aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cpp')
-rw-r--r--contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cpp696
1 files changed, 696 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cpp b/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cpp
new file mode 100644
index 000000000000..75dbb336e344
--- /dev/null
+++ b/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_allocator.cpp
@@ -0,0 +1,696 @@
+//===-- hwasan_allocator.cpp ------------------------ ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of HWAddressSanitizer.
+//
+// HWAddressSanitizer allocator.
+//===----------------------------------------------------------------------===//
+
+#include "sanitizer_common/sanitizer_atomic.h"
+#include "sanitizer_common/sanitizer_errno.h"
+#include "sanitizer_common/sanitizer_stackdepot.h"
+#include "hwasan.h"
+#include "hwasan_allocator.h"
+#include "hwasan_checks.h"
+#include "hwasan_mapping.h"
+#include "hwasan_malloc_bisect.h"
+#include "hwasan_thread.h"
+#include "hwasan_report.h"
+#include "lsan/lsan_common.h"
+
+namespace __hwasan {
+
+static Allocator allocator;
+static AllocatorCache fallback_allocator_cache;
+static SpinMutex fallback_mutex;
+static atomic_uint8_t hwasan_allocator_tagging_enabled;
+
+static constexpr tag_t kFallbackAllocTag = 0xBB & kTagMask;
+static constexpr tag_t kFallbackFreeTag = 0xBC;
+
+enum {
+ // Either just allocated by underlying allocator, but AsanChunk is not yet
+ // ready, or almost returned to undelying allocator and AsanChunk is already
+ // meaningless.
+ CHUNK_INVALID = 0,
+ // The chunk is allocated and not yet freed.
+ CHUNK_ALLOCATED = 1,
+};
+
+
+// Initialized in HwasanAllocatorInit, an never changed.
+alignas(16) static u8 tail_magic[kShadowAlignment - 1];
+static uptr max_malloc_size;
+
+bool HwasanChunkView::IsAllocated() const {
+ return metadata_ && metadata_->IsAllocated();
+}
+
+uptr HwasanChunkView::Beg() const {
+ return block_;
+}
+uptr HwasanChunkView::End() const {
+ return Beg() + UsedSize();
+}
+uptr HwasanChunkView::UsedSize() const {
+ return metadata_->GetRequestedSize();
+}
+u32 HwasanChunkView::GetAllocStackId() const {
+ return metadata_->GetAllocStackId();
+}
+
+u32 HwasanChunkView::GetAllocThreadId() const {
+ return metadata_->GetAllocThreadId();
+}
+
+uptr HwasanChunkView::ActualSize() const {
+ return allocator.GetActuallyAllocatedSize(reinterpret_cast<void *>(block_));
+}
+
+bool HwasanChunkView::FromSmallHeap() const {
+ return allocator.FromPrimary(reinterpret_cast<void *>(block_));
+}
+
+bool HwasanChunkView::AddrIsInside(uptr addr) const {
+ return (addr >= Beg()) && (addr < Beg() + UsedSize());
+}
+
+inline void Metadata::SetAllocated(u32 stack, u64 size) {
+ Thread *t = GetCurrentThread();
+ u64 context = t ? t->unique_id() : kMainTid;
+ context <<= 32;
+ context += stack;
+ requested_size_low = size & ((1ul << 32) - 1);
+ requested_size_high = size >> 32;
+ atomic_store(&alloc_context_id, context, memory_order_relaxed);
