aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp')
-rw-r--r--contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp1275
1 files changed, 1275 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp b/contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp
new file mode 100644
index 000000000000..9e66f77217ec
--- /dev/null
+++ b/contrib/llvm-project/compiler-rt/lib/asan/asan_allocator.cpp
@@ -0,0 +1,1275 @@
+//===-- asan_allocator.cpp ------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of AddressSanitizer, an address sanity checker.
+//
+// Implementation of ASan's memory allocator, 2-nd version.
+// This variant uses the allocator from sanitizer_common, i.e. the one shared
+// with ThreadSanitizer and MemorySanitizer.
+//
+//===----------------------------------------------------------------------===//
+
+#include "asan_allocator.h"
+
+#include "asan_internal.h"
+#include "asan_mapping.h"
+#include "asan_poisoning.h"
+#include "asan_report.h"
+#include "asan_stack.h"
+#include "asan_thread.h"
+#include "lsan/lsan_common.h"
+#include "sanitizer_common/sanitizer_allocator_checks.h"
+#include "sanitizer_common/sanitizer_allocator_interface.h"
+#include "sanitizer_common/sanitizer_common.h"
+#include "sanitizer_common/sanitizer_errno.h"
+#include "sanitizer_common/sanitizer_flags.h"
+#include "sanitizer_common/sanitizer_internal_defs.h"
+#include "sanitizer_common/sanitizer_list.h"
+#include "sanitizer_common/sanitizer_quarantine.h"
+#include "sanitizer_common/sanitizer_stackdepot.h"
+
+namespace __asan {
+
+// Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
+// We use adaptive redzones: for larger allocation larger redzones are used.
+static u32 RZLog2Size(u32 rz_log) {
+ CHECK_LT(rz_log, 8);
+ return 16 << rz_log;
+}
+
+static u32 RZSize2Log(u32 rz_size) {
+ CHECK_GE(rz_size, 16);
+ CHECK_LE(rz_size, 2048);
+ CHECK(IsPowerOfTwo(rz_size));
+ u32 res = Log2(rz_size) - 4;
+ CHECK_EQ(rz_size, RZLog2Size(res));
+ return res;
+}
+
+static AsanAllocator &get_allocator();
+
+static void AtomicContextStore(volatile atomic_uint64_t *atomic_context,
+ u32 tid, u32 stack) {
+ u64 context = tid;
+ context <<= 32;
+ context += stack;
+ atomic_store(atomic_context, context, memory_order_relaxed);
+}
+
+static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context,
+ u32 &tid, u32 &stack) {
+ u64 context = atomic_load(atomic_context, memory_order_relaxed);
+ stack = context;
+ context >>= 32;
+ tid = context;
+}
+
+// The memory chunk allocated from the underlying allocator looks like this:
+// L L L L L L H H U U U U U U R R
+// L -- left redzone words (0 or more bytes)
+// H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
+// U -- user memory.
+// R -- right redzone (0 or more bytes)
+// ChunkBase consists of ChunkHeader and other bytes that overlap with user
+// memory.
+
+// If the left redzone is greater than the ChunkHeader size we store a magic
+// value in the first uptr word of the memory block and store the address of
+// ChunkBase in the next uptr.
+// M B L L L L L L L L L H H U U U U U U
+// | ^
+// ---------------------|
+// M -- magic value kAllocBegMagic
+// B -- address of ChunkHeader pointing to the first 'H'
+
+class ChunkHeader {
+ public:
+ atomic_uint8_t chunk_state;
+ u8 alloc_type : 2;
+ u8 lsan_tag : 2;
+
+ // align < 8 -> 0
+ // else -> log2(min(align, 512)) - 2
+ u8 user_requested_alignment_log : 3;
+
+ private:
+ u16 user_requested_size_hi;
+ u32 user_requested_size_lo;
+ atomic_uint64_t alloc_context_id;
+
+ public:
+ uptr UsedSize() const {
+ static_assert(sizeof(user_requested_size_lo) == 4,
+ "Expression below requires this");
+ return FIRST_32_SECOND_64(0, ((uptr)user_requested_size_hi << 32)) +
+ user_requested_size_lo;
+ }
+
+ void SetUsedSize(uptr size) {
+ user_requested_size_lo = size;
+ static_assert(sizeof(user_requested_size_lo) == 4,
+ "Expression below requires this");
+ user_requested_size_hi = FIRST_32_SECOND_64(0, size >> 32);
+ CHECK_EQ(UsedSize(), size);
+ }
+
+ void SetAllocContext(u32 tid, u32 stack) {
+ AtomicContextStore(&alloc_context_id, tid, stack);
+ }
+
+ void GetAllocContext(u32 &tid, u32 &stack) const {
+ AtomicContextLoad(&alloc_context_id, tid, stack);
+ }
+};
+
+class ChunkBase : public ChunkHeader {
+ atomic_uint64_t free_context_id;
+
+ public:
+ void SetFreeContext(u32 tid, u32 stack) {
+ AtomicContextStore(&free_context_id, tid, stack);
+ }
+
+ void GetFreeContext(u32 &tid, u32 &stack) const {
+ AtomicContextLoad(&free_context_id, tid, stack);
+ }
+};
+
+static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
+static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
+COMPILER_CHECK(kChunkHeaderSize == 16);
+COMPILER_CHECK(kChunkHeader2Size <= 16);
+
+enum {
+ // Either just allocated by underlying allocator, but AsanChunk is not yet
+ // ready, or almost returned to undelying allocator and AsanChunk is already
+ // meaningless.
