aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp')
-rw-r--r--contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp812
1 files changed, 812 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp b/contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp
new file mode 100644
index 000000000000..19b2b9010682
--- /dev/null
+++ b/contrib/llvm-project/compiler-rt/lib/memprof/memprof_allocator.cpp
@@ -0,0 +1,812 @@
+//===-- memprof_allocator.cpp --------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of MemProfiler, a memory profiler.
+//
+// Implementation of MemProf's memory allocator, which uses the allocator
+// from sanitizer_common.
+//
+//===----------------------------------------------------------------------===//
+
+#include "memprof_allocator.h"
+#include "memprof_mapping.h"
+#include "memprof_mibmap.h"
+#include "memprof_rawprofile.h"
+#include "memprof_stack.h"
+#include "memprof_thread.h"
+#include "profile/MemProfData.inc"
+#include "sanitizer_common/sanitizer_allocator_checks.h"
+#include "sanitizer_common/sanitizer_allocator_interface.h"
+#include "sanitizer_common/sanitizer_allocator_report.h"
+#include "sanitizer_common/sanitizer_array_ref.h"
+#include "sanitizer_common/sanitizer_common.h"
+#include "sanitizer_common/sanitizer_errno.h"
+#include "sanitizer_common/sanitizer_file.h"
+#include "sanitizer_common/sanitizer_flags.h"
+#include "sanitizer_common/sanitizer_internal_defs.h"
+#include "sanitizer_common/sanitizer_stackdepot.h"
+
+#include <sched.h>
+#include <time.h>
+
+#define MAX_HISTOGRAM_PRINT_SIZE 32U
+
+extern bool __memprof_histogram;
+
+namespace __memprof {
+namespace {
+using ::llvm::memprof::MemInfoBlock;
+
+void Print(const MemInfoBlock &M, const u64 id, bool print_terse) {
+ u64 p;
+
+ if (print_terse) {
+ p = M.TotalSize * 100 / M.AllocCount;
+ Printf("MIB:%llu/%u/%llu.%02llu/%u/%u/", id, M.AllocCount, p / 100, p % 100,
+ M.MinSize, M.MaxSize);
+ p = M.TotalAccessCount * 100 / M.AllocCount;
+ Printf("%llu.%02llu/%llu/%llu/", p / 100, p % 100, M.MinAccessCount,
+ M.MaxAccessCount);
+ p = M.TotalLifetime * 100 / M.AllocCount;
+ Printf("%llu.%02llu/%u/%u/", p / 100, p % 100, M.MinLifetime,
+ M.MaxLifetime);
+ Printf("%u/%u/%u/%u\n", M.NumMigratedCpu, M.NumLifetimeOverlaps,
+ M.NumSameAllocCpu, M.NumSameDeallocCpu);
+ } else {
+ p = M.TotalSize * 100 / M.AllocCount;
+ Printf("Memory allocation stack id = %llu\n", id);
+ Printf("\talloc_count %u, size (ave/min/max) %llu.%02llu / %u / %u\n",
+ M.AllocCount, p / 100, p % 100, M.MinSize, M.MaxSize);
+ p = M.TotalAccessCount * 100 / M.AllocCount;
+ Printf("\taccess_count (ave/min/max): %llu.%02llu / %llu / %llu\n", p / 100,
+ p % 100, M.MinAccessCount, M.MaxAccessCount);
+ p = M.TotalLifetime * 100 / M.AllocCount;
+ Printf("\tlifetime (ave/min/max): %llu.%02llu / %u / %u\n", p / 100,
+ p % 100, M.MinLifetime, M.MaxLifetime);
+ Printf("\tnum migrated: %u, num lifetime overlaps: %u, num same alloc "
+ "cpu: %u, num same dealloc_cpu: %u\n",
+ M.NumMigratedCpu, M.NumLifetimeOverlaps, M.NumSameAllocCpu,
+ M.NumSameDeallocCpu);
+ Printf("AccessCountHistogram[%u]: ", M.AccessHistogramSize);
+ uint32_t PrintSize = M.AccessHistogramSize > MAX_HISTOGRAM_PRINT_SIZE
+ ? MAX_HISTOGRAM_PRINT_SIZE
+ : M.AccessHistogramSize;
+ for (size_t i = 0; i < PrintSize; ++i) {
+ Printf("%llu ", ((uint64_t *)M.AccessHistogram)[i]);
+ }
+ Printf("\n");
+ }
+}
+} // namespace
+
+static int GetCpuId(void) {
+ // _memprof_preinit is called via the preinit_array, which subsequently calls
+ // malloc. Since this is before _dl_init calls VDSO_SETUP, sched_getcpu
+ // will seg fault as the address of __vdso_getcpu will be null.