+ atomic_store(&chunk_state, CHUNK_ALLOCATED, memory_order_release);
+}
+
+inline void Metadata::SetUnallocated() {
+ atomic_store(&chunk_state, CHUNK_INVALID, memory_order_release);
+ requested_size_low = 0;
+ requested_size_high = 0;
+ atomic_store(&alloc_context_id, 0, memory_order_relaxed);
+}
+
+inline bool Metadata::IsAllocated() const {
+ return atomic_load(&chunk_state, memory_order_relaxed) == CHUNK_ALLOCATED;
+}
+
+inline u64 Metadata::GetRequestedSize() const {
+ return (static_cast<u64>(requested_size_high) << 32) + requested_size_low;
+}
+
+inline u32 Metadata::GetAllocStackId() const {
+ return atomic_load(&alloc_context_id, memory_order_relaxed);
+}
+
+inline u32 Metadata::GetAllocThreadId() const {
+ u64 context = atomic_load(&alloc_context_id, memory_order_relaxed);
+ u32 tid = context >> 32;
+ return tid;
+}
+
+void GetAllocatorStats(AllocatorStatCounters s) {
+ allocator.GetStats(s);
+}
+
+inline void Metadata::SetLsanTag(__lsan::ChunkTag tag) {
+ lsan_tag = tag;
+}
+
+inline __lsan::ChunkTag Metadata::GetLsanTag() const {
+ return static_cast<__lsan::ChunkTag>(lsan_tag);
+}
+
+uptr GetAliasRegionStart() {
+#if defined(HWASAN_ALIASING_MODE)
+ constexpr uptr kAliasRegionOffset = 1ULL << (kTaggableRegionCheckShift - 1);
+ uptr AliasRegionStart =
+ __hwasan_shadow_memory_dynamic_address + kAliasRegionOffset;
+
+ CHECK_EQ(AliasRegionStart >> kTaggableRegionCheckShift,
+ __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
+ CHECK_EQ(
+ (AliasRegionStart + kAliasRegionOffset - 1) >> kTaggableRegionCheckShift,
+ __hwasan_shadow_memory_dynamic_address >> kTaggableRegionCheckShift);
+ return AliasRegionStart;
+#else
+ return 0;
+#endif
+}
+
+void HwasanAllocatorInit() {
+ atomic_store_relaxed(&hwasan_allocator_tagging_enabled,
+ !flags()->disable_allocator_tagging);
+ SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
+ allocator.InitLinkerInitialized(
+ common_flags()->allocator_release_to_os_interval_ms,
+ GetAliasRegionStart());
+ for (uptr i = 0; i < sizeof(tail_magic); i++)
+ tail_magic[i] = GetCurrentThread()->GenerateRandomTag();
+ if (common_flags()->max_allocation_size_mb) {
+ max_malloc_size = common_flags()->max_allocation_size_mb << 20;
+ max_malloc_size = Min(max_malloc_size, kMaxAllowedMallocSize);
+ } else {
+ max_malloc_size = kMaxAllowedMallocSize;
+ }
+}
+
+void HwasanAllocatorLock() { allocator.ForceLock(); }
+
+void HwasanAllocatorUnlock() { allocator.ForceUnlock(); }
+
+void AllocatorThreadStart(AllocatorCache *cache) { allocator.InitCache(cache); }
+
+void AllocatorThreadFinish(AllocatorCache *cache) {
+ allocator.SwallowCache(cache);
+ allocator.DestroyCache(cache);
+}
+
+static uptr TaggedSize(uptr size) {
+ if (!size) size = 1;
+ uptr new_size = RoundUpTo(size, kShadowAlignment);
+ CHECK_GE(new_size, size);
+ return new_size;
+}
+
+static void *HwasanAllocate(StackTrace *stack, uptr orig_size, uptr alignment,
+ bool zeroise) {
+ // Keep this consistent with LSAN and ASAN behavior.