+ CHUNK_INVALID = 0,
+ // The chunk is allocated and not yet freed.
+ CHUNK_ALLOCATED = 2,
+ // The chunk was freed and put into quarantine zone.
+ CHUNK_QUARANTINE = 3,
+};
+
+class AsanChunk : public ChunkBase {
+ public:
+ uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
+ bool AddrIsInside(uptr addr) {
+ return (addr >= Beg()) && (addr < Beg() + UsedSize());
+ }
+};
+
+class LargeChunkHeader {
+ static constexpr uptr kAllocBegMagic =
+ FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
+ atomic_uintptr_t magic;
+ AsanChunk *chunk_header;
+
+ public:
+ AsanChunk *Get() const {
+ return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
+ ? chunk_header
+ : nullptr;
+ }
+
+ void Set(AsanChunk *p) {
+ if (p) {
+ chunk_header = p;
+ atomic_store(&magic, kAllocBegMagic, memory_order_release);
+ return;
+ }
+
+ uptr old = kAllocBegMagic;
+ if (!atomic_compare_exchange_strong(&magic, &old, 0,
+ memory_order_release)) {
+ CHECK_EQ(old, kAllocBegMagic);
+ }
+ }
+};
+
+static void FillChunk(AsanChunk *m) {
+ // FIXME: Use ReleaseMemoryPagesToOS.
+ Flags &fl = *flags();
+
+ if (fl.max_free_fill_size > 0) {
+ // We have to skip the chunk header, it contains free_context_id.
+ uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
+ if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area.
+ uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
+ size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
+ REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
+ }
+ }
+}
+
+struct QuarantineCallback {
+ QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
+ : cache_(cache),
+ stack_(stack) {
+ }
+
+ void PreQuarantine(AsanChunk *m) const {
+ FillChunk(m);
+ // Poison the region.
+ PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY),
+ kAsanHeapFreeMagic);
+ }
+
+ void Recycle(AsanChunk *m) const {
+ void *p = get_allocator().GetBlockBegin(m);
+
+ // The secondary will immediately unpoison and unmap the memory, so this
+ // branch is unnecessary.
+ if (get_allocator().FromPrimary(p)) {
+ if (p != m) {
+ // Clear the magic value, as allocator internals may overwrite the
+ // contents of deallocated chunk, confusing GetAsanChunk lookup.
+ reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr);
+ }
+
+ u8 old_chunk_state = CHUNK_QUARANTINE;
+ if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
+ CHUNK_INVALID,
+ memory_order_acquire)) {
+ CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE);
+ }
+
+ PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY),
+ kAsanHeapLeftRedzoneMagic);
+ }
+
+ // Statistics.
+ AsanStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.real_frees++;
+ thread_stats.really_freed += m->UsedSize();
+
+ get_allocator().Deallocate(cache_, p);
+ }
+
+ void RecyclePassThrough(AsanChunk *m) const {
+ // Recycle for the secondary will immediately unpoison and unmap the
+ // memory, so quarantine preparation is unnecessary.
+ if (get_allocator().FromPrimary(m)) {
+ // The primary allocation may need pattern fill if enabled.
+ FillChunk(m);
+ }
+ Recycle(m);
+ }
+
+ void *Allocate(uptr size) const {
+ void *res = get_allocator().Allocate(cache_, size, 1);
+ // TODO(alekseys): Consider making quarantine OOM-friendly.
+ if (UNLIKELY(!res))
+ ReportOutOfMemory(size, stack_);
+ return res;
+ }
+
+ void Deallocate(void *p) const { get_allocator().Deallocate(cache_, p); }
+
+ private:
+ AllocatorCache* const cache_;
+ BufferedStackTrace* const stack_;
+};
+
+typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
+typedef AsanQuarantine::Cache QuarantineCache;
+
+void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
+ PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
+ // Statistics.
+ AsanStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.mmaps++;
+ thread_stats.mmaped += size;
+}
+
+void AsanMapUnmapCallback::OnMapSecondary(uptr p, uptr size, uptr user_begin,
+ uptr user_size) const {
+ uptr user_end = RoundDownTo(user_begin + user_size, ASAN_SHADOW_GRANULARITY);
+ user_begin = RoundUpTo(user_begin, ASAN_SHADOW_GRANULARITY);
+ // The secondary mapping will be immediately returned to user, no value
+ // poisoning that with non-zero just before unpoisoning by Allocate(). So just
+ // poison head/tail invisible to Allocate().
+ PoisonShadow(p, user_begin - p, kAsanHeapLeftRedzoneMagic);
+ PoisonShadow(user_end, size - (user_end - p), kAsanHeapLeftRedzoneMagic);
+ // Statistics.
+ AsanStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.mmaps++;
+ thread_stats.mmaped += size;
+}
+
+void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
+ PoisonShadow(p, size, 0);
+ // We are about to unmap a chunk of user memory.
