aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp')
-rw-r--r--contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp596
1 files changed, 596 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp b/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp
new file mode 100644
index 000000000000..68294b596256
--- /dev/null
+++ b/contrib/llvm-project/compiler-rt/lib/hwasan/hwasan_linux.cpp
@@ -0,0 +1,596 @@
+//===-- hwasan_linux.cpp ----------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file is a part of HWAddressSanitizer and contains Linux-, NetBSD- and
+/// FreeBSD-specific code.
+///
+//===----------------------------------------------------------------------===//
+
+#include "sanitizer_common/sanitizer_platform.h"
+#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD
+
+# include <dlfcn.h>
+# include <elf.h>
+# include <errno.h>
+# include <link.h>
+# include <pthread.h>
+# include <signal.h>
+# include <stdio.h>
+# include <stdlib.h>
+# include <sys/prctl.h>
+# include <sys/resource.h>
+# include <sys/time.h>
+# include <unistd.h>
+# include <unwind.h>
+
+# include "hwasan.h"
+# include "hwasan_dynamic_shadow.h"
+# include "hwasan_interface_internal.h"
+# include "hwasan_mapping.h"
+# include "hwasan_report.h"
+# include "hwasan_thread.h"
+# include "hwasan_thread_list.h"
+# include "sanitizer_common/sanitizer_common.h"
+# include "sanitizer_common/sanitizer_procmaps.h"
+# include "sanitizer_common/sanitizer_stackdepot.h"
+
+// Configurations of HWASAN_WITH_INTERCEPTORS and SANITIZER_ANDROID.
+//
+// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=OFF
+// Not currently tested.
+// HWASAN_WITH_INTERCEPTORS=OFF, SANITIZER_ANDROID=ON
+// Integration tests downstream exist.
+// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=OFF
+// Tested with check-hwasan on x86_64-linux.
+// HWASAN_WITH_INTERCEPTORS=ON, SANITIZER_ANDROID=ON
+// Tested with check-hwasan on aarch64-linux-android.
+# if !SANITIZER_ANDROID
+SANITIZER_INTERFACE_ATTRIBUTE
+THREADLOCAL uptr __hwasan_tls;
+# endif
+
+namespace __hwasan {
+
+// With the zero shadow base we can not actually map pages starting from 0.
+// This constant is somewhat arbitrary.
+constexpr uptr kZeroBaseShadowStart = 0;
+constexpr uptr kZeroBaseMaxShadowStart = 1 << 18;
+
+static void ProtectGap(uptr addr, uptr size) {
+ __sanitizer::ProtectGap(addr, size, kZeroBaseShadowStart,
+ kZeroBaseMaxShadowStart);
+}
+
+uptr kLowMemStart;
+uptr kLowMemEnd;
+uptr kHighMemStart;
+uptr kHighMemEnd;
+
+static void PrintRange(uptr start, uptr end, const char *name) {
+ Printf("|| [%p, %p] || %.*s ||\n", (void *)start, (void *)end, 10, name);
+}
+
+static void PrintAddressSpaceLayout() {
+ PrintRange(kHighMemStart, kHighMemEnd, "HighMem");
+ if (kHighShadowEnd + 1 < kHighMemStart)
+ PrintRange(kHighShadowEnd + 1, kHighMemStart - 1, "ShadowGap");
+ else
+ CHECK_EQ(kHighShadowEnd + 1, kHighMemStart);
+ PrintRange(kHighShadowStart, kHighShadowEnd, "HighShadow");
+ if (kLowShadowEnd + 1 < kHighShadowStart)
+ PrintRange(kLowShadowEnd + 1, kHighShadowStart - 1, "ShadowGap");
+ else
+ CHECK_EQ(kLowMemEnd + 1, kHighShadowStart);
+ PrintRange(kLowShadowStart, kLowShadowEnd, "LowShadow");
+ if (kLowMemEnd + 1 < kLowShadowStart)
+ PrintRange(kLowMemEnd + 1, kLowShadowStart - 1, "ShadowGap");
+ else
+ CHECK_EQ(kLowMemEnd + 1, kLowShadowStart);
+ PrintRange(kLowMemStart, kLowMemEnd, "LowMem");
+ CHECK_EQ(0, kLowMemStart);
+}
+
+static uptr GetHighMemEnd() {
+ // HighMem covers the upper part of the address space.