+ if (UNLIKELY(orig_size == 0))
+ orig_size = 1;
+ if (UNLIKELY(orig_size > max_malloc_size)) {
+ if (AllocatorMayReturnNull()) {
+ Report("WARNING: HWAddressSanitizer failed to allocate 0x%zx bytes\n",
+ orig_size);
+ return nullptr;
+ }
+ ReportAllocationSizeTooBig(orig_size, max_malloc_size, stack);
+ }
+ if (UNLIKELY(IsRssLimitExceeded())) {
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportRssLimitExceeded(stack);
+ }
+
+ alignment = Max(alignment, kShadowAlignment);
+ uptr size = TaggedSize(orig_size);
+ Thread *t = GetCurrentThread();
+ void *allocated;
+ if (t) {
+ allocated = allocator.Allocate(t->allocator_cache(), size, alignment);
+ } else {
+ SpinMutexLock l(&fallback_mutex);
+ AllocatorCache *cache = &fallback_allocator_cache;
+ allocated = allocator.Allocate(cache, size, alignment);
+ }
+ if (UNLIKELY(!allocated)) {
+ SetAllocatorOutOfMemory();
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportOutOfMemory(size, stack);
+ }
+ if (zeroise) {
+ // The secondary allocator mmaps memory, which should be zero-inited so we
+ // don't need to explicitly clear it.
+ if (allocator.FromPrimary(allocated))
+ internal_memset(allocated, 0, size);
+ } else if (flags()->max_malloc_fill_size > 0) {
+ uptr fill_size = Min(size, (uptr)flags()->max_malloc_fill_size);
+ internal_memset(allocated, flags()->malloc_fill_byte, fill_size);
+ }
+ if (size != orig_size) {
+ u8 *tail = reinterpret_cast<u8 *>(allocated) + orig_size;
+ uptr tail_length = size - orig_size;
+ internal_memcpy(tail, tail_magic, tail_length - 1);
+ // Short granule is excluded from magic tail, so we explicitly untag.
+ tail[tail_length - 1] = 0;
+ }
+
+ void *user_ptr = allocated;
+ if (InTaggableRegion(reinterpret_cast<uptr>(user_ptr)) &&
+ atomic_load_relaxed(&hwasan_allocator_tagging_enabled) &&
+ flags()->tag_in_malloc && malloc_bisect(stack, orig_size)) {
+ tag_t tag = t ? t->GenerateRandomTag() : kFallbackAllocTag;
+ uptr tag_size = orig_size ? orig_size : 1;
+ uptr full_granule_size = RoundDownTo(tag_size, kShadowAlignment);
+ user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, full_granule_size, tag);
+ if (full_granule_size != tag_size) {
+ u8 *short_granule = reinterpret_cast<u8 *>(allocated) + full_granule_size;
+ TagMemoryAligned((uptr)short_granule, kShadowAlignment,
+ tag_size % kShadowAlignment);
+ short_granule[kShadowAlignment - 1] = tag;
+ }
+ } else {
+ // Tagging can not be completely skipped. If it's disabled, we need to tag
+ // with zeros.
+ user_ptr = (void *)TagMemoryAligned((uptr)user_ptr, size, 0);
+ }
+
+ Metadata *meta =
+ reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated));
+#if CAN_SANITIZE_LEAKS
+ meta->SetLsanTag(__lsan::DisabledInThisThread() ? __lsan::kIgnored
+ : __lsan::kDirectlyLeaked);
+#endif
+ meta->SetAllocated(StackDepotPut(*stack), orig_size);
+ RunMallocHooks(user_ptr, orig_size);
+ return user_ptr;
+}
+
+static bool PointerAndMemoryTagsMatch(void *tagged_ptr) {
+ CHECK(tagged_ptr);
+ uptr tagged_uptr = reinterpret_cast<uptr>(tagged_ptr);
+ if (!InTaggableRegion(tagged_uptr))
+ return true;
+ tag_t mem_tag = *reinterpret_cast<tag_t *>(
+ MemToShadow(reinterpret_cast<uptr>(UntagPtr(tagged_ptr))));
+ return PossiblyShortTagMatches(mem_tag, tagged_uptr, 1);
+}
+
+static bool CheckInvalidFree(StackTrace *stack, void *untagged_ptr,
+ void *tagged_ptr) {
+ // This function can return true if halt_on_error is false.
