diff options
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp')
-rw-r--r-- | contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp | 812 |
1 files changed, 812 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp b/contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp new file mode 100644 index 000000000000..19b2b9010682 --- /dev/null +++ b/contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp @@ -0,0 +1,812 @@ +//===-- memprof_allocator.cpp --------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file is a part of MemProfiler, a memory profiler. +// +// Implementation of MemProf's memory allocator, which uses the allocator +// from sanitizer_common. +// +//===----------------------------------------------------------------------===// + +#include "memprof_allocator.h" +#include "memprof_mapping.h" +#include "memprof_mibmap.h" +#include "memprof_rawprofile.h" +#include "memprof_stack.h" +#include "memprof_thread.h" +#include "profile/MemProfData.inc" +#include "sanitizer_common/sanitizer_allocator_checks.h" +#include "sanitizer_common/sanitizer_allocator_interface.h" +#include "sanitizer_common/sanitizer_allocator_report.h" +#include "sanitizer_common/sanitizer_array_ref.h" +#include "sanitizer_common/sanitizer_common.h" +#include "sanitizer_common/sanitizer_errno.h" +#include "sanitizer_common/sanitizer_file.h" +#include "sanitizer_common/sanitizer_flags.h" +#include "sanitizer_common/sanitizer_internal_defs.h" +#include "sanitizer_common/sanitizer_stackdepot.h" + +#include <sched.h> +#include <time.h> + +#define MAX_HISTOGRAM_PRINT_SIZE 32U + +extern bool __memprof_histogram; + +namespace __memprof { +namespace { +using ::llvm::memprof::MemInfoBlock; + +void Print(const MemInfoBlock &M, const u64 id, bool print_terse) { + u64 p; + + if (print_terse) { + p = M.TotalSize * 100 / M.AllocCount; + Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100, + M.MinSize, M.MaxSize); + p = M.TotalAccessCount * 100 / M.AllocCount; + Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount, + M.MaxAccessCount); + p = M.TotalLifetime * 100 / M.AllocCount; + Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime, + M.MaxLifetime); + Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps, + M.NumSameAllocCpu, M.NumSameDeallocCpu); + } else { + p = M.TotalSize * 100 / M.AllocCount; + Printf("Memory allocation stack id = %llu\n", id); + Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n", + M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize); + p = M.TotalAccessCount * 100 / M.AllocCount; + Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100, + p % 100, M.MinAccessCount, M.MaxAccessCount); + p = M.TotalLifetime * 100 / M.AllocCount; + Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100, + p % 100, M.MinLifetime, M.MaxLifetime); + Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc " + "cpu: %u, num same dealloc_cpu: %u\n", + M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu, + M.NumSameDeallocCpu); + Printf("AccessCountHistogram[%u]: ", M.AccessHistogramSize); + uint32_t PrintSize = M.AccessHistogramSize > MAX_HISTOGRAM_PRINT_SIZE + ? MAX_HISTOGRAM_PRINT_SIZE + : M.AccessHistogramSize; + for (size_t i = 0; i < PrintSize; ++i) { + Printf("%llu ", ((uint64_t *)M.AccessHistogram)[i]); + } + Printf("\n"); + } +} +} // namespace + +static int GetCpuId(void) { + // _memprof_preinit is called via the preinit_array, which subsequently calls + // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu + // will seg fault as the address of __vdso_getcpu will be null. + if (!memprof_inited) + return -1; + return sched_getcpu(); +} + +// Compute the timestamp in ms. +static int GetTimestamp(void) { + // timespec_get will segfault if called from dl_init + if (!memprof_timestamp_inited) { + // By returning 0, this will be effectively treated as being + // timestamped at memprof init time (when memprof_init_timestamp_s + // is initialized). + return 0; + } + timespec ts; + clock_gettime(CLOCK_REALTIME, &ts); + return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000; +} + +static MemprofAllocator &get_allocator(); + +// The memory chunk allocated from the underlying allocator looks like this: +// H H U U U U U U +// H -- ChunkHeader (32 bytes) +// U -- user memory. + +// If there is left padding before the ChunkHeader (due to