+ uptr max_address = GetMaxUserVirtualAddress();
+ // Adjust max address to make sure that kHighMemEnd and kHighMemStart are
+ // properly aligned:
+ max_address |= (GetMmapGranularity() << kShadowScale) - 1;
+ return max_address;
+}
+
+static void InitializeShadowBaseAddress(uptr shadow_size_bytes) {
+ // FIXME: Android should init flags before shadow.
+ if (!SANITIZER_ANDROID && flags()->fixed_shadow_base != (uptr)-1) {
+ __hwasan_shadow_memory_dynamic_address = flags()->fixed_shadow_base;
+ uptr beg = __hwasan_shadow_memory_dynamic_address;
+ uptr end = beg + shadow_size_bytes;
+ if (!MemoryRangeIsAvailable(beg, end)) {
+ Report(
+ "FATAL: HWAddressSanitizer: Shadow range %p-%p is not available.\n",
+ (void *)beg, (void *)end);
+ DumpProcessMap();
+ CHECK(MemoryRangeIsAvailable(beg, end));
+ }
+ } else {
+ __hwasan_shadow_memory_dynamic_address =
+ FindDynamicShadowStart(shadow_size_bytes);
+ }
+}
+
+static void MaybeDieIfNoTaggingAbi(const char *message) {
+ if (!flags()->fail_without_syscall_abi)
+ return;
+ Printf("FATAL: %s\n", message);
+ Die();
+}
+
+# define PR_SET_TAGGED_ADDR_CTRL 55
+# define PR_GET_TAGGED_ADDR_CTRL 56
+# define PR_TAGGED_ADDR_ENABLE (1UL << 0)
+# define ARCH_GET_UNTAG_MASK 0x4001
+# define ARCH_ENABLE_TAGGED_ADDR 0x4002
+# define ARCH_GET_MAX_TAG_BITS 0x4003
+
+static bool CanUseTaggingAbi() {
+# if defined(__x86_64__)
+ unsigned long num_bits = 0;
+ // Check for x86 LAM support. This API is based on a currently unsubmitted
+ // patch to the Linux kernel (as of August 2022) and is thus subject to
+ // change. The patch is here:
+ // https://lore.kernel.org/all/20220815041803.17954-1-kirill.shutemov@linux.intel.com/
+ //
+ // arch_prctl(ARCH_GET_MAX_TAG_BITS, &bits) returns the maximum number of tag
+ // bits the user can request, or zero if LAM is not supported by the hardware.
+ if (internal_iserror(internal_arch_prctl(ARCH_GET_MAX_TAG_BITS,
+ reinterpret_cast<uptr>(&num_bits))))
+ return false;
+ // The platform must provide enough bits for HWASan tags.
+ if (num_bits < kTagBits)
+ return false;
+ return true;
+# else
+ // Check for ARM TBI support.
+ return !internal_iserror(internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0));
+# endif // __x86_64__
+}
+
+static bool EnableTaggingAbi() {
+# if defined(__x86_64__)
+ // Enable x86 LAM tagging for the process.
+ //
+ // arch_prctl(ARCH_ENABLE_TAGGED_ADDR, bits) enables tagging if the number of
+ // tag bits requested by the user does not exceed that provided by the system.
+ // arch_prctl(ARCH_GET_UNTAG_MASK, &mask) returns the mask of significant
+ // address bits. It is ~0ULL if either LAM is disabled for the process or LAM
+ // is not supported by the hardware.
+ if (internal_iserror(internal_arch_prctl(ARCH_ENABLE_TAGGED_ADDR, kTagBits)))
+ return false;
+ unsigned long mask = 0;
+ // Make sure the tag bits are where we expect them to be.
+ if (internal_iserror(internal_arch_prctl(ARCH_GET_UNTAG_MASK,
+ reinterpret_cast<uptr>(&mask))))
+ return false;
+ // @mask has ones for non-tag bits, whereas @kAddressTagMask has ones for tag
+ // bits. Therefore these masks must not overlap.
+ if (mask & kAddressTagMask)
+ return false;
+ return true;
+# else
+ // Enable ARM TBI tagging for the process. If for some reason tagging is not
+ // supported, prctl(PR_SET_TAGGED_ADDR_CTRL, PR_TAGGED_ADDR_ENABLE) returns
+ // -EINVAL.
+ if (internal_iserror(internal_prctl(PR_SET_TAGGED_ADDR_CTRL,
+ PR_TAGGED_ADDR_ENABLE, 0, 0, 0)))
+ return false;
+ // Ensure that TBI is enabled.