+ if (!MemIsApp(reinterpret_cast<uptr>(untagged_ptr)) ||
+ !PointerAndMemoryTagsMatch(tagged_ptr)) {
+ ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
+ return true;
+ }
+ return false;
+}
+
+static void HwasanDeallocate(StackTrace *stack, void *tagged_ptr) {
+ CHECK(tagged_ptr);
+ void *untagged_ptr = UntagPtr(tagged_ptr);
+
+ if (RunFreeHooks(tagged_ptr))
+ return;
+
+ if (CheckInvalidFree(stack, untagged_ptr, tagged_ptr))
+ return;
+
+ void *aligned_ptr = reinterpret_cast<void *>(
+ RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
+ tag_t pointer_tag = GetTagFromPointer(reinterpret_cast<uptr>(tagged_ptr));
+ Metadata *meta =
+ reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
+ if (!meta) {
+ ReportInvalidFree(stack, reinterpret_cast<uptr>(tagged_ptr));
+ return;
+ }
+
+ uptr orig_size = meta->GetRequestedSize();
+ u32 free_context_id = StackDepotPut(*stack);
+ u32 alloc_context_id = meta->GetAllocStackId();
+ u32 alloc_thread_id = meta->GetAllocThreadId();
+
+ bool in_taggable_region =
+ InTaggableRegion(reinterpret_cast<uptr>(tagged_ptr));
+
+ // Check tail magic.
+ uptr tagged_size = TaggedSize(orig_size);
+ if (flags()->free_checks_tail_magic && orig_size &&
+ tagged_size != orig_size) {
+ uptr tail_size = tagged_size - orig_size - 1;
+ CHECK_LT(tail_size, kShadowAlignment);
+ void *tail_beg = reinterpret_cast<void *>(
+ reinterpret_cast<uptr>(aligned_ptr) + orig_size);
+ tag_t short_granule_memtag = *(reinterpret_cast<tag_t *>(
+ reinterpret_cast<uptr>(tail_beg) + tail_size));
+ if (tail_size &&
+ (internal_memcmp(tail_beg, tail_magic, tail_size) ||
+ (in_taggable_region && pointer_tag != short_granule_memtag)))
+ ReportTailOverwritten(stack, reinterpret_cast<uptr>(tagged_ptr),
+ orig_size, tail_magic);
+ }
+
+ // TODO(kstoimenov): consider meta->SetUnallocated(free_context_id).
+ meta->SetUnallocated();
+ // This memory will not be reused by anyone else, so we are free to keep it
+ // poisoned.
+ Thread *t = GetCurrentThread();
+ if (flags()->max_free_fill_size > 0) {
+ uptr fill_size =
+ Min(TaggedSize(orig_size), (uptr)flags()->max_free_fill_size);
+ internal_memset(aligned_ptr, flags()->free_fill_byte, fill_size);
+ }
+ if (in_taggable_region && flags()->tag_in_free && malloc_bisect(stack, 0) &&
+ atomic_load_relaxed(&hwasan_allocator_tagging_enabled) &&
+ allocator.FromPrimary(untagged_ptr) /* Secondary 0-tag and unmap.*/) {
+ // Always store full 8-bit tags on free to maximize UAF detection.
+ tag_t tag;
+ if (t) {
+ // Make sure we are not using a short granule tag as a poison tag. This
+ // would make us attempt to read the memory on a UaF.
+ // The tag can be zero if tagging is disabled on this thread.