+ if (!memprof_inited)
+ return -1;
+ return sched_getcpu();
+}
+
+// Compute the timestamp in ms.
+static int GetTimestamp(void) {
+ // timespec_get will segfault if called from dl_init
+ if (!memprof_timestamp_inited) {
+ // By returning 0, this will be effectively treated as being
+ // timestamped at memprof init time (when memprof_init_timestamp_s
+ // is initialized).
+ return 0;
+ }
+ timespec ts;
+ clock_gettime(CLOCK_REALTIME, &ts);
+ return (ts.tv_sec - memprof_init_timestamp_s) * 1000 + ts.tv_nsec / 1000000;
+}
+
+static MemprofAllocator &get_allocator();
+
+// The memory chunk allocated from the underlying allocator looks like this:
+// H H U U U U U U
+// H -- ChunkHeader (32 bytes)
+// U -- user memory.
+
+// If there is left padding before the ChunkHeader (due to use of memalign),
+// we store a magic value in the first uptr word of the memory block and
+// store the address of ChunkHeader in the next uptr.
+// M B L L L L L L L L L H H U U U U U U
+// | ^
+// ---------------------|
+// M -- magic value kAllocBegMagic
+// B -- address of ChunkHeader pointing to the first 'H'
+
+constexpr uptr kMaxAllowedMallocBits = 40;
+
+// Should be no more than 32-bytes
+struct ChunkHeader {
+ // 1-st 4 bytes.
+ u32 alloc_context_id;
+ // 2-nd 4 bytes
+ u32 cpu_id;
+ // 3-rd 4 bytes
+ u32 timestamp_ms;
+ // 4-th 4 bytes
+ // Note only 1 bit is needed for this flag if we need space in the future for
+ // more fields.
+ u32 from_memalign;
+ // 5-th and 6-th 4 bytes
+ // The max size of an allocation is 2^40 (kMaxAllowedMallocSize), so this
+ // could be shrunk to kMaxAllowedMallocBits if we need space in the future for
+ // more fields.
+ atomic_uint64_t user_requested_size;
+ // 23 bits available
+ // 7-th and 8-th 4 bytes
+ u64 data_type_id; // TODO: hash of type name
+};
+
+static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
+COMPILER_CHECK(kChunkHeaderSize == 32);
+
+struct MemprofChunk : ChunkHeader {
+ uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
+ uptr UsedSize() {
+ return atomic_load(&user_requested_size, memory_order_relaxed);
+ }
+ void *AllocBeg() {
+ if (from_memalign)
+ return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
+ return reinterpret_cast<void *>(this);
+ }
+};
+
+class LargeChunkHeader {
+ static constexpr uptr kAllocBegMagic =
+ FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
+ atomic_uintptr_t magic;
+ MemprofChunk *chunk_header;
+
+public:
+ MemprofChunk *Get() const {
+ return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
+ ? chunk_header
+ : nullptr;
+ }
+
+ void Set(MemprofChunk *p) {
+ if (p) {
+ chunk_header = p;
+ atomic_store(&magic, kAllocBegMagic, memory_order_release);
+ return;
+ }
+
+ uptr old = kAllocBegMagic;
+ if (!atomic_compare_exchange_strong(&magic, &old, 0,
+ memory_order_release)) {
+ CHECK_EQ(old, kAllocBegMagic);
+ }
+ }
+};
+
+void FlushUnneededMemProfShadowMemory(uptr p, uptr size) {
+ // Since memprof's mapping is compacting, the shadow chunk may be
+ // not page-aligned, so we only flush the page-aligned portion.
+ ReleaseMemoryPagesToOS(MemToShadow(p), MemToShadow(p + size));
+}
+
+void MemprofMapUnmapCallback::OnMap(uptr p, uptr size) const {
+ // Statistics.
+ MemprofStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.mmaps++;
+ thread_stats.mmaped += size;
+}
+
+void MemprofMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
+ // We are about to unmap a chunk of user memory.
+ // Mark the corresponding shadow memory as not needed.
+ FlushUnneededMemProfShadowMemory(p, size);
+ // Statistics.
+ MemprofStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.munmaps++;
+ thread_stats.munmaped += size;
+}
+
+AllocatorCache *GetAllocatorCache(MemprofThreadLocalMallocStorage *ms) {
+ CHECK(ms);
+ return &ms->allocator_cache;
+}
+
+// Accumulates the access count from the shadow for the given pointer and size.
+u64 GetShadowCount(uptr p, u32 size) {
+ u64 *shadow = (u64 *)MEM_TO_SHADOW(p);
+ u64 *shadow_end = (u64 *)MEM_TO_SHADOW(p + size);
+ u64 count = 0;
+ for (; shadow <= shadow_end; shadow++)
+ count += *shadow;
+ return count;
+}
+
+// Accumulates the access count from the shadow for the given pointer and size.
+// See memprof_mapping.h for an overview on histogram counters.
+u64 GetShadowCountHistogram(uptr p, u32 size) {
+ u8 *shadow = (u8 *)HISTOGRAM_MEM_TO_SHADOW(p);
+ u8 *shadow_end = (u8 *)HISTOGRAM_MEM_TO_SHADOW(p + size);
+ u64 count = 0;
+ for (; shadow <= shadow_end; shadow++)
+ count += *shadow;
+ return count;
+}
+
+// Clears the shadow counters (when memory is allocated).
+void ClearShadow(uptr addr, uptr size) {
+ CHECK(AddrIsAlignedByGranularity(addr));
+ CHECK(AddrIsInMem(addr));
+ CHECK(AddrIsAlignedByGranularity(addr + size));
+ CHECK(AddrIsInMem(addr + size - SHADOW_GRANULARITY));
+ CHECK(REAL(memset));
+ uptr shadow_beg;
+ uptr shadow_end;
+ if (__memprof_histogram) {
+ shadow_beg = HISTOGRAM_MEM_TO_SHADOW(addr);
+ shadow_end = HISTOGRAM_MEM_TO_SHADOW(addr + size);
+ } else {
+ shadow_beg = MEM_TO_SHADOW(addr);
+ shadow_end = MEM_TO_SHADOW(addr + size - SHADOW_GRANULARITY) + 1;
+ }
+
+ if (shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) {
+ REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
+ } else {
+ uptr page_size = GetPageSizeCached();
+ uptr page_beg = RoundUpTo(shadow_beg, page_size);
+ uptr page_end = RoundDownTo(shadow_end, page_size);
+
+ if (page_beg >= page_end) {
+ REAL(memset)((void *)shadow_beg, 0, shadow_end - shadow_beg);
+ } else {
+ if (page_beg != shadow_beg) {
+ REAL(memset)((void *)shadow_beg, 0, page_beg - shadow_beg);
+ }
+ if (page_end != shadow_end) {
+ REAL(memset)((void *)page_end, 0, shadow_end - page_end);
+ }
+ ReserveShadowMemoryRange(page_beg, page_end - 1, nullptr);
+ }
+ }
+}
+
+struct Allocator {
+ static const uptr kMaxAllowedMallocSize = 1ULL << kMaxAllowedMallocBits;
+
+ MemprofAllocator allocator;
+ StaticSpinMutex fallback_mutex;
+ AllocatorCache fallback_allocator_cache;
+
+ uptr max_user_defined_malloc_size;
+
+ // Holds the mapping of stack ids to MemInfoBlocks.
+ MIBMapTy MIBMap;
+
+ atomic_uint8_t destructing;
+ atomic_uint8_t constructed;
+ bool print_text;
+
+ // ------------------- Initialization ------------------------
+ explicit Allocator(LinkerInitialized) : print_text(flags()->print_text) {
+ atomic_store_relaxed(&destructing, 0);
+ atomic_store_relaxed(&constructed, 1);
+ }
+
+ ~Allocator() {
+ atomic_store_relaxed(&destructing, 1);
+ FinishAndWrite();
+ }
+
+ static void PrintCallback(const uptr Key, LockedMemInfoBlock *const &Value,
+ void *Arg) {
+ SpinMutexLock l(&Value->mutex);
+ Print(Value->mib, Key, bool(Arg));
+ }
+
+ // See memprof_mapping.h for an overview on histogram counters.
