diff options
Diffstat (limited to 'contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp')
-rw-r--r-- | contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp | 1163 |
1 files changed, 1163 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp b/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp new file mode 100644 index 000000000000..f436650fbdd9 --- /dev/null +++ b/contrib/llvm-project/clang/lib/StaticAnalyzer/Core/ExprEngineC.cpp @@ -0,0 +1,1163 @@ +//=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines ExprEngine's support for C expressions. +// +//===----------------------------------------------------------------------===// + +#include "clang/AST/ExprCXX.h" +#include "clang/AST/DeclCXX.h" +#include "clang/StaticAnalyzer/Core/CheckerManager.h" +#include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" + +using namespace clang; +using namespace ento; +using llvm::APSInt; + +/// Optionally conjure and return a symbol for offset when processing +/// an expression \p Expression. +/// If \p Other is a location, conjure a symbol for \p Symbol +/// (offset) if it is unknown so that memory arithmetic always +/// results in an ElementRegion. +/// \p Count The number of times the current basic block was visited. +static SVal conjureOffsetSymbolOnLocation( + SVal Symbol, SVal Other, Expr* Expression, SValBuilder &svalBuilder, + unsigned Count, const LocationContext *LCtx) { + QualType Ty = Expression->getType(); + if (Other.getAs<Loc>() && + Ty->isIntegralOrEnumerationType() && + Symbol.isUnknown()) { + return svalBuilder.conjureSymbolVal(Expression, LCtx, Ty, Count); + } + return Symbol; +} + +void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, + ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + + Expr *LHS = B->getLHS()->IgnoreParens(); + Expr *RHS = B->getRHS()->IgnoreParens(); + + // FIXME: Prechecks eventually go in ::Visit(). + ExplodedNodeSet CheckedSet; + ExplodedNodeSet Tmp2; + getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); + + // With both the LHS and RHS evaluated, process the operation itself. + for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); + it != ei; ++it) { + + ProgramStateRef state = (*it)->getState(); + const LocationContext *LCtx = (*it)->getLocationContext(); + SVal LeftV = state->getSVal(LHS, LCtx); + SVal RightV = state->getSVal(RHS, LCtx); + + BinaryOperator::Opcode Op = B->getOpcode(); + + if (Op == BO_Assign) { + // EXPERIMENTAL: "Conjured" symbols. + // FIXME: Handle structs. + if (RightV.isUnknown()) { + unsigned Count = currBldrCtx->blockCount(); + RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, + Count); + } + // Simulate the effects of a "store": bind the value of the RHS + // to the L-Value represented by the LHS. + SVal ExprVal = B->isGLValue() ? LeftV : RightV; + evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), + LeftV, RightV); + continue; + } + + if (!B->isAssignmentOp()) { + StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); + + if (B->isAdditiveOp()) { + // TODO: This can be removed after we enable history tracking with + // SymSymExpr. + unsigned Count = currBldrCtx->blockCount(); + RightV = conjureOffsetSymbolOnLocation( + RightV, LeftV, RHS, svalBuilder, Count, LCtx); + LeftV = conjureOffsetSymbolOnLocation( + LeftV, RightV, LHS, svalBuilder, Count, LCtx); + } + + // Although we don't yet model pointers-to-members, we do need to make + // sure that the members of temporaries have a valid 'this' pointer for + // other checks. + if (B->getOpcode() == BO_PtrMemD) + state = createTemporaryRegionIfNeeded(state, LCtx, LHS); + + // Process non-assignments except commas or short-circuited + // logical expressions (LAnd and LOr). + SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); + if (!Result.isUnknown()) { + state = state->BindExpr(B, LCtx, Result); + } else { + // If we cannot evaluate the operation escape the operands. + state = escapeValue(state, LeftV, PSK_EscapeOther); + state = escapeValue(state, RightV, PSK_EscapeOther); + } + + Bldr.generateNode(B, *it, state); + continue; + } + + assert (B->isCompoundAssignmentOp()); + + switch (Op) { + default: + llvm_unreachable("Invalid opcode for compound assignment."); + case BO_MulAssign: Op = BO_Mul; break; + case BO_DivAssign: Op = BO_Div; break; + case BO_RemAssign: Op = BO_Rem; break; + case BO_AddAssign: Op = BO_Add; break; + case BO_SubAssign: Op = BO_Sub; break; + case BO_ShlAssign: Op = BO_Shl; break; + case BO_ShrAssign: Op = BO_Shr; break; + case BO_AndAssign: Op = BO_And; break; + case BO_XorAssign: Op = BO_Xor; break; + case BO_OrAssign: Op = BO_Or; break; + } + + // Perform a load (the LHS). This performs the checks for + // null dereferences, and so on. + ExplodedNodeSet Tmp; + SVal location = LeftV; + evalLoad(Tmp, B, LHS, *it, state, location); + + for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; + ++I) { + + state = (*I)->getState(); + const LocationContext *LCtx = (*I)->getLocationContext(); + SVal V = state->getSVal(LHS, LCtx); + + // Get the computation type. + QualType CTy = + cast<CompoundAssignOperator>(B)->getComputationResultType(); + CTy = getContext().getCanonicalType(CTy); + + QualType CLHSTy = + cast<CompoundAssignOperator>(B)->getComputationLHSType(); + CLHSTy = getContext().getCanonicalType(CLHSTy); + + QualType LTy = getContext().getCanonicalType(LHS->getType()); + + // Promote LHS. + V = svalBuilder.evalCast(V, CLHSTy, LTy); + + // Compute the result of the operation. + SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), + B->getType(), CTy); + + // EXPERIMENTAL: "Conjured" symbols. + // FIXME: Handle structs. + + SVal LHSVal; + + if (Result.isUnknown()) { + // The symbolic value is actually for the type of the left-hand side + // expression, not the computation type, as this is the value the + // LValue on the LHS will bind to. + LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, + currBldrCtx->blockCount()); + // However, we need to convert the symbol to the computation type. + Result = svalBuilder.evalCast(LHSVal, CTy, LTy); + } + else { + // The left-hand side may bind to a different value then the + // computation type. + LHSVal = svalBuilder.evalCast(Result, LTy, CTy); + } + + // In C++, assignment and compound assignment operators return an + // lvalue. + if (B->isGLValue()) + state = state->BindExpr(B, LCtx, location); + else + state = state->BindExpr(B, LCtx, Result); + + evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); + } + } + + // FIXME: postvisits eventually go in ::Visit() + getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); +} + +void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + + CanQualType T = getContext().getCanonicalType(BE->getType()); + + const BlockDecl *BD = BE->getBlockDecl(); + // Get the value of the block itself. + SVal V = svalBuilder.getBlockPointer(BD, T, + Pred->getLocationContext(), + currBldrCtx->blockCount()); + + ProgramStateRef State = Pred->getState(); + + // If we created a new MemRegion for the block, we should explicitly bind + // the captured variables. + if (const BlockDataRegion *BDR = + dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { + + BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), + E = BDR->referenced_vars_end(); + + auto CI = BD->capture_begin(); + auto CE = BD->capture_end(); + for (; I != E; ++I) { + const VarRegion *capturedR = I.getCapturedRegion(); + const VarRegion *originalR = I.getOriginalRegion(); + + // If the capture had a copy expression, use the result of evaluating + // that expression, otherwise use the original value. + // We rely on the invariant that the block declaration's capture variables + // are a prefix of the BlockDataRegion's referenced vars (which may include + // referenced globals, etc.) to enable fast lookup of the capture for a + // given referenced var. + const Expr *copyExpr = nullptr; + if (CI != CE) { + assert(CI->getVariable() == capturedR->getDecl()); + copyExpr = CI->getCopyExpr(); + CI++; + } + + if (capturedR != originalR) { + SVal originalV; + const LocationContext *LCtx = Pred->getLocationContext(); + if (copyExpr) { + originalV = State->getSVal(copyExpr, LCtx); + } else { + originalV = State->getSVal(loc::MemRegionVal(originalR)); + } + State = State->bindLoc(loc::MemRegionVal(capturedR), originalV, LCtx); + } + } + } + + ExplodedNodeSet Tmp; + StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); + Bldr.generateNode(BE, Pred, + State->BindExpr(BE, Pred->getLocationContext(), V), + nullptr, ProgramPoint::PostLValueKind); + + // FIXME: Move all post/pre visits to ::Visit(). + getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); +} + +ProgramStateRef ExprEngine::handleLValueBitCast( + ProgramStateRef state, const Expr* Ex, const LocationContext* LCtx, + QualType T, QualType ExTy, const CastExpr* CastE, StmtNodeBuilder& Bldr, + ExplodedNode* Pred) { + if (T->isLValueReferenceType()) { + assert(!CastE->getType()->isLValueReferenceType()); + ExTy = getContext().getLValueReferenceType(ExTy); + } else if (T->isRValueReferenceType()) { + assert(!CastE->getType()->isRValueReferenceType()); + ExTy = getContext().getRValueReferenceType(ExTy); + } + // Delegate to SValBuilder to process. + SVal OrigV = state->getSVal(Ex, LCtx); + SVal V = svalBuilder.evalCast(OrigV, T, ExTy); + // Negate the result if we're treating the boolean as a signed i1 + if (CastE->getCastKind() == CK_BooleanToSignedIntegral) + V = evalMinus(V); + state = state->BindExpr(CastE, LCtx, V); + if (V.isUnknown() && !OrigV.isUnknown()) { + state = escapeValue(state, OrigV, PSK_EscapeOther); + } + Bldr.generateNode(CastE, Pred, state); + + return state; +} + +ProgramStateRef ExprEngine::handleLVectorSplat( + ProgramStateRef state, const LocationContext* LCtx, const CastExpr* CastE, + StmtNodeBuilder &Bldr, ExplodedNode* Pred) { + // Recover some path sensitivity by conjuring a new value. + QualType resultType = CastE->getType(); + if (CastE->isGLValue()) + resultType = getContext().getPointerType(resultType); + SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, + resultType, + currBldrCtx->blockCount()); + state = state->BindExpr(CastE, LCtx, result); + Bldr.generateNode(CastE, Pred, state); + + return state; +} + +void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, + ExplodedNode *Pred, ExplodedNodeSet &Dst) { + + ExplodedNodeSet dstPreStmt; + getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); + + if (CastE->getCastKind() == CK_LValueToRValue) { + for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); + I!=E; ++I) { + ExplodedNode *subExprNode = *I; + ProgramStateRef state = subExprNode->getState(); + const LocationContext *LCtx = subExprNode->getLocationContext(); + evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); + } + return; + } + + // All other casts. + QualType T = CastE->getType(); + QualType ExTy = Ex->getType(); + + if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) + T = ExCast->getTypeAsWritten(); + + StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); + for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); + I != E; ++I) { + + Pred = *I; + ProgramStateRef state = Pred->getState(); + const LocationContext *LCtx = Pred->getLocationContext(); + + switch (CastE->getCastKind()) { + case CK_LValueToRValue: + llvm_unreachable("LValueToRValue casts handled earlier."); + case CK_ToVoid: + continue; + // The analyzer doesn't do anything special with these casts, + // since it understands retain/release semantics already. + case CK_ARCProduceObject: + case CK_ARCConsumeObject: + case CK_ARCReclaimReturnedObject: + case CK_ARCExtendBlockObject: // Fall-through. + case CK_CopyAndAutoreleaseBlockObject: + // The analyser can ignore atomic casts for now, although some future + // checkers may want to make certain that you're not modifying the same + // value through atomic and nonatomic pointers. + case CK_AtomicToNonAtomic: + case CK_NonAtomicToAtomic: + // True no-ops. + case CK_NoOp: + case CK_ConstructorConversion: + case CK_UserDefinedConversion: + case CK_FunctionToPointerDecay: + case CK_BuiltinFnToFnPtr: { + // Copy the SVal of Ex to CastE. + ProgramStateRef state = Pred->getState(); + const LocationContext *LCtx = Pred->getLocationContext(); + SVal V = state->getSVal(Ex, LCtx); + state = state->BindExpr(CastE, LCtx, V); + Bldr.generateNode(CastE, Pred, state); + continue; + } + case CK_MemberPointerToBoolean: + case CK_PointerToBoolean: { + SVal V = state->getSVal(Ex, LCtx); + auto PTMSV = V.getAs<nonloc::PointerToMember>(); + if (PTMSV) + V = svalBuilder.makeTruthVal(!PTMSV->isNullMemberPointer(), ExTy); + if (V.isUndef() || PTMSV) { + state = state->BindExpr(CastE, LCtx, V); + Bldr.generateNode(CastE, Pred, state); + continue; + } + // Explicitly proceed with default handler for this case cascade. + state = + handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); + continue; + } + case CK_Dependent: + case CK_ArrayToPointerDecay: + case CK_BitCast: + case CK_LValueToRValueBitCast: + case CK_AddressSpaceConversion: + case CK_BooleanToSignedIntegral: + case CK_IntegralToPointer: + case CK_PointerToIntegral: { + SVal V = state->getSVal(Ex, LCtx); + if (V.getAs<nonloc::PointerToMember>()) { + state = state->BindExpr(CastE, LCtx, UnknownVal()); + Bldr.generateNode(CastE, Pred, state); + continue; + } + // Explicitly proceed with default handler for this case cascade. + state = + handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); + continue; + } + case CK_IntegralToBoolean: + case CK_IntegralToFloating: + case CK_FloatingToIntegral: + case CK_FloatingToBoolean: + case CK_FloatingCast: + case CK_FloatingRealToComplex: + case CK_FloatingComplexToReal: + case CK_FloatingComplexToBoolean: + case CK_FloatingComplexCast: + case CK_FloatingComplexToIntegralComplex: + case CK_IntegralRealToComplex: + case CK_IntegralComplexToReal: + case CK_IntegralComplexToBoolean: + case CK_IntegralComplexCast: + case CK_IntegralComplexToFloatingComplex: + case CK_CPointerToObjCPointerCast: + case CK_BlockPointerToObjCPointerCast: + case CK_AnyPointerToBlockPointerCast: + case CK_ObjCObjectLValueCast: + case CK_ZeroToOCLOpaqueType: + case CK_IntToOCLSampler: + case CK_LValueBitCast: + case CK_FixedPointCast: + case CK_FixedPointToBoolean: + case CK_FixedPointToIntegral: + case CK_IntegralToFixedPoint: { + state = + handleLValueBitCast(state, Ex, LCtx, T, ExTy, CastE, Bldr, Pred); + continue; + } + case CK_IntegralCast: { + // Delegate to SValBuilder to process. + SVal V = state->getSVal(Ex, LCtx); + V = svalBuilder.evalIntegralCast(state, V, T, ExTy); + state = state->BindExpr(CastE, LCtx, V); + Bldr.generateNode(CastE, Pred, state); + continue; + } + case CK_DerivedToBase: + case CK_UncheckedDerivedToBase: { + // For DerivedToBase cast, delegate to the store manager. + SVal val = state->getSVal(Ex, LCtx); + val = getStoreManager().evalDerivedToBase(val, CastE); + state = state->BindExpr(CastE, LCtx, val); + Bldr.generateNode(CastE, Pred, state); + continue; + } + // Handle C++ dyn_cast. + case CK_Dynamic: { + SVal val = state->getSVal(Ex, LCtx); + + // Compute the type of the result. + QualType resultType = CastE->getType(); + if (CastE->isGLValue()) + resultType = getContext().getPointerType(resultType); + + bool Failed = false; + + // Check if the value being cast evaluates to 0. + if (val.isZeroConstant()) + Failed = true; + // Else, evaluate the cast. + else + val = getStoreManager().attemptDownCast(val, T, Failed); + + if (Failed) { + if (T->isReferenceType()) { + // A bad_cast exception is thrown if input value is a reference. + // Currently, we model this, by generating a sink. + Bldr.generateSink(CastE, Pred, state); + continue; + } else { + // If the cast fails on a pointer, bind to 0. + state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull()); + } + } else { + // If we don't know if the cast succeeded, conjure a new symbol. + if (val.isUnknown()) { + DefinedOrUnknownSVal NewSym = + svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, + currBldrCtx->blockCount()); + state = state->BindExpr(CastE, LCtx, NewSym); + } else + // Else, bind to the derived region value. + state = state->BindExpr(CastE, LCtx, val); + } + Bldr.generateNode(CastE, Pred, state); + continue; + } + case CK_BaseToDerived: { + SVal val = state->getSVal(Ex, LCtx); + QualType resultType = CastE->getType(); + if (CastE->isGLValue()) + resultType = getContext().getPointerType(resultType); + + bool Failed = false; + + if (!val.isConstant()) { + val = getStoreManager().attemptDownCast(val, T, Failed); + } + + // Failed to cast or the result is unknown, fall back to conservative. + if (Failed || val.isUnknown()) { + val = + svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, + currBldrCtx->blockCount()); + } + state = state->BindExpr(CastE, LCtx, val); + Bldr.generateNode(CastE, Pred, state); + continue; + } + case CK_NullToPointer: { + SVal V = svalBuilder.makeNull(); + state = state->BindExpr(CastE, LCtx, V); + Bldr.generateNode(CastE, Pred, state); + continue; + } + case CK_NullToMemberPointer: { + SVal V = svalBuilder.getMemberPointer(nullptr); + state = state->BindExpr(CastE, LCtx, V); + Bldr.generateNode(CastE, Pred, state); + continue; + } + case CK_DerivedToBaseMemberPointer: + case CK_BaseToDerivedMemberPointer: + case CK_ReinterpretMemberPointer: { + SVal V = state->getSVal(Ex, LCtx); + if (auto PTMSV = V.getAs<nonloc::PointerToMember>()) { + SVal CastedPTMSV = svalBuilder.makePointerToMember( + getBasicVals().accumCXXBase( + llvm::make_range<CastExpr::path_const_iterator>( + CastE->path_begin(), CastE->path_end()), *PTMSV)); + state = state->BindExpr(CastE, LCtx, CastedPTMSV); + Bldr.generateNode(CastE, Pred, state); + continue; + } + // Explicitly proceed with default handler for this case cascade. + state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred); + continue; + } + // Various C++ casts that are not handled yet. + case CK_ToUnion: + case CK_VectorSplat: { + state = handleLVectorSplat(state, LCtx, CastE, Bldr, Pred); + continue; + } + } + } +} + +void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, + ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + StmtNodeBuilder B(Pred, Dst, *currBldrCtx); + + ProgramStateRef State = Pred->getState(); + const LocationContext *LCtx = Pred->getLocationContext(); + + const Expr *Init = CL->getInitializer(); + SVal V = State->getSVal(CL->getInitializer(), LCtx); + + if (isa<CXXConstructExpr>(Init) || isa<CXXStdInitializerListExpr>(Init)) { + // No work needed. Just pass the value up to this expression. + } else { + assert(isa<InitListExpr>(Init)); + Loc CLLoc = State->getLValue(CL, LCtx); + State = State->bindLoc(CLLoc, V, LCtx); + + if (CL->isGLValue()) + V = CLLoc; + } + + B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); +} + +void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + // Assumption: The CFG has one DeclStmt per Decl. + const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); + + if (!VD) { + //TODO:AZ: remove explicit insertion after refactoring is done. + Dst.insert(Pred); + return; + } + + // FIXME: all pre/post visits should eventually be handled by ::Visit(). + ExplodedNodeSet dstPreVisit; + getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); + + ExplodedNodeSet dstEvaluated; + StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); + for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); + I!