+ do {
+ tag = t->GenerateRandomTag(/*num_bits=*/8);
+ } while (
+ UNLIKELY((tag < kShadowAlignment || tag == pointer_tag) && tag != 0));
+ } else {
+ static_assert(kFallbackFreeTag >= kShadowAlignment,
+ "fallback tag must not be a short granule tag.");
+ tag = kFallbackFreeTag;
+ }
+ TagMemoryAligned(reinterpret_cast<uptr>(aligned_ptr), TaggedSize(orig_size),
+ tag);
+ }
+ if (t) {
+ allocator.Deallocate(t->allocator_cache(), aligned_ptr);
+ if (auto *ha = t->heap_allocations())
+ ha->push({reinterpret_cast<uptr>(tagged_ptr), alloc_thread_id,
+ alloc_context_id, free_context_id,
+ static_cast<u32>(orig_size)});
+ } else {
+ SpinMutexLock l(&fallback_mutex);
+ AllocatorCache *cache = &fallback_allocator_cache;
+ allocator.Deallocate(cache, aligned_ptr);
+ }
+}
+
+static void *HwasanReallocate(StackTrace *stack, void *tagged_ptr_old,
+ uptr new_size, uptr alignment) {
+ void *untagged_ptr_old = UntagPtr(tagged_ptr_old);
+ if (CheckInvalidFree(stack, untagged_ptr_old, tagged_ptr_old))
+ return nullptr;
+ void *tagged_ptr_new =
+ HwasanAllocate(stack, new_size, alignment, false /*zeroise*/);
+ if (tagged_ptr_old && tagged_ptr_new) {
+ Metadata *meta =
+ reinterpret_cast<Metadata *>(allocator.GetMetaData(untagged_ptr_old));
+ void *untagged_ptr_new = UntagPtr(tagged_ptr_new);
+ internal_memcpy(untagged_ptr_new, untagged_ptr_old,
+ Min(new_size, static_cast<uptr>(meta->GetRequestedSize())));
+ HwasanDeallocate(stack, tagged_ptr_old);
+ }
+ return tagged_ptr_new;
+}
+
+static void *HwasanCalloc(StackTrace *stack, uptr nmemb, uptr size) {
+ if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportCallocOverflow(nmemb, size, stack);
+ }
+ return HwasanAllocate(stack, nmemb * size, sizeof(u64), true);
+}
+
+HwasanChunkView FindHeapChunkByAddress(uptr address) {
+ if (!allocator.PointerIsMine(reinterpret_cast<void *>(address)))
+ return HwasanChunkView();
+ void *block = allocator.GetBlockBegin(reinterpret_cast<void*>(address));
+ if (!block)
+ return HwasanChunkView();
+ Metadata *metadata =
+ reinterpret_cast<Metadata*>(allocator.GetMetaData(block));
+ return HwasanChunkView(reinterpret_cast<uptr>(block), metadata);
+}
+
+static const void *AllocationBegin(const void *p) {
+ const void *untagged_ptr = UntagPtr(p);
+ if (!untagged_ptr)
+ return nullptr;
+
+ const void *beg = allocator.GetBlockBegin(untagged_ptr);
+ if (!beg)
+ return nullptr;
+
+ Metadata *b = (Metadata *)allocator.GetMetaData(beg);
+ if (b->GetRequestedSize() == 0)
+ return nullptr;
+
+ tag_t tag = GetTagFromPointer((uptr)p);
+ return (const void *)AddTagToPointer((uptr)beg, tag);
+}
+
+static uptr AllocationSize(const void *p) {
+ const void *untagged_ptr = UntagPtr(p);
+ if (!untagged_ptr) return 0;
+ const void *beg = allocator.GetBlockBegin(untagged_ptr);
+ if (!beg)
+ return 0;
+ Metadata *b = (Metadata *)allocator.GetMetaData(beg);
+ return b->GetRequestedSize();
+}
+
+static uptr AllocationSizeFast(const void *p) {
+ const void *untagged_ptr = UntagPtr(p);
+ void *aligned_ptr = reinterpret_cast<void *>(
+ RoundDownTo(reinterpret_cast<uptr>(untagged_ptr), kShadowAlignment));
+ Metadata *meta =
+ reinterpret_cast<Metadata *>(allocator.GetMetaData(aligned_ptr));
+ return meta->GetRequestedSize();
+}
+
+void *hwasan_malloc(uptr size, StackTrace *stack) {
+ return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
+}
+
+void *hwasan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
+ return SetErrnoOnNull(HwasanCalloc(stack, nmemb, size));
+}
+
+void *hwasan_realloc(void *ptr, uptr size, StackTrace *stack) {
+ if (!ptr)
+ return SetErrnoOnNull(HwasanAllocate(stack, size, sizeof(u64), false));
+ if (size == 0) {
+ HwasanDeallocate(stack, ptr);
+ return nullptr;
+ }
+ return SetErrnoOnNull(HwasanReallocate(stack, ptr, size, sizeof(u64)));
+}
+
+void *hwasan_reallocarray(void *ptr, uptr nmemb, uptr size, StackTrace *stack) {
+ if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
+ errno = errno_ENOMEM;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportReallocArrayOverflow(nmemb, size, stack);
+ }
+ return hwasan_realloc(ptr, nmemb * size, stack);
+}
+
+void *hwasan_valloc(uptr size, StackTrace *stack) {
+ return SetErrnoOnNull(
+ HwasanAllocate(stack, size, GetPageSizeCached(), false));
+}
+
+void *hwasan_pvalloc(uptr size, StackTrace *stack) {
+ uptr PageSize = GetPageSizeCached();
+ if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
+ errno = errno_ENOMEM;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportPvallocOverflow(size, stack);
+ }
+ // pvalloc(0) should allocate one page.