+ if (internal_prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0) !=
+ PR_TAGGED_ADDR_ENABLE)
+ return false;
+ return true;
+# endif // __x86_64__
+}
+
+void InitializeOsSupport() {
+ // Check we're running on a kernel that can use the tagged address ABI.
+ bool has_abi = CanUseTaggingAbi();
+
+ if (!has_abi) {
+# if SANITIZER_ANDROID || defined(HWASAN_ALIASING_MODE)
+ // Some older Android kernels have the tagged pointer ABI on
+ // unconditionally, and hence don't have the tagged-addr prctl while still
+ // allow the ABI.
+ // If targeting Android and the prctl is not around we assume this is the
+ // case.
+ return;
+# else
+ MaybeDieIfNoTaggingAbi(
+ "HWAddressSanitizer requires a kernel with tagged address ABI.");
+# endif
+ }
+
+ if (EnableTaggingAbi())
+ return;
+
+# if SANITIZER_ANDROID
+ MaybeDieIfNoTaggingAbi(
+ "HWAddressSanitizer failed to enable tagged address syscall ABI.\n"
+ "Check the `sysctl abi.tagged_addr_disabled` configuration.");
+# else
+ MaybeDieIfNoTaggingAbi(
+ "HWAddressSanitizer failed to enable tagged address syscall ABI.\n");
+# endif
+}
+
+bool InitShadow() {
+ // Define the entire memory range.
+ kHighMemEnd = GetHighMemEnd();
+
+ // Determine shadow memory base offset.
+ InitializeShadowBaseAddress(MemToShadowSize(kHighMemEnd));
+
+ // Place the low memory first.
+ kLowMemEnd = __hwasan_shadow_memory_dynamic_address - 1;
+ kLowMemStart = 0;
+
+ // Define the low shadow based on the already placed low memory.
+ kLowShadowEnd = MemToShadow(kLowMemEnd);
+ kLowShadowStart = __hwasan_shadow_memory_dynamic_address;
+
+ // High shadow takes whatever memory is left up there (making sure it is not
+ // interfering with low memory in the fixed case).
+ kHighShadowEnd = MemToShadow(kHighMemEnd);
+ kHighShadowStart = Max(kLowMemEnd, MemToShadow(kHighShadowEnd)) + 1;
+
+ // High memory starts where allocated shadow allows.
+ kHighMemStart = ShadowToMem(kHighShadowStart);
+
+ // Check the sanity of the defined memory ranges (there might be gaps).
+ CHECK_EQ(kHighMemStart % GetMmapGranularity(), 0);
+ CHECK_GT(kHighMemStart, kHighShadowEnd);
+ CHECK_GT(kHighShadowEnd, kHighShadowStart);
+ CHECK_GT(kHighShadowStart, kLowMemEnd);
+ CHECK_GT(kLowMemEnd, kLowMemStart);
+ CHECK_GT(kLowShadowEnd, kLowShadowStart);
+ CHECK_GT(kLowShadowStart, kLowMemEnd);
+
+ // Reserve shadow memory.
+ ReserveShadowMemoryRange(kLowShadowStart, kLowShadowEnd, "low shadow");
+ ReserveShadowMemoryRange(kHighShadowStart, kHighShadowEnd, "high shadow");
+
+ // Protect all the gaps.
+ ProtectGap(0, Min(kLowMemStart, kLowShadowStart));
+ if (kLowMemEnd + 1 < kLowShadowStart)
+ ProtectGap(kLowMemEnd + 1, kLowShadowStart - kLowMemEnd - 1);
+ if (kLowShadowEnd + 1 < kHighShadowStart)
+ ProtectGap(kLowShadowEnd + 1, kHighShadowStart - kLowShadowEnd - 1);
+ if (kHighShadowEnd + 1 < kHighMemStart)
+ ProtectGap(kHighShadowEnd + 1, kHighMemStart - kHighShadowEnd - 1);
+
+ if (Verbosity())
+ PrintAddressSpaceLayout();
+
+ return true;
+}
+
+void InitThreads() {
+ CHECK(__hwasan_shadow_memory_dynamic_address);
+ uptr guard_page_size = GetMmapGranularity();
+ uptr thread_space_start =
+ __hwasan_shadow_memory_dynamic_address - (1ULL << kShadowBaseAlignment);
+ uptr thread_space_end =
+ __hwasan_shadow_memory_dynamic_address - guard_page_size;
+ ReserveShadowMemoryRange(thread_space_start, thread_space_end - 1,
+ "hwasan threads", /*madvise_shadow*/ false);
+ ProtectGap(thread_space_end,
+ __hwasan_shadow_memory_dynamic_address - thread_space_end);
+ InitThreadList(thread_space_start, thread_space_end - thread_space_start);
+ hwasanThreadList().CreateCurrentThread();
+}
+
+bool MemIsApp(uptr p) {
+// Memory outside the alias range has non-zero tags.
