aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/lldb/source/Core/ValueObject.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/lldb/source/Core/ValueObject.cpp')
-rw-r--r--contrib/llvm-project/lldb/source/Core/ValueObject.cpp3781
1 files changed, 3781 insertions, 0 deletions
diff --git a/contrib/llvm-project/lldb/source/Core/ValueObject.cpp b/contrib/llvm-project/lldb/source/Core/ValueObject.cpp
new file mode 100644
index 000000000000..8f72efc2299b
--- /dev/null
+++ b/contrib/llvm-project/lldb/source/Core/ValueObject.cpp
@@ -0,0 +1,3781 @@
+//===-- ValueObject.cpp ---------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "lldb/Core/ValueObject.h"
+
+#include "lldb/Core/Address.h"
+#include "lldb/Core/Declaration.h"
+#include "lldb/Core/Module.h"
+#include "lldb/Core/ValueObjectCast.h"
+#include "lldb/Core/ValueObjectChild.h"
+#include "lldb/Core/ValueObjectConstResult.h"
+#include "lldb/Core/ValueObjectDynamicValue.h"
+#include "lldb/Core/ValueObjectMemory.h"
+#include "lldb/Core/ValueObjectSyntheticFilter.h"
+#include "lldb/Core/ValueObjectVTable.h"
+#include "lldb/DataFormatters/DataVisualization.h"
+#include "lldb/DataFormatters/DumpValueObjectOptions.h"
+#include "lldb/DataFormatters/FormatManager.h"
+#include "lldb/DataFormatters/StringPrinter.h"
+#include "lldb/DataFormatters/TypeFormat.h"
+#include "lldb/DataFormatters/TypeSummary.h"
+#include "lldb/DataFormatters/ValueObjectPrinter.h"
+#include "lldb/Expression/ExpressionVariable.h"
+#include "lldb/Host/Config.h"
+#include "lldb/Symbol/CompileUnit.h"
+#include "lldb/Symbol/CompilerType.h"
+#include "lldb/Symbol/SymbolContext.h"
+#include "lldb/Symbol/Type.h"
+#include "lldb/Symbol/Variable.h"
+#include "lldb/Target/ExecutionContext.h"
+#include "lldb/Target/Language.h"
+#include "lldb/Target/LanguageRuntime.h"
+#include "lldb/Target/Process.h"
+#include "lldb/Target/StackFrame.h"
+#include "lldb/Target/Target.h"
+#include "lldb/Target/Thread.h"
+#include "lldb/Target/ThreadList.h"
+#include "lldb/Utility/DataBuffer.h"
+#include "lldb/Utility/DataBufferHeap.h"
+#include "lldb/Utility/Flags.h"
+#include "lldb/Utility/LLDBLog.h"
+#include "lldb/Utility/Log.h"
+#include "lldb/Utility/Scalar.h"
+#include "lldb/Utility/Stream.h"
+#include "lldb/Utility/StreamString.h"
+#include "lldb/lldb-private-types.h"
+
+#include "llvm/Support/Compiler.h"
+
+#include <algorithm>
+#include <cstdint>
+#include <cstdlib>
+#include <memory>
+#include <optional>
+#include <tuple>
+
+#include <cassert>
+#include <cinttypes>
+#include <cstdio>
+#include <cstring>
+
+#include <lldb/Core/ValueObject.h>
+
+namespace lldb_private {
+class ExecutionContextScope;
+}
+namespace lldb_private {
+class SymbolContextScope;
+}
+
+using namespace lldb;
+using namespace lldb_private;
+
+static user_id_t g_value_obj_uid = 0;
+
+// ValueObject constructor
+ValueObject::ValueObject(ValueObject &parent)
+ : m_parent(&parent), m_update_point(parent.GetUpdatePoint()),
+ m_manager(parent.GetManager()), m_id(++g_value_obj_uid) {
+ m_flags.m_is_synthetic_children_generated =
+ parent.m_flags.m_is_synthetic_children_generated;
+ m_data.SetByteOrder(parent.GetDataExtractor().GetByteOrder());
+ m_data.SetAddressByteSize(parent.GetDataExtractor().GetAddressByteSize());
+ m_manager->ManageObject(this);
+}
+
+// ValueObject constructor
+ValueObject::ValueObject(ExecutionContextScope *exe_scope,
+ ValueObjectManager &manager,
+ AddressType child_ptr_or_ref_addr_type)
+ : m_update_point(exe_scope), m_manager(&manager),
+ m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type),
+ m_id(++g_value_obj_uid) {
+ if (exe_scope) {
+ TargetSP target_sp(exe_scope->CalculateTarget());
+ if (target_sp) {
+ const ArchSpec &arch = target_sp->GetArchitecture();
+ m_data.SetByteOrder(arch.GetByteOrder());
+ m_data.SetAddressByteSize(arch.GetAddressByteSize());
+ }
+ }
+ m_manager->ManageObject(this);
+}
+
+// Destructor
+ValueObject::~ValueObject() = default;
+
+bool ValueObject::UpdateValueIfNeeded(bool update_format) {
+
+ bool did_change_formats = false;
+
+ if (update_format)
+ did_change_formats = UpdateFormatsIfNeeded();
+
+ // If this is a constant value, then our success is predicated on whether we
+ // have an error or not
+ if (GetIsConstant()) {
+ // if you are constant, things might still have changed behind your back
+ // (e.g. you are a frozen object and things have changed deeper than you
+ // cared to freeze-dry yourself) in this case, your value has not changed,
+ // but "computed" entries might have, so you might now have a different
+ // summary, or a different object description. clear these so we will
+ // recompute them
+ if (update_format && !did_change_formats)
+ ClearUserVisibleData(eClearUserVisibleDataItemsSummary |
+ eClearUserVisibleDataItemsDescription);
+ return m_error.Success();
+ }
+
+ bool first_update = IsChecksumEmpty();
+
+ if (NeedsUpdating()) {
+ m_update_point.SetUpdated();
+
+ // Save the old value using swap to avoid a string copy which also will
+ // clear our m_value_str
+ if (m_value_str.empty()) {
+ m_flags.m_old_value_valid = false;
+ } else {
+ m_flags.m_old_value_valid = true;
+ m_old_value_str.swap(m_value_str);
+ ClearUserVisibleData(eClearUserVisibleDataItemsValue);
+ }
+
+ ClearUserVisibleData();
+
+ if (IsInScope()) {
+ const bool value_was_valid = GetValueIsValid();
+ SetValueDidChange(false);
+
+ m_error.Clear();
+
+ // Call the pure virtual function to update the value
+
+ bool need_compare_checksums = false;
+ llvm::SmallVector<uint8_t, 16> old_checksum;
+
+ if (!first_update && CanProvideValue()) {
+ need_compare_checksums = true;
+ old_checksum.resize(m_value_checksum.size());
+ std::copy(m_value_checksum.begin(), m_value_checksum.end(),
+ old_checksum.begin());
+ }
+
+ bool success = UpdateValue();
+
+ SetValueIsValid(success);
+
+ if (success) {
+ UpdateChildrenAddressType();
+ const uint64_t max_checksum_size = 128;
+ m_data.Checksum(m_value_checksum, max_checksum_size);
+ } else {
+ need_compare_checksums = false;
+ m_value_checksum.clear();
+ }
+
+ assert(!need_compare_checksums ||
+ (!old_checksum.empty() && !m_value_checksum.empty()));
+
+ if (first_update)
+ SetValueDidChange(false);
+ else if (!m_flags.m_value_did_change && !success) {
+ // The value wasn't gotten successfully, so we mark this as changed if
+ // the value used to be valid and now isn't
+ SetValueDidChange(value_was_valid);
+ } else if (need_compare_checksums) {
+ SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0],
+ m_value_checksum.size()));
+ }
+
+ } else {
+ m_error.SetErrorString("out of scope");
+ }
+ }
+ return m_error.Success();
+}
+
+bool ValueObject::UpdateFormatsIfNeeded() {
+ Log *log = GetLog(LLDBLog::DataFormatters);
+ LLDB_LOGF(log,
+ "[%s %p] checking for FormatManager revisions. ValueObject "
+ "rev: %d - Global rev: %d",
+ GetName().GetCString(), static_cast<void *>(this),
+ m_last_format_mgr_revision,
+ DataVisualization::GetCurrentRevision());
+
+ bool any_change = false;
+
+ if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) {
+ m_last_format_mgr_revision = DataVisualization::GetCurrentRevision();
+ any_change = true;
+
+ SetValueFormat(DataVisualization::GetFormat(*this, GetDynamicValueType()));
+ SetSummaryFormat(
+ DataVisualization::GetSummaryFormat(*this, GetDynamicValueType()));
+ SetSyntheticChildren(
+ DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType()));
+ }
+
+ return any_change;
+}
+
+void ValueObject::SetNeedsUpdate() {
+ m_update_point.SetNeedsUpdate();
+ // We have to clear the value string here so ConstResult children will notice
+ // if their values are changed by hand (i.e. with SetValueAsCString).