+ // Mark the corresponding shadow memory as not needed.
+ FlushUnneededASanShadowMemory(p, size);
+ // Statistics.
+ AsanStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.munmaps++;
+ thread_stats.munmaped += size;
+}
+
+// We can not use THREADLOCAL because it is not supported on some of the
+// platforms we care about (OSX 10.6, Android).
+// static THREADLOCAL AllocatorCache cache;
+AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
+ CHECK(ms);
+ return &ms->allocator_cache;
+}
+
+QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
+ CHECK(ms);
+ CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
+ return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
+}
+
+void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
+ quarantine_size_mb = f->quarantine_size_mb;
+ thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
+ min_redzone = f->redzone;
+ max_redzone = f->max_redzone;
+ may_return_null = cf->allocator_may_return_null;
+ alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
+ release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
+}
+
+void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
+ f->quarantine_size_mb = quarantine_size_mb;
+ f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
+ f->redzone = min_redzone;
+ f->max_redzone = max_redzone;
+ cf->allocator_may_return_null = may_return_null;
+ f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
+ cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
+}
+
+struct Allocator {
+ static const uptr kMaxAllowedMallocSize =
+ FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
+
+ AsanAllocator allocator;
+ AsanQuarantine quarantine;
+ StaticSpinMutex fallback_mutex;
+ AllocatorCache fallback_allocator_cache;
+ QuarantineCache fallback_quarantine_cache;
+
+ uptr max_user_defined_malloc_size;
+
+ // ------------------- Options --------------------------
+ atomic_uint16_t min_redzone;
+ atomic_uint16_t max_redzone;
+ atomic_uint8_t alloc_dealloc_mismatch;
+
+ // ------------------- Initialization ------------------------
+ explicit Allocator(LinkerInitialized)
+ : quarantine(LINKER_INITIALIZED),
+ fallback_quarantine_cache(LINKER_INITIALIZED) {}
+
+ void CheckOptions(const AllocatorOptions &options) const {
+ CHECK_GE(options.min_redzone, 16);
+ CHECK_GE(options.max_redzone, options.min_redzone);
+ CHECK_LE(options.max_redzone, 2048);
+ CHECK(IsPowerOfTwo(options.min_redzone));
+ CHECK(IsPowerOfTwo(options.max_redzone));
+ }
+
+ void SharedInitCode(const AllocatorOptions &options) {
+ CheckOptions(options);
+ quarantine.Init((uptr)options.quarantine_size_mb << 20,
+ (uptr)options.thread_local_quarantine_size_kb << 10);
+ atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
+ memory_order_release);
+ atomic_store(&min_redzone, options.min_redzone, memory_order_release);
+ atomic_store(&max_redzone, options.max_redzone, memory_order_release);
+ }
+
+ void InitLinkerInitialized(const AllocatorOptions &options) {
+ SetAllocatorMayReturnNull(options.may_return_null);
+ allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
+ SharedInitCode(options);
+ max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
+ ? common_flags()->max_allocation_size_mb
+ << 20
+ : kMaxAllowedMallocSize;
+ }
+
+ void RePoisonChunk(uptr chunk) {
+ // This could be a user-facing chunk (with redzones), or some internal
+ // housekeeping chunk, like TransferBatch. Start by assuming the former.
+ AsanChunk *ac = GetAsanChunk((void *)chunk);
+ uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk);
+ if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) ==
+ CHUNK_ALLOCATED) {
+ uptr beg = ac->Beg();
+ uptr end = ac->Beg() + ac->UsedSize();
+ uptr chunk_end = chunk + allocated_size;
+ if (chunk < beg && beg < end && end <= chunk_end) {
+ // Looks like a valid AsanChunk in use, poison redzones only.
+ PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
+ uptr end_aligned_down = RoundDownTo(end, ASAN_SHADOW_GRANULARITY);
+ FastPoisonShadowPartialRightRedzone(
+ end_aligned_down, end - end_aligned_down,
+ chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
+ return;
+ }
+ }
+
+ // This is either not an AsanChunk or freed or quarantined AsanChunk.
+ // In either case, poison everything.
+ PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
+ }
+
+ void ReInitialize(const AllocatorOptions &options) {
+ SetAllocatorMayReturnNull(options.may_return_null);
+ allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
+ SharedInitCode(options);
+
+ // Poison all existing allocation's redzones.
