diff options
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_fuchsia.cpp')
-rw-r--r-- | contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_fuchsia.cpp | 564 |
1 files changed, 564 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_fuchsia.cpp b/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_fuchsia.cpp new file mode 100644 index 000000000000..a67b2a8725ec --- /dev/null +++ b/contrib/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_fuchsia.cpp @@ -0,0 +1,564 @@ +//===-- sanitizer_fuchsia.cpp ---------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file is shared between AddressSanitizer and other sanitizer +// run-time libraries and implements Fuchsia-specific functions from +// sanitizer_common.h. +//===----------------------------------------------------------------------===// + +#include "sanitizer_fuchsia.h" +#if SANITIZER_FUCHSIA + +# include <pthread.h> +# include <stdlib.h> +# include <unistd.h> +# include <zircon/errors.h> +# include <zircon/process.h> +# include <zircon/syscalls.h> +# include <zircon/utc.h> + +# include "sanitizer_common.h" +# include "sanitizer_interface_internal.h" +# include "sanitizer_libc.h" +# include "sanitizer_mutex.h" + +namespace __sanitizer { + +void NORETURN internal__exit(int exitcode) { _zx_process_exit(exitcode); } + +uptr internal_sched_yield() { + zx_status_t status = _zx_thread_legacy_yield(0u); + CHECK_EQ(status, ZX_OK); + return 0; // Why doesn't this return void? +} + +void internal_usleep(u64 useconds) { + zx_status_t status = _zx_nanosleep(_zx_deadline_after(ZX_USEC(useconds))); + CHECK_EQ(status, ZX_OK); +} + +u64 NanoTime() { + zx_handle_t utc_clock = _zx_utc_reference_get(); + CHECK_NE(utc_clock, ZX_HANDLE_INVALID); + zx_time_t time; + zx_status_t status = _zx_clock_read(utc_clock, &time); + CHECK_EQ(status, ZX_OK); + return time; +} + +u64 MonotonicNanoTime() { return _zx_clock_get_monotonic(); } + +uptr internal_getpid() { + zx_info_handle_basic_t info; + zx_status_t status = + _zx_object_get_info(_zx_process_self(), ZX_INFO_HANDLE_BASIC, &info, + sizeof(info), NULL, NULL); + CHECK_EQ(status, ZX_OK); + uptr pid = static_cast<uptr>(info.koid); + CHECK_EQ(pid, info.koid); + return pid; +} + +int internal_dlinfo(void *handle, int request, void *p) { UNIMPLEMENTED(); } + +uptr GetThreadSelf() { return reinterpret_cast<uptr>(thrd_current()); } + +tid_t GetTid() { return GetThreadSelf(); } + +void Abort() { abort(); } + +int Atexit(void (*function)(void)) { return atexit(function); } + +void GetThreadStackTopAndBottom(bool, uptr *stack_top, uptr *stack_bottom) { + pthread_attr_t attr; + CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); + void *base; + size_t size; + CHECK_EQ(pthread_attr_getstack(&attr, &base, &size), 0); + CHECK_EQ(pthread_attr_destroy(&attr), 0); + + *stack_bottom = reinterpret_cast<uptr>(base); + *stack_top = *stack_bottom + size; +} + +void InitializePlatformEarly() {} +void CheckASLR() {} +void CheckMPROTECT() {} +void PlatformPrepareForSandboxing(void *args) {} +void DisableCoreDumperIfNecessary() {} +void InstallDeadlySignalHandlers(SignalHandlerType handler) {} +void SetAlternateSignalStack() {} +void UnsetAlternateSignalStack() {} +void InitTlsSize() {} + +bool SignalContext::IsStackOverflow() const { return false; } +void SignalContext::DumpAllRegisters(void *context) { UNIMPLEMENTED(); } +const char *SignalContext::Describe() const { UNIMPLEMENTED(); } + +void FutexWait(atomic_uint32_t *p, u32 cmp) { + zx_status_t status = _zx_futex_wait(reinterpret_cast<zx_futex_t *>(p), cmp, + ZX_HANDLE_INVALID, ZX_TIME_INFINITE); + if (status != ZX_ERR_BAD_STATE) // Normal race. + CHECK_EQ(status, ZX_OK); +} + +void FutexWake(atomic_uint32_t *p, u32 count) { + zx_status_t status = _zx_futex_wake(reinterpret_cast<zx_futex_t *>(p), count); + CHECK_EQ(status, ZX_OK); +} + +uptr GetPageSize() { return _zx_system_get_page_size(); } + +uptr GetMmapGranularity() { return _zx_system_get_page_size(); } + +sanitizer_shadow_bounds_t ShadowBounds; + +void InitShadowBounds() { ShadowBounds = __sanitizer_shadow_bounds(); } + +uptr GetMaxUserVirtualAddress() { + InitShadowBounds(); + return ShadowBounds.memory_limit - 1; +} + +uptr GetMaxVirtualAddress() { return GetMaxUserVirtualAddress(); } + +bool ErrorIsOOM(error_t err) { return err == ZX_ERR_NO_MEMORY; } + +// For any sanitizer internal that needs to map something which can be unmapped +// later, first attempt to map to a pre-allocated VMAR. This helps reduce +// fragmentation from many small anonymous mmap calls. A good value for this +// VMAR size would be the total size of your typical sanitizer internal objects +// allocated in an "average" process lifetime. Examples of this include: +// FakeStack, LowLevelAllocator mappings, TwoLevelMap, InternalMmapVector, +// StackStore, CreateAsanThread, etc. +// +// This is roughly equal to the total sum of sanitizer internal mappings for a +// large test case. +constexpr size_t kSanitizerHeapVmarSize = 13ULL << 20; +static zx_handle_t gSanitizerHeapVmar = ZX_HANDLE_INVALID; + +static zx_status_t GetSanitizerHeapVmar(zx_handle_t *vmar) { + zx_status_t status = ZX_OK; + if (gSanitizerHeapVmar == ZX_HANDLE_INVALID) { + CHECK_EQ(kSanitizerHeapVmarSize % GetPageSizeCached(), 0); + uintptr_t base; + status = _zx_vmar_allocate( + _zx_vmar_root_self(), + ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0, + kSanitizerHeapVmarSize, &gSanitizerHeapVmar, &base); + } + *vmar = gSanitizerHeapVmar; + if (status == ZX_OK) + CHECK_NE(gSanitizerHeapVmar, ZX_HANDLE_INVALID); + return status; +} + +static zx_status_t TryVmoMapSanitizerVmar(zx_vm_option_t options, + size_t vmar_offset, zx_handle_t vmo, + size_t size, uintptr_t *addr, + zx_handle_t *vmar_used = nullptr) { + zx_handle_t vmar; + zx_status_t status = GetSanitizerHeapVmar(&vmar); + if (status != ZX_OK) + return status; + + status = _zx_vmar_map(gSanitizerHeapVmar, options, vmar_offset, vmo, + /*vmo_offset=*/0, size, addr); + if (vmar_used) + *vmar_used = gSanitizerHeapVmar; + if (status == ZX_ERR_NO_RESOURCES || status == ZX_ERR_INVALID_ARGS) { + // This means there's no space in the heap VMAR, so fallback to the root + // VMAR. + status = _zx_vmar_map(_zx_vmar_root_self(), options, vmar_offset, vmo, + /*vmo_offset=*/0, size, addr); + if (vmar_used) + *vmar_used = _zx_vmar_root_self(); + } + + return status; +} + +static void *DoAnonymousMmapOrDie(uptr size, const char *mem_type, + bool raw_report, bool die_for_nomem) { + size = RoundUpTo(size, GetPageSize()); + + zx_handle_t vmo; + zx_status_t status = _zx_vmo_create(size, 0, &vmo); + if (status != ZX_OK) { + if (status != ZX_ERR_NO_MEMORY || die_for_nomem) + ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, + raw_report); + return nullptr; + } + _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, + internal_strlen(mem_type)); + + uintptr_t addr; + status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, + /*vmar_offset=*/0, vmo, size, &addr); + _zx_handle_close(vmo); + + if (status != ZX_OK) { + if (status != ZX_ERR_NO_MEMORY || die_for_nomem) + ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, + raw_report); + return