+ size = size ? RoundUpTo(size, PageSize) : PageSize;
+ return SetErrnoOnNull(HwasanAllocate(stack, size, PageSize, false));
+}
+
+void *hwasan_aligned_alloc(uptr alignment, uptr size, StackTrace *stack) {
+ if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
+ errno = errno_EINVAL;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportInvalidAlignedAllocAlignment(size, alignment, stack);
+ }
+ return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
+}
+
+void *hwasan_memalign(uptr alignment, uptr size, StackTrace *stack) {
+ if (UNLIKELY(!IsPowerOfTwo(alignment))) {
+ errno = errno_EINVAL;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportInvalidAllocationAlignment(alignment, stack);
+ }
+ return SetErrnoOnNull(HwasanAllocate(stack, size, alignment, false));
+}
+
+int hwasan_posix_memalign(void **memptr, uptr alignment, uptr size,
+ StackTrace *stack) {
+ if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
+ if (AllocatorMayReturnNull())
+ return errno_EINVAL;
+ ReportInvalidPosixMemalignAlignment(alignment, stack);
+ }
+ void *ptr = HwasanAllocate(stack, size, alignment, false);
+ if (UNLIKELY(!ptr))
+ // OOM error is already taken care of by HwasanAllocate.
+ return errno_ENOMEM;
+ CHECK(IsAligned((uptr)ptr, alignment));
+ *memptr = ptr;
+ return 0;
+}
+
+void hwasan_free(void *ptr, StackTrace *stack) {
+ return HwasanDeallocate(stack, ptr);
+}
+
+} // namespace __hwasan
+
+// --- Implementation of LSan-specific functions --- {{{1
+namespace __lsan {
+
+void LockAllocator() {
+ __hwasan::HwasanAllocatorLock();
+}
+
+void UnlockAllocator() {
+ __hwasan::HwasanAllocatorUnlock();
+}
+
+void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
+ *begin = (uptr)&__hwasan::allocator;
+ *end = *begin + sizeof(__hwasan::allocator);
+}
+
+uptr PointsIntoChunk(void *p) {
+ p = UntagPtr(p);
+ uptr addr = reinterpret_cast<uptr>(p);
+ uptr chunk =
+ reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBeginFastLocked(p));
+ if (!chunk)
+ return 0;
+ __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
+ __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)));
+ if (!metadata || !metadata->IsAllocated())
+ return 0;
+ if (addr < chunk + metadata->GetRequestedSize())
+ return chunk;
+ if (IsSpecialCaseOfOperatorNew0(chunk, metadata->GetRequestedSize(), addr))
+ return chunk;
+ return 0;
+}
+
+uptr GetUserBegin(uptr chunk) {
+ CHECK_EQ(UntagAddr(chunk), chunk);
+ void *block = __hwasan::allocator.GetBlockBeginFastLocked(
+ reinterpret_cast<void *>(chunk));
+ if (!block)
+ return 0;
+ __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
+ __hwasan::allocator.GetMetaData(block));
+ if (!metadata || !metadata->IsAllocated())
+ return 0;
+
+ return reinterpret_cast<uptr>(block);
+}
+
+uptr GetUserAddr(uptr chunk) {
+ if (!InTaggableRegion(chunk))
+ return chunk;
+ tag_t mem_tag = *(tag_t *)__hwasan::MemToShadow(chunk);
+ return AddTagToPointer(chunk, mem_tag);
+}
+