+ if (CanPoisonMemory()) {
+ allocator.ForceLock();
+ allocator.ForEachChunk(
+ [](uptr chunk, void *alloc) {
+ ((Allocator *)alloc)->RePoisonChunk(chunk);
+ },
+ this);
+ allocator.ForceUnlock();
+ }
+ }
+
+ void GetOptions(AllocatorOptions *options) const {
+ options->quarantine_size_mb = quarantine.GetMaxSize() >> 20;
+ options->thread_local_quarantine_size_kb =
+ quarantine.GetMaxCacheSize() >> 10;
+ options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
+ options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
+ options->may_return_null = AllocatorMayReturnNull();
+ options->alloc_dealloc_mismatch =
+ atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
+ options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
+ }
+
+ // -------------------- Helper methods. -------------------------
+ uptr ComputeRZLog(uptr user_requested_size) {
+ u32 rz_log = user_requested_size <= 64 - 16 ? 0
+ : user_requested_size <= 128 - 32 ? 1
+ : user_requested_size <= 512 - 64 ? 2
+ : user_requested_size <= 4096 - 128 ? 3
+ : user_requested_size <= (1 << 14) - 256 ? 4
+ : user_requested_size <= (1 << 15) - 512 ? 5
+ : user_requested_size <= (1 << 16) - 1024 ? 6
+ : 7;
+ u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader)));
+ u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire));
+ u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire));
+ return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log));
+ }
+
+ static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
+ if (user_requested_alignment < 8)
+ return 0;
+ if (user_requested_alignment > 512)
+ user_requested_alignment = 512;
+ return Log2(user_requested_alignment) - 2;
+ }
+
+ static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
+ if (user_requested_alignment_log == 0)
+ return 0;
+ return 1LL << (user_requested_alignment_log + 2);
+ }
+
+ // We have an address between two chunks, and we want to report just one.
+ AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
+ AsanChunk *right_chunk) {
+ if (!left_chunk)
+ return right_chunk;
+ if (!right_chunk)
+ return left_chunk;
+ // Prefer an allocated chunk over freed chunk and freed chunk
+ // over available chunk.
+ u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed);
+ u8 right_state =
+ atomic_load(&right_chunk->chunk_state, memory_order_relaxed);
+ if (left_state != right_state) {
+ if (left_state == CHUNK_ALLOCATED)
+ return left_chunk;
+ if (right_state == CHUNK_ALLOCATED)
+ return right_chunk;
+ if (left_state == CHUNK_QUARANTINE)
+ return left_chunk;
+ if (right_state == CHUNK_QUARANTINE)
+ return right_chunk;
+ }
+ // Same chunk_state: choose based on offset.
+ sptr l_offset = 0, r_offset = 0;
+ CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
+ CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
+ if (l_offset < r_offset)
+ return left_chunk;
+ return right_chunk;
+ }
+
+ bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) {
+ AsanChunk *m = GetAsanChunkByAddr(addr);
+ if (!m) return false;
+ if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
+ return false;
+ if (m->Beg() != addr) return false;
+ AsanThread *t = GetCurrentThread();
+ m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
+ return true;
+ }
+
+ // -------------------- Allocation/Deallocation routines ---------------
+ void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
+ AllocType alloc_type, bool can_fill) {
+ if (UNLIKELY(!AsanInited()))
+ AsanInitFromRtl();
+ if (UNLIKELY(IsRssLimitExceeded())) {
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportRssLimitExceeded(stack);
+ }
+ Flags &fl = *flags();
+ CHECK(stack);
+ const uptr min_alignment = ASAN_SHADOW_GRANULARITY;
+ const uptr user_requested_alignment_log =
+ ComputeUserRequestedAlignmentLog(alignment);
+ if (alignment < min_alignment)
+ alignment = min_alignment;
+ if (size == 0) {
+ // We'd be happy to avoid allocating memory for zero-size requests, but
+ // some programs/tests depend on this behavior and assume that malloc
+ // would not return NULL even for zero-size allocations. Moreover, it
+ // looks like operator new should never return NULL, and results of
+ // consecutive "new" calls must be different even if the allocated size
+ // is zero.
+ size = 1;
+ }
+ CHECK(IsPowerOfTwo(alignment));
+ uptr rz_log = ComputeRZLog(size);
+ uptr rz_size = RZLog2Size(rz_log);
+ uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
+ uptr needed_size = rounded_size + rz_size;
+ if (alignment > min_alignment)
+ needed_size += alignment;
+ bool from_primary = PrimaryAllocator::CanAllocate(needed_size, alignment);
+ // If we are allocating from the secondary allocator, there will be no
+ // automatic right redzone, so add the right redzone manually.
+ if (!from_primary)
+ needed_size += rz_size;
+ CHECK(IsAligned(needed_size, min_alignment));
+ if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
+ size > max_user_defined_malloc_size) {
+ if (AllocatorMayReturnNull()) {
+ Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
+ size);
+ return nullptr;
+ }
+ uptr malloc_limit =
+ Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
+ ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack);
+ }
+
+ AsanThread *t = GetCurrentThread();
+ void *allocated;
+ if (t) {
+ AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
+ allocated = allocator.Allocate(cache, needed_size, 8);
+ } else {
+ SpinMutexLock l(&fallback_mutex);
+ AllocatorCache *cache = &fallback_allocator_cache;
+ allocated = allocator.Allocate(cache, needed_size, 8);
+ }
+ if (UNLIKELY(!allocated)) {
+ SetAllocatorOutOfMemory();
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportOutOfMemory(size, stack);
+ }
+
+ uptr alloc_beg = reinterpret_cast<uptr>(allocated);
+ uptr alloc_end = alloc_beg + needed_size;
+ uptr user_beg = alloc_beg + rz_size;
+ if (!IsAligned(user_beg, alignment))
+ user_beg = RoundUpTo(user_beg, alignment);
+ uptr user_end = user_beg + size;
+ CHECK_LE(user_end, alloc_end);
+ uptr chunk_beg = user_beg - kChunkHeaderSize;
+ AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
+ m->alloc_type = alloc_type;
+ CHECK(size);
+ m->SetUsedSize(size);
+ m->user_requested_alignment_log = user_requested_alignment_log;
+
+ m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
+
+ if (!from_primary || *(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0) {
+ // The allocator provides an unpoisoned chunk. This is possible for the
+ // secondary allocator, or if CanPoisonMemory() was false for some time,
+ // for example, due to flags()->start_disabled. Anyway, poison left and
+ // right of the block before using it for anything else.