+ ClearUserVisibleData(eClearUserVisibleDataItemsValue);
+}
+
+void ValueObject::ClearDynamicTypeInformation() {
+ m_flags.m_children_count_valid = false;
+ m_flags.m_did_calculate_complete_objc_class_type = false;
+ m_last_format_mgr_revision = 0;
+ m_override_type = CompilerType();
+ SetValueFormat(lldb::TypeFormatImplSP());
+ SetSummaryFormat(lldb::TypeSummaryImplSP());
+ SetSyntheticChildren(lldb::SyntheticChildrenSP());
+}
+
+CompilerType ValueObject::MaybeCalculateCompleteType() {
+ CompilerType compiler_type(GetCompilerTypeImpl());
+
+ if (m_flags.m_did_calculate_complete_objc_class_type) {
+ if (m_override_type.IsValid())
+ return m_override_type;
+ else
+ return compiler_type;
+ }
+
+ m_flags.m_did_calculate_complete_objc_class_type = true;
+
+ ProcessSP process_sp(
+ GetUpdatePoint().GetExecutionContextRef().GetProcessSP());
+
+ if (!process_sp)
+ return compiler_type;
+
+ if (auto *runtime =
+ process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) {
+ if (std::optional<CompilerType> complete_type =
+ runtime->GetRuntimeType(compiler_type)) {
+ m_override_type = *complete_type;
+ if (m_override_type.IsValid())
+ return m_override_type;
+ }
+ }
+ return compiler_type;
+}
+
+
+
+DataExtractor &ValueObject::GetDataExtractor() {
+ UpdateValueIfNeeded(false);
+ return m_data;
+}
+
+const Status &ValueObject::GetError() {
+ UpdateValueIfNeeded(false);
+ return m_error;
+}
+
+const char *ValueObject::GetLocationAsCStringImpl(const Value &value,
+ const DataExtractor &data) {
+ if (UpdateValueIfNeeded(false)) {
+ if (m_location_str.empty()) {
+ StreamString sstr;
+
+ Value::ValueType value_type = value.GetValueType();
+
+ switch (value_type) {
+ case Value::ValueType::Invalid:
+ m_location_str = "invalid";
+ break;
+ case Value::ValueType::Scalar:
+ if (value.GetContextType() == Value::ContextType::RegisterInfo) {
+ RegisterInfo *reg_info = value.GetRegisterInfo();
+ if (reg_info) {
+ if (reg_info->name)
+ m_location_str = reg_info->name;
+ else if (reg_info->alt_name)
+ m_location_str = reg_info->alt_name;
+ if (m_location_str.empty())
+ m_location_str = (reg_info->encoding == lldb::eEncodingVector)
+ ? "vector"
+ : "scalar";
+ }
+ }
+ if (m_location_str.empty())
+ m_location_str = "scalar";
+ break;
+
+ case Value::ValueType::LoadAddress:
+ case Value::ValueType::FileAddress:
+ case Value::ValueType::HostAddress: {
+ uint32_t addr_nibble_size = data.GetAddressByteSize() * 2;
+ sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size,
+ value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS));
+ m_location_str = std::string(sstr.GetString());
+ } break;
+ }
+ }
+ }
+ return m_location_str.c_str();
+}
+
+bool ValueObject::ResolveValue(Scalar &scalar) {
+ if (UpdateValueIfNeeded(
+ false)) // make sure that you are up to date before returning anything
+ {
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ Value tmp_value(m_value);
+ scalar = tmp_value.ResolveValue(&exe_ctx, GetModule().get());
+ if (scalar.IsValid()) {
+ const uint32_t bitfield_bit_size = GetBitfieldBitSize();
+ if (bitfield_bit_size)
+ return scalar.ExtractBitfield(bitfield_bit_size,
+ GetBitfieldBitOffset());
+ return true;
+ }
+ }
+ return false;
+}
+
+bool ValueObject::IsLogicalTrue(Status &error) {
+ if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
+ LazyBool is_logical_true = language->IsLogicalTrue(*this, error);
+ switch (is_logical_true) {
+ case eLazyBoolYes:
+ case eLazyBoolNo:
+ return (is_logical_true == true);
+ case eLazyBoolCalculate:
+ break;
+ }
+ }
+
+ Scalar scalar_value;
+
+ if (!ResolveValue(scalar_value)) {
+ error.SetErrorString("failed to get a scalar result");
+ return false;
+ }
+
+ bool ret;
+ ret = scalar_value.ULongLong(1) != 0;
+ error.Clear();
+ return ret;
+}
+
+ValueObjectSP ValueObject::GetChildAtIndex(uint32_t idx, bool can_create) {
+ ValueObjectSP child_sp;
+ // We may need to update our value if we are dynamic
+ if (IsPossibleDynamicType())
+ UpdateValueIfNeeded(false);
+ if (idx < GetNumChildrenIgnoringErrors()) {
+ // Check if we have already made the child value object?
+ if (can_create && !m_children.HasChildAtIndex(idx)) {
+ // No we haven't created the child at this index, so lets have our
+ // subclass do it and cache the result for quick future access.
+ m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx));
+ }
+
+ ValueObject *child = m_children.GetChildAtIndex(idx);
+ if (child != nullptr)
+ return child->GetSP();
+ }
+ return child_sp;
+}
+
+lldb::ValueObjectSP
+ValueObject::GetChildAtNamePath(llvm::ArrayRef<llvm::StringRef> names) {
+ if (names.size() == 0)
+ return GetSP();
+ ValueObjectSP root(GetSP());
+ for (llvm::StringRef name : names) {
+ root = root->GetChildMemberWithName(name);
+ if (!root) {
+ return root;
+ }
+ }
+ return root;
+}
+
+size_t ValueObject::GetIndexOfChildWithName(llvm::StringRef name) {
+ bool omit_empty_base_classes = true;
+ return GetCompilerType().GetIndexOfChildWithName(name,
+ omit_empty_base_classes);
+}
+
+ValueObjectSP ValueObject::GetChildMemberWithName(llvm::StringRef name,
+ bool can_create) {
+ // We may need to update our value if we are dynamic.
+ if (IsPossibleDynamicType())
+ UpdateValueIfNeeded(false);
+
+ // When getting a child by name, it could be buried inside some base classes
+ // (which really aren't part of the expression path), so we need a vector of
+ // indexes that can get us down to the correct child.
+ std::vector<uint32_t> child_indexes;
+ bool omit_empty_base_classes = true;
+
+ if (!GetCompilerType().IsValid())
+ return ValueObjectSP();
+
+ const size_t num_child_indexes =
+ GetCompilerType().GetIndexOfChildMemberWithName(
+ name, omit_empty_base_classes, child_indexes);
+ if (num_child_indexes == 0)
+ return nullptr;
+
+ ValueObjectSP child_sp = GetSP();
+ for (uint32_t idx : child_indexes)
+ if (child_sp)
+ child_sp = child_sp->GetChildAtIndex(idx, can_create);
+ return child_sp;
+}
+
+llvm::Expected<uint32_t> ValueObject::GetNumChildren(uint32_t max) {
+ UpdateValueIfNeeded();
+
+ if (max < UINT32_MAX) {
+ if (m_flags.m_children_count_valid) {
+ size_t children_count = m_children.GetChildrenCount();
+ return children_count <= max ? children_count : max;
+ } else
+ return CalculateNumChildren(max);
+ }
+
+ if (!m_flags.m_children_count_valid) {
+ auto num_children_or_err = CalculateNumChildren();
+ if (num_children_or_err)
+ SetNumChildren(*num_children_or_err);
+ else
+ return num_children_or_err;
+ }
+ return m_children.GetChildrenCount();
+}
+
+uint32_t ValueObject::GetNumChildrenIgnoringErrors(uint32_t max) {
+ auto value_or_err = GetNumChildren(max);
+ if (value_or_err)
+ return *value_or_err;
+ LLDB_LOG_ERRORV(GetLog(LLDBLog::DataFormatters), value_or_err.takeError(),
+ "{0}");
+ return 0;
+}
+
+bool ValueObject::MightHaveChildren() {
+ bool has_children = false;
+ const uint32_t type_info = GetTypeInfo();
+ if (type_info) {
+ if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference))
+ has_children = true;
+ } else {
+ has_children = GetNumChildrenIgnoringErrors() > 0;
+ }
+ return has_children;
+}
+
+// Should only be called by ValueObject::GetNumChildren()
+void ValueObject::SetNumChildren(uint32_t num_children) {
+ m_flags.m_children_count_valid = true;
+ m_children.SetChildrenCount(num_children);
+}
+
+ValueObject *ValueObject::CreateChildAtIndex(size_t idx) {
+ bool omit_empty_base_classes = true;
+ bool ignore_array_bounds = false;
+ std::string child_name;
+ uint32_t child_byte_size = 0;
+ int32_t child_byte_offset = 0;
+ uint32_t child_bitfield_bit_size = 0;
+ uint32_t child_bitfield_bit_offset = 0;
+ bool child_is_base_class = false;
+ bool child_is_deref_of_parent = false;
+ uint64_t language_flags = 0;
+ const bool transparent_pointers = true;
+
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+
+ auto child_compiler_type_or_err =
+ GetCompilerType().GetChildCompilerTypeAtIndex(
+ &exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
+ ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
+ child_bitfield_bit_size, child_bitfield_bit_offset,
+ child_is_base_class, child_is_deref_of_parent, this, language_flags);
+ if (!child_compiler_type_or_err || !child_compiler_type_or_err->IsValid()) {
+ LLDB_LOG_ERROR(GetLog(LLDBLog::Types),
+ child_compiler_type_or_err.takeError(),
+ "could not find child: {0}");
+ return nullptr;
+ }
+
+ return new ValueObjectChild(
+ *this, *child_compiler_type_or_err, ConstString(child_name),
+ child_byte_size, child_byte_offset, child_bitfield_bit_size,
+ child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent,
+ eAddressTypeInvalid, language_flags);
+}
+
+ValueObject *ValueObject::CreateSyntheticArrayMember(size_t idx) {
+ bool omit_empty_base_classes = true;
+ bool ignore_array_bounds = true;
+ std::string child_name;
+ uint32_t child_byte_size = 0;
+ int32_t child_byte_offset = 0;
+ uint32_t child_bitfield_bit_size = 0;
+ uint32_t child_bitfield_bit_offset = 0;
+ bool child_is_base_class = false;
+ bool child_is_deref_of_parent = false;
+ uint64_t language_flags = 0;
+ const bool transparent_pointers = false;
+
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+
+ auto child_compiler_type_or_err =
+ GetCompilerType().GetChildCompilerTypeAtIndex(
+ &exe_ctx, 0, transparent_pointers, omit_empty_base_classes,
+ ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
+ child_bitfield_bit_size, child_bitfield_bit_offset,
+ child_is_base_class, child_is_deref_of_parent, this, language_flags);
+ if (!child_compiler_type_or_err) {
+ LLDB_LOG_ERROR(GetLog(LLDBLog::Types),
+ child_compiler_type_or_err.takeError(),
+ "could not find child: {0}");
+ return nullptr;
+ }
+
+ if (child_compiler_type_or_err->IsValid()) {
+ child_byte_offset += child_byte_size * idx;
+
+ return new ValueObjectChild(
+ *this, *child_compiler_type_or_err, ConstString(child_name),
+ child_byte_size, child_byte_offset, child_bitfield_bit_size,
+ child_bitfield_bit_offset, child_is_base_class,
+ child_is_deref_of_parent, eAddressTypeInvalid, language_flags);
+ }
+
+ // In case of an incomplete type, try to use the ValueObject's
+ // synthetic value to create the child ValueObject.
+ if (ValueObjectSP synth_valobj_sp = GetSyntheticValue())
+ return synth_valobj_sp->GetChildAtIndex(idx, /*can_create=*/true).get();
+
+ return nullptr;
+}
+
+bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr,
+ std::string &destination,
+ lldb::LanguageType lang) {
+ return GetSummaryAsCString(summary_ptr, destination,
+ TypeSummaryOptions().SetLanguage(lang));
+}
+
+bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr,
+ std::string &destination,
+ const TypeSummaryOptions &options) {
+ destination.clear();
+
+ // If we have a forcefully completed type, don't try and show a summary from
+ // a valid summary string or function because the type is not complete and
+ // no member variables or member functions will be available.