+ static MemInfoBlock CreateNewMIB(uptr p, MemprofChunk *m, u64 user_size) {
+ if (__memprof_histogram) {
+ return CreateNewMIBWithHistogram(p, m, user_size);
+ } else {
+ return CreateNewMIBWithoutHistogram(p, m, user_size);
+ }
+ }
+
+ static MemInfoBlock CreateNewMIBWithHistogram(uptr p, MemprofChunk *m,
+ u64 user_size) {
+
+ u64 c = GetShadowCountHistogram(p, user_size);
+ long curtime = GetTimestamp();
+ uint32_t HistogramSize =
+ RoundUpTo(user_size, HISTOGRAM_GRANULARITY) / HISTOGRAM_GRANULARITY;
+ uintptr_t Histogram =
+ (uintptr_t)InternalAlloc(HistogramSize * sizeof(uint64_t));
+ memset((void *)Histogram, 0, HistogramSize * sizeof(uint64_t));
+ for (size_t i = 0; i < HistogramSize; ++i) {
+ u8 Counter =
+ *((u8 *)HISTOGRAM_MEM_TO_SHADOW(p + HISTOGRAM_GRANULARITY * i));
+ ((uint64_t *)Histogram)[i] = (uint64_t)Counter;
+ }
+ MemInfoBlock newMIB(user_size, c, m->timestamp_ms, curtime, m->cpu_id,
+ GetCpuId(), Histogram, HistogramSize);
+ return newMIB;
+ }
+
+ static MemInfoBlock CreateNewMIBWithoutHistogram(uptr p, MemprofChunk *m,
+ u64 user_size) {
+ u64 c = GetShadowCount(p, user_size);
+ long curtime = GetTimestamp();
+ MemInfoBlock newMIB(user_size, c, m->timestamp_ms, curtime, m->cpu_id,
+ GetCpuId(), 0, 0);
+ return newMIB;
+ }
+
+ void FinishAndWrite() {
+ if (print_text && common_flags()->print_module_map)
+ DumpProcessMap();
+
+ allocator.ForceLock();
+
+ InsertLiveBlocks();
+ if (print_text) {
+ if (!flags()->print_terse)
+ Printf("Recorded MIBs (incl. live on exit):\n");
+ MIBMap.ForEach(PrintCallback,
+ reinterpret_cast<void *>(flags()->print_terse));
+ StackDepotPrintAll();
+ } else {
+ // Serialize the contents to a raw profile. Format documented in
+ // memprof_rawprofile.h.
+ char *Buffer = nullptr;
+
+ __sanitizer::ListOfModules List;
+ List.init();
+ ArrayRef<LoadedModule> Modules(List.begin(), List.end());
+ u64 BytesSerialized = SerializeToRawProfile(MIBMap, Modules, Buffer);
+ CHECK(Buffer && BytesSerialized && "could not serialize to buffer");
+ report_file.Write(Buffer, BytesSerialized);
+ }
+
+ allocator.ForceUnlock();
+ }
+
+ // Inserts any blocks which have been allocated but not yet deallocated.
+ void InsertLiveBlocks() {
+ allocator.ForEachChunk(
+ [](uptr chunk, void *alloc) {
+ u64 user_requested_size;
+ Allocator *A = (Allocator *)alloc;
+ MemprofChunk *m =
+ A->GetMemprofChunk((void *)chunk, user_requested_size);
+ if (!m)
+ return;
+ uptr user_beg = ((uptr)m) + kChunkHeaderSize;
+ MemInfoBlock newMIB = CreateNewMIB(user_beg, m, user_requested_size);
+ InsertOrMerge(m->alloc_context_id, newMIB, A->MIBMap);
+ },
+ this);
+ }
+
+ void InitLinkerInitialized() {
+ SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
+ allocator.InitLinkerInitialized(
+ common_flags()->allocator_release_to_os_interval_ms);
+ max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
+ ? common_flags()->max_allocation_size_mb
+ << 20
+ : kMaxAllowedMallocSize;
+ }
+
+ // -------------------- Allocation/Deallocation routines ---------------
+ void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
+ AllocType alloc_type) {
+ if (UNLIKELY(!memprof_inited))
+ MemprofInitFromRtl();
+ if (UNLIKELY(IsRssLimitExceeded())) {
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportRssLimitExceeded(stack);
+ }
+ CHECK(stack);
+ const uptr min_alignment = MEMPROF_ALIGNMENT;
+ if (alignment < min_alignment)
+ alignment = min_alignment;
+ if (size == 0) {
+ // We'd be happy to avoid allocating memory for zero-size requests, but
+ // some programs/tests depend on this behavior and assume that malloc
+ // would not return NULL even for zero-size allocations. Moreover, it
+ // looks like operator new should never return NULL, and results of
+ // consecutive "new" calls must be different even if the allocated size
+ // is zero.
