if (V.isUnknownOrUndef()) {
+ Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V));
+ break;
+ }
+
+ switch (U->getOpcode()) {
+ default:
+ llvm_unreachable("Invalid Opcode.");
+ case UO_Not:
+ // FIXME: Do we need to handle promotions?
+ state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
+ break;
+ case UO_Minus:
+ // FIXME: Do we need to handle promotions?
+ state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
+ break;
+ case UO_LNot:
+ // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
+ //
+ // Note: technically we do "E == 0", but this is the same in the
+ // transfer functions as "0 == E".
+ SVal Result;
+ if (Optional<Loc> LV = V.getAs<Loc>()) {
+ Loc X = svalBuilder.makeNullWithType(Ex->getType());
+ Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
+ } else if (Ex->getType()->isFloatingType()) {
+ // FIXME: handle floating point types.
+ Result = UnknownVal();
+ } else {
+ nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
+ Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
+ U->getType());
+ }
+
+ state = state->BindExpr(U, LCtx, Result);
+ break;
+ }
+ Bldr.generateNode(U, *I, state);
+ break;
+ }
+ }
+ }
+
+ getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this);
+}
+
+void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
+ ExplodedNode *Pred,
+ ExplodedNodeSet &Dst) {
+ // Handle ++ and -- (both pre- and post-increment).
+ assert (U->isIncrementDecrementOp());
+ const Expr *Ex = U->getSubExpr()->IgnoreParens();
+
+ const LocationContext *LCtx = Pred->getLocationContext();
+ ProgramStateRef state = Pred->getState();
+ SVal loc = state->getSVal(Ex, LCtx);
+
+ // Perform a load.
+ ExplodedNodeSet Tmp;
+ evalLoad(Tmp, U, Ex, Pred, state, loc);
+
+ ExplodedNodeSet Dst2;
+ StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
+ for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
+
+ state = (*I)->getState();
+ assert(LCtx == (*I)->getLocationContext());
+ SVal V2_untested = state->getSVal(Ex, LCtx);
+
+ // Propagate unknown and undefined values.
+ if (V2_untested.isUnknownOrUndef()) {
+ state = state->BindExpr(U, LCtx, V2_untested);
+
+ // Perform the store, so that the uninitialized value detection happens.
+ Bldr.takeNodes(*I);
+ ExplodedNodeSet Dst3;
+ evalStore(Dst3, U, Ex, *I, state, loc, V2_untested);
+ Bldr.addNodes(Dst3);
+
+ continue;
+ }
+ DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
+
+ // Handle all other values.
+ BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
+
+ // If the UnaryOperator has non-location type, use its type to create the
+ // constant value. If the UnaryOperator has location type, create the
+ // constant with int type and pointer width.
+ SVal RHS;
+ SVal Result;
+
+ if (U->getType()->isAnyPointerType())
+ RHS = svalBuilder.makeArrayIndex(1);
+ else if (U->getType()->isIntegralOrEnumerationType())
+ RHS = svalBuilder.makeIntVal(1, U->getType());
+ else
+ RHS = UnknownVal();
+
+ // The use of an operand of type bool with the ++ operators is deprecated
+ // but valid until C++17. And if the operand of the ++ operator is of type
+ // bool, it is set to true until C++17. Note that for '_Bool', it is also
+ // set to true when it encounters ++ operator.
+ if (U->getType()->isBooleanType() && U->isIncrementOp())
+ Result = svalBuilder.makeTruthVal(true, U->getType());
+ else
+ Result = evalBinOp(state, Op, V2, RHS, U->getType());
+
+ // Conjure a new symbol if necessary to recover precision.
+ if (Result.isUnknown()){
+ DefinedOrUnknownSVal SymVal =
+ svalBuilder.conjureSymbolVal(nullptr, U, LCtx,
+ currBldrCtx->blockCount());
+ Result = SymVal;
+
+ // If the value is a location, ++/-- should always preserve
+ // non-nullness. Check if the original value was non-null, and if so
+ // propagate that constraint.
+ if (Loc::isLocType(U->getType())) {
+ DefinedOrUnknownSVal Constraint =
+ svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
+
+ if (!state->assume(Constraint, true)) {
+ // It isn't feasible for the original value to be null.
+ // Propagate this constraint.
+ Constraint = svalBuilder.evalEQ(state, SymVal,
+ svalBuilder.makeZeroVal(U->getType()));
+
+ state = state->assume(Constraint, false);
+ assert(state);
+ }
+ }
+ }
+
+ // Since the lvalue-to-rvalue conversion is explicit in the AST,
+ // we bind an l-value if the operator is prefix and an lvalue (in C++).
+ if (U->isGLValue())
+ state = state->BindExpr(U, LCtx, loc);
+ else
+ state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
+
+ // Perform the store.
+ Bldr.takeNodes(*I);
+ ExplodedNodeSet Dst3;
+ evalStore(Dst3, U, Ex, *I, state, loc, Result);
+ Bldr.addNodes(Dst3);
+ }
+ Dst.insert(Dst2);
+}