+ if (GetCompilerType().IsForcefullyCompleted()) {
+ destination = "<incomplete type>";
+ return true;
+ }
+
+ // ideally we would like to bail out if passing NULL, but if we do so we end
+ // up not providing the summary for function pointers anymore
+ if (/*summary_ptr == NULL ||*/ m_flags.m_is_getting_summary)
+ return false;
+
+ m_flags.m_is_getting_summary = true;
+
+ TypeSummaryOptions actual_options(options);
+
+ if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown)
+ actual_options.SetLanguage(GetPreferredDisplayLanguage());
+
+ // this is a hot path in code and we prefer to avoid setting this string all
+ // too often also clearing out other information that we might care to see in
+ // a crash log. might be useful in very specific situations though.
+ /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s.
+ Summary provider's description is %s",
+ GetTypeName().GetCString(),
+ GetName().GetCString(),
+ summary_ptr->GetDescription().c_str());*/
+
+ if (UpdateValueIfNeeded(false) && summary_ptr) {
+ if (HasSyntheticValue())
+ m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on
+ // the synthetic children being
+ // up-to-date (e.g. ${svar%#})
+ summary_ptr->FormatObject(this, destination, actual_options);
+ }
+ m_flags.m_is_getting_summary = false;
+ return !destination.empty();
+}
+
+const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) {
+ if (UpdateValueIfNeeded(true) && m_summary_str.empty()) {
+ TypeSummaryOptions summary_options;
+ summary_options.SetLanguage(lang);
+ GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str,
+ summary_options);
+ }
+ if (m_summary_str.empty())
+ return nullptr;
+ return m_summary_str.c_str();
+}
+
+bool ValueObject::GetSummaryAsCString(std::string &destination,
+ const TypeSummaryOptions &options) {
+ return GetSummaryAsCString(GetSummaryFormat().get(), destination, options);
+}
+
+bool ValueObject::IsCStringContainer(bool check_pointer) {
+ CompilerType pointee_or_element_compiler_type;
+ const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type));
+ bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
+ pointee_or_element_compiler_type.IsCharType());
+ if (!is_char_arr_ptr)
+ return false;
+ if (!check_pointer)
+ return true;
+ if (type_flags.Test(eTypeIsArray))
+ return true;
+ addr_t cstr_address = LLDB_INVALID_ADDRESS;
+ AddressType cstr_address_type = eAddressTypeInvalid;
+ cstr_address = GetPointerValue(&cstr_address_type);
+ return (cstr_address != LLDB_INVALID_ADDRESS);
+}
+
+size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx,
+ uint32_t item_count) {
+ CompilerType pointee_or_element_compiler_type;
+ const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type);
+ const bool is_pointer_type = type_info & eTypeIsPointer;
+ const bool is_array_type = type_info & eTypeIsArray;
+ if (!(is_pointer_type || is_array_type))
+ return 0;
+
+ if (item_count == 0)
+ return 0;
+
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+
+ std::optional<uint64_t> item_type_size =
+ pointee_or_element_compiler_type.GetByteSize(
+ exe_ctx.GetBestExecutionContextScope());
+ if (!item_type_size)
+ return 0;
+ const uint64_t bytes = item_count * *item_type_size;
+ const uint64_t offset = item_idx * *item_type_size;
+
+ if (item_idx == 0 && item_count == 1) // simply a deref
+ {
+ if (is_pointer_type) {
+ Status error;
+ ValueObjectSP pointee_sp = Dereference(error);
+ if (error.Fail() || pointee_sp.get() == nullptr)
+ return 0;
+ return pointee_sp->GetData(data, error);
+ } else {
+ ValueObjectSP child_sp = GetChildAtIndex(0);
+ if (child_sp.get() == nullptr)
+ return 0;
+ Status error;
+ return child_sp->GetData(data, error);
+ }
+ return true;
+ } else /* (items > 1) */
+ {
+ Status error;
+ lldb_private::DataBufferHeap *heap_buf_ptr = nullptr;
+ lldb::DataBufferSP data_sp(heap_buf_ptr =
+ new lldb_private::DataBufferHeap());
+
+ AddressType addr_type;
+ lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type)
+ : GetAddressOf(true, &addr_type);
+
+ switch (addr_type) {
+ case eAddressTypeFile: {
+ ModuleSP module_sp(GetModule());
+ if (module_sp) {
+ addr = addr + offset;
+ Address so_addr;
+ module_sp->ResolveFileAddress(addr, so_addr);
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ Target *target = exe_ctx.GetTargetPtr();
+ if (target) {
+ heap_buf_ptr->SetByteSize(bytes);
+ size_t bytes_read = target->ReadMemory(
+ so_addr, heap_buf_ptr->GetBytes(), bytes, error, true);
+ if (error.Success()) {
+ data.SetData(data_sp);
+ return bytes_read;
+ }
+ }
+ }
+ } break;
+ case eAddressTypeLoad: {
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ Process *process = exe_ctx.GetProcessPtr();
+ if (process) {
+ heap_buf_ptr->SetByteSize(bytes);
+ size_t bytes_read = process->ReadMemory(
+ addr + offset, heap_buf_ptr->GetBytes(), bytes, error);
+ if (error.Success() || bytes_read > 0) {
+ data.SetData(data_sp);
+ return bytes_read;
+ }
+ }
+ } break;
+ case eAddressTypeHost: {
+ auto max_bytes =
+ GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope());
+ if (max_bytes && *max_bytes > offset) {
+ size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes);
+ addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
+ if (addr == 0 || addr == LLDB_INVALID_ADDRESS)
+ break;
+ heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read);
+ data.SetData(data_sp);
+ return bytes_read;
+ }
+ } break;
+ case eAddressTypeInvalid:
+ break;
+ }
+ }
+ return 0;
+}
+
+uint64_t ValueObject::GetData(DataExtractor &data, Status &error) {
+ UpdateValueIfNeeded(false);
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get());
+ if (error.Fail()) {
+ if (m_data.GetByteSize()) {
+ data = m_data;
+ error.Clear();
+ return data.GetByteSize();
+ } else {
+ return 0;
+ }
+ }
+ data.SetAddressByteSize(m_data.GetAddressByteSize());
+ data.SetByteOrder(m_data.GetByteOrder());
+ return data.GetByteSize();
+}
+
+bool ValueObject::SetData(DataExtractor &data, Status &error) {
+ error.Clear();
+ // Make sure our value is up to date first so that our location and location
+ // type is valid.
+ if (!UpdateValueIfNeeded(false)) {
+ error.SetErrorString("unable to read value");
+ return false;
+ }
+
+ uint64_t count = 0;
+ const Encoding encoding = GetCompilerType().GetEncoding(count);
+
+ const size_t byte_size = GetByteSize().value_or(0);
+
+ Value::ValueType value_type = m_value.GetValueType();
+
+ switch (value_type) {
+ case Value::ValueType::Invalid:
+ error.SetErrorString("invalid location");
+ return false;
+ case Value::ValueType::Scalar: {
+ Status set_error =
+ m_value.GetScalar().SetValueFromData(data, encoding, byte_size);
+
+ if (!set_error.Success()) {
+ error.SetErrorStringWithFormat("unable to set scalar value: %s",
+ set_error.AsCString());
+ return false;
+ }
+ } break;
+ case Value::ValueType::LoadAddress: {
+ // If it is a load address, then the scalar value is the storage location
+ // of the data, and we have to shove this value down to that load location.
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ Process *process = exe_ctx.GetProcessPtr();
+ if (process) {
+ addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
+ size_t bytes_written = process->WriteMemory(
+ target_addr, data.GetDataStart(), byte_size, error);
+ if (!error.Success())
+ return false;
+ if (bytes_written != byte_size) {
+ error.SetErrorString("unable to write value to memory");
+ return false;
+ }
+ }
+ } break;
+ case Value::ValueType::HostAddress: {
+ // If it is a host address, then we stuff the scalar as a DataBuffer into
+ // the Value's data.
+ DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
+ m_data.SetData(buffer_sp, 0);
+ data.CopyByteOrderedData(0, byte_size,
+ const_cast<uint8_t *>(m_data.GetDataStart()),
+ byte_size, m_data.GetByteOrder());
+ m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
+ } break;
+ case Value::ValueType::FileAddress:
+ break;
+ }
+
+ // If we have reached this point, then we have successfully changed the
+ // value.
