diff options
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp')
-rw-r--r-- | contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp | 1275 |
1 files changed, 1275 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp b/contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp new file mode 100644 index 000000000000..9e66f77217ec --- /dev/null +++ b/contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp @@ -0,0 +1,1275 @@ +//===-- asan_allocator.cpp ------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file is a part of AddressSanitizer, an address sanity checker. +// +// Implementation of ASan's memory allocator, 2-nd version. +// This variant uses the allocator from sanitizer_common, i.e. the one shared +// with ThreadSanitizer and MemorySanitizer. +// +//===----------------------------------------------------------------------===// + +#include "asan_allocator.h" + +#include "asan_internal.h" +#include "asan_mapping.h" +#include "asan_poisoning.h" +#include "asan_report.h" +#include "asan_stack.h" +#include "asan_thread.h" +#include "lsan/lsan_common.h" +#include "sanitizer_common/sanitizer_allocator_checks.h" +#include "sanitizer_common/sanitizer_allocator_interface.h" +#include "sanitizer_common/sanitizer_common.h" +#include "sanitizer_common/sanitizer_errno.h" +#include "sanitizer_common/sanitizer_flags.h" +#include "sanitizer_common/sanitizer_internal_defs.h" +#include "sanitizer_common/sanitizer_list.h" +#include "sanitizer_common/sanitizer_quarantine.h" +#include "sanitizer_common/sanitizer_stackdepot.h" + +namespace __asan { + +// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits. +// We use adaptive redzones: for larger allocation larger redzones are used. +static u32 RZLog2Size(u32 rz_log) { + CHECK_LT(rz_log, 8); + return 16 << rz_log; +} + +static u32 RZSize2Log(u32 rz_size) { + CHECK_GE(rz_size, 16); + CHECK_LE(rz_size, 2048); + CHECK(IsPowerOfTwo(rz_size)); + u32 res = Log2(rz_size) - 4; + CHECK_EQ(rz_size, RZLog2Size(res)); + return res; +} + +static AsanAllocator &get_allocator(); + +static void AtomicContextStore(volatile atomic_uint64_t *atomic_context, + u32 tid, u32 stack) { + u64 context = tid; + context <<= 32; + context += stack; + atomic_store(atomic_context, context, memory_order_relaxed); +} + +static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context, + u32 &tid, u32 &stack) { + u64 context = atomic_load(atomic_context, memory_order_relaxed); + stack = context; + context >>= 32; + tid = context; +} + +// The memory chunk allocated from the underlying allocator looks like this: +// L L L L L L H H U U U U U U R R +// L -- left redzone words (0 or more bytes) +// H -- ChunkHeader (16 bytes), which is also a part of the left redzone. +// U -- user memory. +// R -- right redzone (0 or more bytes) +// ChunkBase consists of ChunkHeader and other bytes that overlap with user +// memory. + +// If the left redzone is greater than the ChunkHeader size we store a magic +// value in the first uptr word of the memory block and store the address of +// ChunkBase in the next uptr. +// M B L L L L L L L L L H H U U U U U U +// | ^ +// ---------------------| +// M -- magic value kAllocBegMagic +// B -- address of ChunkHeader pointing to the first 'H' + +class ChunkHeader { + public: + atomic_uint8_t chunk_state; + u8 alloc_type : 2; + u8 lsan_tag : 2; + + // align < 8 -> 0 + // else -> log2(min(align, 512)) - 2 + u8 user_requested_alignment_log : 3; + + private: + u16 user_requested_size_hi; + u32 user_requested_size_lo; + atomic_uint64_t alloc_context_id; + + public: + uptr UsedSize() const { + static_assert(sizeof(user_requested_size_lo) == 4, + "Expression below requires this"); + return FIRST_32_SECOND_64(0, ((uptr)user_requested_size_hi << 32)) + + user_requested_size_lo; + } + + void SetUsedSize(uptr size) { + user_requested_size_lo = size; + static_assert(sizeof(user_requested_size_lo) == 4, + "Expression below requires this"); + user_requested_size_hi = FIRST_32_SECOND_64(0, size >> 32); + CHECK_EQ(UsedSize(), size); + } + + void SetAllocContext(u32 tid, u32 stack) { + AtomicContextStore(&alloc_context_id, tid, stack); + } + + void GetAllocContext(u32 &tid, u32 &stack) const { + AtomicContextLoad(&alloc_context_id, tid, stack); + } +}; + +class ChunkBase : public ChunkHeader { + atomic_uint64_t free_context_id; + + public: + void SetFreeContext(u32 tid, u32 stack) { + AtomicContextStore(&free_context_id, tid, stack); + } + + void GetFreeContext(u32 &tid, u32 &stack) const { + AtomicContextLoad(&free_context_id, tid, stack); + } +}; + +static const uptr kChunkHeaderSize = sizeof(ChunkHeader); +static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize; +COMPILER_CHECK(kChunkHeaderSize == 16); +COMPILER_CHECK(kChunkHeader2Size <= 16); + +enum { + // Either just allocated by underlying allocator, but AsanChunk is not yet + // ready, or almost returned to undelying allocator and AsanChunk is already + // meaningless. + CHUNK_INVALID = 0, + // The chunk is allocated and not yet freed. + CHUNK_ALLOCATED = 2, + // The chunk was freed and put into quarantine zone. + CHUNK_QUARANTINE = 3, +}; + +class AsanChunk : public ChunkBase { + public: + uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } + bool AddrIsInside(uptr addr) { + return (addr >= Beg()) && (addr < Beg() + UsedSize()); + } +}; + +class LargeChunkHeader { + static constexpr uptr kAllocBegMagic = + FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); + atomic_uintptr_t magic; + AsanChunk *chunk_header; + + public: + AsanChunk *Get() const { + return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic + ? chunk_header + : nullptr; + } + + void Set(AsanChunk *p) { + if (p) { + chunk_header = p; + atomic_store(&magic, kAllocBegMagic, memory_order_release); + return; + } + + uptr old = kAllocBegMagic; + if (!atomic_compare_exchange_strong(&magic, &old, 0, + memory_order_release)) { + CHECK_EQ(old, kAllocBegMagic); + } + } +}; + +static void FillChunk(AsanChunk *m) { + // FIXME: Use ReleaseMemoryPagesToOS. + Flags &fl = *flags(); + + if (fl.max_free_fill_size > 0) { + // We have to skip the chunk header, it contains free_context_id. + uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size; + if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area. + uptr size_to_fill = m->UsedSize() - kChunkHeader2Size; + size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size); + REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill); + } + } +} + +struct QuarantineCallback { + QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack) + : cache_(cache), + stack_(stack) { + } + + void PreQuarantine(AsanChunk *m) const { + FillChunk(m); + // Poison the region. + PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY), + kAsanHeapFreeMagic); + } + + void Recycle(AsanChunk *m) const { + void *p = get_allocator().GetBlockBegin(m); + + // The secondary will immediately unpoison and unmap the memory, so this + // branch is unnecessary. + if (get_allocator().FromPrimary(p)) { + if (p != m) { + // Clear the magic value, as allocator internals may overwrite the + // contents of deallocated chunk, confusing GetAsanChunk lookup. + reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr); + } + + u8 old_chunk_state = CHUNK_QUARANTINE; + if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state, + CHUNK_INVALID, + memory_order_acquire)) { + CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE); + } + + PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY), + kAsanHeapLeftRedzoneMagic); + } + + // Statistics. + AsanStats &thread_stats = GetCurrentThreadStats(); + thread_stats.real_frees++; + thread_stats.really_freed += m->UsedSize(); + + get_allocator().Deallocate(cache_, p); + } + + void RecyclePassThrough(AsanChunk *m) const { + // Recycle for the secondary will immediately unpoison and unmap the + // memory, so quarantine preparation is unnecessary. + if (get_allocator().FromPrimary(m)) { + // The primary allocation may need pattern fill if enabled. + FillChunk(m); + } + Recycle(m); + } + + void *Allocate(uptr size) const { + void *res = get_allocator().Allocate(cache_, size, 1); + // TODO(alekseys): Consider making quarantine OOM-friendly. + if (UNLIKELY(!res)) + ReportOutOfMemory(size, stack_); + return res; + } + + void Deallocate(void *p) const { get_allocator().Deallocate(cache_, p); } + + private: + AllocatorCache* const cache_; + BufferedStackTrace* const stack_; +}; + +typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine; +typedef AsanQuarantine::Cache QuarantineCache; + +void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const { + PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic); + // Statistics. + AsanStats &thread_stats = GetCurrentThreadStats(); + thread_stats.mmaps++; + thread_stats.mmaped += size; +} + +void AsanMapUnmapCallback::OnMapSecondary(uptr p, uptr size, uptr user_begin, + uptr user_size) const { + uptr user_end = RoundDownTo(user_begin + user_size, ASAN_SHADOW_GRANULARITY); + user_begin = RoundUpTo(user_begin, ASAN_SHADOW_GRANULARITY); + // The secondary mapping will be immediately returned to user, no value + // poisoning that with non-zero just before unpoisoning by Allocate(). So just + // poison head/tail invisible to Allocate(). + PoisonShadow(p, user_begin - p, kAsanHeapLeftRedzoneMagic); + PoisonShadow(user_end, size - (user_end - p), kAsanHeapLeftRedzoneMagic); + // Statistics. + AsanStats &thread_stats = GetCurrentThreadStats(); + thread_stats.mmaps++; + thread_stats.mmaped += size; +} + +void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const { + PoisonShadow(p, size, 0); + // We are about to unmap a chunk of user memory. + // Mark the corresponding shadow memory as not needed. + FlushUnneededASanShadowMemory(p, size); + // Statistics. + AsanStats &thread_stats = GetCurrentThreadStats(); + thread_stats.munmaps++; + thread_stats.munmaped += size; +} + +// We can not use THREADLOCAL because it is not supported on some of the +// platforms we care about (OSX 10.6, Android). +// static THREADLOCAL AllocatorCache cache; +AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) { + CHECK(ms); + return &ms->allocator_cache; +} + +QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) { + CHECK(ms); + CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache)); + return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache); +} + +void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) { + quarantine_size_mb = f->quarantine_size_mb; + thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb; + min_redzone = f->redzone; + max_redzone = f->max_redzone; + may_return_null = cf->allocator_may_return_null; + alloc_dealloc_mismatch = f->alloc_dealloc_mismatch; + release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms; +} + +void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) { + f->quarantine_size_mb = quarantine_size_mb; + f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb; + f->redzone = min_redzone; + f->max_redzone = max_redzone; + cf->allocator_may_return_null = may_return_null; + f->alloc_dealloc_mismatch = alloc_dealloc_mismatch; + cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms; +} + +struct Allocator { + static const uptr kMaxAllowedMallocSize = + FIRST_32_SECOND_64(3UL << 30, 1ULL << 40); + + AsanAllocator allocator; + AsanQuarantine quarantine; + StaticSpinMutex fallback_mutex; + AllocatorCache fallback_allocator_cache; + QuarantineCache fallback_quarantine_cache; + + uptr max_user_defined_malloc_size; + + // ------------------- Options -------------------------- + atomic_uint16_t min_redzone; + atomic_uint16_t max_redzone; + atomic_uint8_t alloc_dealloc_mismatch; + + // ------------------- Initialization ------------------------ + explicit Allocator(LinkerInitialized) + : quarantine(LINKER_INITIALIZED), + fallback_quarantine_cache(LINKER_INITIALIZED) {} + + void CheckOptions(const AllocatorOptions &options) const { + CHECK_GE(options.min_redzone, 16); + CHECK_GE(options.max_redzone, options.min_redzone); + CHECK_LE(options.max_redzone, 2048); + CHECK(IsPowerOfTwo(options.min_redzone)); + CHECK(IsPowerOfTwo(options.max_redzone)); + } + + void SharedInitCode(const AllocatorOptions &options) { + CheckOptions(options); + quarantine.Init((uptr)options.quarantine_size_mb << 20, + (uptr)options.thread_local_quarantine_size_kb << 10); + atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch, + memory_order_release); + atomic_store(&min_redzone, options.min_redzone, memory_order_release); + atomic_store(&max_redzone, options.max_redzone, memory_order_release); + } + + void InitLinkerInitialized(const AllocatorOptions &options) { + SetAllocatorMayReturnNull(options.may_return_null); + allocator.InitLinkerInitialized(options.release_to_os_interval_ms); + SharedInitCode(options); + max_user_defined_malloc_size = common_flags()->max_allocation_size_mb + ? common_flags()->max_allocation_size_mb + << 20 + : kMaxAllowedMallocSize; + } + + void RePoisonChunk(uptr chunk) { + // This could be a user-facing chunk (with redzones), or some internal + // housekeeping chunk, like TransferBatch. Start by assuming the former. + AsanChunk *ac = GetAsanChunk((void *)chunk); + uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk); + if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) == + CHUNK_ALLOCATED) { + uptr beg = ac->Beg(); + uptr end = ac->Beg() + ac->UsedSize(); + uptr chunk_end = chunk + allocated_size; + if (chunk < beg && beg < end && end <= chunk_end) { + // Looks like a valid AsanChunk in use, poison redzones only. + PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic); + uptr end_aligned_down = RoundDownTo(end, ASAN_SHADOW_GRANULARITY); + FastPoisonShadowPartialRightRedzone( + end_aligned_down, end - end_aligned_down, + chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic); + return; + } + } + + // This is either not an AsanChunk or freed or quarantined AsanChunk. + // In either case, poison everything. + PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic); + } + + void ReInitialize(const AllocatorOptions &options) { + SetAllocatorMayReturnNull(options.may_return_null); + allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms); + SharedInitCode(options); + + // Poison all existing allocation's redzones. + if (CanPoisonMemory()) { + allocator.ForceLock(); + allocator.ForEachChunk( + [](uptr chunk, void *alloc) { + ((Allocator *)alloc)->RePoisonChunk(chunk); + }, + this); + allocator.ForceUnlock(); + } + } + + void GetOptions(AllocatorOptions *options) const { + options->quarantine_size_mb = quarantine.GetMaxSize() >> 20; + options->thread_local_quarantine_size_kb = + quarantine.GetMaxCacheSize() >> 10; + options->min_redzone = atomic_load(&min_redzone, memory_order_acquire); + options->max_redzone = atomic_load(&max_redzone, memory_order_acquire); + options->may_return_null = AllocatorMayReturnNull(); + options->alloc_dealloc_mismatch = + atomic_load(&alloc_dealloc_mismatch, memory_order_acquire); + options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs(); + } + + // -------------------- Helper methods. ------------------------- + uptr ComputeRZLog(uptr user_requested_size) { + u32 rz_log = user_requested_size <= 64 - 16 ? 0 + : user_requested_size <= 128 - 32 ? 1 + : user_requested_size <= 512 - 64 ? 2 + : user_requested_size <= 4096 - 128 ? 3 + : user_requested_size <= (1 << 14) - 256 ? 4 + : user_requested_size <= (1 << 15) - 512 ? 5 + : user_requested_size <= (1 << 16) - 1024 ? 