+LsanMetadata::LsanMetadata(uptr chunk) {
+ CHECK_EQ(UntagAddr(chunk), chunk);
+ metadata_ =
+ chunk ? __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk))
+ : nullptr;
+}
+
+bool LsanMetadata::allocated() const {
+ if (!metadata_)
+ return false;
+ __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
+ return m->IsAllocated();
+}
+
+ChunkTag LsanMetadata::tag() const {
+ __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
+ return m->GetLsanTag();
+}
+
+void LsanMetadata::set_tag(ChunkTag value) {
+ __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
+ m->SetLsanTag(value);
+}
+
+uptr LsanMetadata::requested_size() const {
+ __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
+ return m->GetRequestedSize();
+}
+
+u32 LsanMetadata::stack_trace_id() const {
+ __hwasan::Metadata *m = reinterpret_cast<__hwasan::Metadata *>(metadata_);
+ return m->GetAllocStackId();
+}
+
+void ForEachChunk(ForEachChunkCallback callback, void *arg) {
+ __hwasan::allocator.ForEachChunk(callback, arg);
+}
+
+IgnoreObjectResult IgnoreObject(const void *p) {
+ p = UntagPtr(p);
+ uptr addr = reinterpret_cast<uptr>(p);
+ uptr chunk = reinterpret_cast<uptr>(__hwasan::allocator.GetBlockBegin(p));
+ if (!chunk)
+ return kIgnoreObjectInvalid;
+ __hwasan::Metadata *metadata = reinterpret_cast<__hwasan::Metadata *>(
+ __hwasan::allocator.GetMetaData(reinterpret_cast<void *>(chunk)));
+ if (!metadata || !metadata->IsAllocated())
+ return kIgnoreObjectInvalid;
+ if (addr >= chunk + metadata->GetRequestedSize())
+ return kIgnoreObjectInvalid;
+ if (metadata->GetLsanTag() == kIgnored)
+ return kIgnoreObjectAlreadyIgnored;
+
+ metadata->SetLsanTag(kIgnored);
+ return kIgnoreObjectSuccess;
+}
+
+} // namespace __lsan
+
+using namespace __hwasan;
+
+void __hwasan_enable_allocator_tagging() {
+ atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 1);
+}
+
+void __hwasan_disable_allocator_tagging() {
+ atomic_store_relaxed(&hwasan_allocator_tagging_enabled, 0);
+}
+
+uptr __sanitizer_get_current_allocated_bytes() {
+ uptr stats[AllocatorStatCount];
+ allocator.GetStats(stats);
+ return stats[AllocatorStatAllocated];
+}
+
+uptr __sanitizer_get_heap_size() {
+ uptr stats[AllocatorStatCount];
+ allocator.GetStats(stats);
+ return stats[AllocatorStatMapped];
+}
+
+uptr __sanitizer_get_free_bytes() { return 1; }
+
+uptr __sanitizer_get_unmapped_bytes() { return 1; }
+
+uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
+
+int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; }
+
+const void *__sanitizer_get_allocated_begin(const void *p) {
+ return AllocationBegin(p);
+}
+
+uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); }
+
+uptr __sanitizer_get_allocated_size_fast(const void *p) {
+ DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
+ uptr ret = AllocationSizeFast(p);
+ DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
+ return ret;
+}
+
+void __sanitizer_purge_allocator() { allocator.ForceReleaseToOS(); }