+ SetNeedsUpdate();
+ return true;
+}
+
+static bool CopyStringDataToBufferSP(const StreamString &source,
+ lldb::WritableDataBufferSP &destination) {
+ llvm::StringRef src = source.GetString();
+ src = src.rtrim('\0');
+ destination = std::make_shared<DataBufferHeap>(src.size(), 0);
+ memcpy(destination->GetBytes(), src.data(), src.size());
+ return true;
+}
+
+std::pair<size_t, bool>
+ValueObject::ReadPointedString(lldb::WritableDataBufferSP &buffer_sp,
+ Status &error, bool honor_array) {
+ bool was_capped = false;
+ StreamString s;
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ Target *target = exe_ctx.GetTargetPtr();
+
+ if (!target) {
+ s << "<no target to read from>";
+ error.SetErrorString("no target to read from");
+ CopyStringDataToBufferSP(s, buffer_sp);
+ return {0, was_capped};
+ }
+
+ const auto max_length = target->GetMaximumSizeOfStringSummary();
+
+ size_t bytes_read = 0;
+ size_t total_bytes_read = 0;
+
+ CompilerType compiler_type = GetCompilerType();
+ CompilerType elem_or_pointee_compiler_type;
+ const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type));
+ if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
+ elem_or_pointee_compiler_type.IsCharType()) {
+ addr_t cstr_address = LLDB_INVALID_ADDRESS;
+ AddressType cstr_address_type = eAddressTypeInvalid;
+
+ size_t cstr_len = 0;
+ bool capped_data = false;
+ const bool is_array = type_flags.Test(eTypeIsArray);
+ if (is_array) {
+ // We have an array
+ uint64_t array_size = 0;
+ if (compiler_type.IsArrayType(nullptr, &array_size)) {
+ cstr_len = array_size;
+ if (cstr_len > max_length) {
+ capped_data = true;
+ cstr_len = max_length;
+ }
+ }
+ cstr_address = GetAddressOf(true, &cstr_address_type);
+ } else {
+ // We have a pointer
+ cstr_address = GetPointerValue(&cstr_address_type);
+ }
+
+ if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) {
+ if (cstr_address_type == eAddressTypeHost && is_array) {
+ const char *cstr = GetDataExtractor().PeekCStr(0);
+ if (cstr == nullptr) {
+ s << "<invalid address>";
+ error.SetErrorString("invalid address");
+ CopyStringDataToBufferSP(s, buffer_sp);
+ return {0, was_capped};
+ }
+ s << llvm::StringRef(cstr, cstr_len);
+ CopyStringDataToBufferSP(s, buffer_sp);
+ return {cstr_len, was_capped};
+ } else {
+ s << "<invalid address>";
+ error.SetErrorString("invalid address");
+ CopyStringDataToBufferSP(s, buffer_sp);
+ return {0, was_capped};
+ }
+ }
+
+ Address cstr_so_addr(cstr_address);
+ DataExtractor data;
+ if (cstr_len > 0 && honor_array) {
+ // I am using GetPointeeData() here to abstract the fact that some
+ // ValueObjects are actually frozen pointers in the host but the pointed-
+ // to data lives in the debuggee, and GetPointeeData() automatically
+ // takes care of this
+ GetPointeeData(data, 0, cstr_len);
+
+ if ((bytes_read = data.GetByteSize()) > 0) {
+ total_bytes_read = bytes_read;
+ for (size_t offset = 0; offset < bytes_read; offset++)
+ s.Printf("%c", *data.PeekData(offset, 1));
+ if (capped_data)
+ was_capped = true;
+ }
+ } else {
+ cstr_len = max_length;
+ const size_t k_max_buf_size = 64;
+
+ size_t offset = 0;
+
+ int cstr_len_displayed = -1;
+ bool capped_cstr = false;
+ // I am using GetPointeeData() here to abstract the fact that some
+ // ValueObjects are actually frozen pointers in the host but the pointed-
+ // to data lives in the debuggee, and GetPointeeData() automatically
+ // takes care of this
+ while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) {
+ total_bytes_read += bytes_read;
+ const char *cstr = data.PeekCStr(0);
+ size_t len = strnlen(cstr, k_max_buf_size);
+ if (cstr_len_displayed < 0)
+ cstr_len_displayed = len;
+
+ if (len == 0)
+ break;
+ cstr_len_displayed += len;
+ if (len > bytes_read)
+ len = bytes_read;
+ if (len > cstr_len)
+ len = cstr_len;
+
+ for (size_t offset = 0; offset < bytes_read; offset++)
+ s.Printf("%c", *data.PeekData(offset, 1));
+
+ if (len < k_max_buf_size)
+ break;
+
+ if (len >= cstr_len) {
+ capped_cstr = true;
+ break;
+ }
+
+ cstr_len -= len;
+ offset += len;
+ }
+
+ if (cstr_len_displayed >= 0) {
+ if (capped_cstr)
+ was_capped = true;
+ }
+ }
+ } else {
+ error.SetErrorString("not a string object");
+ s << "<not a string object>";
+ }
+ CopyStringDataToBufferSP(s, buffer_sp);
+ return {total_bytes_read, was_capped};
+}
+
+llvm::Expected<std::string> ValueObject::GetObjectDescription() {
+ if (!UpdateValueIfNeeded(true))
+ return llvm::createStringError("could not update value");
+
+ // Return cached value.
+ if (!m_object_desc_str.empty())
+ return m_object_desc_str;
+
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ Process *process = exe_ctx.GetProcessPtr();
+ if (!process)
+ return llvm::createStringError("no process");
+
+ // Returns the object description produced by one language runtime.
+ auto get_object_description =
+ [&](LanguageType language) -> llvm::Expected<std::string> {
+ if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) {
+ StreamString s;
+ if (llvm::Error error = runtime->GetObjectDescription(s, *this))
+ return error;
+ m_object_desc_str = s.GetString();
+ return m_object_desc_str;
+ }
+ return llvm::createStringError("no native language runtime");
+ };
+
+ // Try the native language runtime first.
+ LanguageType native_language = GetObjectRuntimeLanguage();
+ llvm::Expected<std::string> desc = get_object_description(native_language);
+ if (desc)
+ return desc;
+
+ // Try the Objective-C language runtime. This fallback is necessary
+ // for Objective-C++ and mixed Objective-C / C++ programs.
+ if (Language::LanguageIsCFamily(native_language)) {
+ // We're going to try again, so let's drop the first error.
+ llvm::consumeError(desc.takeError());
+ return get_object_description(eLanguageTypeObjC);
+ }
+ return desc;
+}
+
+bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format,
+ std::string &destination) {
+ if (UpdateValueIfNeeded(false))
+ return format.FormatObject(this, destination);
+ else
+ return false;
+}
+
+bool ValueObject::GetValueAsCString(lldb::Format format,
+ std::string &destination) {
+ return GetValueAsCString(TypeFormatImpl_Format(format), destination);
+}
+
+const char *ValueObject::GetValueAsCString() {
+ if (UpdateValueIfNeeded(true)) {
+ lldb::TypeFormatImplSP format_sp;
+ lldb::Format my_format = GetFormat();
+ if (my_format == lldb::eFormatDefault) {
+ if (m_type_format_sp)
+ format_sp = m_type_format_sp;
+ else {
+ if (m_flags.m_is_bitfield_for_scalar)
+ my_format = eFormatUnsigned;
+ else {
+ if (m_value.GetContextType() == Value::ContextType::RegisterInfo) {
+ const RegisterInfo *reg_info = m_value.GetRegisterInfo();
+ if (reg_info)
+ my_format = reg_info->format;
+ } else {
+ my_format = GetValue().GetCompilerType().GetFormat();
+ }
+ }
+ }
+ }
+ if (my_format != m_last_format || m_value_str.empty()) {
+ m_last_format = my_format;
+ if (!format_sp)
+ format_sp = std::make_shared<TypeFormatImpl_Format>(my_format);
+ if (GetValueAsCString(*format_sp.get(), m_value_str)) {
+ if (!m_flags.m_value_did_change && m_flags.m_old_value_valid) {
+ // The value was gotten successfully, so we consider the value as
+ // changed if the value string differs
+ SetValueDidChange(m_old_value_str != m_value_str);
+ }
+ }
+ }
+ }
+ if (m_value_str.empty())
+ return nullptr;
+ return m_value_str.c_str();
+}
+
+// if > 8bytes, 0 is returned. this method should mostly be used to read
+// address values out of pointers
+uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) {
+ // If our byte size is zero this is an aggregate type that has children
+ if (CanProvideValue()) {
+ Scalar scalar;
+ if (ResolveValue(scalar)) {
+ if (success)
+ *success = true;
+ scalar.MakeUnsigned();
+ return scalar.ULongLong(fail_value);
+ }
+ // fallthrough, otherwise...
+ }
+
+ if (success)
+ *success = false;
+ return fail_value;
+}
+
+int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) {
+ // If our byte size is zero this is an aggregate type that has children
+ if (CanProvideValue()) {
+ Scalar scalar;
+ if (ResolveValue(scalar)) {
+ if (success)
+ *success = true;
+ scalar.MakeSigned();
+ return scalar.SLongLong(fail_value);
+ }
+ // fallthrough, otherwise...
+ }
+
+ if (success)
+ *success = false;
+ return fail_value;
+}
+
+llvm::Expected<llvm::APSInt> ValueObject::GetValueAsAPSInt() {
+ // Make sure the type can be converted to an APSInt.
+ if (!GetCompilerType().IsInteger() &&
+ !GetCompilerType().IsScopedEnumerationType() &&
+ !GetCompilerType().IsEnumerationType() &&
+ !GetCompilerType().IsPointerType() &&
+ !GetCompilerType().IsNullPtrType() &&
+ !GetCompilerType().IsReferenceType() && !GetCompilerType().IsBoolean())
+ return llvm::make_error<llvm::StringError>(
+ "type cannot be converted to APSInt", llvm::inconvertibleErrorCode());
+
+ if (CanProvideValue()) {
+ Scalar scalar;
+ if (ResolveValue(scalar))
+ return scalar.GetAPSInt();
+ }
+
+ return llvm::make_error<llvm::StringError>(
+ "error occurred; unable to convert to APSInt",
+ llvm::inconvertibleErrorCode());
+}
+
+llvm::Expected<llvm::APFloat> ValueObject::GetValueAsAPFloat() {
+ if (!GetCompilerType().IsFloat())
+ return llvm::make_error<llvm::StringError>(
+ "type cannot be converted to APFloat", llvm::inconvertibleErrorCode());
+
+ if (CanProvideValue()) {
+ Scalar scalar;
+ if (ResolveValue(scalar))
+ return scalar.GetAPFloat();
+ }
+
+ return llvm::make_error<llvm::StringError>(
+ "error occurred; unable to convert to APFloat",
+ llvm::inconvertibleErrorCode());
+}
+
+llvm::Expected<bool> ValueObject::GetValueAsBool() {
+ CompilerType val_type = GetCompilerType();
+ if (val_type.IsInteger() || val_type.IsUnscopedEnumerationType() ||
+ val_type.IsPointerType()) {
+ auto value_or_err = GetValueAsAPSInt();
+ if (value_or_err)
+ return value_or_err->getBoolValue();
+ }
+ if (val_type.IsFloat()) {
+ auto value_or_err = GetValueAsAPFloat();
+ if (value_or_err)
+ return value_or_err->isNonZero();
+ }
+ if (val_type.IsArrayType())
+ return GetAddressOf() != 0;
+
+ return llvm::make_error<llvm::StringError>("type cannot be converted to bool",
+ llvm::inconvertibleErrorCode());
+}
+
+void ValueObject::SetValueFromInteger(const llvm::APInt &value, Status &error) {
+ // Verify the current object is an integer object
+ CompilerType val_type = GetCompilerType();
+ if (!val_type.IsInteger() && !val_type.IsUnscopedEnumerationType() &&
+ !val_type.IsFloat() && !val_type.IsPointerType() &&
+ !val_type.IsScalarType()) {
+ error.SetErrorString("current value object is not an integer objet");
+ return;
+ }
+
+ // Verify the current object is not actually associated with any program
+ // variable.
+ if (GetVariable()) {
+ error.SetErrorString("current value object is not a temporary object");
+ return;
+ }
+
+ // Verify the proposed new value is the right size.
