aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_fd.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_fd.cpp')
-rw-r--r--contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_fd.cpp375
1 files changed, 375 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_fd.cpp b/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_fd.cpp
new file mode 100644
index 000000000000..ab295a69dce1
--- /dev/null
+++ b/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_fd.cpp
@@ -0,0 +1,375 @@
+//===-- tsan_fd.cpp -------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of ThreadSanitizer (TSan), a race detector.
+//
+//===----------------------------------------------------------------------===//
+
+#include "tsan_fd.h"
+
+#include <sanitizer_common/sanitizer_atomic.h>
+
+#include "tsan_interceptors.h"
+#include "tsan_rtl.h"
+
+namespace __tsan {
+
+const int kTableSizeL1 = 1024;
+const int kTableSizeL2 = 1024;
+const int kTableSize = kTableSizeL1 * kTableSizeL2;
+
+struct FdSync {
+ atomic_uint64_t rc;
+};
+
+struct FdDesc {
+ FdSync *sync;
+ // This is used to establish write -> epoll_wait synchronization
+ // where epoll_wait receives notification about the write.
+ atomic_uintptr_t aux_sync; // FdSync*
+ Tid creation_tid;
+ StackID creation_stack;
+ bool closed;
+};
+
+struct FdContext {
+ atomic_uintptr_t tab[kTableSizeL1];
+ // Addresses used for synchronization.
+ FdSync globsync;
+ FdSync filesync;
+ FdSync socksync;
+ u64 connectsync;
+};
+
+static FdContext fdctx;
+
+static bool bogusfd(int fd) {
+ // Apparently a bogus fd value.
+ return fd < 0 || fd >= kTableSize;
+}
+
+static FdSync *allocsync(ThreadState *thr, uptr pc) {
+ FdSync *s = (FdSync*)user_alloc_internal(thr, pc, sizeof(FdSync),
+ kDefaultAlignment, false);
+ atomic_store(&s->rc, 1, memory_order_relaxed);
+ return s;
+}
+
+static FdSync *ref(FdSync *s) {
+ if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1)
+ atomic_fetch_add(&s->rc, 1, memory_order_relaxed);
+ return s;
+}
+
+static void unref(ThreadState *thr, uptr pc, FdSync *s) {
+ if (s && atomic_load(&s->rc, memory_order_relaxed) != (u64)-1) {
+ if (atomic_fetch_sub(&s->rc, 1, memory_order_acq_rel) == 1) {
+ CHECK_NE(s, &fdctx.globsync);
+ CHECK_NE(s, &fdctx.filesync);
+ CHECK_NE(s, &fdctx.socksync);
+ user_free(thr, pc, s, false);
+ }
+ }
+}
+
+static FdDesc *fddesc(ThreadState *thr, uptr pc, int fd) {
+ CHECK_GE(fd, 0);
+ CHECK_LT(fd, kTableSize);
+ atomic_uintptr_t *pl1 = &fdctx.tab[fd / kTableSizeL2];
+ uptr l1 = atomic_load(pl1, memory_order_consume);
+ if (l1 == 0) {
+ uptr size = kTableSizeL2 * sizeof(FdDesc);
+ // We need this to reside in user memory to properly catch races on it.
+ void *p = user_alloc_internal(thr, pc, size, kDefaultAlignment, false);
+ internal_memset(p, 0, size);
+ MemoryResetRange(thr, (uptr)&fddesc, (uptr)p, size);
+ if (atomic_compare_exchange_strong(pl1, &l1, (uptr)p, memory_order_acq_rel))
+ l1 = (uptr)p;
+ else
+ user_free(thr, pc, p, false);
+ }
+ FdDesc *fds = reinterpret_cast<FdDesc *>(l1);
+ return &fds[fd % kTableSizeL2];
+}
+
+// pd must be already ref'ed.
+static void init(ThreadState *thr, uptr pc, int fd, FdSync *s,
+ bool write = true) {
+ FdDesc *d = fddesc(thr, pc, fd);
+ // As a matter of fact, we don't intercept all close calls.