+# if !defined(HWASAN_ALIASING_MODE)
+ CHECK_EQ(GetTagFromPointer(p), 0);
+# endif
+
+ return (p >= kHighMemStart && p <= kHighMemEnd) ||
+ (p >= kLowMemStart && p <= kLowMemEnd);
+}
+
+void InstallAtExitHandler() { atexit(HwasanAtExit); }
+
+// ---------------------- TSD ---------------- {{{1
+
+# if HWASAN_WITH_INTERCEPTORS
+static pthread_key_t tsd_key;
+static bool tsd_key_inited = false;
+
+void HwasanTSDThreadInit() {
+ if (tsd_key_inited)
+ CHECK_EQ(0, pthread_setspecific(tsd_key,
+ (void *)GetPthreadDestructorIterations()));
+}
+
+void HwasanTSDDtor(void *tsd) {
+ uptr iterations = (uptr)tsd;
+ if (iterations > 1) {
+ CHECK_EQ(0, pthread_setspecific(tsd_key, (void *)(iterations - 1)));
+ return;
+ }
+ __hwasan_thread_exit();
+}
+
+void HwasanTSDInit() {
+ CHECK(!tsd_key_inited);
+ tsd_key_inited = true;
+ CHECK_EQ(0, pthread_key_create(&tsd_key, HwasanTSDDtor));
+}
+# else
+void HwasanTSDInit() {}
+void HwasanTSDThreadInit() {}
+# endif
+
+# if SANITIZER_ANDROID
+uptr *GetCurrentThreadLongPtr() { return (uptr *)get_android_tls_ptr(); }
+# else
+uptr *GetCurrentThreadLongPtr() { return &__hwasan_tls; }
+# endif
+
+# if SANITIZER_ANDROID
+void AndroidTestTlsSlot() {
+ uptr kMagicValue = 0x010203040A0B0C0D;
+ uptr *tls_ptr = GetCurrentThreadLongPtr();
+ uptr old_value = *tls_ptr;
+ *tls_ptr = kMagicValue;
+ dlerror();
+ if (*(uptr *)get_android_tls_ptr() != kMagicValue) {
+ Printf(
+ "ERROR: Incompatible version of Android: TLS_SLOT_SANITIZER(6) is used "
+ "for dlerror().\n");
+ Die();
+ }
+ *tls_ptr = old_value;
+}
+# else
+void AndroidTestTlsSlot() {}
+# endif
+
+static AccessInfo GetAccessInfo(siginfo_t *info, ucontext_t *uc) {
+ // Access type is passed in a platform dependent way (see below) and encoded
+ // as 0xXY, where X&1 is 1 for store, 0 for load, and X&2 is 1 if the error is
+ // recoverable. Valid values of Y are 0 to 4, which are interpreted as
+ // log2(access_size), and 0xF, which means that access size is passed via
+ // platform dependent register (see below).
+# if defined(__aarch64__)
+ // Access type is encoded in BRK immediate as 0x900 + 0xXY. For Y == 0xF,
+ // access size is stored in X1 register. Access address is always in X0
+ // register.
+ uptr pc = (uptr)info->si_addr;
+ const unsigned code = ((*(u32 *)pc) >> 5) & 0xffff;
+ if ((code & 0xff00) != 0x900)
+ return AccessInfo{}; // Not ours.
+
+ const bool is_store = code & 0x10;
+ const bool recover = code & 0x20;
+ const uptr addr = uc->uc_mcontext.regs[0];
+ const unsigned size_log = code & 0xf;
+ if (size_log > 4 && size_log != 0xf)
+ return AccessInfo{}; // Not ours.
+ const uptr size = size_log == 0xf ? uc->uc_mcontext.regs[1] : 1U << size_log;
+
+# elif defined(__x86_64__)
+ // Access type is encoded in the instruction following INT3 as
+ // NOP DWORD ptr [EAX + 0x40 + 0xXY]. For Y == 0xF, access size is stored in
+ // RSI register. Access address is always in RDI register.