+ lldb::TargetSP target = GetTargetSP();
+ uint64_t byte_size = 0;
+ if (auto temp = GetCompilerType().GetByteSize(target.get()))
+ byte_size = temp.value();
+ if (value.getBitWidth() != byte_size * CHAR_BIT) {
+ error.SetErrorString(
+ "illegal argument: new value should be of the same size");
+ return;
+ }
+
+ lldb::DataExtractorSP data_sp;
+ data_sp->SetData(value.getRawData(), byte_size,
+ target->GetArchitecture().GetByteOrder());
+ data_sp->SetAddressByteSize(
+ static_cast<uint8_t>(target->GetArchitecture().GetAddressByteSize()));
+ SetData(*data_sp, error);
+}
+
+void ValueObject::SetValueFromInteger(lldb::ValueObjectSP new_val_sp,
+ Status &error) {
+ // Verify the current object is an integer object
+ CompilerType val_type = GetCompilerType();
+ if (!val_type.IsInteger() && !val_type.IsUnscopedEnumerationType() &&
+ !val_type.IsFloat() && !val_type.IsPointerType() &&
+ !val_type.IsScalarType()) {
+ error.SetErrorString("current value object is not an integer objet");
+ return;
+ }
+
+ // Verify the current object is not actually associated with any program
+ // variable.
+ if (GetVariable()) {
+ error.SetErrorString("current value object is not a temporary object");
+ return;
+ }
+
+ // Verify the proposed new value is the right type.
+ CompilerType new_val_type = new_val_sp->GetCompilerType();
+ if (!new_val_type.IsInteger() && !new_val_type.IsFloat() &&
+ !new_val_type.IsPointerType()) {
+ error.SetErrorString(
+ "illegal argument: new value should be of the same size");
+ return;
+ }
+
+ if (new_val_type.IsInteger()) {
+ auto value_or_err = new_val_sp->GetValueAsAPSInt();
+ if (value_or_err)
+ SetValueFromInteger(*value_or_err, error);
+ else
+ error.SetErrorString("error getting APSInt from new_val_sp");
+ } else if (new_val_type.IsFloat()) {
+ auto value_or_err = new_val_sp->GetValueAsAPFloat();
+ if (value_or_err)
+ SetValueFromInteger(value_or_err->bitcastToAPInt(), error);
+ else
+ error.SetErrorString("error getting APFloat from new_val_sp");
+ } else if (new_val_type.IsPointerType()) {
+ bool success = true;
+ uint64_t int_val = new_val_sp->GetValueAsUnsigned(0, &success);
+ if (success) {
+ lldb::TargetSP target = GetTargetSP();
+ uint64_t num_bits = 0;
+ if (auto temp = new_val_sp->GetCompilerType().GetBitSize(target.get()))
+ num_bits = temp.value();
+ SetValueFromInteger(llvm::APInt(num_bits, int_val), error);
+ } else
+ error.SetErrorString("error converting new_val_sp to integer");
+ }
+}
+
+// if any more "special cases" are added to
+// ValueObject::DumpPrintableRepresentation() please keep this call up to date
+// by returning true for your new special cases. We will eventually move to
+// checking this call result before trying to display special cases
+bool ValueObject::HasSpecialPrintableRepresentation(
+ ValueObjectRepresentationStyle val_obj_display, Format custom_format) {
+ Flags flags(GetTypeInfo());
+ if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
+ val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) {
+ if (IsCStringContainer(true) &&
+ (custom_format == eFormatCString || custom_format == eFormatCharArray ||
+ custom_format == eFormatChar || custom_format == eFormatVectorOfChar))
+ return true;
+
+ if (flags.Test(eTypeIsArray)) {
+ if ((custom_format == eFormatBytes) ||
+ (custom_format == eFormatBytesWithASCII))
+ return true;
+
+ if ((custom_format == eFormatVectorOfChar) ||
+ (custom_format == eFormatVectorOfFloat32) ||
+ (custom_format == eFormatVectorOfFloat64) ||
+ (custom_format == eFormatVectorOfSInt16) ||
+ (custom_format == eFormatVectorOfSInt32) ||
+ (custom_format == eFormatVectorOfSInt64) ||
+ (custom_format == eFormatVectorOfSInt8) ||
+ (custom_format == eFormatVectorOfUInt128) ||
+ (custom_format == eFormatVectorOfUInt16) ||
+ (custom_format == eFormatVectorOfUInt32) ||
+ (custom_format == eFormatVectorOfUInt64) ||
+ (custom_format == eFormatVectorOfUInt8))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool ValueObject::DumpPrintableRepresentation(
+ Stream &s, ValueObjectRepresentationStyle val_obj_display,
+ Format custom_format, PrintableRepresentationSpecialCases special,
+ bool do_dump_error) {
+
+ // If the ValueObject has an error, we might end up dumping the type, which
+ // is useful, but if we don't even have a type, then don't examine the object
+ // further as that's not meaningful, only the error is.
+ if (m_error.Fail() && !GetCompilerType().IsValid()) {
+ if (do_dump_error)
+ s.Printf("<%s>", m_error.AsCString());
+ return false;
+ }
+
+ Flags flags(GetTypeInfo());
+
+ bool allow_special =
+ (special == ValueObject::PrintableRepresentationSpecialCases::eAllow);
+ const bool only_special = false;
+
+ if (allow_special) {
+ if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
+ val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) {
+ // when being asked to get a printable display an array or pointer type
+ // directly, try to "do the right thing"
+
+ if (IsCStringContainer(true) &&
+ (custom_format == eFormatCString ||
+ custom_format == eFormatCharArray || custom_format == eFormatChar ||
+ custom_format ==
+ eFormatVectorOfChar)) // print char[] & char* directly
+ {
+ Status error;
+ lldb::WritableDataBufferSP buffer_sp;
+ std::pair<size_t, bool> read_string =
+ ReadPointedString(buffer_sp, error,
+ (custom_format == eFormatVectorOfChar) ||
+ (custom_format == eFormatCharArray));
+ lldb_private::formatters::StringPrinter::
+ ReadBufferAndDumpToStreamOptions options(*this);
+ options.SetData(DataExtractor(
+ buffer_sp, lldb::eByteOrderInvalid,
+ 8)); // none of this matters for a string - pass some defaults
+ options.SetStream(&s);
+ options.SetPrefixToken(nullptr);
+ options.SetQuote('"');
+ options.SetSourceSize(buffer_sp->GetByteSize());
+ options.SetIsTruncated(read_string.second);
+ options.SetBinaryZeroIsTerminator(custom_format != eFormatVectorOfChar);
+ formatters::StringPrinter::ReadBufferAndDumpToStream<
+ lldb_private::formatters::StringPrinter::StringElementType::ASCII>(
+ options);
+ return !error.Fail();
+ }
+
+ if (custom_format == eFormatEnum)
+ return false;
+
+ // this only works for arrays, because I have no way to know when the
+ // pointed memory ends, and no special \0 end of data marker
+ if (flags.Test(eTypeIsArray)) {
+ if ((custom_format == eFormatBytes) ||
+ (custom_format == eFormatBytesWithASCII)) {
+ const size_t count = GetNumChildrenIgnoringErrors();
+
+ s << '[';
+ for (size_t low = 0; low < count; low++) {
+
+ if (low)
+ s << ',';
+
+ ValueObjectSP child = GetChildAtIndex(low);
+ if (!child.get()) {
+ s << "<invalid child>";
+ continue;
+ }
+ child->DumpPrintableRepresentation(
+ s, ValueObject::eValueObjectRepresentationStyleValue,
+ custom_format);
+ }
+
+ s << ']';
+
+ return true;
+ }
+
+ if ((custom_format == eFormatVectorOfChar) ||
+ (custom_format == eFormatVectorOfFloat32) ||
+ (custom_format == eFormatVectorOfFloat64) ||
+ (custom_format == eFormatVectorOfSInt16) ||
+ (custom_format == eFormatVectorOfSInt32) ||
+ (custom_format == eFormatVectorOfSInt64) ||
+ (custom_format == eFormatVectorOfSInt8) ||
+ (custom_format == eFormatVectorOfUInt128) ||
+ (custom_format == eFormatVectorOfUInt16) ||
+ (custom_format == eFormatVectorOfUInt32) ||
+ (custom_format == eFormatVectorOfUInt64) ||
+ (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes
+ // with ASCII or any vector
+ // format should be printed
+ // directly
+ {
+ const size_t count = GetNumChildrenIgnoringErrors();
+
+ Format format = FormatManager::GetSingleItemFormat(custom_format);
+
+ s << '[';
+ for (size_t low = 0; low < count; low++) {
+
+ if (low)
+ s << ',';
+
+ ValueObjectSP child = GetChildAtIndex(low);
+ if (!child.get()) {
+ s << "<invalid child>";
+ continue;
+ }
+ child->DumpPrintableRepresentation(
+ s, ValueObject::eValueObjectRepresentationStyleValue, format);
+ }
+
+ s << ']';
+
+ return true;
+ }
+ }
+
+ if ((custom_format == eFormatBoolean) ||
+ (custom_format == eFormatBinary) || (custom_format == eFormatChar) ||
+ (custom_format == eFormatCharPrintable) ||
+ (custom_format == eFormatComplexFloat) ||
+ (custom_format == eFormatDecimal) || (custom_format == eFormatHex) ||
+ (custom_format == eFormatHexUppercase) ||
+ (custom_format == eFormatFloat) || (custom_format == eFormatOctal) ||
+ (custom_format == eFormatOSType) ||
+ (custom_format == eFormatUnicode16) ||
+ (custom_format == eFormatUnicode32) ||
+ (custom_format == eFormatUnsigned) ||
+ (custom_format == eFormatPointer) ||
+ (custom_format == eFormatComplexInteger) ||
+ (custom_format == eFormatComplex) ||
+ (custom_format == eFormatDefault)) // use the [] operator
+ return false;
+ }
+ }
+
+ if (only_special)
+ return false;
+
+ bool var_success = false;
+
+ {
+ llvm::StringRef str;
+
+ // this is a local stream that we are using to ensure that the data pointed
+ // to by cstr survives long enough for us to copy it to its destination -
+ // it is necessary to have this temporary storage area for cases where our
+ // desired output is not backed by some other longer-term storage
+ StreamString strm;
+
+ if (custom_format != eFormatInvalid)
+ SetFormat(custom_format);
+
+ switch (val_obj_display) {
+ case eValueObjectRepresentationStyleValue:
+ str = GetValueAsCString();
+ break;
+
+ case eValueObjectRepresentationStyleSummary:
+ str = GetSummaryAsCString();
+ break;
+
+ case eValueObjectRepresentationStyleLanguageSpecific: {
+ llvm::Expected<std::string> desc = GetObjectDescription();
+ if (!desc) {
+ strm << "error: " << toString(desc.takeError());
+ str = strm.GetString();
+ } else {
+ strm << *desc;
+ str = strm.GetString();
+ }
+ } break;
+
+ case eValueObjectRepresentationStyleLocation:
+ str = GetLocationAsCString();
+ break;
+
+ case eValueObjectRepresentationStyleChildrenCount:
+ strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildrenIgnoringErrors());
+ str = strm.GetString();
+ break;
+
+ case eValueObjectRepresentationStyleType:
+ str = GetTypeName().GetStringRef();
+ break;
+
+ case eValueObjectRepresentationStyleName:
+ str = GetName().GetStringRef();
+ break;
+
+ case eValueObjectRepresentationStyleExpressionPath:
+ GetExpressionPath(strm);
+ str = strm.GetString();
+ break;
+ }
+
+ // If the requested display style produced no output, try falling back to
+ // alternative presentations.
+ if (str.empty()) {
+ if (val_obj_display == eValueObjectRepresentationStyleValue)
+ str = GetSummaryAsCString();
+ else if (val_obj_display == eValueObjectRepresentationStyleSummary) {
+ if (!CanProvideValue()) {
+ strm.Printf("%s @ %s", GetTypeName().AsCString(),
+ GetLocationAsCString());
+ str = strm.GetString();
+ } else
+ str = GetValueAsCString();
+ }
+ }
+
+ if (!str.empty())
+ s << str;
+ else {
+ // We checked for errors at the start, but do it again here in case
+ // realizing the value for dumping produced an error.
+ if (m_error.Fail()) {
+ if (do_dump_error)
+ s.Printf("<%s>", m_error.AsCString());
+ else
+ return false;
+ } else if (val_obj_display == eValueObjectRepresentationStyleSummary)
+ s.PutCString("<no summary available>");
+ else if (val_obj_display == eValueObjectRepresentationStyleValue)
+ s.PutCString("<no value available>");
+ else if (val_obj_display ==
+ eValueObjectRepresentationStyleLanguageSpecific)
+ s.PutCString("<not a valid Objective-C object>"); // edit this if we
+ // have other runtimes
+ // that support a
+ // description
+ else
+ s.PutCString("<no printable representation>");
+ }
+
+ // we should only return false here if we could not do *anything* even if
+ // we have an error message as output, that's a success from our callers'
+ // perspective, so return true
+ var_success = true;
+
+ if (custom_format != eFormatInvalid)
+ SetFormat(eFormatDefault);
+ }
+
+ return var_success;
+}
+
+addr_t ValueObject::GetAddressOf(bool scalar_is_load_address,
+ AddressType *address_type) {
+ // Can't take address of a bitfield
+ if (IsBitfield())
+ return LLDB_INVALID_ADDRESS;
+
+ if (!UpdateValueIfNeeded(false))
+ return LLDB_INVALID_ADDRESS;
+
+ switch (m_value.GetValueType()) {
+ case Value::ValueType::Invalid:
+ return LLDB_INVALID_ADDRESS;
+ case Value::ValueType::Scalar:
+ if (scalar_is_load_address) {
+ if (address_type)
+ *address_type = eAddressTypeLoad;
+ return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
+ }
+ break;
+
+ case Value::ValueType::LoadAddress:
+ case Value::ValueType::FileAddress: {
+ if (address_type)
+ *address_type = m_value.GetValueAddressType();
+ return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
+ } break;
+ case Value::ValueType::HostAddress: {
+ if (address_type)
+ *address_type = m_value.GetValueAddressType();
+ return LLDB_INVALID_ADDRESS;
+ } break;
+ }
+ if (address_type)
+ *address_type = eAddressTypeInvalid;
+ return LLDB_INVALID_ADDRESS;
+}
+
+addr_t ValueObject::GetPointerValue(AddressType *address_type) {
+ addr_t address = LLDB_INVALID_ADDRESS;
+ if (address_type)
+ *address_type = eAddressTypeInvalid;
+
+ if (!UpdateValueIfNeeded(false))
+ return address;
+
+ switch (m_value.GetValueType()) {
+ case Value::ValueType::Invalid:
+ return LLDB_INVALID_ADDRESS;
+ case Value::ValueType::Scalar:
+ address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
+ break;
+
+ case Value::ValueType::HostAddress:
+ case Value::ValueType::LoadAddress:
+ case Value::ValueType::FileAddress: {
+ lldb::offset_t data_offset = 0;
+ address = m_data.GetAddress(&data_offset);
+ } break;
+ }
+
+ if (address_type)
+ *address_type = GetAddressTypeOfChildren();
+
+ return address;
+}
+
+bool ValueObject::SetValueFromCString(const char *value_str, Status &error) {
+ error.Clear();
+ // Make sure our value is up to date first so that our location and location
+ // type is valid.
+ if (!UpdateValueIfNeeded(false)) {
+ error.SetErrorString("unable to read value");
+ return false;
+ }
+
+ uint64_t count = 0;
+ const Encoding encoding = GetCompilerType().GetEncoding(count);
+
+ const size_t byte_size = GetByteSize().value_or(0);
+
+ Value::ValueType value_type = m_value.GetValueType();
+
+ if (value_type == Value::ValueType::Scalar) {
+ // If the value is already a scalar, then let the scalar change itself:
+ m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size);
+ } else if (byte_size <= 16) {
+ // If the value fits in a scalar, then make a new scalar and again let the
+ // scalar code do the conversion, then figure out where to put the new
+ // value.
+ Scalar new_scalar;
+ error = new_scalar.SetValueFromCString(value_str, encoding, byte_size);
+ if (error.Success()) {
+ switch (value_type) {
+ case Value::ValueType::LoadAddress: {
+ // If it is a load address, then the scalar value is the storage
+ // location of the data, and we have to shove this value down to that
+ // load location.
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ Process *process = exe_ctx.GetProcessPtr();
+ if (process) {
+ addr_t target_addr =
+ m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
+ size_t bytes_written = process->WriteScalarToMemory(
+ target_addr, new_scalar, byte_size, error);
+ if (!error.Success())
+ return false;
+ if (bytes_written != byte_size) {
+ error.SetErrorString("unable to write value to memory");
+ return false;
+ }
+ }
+ } break;
+ case Value::ValueType::HostAddress: {
+ // If it is a host address, then we stuff the scalar as a DataBuffer
+ // into the Value's data.
+ DataExtractor new_data;
+ new_data.SetByteOrder(m_data.GetByteOrder());
+
+ DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
+ m_data.SetData(buffer_sp, 0);
+ bool success = new_scalar.GetData(new_data);
+ if (success) {
+ new_data.CopyByteOrderedData(
+ 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()),
+ byte_size, m_data.GetByteOrder());
+ }
+ m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
+
+ } break;
+ case Value::ValueType::Invalid:
+ error.SetErrorString("invalid location");
+ return false;
+ case Value::ValueType::FileAddress:
+ case Value::ValueType::Scalar:
+ break;
+ }
+ } else {
+ return false;
+ }
+ } else {
+ // We don't support setting things bigger than a scalar at present.
+ error.SetErrorString("unable to write aggregate data type");
+ return false;
+ }
+
+ // If we have reached this point, then we have successfully changed the
+ // value.
+ SetNeedsUpdate();
+ return true;
+}
+
+bool ValueObject::GetDeclaration(Declaration &decl) {
+ decl.Clear();
+ return false;
+}
+
+void ValueObject::AddSyntheticChild(ConstString key,
+ ValueObject *valobj) {
+ m_synthetic_children[key] = valobj;
+}
+
+ValueObjectSP ValueObject::GetSyntheticChild(ConstString key) const {
+ ValueObjectSP synthetic_child_sp;
+ std::map<ConstString, ValueObject *>::const_iterator pos =
+ m_synthetic_children.find(key);
+ if (pos != m_synthetic_children.end())
+ synthetic_child_sp = pos->second->GetSP();
+ return synthetic_child_sp;
+}
+
+bool ValueObject::IsPossibleDynamicType() {
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ Process *process = exe_ctx.GetProcessPtr();
+ if (process)
+ return process->IsPossibleDynamicValue(*this);
+ else
+ return GetCompilerType().IsPossibleDynamicType(nullptr, true, true);
+}
+
+bool ValueObject::IsRuntimeSupportValue() {
+ Process *process(GetProcessSP().get());
+ if (!process)
+ return false;
+
+ // We trust that the compiler did the right thing and marked runtime support
+ // values as artificial.
+ if (!GetVariable() || !GetVariable()->IsArtificial())
+ return false;
+
+ if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage()))
+ if (runtime->IsAllowedRuntimeValue(GetName()))
+ return false;
+
+ return true;
+}
+
+bool ValueObject::IsNilReference() {
+ if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
+ return language->IsNilReference(*this);
+ }
+ return false;
+}
+
+bool ValueObject::IsUninitializedReference() {
+ if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) {
+ return language->IsUninitializedReference(*this);
+ }
+ return false;
+}
+
+// This allows you to create an array member using and index that doesn't not
+// fall in the normal bounds of the array. Many times structure can be defined
+// as: struct Collection {
+// uint32_t item_count;
+// Item item_array[0];
+// };
+// The size of the "item_array" is 1, but many times in practice there are more
+// items in "item_array".
+
+ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index,
+ bool can_create) {
+ ValueObjectSP synthetic_child_sp;
+ if (IsPointerType() || IsArrayType()) {
+ std::string index_str = llvm::formatv("[{0}]", index);
+ ConstString index_const_str(index_str);
+ // Check if we have already created a synthetic array member in this valid
+ // object. If we have we will re-use it.
+ synthetic_child_sp = GetSyntheticChild(index_const_str);
+ if (!synthetic_child_sp) {
+ ValueObject *synthetic_child;
+ // We haven't made a synthetic array member for INDEX yet, so lets make
+ // one and cache it for any future reference.
+ synthetic_child = CreateSyntheticArrayMember(index);
+
+ // Cache the value if we got one back...
+ if (synthetic_child) {
+ AddSyntheticChild(index_const_str, synthetic_child);
+ synthetic_child_sp = synthetic_child->GetSP();
+ synthetic_child_sp->SetName(ConstString(index_str));
+ synthetic_child_sp->m_flags.m_is_array_item_for_pointer = true;
+ }
+ }
+ }
+ return synthetic_child_sp;
+}
+
+ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to,
+ bool can_create) {
+ ValueObjectSP synthetic_child_sp;
+ if (IsScalarType()) {
+ std::string index_str = llvm::formatv("[{0}-{1}]", from, to);
+ ConstString index_const_str(index_str);
+ // Check if we have already created a synthetic array member in this valid
+ // object. If we have we will re-use it.
+ synthetic_child_sp = GetSyntheticChild(index_const_str);
+ if (!synthetic_child_sp) {
+ uint32_t bit_field_size = to - from + 1;
+ uint32_t bit_field_offset = from;
+ if (GetDataExtractor().GetByteOrder() == eByteOrderBig)
+ bit_field_offset =
+ GetByteSize().value_or(0) * 8 - bit_field_size - bit_field_offset;
+ // We haven't made a synthetic array member for INDEX yet, so lets make
+ // one and cache it for any future reference.
+ ValueObjectChild *synthetic_child = new ValueObjectChild(
+ *this, GetCompilerType(), index_const_str, GetByteSize().value_or(0),
+ 0, bit_field_size, bit_field_offset, false, false,
+ eAddressTypeInvalid, 0);
+
+ // Cache the value if we got one back...
+ if (synthetic_child) {
+ AddSyntheticChild(index_const_str, synthetic_child);
+ synthetic_child_sp = synthetic_child->GetSP();
+ synthetic_child_sp->SetName(ConstString(index_str));
+ synthetic_child_sp->m_flags.m_is_bitfield_for_scalar = true;
+ }
+ }
+ }
+ return synthetic_child_sp;
+}
+
+ValueObjectSP ValueObject::GetSyntheticChildAtOffset(
+ uint32_t offset, const CompilerType &type, bool can_create,
+ ConstString name_const_str) {
+
+ ValueObjectSP synthetic_child_sp;
+
+ if (name_const_str.IsEmpty()) {
+ name_const_str.SetString("@" + std::to_string(offset));
+ }
+
+ // Check if we have already created a synthetic array member in this valid
+ // object. If we have we will re-use it.
+ synthetic_child_sp = GetSyntheticChild(name_const_str);
+
+ if (synthetic_child_sp.get())
+ return synthetic_child_sp;
+
+ if (!can_create)
+ return {};
+
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ std::optional<uint64_t> size =
+ type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
+ if (!size)
+ return {};
+ ValueObjectChild *synthetic_child =
+ new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0,
+ false, false, eAddressTypeInvalid, 0);
+ if (synthetic_child) {
+ AddSyntheticChild(name_const_str, synthetic_child);
+ synthetic_child_sp = synthetic_child->GetSP();
+ synthetic_child_sp->SetName(name_const_str);
+ synthetic_child_sp->m_flags.m_is_child_at_offset = true;
+ }
+ return synthetic_child_sp;
+}
+
+ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset,
+ const CompilerType &type,
+ bool can_create,
+ ConstString name_const_str) {
+ ValueObjectSP synthetic_child_sp;
+
+ if (name_const_str.IsEmpty()) {
+ char name_str[128];
+ snprintf(name_str, sizeof(name_str), "base%s@%i",
+ type.GetTypeName().AsCString("<unknown>"), offset);
+ name_const_str.SetCString(name_str);
+ }
+
+ // Check if we have already created a synthetic array member in this valid
+ // object. If we have we will re-use it.
+ synthetic_child_sp = GetSyntheticChild(name_const_str);
+
+ if (synthetic_child_sp.get())
+ return synthetic_child_sp;
+
+ if (!can_create)
+ return {};
+
+ const bool is_base_class = true;
+
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ std::optional<uint64_t> size =
+ type.GetByteSize(exe_ctx.GetBestExecutionContextScope());
+ if (!size)
+ return {};
+ ValueObjectChild *synthetic_child =
+ new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0,
+ is_base_class, false, eAddressTypeInvalid, 0);
+ if (synthetic_child) {
+ AddSyntheticChild(name_const_str, synthetic_child);
+ synthetic_child_sp = synthetic_child->GetSP();
+ synthetic_child_sp->SetName(name_const_str);
+ }
+ return synthetic_child_sp;
+}
+
+// your expression path needs to have a leading . or -> (unless it somehow
+// "looks like" an array, in which case it has a leading [ symbol). while the [
+// is meaningful and should be shown to the user, . and -> are just parser
+// design, but by no means added information for the user.. strip them off
+static const char *SkipLeadingExpressionPathSeparators(const char *expression) {
+ if (!expression || !expression[0])
+ return expression;
+ if (expression[0] == '.')
+ return expression + 1;
+ if (expression[0] == '-' && expression[1] == '>')
+ return expression + 2;
+ return expression;
+}
+
+ValueObjectSP
+ValueObject::GetSyntheticExpressionPathChild(const char *expression,
+ bool can_create) {
+ ValueObjectSP synthetic_child_sp;
+ ConstString name_const_string(expression);
+ // Check if we have already created a synthetic array member in this valid
+ // object. If we have we will re-use it.
+ synthetic_child_sp = GetSyntheticChild(name_const_string);
+ if (!synthetic_child_sp) {
+ // We haven't made a synthetic array member for expression yet, so lets
+ // make one and cache it for any future reference.
+ synthetic_child_sp = GetValueForExpressionPath(
+ expression, nullptr, nullptr,
+ GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal(
+ GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
+ None));
+
+ // Cache the value if we got one back...
+ if (synthetic_child_sp.get()) {
+ // FIXME: this causes a "real" child to end up with its name changed to
+ // the contents of expression
+ AddSyntheticChild(name_const_string, synthetic_child_sp.get());
+ synthetic_child_sp->SetName(
+ ConstString(SkipLeadingExpressionPathSeparators(expression)));
+ }
+ }
+ return synthetic_child_sp;
+}
+
+void ValueObject::CalculateSyntheticValue() {
+ TargetSP target_sp(GetTargetSP());
+ if (target_sp && !target_sp->GetEnableSyntheticValue()) {
+ m_synthetic_value = nullptr;
+ return;
+ }
+
+ lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp);
+
+ if (!UpdateFormatsIfNeeded() && m_synthetic_value)
+ return;
+
+ if (m_synthetic_children_sp.get() == nullptr)
+ return;
+
+ if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value)
+ return;
+
+ m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp);
+}
+
+void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) {
+ if (use_dynamic == eNoDynamicValues)
+ return;
+
+ if (!m_dynamic_value && !IsDynamic()) {
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ Process *process = exe_ctx.GetProcessPtr();
+ if (process && process->IsPossibleDynamicValue(*this)) {
+ ClearDynamicTypeInformation();
+ m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic);
+ }
+ }
+}
+
+ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) {
+ if (use_dynamic == eNoDynamicValues)
+ return ValueObjectSP();
+
+ if (!IsDynamic() && m_dynamic_value == nullptr) {
+ CalculateDynamicValue(use_dynamic);
+ }
+ if (m_dynamic_value && m_dynamic_value->GetError().Success())
+ return m_dynamic_value->GetSP();
+ else
+ return ValueObjectSP();
+}
+
+ValueObjectSP ValueObject::GetSyntheticValue() {
+ CalculateSyntheticValue();
+
+ if (m_synthetic_value)
+ return m_synthetic_value->GetSP();
+ else
+ return ValueObjectSP();
+}
+
+bool ValueObject::HasSyntheticValue() {
+ UpdateFormatsIfNeeded();
+
+ if (m_synthetic_children_sp.get() == nullptr)
+ return false;
+
+ CalculateSyntheticValue();
+
+ return m_synthetic_value != nullptr;
+}
+
+ValueObject *ValueObject::GetNonBaseClassParent() {
+ if (GetParent()) {
+ if (GetParent()->IsBaseClass())
+ return GetParent()->GetNonBaseClassParent();
+ else
+ return GetParent();
+ }
+ return nullptr;
+}
+
+bool ValueObject::IsBaseClass(uint32_t &depth) {
+ if (!IsBaseClass()) {
+ depth = 0;
+ return false;
+ }
+ if (GetParent()) {
+ GetParent()->IsBaseClass(depth);
+ depth = depth + 1;
+ return true;
+ }
+ // TODO: a base of no parent? weird..