+ // See e.g. libc __res_iclose().
+ if (d->sync) {
+ unref(thr, pc, d->sync);
+ d->sync = 0;
+ }
+ unref(thr, pc,
+ reinterpret_cast<FdSync *>(
+ atomic_load(&d->aux_sync, memory_order_relaxed)));
+ atomic_store(&d->aux_sync, 0, memory_order_relaxed);
+ if (flags()->io_sync == 0) {
+ unref(thr, pc, s);
+ } else if (flags()->io_sync == 1) {
+ d->sync = s;
+ } else if (flags()->io_sync == 2) {
+ unref(thr, pc, s);
+ d->sync = &fdctx.globsync;
+ }
+ d->creation_tid = thr->tid;
+ d->creation_stack = CurrentStackId(thr, pc);
+ d->closed = false;
+ // This prevents false positives on fd_close_norace3.cpp test.
+ // The mechanics of the false positive are not completely clear,
+ // but it happens only if global reset is enabled (flush_memory_ms=1)
+ // and may be related to lost writes during asynchronous MADV_DONTNEED.
+ SlotLocker locker(thr);
+ if (write) {
+ // To catch races between fd usage and open.
+ MemoryRangeImitateWrite(thr, pc, (uptr)d, 8);
+ } else {
+ // See the dup-related comment in FdClose.
+ MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead | kAccessSlotLocked);
+ }
+}
+
+void FdInit() {
+ atomic_store(&fdctx.globsync.rc, (u64)-1, memory_order_relaxed);
+ atomic_store(&fdctx.filesync.rc, (u64)-1, memory_order_relaxed);
+ atomic_store(&fdctx.socksync.rc, (u64)-1, memory_order_relaxed);
+}
+
+void FdOnFork(ThreadState *thr, uptr pc) {
+ // On fork() we need to reset all fd's, because the child is going
+ // close all them, and that will cause races between previous read/write
+ // and the close.
+ for (int l1 = 0; l1 < kTableSizeL1; l1++) {
+ FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
+ if (tab == 0)
+ break;
+ for (int l2 = 0; l2 < kTableSizeL2; l2++) {
+ FdDesc *d = &tab[l2];
+ MemoryResetRange(thr, pc, (uptr)d, 8);
+ }
+ }
+}
+
+bool FdLocation(uptr addr, int *fd, Tid *tid, StackID *stack, bool *closed) {
+ for (int l1 = 0; l1 < kTableSizeL1; l1++) {
+ FdDesc *tab = (FdDesc*)atomic_load(&fdctx.tab[l1], memory_order_relaxed);
+ if (tab == 0)
+ break;
+ if (addr >= (uptr)tab && addr < (uptr)(tab + kTableSizeL2)) {
+ int l2 = (addr - (uptr)tab) / sizeof(FdDesc);
+ FdDesc *d = &tab[l2];
+ *fd = l1 * kTableSizeL1 + l2;
+ *tid = d->creation_tid;
+ *stack = d->creation_stack;
+ *closed = d->closed;
+ return true;
+ }
+ }
+ return false;
+}
+
+void FdAcquire(ThreadState *thr, uptr pc, int fd) {
+ if (bogusfd(fd))
+ return;
+ FdDesc *d = fddesc(thr, pc, fd);
+ FdSync *s = d->sync;
+ DPrintf("#%d: FdAcquire(%d) -> %p\n", thr->tid, fd, s);
+ MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
+ if (s)
+ Acquire(thr, pc, (uptr)s);
+}
+
+void FdRelease(ThreadState *thr, uptr pc, int fd) {
+ if (bogusfd(fd))
+ return;
+ FdDesc *d = fddesc(thr, pc, fd);
+ FdSync *s = d->sync;
+ DPrintf("#%d: FdRelease(%d) -> %p\n", thr->tid, fd, s);
+ MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
+ if (s)
+ Release(thr, pc, (uptr)s);
+ if (uptr aux_sync = atomic_load(&d->aux_sync, memory_order_acquire))
+ Release(thr, pc, aux_sync);
+}
+
+void FdAccess(ThreadState *thr, uptr pc, int fd) {
+ DPrintf("#%d: FdAccess(%d)\n", thr->tid, fd);
+ if (bogusfd(fd))
+ return;
+ FdDesc *d = fddesc(thr, pc, fd);
+ MemoryAccess(thr, pc, (uptr)d, 8, kAccessRead);
+}
+
+void FdClose(ThreadState *thr, uptr pc, int fd, bool write) {
+ DPrintf("#%d: FdClose(%d)\n", thr->tid, fd);
+ if (bogusfd(fd))
+ return;
+ FdDesc *d = fddesc(thr, pc, fd);
+ {
+ // Need to lock the slot to make MemoryAccess and MemoryResetRange atomic
+ // with respect to global reset. See the comment in MemoryRangeFreed.
+ SlotLocker locker(thr);
+ if (!MustIgnoreInterceptor(thr)) {
+ if (write) {
+ // To catch races between fd usage and close.
+ MemoryAccess(thr, pc, (uptr)d, 8,
+ kAccessWrite | kAccessCheckOnly | kAccessSlotLocked);
+ } else {
+ // This path is used only by dup2/dup3 calls.
+ // We do read instead of write because there is a number of legitimate
+ // cases where write would lead to false positives:
+ // 1. Some software dups a closed pipe in place of a socket before
+ // closing
+ // the socket (to prevent races actually).
+ // 2. Some daemons dup /dev/null in place of stdin/stdout.
+ // On the other hand we have not seen cases when write here catches real
+ // bugs.
+ MemoryAccess(thr, pc, (uptr)d, 8,
+ kAccessRead | kAccessCheckOnly | kAccessSlotLocked);
+ }
+ }
+ // We need to clear it, because if we do not intercept any call out there
+ // that creates fd, we will hit false postives.
+ MemoryResetRange(thr, pc, (uptr)d, 8);
+ }
+ unref(thr, pc, d->sync);
+ d->sync = 0;
+ unref(thr, pc,
+ reinterpret_cast<FdSync *>(
+ atomic_load(&d->aux_sync, memory_order_relaxed)));
+ atomic_store(&d->aux_sync, 0, memory_order_relaxed);
+ d->closed = true;
+ d->creation_tid = thr->tid;
+ d->creation_stack = CurrentStackId(thr, pc);
+}
+
+void FdFileCreate(ThreadState *thr, uptr pc, int fd) {
+ DPrintf("#%d: FdFileCreate(%d)\n", thr->tid, fd);
+ if (bogusfd(fd))
+ return;
+ init(thr, pc, fd, &fdctx.filesync);
+}
+
+void FdDup(ThreadState *thr, uptr pc, int oldfd, int newfd, bool write) {
+ DPrintf("#%d: FdDup(%d, %d)\n", thr->tid, oldfd, newfd);
+ if (bogusfd(oldfd) || bogusfd(newfd))
+ return;
+ // Ignore the case when user dups not yet connected socket.
+ FdDesc *od = fddesc(thr, pc, oldfd);
+ MemoryAccess(thr, pc, (uptr)od, 8, kAccessRead);
+ FdClose(thr, pc, newfd, write);
+ init(thr, pc, newfd, ref(od->sync), write);
+}
+
+void FdPipeCreate(ThreadState *thr, uptr pc, int rfd, int wfd) {
+ DPrintf("#%d: FdCreatePipe(%d, %d)\n", thr->tid, rfd, wfd);
+ FdSync *s = allocsync(thr, pc);
+ init(thr, pc, rfd, ref(s));
+ init(thr, pc, wfd, ref(s));
+ unref(thr, pc, s);
+}
+
+void FdEventCreate(ThreadState *thr, uptr pc, int fd) {
+ DPrintf("#%d: FdEventCreate(%d)\n", thr->tid, fd);
+ if (bogusfd(fd))
+ return;
+ init(thr, pc, fd, allocsync(thr, pc));
+}
+
+void FdSignalCreate(ThreadState *thr, uptr pc, int fd) {
+ DPrintf("#%d: FdSignalCreate(%d)\n", thr->tid, fd);
+ if (bogusfd(fd))
+ return;
+ init(thr, pc, fd, 0);
+}
+
+void FdInotifyCreate(ThreadState *thr, uptr pc, int fd) {
+ DPrintf("#%d: FdInotifyCreate(%d)\n", thr->tid, fd);
+ if (bogusfd(fd))
+ return;
+ init(thr, pc, fd, 0);
+}
+
+void FdPollCreate(ThreadState *thr, uptr pc, int fd) {
+ DPrintf("#%d: FdPollCreate(%d)\n", thr->tid, fd);
+ if (bogusfd(fd))
+ return;
+ init(thr, pc, fd, allocsync(thr, pc));
+}
+
+void FdPollAdd(ThreadState *thr, uptr pc, int epfd, int fd) {
+ DPrintf("#%d: FdPollAdd(%d, %d)\n", thr->tid, epfd, fd);
+ if (bogusfd(epfd) || bogusfd(fd))
+ return;
+ FdDesc *d = fddesc(thr, pc, fd);
+ // Associate fd with epoll fd only once.
+ // While an fd can be associated with multiple epolls at the same time,
+ // or with different epolls during different phases of lifetime,
+ // synchronization semantics (and examples) of this are unclear.
+ // So we don't support this for now.
+ // If we change the association, it will also create lifetime management
+ // problem for FdRelease which accesses the aux_sync.
+ if (atomic_load(&d->aux_sync, memory_order_relaxed))
+ return;
+ FdDesc *epd = fddesc(thr, pc, epfd);
+ FdSync *s = epd->sync;
+ if (!s)
+ return;
+ uptr cmp = 0;
+ if (atomic_compare_exchange_strong(
+ &d->aux_sync, &cmp, reinterpret_cast<uptr>(s), memory_order_release))
+ ref(s);
+}
+
+void FdSocketCreate(ThreadState *thr, uptr pc, int fd) {
+ DPrintf("#%d: FdSocketCreate(%d)\n", thr->tid, fd);
+ if (bogusfd(fd))
+ return;
+ // It can be a UDP socket.
+ init(thr, pc, fd, &fdctx.socksync);
+}
+
+void FdSocketAccept(ThreadState *thr, uptr pc, int fd, int newfd) {
+ DPrintf("#%d: FdSocketAccept(%d, %d)\n", thr->tid, fd, newfd);
+ if (bogusfd(fd))
+ return;
+ // Synchronize connect->accept.
+ Acquire(thr, pc, (uptr)&fdctx.connectsync);
+ init(thr, pc, newfd, &fdctx.socksync);
+}
+
+void FdSocketConnecting(ThreadState *thr, uptr pc, int fd) {
+ DPrintf("#%d: FdSocketConnecting(%d)\n", thr->tid, fd);
+ if (bogusfd(fd))
+ return;
+ // Synchronize connect->accept.
+ Release(thr, pc, (uptr)&fdctx.connectsync);
+}
+
+void FdSocketConnect(ThreadState *thr, uptr pc, int fd) {
+ DPrintf("#%d: FdSocketConnect(%d)\n", thr->tid, fd);
+ if (bogusfd(fd))
+ return;
+ init(thr, pc, fd, &fdctx.socksync);
+}
+
+uptr File2addr(const char *path) {
+ (void)path;
+ static u64 addr;
+ return (uptr)&addr;
+}
+
+uptr Dir2addr(const char *path) {
+ (void)path;
+ static u64 addr;
+ return (uptr)&addr;
+}
+
+} // namespace __tsan