use of memalign), +// we store a magic value in the first uptr word of the memory block and +// store the address of ChunkHeader in the next uptr. +// M B L L L L L L L L L H H U U U U U U +// | ^ +// ---------------------| +// M -- magic value kAllocBegMagic +// B -- address of ChunkHeader pointing to the first 'H' + +constexpr uptr kMaxAllowedMallocBits = 40; + +// Should be no more than 32-bytes +struct ChunkHeader { + // 1-st 4 bytes. + u32 alloc_context_id; + // 2-nd 4 bytes + u32 cpu_id; + // 3-rd 4 bytes + u32 timestamp_ms; + // 4-th 4 bytes + // Note only 1 bit is needed for this flag if we need space in the future for + // more fields. + u32 from_memalign; + // 5-th and 6-th 4 bytes + // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this + // could be shrunk to kMaxAllowedMallocBits if we need space in the future for + // more fields. + atomic_uint64_t user_requested_size; + // 23 bits available + // 7-th and 8-th 4 bytes + u64 data_type_id; // TODO: hash of type name +}; + +static const uptr kChunkHeaderSize = sizeof(ChunkHeader); +COMPILER_CHECK(kChunkHeaderSize == 32); + +struct MemprofChunk : ChunkHeader { + uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; } + uptr UsedSize() { + return atomic_load(&user_requested_size, memory_order_relaxed); + } + void *AllocBeg() { + if (from_memalign) + return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this)); + return reinterpret_cast<void *>(this); + } +}; + +class LargeChunkHeader { + static constexpr uptr kAllocBegMagic = + FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL); + atomic_uintptr_t magic; + MemprofChunk *chunk_header; + +public: + MemprofChunk *Get() const { + return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic + ? chunk_header + : nullptr; + } + + void Set(MemprofChunk *p) { + if (p) { + chunk_header = p; + atomic_store(&magic, kAllocBegMagic, memory_order_release); + return; + } + + uptr old = kAllocBegMagic; + if (!atomic_compare_exchange_strong(&magic, &old, 0, + memory_order_release)) { + CHECK_EQ(old, kAllocBegMagic); + } + } +}; + +void FlushUnneededMemProfShadowMemory(uptr p, uptr size) { + // Since memprof's mapping is compacting, the shadow chunk may be + // not page-aligned, so we only flush the page-aligned portion. + ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size)); +} + +void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const { + // Statistics. + MemprofStats &thread_stats = GetCurrentThreadStats(); + thread_stats.mmaps++; + thread_stats.mmaped += size; +} + +void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const { + // We are about to unmap a chunk of user memory. + // Mark the corresponding shadow memory as not needed. + FlushUnneededMemProfShadowMemory(p, size); + // Statistics. + MemprofStats &thread_stats = GetCurrentThreadStats(); + thread_stats.munmaps++; + thread_stats.munmaped += size; +} + +AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) { + CHECK(ms); + return &ms->allocator_cache; +} + +// Accumulates the access count from the shadow for the given pointer and size. +u64 GetShadowCount(uptr p, u32 size) { + u64 *shadow = (u64 *)MEM_TO_SHADOW(p); + u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size); + u64 count = 0; + for (; shadow <= shadow_end; shadow++) + count += *shadow; + return count; +} + +// Accumulates the access count from the shadow for the given pointer and size. +// See memprof_mapping.h for an overview on histogram counters. +u64 GetShadowCountHistogram(uptr p, u32 size) { + u8 *shadow = (u8 *)HISTOGRAM_MEM_TO_SHADOW(p); + u8 *shadow_end = (u8 *)HISTOGRAM_MEM_TO_SHADOW(p + size); + u64 count = 0; + for (; shadow <= shadow_end; shadow++) + count += *shadow; + return count; +} + +// Clears the shadow counters (when memory is allocated). +void ClearShadow(uptr addr, uptr size) { + CHECK(AddrIsAlignedByGranularity(addr)); + CHECK(AddrIsInMem(addr)); + CHECK(AddrIsAlignedByGranularity(addr + size)); + CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY)); + CHECK(REAL(memset)); + uptr shadow_beg; + uptr shadow_end; + if (__memprof_histogram) { + shadow_beg = HISTOGRAM_MEM_TO_SHADOW(addr); + shadow_end = HISTOGRAM_MEM_TO_SHADOW(addr + size); + } else { + shadow_beg = MEM_TO_SHADOW(addr); + shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1; + } + + if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) { + REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); + } else { + uptr page_size = GetPageSizeCached(); + uptr page_beg = RoundUpTo(shadow_beg, page_size); + uptr page_end = RoundDownTo(shadow_end, page_size); + + if (page_beg >= page_end) { + REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg); + } else { + if (page_beg != shadow_beg) { + REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg); + } + if (page_end != shadow_end) { + REAL(memset)((void *)page_end, 0, shadow_end - page_end); + } + ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr); + } + } +} + +struct Allocator { + static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits; + + MemprofAllocator allocator; + StaticSpinMutex fallback_mutex; + AllocatorCache fallback_allocator_cache; + + uptr max_user_defined_malloc_size; + + // Holds the mapping of stack ids to MemInfoBlocks. + MIBMapTy MIBMap; + + atomic_uint8_t destructing; + atomic_uint8_t constructed; + bool print_text; + + // ------------------- Initialization ------------------------ + explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) { + atomic_store_relaxed(&destructing, 0); + atomic_store_relaxed(&constructed, 1); + } + + ~Allocator() { + atomic_store_relaxed(&destructing, 1); + FinishAndWrite(); + } + + static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value, + void *Arg) { + SpinMutexLock l(&Value->mutex); + Print(Value->mib, Key, bool(Arg)); + } + + // See memprof_mapping.h for an overview on histogram counters. + static MemInfoBlock CreateNewMIB(uptr p, MemprofChunk *m, u64 user_size) { + if (__memprof_histogram) { + return CreateNewMIBWithHistogram(p, m, user_size); + } else { + return CreateNewMIBWithoutHistogram(p, m, user_size); + } + } + + static MemInfoBlock CreateNewMIBWithHistogram(uptr p, MemprofChunk *m, + u64 user_size) { + + u64 c = GetShadowCountHistogram(p, user_size); + long curtime = GetTimestamp(); + uint32_t HistogramSize = + RoundUpTo(user_size, HISTOGRAM_GRANULARITY) / HISTOGRAM_GRANULARITY; + uintptr_t Histogram = + (uintptr_t)InternalAlloc(HistogramSize * sizeof(uint64_t)); + memset((void *)Histogram, 0, HistogramSize * sizeof(uint64_t)); + for (size_t i = 0; i < HistogramSize; ++i) { + u8 Counter = + *((u8 *)HISTOGRAM_MEM_TO_SHADOW(p + HISTOGRAM_GRANULARITY * i)); + ((uint64_t *)Histogram)[i] = (uint64_t)Counter; + } + MemInfoBlock newMIB(user_size, c, m->timestamp_ms, curtime, m->cpu_id, + GetCpuId(), Histogram, HistogramSize); + return newMIB; + } + + static MemInfoBlock CreateNewMIBWithoutHistogram(uptr p, MemprofChunk *m, + u64 user_size) { + u64 c = GetShadowCount(p, user_size); + long curtime = GetTimestamp(); + MemInfoBlock newMIB(user_size, c, m->timestamp_ms, curtime, m->cpu_id, + GetCpuId(), 0, 0); + return newMIB; + } + + void FinishAndWrite() { + if (print_text && common_flags()->print_module_map) + DumpProcessMap(); + + allocator.ForceLock(); + + InsertLiveBlocks(); + if (print_text) { + if (!flags()->print_terse) + Printf("Recorded MIBs (incl. live on exit):\n"); + MIBMap.ForEach(PrintCallback, + reinterpret_cast<void *>(flags()->print_terse)); + StackDepotPrintAll(); + } else { + // Serialize the contents to a raw profile. Format documented in + // memprof_rawprofile.h. + char *Buffer = nullptr; + + __sanitizer::ListOfModules List; + List.init(); + ArrayRef<LoadedModule> Modules(List.begin(), List.end()); + u64 BytesSerialized = SerializeToRawProfile(MIBMap, Modules, Buffer); + CHECK(Buffer && BytesSerialized && "could not serialize to buffer"); + report_file.Write(Buffer, BytesSerialized); + } + + allocator.ForceUnlock(); + } + + // Inserts any blocks which have been allocated but not yet deallocated. + void InsertLiveBlocks() { + allocator.ForEachChunk( + [](uptr chunk, void *alloc) { + u64 user_requested_size; + Allocator *A = (Allocator *)alloc; + MemprofChunk *m = + A->GetMemprofChunk((void *)chunk, user_requested_size); + if (!m) + return; + uptr user_beg = ((uptr)m) + kChunkHeaderSize; + MemInfoBlock newMIB = CreateNewMIB(user_beg, m, user_requested_size); + InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap); + }, + this); + } + + void InitLinkerInitialized() { + SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); + allocator.InitLinkerInitialized( + common_flags()->allocator_release_to_os_interval_ms); + max_user_defined_malloc_size = common_flags()->max_allocation_size_mb + ? common_flags()->max_allocation_size_mb + << 20 + : kMaxAllowedMallocSize; + } + + // -------------------- Allocation/Deallocation routines --------------- + void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack, + AllocType alloc_type) { + if (UNLIKELY(!memprof_inited)) + MemprofInitFromRtl(); + if (UNLIKELY(IsRssLimitExceeded())) { + if (AllocatorMayReturnNull()) + return nullptr; + ReportRssLimitExceeded(stack); + } + CHECK(stack); + const uptr min_alignment = MEMPROF_ALIGNMENT; + if (alignment < min_alignment) + alignment = min_alignment; + if (size == 0) { + // We'd be happy to avoid allocating memory for zero-size requests, but + // some programs/tests depend on this behavior and assume that malloc + // would not return NULL even for zero-size allocations. Moreover, it + // looks like operator new should never return NULL, and results of + // consecutive "new" calls must be different even if the allocated size + // is zero. + size = 1; + } + CHECK(IsPowerOfTwo(alignment)); + uptr rounded_size = RoundUpTo(size, alignment); + uptr needed_size = rounded_size + kChunkHeaderSize; + if (alignment > min_alignment) + needed_size += alignment; + CHECK(IsAligned(needed_size, min_alignment)); + if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize || + size > max_user_defined_malloc_size) { + if (AllocatorMayReturnNull()) { + Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size); + return nullptr; + } + uptr malloc_limit = + Min(kMaxAllowedMallocSize, max_user_defined_malloc_size); + ReportAllocationSizeTooBig(size, malloc_limit, stack); + } + + MemprofThread *t = GetCurrentThread(); + void *allocated; + if (t) { + AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); + allocated = allocator.Allocate(cache, needed_size, 8); + } else { + SpinMutexLock l(&fallback_mutex); + AllocatorCache *cache = &fallback_allocator_cache; + allocated = allocator.Allocate(cache, needed_size, 8); + } + if (UNLIKELY(!allocated)) { + SetAllocatorOutOfMemory(); + if (AllocatorMayReturnNull()) + return nullptr; + ReportOutOfMemory(size, stack); + } + + uptr alloc_beg = reinterpret_cast<uptr>(allocated); + uptr alloc_end = alloc_beg + needed_size; + uptr beg_plus_header = alloc_beg + kChunkHeaderSize; + uptr user_beg = beg_plus_header; + if (!IsAligned(user_beg, alignment)) + user_beg = RoundUpTo(user_beg, alignment); + uptr user_end = user_beg + size; + CHECK_LE(user_end, alloc_end); + uptr chunk_beg = user_beg - kChunkHeaderSize; + MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); + m->from_memalign = alloc_beg != chunk_beg; + CHECK(size); + + m->cpu_id = GetCpuId(); + m->timestamp_ms = GetTimestamp(); + m->alloc_context_id = StackDepotPut(*stack); + + uptr size_rounded_down_to_granularity = + RoundDownTo(size, SHADOW_GRANULARITY); + if (size_rounded_down_to_granularity) + ClearShadow(user_beg, size_rounded_down_to_granularity); + + MemprofStats &thread_stats = GetCurrentThreadStats(); + thread_stats.mallocs++; + thread_stats.malloced += size; + thread_stats.malloced_overhead += needed_size - size; + if (needed_size > SizeClassMap::kMaxSize) + thread_stats.malloc_large++; + else + thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++; + + void *res = reinterpret_cast<void *>(user_beg); + atomic_store(&m->user_requested_size, size, memory_order_release); + if (alloc_beg != chunk_beg) { + CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg); + reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m); + } + RunMallocHooks(res, size); + return res; + } + + void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment, + BufferedStackTrace *stack, AllocType alloc_type) { + uptr p = reinterpret_cast<uptr>(ptr); + if (p == 0) + return; + + RunFreeHooks(ptr); + + uptr chunk_beg = p - kChunkHeaderSize; + MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); + + u64 user_requested_size = + atomic_exchange(&m->user_requested_size, 0, memory_order_acquire); + if (memprof_inited && atomic_load_relaxed(&constructed) && + !atomic_load_relaxed(&destructing)) { + MemInfoBlock newMIB = this->CreateNewMIB(p, m, user_requested_size); + InsertOrMerge(m->alloc_context_id, newMIB, MIBMap); + } + + MemprofStats &thread_stats = GetCurrentThreadStats(); + thread_stats.frees++; + thread_stats.freed += user_requested_size; + + void *alloc_beg = m->AllocBeg(); + if (alloc_beg != m) { + // Clear the magic value, as allocator internals may overwrite the + // contents of deallocated chunk, confusing GetMemprofChunk lookup. + reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr); + } + + MemprofThread *t = GetCurrentThread(); + if (t) { + AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); + allocator.Deallocate(cache, alloc_beg); + } else { + SpinMutexLock l(&fallback_mutex); + AllocatorCache *cache = &fallback_allocator_cache; + allocator.Deallocate(cache, alloc_beg); + } + } + + void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) { + CHECK(old_ptr && new_size); + uptr p = reinterpret_cast<uptr>(old_ptr); + uptr chunk_beg = p - kChunkHeaderSize; + MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg); + + MemprofStats &thread_stats = GetCurrentThreadStats(); + thread_stats.reallocs++; + thread_stats.realloced += new_size; + + void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC); + if (new_ptr) { + CHECK_NE(REAL(memcpy), nullptr); + uptr memcpy_size = Min(new_size, m->UsedSize()); + REAL(memcpy)(new_ptr, old_ptr, memcpy_size); + Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC); + } + return new_ptr; + } + + void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { + if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { + if (AllocatorMayReturnNull()) + return nullptr; + ReportCallocOverflow(nmemb, size, stack); + } + void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC); + // If the memory comes from the secondary allocator no need to clear it + // as it comes directly from mmap. + if (ptr && allocator.FromPrimary(ptr)) + REAL(memset)(ptr, 0, nmemb * size); + return ptr; + } + + void CommitBack(MemprofThreadLocalMallocStorage *ms) { + AllocatorCache *ac = GetAllocatorCache(ms); + allocator.SwallowCache(ac); + } + + // -------------------------- Chunk lookup ---------------------- + + // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg). + MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) { + if (!alloc_beg) + return nullptr; + MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get(); + if (!p) { + if (!allocator.FromPrimary(alloc_beg)) + return nullptr; + p = reinterpret_cast<MemprofChunk *>(alloc_beg); + } + // The size is reset to 0 on deallocation (and a min of 1 on + // allocation). + user_requested_size = + atomic_load(&p->user_requested_size, memory_order_acquire); + if (user_requested_size) + return p; + return nullptr; + } + + MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) { + void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p)); + return GetMemprofChunk(alloc_beg, user_requested_size); + } + + uptr AllocationSize(uptr p) { + u64 user_requested_size; + MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size); + if (!m) + return 0; + if (m->Beg() != p) + return 0; + return user_requested_size; + } + + uptr AllocationSizeFast(uptr p) { + return reinterpret_cast<MemprofChunk *>(p - kChunkHeaderSize)->UsedSize(); + } + + void Purge() { allocator.ForceReleaseToOS(); } + + void PrintStats() { allocator.PrintStats(); } + + void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { + allocator.ForceLock(); + fallback_mutex.Lock(); + } + + void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS { + fallback_mutex.Unlock(); + allocator.ForceUnlock(); + } +}; + +static Allocator instance(LINKER_INITIALIZED); + +static MemprofAllocator &get_allocator() { return instance.allocator; } + +void InitializeAllocator() { instance.InitLinkerInitialized(); } + +void MemprofThreadLocalMallocStorage::CommitBack() { + instance.CommitBack(this); +} + +void PrintInternalAllocatorStats() { instance.PrintStats(); } + +void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) { + instance.Deallocate(ptr, 0, 0, stack, alloc_type); +} + +void memprof_delete(void *ptr, uptr size, uptr alignment, + BufferedStackTrace *stack, AllocType alloc_type) { + instance.Deallocate(ptr, size, alignment, stack, alloc_type); +} + +void *memprof_malloc(uptr size, BufferedStackTrace *stack) { + return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); +} + +void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) { + return SetErrnoOnNull(instance.Calloc(nmemb, size, stack)); +} + +void *memprof_reallocarray(void *p, uptr nmemb, uptr size, + BufferedStackTrace *stack) { + if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { + errno = errno_ENOMEM; + if (AllocatorMayReturnNull()) + return nullptr; + ReportReallocArrayOverflow(nmemb, size, stack); + } + return memprof_realloc(p, nmemb * size, stack); +} + +void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) { + if (!p) + return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC)); + if (size == 0) { + if (flags()->allocator_frees_and_returns_null_on_realloc_zero) { + instance.Deallocate(p, 0, 0, stack, FROM_MALLOC); + return nullptr; + } + // Allocate a size of 1 if we shouldn't free() on Realloc to 0 + size = 1; + } + return SetErrnoOnNull(instance.Reallocate(p, size, stack)); +} + +void *memprof_valloc(uptr size, BufferedStackTrace *stack) { + return SetErrnoOnNull( + instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC)); +} + +void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) { + uptr PageSize = GetPageSizeCached(); + if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { + errno = errno_ENOMEM; + if (AllocatorMayReturnNull()) + return nullptr; + ReportPvallocOverflow(size, stack); + } + // pvalloc(0) should allocate one page. + size = size ? RoundUpTo(size, PageSize) : PageSize; + return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC)); +} + +void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack, + AllocType alloc_type) { + if (UNLIKELY(!IsPowerOfTwo(alignment))) { + errno = errno_EINVAL; + if (AllocatorMayReturnNull()) + return nullptr; + ReportInvalidAllocationAlignment(alignment, stack); + } + return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type)); +} + +void *memprof_aligned_alloc(uptr alignment, uptr size, + BufferedStackTrace *stack) { + if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { + errno = errno_EINVAL; + if (AllocatorMayReturnNull()) + return nullptr; + ReportInvalidAlignedAllocAlignment(size, alignment, stack); + } + return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC)); +} + +int memprof_posix_memalign(void **memptr, uptr alignment, uptr size, + BufferedStackTrace *stack) { + if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { + if (AllocatorMayReturnNull()) + return errno_EINVAL; + ReportInvalidPosixMemalignAlignment(alignment, stack); + } + void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC); + if (UNLIKELY(!ptr)) + // OOM error is already taken care of by Allocate. + return errno_ENOMEM; + CHECK(IsAligned((uptr)ptr, alignment)); + *memptr = ptr; + return 0; +} + +static const void *memprof_malloc_begin(const void *p) { + u64 user_requested_size; + MemprofChunk *m = + instance.GetMemprofChunkByAddr((uptr)p, user_requested_size); + if (!m) + return nullptr; + if (user_requested_size == 0) + return nullptr; + + return (const void *)m->Beg(); +} + +uptr memprof_malloc_usable_size(const void *ptr) { + if (!ptr) + return 0; + uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr)); + return usable_size; +} + +} // namespace __memprof + +// ---------------------- Interface ---------------- {{{1 +using namespace __memprof; + +uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } + +int __sanitizer_get_ownership(const void *p) { + return memprof_malloc_usable_size(p) != 0; +} + +const void *__sanitizer_get_allocated_begin(const void *p) { + return memprof_malloc_begin(p); +} + +uptr __sanitizer_get_allocated_size(const void *p) { + return memprof_malloc_usable_size(p); +} + +uptr __sanitizer_get_allocated_size_fast(const void *p) { + DCHECK_EQ(p, __sanitizer_get_allocated_begin(p)); + uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p)); + DCHECK_EQ(ret, __sanitizer_get_allocated_size(p)); + return ret; +} + +void __sanitizer_purge_allocator() { instance.Purge(); } + +int __memprof_profile_dump() { + instance.FinishAndWrite(); + // In the future we may want to return non-zero if there are any errors + // detected during the dumping process. + return 0; +} + +void __memprof_profile_reset() { + if (report_file.fd != kInvalidFd && report_file.fd != kStdoutFd && + report_file.fd != kStderrFd) { + CloseFile(report_file.fd); + // Setting the file descriptor to kInvalidFd ensures that we will reopen the + // file when invoking Write again. + report_file.fd = kInvalidFd; + } +} |