+ size = 1;
+ }
+ CHECK(IsPowerOfTwo(alignment));
+ uptr rounded_size = RoundUpTo(size, alignment);
+ uptr needed_size = rounded_size + kChunkHeaderSize;
+ if (alignment > min_alignment)
+ needed_size += alignment;
+ CHECK(IsAligned(needed_size, min_alignment));
+ if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
+ size > max_user_defined_malloc_size) {
+ if (AllocatorMayReturnNull()) {
+ Report("WARNING: MemProfiler failed to allocate 0x%zx bytes\n", size);
+ return nullptr;
+ }
+ uptr malloc_limit =
+ Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
+ ReportAllocationSizeTooBig(size, malloc_limit, stack);
+ }
+
+ MemprofThread *t = GetCurrentThread();
+ void *allocated;
+ if (t) {
+ AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
+ allocated = allocator.Allocate(cache, needed_size, 8);
+ } else {
+ SpinMutexLock l(&fallback_mutex);
+ AllocatorCache *cache = &fallback_allocator_cache;
+ allocated = allocator.Allocate(cache, needed_size, 8);
+ }
+ if (UNLIKELY(!allocated)) {
+ SetAllocatorOutOfMemory();
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportOutOfMemory(size, stack);
+ }
+
+ uptr alloc_beg = reinterpret_cast<uptr>(allocated);
+ uptr alloc_end = alloc_beg + needed_size;
+ uptr beg_plus_header = alloc_beg + kChunkHeaderSize;
+ uptr user_beg = beg_plus_header;
+ if (!IsAligned(user_beg, alignment))
+ user_beg = RoundUpTo(user_beg, alignment);
+ uptr user_end = user_beg + size;
+ CHECK_LE(user_end, alloc_end);
+ uptr chunk_beg = user_beg - kChunkHeaderSize;
+ MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
+ m->from_memalign = alloc_beg != chunk_beg;
+ CHECK(size);
+
+ m->cpu_id = GetCpuId();
+ m->timestamp_ms = GetTimestamp();
+ m->alloc_context_id = StackDepotPut(*stack);
+
+ uptr size_rounded_down_to_granularity =
+ RoundDownTo(size, SHADOW_GRANULARITY);
+ if (size_rounded_down_to_granularity)
+ ClearShadow(user_beg, size_rounded_down_to_granularity);
+
+ MemprofStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.mallocs++;
+ thread_stats.malloced += size;
+ thread_stats.malloced_overhead += needed_size - size;
+ if (needed_size > SizeClassMap::kMaxSize)
+ thread_stats.malloc_large++;
+ else
+ thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
+
+ void *res = reinterpret_cast<void *>(user_beg);
+ atomic_store(&m->user_requested_size, size, memory_order_release);
+ if (alloc_beg != chunk_beg) {
+ CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
+ reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
+ }
+ RunMallocHooks(res, size);
+ return res;
+ }
+
+ void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
+ BufferedStackTrace *stack, AllocType alloc_type) {
+ uptr p = reinterpret_cast<uptr>(ptr);
+ if (p == 0)
+ return;
+
+ RunFreeHooks(ptr);
+
+ uptr chunk_beg = p - kChunkHeaderSize;
+ MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
+
+ u64 user_requested_size =
+ atomic_exchange(&m->user_requested_size, 0, memory_order_acquire);
+ if (memprof_inited && atomic_load_relaxed(&constructed) &&
+ !atomic_load_relaxed(&destructing)) {
+ MemInfoBlock newMIB = this->CreateNewMIB(p, m, user_requested_size);
+ InsertOrMerge(m->alloc_context_id, newMIB, MIBMap);
+ }
+
+ MemprofStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.frees++;
+ thread_stats.freed += user_requested_size;
+
+ void *alloc_beg = m->AllocBeg();
+ if (alloc_beg != m) {
+ // Clear the magic value, as allocator internals may overwrite the
+ // contents of deallocated chunk, confusing GetMemprofChunk lookup.
+ reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(nullptr);
+ }
+
+ MemprofThread *t = GetCurrentThread();
+ if (t) {
+ AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
+ allocator.Deallocate(cache, alloc_beg);
+ } else {
+ SpinMutexLock l(&fallback_mutex);
+ AllocatorCache *cache = &fallback_allocator_cache;
+ allocator.Deallocate(cache, alloc_beg);
+ }
+ }
+
+ void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
+ CHECK(old_ptr && new_size);
+ uptr p = reinterpret_cast<uptr>(old_ptr);
+ uptr chunk_beg = p - kChunkHeaderSize;
+ MemprofChunk *m = reinterpret_cast<MemprofChunk *>(chunk_beg);
+
+ MemprofStats &thread_stats = GetCurrentThreadStats();
+ thread_stats.reallocs++;
+ thread_stats.realloced += new_size;
+
+ void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC);
+ if (new_ptr) {
+ CHECK_NE(REAL(memcpy), nullptr);
+ uptr memcpy_size = Min(new_size, m->UsedSize());
+ REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
+ Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
+ }
+ return new_ptr;
+ }
+
+ void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
+ if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportCallocOverflow(nmemb, size, stack);
+ }
+ void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC);
+ // If the memory comes from the secondary allocator no need to clear it
+ // as it comes directly from mmap.
+ if (ptr && allocator.FromPrimary(ptr))
+ REAL(memset)(ptr, 0, nmemb * size);
+ return ptr;
+ }
+
+ void CommitBack(MemprofThreadLocalMallocStorage *ms) {
+ AllocatorCache *ac = GetAllocatorCache(ms);
+ allocator.SwallowCache(ac);
+ }
+
+ // -------------------------- Chunk lookup ----------------------
+
+ // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
+ MemprofChunk *GetMemprofChunk(void *alloc_beg, u64 &user_requested_size) {
+ if (!alloc_beg)
+ return nullptr;
+ MemprofChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
+ if (!p) {
+ if (!allocator.FromPrimary(alloc_beg))
+ return nullptr;
+ p = reinterpret_cast<MemprofChunk *>(alloc_beg);
+ }
+ // The size is reset to 0 on deallocation (and a min of 1 on
+ // allocation).
+ user_requested_size =
+ atomic_load(&p->user_requested_size, memory_order_acquire);
+ if (user_requested_size)
+ return p;
+ return nullptr;
+ }
+
+ MemprofChunk *GetMemprofChunkByAddr(uptr p, u64 &user_requested_size) {
+ void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
+ return GetMemprofChunk(alloc_beg, user_requested_size);
+ }
+
+ uptr AllocationSize(uptr p) {
+ u64 user_requested_size;
+ MemprofChunk *m = GetMemprofChunkByAddr(p, user_requested_size);
+ if (!m)
+ return 0;
+ if (m->Beg() != p)
+ return 0;
+ return user_requested_size;
+ }
+
+ uptr AllocationSizeFast(uptr p) {
+ return reinterpret_cast<MemprofChunk *>(p - kChunkHeaderSize)->UsedSize();
+ }
+
+ void Purge() { allocator.ForceReleaseToOS(); }
+
+ void PrintStats() { allocator.PrintStats(); }
+
+ void ForceLock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ allocator.ForceLock();
+ fallback_mutex.Lock();
+ }
+
+ void ForceUnlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ fallback_mutex.Unlock();
+ allocator.ForceUnlock();
+ }
+};
+
+static Allocator instance(LINKER_INITIALIZED);
+
+static MemprofAllocator &get_allocator() { return instance.allocator; }
+
+void InitializeAllocator() { instance.InitLinkerInitialized(); }
+
+void MemprofThreadLocalMallocStorage::CommitBack() {
+ instance.CommitBack(this);
+}
+
+void PrintInternalAllocatorStats() { instance.PrintStats(); }
+
+void memprof_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
+ instance.Deallocate(ptr, 0, 0, stack, alloc_type);
+}
+
+void memprof_delete(void *ptr, uptr size, uptr alignment,
+ BufferedStackTrace *stack, AllocType alloc_type) {
+ instance.Deallocate(ptr, size, alignment, stack, alloc_type);
+}
+
+void *memprof_malloc(uptr size, BufferedStackTrace *stack) {
+ return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
+}
+
+void *memprof_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
+ return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
+}
+
+void *memprof_reallocarray(void *p, uptr nmemb, uptr size,
+ BufferedStackTrace *stack) {
+ if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
+ errno = errno_ENOMEM;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportReallocArrayOverflow(nmemb, size, stack);
+ }
+ return memprof_realloc(p, nmemb * size, stack);
+}
+
+void *memprof_realloc(void *p, uptr size, BufferedStackTrace *stack) {
+ if (!p)
+ return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC));
+ if (size == 0) {
+ if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
+ instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
+ return nullptr;
+ }
+ // Allocate a size of 1 if we shouldn't free() on Realloc to 0
+ size = 1;
+ }
+ return SetErrnoOnNull(instance.Reallocate(p, size, stack));
+}
+
+void *memprof_valloc(uptr size, BufferedStackTrace *stack) {
+ return SetErrnoOnNull(
+ instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC));
+}
+
+void *memprof_pvalloc(uptr size, BufferedStackTrace *stack) {
+ uptr PageSize = GetPageSizeCached();
+ if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
+ errno = errno_ENOMEM;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportPvallocOverflow(size, stack);
+ }
+ // pvalloc(0) should allocate one page.