nullptr; + } + + IncreaseTotalMmap(size); + + return reinterpret_cast<void *>(addr); +} + +void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { + return DoAnonymousMmapOrDie(size, mem_type, raw_report, true); +} + +void *MmapNoReserveOrDie(uptr size, const char *mem_type) { + return MmapOrDie(size, mem_type); +} + +void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { + return DoAnonymousMmapOrDie(size, mem_type, false, false); +} + +uptr ReservedAddressRange::Init(uptr init_size, const char *name, + uptr fixed_addr) { + init_size = RoundUpTo(init_size, GetPageSize()); + DCHECK_EQ(os_handle_, ZX_HANDLE_INVALID); + uintptr_t base; + zx_handle_t vmar; + zx_status_t status = _zx_vmar_allocate( + _zx_vmar_root_self(), + ZX_VM_CAN_MAP_READ | ZX_VM_CAN_MAP_WRITE | ZX_VM_CAN_MAP_SPECIFIC, 0, + init_size, &vmar, &base); + if (status != ZX_OK) + ReportMmapFailureAndDie(init_size, name, "zx_vmar_allocate", status); + base_ = reinterpret_cast<void *>(base); + size_ = init_size; + name_ = name; + os_handle_ = vmar; + + return reinterpret_cast<uptr>(base_); +} + +static uptr DoMmapFixedOrDie(zx_handle_t vmar, uptr fixed_addr, uptr map_size, + void *base, const char *name, bool die_for_nomem) { + uptr offset = fixed_addr - reinterpret_cast<uptr>(base); + map_size = RoundUpTo(map_size, GetPageSize()); + zx_handle_t vmo; + zx_status_t status = _zx_vmo_create(map_size, 0, &vmo); + if (status != ZX_OK) { + if (status != ZX_ERR_NO_MEMORY || die_for_nomem) + ReportMmapFailureAndDie(map_size, name, "zx_vmo_create", status); + return 0; + } + _zx_object_set_property(vmo, ZX_PROP_NAME, name, internal_strlen(name)); + DCHECK_GE(base + size_, map_size + offset); + uintptr_t addr; + + status = + _zx_vmar_map(vmar, ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC, + offset, vmo, 0, map_size, &addr); + _zx_handle_close(vmo); + if (status != ZX_OK) { + if (status != ZX_ERR_NO_MEMORY || die_for_nomem) { + ReportMmapFailureAndDie(map_size, name, "zx_vmar_map", status); + } + return 0; + } + IncreaseTotalMmap(map_size); + return addr; +} + +uptr ReservedAddressRange::Map(uptr fixed_addr, uptr map_size, + const char *name) { + return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, + name ? name : name_, false); +} + +uptr ReservedAddressRange::MapOrDie(uptr fixed_addr, uptr map_size, + const char *name) { + return DoMmapFixedOrDie(os_handle_, fixed_addr, map_size, base_, + name ? name : name_, true); +} + +void UnmapOrDieVmar(void *addr, uptr size, zx_handle_t target_vmar, + bool raw_report) { + if (!addr || !size) + return; + size = RoundUpTo(size, GetPageSize()); + + zx_status_t status = + _zx_vmar_unmap(target_vmar, reinterpret_cast<uintptr_t>(addr), size); + if (status == ZX_ERR_INVALID_ARGS && target_vmar == gSanitizerHeapVmar) { + // If there wasn't any space in the heap vmar, the fallback was the root + // vmar. + status = _zx_vmar_unmap(_zx_vmar_root_self(), + reinterpret_cast<uintptr_t>(addr), size); + } + if (status != ZX_OK) + ReportMunmapFailureAndDie(addr, size, status, raw_report); + + DecreaseTotalMmap(size); +} + +void ReservedAddressRange::Unmap(uptr addr, uptr size) { + CHECK_LE(size, size_); + const zx_handle_t vmar = static_cast<zx_handle_t>(os_handle_); + if (addr == reinterpret_cast<uptr>(base_)) { + if (size == size_) { + // Destroying the vmar effectively unmaps the whole mapping. + _zx_vmar_destroy(vmar); + _zx_handle_close(vmar); + os_handle_ = static_cast<uptr>(ZX_HANDLE_INVALID); + DecreaseTotalMmap(size); + return; + } + } else { + CHECK_EQ(addr + size, reinterpret_cast<uptr>(base_) + size_); + } + // Partial unmapping does not affect the fact that the initial range is still + // reserved, and the resulting unmapped memory can't be reused. + UnmapOrDieVmar(reinterpret_cast<void *>(addr), size, vmar, + /*raw_report=*/false); +} + +// This should never be called. +void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { + UNIMPLEMENTED(); +} + +bool MprotectNoAccess(uptr addr, uptr size) { + return _zx_vmar_protect(_zx_vmar_root_self(), 0, addr, size) == ZX_OK; +} + +bool MprotectReadOnly(uptr addr, uptr size) { + return _zx_vmar_protect(_zx_vmar_root_self(), ZX_VM_PERM_READ, addr, size) == + ZX_OK; +} + +bool MprotectReadWrite(uptr addr, uptr size) { + return _zx_vmar_protect(_zx_vmar_root_self(), + ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, addr, + size) == ZX_OK; +} + +void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, + const char *mem_type) { + CHECK_GE(size, GetPageSize()); + CHECK(IsPowerOfTwo(size)); + CHECK(IsPowerOfTwo(alignment)); + + zx_handle_t vmo; + zx_status_t status = _zx_vmo_create(size, 0, &vmo); + if (status != ZX_OK) { + if (status != ZX_ERR_NO_MEMORY) + ReportMmapFailureAndDie(size, mem_type, "zx_vmo_create", status, false); + return nullptr; + } + _zx_object_set_property(vmo, ZX_PROP_NAME, mem_type, + internal_strlen(mem_type)); + + // Map a larger size to get a chunk of address space big enough that + // it surely contains an aligned region of the requested size. Then + // overwrite the aligned middle portion with a mapping from the + // beginning of the VMO, and unmap the excess before and after. + size_t map_size = size + alignment; + uintptr_t addr; + zx_handle_t vmar_used; + status = TryVmoMapSanitizerVmar(ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, + /*vmar_offset=*/0, vmo, map_size, &addr, + &vmar_used); + if (status == ZX_OK) { + uintptr_t map_addr = addr; + uintptr_t map_end = map_addr + map_size; + addr = RoundUpTo(map_addr, alignment); + uintptr_t end = addr + size; + if (addr != map_addr) { + zx_info_vmar_t info; + status = _zx_object_get_info(vmar_used, ZX_INFO_VMAR, &info, sizeof(info), + NULL, NULL); + if (status == ZX_OK) { + uintptr_t new_addr; + status = _zx_vmar_map( + vmar_used, + ZX_VM_PERM_READ | ZX_VM_PERM_WRITE | ZX_VM_SPECIFIC_OVERWRITE, + addr - info.base, vmo, 0, size, &new_addr); + if (status == ZX_OK) + CHECK_EQ(new_addr, addr); + } + } + if (status == ZX_OK && addr != map_addr) + status = _zx_vmar_unmap(vmar_used, map_addr, addr - map_addr); + if (status == ZX_OK && end != map_end) + status = _zx_vmar_unmap(vmar_used, end, map_end - end); + } + _zx_handle_close(vmo); + + if (status != ZX_OK) { + if (status != ZX_ERR_NO_MEMORY) + ReportMmapFailureAndDie(size, mem_type, "zx_vmar_map", status, false); + return nullptr; + } + + IncreaseTotalMmap(size); + + return reinterpret_cast<void *>(addr); +} + +void UnmapOrDie(void *addr, uptr size, bool raw_report) { + UnmapOrDieVmar(addr, size, gSanitizerHeapVmar, raw_report); +} + +void ReleaseMemoryPagesToOS(uptr beg, uptr end) { + uptr beg_aligned = RoundUpTo(beg, GetPageSize()); + uptr end_aligned = RoundDownTo(end, GetPageSize()); + if (beg_aligned < end_aligned) { + zx_handle_t root_vmar = _zx_vmar_root_self(); + CHECK_NE(root_vmar, ZX_HANDLE_INVALID); + zx_status_t status = + _zx_vmar_op_range(root_vmar, ZX_VMAR_OP_DECOMMIT, beg_aligned, + end_aligned - beg_aligned, nullptr, 0); + CHECK_EQ(status, ZX_OK); + } +} + +void DumpProcessMap() { + // TODO(mcgrathr): write it + return; +} + +bool