=E; ++I) { + ExplodedNode *N = *I; + ProgramStateRef state = N->getState(); + const LocationContext *LC = N->getLocationContext(); + + // Decls without InitExpr are not initialized explicitly. + if (const Expr *InitEx = VD->getInit()) { + + // Note in the state that the initialization has occurred. + ExplodedNode *UpdatedN = N; + SVal InitVal = state->getSVal(InitEx, LC); + + assert(DS->isSingleDecl()); + if (getObjectUnderConstruction(state, DS, LC)) { + state = finishObjectConstruction(state, DS, LC); + // We constructed the object directly in the variable. + // No need to bind anything. + B.generateNode(DS, UpdatedN, state); + } else { + // Recover some path-sensitivity if a scalar value evaluated to + // UnknownVal. + if (InitVal.isUnknown()) { + QualType Ty = InitEx->getType(); + if (InitEx->isGLValue()) { + Ty = getContext().getPointerType(Ty); + } + + InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, + currBldrCtx->blockCount()); + } + + + B.takeNodes(UpdatedN); + ExplodedNodeSet Dst2; + evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); + B.addNodes(Dst2); + } + } + else { + B.generateNode(DS, N, state); + } + } + + getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); +} + +void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + // This method acts upon CFG elements for logical operators && and || + // and attaches the value (true or false) to them as expressions. + // It doesn't produce any state splits. + // If we made it that far, we're past the point when we modeled the short + // circuit. It means that we should have precise knowledge about whether + // we've short-circuited. If we did, we already know the value we need to + // bind. If we didn't, the value of the RHS (casted to the boolean type) + // is the answer. + // Currently this method tries to figure out whether we've short-circuited + // by looking at the ExplodedGraph. This method is imperfect because there + // could inevitably have been merges that would have resulted in multiple + // potential path traversal histories. We bail out when we fail. + // Due to this ambiguity, a more reliable solution would have been to + // track the short circuit operation history path-sensitively until + // we evaluate the respective logical operator. + assert(B->getOpcode() == BO_LAnd || + B->getOpcode() == BO_LOr); + + StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); + ProgramStateRef state = Pred->getState(); + + if (B->getType()->isVectorType()) { + // FIXME: We do not model vector arithmetic yet. When adding support for + // that, note that the CFG-based reasoning below does not apply, because + // logical operators on vectors are not short-circuit. Currently they are + // modeled as short-circuit in Clang CFG but this is incorrect. + // Do not set the value for the expression. It'd be UnknownVal by default. + Bldr.generateNode(B, Pred, state); + return; + } + + ExplodedNode *N = Pred; + while (!N->getLocation().getAs<BlockEntrance>()) { + ProgramPoint P = N->getLocation(); + assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); + (void) P; + if (N->pred_size() != 1) { + // We failed to track back where we came from. + Bldr.generateNode(B, Pred, state); + return; + } + N = *N->pred_begin(); + } + + if (N->pred_size() != 1) { + // We failed to track back where we came from. + Bldr.generateNode(B, Pred, state); + return; + } + + N = *N->pred_begin(); + BlockEdge BE = N->getLocation().castAs<BlockEdge>(); + SVal X; + + // Determine the value of the expression by introspecting how we + // got this location in the CFG. This requires looking at the previous + // block we were in and what kind of control-flow transfer was involved. + const CFGBlock *SrcBlock = BE.getSrc(); + // The only terminator (if there is one) that makes sense is a logical op. + CFGTerminator T = SrcBlock->getTerminator(); + if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { + (void) Term; + assert(Term->isLogicalOp()); + assert(SrcBlock->succ_size() == 2); + // Did we take the true or false branch? + unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; + X = svalBuilder.makeIntVal(constant, B->getType()); + } + else { + // If there is no terminator, by construction the last statement + // in SrcBlock is the value of the enclosing expression. + // However, we still need to constrain that value to be 0 or 1. + assert(!SrcBlock->empty()); + CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); + const Expr *RHS = cast<Expr>(Elem.getStmt()); + SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); + + if (RHSVal.isUndef()) { + X = RHSVal; + } else { + // We evaluate "RHSVal != 0" expression which result in 0 if the value is + // known to be false, 1 if the value is known to be true and a new symbol + // when the assumption is unknown. + nonloc::ConcreteInt Zero(getBasicVals().getValue(0, B->getType())); + X = evalBinOp(N->getState(), BO_NE, + svalBuilder.evalCast(RHSVal, B->getType(), RHS->getType()), + Zero, B->getType()); + } + } + Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); +} + +void ExprEngine::VisitInitListExpr(const InitListExpr *IE, + ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + StmtNodeBuilder B(Pred, Dst, *currBldrCtx); + + ProgramStateRef state = Pred->getState(); + const LocationContext *LCtx = Pred->getLocationContext(); + QualType T = getContext().getCanonicalType(IE->getType()); + unsigned NumInitElements = IE->getNumInits(); + + if (!IE->isGLValue() && !IE->isTransparent() && + (T->isArrayType() || T->isRecordType() || T->isVectorType() || + T->isAnyComplexType())) { + llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); + + // Handle base case where the initializer has no elements. + // e.g: static int* myArray[] = {}; + if (NumInitElements == 0) { + SVal V = svalBuilder.makeCompoundVal(T, vals); + B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); + return; + } + + for (InitListExpr::const_reverse_iterator it = IE->rbegin(), + ei = IE->rend(); it != ei; ++it) { + SVal V = state->getSVal(cast<Expr>(*it), LCtx); + vals = getBasicVals().prependSVal(V, vals); + } + + B.generateNode(IE, Pred, + state->BindExpr(IE, LCtx, + svalBuilder.makeCompoundVal(T, vals))); + return; + } + + // Handle scalars: int{5} and int{} and GLvalues. + // Note, if the InitListExpr is a GLvalue, it means that there is an address + // representing it, so it must have a single init element. + assert(NumInitElements <= 1); + + SVal V; + if (NumInitElements == 0) + V = getSValBuilder().makeZeroVal(T); + else + V = state->getSVal(IE->getInit(0), LCtx); + + B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); +} + +void ExprEngine::VisitGuardedExpr(const Expr *Ex, + const Expr *L, + const Expr *R, + ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + assert(L && R); + + StmtNodeBuilder B(Pred, Dst, *currBldrCtx); + ProgramStateRef state = Pred->getState(); + const LocationContext *LCtx = Pred->getLocationContext(); + const CFGBlock *SrcBlock = nullptr; + + // Find the predecessor block. + ProgramStateRef SrcState = state; + for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { + ProgramPoint PP = N->getLocation(); + if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { + // If the state N has multiple predecessors P, it means that successors + // of P are all equivalent. + // In turn, that means that all nodes at P are equivalent in terms + // of observable behavior at N, and we can follow any of them. + // FIXME: a more robust solution which does not walk up the tree. + continue; + } + SrcBlock = PP.castAs<BlockEdge>().getSrc(); + SrcState = N->getState(); + break; + } + + assert(SrcBlock && "missing function entry"); + + // Find the last expression in the predecessor block. That is the + // expression that is used for the value of the ternary expression. + bool hasValue = false; + SVal V; + + for (CFGElement CE : llvm::reverse(*SrcBlock)) { + if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { + const Expr *ValEx = cast<Expr>(CS->getStmt()); + ValEx = ValEx->IgnoreParens(); + + // For GNU extension '?:' operator, the left hand side will be an + // OpaqueValueExpr, so get the underlying expression. + if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) + L = OpaqueEx->getSourceExpr(); + + // If the last expression in the predecessor block matches true or false + // subexpression, get its the value. + if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { + hasValue = true; + V = SrcState->getSVal(ValEx, LCtx); + } + break; + } + } + + if (!hasValue) + V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, + currBldrCtx->blockCount()); + + // Generate a new node with the binding from the appropriate path. + B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); +} + +void ExprEngine:: +VisitOffsetOfExpr(const OffsetOfExpr *OOE, + ExplodedNode *Pred, ExplodedNodeSet &Dst) { + StmtNodeBuilder B(Pred, Dst, *currBldrCtx); + Expr::EvalResult Result; + if (OOE->EvaluateAsInt(Result, getContext())) { + APSInt IV = Result.Val.getInt(); + assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); + assert(OOE->getType()->isBuiltinType()); + assert(OOE->getType()->getAs<BuiltinType>()->isInteger()); + assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); + SVal X = svalBuilder.makeIntVal(IV); + B.generateNode(OOE, Pred, + Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), + X)); + } + // FIXME: Handle the case where __builtin_offsetof is not a constant. +} + + +void ExprEngine:: +VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, + ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + // FIXME: Prechecks eventually go in ::Visit(). + ExplodedNodeSet CheckedSet; + getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); + + ExplodedNodeSet EvalSet; + StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); + + QualType T = Ex->getTypeOfArgument(); + + for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); + I != E; ++I) { + if (Ex->getKind() == UETT_SizeOf) { + if (!T->isIncompleteType() && !T->isConstantSizeType()) { + assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); + + // FIXME: Add support for VLA type arguments and VLA expressions. + // When that happens, we should probably refactor VLASizeChecker's code. + continue; + } else if (T->getAs<ObjCObjectType>()) { + // Some code tries to take the sizeof an ObjCObjectType, relying that + // the compiler has laid out its representation. Just report Unknown + // for these. + continue; + } + } + + APSInt Value = Ex->EvaluateKnownConstInt(getContext()); + CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); + + ProgramStateRef state = (*I)->getState(); + state = state->BindExpr(Ex, (*I)->getLocationContext(), + svalBuilder.makeIntVal(amt.getQuantity(), + Ex->getType())); + Bldr.generateNode(Ex, *I, state); + } + + getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); +} + +void ExprEngine::handleUOExtension(ExplodedNodeSet::iterator I, + const UnaryOperator *U, + StmtNodeBuilder &Bldr) { + // FIXME: We can probably just have some magic in Environment::getSVal() + // that propagates values, instead of creating a new node here. + // + // Unary "+" is a no-op, similar to a parentheses. We still have places + // where it may be a block-level expression, so we need to + // generate an extra node that just propagates the value of the + // subexpression. + const Expr *Ex = U->getSubExpr()->IgnoreParens(); + ProgramStateRef state = (*I)->getState(); + const LocationContext *LCtx = (*I)->getLocationContext(); + Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, + state->getSVal(Ex, LCtx))); +} + +void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + // FIXME: Prechecks eventually go in ::Visit(). + ExplodedNodeSet CheckedSet; + getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); + + ExplodedNodeSet EvalSet; + StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); + + for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); + I != E; ++I) { + switch (U->getOpcode()) { + default: { + Bldr.takeNodes(*I); + ExplodedNodeSet Tmp; + VisitIncrementDecrementOperator(U, *I, Tmp); + Bldr.addNodes(Tmp); + break; + } + case UO_Real: { + const Expr *Ex = U->getSubExpr()->IgnoreParens(); + + // FIXME: We don't have complex SValues yet. + if (Ex->getType()->isAnyComplexType()) { + // Just report "Unknown." + break; + } + + // For all other types, UO_Real is an identity operation. + assert (U->getType() == Ex->getType()); + ProgramStateRef state = (*I)->getState(); + const LocationContext *LCtx = (*I)->getLocationContext(); + Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, + state->getSVal(Ex, LCtx))); + break; + } + + case UO_Imag: { + const Expr *Ex = U->getSubExpr()->IgnoreParens(); + // FIXME: We don't have complex SValues yet. + if (Ex->getType()->isAnyComplexType()) { + // Just report "Unknown." + break; + } + // For all other types, UO_Imag returns 0. + ProgramStateRef state = (*I)->getState(); + const LocationContext *LCtx = (*I)->getLocationContext(); + SVal X = svalBuilder.makeZeroVal(Ex->getType()); + Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); + break; + } + + case UO_AddrOf: { + // Process pointer-to-member address operation. + const Expr *Ex = U->getSubExpr()->IgnoreParens(); + if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex)) { + const ValueDecl *VD = DRE->getDecl(); + + if (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD)) { + ProgramStateRef State = (*I)->getState(); + const LocationContext *LCtx = (*I)->getLocationContext(); + SVal SV = svalBuilder.getMemberPointer(cast<DeclaratorDecl>(VD)); + Bldr.generateNode(U, *I, State->BindExpr(U, LCtx, SV)); + break; + } + } + // Explicitly proceed with default handler for this case cascade. + handleUOExtension(I, U, Bldr); + break; + } + case UO_Plus: + assert(!U->isGLValue()); + LLVM_FALLTHROUGH; + case UO_Deref: + case UO_Extension: { + handleUOExtension(I, U, Bldr); + break; + } + + case UO_LNot: + case UO_Minus: + case UO_Not: { + assert (!U->isGLValue()); + const Expr *Ex = U->getSubExpr()->IgnoreParens(); + ProgramStateRef state = (*I)->getState(); + const LocationContext *LCtx = (*I)->getLocationContext(); + + // Get the value of the subexpression. + SVal V = state->getSVal(Ex, LCtx); + + if (V.isUnknownOrUndef()) { + Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); + break; + } + + switch (U->getOpcode()) { + default: + llvm_unreachable("Invalid Opcode."); + case UO_Not: + // FIXME: Do we need to handle promotions? + state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>())); + break; + case UO_Minus: + // FIXME: Do we need to handle promotions? + state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>())); + break; + case UO_LNot: + // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." + // + // Note: technically we do "E == 0", but this is the same in the + // transfer functions as "0 == E". + SVal Result; + if (Optional<Loc> LV = V.getAs<Loc>()) { + Loc X = svalBuilder.makeNullWithType(Ex->getType()); + Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); + } else if (Ex->getType()->isFloatingType()) { + // FIXME: handle floating point types. + Result = UnknownVal(); + } else { + nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); + Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, + U->getType()); + } + + state = state->BindExpr(U, LCtx, Result); + break; + } + Bldr.generateNode(U, *I, state); + break; + } + } + } + + getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); +} + +void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, + ExplodedNode *Pred, + ExplodedNodeSet &Dst) { + // Handle ++ and -- (both pre- and post-increment). + assert (U->isIncrementDecrementOp()); + const Expr *Ex = U->getSubExpr()->IgnoreParens(); + + const LocationContext *LCtx = Pred->getLocationContext(); + ProgramStateRef state = Pred->getState(); + SVal loc = state->getSVal(Ex, LCtx); + + // Perform a load. + ExplodedNodeSet Tmp; + evalLoad(Tmp, U, Ex, Pred, state, loc); + + ExplodedNodeSet Dst2; + StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); + for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { + + state = (*I)->getState(); + assert(LCtx == (*I)->getLocationContext()); + SVal V2_untested = state->getSVal(Ex, LCtx); + + // Propagate unknown and undefined values. + if (V2_untested.isUnknownOrUndef()) { + state = state->BindExpr(U, LCtx, V2_untested); + + // Perform the store, so that the uninitialized value detection happens. + Bldr.takeNodes(*I); + ExplodedNodeSet Dst3; + evalStore(Dst3, U, Ex, *I, state, loc, V2_untested); + Bldr.addNodes(Dst3); + + continue; + } + DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); + + // Handle all other values. + BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; + + // If the UnaryOperator has non-location type, use its type to create the + // constant value. If the UnaryOperator has location type, create the + // constant with int type and pointer width. + SVal RHS; + SVal Result; + + if (U->getType()->isAnyPointerType()) + RHS = svalBuilder.makeArrayIndex(1); + else if (U->getType()->isIntegralOrEnumerationType()) + RHS = svalBuilder.makeIntVal(1, U->getType()); + else + RHS = UnknownVal(); + + // The use of an operand of type bool with the ++ operators is deprecated + // but valid until C++17. And if the operand of the ++ operator is of type + // bool, it is set to true until C++17. Note that for '_Bool', it is also + // set to true when it encounters ++ operator. + if (U->getType()->isBooleanType() && U->isIncrementOp()) + Result = svalBuilder.makeTruthVal(true, U->getType()); + else + Result = evalBinOp(state, Op, V2, RHS, U->getType()); + + // Conjure a new symbol if necessary to recover precision. + if (Result.isUnknown()){ + DefinedOrUnknownSVal SymVal = + svalBuilder.conjureSymbolVal(nullptr, U, LCtx, + currBldrCtx->blockCount()); + Result = SymVal; + + // If the value is a location, ++/-- should always preserve + // non-nullness. Check if the original value was non-null, and if so + // propagate that constraint. + if (Loc::isLocType(U->getType())) { + DefinedOrUnknownSVal Constraint = + svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); + + if (!state->assume(Constraint, true)) { + // It isn't feasible for the original value to be null. + // Propagate this constraint. + Constraint = svalBuilder.evalEQ(state, SymVal, + svalBuilder.makeZeroVal(U->getType())); + + state = state->assume(Constraint, false); + assert(state); + } + } + } + + // Since the lvalue-to-rvalue conversion is explicit in the AST, + // we bind an l-value if the operator is prefix and an lvalue (in C++). + if (U->isGLValue()) + state = state->BindExpr(U, LCtx, loc); + else + state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); + + // Perform the store. + Bldr.takeNodes(*I); + ExplodedNodeSet Dst3; + evalStore(Dst3, U, Ex, *I, state, loc, Result); + Bldr.addNodes(Dst3); + } + Dst.insert(Dst2); +} |