+ uptr pc = (uptr)uc->uc_mcontext.gregs[REG_RIP];
+ uint8_t *nop = (uint8_t *)pc;
+ if (*nop != 0x0f || *(nop + 1) != 0x1f || *(nop + 2) != 0x40 ||
+ *(nop + 3) < 0x40)
+ return AccessInfo{}; // Not ours.
+ const unsigned code = *(nop + 3);
+
+ const bool is_store = code & 0x10;
+ const bool recover = code & 0x20;
+ const uptr addr = uc->uc_mcontext.gregs[REG_RDI];
+ const unsigned size_log = code & 0xf;
+ if (size_log > 4 && size_log != 0xf)
+ return AccessInfo{}; // Not ours.
+ const uptr size =
+ size_log == 0xf ? uc->uc_mcontext.gregs[REG_RSI] : 1U << size_log;
+
+# elif SANITIZER_RISCV64
+ // Access type is encoded in the instruction following EBREAK as
+ // ADDI x0, x0, [0x40 + 0xXY]. For Y == 0xF, access size is stored in
+ // X11 register. Access address is always in X10 register.
+ uptr pc = (uptr)uc->uc_mcontext.__gregs[REG_PC];
+ uint8_t byte1 = *((u8 *)(pc + 0));
+ uint8_t byte2 = *((u8 *)(pc + 1));
+ uint8_t byte3 = *((u8 *)(pc + 2));
+ uint8_t byte4 = *((u8 *)(pc + 3));
+ uint32_t ebreak = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
+ bool isFaultShort = false;
+ bool isEbreak = (ebreak == 0x100073);
+ bool isShortEbreak = false;
+# if defined(__riscv_compressed)
+ isFaultShort = ((ebreak & 0x3) != 0x3);
+ isShortEbreak = ((ebreak & 0xffff) == 0x9002);
+# endif
+ // faulted insn is not ebreak, not our case
+ if (!(isEbreak || isShortEbreak))
+ return AccessInfo{};
+ // advance pc to point after ebreak and reconstruct addi instruction
+ pc += isFaultShort ? 2 : 4;
+ byte1 = *((u8 *)(pc + 0));
+ byte2 = *((u8 *)(pc + 1));
+ byte3 = *((u8 *)(pc + 2));
+ byte4 = *((u8 *)(pc + 3));
+ // reconstruct instruction
+ uint32_t instr = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
+ // check if this is really 32 bit instruction
+ // code is encoded in top 12 bits, since instruction is supposed to be with
+ // imm
+ const unsigned code = (instr >> 20) & 0xffff;
+ const uptr addr = uc->uc_mcontext.__gregs[10];
+ const bool is_store = code & 0x10;
+ const bool recover = code & 0x20;
+ const unsigned size_log = code & 0xf;
+ if (size_log > 4 && size_log != 0xf)
+ return AccessInfo{}; // Not our case
+ const uptr size =
+ size_log == 0xf ? uc->uc_mcontext.__gregs[11] : 1U << size_log;
+
+# else
+# error Unsupported architecture
+# endif
+
+ return AccessInfo{addr, size, is_store, !is_store, recover};
+}
+
+static bool HwasanOnSIGTRAP(int signo, siginfo_t *info, ucontext_t *uc) {
+ AccessInfo ai = GetAccessInfo(info, uc);
+ if (!ai.is_store && !ai.is_load)
+ return false;
+
+ SignalContext sig{info, uc};
+ HandleTagMismatch(ai, StackTrace::GetNextInstructionPc(sig.pc), sig.bp, uc);
+
+# if defined(__aarch64__)
+ uc->uc_mcontext.pc += 4;
+# elif defined(__x86_64__)
+# elif SANITIZER_RISCV64
+ // pc points to EBREAK which is 2 bytes long
+ uint8_t *exception_source = (uint8_t *)(uc->uc_mcontext.__gregs[REG_PC]);
+ uint8_t byte1 = (uint8_t)(*(exception_source + 0));
+ uint8_t byte2 = (uint8_t)(*(exception_source + 1));
+ uint8_t byte3 = (uint8_t)(*(exception_source + 2));
+ uint8_t byte4 = (uint8_t)(*(exception_source + 3));
+ uint32_t faulted = (byte1 | (byte2 << 8) | (byte3 << 16) | (byte4 << 24));
+ bool isFaultShort = false;
+# if defined(__riscv_compressed)
+ isFaultShort = ((faulted & 0x3) != 0x3);
+# endif
+ uc->uc_mcontext.__gregs[REG_PC] += isFaultShort ? 2 : 4;
+# else
+# error Unsupported architecture
+# endif
+ return true;
+}
+
+static void OnStackUnwind(const SignalContext &sig, const void *,
+ BufferedStackTrace *stack) {
+ stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
+ common_flags()->fast_unwind_on_fatal);
+}
+
+void HwasanOnDeadlySignal(int signo, void *info, void *context) {
+ // Probably a tag mismatch.