6 + : 7; + u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader))); + u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire)); + u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire)); + return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log)); + } + + static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) { + if (user_requested_alignment < 8) + return 0; + if (user_requested_alignment > 512) + user_requested_alignment = 512; + return Log2(user_requested_alignment) - 2; + } + + static uptr ComputeUserAlignment(uptr user_requested_alignment_log) { + if (user_requested_alignment_log == 0) + return 0; + return 1LL << (user_requested_alignment_log + 2); + } + + // We have an address between two chunks, and we want to report just one. + AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk, + AsanChunk *right_chunk) { + if (!left_chunk) + return right_chunk; + if (!right_chunk) + return left_chunk; + // Prefer an allocated chunk over freed chunk and freed chunk + // over available chunk. + u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed); + u8 right_state = + atomic_load(&right_chunk->chunk_state, memory_order_relaxed); + if (left_state != right_state) { + if (left_state == CHUNK_ALLOCATED) + return left_chunk; + if (right_state == CHUNK_ALLOCATED) + return right_chunk; + if (left_state == CHUNK_QUARANTINE) + return left_chunk; + if (right_state == CHUNK_QUARANTINE) + return right_chunk; + } + // Same chunk_state: choose based on offset. + sptr l_offset = 0, r_offset = 0; + CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset)); + CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset)); + if (l_offset < r_offset) + return left_chunk; + return right_chunk; + } + + bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) { + AsanChunk *m = GetAsanChunkByAddr(addr); + if (!m) return false; + if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED) + return false; + if (m->Beg() != addr) return false; + AsanThread *t = GetCurrentThread(); + m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack)); + return true; + } + + // -------------------- Allocation/Deallocation routines --------------- + void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, + AllocType alloc_type, bool can_fill) { + if (UNLIKELY(!AsanInited())) + AsanInitFromRtl(); + if (UNLIKELY(IsRssLimitExceeded())) { + if (AllocatorMayReturnNull()) + return nullptr; + ReportRssLimitExceeded(stack); + } + Flags &fl = *flags(); + CHECK(stack); + const uptr min_alignment = ASAN_SHADOW_GRANULARITY; + const uptr user_requested_alignment_log = + ComputeUserRequestedAlignmentLog(alignment); + if (alignment < min_alignment) + alignment = min_alignment; + if (size == 0) { + // We'd be happy to avoid allocating memory for zero-size requests, but + // some programs/tests depend on this behavior and assume that malloc + // would not return NULL even for zero-size allocations. Moreover, it + // looks like operator new should never return NULL, and results of + // consecutive "new" calls must be different even if the allocated size + // is zero. + size = 1; + } + CHECK(IsPowerOfTwo(alignment)); + uptr rz_log = ComputeRZLog(size); + uptr rz_size = RZLog2Size(rz_log); + uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment); + uptr needed_size = rounded_size + rz_size; + if (alignment > min_alignment) + needed_size += alignment; + bool from_primary = PrimaryAllocator::CanAllocate(needed_size, alignment); + // If we are allocating from the secondary allocator, there will be no + // automatic right redzone, so add the right redzone manually. + if (!from_primary) + needed_size += rz_size; + CHECK(IsAligned(needed_size, min_alignment)); + if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || + size > max_user_defined_malloc_size) { + if (AllocatorMayReturnNull()) { + Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n", + size); + return nullptr; + } + uptr malloc_limit = + Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); + ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack); + } + + AsanThread *t = GetCurrentThread(); + void *allocated; + if (t) { + AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); + allocated = allocator.Allocate(cache, needed_size, 8); + } else { + SpinMutexLock l(&fallback_mutex); + AllocatorCache *cache = &fallback_allocator_cache; + allocated = allocator.Allocate(cache, needed_size, 8); + } + if (UNLIKELY(!allocated)) { + SetAllocatorOutOfMemory(); + if (AllocatorMayReturnNull()) + return nullptr; + ReportOutOfMemory(size, stack); + } + + uptr alloc_beg = reinterpret_cast<uptr>(allocated); + uptr alloc_end = alloc_beg + needed_size; + uptr user_beg = alloc_beg + rz_size; + if (!IsAligned(user_beg, alignment)) + user_beg = RoundUpTo(user_beg, alignment); + uptr user_end = user_beg + size; + CHECK_LE(user_end, alloc_end); + uptr chunk_beg = user_beg - kChunkHeaderSize; + AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); + m->alloc_type = alloc_type; + CHECK(size); + m->SetUsedSize(size); + m->user_requested_alignment_log = user_requested_alignment_log; + + m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack)); + + if (!from_primary || *(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0) { + // The allocator provides an unpoisoned chunk. This is possible for the + // secondary allocator, or if CanPoisonMemory() was false for some time, + // for example, due to flags()->start_disabled. Anyway, poison left and + // right of the block before using it for anything else. + uptr tail_beg = RoundUpTo(user_end, ASAN_SHADOW_GRANULARITY); + uptr tail_end = alloc_beg + allocator.GetActuallyAllocatedSize(allocated); + PoisonShadow(alloc_beg, user_beg - alloc_beg, kAsanHeapLeftRedzoneMagic); + PoisonShadow(tail_beg, tail_end - tail_beg, kAsanHeapLeftRedzoneMagic); + } + + uptr size_rounded_down_to_granularity = + RoundDownTo(size, ASAN_SHADOW_GRANULARITY); + // Unpoison the bulk of the memory region. + if (size_rounded_down_to_granularity) + PoisonShadow(user_beg, size_rounded_down_to_granularity, 0); + // Deal with the end of the region if size is not aligned to granularity. + if (size != size_rounded_down_to_granularity && CanPoisonMemory()) { + u8 *shadow = + (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity); + *shadow = fl.poison_partial ? (size & (ASAN_SHADOW_GRANULARITY - 1)) : 0; + } + + AsanStats &thread_stats = GetCurrentThreadStats(); + thread_stats.mallocs++; + thread_stats.malloced += size; + thread_stats.malloced_redzones += needed_size - size; + if (needed_size > SizeClassMap::kMaxSize) + thread_stats.malloc_large++; + else + thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; + + void *res = reinterpret_cast<void *>(user_beg); + if (can_fill && fl.max_malloc_fill_size) { + uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size); + REAL(memset)(res, fl.malloc_fill_byte, fill_size); + } +#if CAN_SANITIZE_LEAKS + m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored + : __lsan::kDirectlyLeaked; +#endif + // Must be the last mutation of metadata in this function. + atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release); + if (alloc_beg != chunk_beg) { + CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); + reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); + } + RunMallocHooks(res, size); + return res; + } + + // Set quarantine flag if chunk is allocated, issue ASan error report on + // available and quarantined chunks. Return true on success, false otherwise. + bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr, + BufferedStackTrace *stack) { + u8 old_chunk_state = CHUNK_ALLOCATED; + // Flip the chunk_state atomically to avoid race on double-free. + if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state, + CHUNK_QUARANTINE, + memory_order_acquire)) { + ReportInvalidFree(ptr, old_chunk_state, stack); + // It's not safe to push a chunk in quarantine on invalid free. + return false; + } + CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state); + // It was a user data. + m->SetFreeContext(kInvalidTid, 0); + return true; + } + + // Expects the chunk to already be marked as quarantined by using + // AtomicallySetQuarantineFlagIfAllocated. + void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) { + CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed), + CHUNK_QUARANTINE); + AsanThread *t = GetCurrentThread(); + m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack)); + + // Push into quarantine. + if (t) { + AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); + AllocatorCache *ac = GetAllocatorCache(ms); + quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m, + m->UsedSize()); + } else { + SpinMutexLock l(&fallback_mutex); + AllocatorCache *ac = &fallback_allocator_cache; + quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack), + m, m->UsedSize()); + } + } + + void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, + BufferedStackTrace *stack, AllocType alloc_type) { + uptr p = reinterpret_cast<uptr>(ptr); + if (p == 0) return; + + uptr chunk_beg = p - kChunkHeaderSize; + AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); + + // On Windows, uninstrumented DLLs may allocate memory before ASan hooks + // malloc. Don't report an invalid free in this case. + if (SANITIZER_WINDOWS && + !get_allocator().PointerIsMine(ptr)) { + if (!IsSystemHeapAddress(p)) + ReportFreeNotMalloced(p, stack); + return; + } + + if (RunFreeHooks(ptr)) { + // Someone used __sanitizer_ignore_free_hook() and decided that they + // didn't want the memory to __sanitizer_ignore_free_hook freed right now. + // When they call free() on this pointer again at a later time, we should + // ignore the alloc-type mismatch and allow them to deallocate the pointer + // through free(), rather than the initial alloc type. + m->alloc_type = FROM_MALLOC; + return; + } + + // Must mark the chunk as quarantined before any changes to its metadata. + // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag. + if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return; + + if (m->alloc_type != alloc_type) { + if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) { + ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type, + (AllocType)alloc_type); + } + } else { + if (flags()->new_delete_type_mismatch && + (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) && + ((delete_size && delete_size != m->UsedSize()) || + ComputeUserRequestedAlignmentLog(delete_alignment) != + m->user_requested_alignment_log)) { + ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack); + } + } + + AsanStats &thread_stats = GetCurrentThreadStats(); + thread_stats.frees++; + thread_stats.freed += m->UsedSize(); + + QuarantineChunk(m, ptr, stack); + } + + void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { + CHECK(old_ptr && new_size); + uptr p = reinterpret_cast<uptr>(old_ptr); + uptr chunk_beg = p - kChunkHeaderSize; + AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg); + + AsanStats &thread_stats = GetCurrentThreadStats(); + thread_stats.reallocs++; + thread_stats.realloced += new_size; + + void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true); + if (new_ptr) { + u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire); + if (chunk_state != CHUNK_ALLOCATED) + ReportInvalidFree(old_ptr, chunk_state, stack); + CHECK_NE(REAL(memcpy), nullptr); + uptr memcpy_size = Min(new_size, m->UsedSize()); + // If realloc() races with free(), we may start copying freed memory. + // However, we will report racy double-free later anyway. + REAL(memcpy)(new_ptr, old_ptr, memcpy_size); + Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); + } + return new_ptr; + } + + void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { + if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { + if (AllocatorMayReturnNull()) + return nullptr; + ReportCallocOverflow(nmemb, size, stack); + } + void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false); + // If the memory comes from the secondary allocator no need to clear it + // as it comes directly from mmap. + if (ptr && allocator.FromPrimary(ptr)) + REAL(memset)(ptr, 0, nmemb * size); + return ptr; + } + + void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) { + if (chunk_state == CHUNK_QUARANTINE) + ReportDoubleFree((uptr)ptr, stack); + else + ReportFreeNotMalloced((uptr)ptr, stack); + } + + void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) { + AllocatorCache *ac = GetAllocatorCache(ms); + quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack)); + allocator.SwallowCache(ac); + } + + // -------------------------- Chunk lookup ---------------------- + + // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). + // Returns nullptr if AsanChunk is not yet initialized just after + // get_allocator().Allocate(), or is being destroyed just before + // get_allocator().Deallocate(). + AsanChunk *GetAsanChunk(void *alloc_beg) { + if (!alloc_beg) + return nullptr; + AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); + if (!p) { + if (!allocator.FromPrimary(alloc_beg)) + return nullptr; + p = reinterpret_cast<AsanChunk *>(alloc_beg); + } + u8 state = atomic_load(&p->chunk_state, memory_order_relaxed); + // It does not guaranty that Chunk is initialized, but it's + // definitely not for any other value. + if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE) + return p; + return nullptr; + } + + AsanChunk *GetAsanChunkByAddr(uptr p) { + void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); + return GetAsanChunk(alloc_beg); + } + + // Allocator must be locked when this function is called. + AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) { + void *alloc_beg = + allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p)); + return GetAsanChunk(alloc_beg); + } + + uptr AllocationSize(uptr p) { + AsanChunk *m = GetAsanChunkByAddr(p); + if (!m) return 0; + if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED) + return 0; + if (m->Beg() != p) return 0; + return m->UsedSize(); + } + + uptr AllocationSizeFast(uptr p) { + return reinterpret_cast<AsanChunk *>(p - kChunkHeaderSize)->UsedSize(); + } + + AsanChunkView FindHeapChunkByAddress(uptr addr) { + AsanChunk *m1 = GetAsanChunkByAddr(addr); + sptr offset = 0; + if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) { + // The address is in the chunk's left redzone, so maybe it is actually + // a right buffer overflow from the other chunk before. + // Search a bit before to see if there is another chunk. + AsanChunk *m2 = nullptr; + for (uptr l = 1; l < GetPageSizeCached(); l++) { + m2 = GetAsanChunkByAddr(addr - l); + if (m2 == m1) continue; // Still the same chunk. + break; + } + if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset)) + m1 = ChooseChunk(addr, m2, m1); + } + return AsanChunkView(m1); + } + + void Purge(BufferedStackTrace *stack) { + AsanThread *t = GetCurrentThread(); + if (t) { + AsanThreadLocalMallocStorage *ms = &t->malloc_storage(); + quarantine.DrainAndRecycle(GetQuarantineCache(ms), + QuarantineCallback(GetAllocatorCache(ms), + stack)); + } + { + SpinMutexLock l(&fallback_mutex); + quarantine.DrainAndRecycle(&fallback_quarantine_cache, + QuarantineCallback(&fallback_allocator_cache, + stack)); + } + + allocator.ForceReleaseToOS(); + } + + void PrintStats() { + allocator.PrintStats(); + quarantine.PrintStats(); + } + + void ForceLock() SANITIZER_ACQUIRE(fallback_mutex) { + allocator.ForceLock(); + fallback_mutex.Lock(); + } + + void ForceUnlock() SANITIZER_RELEASE(fallback_mutex) { + fallback_mutex.Unlock(); + allocator.ForceUnlock(); + } +}; + +static Allocator instance(LINKER_INITIALIZED); + +static AsanAllocator &get_allocator() { + return instance.allocator; +} + +bool AsanChunkView::IsValid() const { + return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) != + CHUNK_INVALID; +} +bool AsanChunkView::IsAllocated() const { + return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) == + CHUNK_ALLOCATED; +} +bool AsanChunkView::IsQuarantined() const { + return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) == + CHUNK_QUARANTINE; +} +uptr AsanChunkView::Beg() const { return chunk_->Beg(); } +uptr AsanChunkView::End() const { return Beg() + UsedSize(); } +uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); } +u32 AsanChunkView::UserRequestedAlignment() const { + return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log); +} + +uptr AsanChunkView::AllocTid() const { + u32 tid = 0; + u32 stack = 0; + chunk_->GetAllocContext(tid, stack); + return tid; +} + +uptr AsanChunkView::FreeTid() const { + if (!IsQuarantined()) + return kInvalidTid; + u32 tid = 0; + u32 stack = 0; + chunk_->GetFreeContext(tid, stack); + return tid; +} + +AllocType AsanChunkView::GetAllocType() const { + return (AllocType)chunk_->alloc_type; +} + +u32 AsanChunkView::GetAllocStackId() const { + u32 tid = 0; + u32 stack = 0; + chunk_->GetAllocContext(tid, stack); + return stack; +} + +u32 AsanChunkView::GetFreeStackId() const { + if (!IsQuarantined()) + return 0; + u32 tid = 0; + u32 stack = 0; + chunk_->GetFreeContext(tid, stack); + return stack; +} + +void InitializeAllocator(const AllocatorOptions &options) { + instance.InitLinkerInitialized(options); +} + +void ReInitializeAllocator(const AllocatorOptions &options) { + instance.ReInitialize(options); +} + +void GetAllocatorOptions(AllocatorOptions *options) { + instance.GetOptions(options); +} + +AsanChunkView FindHeapChunkByAddress(uptr addr) { + return instance.FindHeapChunkByAddress(addr); +} +AsanChunkView FindHeapChunkByAllocBeg(uptr addr) { + return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr))); +} + +void AsanThreadLocalMallocStorage::CommitBack() { + GET_STACK_TRACE_MALLOC; + instance.CommitBack(this, &stack); +} + +void PrintInternalAllocatorStats() { + instance.PrintStats(); +} + +void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { + instance.Deallocate(ptr, 0, 0, stack, alloc_type); +} + +void asan_delete(void *ptr, uptr size, uptr alignment, + BufferedStackTrace *stack, AllocType alloc_type) { + instance.Deallocate(ptr, size, alignment, stack, alloc_type); +} + +void *asan_malloc(uptr size, BufferedStackTrace *stack) { + return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true)); +} + +void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { + return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); +} + +void *asan_reallocarray(void *p, uptr nmemb, uptr size, + BufferedStackTrace *stack) { + if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { + errno = errno_ENOMEM; + if (AllocatorMayReturnNull()) + return nullptr; + ReportReallocArrayOverflow(nmemb, size, stack); + } + return asan_realloc(p, nmemb * size, stack); +} + +void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) { + if (!p) + return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true)); + if (size == 0) { + if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { + instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); + return nullptr; + } + // Allocate a size of 1 if we shouldn't free() on Realloc to 0 + size = 1; + } + return SetErrnoOnNull(instance.Reallocate(p, size, stack)); +} + +void *asan_valloc(uptr size, BufferedStackTrace *stack) { + return SetErrnoOnNull( + instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true)); +} + +void *asan_pvalloc(uptr size, BufferedStackTrace *stack) { + uptr PageSize = GetPageSizeCached(); + if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { + errno = errno_ENOMEM; + if (AllocatorMayReturnNull()) + return nullptr; + ReportPvallocOverflow(size, stack); + } + // pvalloc(0) should allocate one page. + size = size ? RoundUpTo(size, PageSize) : PageSize; + return SetErrnoOnNull( + instance.Allocate(size, PageSize, stack, FROM_MALLOC, true)); +} + +void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, + AllocType alloc_type) { + if (UNLIKELY(!IsPowerOfTwo(alignment))) { + errno = errno_EINVAL; + if (AllocatorMayReturnNull()) + return nullptr; + ReportInvalidAllocationAlignment(alignment, stack); + } + return SetErrnoOnNull( + instance.Allocate(size, alignment, stack, alloc_type, true)); +} + +void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) { + if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { + errno = errno_EINVAL; + if (AllocatorMayReturnNull()) + return nullptr; + ReportInvalidAlignedAllocAlignment(size, alignment, stack); + } + return SetErrnoOnNull( + instance.Allocate(size, alignment, stack, FROM_MALLOC, true)); +} + +int asan_posix_memalign(void **memptr, uptr alignment, uptr size, + BufferedStackTrace *stack) { + if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { + if (AllocatorMayReturnNull()) + return errno_EINVAL; + ReportInvalidPosixMemalignAlignment(alignment, stack); + } + void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true); + if (UNLIKELY(!ptr)) + // OOM error is already taken care of by Allocate. + return errno_ENOMEM; + CHECK(IsAligned((uptr)ptr, alignment)); + *memptr = ptr; + return 0; +} + +uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) { + if (!ptr) return 0; + uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); + if (flags()->check_malloc_usable_size && (usable_size == 0)) { + GET_STACK_TRACE_FATAL(pc, bp); + ReportMallocUsableSizeNotOwned((uptr)ptr, &stack); + } + return usable_size; +} + +uptr asan_mz_size(const void *ptr) { + return instance.AllocationSize(reinterpret_cast<uptr>(ptr)); +} + +void asan_mz_force_lock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { + instance.ForceLock(); +} + +void asan_mz_force_unlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { + instance.ForceUnlock(); +} + +} // namespace __asan + +// --- Implementation of LSan-specific functions --- {{{1 +namespace __lsan { +void LockAllocator() { + __asan::get_allocator().ForceLock(); +} + +void UnlockAllocator() { + __asan::get_allocator().ForceUnlock(); +} + +void GetAllocatorGlobalRange(uptr *begin, uptr *end) { + *begin = (uptr)&__asan::get_allocator(); + *end = *begin + sizeof(__asan::get_allocator()); +} + +uptr PointsIntoChunk(void *p) { + uptr addr = reinterpret_cast<uptr>(p); + __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr); + if (!m || atomic_load(&m->chunk_state, memory_order_acquire) != + __asan::CHUNK_ALLOCATED) + return 0; + uptr chunk = m->Beg(); + if (m->AddrIsInside(addr)) + return chunk; + if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr)) + return chunk; + return 0; +} + +uptr GetUserBegin(uptr chunk) { + // FIXME: All usecases provide chunk address, GetAsanChunkByAddrFastLocked is + // not needed. + __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk); + return m ? m->Beg() : 0; +} + +uptr GetUserAddr(uptr chunk) { + return chunk; +} + +LsanMetadata::LsanMetadata(uptr chunk) { + metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize) + : nullptr; +} + +bool LsanMetadata::allocated() const { + if (!metadata_) + return false; + __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); + return atomic_load(&m->chunk_state, memory_order_relaxed) == + __asan::CHUNK_ALLOCATED; +} + +ChunkTag LsanMetadata::tag() const { + __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); + return static_cast<ChunkTag>(m->lsan_tag); +} + +void LsanMetadata::set_tag(ChunkTag value) { + __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); + m->lsan_tag = value; +} + +uptr LsanMetadata::requested_size() const { + __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); + return m->UsedSize(); +} + +u32 LsanMetadata::stack_trace_id() const { + __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_); + u32 tid = 0; + u32 stack = 0; + m->GetAllocContext(tid, stack); + return stack; +} + +void ForEachChunk(ForEachChunkCallback callback, void *arg) { + __asan::get_allocator().ForEachChunk(callback, arg); +} + +IgnoreObjectResult IgnoreObject(const void *p) { + uptr addr = reinterpret_cast<uptr>(p); + __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr); + if (!m || + (atomic_load(&m->chunk_state, memory_order_acquire) != + __asan::CHUNK_ALLOCATED) || + !m->AddrIsInside(addr)) { + return kIgnoreObjectInvalid; + } + if (m->lsan_tag == kIgnored) + return kIgnoreObjectAlreadyIgnored; + m->lsan_tag = __lsan::kIgnored; + return kIgnoreObjectSuccess; +} + +} // namespace __lsan + +// ---------------------- Interface ---------------- {{{1 +using namespace __asan; + +static const void *AllocationBegin(const void *p) { + AsanChunk *m = __asan::instance.GetAsanChunkByAddr((uptr)p); + if (!m) + return nullptr; + if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED) + return nullptr; + if (m->UsedSize() == 0) + return nullptr; + return (const void *)(m->Beg()); +} + +// ASan allocator doesn't reserve extra bytes, so normally we would +// just return "size". We don't want to expose our redzone sizes, etc here. +uptr __sanitizer_get_estimated_allocated_size(uptr size) { + return size; +} + +int __sanitizer_get_ownership(const void *p) { + uptr ptr = reinterpret_cast<uptr>(p); + return instance.AllocationSize(ptr) > 0; +} + +uptr __sanitizer_get_allocated_size(const void *p) { + if (!p) return 0; + uptr ptr = reinterpret_cast<uptr>(p); + uptr allocated_size = instance.AllocationSize(ptr); + // Die if p is not malloced or if it is already freed. + if (allocated_size == 0) { + GET_STACK_TRACE_FATAL_HERE; + ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack); + } + return allocated_size; +} + +uptr __sanitizer_get_allocated_size_fast(const void *p) { + DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); + uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p)); + DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); + return ret; +} + +const void *__sanitizer_get_allocated_begin(const void *p) { + return AllocationBegin(p); +} + +void __sanitizer_purge_allocator() { + GET_STACK_TRACE_MALLOC; + instance.Purge(&stack); +} + +int __asan_update_allocation_context(void* addr) { + GET_STACK_TRACE_MALLOC; + return instance.UpdateAllocationStack((uptr)addr, &stack); +} |