IsAccessibleMemoryRange(uptr beg, uptr size) { + // TODO(mcgrathr): Figure out a better way. + zx_handle_t vmo; + zx_status_t status = _zx_vmo_create(size, 0, &vmo); + if (status == ZX_OK) { + status = _zx_vmo_write(vmo, reinterpret_cast<const void *>(beg), 0, size); + _zx_handle_close(vmo); + } + return status == ZX_OK; +} + +// FIXME implement on this platform. +void GetMemoryProfile(fill_profile_f cb, uptr *stats) {} + +bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size, + uptr *read_len, uptr max_len, error_t *errno_p) { + *errno_p = ZX_ERR_NOT_SUPPORTED; + return false; +} + +void RawWrite(const char *buffer) { + constexpr size_t size = 128; + static _Thread_local char line[size]; + static _Thread_local size_t lastLineEnd = 0; + static _Thread_local size_t cur = 0; + + while (*buffer) { + if (cur >= size) { + if (lastLineEnd == 0) + lastLineEnd = size; + __sanitizer_log_write(line, lastLineEnd); + internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); + cur = cur - lastLineEnd; + lastLineEnd = 0; + } + if (*buffer == '\n') + lastLineEnd = cur + 1; + line[cur++] = *buffer++; + } + // Flush all complete lines before returning. + if (lastLineEnd != 0) { + __sanitizer_log_write(line, lastLineEnd); + internal_memmove(line, line + lastLineEnd, cur - lastLineEnd); + cur = cur - lastLineEnd; + lastLineEnd = 0; + } +} + +void CatastrophicErrorWrite(const char *buffer, uptr length) { + __sanitizer_log_write(buffer, length); +} + +char **StoredArgv; +char **StoredEnviron; + +char **GetArgv() { return StoredArgv; } +char **GetEnviron() { return StoredEnviron; } + +const char *GetEnv(const char *name) { + if (StoredEnviron) { + uptr NameLen = internal_strlen(name); + for (char **Env = StoredEnviron; *Env != 0; Env++) { + if (internal_strncmp(*Env, name, NameLen) == 0 && (*Env)[NameLen] == '=') + return (*Env) + NameLen + 1; + } + } + return nullptr; +} + +uptr ReadBinaryName(/*out*/ char *buf, uptr buf_len) { + const char *argv0 = "<UNKNOWN>"; + if (StoredArgv && StoredArgv[0]) { + argv0 = StoredArgv[0]; + } + internal_strncpy(buf, argv0, buf_len); + return internal_strlen(buf); +} + +uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len) { + return ReadBinaryName(buf, buf_len); +} + +uptr MainThreadStackBase, MainThreadStackSize; + +bool GetRandom(void *buffer, uptr length, bool blocking) { + CHECK_LE(length, ZX_CPRNG_DRAW_MAX_LEN); + _zx_cprng_draw(buffer, length); + return true; +} + +u32 GetNumberOfCPUs() { return zx_system_get_num_cpus(); } + +uptr GetRSS() { UNIMPLEMENTED(); } + +void *internal_start_thread(void *(*func)(void *arg), void *arg) { return 0; } +void internal_join_thread(void *th) {} + +void InitializePlatformCommonFlags(CommonFlags *cf) {} + +} // namespace __sanitizer + +using namespace __sanitizer; + +extern "C" { +void __sanitizer_startup_hook(int argc, char **argv, char **envp, + void *stack_base, size_t stack_size) { + __sanitizer::StoredArgv = argv; + __sanitizer::StoredEnviron = envp; + __sanitizer::MainThreadStackBase = reinterpret_cast<uintptr_t>(stack_base); + __sanitizer::MainThreadStackSize = stack_size; +} + +void __sanitizer_set_report_path(const char *path) { + // Handle the initialization code in each sanitizer, but no other calls. + // This setting is never consulted on Fuchsia. + DCHECK_EQ(path, common_flags()->log_path); +} + +void __sanitizer_set_report_fd(void *fd) { + UNREACHABLE("not available on Fuchsia"); +} + +const char *__sanitizer_get_report_path() { + UNREACHABLE("not available on Fuchsia"); +} +} // extern "C" + +#endif // SANITIZER_FUCHSIA |