+ uptr tail_beg = RoundUpTo(user_end, ASAN_SHADOW_GRANULARITY);
+ uptr tail_end = alloc_beg + allocator.GetActuallyAllocatedSize(allocated);
+ PoisonShadow(alloc_beg, user_beg - alloc_beg, kAsanHeapLeftRedzoneMagic);
+ PoisonShadow(tail_beg, tail_end - tail_beg, kAsanHeapLeftRedzoneMagic);
+ }
+
+ uptr size_rounded_down_to_granularity =
+ RoundDownTo(size, ASAN_SHADOW_GRANULARITY);
+ // Unpoison the bulk of the memory region.
+ if (size_rounded_down_to_granularity)
+ PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
+ // Deal with the end of the region if size is not aligned to granularity.
+ if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
+ u8 *shadow =
+ (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
+ *shadow = fl.poison_partial ? (size & (ASAN_SHADOW_GRANULARITY - 1)) : 0;
+ }
+
+ AsanStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.mallocs++;
+ thread_stats.malloced += size;
+ thread_stats.malloced_redzones += needed_size - size;
+ if (needed_size > SizeClassMap::kMaxSize)
+ thread_stats.malloc_large++;
+ else
+ thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
+
+ void *res = reinterpret_cast<void *>(user_beg);
+ if (can_fill && fl.max_malloc_fill_size) {
+ uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
+ REAL(memset)(res, fl.malloc_fill_byte, fill_size);
+ }
+#if CAN_SANITIZE_LEAKS
+ m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
+ : __lsan::kDirectlyLeaked;
+#endif
+ // Must be the last mutation of metadata in this function.
+ atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release);
+ if (alloc_beg != chunk_beg) {
+ CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
+ reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
+ }
+ RunMallocHooks(res, size);
+ return res;
+ }
+
+ // Set quarantine flag if chunk is allocated, issue ASan error report on
+ // available and quarantined chunks. Return true on success, false otherwise.
+ bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
+ BufferedStackTrace *stack) {
+ u8 old_chunk_state = CHUNK_ALLOCATED;
+ // Flip the chunk_state atomically to avoid race on double-free.
+ if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
+ CHUNK_QUARANTINE,
+ memory_order_acquire)) {
+ ReportInvalidFree(ptr, old_chunk_state, stack);
+ // It's not safe to push a chunk in quarantine on invalid free.
+ return false;
+ }
+ CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
+ // It was a user data.
+ m->SetFreeContext(kInvalidTid, 0);
+ return true;
+ }
+
+ // Expects the chunk to already be marked as quarantined by using
+ // AtomicallySetQuarantineFlagIfAllocated.
+ void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
+ CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed),
+ CHUNK_QUARANTINE);
+ AsanThread *t = GetCurrentThread();
+ m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack));
+
+ // Push into quarantine.
+ if (t) {
+ AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
+ AllocatorCache *ac = GetAllocatorCache(ms);
+ quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
+ m->UsedSize());
+ } else {
+ SpinMutexLock l(&fallback_mutex);
+ AllocatorCache *ac = &fallback_allocator_cache;
+ quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
+ m, m->UsedSize());
+ }
+ }
+
+ void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
+ BufferedStackTrace *stack, AllocType alloc_type) {
+ uptr p = reinterpret_cast<uptr>(ptr);
+ if (p == 0) return;
+
+ uptr chunk_beg = p - kChunkHeaderSize;
+ AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
+
+ // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
+ // malloc. Don't report an invalid free in this case.
+ if (SANITIZER_WINDOWS &&
+ !get_allocator().PointerIsMine(ptr)) {
+ if (!IsSystemHeapAddress(p))
+ ReportFreeNotMalloced(p, stack);
+ return;
+ }
+
+ if (RunFreeHooks(ptr)) {
+ // Someone used __sanitizer_ignore_free_hook() and decided that they
+ // didn't want the memory to __sanitizer_ignore_free_hook freed right now.
+ // When they call free() on this pointer again at a later time, we should
+ // ignore the alloc-type mismatch and allow them to deallocate the pointer
+ // through free(), rather than the initial alloc type.
+ m->alloc_type = FROM_MALLOC;
+ return;
+ }
+
+ // Must mark the chunk as quarantined before any changes to its metadata.
+ // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
+ if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
+
+ if (m->alloc_type != alloc_type) {
+ if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
+ ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
+ (AllocType)alloc_type);
+ }
+ } else {
+ if (flags()->new_delete_type_mismatch &&
+ (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
+ ((delete_size && delete_size != m->UsedSize()) ||
+ ComputeUserRequestedAlignmentLog(delete_alignment) !=
+ m->user_requested_alignment_log)) {
+ ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
+ }
+ }
+
+ AsanStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.frees++;
+ thread_stats.freed += m->UsedSize();
+
+ QuarantineChunk(m, ptr, stack);
+ }
+
+ void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
+ CHECK(old_ptr && new_size);
+ uptr p = reinterpret_cast<uptr>(old_ptr);
+ uptr chunk_beg = p - kChunkHeaderSize;
+ AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
+
+ AsanStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.reallocs++;
+ thread_stats.realloced += new_size;
+
+ void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
+ if (new_ptr) {
+ u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire);
+ if (chunk_state != CHUNK_ALLOCATED)
+ ReportInvalidFree(old_ptr, chunk_state, stack);
+ CHECK_NE(REAL(memcpy), nullptr);
+ uptr memcpy_size = Min(new_size, m->UsedSize());
+ // If realloc() races with free(), we may start copying freed memory.
+ // However, we will report racy double-free later anyway.
+ REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
+ Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
+ }
+ return new_ptr;
+ }
+
+ void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
+ if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportCallocOverflow(nmemb, size, stack);
+ }
+ void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
+ // If the memory comes from the secondary allocator no need to clear it
+ // as it comes directly from mmap.
+ if (ptr && allocator.FromPrimary(ptr))
+ REAL(memset)(ptr, 0, nmemb * size);
+ return ptr;
+ }
+
+ void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
+ if (chunk_state == CHUNK_QUARANTINE)
+ ReportDoubleFree((uptr)ptr, stack);
+ else
+ ReportFreeNotMalloced((uptr)ptr, stack);
+ }
+
+ void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
+ AllocatorCache *ac = GetAllocatorCache(ms);
+ quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
+ allocator.SwallowCache(ac);
+ }
+
+ // -------------------------- Chunk lookup ----------------------
+
+ // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
+ // Returns nullptr if AsanChunk is not yet initialized just after
+ // get_allocator().Allocate(), or is being destroyed just before
+ // get_allocator().Deallocate().
+ AsanChunk *GetAsanChunk(void *alloc_beg) {
+ if (!alloc_beg)
+ return nullptr;
+ AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
+ if (!p) {
+ if (!allocator.FromPrimary(alloc_beg))
+ return nullptr;
+ p = reinterpret_cast<AsanChunk *>(alloc_beg);
+ }
+ u8 state = atomic_load(&p->chunk_state, memory_order_relaxed);
+ // It does not guaranty that Chunk is initialized, but it's
+ // definitely not for any other value.
+ if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE)
+ return p;
+ return nullptr;
+ }
+
+ AsanChunk *GetAsanChunkByAddr(uptr p) {
+ void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
+ return GetAsanChunk(alloc_beg);
+ }
+
+ // Allocator must be locked when this function is called.
+ AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
+ void *alloc_beg =
+ allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
+ return GetAsanChunk(alloc_beg);
+ }
+
+ uptr AllocationSize(uptr p) {
+ AsanChunk *m = GetAsanChunkByAddr(p);
+ if (!m) return 0;
+ if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
+ return 0;
+ if (m->Beg() != p) return 0;
+ return m->UsedSize();
+ }
+
+ uptr AllocationSizeFast(uptr p) {
+ return reinterpret_cast<AsanChunk *>(p - kChunkHeaderSize)->UsedSize();
+ }
+
+ AsanChunkView FindHeapChunkByAddress(uptr addr) {
+ AsanChunk *m1 = GetAsanChunkByAddr(addr);
+ sptr offset = 0;
+ if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
+ // The address is in the chunk's left redzone, so maybe it is actually
+ // a right buffer overflow from the other chunk before.
+ // Search a bit before to see if there is another chunk.
+ AsanChunk *m2 = nullptr;
+ for (uptr l = 1; l < GetPageSizeCached(); l++) {
+ m2 = GetAsanChunkByAddr(addr - l);
+ if (m2 == m1) continue; // Still the same chunk.