+ if (signo == SIGTRAP)
+ if (HwasanOnSIGTRAP(signo, (siginfo_t *)info, (ucontext_t *)context))
+ return;
+
+ HandleDeadlySignal(info, context, GetTid(), &OnStackUnwind, nullptr);
+}
+
+void Thread::InitStackAndTls(const InitState *) {
+ uptr tls_size;
+ uptr stack_size;
+ GetThreadStackAndTls(IsMainThread(), &stack_bottom_, &stack_size, &tls_begin_,
+ &tls_size);
+ stack_top_ = stack_bottom_ + stack_size;
+ tls_end_ = tls_begin_ + tls_size;
+}
+
+uptr TagMemoryAligned(uptr p, uptr size, tag_t tag) {
+ CHECK(IsAligned(p, kShadowAlignment));
+ CHECK(IsAligned(size, kShadowAlignment));
+ uptr shadow_start = MemToShadow(p);
+ uptr shadow_size = MemToShadowSize(size);
+
+ uptr page_size = GetPageSizeCached();
+ uptr page_start = RoundUpTo(shadow_start, page_size);
+ uptr page_end = RoundDownTo(shadow_start + shadow_size, page_size);
+ uptr threshold = common_flags()->clear_shadow_mmap_threshold;
+ if (SANITIZER_LINUX &&
+ UNLIKELY(page_end >= page_start + threshold && tag == 0)) {
+ internal_memset((void *)shadow_start, tag, page_start - shadow_start);
+ internal_memset((void *)page_end, tag,
+ shadow_start + shadow_size - page_end);
+ // For an anonymous private mapping MADV_DONTNEED will return a zero page on
+ // Linux.
+ ReleaseMemoryPagesToOSAndZeroFill(page_start, page_end);
+ } else {
+ internal_memset((void *)shadow_start, tag, shadow_size);
+ }
+ return AddTagToPointer(p, tag);
+}
+
+static void BeforeFork() {
+ if (CAN_SANITIZE_LEAKS) {
+ __lsan::LockGlobal();
+ }
+ // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and lock the
+ // stuff we need.
+ __lsan::LockThreads();
+ __lsan::LockAllocator();
+ StackDepotLockBeforeFork();
+}
+
+static void AfterFork(bool fork_child) {
+ StackDepotUnlockAfterFork(fork_child);
+ // `_lsan` functions defined regardless of `CAN_SANITIZE_LEAKS` and unlock
+ // the stuff we need.
+ __lsan::UnlockAllocator();
+ __lsan::UnlockThreads();
+ if (CAN_SANITIZE_LEAKS) {
+ __lsan::UnlockGlobal();
+ }
+}
+
+void HwasanInstallAtForkHandler() {
+ pthread_atfork(
+ &BeforeFork, []() { AfterFork(/* fork_child= */ false); },
+ []() { AfterFork(/* fork_child= */ true); });
+}
+
+void InstallAtExitCheckLeaks() {
+ if (CAN_SANITIZE_LEAKS) {
+ if (common_flags()->detect_leaks && common_flags()->leak_check_at_exit) {
+ if (flags()->halt_on_error)
+ Atexit(__lsan::DoLeakCheck);
+ else
+ Atexit(__lsan::DoRecoverableLeakCheckVoid);
+ }
+ }
+}
+
+} // namespace __hwasan
+
+using namespace __hwasan;
+
+extern "C" void __hwasan_thread_enter() {
+ hwasanThreadList().CreateCurrentThread()->EnsureRandomStateInited();
+}
+
+extern "C" void __hwasan_thread_exit() {
+ Thread *t = GetCurrentThread();
+ // Make sure that signal handler can not see a stale current thread pointer.
+ atomic_signal_fence(memory_order_seq_cst);
+ if (t) {
+ // Block async signals on the thread as the handler can be instrumented.
+ // After this point instrumented code can't access essential data from TLS
+ // and will crash.
+ // Bionic already calls __hwasan_thread_exit with blocked signals.
+ if (SANITIZER_GLIBC)
+ BlockSignals();
+ hwasanThreadList().ReleaseThread(t);
+ }
+}
+
+#endif // SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD