aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.cpp')
-rw-r--r--contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.cpp1127
1 files changed, 1127 insertions, 0 deletions
diff --git a/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.cpp b/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.cpp
new file mode 100644
index 000000000000..bf29aa316f68
--- /dev/null
+++ b/contrib/llvm-project/compiler-rt/lib/tsan/rtl/tsan_rtl.cpp
@@ -0,0 +1,1127 @@
+//===-- tsan_rtl.cpp ------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file is a part of ThreadSanitizer (TSan), a race detector.
+//
+// Main file (entry points) for the TSan run-time.
+//===----------------------------------------------------------------------===//
+
+#include "tsan_rtl.h"
+
+#include "sanitizer_common/sanitizer_atomic.h"
+#include "sanitizer_common/sanitizer_common.h"
+#include "sanitizer_common/sanitizer_file.h"
+#include "sanitizer_common/sanitizer_interface_internal.h"
+#include "sanitizer_common/sanitizer_libc.h"
+#include "sanitizer_common/sanitizer_placement_new.h"
+#include "sanitizer_common/sanitizer_stackdepot.h"
+#include "sanitizer_common/sanitizer_symbolizer.h"
+#include "tsan_defs.h"
+#include "tsan_interface.h"
+#include "tsan_mman.h"
+#include "tsan_platform.h"
+#include "tsan_suppressions.h"
+#include "tsan_symbolize.h"
+#include "ubsan/ubsan_init.h"
+
+volatile int __tsan_resumed = 0;
+
+extern "C" void __tsan_resume() {
+ __tsan_resumed = 1;
+}
+
+#if SANITIZER_APPLE
+SANITIZER_WEAK_DEFAULT_IMPL
+void __tsan_test_only_on_fork() {}
+#endif
+
+namespace __tsan {
+
+#if !SANITIZER_GO
+void (*on_initialize)(void);
+int (*on_finalize)(int);
+#endif
+
+#if !SANITIZER_GO && !SANITIZER_APPLE
+alignas(SANITIZER_CACHE_LINE_SIZE) THREADLOCAL __attribute__((tls_model(
+ "initial-exec"))) char cur_thread_placeholder[sizeof(ThreadState)];
+#endif
+alignas(SANITIZER_CACHE_LINE_SIZE) static char ctx_placeholder[sizeof(Context)];
+Context *ctx;
+
+// Can be overriden by a front-end.
+#ifdef TSAN_EXTERNAL_HOOKS
+bool OnFinalize(bool failed);
+void OnInitialize();
+#else
+SANITIZER_WEAK_CXX_DEFAULT_IMPL
+bool OnFinalize(bool failed) {
+# if !SANITIZER_GO
+ if (on_finalize)
+ return on_finalize(failed);
+# endif
+ return failed;
+}
+
+SANITIZER_WEAK_CXX_DEFAULT_IMPL
+void OnInitialize() {
+# if !SANITIZER_GO
+ if (on_initialize)
+ on_initialize();
+# endif
+}
+#endif
+
+static TracePart* TracePartAlloc(ThreadState* thr) {
+ TracePart* part = nullptr;
+ {
+ Lock lock(&ctx->slot_mtx);
+ uptr max_parts = Trace::kMinParts + flags()->history_size;
+ Trace* trace = &thr->tctx->trace;
+ if (trace->parts_allocated == max_parts ||
+ ctx->trace_part_finished_excess) {
+ part = ctx->trace_part_recycle.PopFront();
+ DPrintf("#%d: TracePartAlloc: part=%p\n", thr->tid, part);
+ if (part && part->trace) {
+ Trace* trace1 = part->trace;
+ Lock trace_lock(&trace1->mtx);
+ part->trace = nullptr;
+ TracePart* part1 = trace1->parts.PopFront();
+ CHECK_EQ(part, part1);
+ if (trace1->parts_allocated > trace1->parts.Size()) {
+ ctx->trace_part_finished_excess +=
+ trace1->parts_allocated - trace1->parts.Size();
+ trace1->parts_allocated = trace1->parts.Size();
+ }
+ }
+ }
+ if (trace->parts_allocated < max_parts) {
+ trace->parts_allocated++;
+ if (ctx->trace_part_finished_excess)
+ ctx->trace_part_finished_excess--;
+ }
+ if (!part)
+ ctx->trace_part_total_allocated++;
+ else if (ctx->trace_part_recycle_finished)
+ ctx->trace_part_recycle_finished--;
+ }
+ if (!part)
+ part = new (MmapOrDie(sizeof(*part), "TracePart")) TracePart();
+ return part;
+}
+
+static void TracePartFree(TracePart* part) SANITIZER_REQUIRES(ctx->slot_mtx) {
+ DCHECK(part->trace);
+ part->trace = nullptr;
+ ctx->trace_part_recycle.PushFront(part);
+}
+
+void TraceResetForTesting() {
+ Lock lock(&ctx->slot_mtx);
+ while (auto* part = ctx->trace_part_recycle.PopFront()) {
+ if (auto trace = part->trace)
+ CHECK_EQ(trace->parts.PopFront(), part);
+ UnmapOrDie(part, sizeof(*part));
+ }
+ ctx->trace_part_total_allocated = 0;
+ ctx->trace_part_recycle_finished = 0;
+ ctx->trace_part_finished_excess = 0;
+}
+
+static void DoResetImpl(uptr epoch) {
+ ThreadRegistryLock lock0(&ctx->thread_registry);
+ Lock lock1(&ctx->slot_mtx);
+ CHECK_EQ(ctx->global_epoch, epoch);
+ ctx->global_epoch++;
+ CHECK(!ctx->resetting);
+ ctx->resetting = true;
+ for (u32 i = ctx->thread_registry.NumThreadsLocked(); i--;) {
+ ThreadContext* tctx = (ThreadContext*)ctx->thread_registry.GetThreadLocked(
+ static_cast<Tid>(i));
+ // Potentially we could purge all ThreadStatusDead threads from the
+ // registry. Since we reset all shadow, they can't race with anything
+ // anymore. However, their tid's can still be stored in some aux places
+ // (e.g. tid of thread that created something).
+ auto trace = &tctx->trace;
+ Lock lock(&trace->mtx);
+ bool attached = tctx->thr && tctx->thr->slot;
+ auto parts = &trace->parts;
+ bool local = false;
+ while (!parts->Empty()) {
+ auto part = parts->Front();
+ local = local || part == trace->local_head;
+ if (local)
+ CHECK(!ctx->trace_part_recycle.Queued(part));
+ else
+ ctx->trace_part_recycle.Remove(part);
+ if (attached && parts->Size() == 1) {
+ // The thread is running and this is the last/current part.
+ // Set the trace position to the end of the current part
+ // to force the thread to call SwitchTracePart and re-attach
+ // to a new slot and allocate a new trace part.
+ // Note: the thread is concurrently modifying the position as well,
+ // so this is only best-effort. The thread can only modify position
+ // within this part, because switching parts is protected by
+ // slot/trace mutexes that we hold here.
+ atomic_store_relaxed(
+ &tctx->thr->trace_pos,
+ reinterpret_cast<uptr>(&part->events[TracePart::kSize]));
+ break;
+ }
+ parts->Remove(part);
+ TracePartFree(part);
+ }
+ CHECK_LE(parts->Size(), 1);
+ trace->local_head = parts->Front();
+ if (tctx->thr && !tctx->thr->slot) {
+ atomic_store_relaxed(&tctx->thr->trace_pos, 0);
+ tctx->thr->trace_prev_pc = 0;
+ }
+ if (trace->parts_allocated > trace->parts.Size()) {
+ ctx->trace_part_finished_excess +=
+ trace->parts_allocated - trace->parts.Size();
+ trace->parts_allocated = trace->parts.Size();
+ }
+ }
+ while (ctx->slot_queue.PopFront()) {
+ }
+ for (auto& slot : ctx->slots) {
+ slot.SetEpoch(kEpochZero);
+ slot.journal.Reset();
+ slot.thr = nullptr;
+ ctx->slot_queue.PushBack(&slot);
+ }
+
+ DPrintf("Resetting shadow...\n");
+ auto shadow_begin = ShadowBeg();
+ auto shadow_end = ShadowEnd();
+#if SANITIZER_GO
+ CHECK_NE(0, ctx->mapped_shadow_begin);
+ shadow_begin = ctx->mapped_shadow_begin;
+ shadow_end = ctx->mapped_shadow_end;
+ VPrintf(2, "shadow_begin-shadow_end: (0x%zx-0x%zx)\n",
+ shadow_begin, shadow_end);
+#endif
+
+#if SANITIZER_WINDOWS
+ auto resetFailed =
+ !ZeroMmapFixedRegion(shadow_begin, shadow_end - shadow_begin);
+#else
+ auto resetFailed =
+ !MmapFixedSuperNoReserve(shadow_begin, shadow_end-shadow_begin, "shadow");
+# if !SANITIZER_GO
+ DontDumpShadow(shadow_begin, shadow_end - shadow_begin);
+# endif
+#endif
+ if (resetFailed) {
+ Printf("failed to reset shadow memory\n");
+ Die();
+ }
+ DPrintf("Resetting meta shadow...\n");
+ ctx->metamap.ResetClocks();
+ StoreShadow(&ctx->last_spurious_race, Shadow::kEmpty);
+ ctx->resetting = false;
+}
+
+// Clang does not understand locking all slots in the loop:
+// error: expecting mutex 'slot.mtx' to be held at start of each loop
+void DoReset(ThreadState* thr, uptr epoch) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ for (auto& slot : ctx->slots) {
+ slot.mtx.Lock();
+ if (UNLIKELY(epoch == 0))
+ epoch = ctx->global_epoch;
+ if (UNLIKELY(epoch != ctx->global_epoch)) {
+ // Epoch can't change once we've locked the first slot.
+ CHECK_EQ(slot.sid, 0);
+ slot.mtx.Unlock();
+ return;
+ }
+ }
+ DPrintf("#%d: DoReset epoch=%lu\n", thr ? thr->tid : -1, epoch);
+ DoResetImpl(epoch);
+ for (auto& slot : ctx->slots) slot.mtx.Unlock();
+}
+
+void FlushShadowMemory() { DoReset(nullptr, 0); }
+
+static TidSlot* FindSlotAndLock(ThreadState* thr)
+ SANITIZER_ACQUIRE(thr->slot->mtx) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ CHECK(!thr->slot);
+ TidSlot* slot = nullptr;
+ for (;;) {
+ uptr epoch;
+ {
+ Lock lock(&ctx->slot_mtx);
+ epoch = ctx->global_epoch;
+ if (slot) {
+ // This is an exhausted slot from the previous iteration.
+ if (ctx->slot_queue.Queued(slot))
+ ctx->slot_queue.Remove(slot);
+ thr->slot_locked = false;
+ slot->mtx.Unlock();
+ }
+ for (;;) {
+ slot = ctx->slot_queue.PopFront();
+ if (!slot)
+ break;
+ if (slot->epoch() != kEpochLast) {
+ ctx->slot_queue.PushBack(slot);
+ break;
+ }
+ }
+ }
+ if (!slot) {
+ DoReset(thr, epoch);
+ continue;
+ }
+ slot->mtx.Lock();
+ CHECK(!thr->slot_locked);
+ thr->slot_locked = true;
+ if (slot->thr) {
+ DPrintf("#%d: preempting sid=%d tid=%d\n", thr->tid, (u32)slot->sid,
+ slot->thr->tid);
+ slot->SetEpoch(slot->thr->fast_state.epoch());
+ slot->thr = nullptr;
+ }
+ if (slot->epoch() != kEpochLast)
+ return slot;
+ }
+}
+
+void SlotAttachAndLock(ThreadState* thr) {
+ TidSlot* slot = FindSlotAndLock(thr);
+ DPrintf("#%d: SlotAttach: slot=%u\n", thr->tid, static_cast<int>(slot->sid));
+ CHECK(!slot->thr);
+ CHECK(!thr->slot);
+ slot->thr = thr;
+ thr->slot = slot;
+ Epoch epoch = EpochInc(slot->epoch());
+ CHECK(!EpochOverflow(epoch));
+ slot->SetEpoch(epoch);
+ thr->fast_state.SetSid(slot->sid);
+ thr->fast_state.SetEpoch(epoch);
+ if (thr->slot_epoch != ctx->global_epoch) {
+ thr->slot_epoch = ctx->global_epoch;
+ thr->clock.Reset();
+#if !SANITIZER_GO
+ thr->last_sleep_stack_id = kInvalidStackID;
+ thr->last_sleep_clock.Reset();
+#endif
+ }
+ thr->clock.Set(slot->sid, epoch);
+ slot->journal.PushBack({thr->tid, epoch});
+}
+
+static void SlotDetachImpl(ThreadState* thr, bool exiting) {
+ TidSlot* slot = thr->slot;
+ thr->slot = nullptr;
+ if (thr != slot->thr) {
+ slot = nullptr; // we don't own the slot anymore
+ if (thr->slot_epoch != ctx->global_epoch) {
+ TracePart* part = nullptr;
+ auto* trace = &thr->tctx->trace;
+ {
+ Lock l(&trace->mtx);
+ auto* parts = &trace->parts;
+ // The trace can be completely empty in an unlikely event
+ // the thread is preempted right after it acquired the slot
+ // in ThreadStart and did not trace any events yet.
+ CHECK_LE(parts->Size(), 1);
+ part = parts->PopFront();
+ thr->tctx->trace.local_head = nullptr;
+ atomic_store_relaxed(&thr->trace_pos, 0);
+ thr->trace_prev_pc = 0;
+ }
+ if (part) {
+ Lock l(&ctx->slot_mtx);
+ TracePartFree(part);
+ }
+ }
+ return;
+ }
+ CHECK(exiting || thr->fast_state.epoch() == kEpochLast);
+ slot->SetEpoch(thr->fast_state.epoch());
+ slot->thr = nullptr;
+}
+
+void SlotDetach(ThreadState* thr) {
+ Lock lock(&thr->slot->mtx);
+ SlotDetachImpl(thr, true);
+}
+
+void SlotLock(ThreadState* thr) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ DCHECK(!thr->slot_locked);
+#if SANITIZER_DEBUG
+ // Check these mutexes are not locked.
+ // We can call DoReset from SlotAttachAndLock, which will lock
+ // these mutexes, but it happens only every once in a while.
+ { ThreadRegistryLock lock(&ctx->thread_registry); }
+ { Lock lock(&ctx->slot_mtx); }
+#endif
+ TidSlot* slot = thr->slot;
+ slot->mtx.Lock();
+ thr->slot_locked = true;
+ if (LIKELY(thr == slot->thr && thr->fast_state.epoch() != kEpochLast))
+ return;
+ SlotDetachImpl(thr, false);
+ thr->slot_locked = false;
+ slot->mtx.Unlock();
+ SlotAttachAndLock(thr);
+}
+
+void SlotUnlock(ThreadState* thr) {
+ DCHECK(thr->slot_locked);
+ thr->slot_locked = false;
+ thr->slot->mtx.Unlock();
+}
+
+Context::Context()
+ : initialized(),
+ report_mtx(MutexTypeReport),
+ nreported(),
+ thread_registry([](Tid tid) -> ThreadContextBase* {
+ return new (Alloc(sizeof(ThreadContext))) ThreadContext(tid);
+ }),
+ racy_mtx(MutexTypeRacy),
+ racy_stacks(),
+ fired_suppressions_mtx(MutexTypeFired),
+ slot_mtx(MutexTypeSlots),
+ resetting() {
+ fired_suppressions.reserve(8);
+ for (uptr i = 0; i < ARRAY_SIZE(slots); i++) {
+ TidSlot* slot = &slots[i];
+ slot->sid = static_cast<Sid>(i);
+ slot_queue.PushBack(slot);
+ }
+ global_epoch = 1;
+}
+
+TidSlot::TidSlot() : mtx(MutexTypeSlot) {}
+
+// The objects are allocated in TLS, so one may rely on zero-initialization.
+ThreadState::ThreadState(Tid tid)
+ // Do not touch these, rely on zero initialization,
+ // they may be accessed before the ctor.
+ // ignore_reads_and_writes()
+ // ignore_interceptors()
+ : tid(tid) {
+ CHECK_EQ(reinterpret_cast<uptr>(this) % SANITIZER_CACHE_LINE_SIZE, 0);
+#if !SANITIZER_GO
+ // C/C++ uses fixed size shadow stack.
+ const int kInitStackSize = kShadowStackSize;
+ shadow_stack = static_cast<uptr*>(
+ MmapNoReserveOrDie(kInitStackSize * sizeof(uptr), "shadow stack"));
+ SetShadowRegionHugePageMode(reinterpret_cast<uptr>(shadow_stack),
+ kInitStackSize * sizeof(uptr));
+#else
+ // Go uses malloc-allocated shadow stack with dynamic size.
+ const int kInitStackSize = 8;
+ shadow_stack = static_cast<uptr*>(Alloc(kInitStackSize * sizeof(uptr)));
+#endif
+ shadow_stack_pos = shadow_stack;
+ shadow_stack_end = shadow_stack + kInitStackSize;
+}
+
+#if !SANITIZER_GO
+void MemoryProfiler(u64 uptime) {
+ if (ctx->memprof_fd == kInvalidFd)
+ return;
+ InternalMmapVector<char> buf(4096);
+ WriteMemoryProfile(buf.data(), buf.size(), uptime);
+ WriteToFile(ctx->memprof_fd, buf.data(), internal_strlen(buf.data()));
+}
+
+static bool InitializeMemoryProfiler() {
+ ctx->memprof_fd = kInvalidFd;
+ const char *fname = flags()->profile_memory;
+ if (!fname || !fname[0])
+ return false;
+ if (internal_strcmp(fname, "stdout") == 0) {
+ ctx->memprof_fd = 1;
+ } else if (internal_strcmp(fname, "stderr") == 0) {
+ ctx->memprof_fd = 2;
+ } else {
+ InternalScopedString filename;
+ filename.AppendF("%s.%d", fname, (int)internal_getpid());
+ ctx->memprof_fd = OpenFile(filename.data(), WrOnly);
+ if (ctx->memprof_fd == kInvalidFd) {
+ Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
+ filename.data());
+ return false;
+ }
+ }
+ MemoryProfiler(0);
+ return true;
+}
+
+static void *BackgroundThread(void *arg) {
+ // This is a non-initialized non-user thread, nothing to see here.
+ // We don't use ScopedIgnoreInterceptors, because we want ignores to be
+ // enabled even when the thread function exits (e.g. during pthread thread
+ // shutdown code).
+ cur_thread_init()->ignore_interceptors++;
+ const u64 kMs2Ns = 1000 * 1000;
+ const u64 start = NanoTime();
+
+ u64 last_flush = start;
+ uptr last_rss = 0;
+ while (!atomic_load_relaxed(&ctx->stop_background_thread)) {
+ SleepForMillis(100);
+ u64 now = NanoTime();
+
+ // Flush memory if requested.
+ if (flags()->flush_memory_ms > 0) {
+ if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
+ VReport(1, "ThreadSanitizer: periodic memory flush\n");
+ FlushShadowMemory();
+ now = last_flush = NanoTime();
+ }
+ }
+ if (flags()->memory_limit_mb > 0) {
+ uptr rss = GetRSS();
+ uptr limit = uptr(flags()->memory_limit_mb) << 20;
+ VReport(1,
+ "ThreadSanitizer: memory flush check"
+ " RSS=%llu LAST=%llu LIMIT=%llu\n",
+ (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
+ if (2 * rss > limit + last_rss) {
+ VReport(1, "ThreadSanitizer: flushing memory due to RSS\n");
+ FlushShadowMemory();
+ rss = GetRSS();
+ now = NanoTime();
+ VReport(1, "ThreadSanitizer: memory flushed RSS=%llu\n",
+ (u64)rss >> 20);
+ }
+ last_rss = rss;
+ }
+
+ MemoryProfiler(now - start);
+
+ // Flush symbolizer cache if requested.
+ if (flags()->flush_symbolizer_ms > 0) {
+ u64 last = atomic_load(&ctx->last_symbolize_time_ns,
+ memory_order_relaxed);
+ if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
+ Lock l(&ctx->report_mtx);
+ ScopedErrorReportLock l2;
+ SymbolizeFlush();
+ atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
+ }
+ }
+ }
+ return nullptr;
+}
+
+static void StartBackgroundThread() {
+ ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
+}
+
+#ifndef __mips__
+static void StopBackgroundThread() {
+ atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
+ internal_join_thread(ctx->background_thread);
+ ctx->background_thread = 0;
+}
+#endif
+#endif
+
+void DontNeedShadowFor(uptr addr, uptr size) {
+ ReleaseMemoryPagesToOS(reinterpret_cast<uptr>(MemToShadow(addr)),
+ reinterpret_cast<uptr>(MemToShadow(addr + size)));
+}
+
+#if !SANITIZER_GO
+// We call UnmapShadow before the actual munmap, at that point we don't yet
+// know if the provided address/size are sane. We can't call UnmapShadow
+// after the actual munmap becuase at that point the memory range can
+// already be reused for something else, so we can't rely on the munmap
+// return value to understand is the values are sane.
+// While calling munmap with insane values (non-canonical address, negative
+// size, etc) is an error, the kernel won't crash. We must also try to not
+// crash as the failure mode is very confusing (paging fault inside of the
+// runtime on some derived shadow address).
+static bool IsValidMmapRange(uptr addr, uptr size) {
+ if (size == 0)
+ return true;
+ if (static_cast<sptr>(size) < 0)
+ return false;
+ if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
+ return false;
+ // Check that if the start of the region belongs to one of app ranges,
+ // end of the region belongs to the same region.
+ const uptr ranges[][2] = {
+ {LoAppMemBeg(), LoAppMemEnd()},
+ {MidAppMemBeg(), MidAppMemEnd()},
+ {HiAppMemBeg(), HiAppMemEnd()},
+ };
+ for (auto range : ranges) {
+ if (addr >= range[0] && addr < range[1])
+ return addr + size <= range[1];
+ }
+ return false;
+}
+
+void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
+ if (size == 0 || !IsValidMmapRange(addr, size))
+ return;
+ DontNeedShadowFor(addr, size);
+ ScopedGlobalProcessor sgp;
+ SlotLocker locker(thr, true);
+ ctx->metamap.ResetRange(thr->proc(), addr, size, true);
+}
+#endif
+
+void MapShadow(uptr addr, uptr size) {
+ // Ensure thead registry lock held, so as to synchronize
+ // with DoReset, which also access the mapped_shadow_* ctxt fields.
+ ThreadRegistryLock lock0(&ctx->thread_registry);
+ static bool data_mapped = false;
+
+#if !SANITIZER_GO
+ // Global data is not 64K aligned, but there are no adjacent mappings,
+ // so we can get away with unaligned mapping.
+ // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
+ const uptr kPageSize = GetPageSizeCached();
+ uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
+ uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
+ if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
+ Die();
+#else
+ uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), (64 << 10));
+ uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), (64 << 10));
+ VPrintf(2, "MapShadow for (0x%zx-0x%zx), begin/end: (0x%zx-0x%zx)\n",
+ addr, addr + size, shadow_begin, shadow_end);
+
+ if (!data_mapped) {
+ // First call maps data+bss.
+ if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
+ Die();
+ } else {
+ VPrintf(2, "ctx->mapped_shadow_{begin,end} = (0x%zx-0x%zx)\n",
+ ctx->mapped_shadow_begin, ctx->mapped_shadow_end);
+ // Second and subsequent calls map heap.
+ if (shadow_end <= ctx->mapped_shadow_end)
+ return;
+ if (!ctx->mapped_shadow_begin || ctx->mapped_shadow_begin > shadow_begin)
+ ctx->mapped_shadow_begin = shadow_begin;
+ if (shadow_begin < ctx->mapped_shadow_end)
+ shadow_begin = ctx->mapped_shadow_end;
+ VPrintf(2, "MapShadow begin/end = (0x%zx-0x%zx)\n",
+ shadow_begin, shadow_end);
+ if (!MmapFixedSuperNoReserve(shadow_begin, shadow_end - shadow_begin,
+ "shadow"))
+ Die();
+ ctx->mapped_shadow_end = shadow_end;
+ }
+#endif
+
+ // Meta shadow is 2:1, so tread carefully.
+ static uptr mapped_meta_end = 0;
+ uptr meta_begin = (uptr)MemToMeta(addr);
+ uptr meta_end = (uptr)MemToMeta(addr + size);
+ meta_begin = RoundDownTo(meta_begin, 64 << 10);
+ meta_end = RoundUpTo(meta_end, 64 << 10);
+ if (!data_mapped) {
+ // First call maps data+bss.
+ data_mapped = true;
+ if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
+ "meta shadow"))
+ Die();
+ } else {
+ // Mapping continuous heap.
+ // Windows wants 64K alignment.
+ meta_begin = RoundDownTo(meta_begin, 64 << 10);
+ meta_end = RoundUpTo(meta_end, 64 << 10);
+ CHECK_GT(meta_end, mapped_meta_end);
+ if (meta_begin < mapped_meta_end)
+ meta_begin = mapped_meta_end;
+ if (!MmapFixedSuperNoReserve(meta_begin, meta_end - meta_begin,
+ "meta shadow"))
+ Die();
+ mapped_meta_end = meta_end;
+ }
+ VPrintf(2, "mapped meta shadow for (0x%zx-0x%zx) at (0x%zx-0x%zx)\n", addr,
+ addr + size, meta_begin, meta_end);
+}
+
+#if !SANITIZER_GO
+static void OnStackUnwind(const SignalContext &sig, const void *,
+ BufferedStackTrace *stack) {
+ stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
+ common_flags()->fast_unwind_on_fatal);
+}
+
+static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
+ HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
+}
+#endif
+
+void CheckUnwind() {
+ // There is high probability that interceptors will check-fail as well,
+ // on the other hand there is no sense in processing interceptors
+ // since we are going to die soon.
+ ScopedIgnoreInterceptors ignore;
+#if !SANITIZER_GO
+ ThreadState* thr = cur_thread();
+ thr->nomalloc = false;
+ thr->ignore_sync++;
+ thr->ignore_reads_and_writes++;
+ atomic_store_relaxed(&thr->in_signal_handler, 0);
+#endif
+ PrintCurrentStackSlow(StackTrace::GetCurrentPc());
+}
+
+bool is_initialized;
+
+void Initialize(ThreadState *thr) {
+ // Thread safe because done before all threads exist.
+ if (is_initialized)
+ return;
+ is_initialized = true;
+ // We are not ready to handle interceptors yet.
+ ScopedIgnoreInterceptors ignore;
+ SanitizerToolName = "ThreadSanitizer";
+ // Install tool-specific callbacks in sanitizer_common.
+ SetCheckUnwindCallback(CheckUnwind);
+
+ ctx = new(ctx_placeholder) Context;
+ const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
+ const char *options = GetEnv(env_name);
+ CacheBinaryName();
+ CheckASLR();
+ InitializeFlags(&ctx->flags, options, env_name);
+ AvoidCVE_2016_2143();
+ __sanitizer::InitializePlatformEarly();
+ __tsan::InitializePlatformEarly();
+
+#if !SANITIZER_GO
+ InitializeAllocator();
+ ReplaceSystemMalloc();
+#endif
+ if (common_flags()->detect_deadlocks)
+ ctx->dd = DDetector::Create(flags());
+ Processor *proc = ProcCreate();
+ ProcWire(proc, thr);
+ InitializeInterceptors();
+ InitializePlatform();
+ InitializeDynamicAnnotations();
+#if !SANITIZER_GO
+ InitializeShadowMemory();
+ InitializeAllocatorLate();
+ InstallDeadlySignalHandlers(TsanOnDeadlySignal);
+#endif
+ // Setup correct file descriptor for error reports.
+ __sanitizer_set_report_path(common_flags()->log_path);
+ InitializeSuppressions();
+#if !SANITIZER_GO
+ InitializeLibIgnore();
+ Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
+#endif
+
+ VPrintf(1, "***** Running under ThreadSanitizer v3 (pid %d) *****\n",
+ (int)internal_getpid());
+
+ // Initialize thread 0.
+ Tid tid = ThreadCreate(nullptr, 0, 0, true);
+ CHECK_EQ(tid, kMainTid);
+ ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
+#if TSAN_CONTAINS_UBSAN
+ __ubsan::InitAsPlugin();
+#endif
+
+#if !SANITIZER_GO
+ Symbolizer::LateInitialize();
+ if (InitializeMemoryProfiler() || flags()->force_background_thread)
+ MaybeSpawnBackgroundThread();
+#endif
+ ctx->initialized = true;
+
+ if (flags()->stop_on_start) {
+ Printf("ThreadSanitizer is suspended at startup (pid %d)."
+ " Call __tsan_resume().\n",
+ (int)internal_getpid());
+ while (__tsan_resumed == 0) {}
+ }
+
+ OnInitialize();
+}
+
+void MaybeSpawnBackgroundThread() {
+ // On MIPS, TSan initialization is run before
+ // __pthread_initialize_minimal_internal() is finished, so we can not spawn
+ // new threads.
+#if !SANITIZER_GO && !defined(__mips__)
+ static atomic_uint32_t bg_thread = {};
+ if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
+ atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
+ StartBackgroundThread();
+ SetSandboxingCallback(StopBackgroundThread);
+ }
+#endif
+}
+
+int Finalize(ThreadState *thr) {
+ bool failed = false;
+
+#if !SANITIZER_GO
+ if (common_flags()->print_module_map == 1)
+ DumpProcessMap();
+#endif
+
+ if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
+ internal_usleep(u64(flags()->atexit_sleep_ms) * 1000);
+
+ {
+ // Wait for pending reports.
+ ScopedErrorReportLock lock;
+ }
+
+#if !SANITIZER_GO
+ if (Verbosity()) AllocatorPrintStats();
+#endif
+
+ ThreadFinalize(thr);
+
+ if (ctx->nreported) {
+ failed = true;
+#if !SANITIZER_GO
+ Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
+#else
+ Printf("Found %d data race(s)\n", ctx->nreported);
+#endif
+ }
+
+ if (common_flags()->print_suppressions)
+ PrintMatchedSuppressions();
+
+ failed = OnFinalize(failed);
+
+ return failed ? common_flags()->exitcode : 0;
+}
+
+#if !SANITIZER_GO
+void ForkBefore(ThreadState* thr, uptr pc) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ GlobalProcessorLock();
+ // Detaching from the slot makes OnUserFree skip writing to the shadow.
+ // The slot will be locked so any attempts to use it will deadlock anyway.
+ SlotDetach(thr);
+ for (auto& slot : ctx->slots) slot.mtx.Lock();
+ ctx->thread_registry.Lock();
+ ctx->slot_mtx.Lock();
+ ScopedErrorReportLock::Lock();
+ AllocatorLockBeforeFork();
+ // Suppress all reports in the pthread_atfork callbacks.
+ // Reports will deadlock on the report_mtx.
+ // We could ignore sync operations as well,
+ // but so far it's unclear if it will do more good or harm.
+ // Unnecessarily ignoring things can lead to false positives later.
+ thr->suppress_reports++;
+ // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
+ // we'll assert in CheckNoLocks() unless we ignore interceptors.
+ // On OS X libSystem_atfork_prepare/parent/child callbacks are called
+ // after/before our callbacks and they call free.
+ thr->ignore_interceptors++;
+ // Disables memory write in OnUserAlloc/Free.
+ thr->ignore_reads_and_writes++;
+
+# if SANITIZER_APPLE
+ __tsan_test_only_on_fork();
+# endif
+}
+
+static void ForkAfter(ThreadState* thr,
+ bool child) SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
+ thr->suppress_reports--; // Enabled in ForkBefore.
+ thr->ignore_interceptors--;
+ thr->ignore_reads_and_writes--;
+ AllocatorUnlockAfterFork(child);
+ ScopedErrorReportLock::Unlock();
+ ctx->slot_mtx.Unlock();
+ ctx->thread_registry.Unlock();
+ for (auto& slot : ctx->slots) slot.mtx.Unlock();
+ SlotAttachAndLock(thr);
+ SlotUnlock(thr);
+ GlobalProcessorUnlock();
+}
+
+void ForkParentAfter(ThreadState* thr, uptr pc) { ForkAfter(thr, false); }
+
+void ForkChildAfter(ThreadState* thr, uptr pc, bool start_thread) {
+ ForkAfter(thr, true);
+ u32 nthread = ctx->thread_registry.OnFork(thr->tid);
+ VPrintf(1,
+ "ThreadSanitizer: forked new process with pid %d,"
+ " parent had %d threads\n",
+ (int)internal_getpid(), (int)nthread);
+ if (nthread == 1) {
+ if (start_thread)
+ StartBackgroundThread();
+ } else {
+ // We've just forked a multi-threaded process. We cannot reasonably function
+ // after that (some mutexes may be locked before fork). So just enable
+ // ignores for everything in the hope that we will exec soon.
+ ctx->after_multithreaded_fork = true;
+ thr->ignore_interceptors++;
+ thr->suppress_reports++;
+ ThreadIgnoreBegin(thr, pc);
+ ThreadIgnoreSyncBegin(thr, pc);
+ }
+}
+#endif
+
+#if SANITIZER_GO
+NOINLINE
+void GrowShadowStack(ThreadState *thr) {
+ const int sz = thr->shadow_stack_end - thr->shadow_stack;
+ const int newsz = 2 * sz;
+ auto *newstack = (uptr *)Alloc(newsz * sizeof(uptr));
+ internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
+ Free(thr->shadow_stack);
+ thr->shadow_stack = newstack;
+ thr->shadow_stack_pos = newstack + sz;
+ thr->shadow_stack_end = newstack + newsz;
+}
+#endif
+
+StackID CurrentStackId(ThreadState *thr, uptr pc) {
+#if !SANITIZER_GO
+ if (!thr->is_inited) // May happen during bootstrap.
+ return kInvalidStackID;
+#endif
+ if (pc != 0) {
+#if !SANITIZER_GO
+ DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
+#else
+ if (thr->shadow_stack_pos == thr->shadow_stack_end)
+ GrowShadowStack(thr);
+#endif
+ thr->shadow_stack_pos[0] = pc;
+ thr->shadow_stack_pos++;
+ }
+ StackID id = StackDepotPut(
+ StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
+ if (pc != 0)
+ thr->shadow_stack_pos--;
+ return id;
+}
+
+static bool TraceSkipGap(ThreadState* thr) {
+ Trace *trace = &thr->tctx->trace;
+ Event *pos = reinterpret_cast<Event *>(atomic_load_relaxed(&thr->trace_pos));
+ DCHECK_EQ(reinterpret_cast<uptr>(pos + 1) & TracePart::kAlignment, 0);
+ auto *part = trace->parts.Back();
+ DPrintf("#%d: TraceSwitchPart enter trace=%p parts=%p-%p pos=%p\n", thr->tid,
+ trace, trace->parts.Front(), part, pos);
+ if (!part)
+ return false;
+ // We can get here when we still have space in the current trace part.
+ // The fast-path check in TraceAcquire has false positives in the middle of
+ // the part. Check if we are indeed at the end of the current part or not,
+ // and fill any gaps with NopEvent's.
+ Event* end = &part->events[TracePart::kSize];
+ DCHECK_GE(pos, &part->events[0]);
+ DCHECK_LE(pos, end);
+ if (pos + 1 < end) {
+ if ((reinterpret_cast<uptr>(pos) & TracePart::kAlignment) ==
+ TracePart::kAlignment)
+ *pos++ = NopEvent;
+ *pos++ = NopEvent;
+ DCHECK_LE(pos + 2, end);
+ atomic_store_relaxed(&thr->trace_pos, reinterpret_cast<uptr>(pos));
+ return true;
+ }
+ // We are indeed at the end.
+ for (; pos < end; pos++) *pos = NopEvent;
+ return false;
+}
+
+NOINLINE
+void TraceSwitchPart(ThreadState* thr) {
+ if (TraceSkipGap(thr))
+ return;
+#if !SANITIZER_GO
+ if (ctx->after_multithreaded_fork) {
+ // We just need to survive till exec.
+ TracePart* part = thr->tctx->trace.parts.Back();
+ if (part) {
+ atomic_store_relaxed(&thr->trace_pos,
+ reinterpret_cast<uptr>(&part->events[0]));
+ return;
+ }
+ }
+#endif
+ TraceSwitchPartImpl(thr);
+}
+
+void TraceSwitchPartImpl(ThreadState* thr) {
+ SlotLocker locker(thr, true);
+ Trace* trace = &thr->tctx->trace;
+ TracePart* part = TracePartAlloc(thr);
+ part->trace = trace;
+ thr->trace_prev_pc = 0;
+ TracePart* recycle = nullptr;
+ // Keep roughly half of parts local to the thread
+ // (not queued into the recycle queue).
+ uptr local_parts = (Trace::kMinParts + flags()->history_size + 1) / 2;
+ {
+ Lock lock(&trace->mtx);
+ if (trace->parts.Empty())
+ trace->local_head = part;
+ if (trace->parts.Size() >= local_parts) {
+ recycle = trace->local_head;
+ trace->local_head = trace->parts.Next(recycle);
+ }
+ trace->parts.PushBack(part);
+ atomic_store_relaxed(&thr->trace_pos,
+ reinterpret_cast<uptr>(&part->events[0]));
+ }
+ // Make this part self-sufficient by restoring the current stack
+ // and mutex set in the beginning of the trace.
+ TraceTime(thr);
+ {
+ // Pathologically large stacks may not fit into the part.
+ // In these cases we log only fixed number of top frames.
+ const uptr kMaxFrames = 1000;
+ // Check that kMaxFrames won't consume the whole part.
+ static_assert(kMaxFrames < TracePart::kSize / 2, "kMaxFrames is too big");
+ uptr* pos = Max(&thr->shadow_stack[0], thr->shadow_stack_pos - kMaxFrames);
+ for (; pos < thr->shadow_stack_pos; pos++) {
+ if (TryTraceFunc(thr, *pos))
+ continue;
+ CHECK(TraceSkipGap(thr));
+ CHECK(TryTraceFunc(thr, *pos));
+ }
+ }
+ for (uptr i = 0; i < thr->mset.Size(); i++) {
+ MutexSet::Desc d = thr->mset.Get(i);
+ for (uptr i = 0; i < d.count; i++)
+ TraceMutexLock(thr, d.write ? EventType::kLock : EventType::kRLock, 0,
+ d.addr, d.stack_id);
+ }
+ // Callers of TraceSwitchPart expect that TraceAcquire will always succeed
+ // after the call. It's possible that TryTraceFunc/TraceMutexLock above
+ // filled the trace part exactly up to the TracePart::kAlignment gap
+ // and the next TraceAcquire won't succeed. Skip the gap to avoid that.
+ EventFunc *ev;
+ if (!TraceAcquire(thr, &ev)) {
+ CHECK(TraceSkipGap(thr));
+ CHECK(TraceAcquire(thr, &ev));
+ }
+ {
+ Lock lock(&ctx->slot_mtx);
+ // There is a small chance that the slot may be not queued at this point.
+ // This can happen if the slot has kEpochLast epoch and another thread
+ // in FindSlotAndLock discovered that it's exhausted and removed it from
+ // the slot queue. kEpochLast can happen in 2 cases: (1) if TraceSwitchPart
+ // was called with the slot locked and epoch already at kEpochLast,
+ // or (2) if we've acquired a new slot in SlotLock in the beginning
+ // of the function and the slot was at kEpochLast - 1, so after increment
+ // in SlotAttachAndLock it become kEpochLast.
+ if (ctx->slot_queue.Queued(thr->slot)) {
+ ctx->slot_queue.Remove(thr->slot);
+ ctx->slot_queue.PushBack(thr->slot);
+ }
+ if (recycle)
+ ctx->trace_part_recycle.PushBack(recycle);
+ }
+ DPrintf("#%d: TraceSwitchPart exit parts=%p-%p pos=0x%zx\n", thr->tid,
+ trace->parts.Front(), trace->parts.Back(),
+ atomic_load_relaxed(&thr->trace_pos));
+}
+
+void ThreadIgnoreBegin(ThreadState* thr, uptr pc) {
+ DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
+ thr->ignore_reads_and_writes++;
+ CHECK_GT(thr->ignore_reads_and_writes, 0);
+ thr->fast_state.SetIgnoreBit();
+#if !SANITIZER_GO
+ if (pc && !ctx->after_multithreaded_fork)
+ thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
+#endif
+}
+
+void ThreadIgnoreEnd(ThreadState *thr) {
+ DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
+ CHECK_GT(thr->ignore_reads_and_writes, 0);
+ thr->ignore_reads_and_writes--;
+ if (thr->ignore_reads_and_writes == 0) {
+ thr->fast_state.ClearIgnoreBit();
+#if !SANITIZER_GO
+ thr->mop_ignore_set.Reset();
+#endif
+ }
+}
+
+#if !SANITIZER_GO
+extern "C" SANITIZER_INTERFACE_ATTRIBUTE
+uptr __tsan_testonly_shadow_stack_current_size() {
+ ThreadState *thr = cur_thread();
+ return thr->shadow_stack_pos - thr->shadow_stack;
+}
+#endif
+
+void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc) {
+ DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
+ thr->ignore_sync++;
+ CHECK_GT(thr->ignore_sync, 0);
+#if !SANITIZER_GO
+ if (pc && !ctx->after_multithreaded_fork)
+ thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
+#endif
+}
+
+void ThreadIgnoreSyncEnd(ThreadState *thr) {
+ DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
+ CHECK_GT(thr->ignore_sync, 0);
+ thr->ignore_sync--;
+#if !SANITIZER_GO
+ if (thr->ignore_sync == 0)
+ thr->sync_ignore_set.Reset();
+#endif
+}
+
+bool MD5Hash::operator==(const MD5Hash &other) const {
+ return hash[0] == other.hash[0] && hash[1] == other.hash[1];
+}
+
+#if SANITIZER_DEBUG
+void build_consistency_debug() {}
+#else
+void build_consistency_release() {}
+#endif
+} // namespace __tsan
+
+#if SANITIZER_CHECK_DEADLOCKS
+namespace __sanitizer {
+using namespace __tsan;
+MutexMeta mutex_meta[] = {
+ {MutexInvalid, "Invalid", {}},
+ {MutexThreadRegistry,
+ "ThreadRegistry",
+ {MutexTypeSlots, MutexTypeTrace, MutexTypeReport}},
+ {MutexTypeReport, "Report", {MutexTypeTrace}},
+ {MutexTypeSyncVar, "SyncVar", {MutexTypeReport, MutexTypeTrace}},
+ {MutexTypeAnnotations, "Annotations", {}},
+ {MutexTypeAtExit, "AtExit", {}},
+ {MutexTypeFired, "Fired", {MutexLeaf}},
+ {MutexTypeRacy, "Racy", {MutexLeaf}},
+ {MutexTypeGlobalProc, "GlobalProc", {MutexTypeSlot, MutexTypeSlots}},
+ {MutexTypeInternalAlloc, "InternalAlloc", {MutexLeaf}},
+ {MutexTypeTrace, "Trace", {}},
+ {MutexTypeSlot,
+ "Slot",
+ {MutexMulti, MutexTypeTrace, MutexTypeSyncVar, MutexThreadRegistry,
+ MutexTypeSlots}},
+ {MutexTypeSlots, "Slots", {MutexTypeTrace, MutexTypeReport}},
+ {},
+};
+
+void PrintMutexPC(uptr pc) { StackTrace(&pc, 1).Print(); }
+
+} // namespace __sanitizer
+#endif