+ break;
+ }
+ if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
+ m1 = ChooseChunk(addr, m2, m1);
+ }
+ return AsanChunkView(m1);
+ }
+
+ void Purge(BufferedStackTrace *stack) {
+ AsanThread *t = GetCurrentThread();
+ if (t) {
+ AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
+ quarantine.DrainAndRecycle(GetQuarantineCache(ms),
+ QuarantineCallback(GetAllocatorCache(ms),
+ stack));
+ }
+ {
+ SpinMutexLock l(&fallback_mutex);
+ quarantine.DrainAndRecycle(&fallback_quarantine_cache,
+ QuarantineCallback(&fallback_allocator_cache,
+ stack));
+ }
+
+ allocator.ForceReleaseToOS();
+ }
+
+ void PrintStats() {
+ allocator.PrintStats();
+ quarantine.PrintStats();
+ }
+
+ void ForceLock() SANITIZER_ACQUIRE(fallback_mutex) {
+ allocator.ForceLock();
+ fallback_mutex.Lock();
+ }
+
+ void ForceUnlock() SANITIZER_RELEASE(fallback_mutex) {
+ fallback_mutex.Unlock();
+ allocator.ForceUnlock();
+ }
+};
+
+static Allocator instance(LINKER_INITIALIZED);
+
+static AsanAllocator &get_allocator() {
+ return instance.allocator;
+}
+
+bool AsanChunkView::IsValid() const {
+ return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) !=
+ CHUNK_INVALID;
+}
+bool AsanChunkView::IsAllocated() const {
+ return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
+ CHUNK_ALLOCATED;
+}
+bool AsanChunkView::IsQuarantined() const {
+ return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
+ CHUNK_QUARANTINE;
+}
+uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
+uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
+uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
+u32 AsanChunkView::UserRequestedAlignment() const {
+ return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
+}
+
+uptr AsanChunkView::AllocTid() const {
+ u32 tid = 0;
+ u32 stack = 0;
+ chunk_->GetAllocContext(tid, stack);
+ return tid;
+}
+
+uptr AsanChunkView::FreeTid() const {
+ if (!IsQuarantined())
+ return kInvalidTid;
+ u32 tid = 0;
+ u32 stack = 0;
+ chunk_->GetFreeContext(tid, stack);
+ return tid;
+}
+
+AllocType AsanChunkView::GetAllocType() const {
+ return (AllocType)chunk_->alloc_type;
+}
+
+u32 AsanChunkView::GetAllocStackId() const {
+ u32 tid = 0;
+ u32 stack = 0;
+ chunk_->GetAllocContext(tid, stack);
+ return stack;
+}
+
+u32 AsanChunkView::GetFreeStackId() const {
+ if (!IsQuarantined())
+ return 0;
+ u32 tid = 0;
+ u32 stack = 0;
+ chunk_->GetFreeContext(tid, stack);
+ return stack;
+}
+
+void InitializeAllocator(const AllocatorOptions &options) {
+ instance.InitLinkerInitialized(options);
+}
+
+void ReInitializeAllocator(const AllocatorOptions &options) {
+ instance.ReInitialize(options);
+}
+
+void GetAllocatorOptions(AllocatorOptions *options) {
+ instance.GetOptions(options);
+}
+
+AsanChunkView FindHeapChunkByAddress(uptr addr) {
+ return instance.FindHeapChunkByAddress(addr);
+}
+AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
+ return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
+}
+
+void AsanThreadLocalMallocStorage::CommitBack() {
+ GET_STACK_TRACE_MALLOC;
+ instance.CommitBack(this, &stack);
+}
+
+void PrintInternalAllocatorStats() {
+ instance.PrintStats();
+}
+
+void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
+ instance.Deallocate(ptr, 0, 0, stack, alloc_type);
+}
+
+void asan_delete(void *ptr, uptr size, uptr alignment,
+ BufferedStackTrace *stack, AllocType alloc_type) {
+ instance.Deallocate(ptr, size, alignment, stack, alloc_type);
+}
+
+void *asan_malloc(uptr size, BufferedStackTrace *stack) {
+ return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
+}
+
+void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
+ return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
+}
+
+void *asan_reallocarray(void *p, uptr nmemb, uptr size,
+ BufferedStackTrace *stack) {
+ if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
+ errno = errno_ENOMEM;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportReallocArrayOverflow(nmemb, size, stack);
+ }
+ return asan_realloc(p, nmemb * size, stack);
+}
+
+void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
+ if (!p)
+ return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
+ if (size == 0) {
+ if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
+ instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
+ return nullptr;
+ }
+ // Allocate a size of 1 if we shouldn't free() on Realloc to 0
+ size = 1;
+ }
+ return SetErrnoOnNull(instance.Reallocate(p, size, stack));
+}
+
+void *asan_valloc(uptr size, BufferedStackTrace *stack) {
+ return SetErrnoOnNull(
+ instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
+}
+
+void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
+ uptr PageSize = GetPageSizeCached();
+ if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
+ errno = errno_ENOMEM;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportPvallocOverflow(size, stack);
+ }
+ // pvalloc(0) should allocate one page.
+ size = size ? RoundUpTo(size, PageSize) : PageSize;
+ return SetErrnoOnNull(
+ instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
+}
+
+void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
+ AllocType alloc_type) {
+ if (UNLIKELY(!IsPowerOfTwo(alignment))) {
+ errno = errno_EINVAL;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportInvalidAllocationAlignment(alignment, stack);
+ }
+ return SetErrnoOnNull(
+ instance.Allocate(size, alignment, stack, alloc_type, true));
+}
+
+void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
+ if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
+ errno = errno_EINVAL;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportInvalidAlignedAllocAlignment(size, alignment, stack);
+ }
+ return SetErrnoOnNull(
+ instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
+}
+
+int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
+ BufferedStackTrace *stack) {
+ if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
+ if (AllocatorMayReturnNull())
+ return errno_EINVAL;
+ ReportInvalidPosixMemalignAlignment(alignment, stack);
+ }
+ void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
+ if (UNLIKELY(!ptr))
+ // OOM error is already taken care of by Allocate.