+ size = size ? RoundUpTo(size, PageSize) : PageSize;
+ return SetErrnoOnNull(instance.Allocate(size, PageSize, stack, FROM_MALLOC));
+}
+
+void *memprof_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
+ AllocType alloc_type) {
+ if (UNLIKELY(!IsPowerOfTwo(alignment))) {
+ errno = errno_EINVAL;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportInvalidAllocationAlignment(alignment, stack);
+ }
+ return SetErrnoOnNull(instance.Allocate(size, alignment, stack, alloc_type));
+}
+
+void *memprof_aligned_alloc(uptr alignment, uptr size,
+ BufferedStackTrace *stack) {
+ if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
+ errno = errno_EINVAL;
+ if (AllocatorMayReturnNull())
+ return nullptr;
+ ReportInvalidAlignedAllocAlignment(size, alignment, stack);
+ }
+ return SetErrnoOnNull(instance.Allocate(size, alignment, stack, FROM_MALLOC));
+}
+
+int memprof_posix_memalign(void **memptr, uptr alignment, uptr size,
+ BufferedStackTrace *stack) {
+ if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
+ if (AllocatorMayReturnNull())
+ return errno_EINVAL;
+ ReportInvalidPosixMemalignAlignment(alignment, stack);
+ }
+ void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC);
+ if (UNLIKELY(!ptr))
+ // OOM error is already taken care of by Allocate.
+ return errno_ENOMEM;
+ CHECK(IsAligned((uptr)ptr, alignment));
+ *memptr = ptr;
+ return 0;
+}
+
+static const void *memprof_malloc_begin(const void *p) {
+ u64 user_requested_size;
+ MemprofChunk *m =
+ instance.GetMemprofChunkByAddr((uptr)p, user_requested_size);
+ if (!m)
+ return nullptr;
+ if (user_requested_size == 0)
+ return nullptr;
+
+ return (const void *)m->Beg();
+}
+
+uptr memprof_malloc_usable_size(const void *ptr) {
+ if (!ptr)
+ return 0;
+ uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
+ return usable_size;
+}
+
+} // namespace __memprof
+
+// ---------------------- Interface ---------------- {{{1
+using namespace __memprof;
+
+uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
+
+int __sanitizer_get_ownership(const void *p) {
+ return memprof_malloc_usable_size(p) != 0;
+}
+
+const void *__sanitizer_get_allocated_begin(const void *p) {
+ return memprof_malloc_begin(p);
+}
+
+uptr __sanitizer_get_allocated_size(const void *p) {
+ return memprof_malloc_usable_size(p);
+}
+
+uptr __sanitizer_get_allocated_size_fast(const void *p) {
+ DCHECK_EQ(p, __sanitizer_get_allocated_begin(p));
+ uptr ret = instance.AllocationSizeFast(reinterpret_cast<uptr>(p));
+ DCHECK_EQ(ret, __sanitizer_get_allocated_size(p));
+ return ret;
+}
+
+void __sanitizer_purge_allocator() { instance.Purge(); }
+
+int __memprof_profile_dump() {
+ instance.FinishAndWrite();
+ // In the future we may want to return non-zero if there are any errors
+ // detected during the dumping process.
+ return 0;
+}
+
+void __memprof_profile_reset() {
+ if (report_file.fd != kInvalidFd && report_file.fd != kStdoutFd &&
+ report_file.fd != kStderrFd) {
+ CloseFile(report_file.fd);
+ // Setting the file descriptor to kInvalidFd ensures that we will reopen the
+ // file when invoking Write again.
+ report_file.fd = kInvalidFd;
+ }
+}