+ return errno_ENOMEM;
+ CHECK(IsAligned((uptr)ptr, alignment));
+ *memptr = ptr;
+ return 0;
+}
+
+uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
+ if (!ptr) return 0;
+ uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
+ if (flags()->check_malloc_usable_size && (usable_size == 0)) {
+ GET_STACK_TRACE_FATAL(pc, bp);
+ ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
+ }
+ return usable_size;
+}
+
+uptr asan_mz_size(const void *ptr) {
+ return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
+}
+
+void asan_mz_force_lock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ instance.ForceLock();
+}
+
+void asan_mz_force_unlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ instance.ForceUnlock();
+}
+
+} // namespace __asan
+
+// --- Implementation of LSan-specific functions --- {{{1
+namespace __lsan {
+void LockAllocator() {
+ __asan::get_allocator().ForceLock();
+}
+
+void UnlockAllocator() {
+ __asan::get_allocator().ForceUnlock();
+}
+
+void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
+ *begin = (uptr)&__asan::get_allocator();
+ *end = *begin + sizeof(__asan::get_allocator());
+}
+
+uptr PointsIntoChunk(void *p) {
+ uptr addr = reinterpret_cast<uptr>(p);
+ __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
+ if (!m || atomic_load(&m->chunk_state, memory_order_acquire) !=
+ __asan::CHUNK_ALLOCATED)
+ return 0;
+ uptr chunk = m->Beg();
+ if (m->AddrIsInside(addr))
+ return chunk;
+ if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr))
+ return chunk;
+ return 0;
+}
+
+uptr GetUserBegin(uptr chunk) {
+ // FIXME: All usecases provide chunk address, GetAsanChunkByAddrFastLocked is
+ // not needed.
+ __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
+ return m ? m->Beg() : 0;
+}
+
+uptr GetUserAddr(uptr chunk) {
+ return chunk;
+}
+
+LsanMetadata::LsanMetadata(uptr chunk) {
+ metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize)
+ : nullptr;
+}
+
+bool LsanMetadata::allocated() const {
+ if (!metadata_)
+ return false;
+ __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
+ return atomic_load(&m->chunk_state, memory_order_relaxed) ==
+ __asan::CHUNK_ALLOCATED;
+}
+
+ChunkTag LsanMetadata::tag() const {
+ __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
+ return static_cast<ChunkTag>(m->lsan_tag);
+}
+
+void LsanMetadata::set_tag(ChunkTag value) {
+ __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
+ m->lsan_tag = value;
+}
+
+uptr LsanMetadata::requested_size() const {
+ __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
+ return m->UsedSize();
+}
+
+u32 LsanMetadata::stack_trace_id() const {
+ __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
+ u32 tid = 0;
+ u32 stack = 0;
+ m->GetAllocContext(tid, stack);
+ return stack;
+}
+
+void ForEachChunk(ForEachChunkCallback callback, void *arg) {
+ __asan::get_allocator().ForEachChunk(callback, arg);
+}
+
+IgnoreObjectResult IgnoreObject(const void *p) {
+ uptr addr = reinterpret_cast<uptr>(p);
+ __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
+ if (!m ||
+ (atomic_load(&m->chunk_state, memory_order_acquire) !=
+ __asan::CHUNK_ALLOCATED) ||
+ !m->AddrIsInside(addr)) {
+ return kIgnoreObjectInvalid;
+ }
+ if (m->lsan_tag == kIgnored)
+ return kIgnoreObjectAlreadyIgnored;
+ m->lsan_tag = __lsan::kIgnored;
+ return kIgnoreObjectSuccess;
+}
+
+} // namespace __lsan
+
+// ---------------------- Interface ---------------- {{{1
+using namespace __asan;
+
+static const void *AllocationBegin(const void *p) {
+ AsanChunk *m = __asan::instance.GetAsanChunkByAddr((uptr)p);
+ if (!m)
+ return nullptr;
+ if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
+ return nullptr;
+ if (m->UsedSize() == 0)
+ return nullptr;
+ return (const void *)(m->Beg());
+}
+
+// ASan allocator doesn't reserve extra bytes, so normally we would
+// just return "size". We don't want to expose our redzone sizes, etc here.
+uptr __sanitizer_get_estimated_allocated_size(uptr size) {
+ return size;
+}
+
+int __sanitizer_get_ownership(const void *p) {
+ uptr ptr = reinterpret_cast<uptr>(p);
+ return instance.AllocationSize(ptr) > 0;
+}
+
+uptr __sanitizer_get_allocated_size(const void *p) {
+ if (!p) return 0;
+ uptr ptr = reinterpret_cast<uptr>(p);
+ uptr allocated_size = instance.AllocationSize(ptr);
+ // Die if p is not malloced or if it is already freed.
+ if (allocated_size == 0) {
+ GET_STACK_TRACE_FATAL_HERE;
+ ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
+ }
+ return allocated_size;
+}
+
+uptr __sanitizer_get_allocated_size_fast(const void *p) {
+ DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
+ uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p));
+ DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
+ return ret;
+}
+
+const void *__sanitizer_get_allocated_begin(const void *p) {
+ return AllocationBegin(p);
+}
+
+void __sanitizer_purge_allocator() {
+ GET_STACK_TRACE_MALLOC;
+ instance.Purge(&stack);
+}
+
+int __asan_update_allocation_context(void* addr) {
+ GET_STACK_TRACE_MALLOC;
+ return instance.UpdateAllocationStack((uptr)addr, &stack);
+}