+ depth = 1;
+ return true;
+}
+
+void ValueObject::GetExpressionPath(Stream &s,
+ GetExpressionPathFormat epformat) {
+ // synthetic children do not actually "exist" as part of the hierarchy, and
+ // sometimes they are consed up in ways that don't make sense from an
+ // underlying language/API standpoint. So, use a special code path here to
+ // return something that can hopefully be used in expression
+ if (m_flags.m_is_synthetic_children_generated) {
+ UpdateValueIfNeeded();
+
+ if (m_value.GetValueType() == Value::ValueType::LoadAddress) {
+ if (IsPointerOrReferenceType()) {
+ s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"),
+ GetValueAsUnsigned(0));
+ return;
+ } else {
+ uint64_t load_addr =
+ m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
+ if (load_addr != LLDB_INVALID_ADDRESS) {
+ s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"),
+ load_addr);
+ return;
+ }
+ }
+ }
+
+ if (CanProvideValue()) {
+ s.Printf("((%s)%s)", GetTypeName().AsCString("void"),
+ GetValueAsCString());
+ return;
+ }
+
+ return;
+ }
+
+ const bool is_deref_of_parent = IsDereferenceOfParent();
+
+ if (is_deref_of_parent &&
+ epformat == eGetExpressionPathFormatDereferencePointers) {
+ // this is the original format of GetExpressionPath() producing code like
+ // *(a_ptr).memberName, which is entirely fine, until you put this into
+ // StackFrame::GetValueForVariableExpressionPath() which prefers to see
+ // a_ptr->memberName. the eHonorPointers mode is meant to produce strings
+ // in this latter format
+ s.PutCString("*(");
+ }
+
+ ValueObject *parent = GetParent();
+
+ if (parent)
+ parent->GetExpressionPath(s, epformat);
+
+ // if we are a deref_of_parent just because we are synthetic array members
+ // made up to allow ptr[%d] syntax to work in variable printing, then add our
+ // name ([%d]) to the expression path
+ if (m_flags.m_is_array_item_for_pointer &&
+ epformat == eGetExpressionPathFormatHonorPointers)
+ s.PutCString(m_name.GetStringRef());
+
+ if (!IsBaseClass()) {
+ if (!is_deref_of_parent) {
+ ValueObject *non_base_class_parent = GetNonBaseClassParent();
+ if (non_base_class_parent &&
+ !non_base_class_parent->GetName().IsEmpty()) {
+ CompilerType non_base_class_parent_compiler_type =
+ non_base_class_parent->GetCompilerType();
+ if (non_base_class_parent_compiler_type) {
+ if (parent && parent->IsDereferenceOfParent() &&
+ epformat == eGetExpressionPathFormatHonorPointers) {
+ s.PutCString("->");
+ } else {
+ const uint32_t non_base_class_parent_type_info =
+ non_base_class_parent_compiler_type.GetTypeInfo();
+
+ if (non_base_class_parent_type_info & eTypeIsPointer) {
+ s.PutCString("->");
+ } else if ((non_base_class_parent_type_info & eTypeHasChildren) &&
+ !(non_base_class_parent_type_info & eTypeIsArray)) {
+ s.PutChar('.');
+ }
+ }
+ }
+ }
+
+ const char *name = GetName().GetCString();
+ if (name)
+ s.PutCString(name);
+ }
+ }
+
+ if (is_deref_of_parent &&
+ epformat == eGetExpressionPathFormatDereferencePointers) {
+ s.PutChar(')');
+ }
+}
+
+ValueObjectSP ValueObject::GetValueForExpressionPath(
+ llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
+ ExpressionPathEndResultType *final_value_type,
+ const GetValueForExpressionPathOptions &options,
+ ExpressionPathAftermath *final_task_on_target) {
+
+ ExpressionPathScanEndReason dummy_reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonUnknown;
+ ExpressionPathEndResultType dummy_final_value_type =
+ ValueObject::eExpressionPathEndResultTypeInvalid;
+ ExpressionPathAftermath dummy_final_task_on_target =
+ ValueObject::eExpressionPathAftermathNothing;
+
+ ValueObjectSP ret_val = GetValueForExpressionPath_Impl(
+ expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
+ final_value_type ? final_value_type : &dummy_final_value_type, options,
+ final_task_on_target ? final_task_on_target
+ : &dummy_final_task_on_target);
+
+ if (!final_task_on_target ||
+ *final_task_on_target == ValueObject::eExpressionPathAftermathNothing)
+ return ret_val;
+
+ if (ret_val.get() &&
+ ((final_value_type ? *final_value_type : dummy_final_value_type) ==
+ eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress
+ // of plain objects
+ {
+ if ((final_task_on_target ? *final_task_on_target
+ : dummy_final_task_on_target) ==
+ ValueObject::eExpressionPathAftermathDereference) {
+ Status error;
+ ValueObjectSP final_value = ret_val->Dereference(error);
+ if (error.Fail() || !final_value.get()) {
+ if (reason_to_stop)
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
+ if (final_value_type)
+ *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return ValueObjectSP();
+ } else {
+ if (final_task_on_target)
+ *final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
+ return final_value;
+ }
+ }
+ if (*final_task_on_target ==
+ ValueObject::eExpressionPathAftermathTakeAddress) {
+ Status error;
+ ValueObjectSP final_value = ret_val->AddressOf(error);
+ if (error.Fail() || !final_value.get()) {
+ if (reason_to_stop)
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonTakingAddressFailed;
+ if (final_value_type)
+ *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return ValueObjectSP();
+ } else {
+ if (final_task_on_target)
+ *final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
+ return final_value;
+ }
+ }
+ }
+ return ret_val; // final_task_on_target will still have its original value, so
+ // you know I did not do it
+}
+
+ValueObjectSP ValueObject::GetValueForExpressionPath_Impl(
+ llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
+ ExpressionPathEndResultType *final_result,
+ const GetValueForExpressionPathOptions &options,
+ ExpressionPathAftermath *what_next) {
+ ValueObjectSP root = GetSP();
+
+ if (!root)
+ return nullptr;
+
+ llvm::StringRef remainder = expression;
+
+ while (true) {
+ llvm::StringRef temp_expression = remainder;
+
+ CompilerType root_compiler_type = root->GetCompilerType();
+ CompilerType pointee_compiler_type;
+ Flags pointee_compiler_type_info;
+
+ Flags root_compiler_type_info(
+ root_compiler_type.GetTypeInfo(&pointee_compiler_type));
+ if (pointee_compiler_type)
+ pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo());
+
+ if (temp_expression.empty()) {
+ *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString;
+ return root;
+ }
+
+ switch (temp_expression.front()) {
+ case '-': {
+ temp_expression = temp_expression.drop_front();
+ if (options.m_check_dot_vs_arrow_syntax &&
+ root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
+ // use -> on a
+ // non-pointer and I
+ // must catch the error
+ {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return ValueObjectSP();
+ }
+ if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to
+ // extract an ObjC IVar
+ // when this is forbidden
+ root_compiler_type_info.Test(eTypeIsPointer) &&
+ options.m_no_fragile_ivar) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return ValueObjectSP();
+ }
+ if (!temp_expression.starts_with(">")) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return ValueObjectSP();
+ }
+ }
+ [[fallthrough]];
+ case '.': // or fallthrough from ->
+ {
+ if (options.m_check_dot_vs_arrow_syntax &&
+ temp_expression.front() == '.' &&
+ root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
+ // use . on a pointer
+ // and I must catch the
+ // error
+ {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+ temp_expression = temp_expression.drop_front(); // skip . or >
+
+ size_t next_sep_pos = temp_expression.find_first_of("-.[", 1);
+ if (next_sep_pos == llvm::StringRef::npos) // if no other separator just
+ // expand this last layer
+ {
+ llvm::StringRef child_name = temp_expression;
+ ValueObjectSP child_valobj_sp =
+ root->GetChildMemberWithName(child_name);
+
+ if (child_valobj_sp.get()) // we know we are done, so just return
+ {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonEndOfString;
+ *final_result = ValueObject::eExpressionPathEndResultTypePlain;
+ return child_valobj_sp;
+ } else {
+ switch (options.m_synthetic_children_traversal) {
+ case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
+ None:
+ break;
+ case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
+ FromSynthetic:
+ if (root->IsSynthetic()) {
+ child_valobj_sp = root->GetNonSyntheticValue();
+ if (child_valobj_sp.get())
+ child_valobj_sp =
+ child_valobj_sp->GetChildMemberWithName(child_name);
+ }
+ break;
+ case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
+ ToSynthetic:
+ if (!root->IsSynthetic()) {
+ child_valobj_sp = root->GetSyntheticValue();
+ if (child_valobj_sp.get())
+ child_valobj_sp =
+ child_valobj_sp->GetChildMemberWithName(child_name);
+ }
+ break;
+ case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
+ Both:
+ if (root->IsSynthetic()) {
+ child_valobj_sp = root->GetNonSyntheticValue();
+ if (child_valobj_sp.get())
+ child_valobj_sp =
+ child_valobj_sp->GetChildMemberWithName(child_name);
+ } else {
+ child_valobj_sp = root->GetSyntheticValue();
+ if (child_valobj_sp.get())
+ child_valobj_sp =
+ child_valobj_sp->GetChildMemberWithName(child_name);
+ }
+ break;
+ }
+ }
+
+ // if we are here and options.m_no_synthetic_children is true,
+ // child_valobj_sp is going to be a NULL SP, so we hit the "else"
+ // branch, and return an error
+ if (child_valobj_sp.get()) // if it worked, just return
+ {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonEndOfString;
+ *final_result = ValueObject::eExpressionPathEndResultTypePlain;
+ return child_valobj_sp;
+ } else {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonNoSuchChild;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+ } else // other layers do expand
+ {
+ llvm::StringRef next_separator = temp_expression.substr(next_sep_pos);
+ llvm::StringRef child_name = temp_expression.slice(0, next_sep_pos);
+
+ ValueObjectSP child_valobj_sp =
+ root->GetChildMemberWithName(child_name);
+ if (child_valobj_sp.get()) // store the new root and move on
+ {
+ root = child_valobj_sp;
+ remainder = next_separator;
+ *final_result = ValueObject::eExpressionPathEndResultTypePlain;
+ continue;
+ } else {
+ switch (options.m_synthetic_children_traversal) {
+ case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
+ None:
+ break;
+ case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
+ FromSynthetic:
+ if (root->IsSynthetic()) {
+ child_valobj_sp = root->GetNonSyntheticValue();
+ if (child_valobj_sp.get())
+ child_valobj_sp =
+ child_valobj_sp->GetChildMemberWithName(child_name);
+ }
+ break;
+ case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
+ ToSynthetic:
+ if (!root->IsSynthetic()) {
+ child_valobj_sp = root->GetSyntheticValue();
+ if (child_valobj_sp.get())
+ child_valobj_sp =
+ child_valobj_sp->GetChildMemberWithName(child_name);
+ }
+ break;
+ case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
+ Both:
+ if (root->IsSynthetic()) {
+ child_valobj_sp = root->GetNonSyntheticValue();
+ if (child_valobj_sp.get())
+ child_valobj_sp =
+ child_valobj_sp->GetChildMemberWithName(child_name);
+ } else {
+ child_valobj_sp = root->GetSyntheticValue();
+ if (child_valobj_sp.get())
+ child_valobj_sp =
+ child_valobj_sp->GetChildMemberWithName(child_name);
+ }
+ break;
+ }
+ }
+
+ // if we are here and options.m_no_synthetic_children is true,
+ // child_valobj_sp is going to be a NULL SP, so we hit the "else"
+ // branch, and return an error
+ if (child_valobj_sp.get()) // if it worked, move on
+ {
+ root = child_valobj_sp;
+ remainder = next_separator;
+ *final_result = ValueObject::eExpressionPathEndResultTypePlain;
+ continue;
+ } else {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonNoSuchChild;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+ }
+ break;
+ }
+ case '[': {
+ if (!root_compiler_type_info.Test(eTypeIsArray) &&
+ !root_compiler_type_info.Test(eTypeIsPointer) &&
+ !root_compiler_type_info.Test(
+ eTypeIsVector)) // if this is not a T[] nor a T*
+ {
+ if (!root_compiler_type_info.Test(
+ eTypeIsScalar)) // if this is not even a scalar...
+ {
+ if (options.m_synthetic_children_traversal ==
+ GetValueForExpressionPathOptions::SyntheticChildrenTraversal::
+ None) // ...only chance left is synthetic
+ {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return ValueObjectSP();
+ }
+ } else if (!options.m_allow_bitfields_syntax) // if this is a scalar,
+ // check that we can
+ // expand bitfields
+ {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return ValueObjectSP();
+ }
+ }
+ if (temp_expression[1] ==
+ ']') // if this is an unbounded range it only works for arrays
+ {
+ if (!root_compiler_type_info.Test(eTypeIsArray)) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ } else // even if something follows, we cannot expand unbounded ranges,
+ // just let the caller do it
+ {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
+ *final_result =
+ ValueObject::eExpressionPathEndResultTypeUnboundedRange;
+ return root;
+ }
+ }
+
+ size_t close_bracket_position = temp_expression.find(']', 1);
+ if (close_bracket_position ==
+ llvm::StringRef::npos) // if there is no ], this is a syntax error
+ {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+
+ llvm::StringRef bracket_expr =
+ temp_expression.slice(1, close_bracket_position);
+
+ // If this was an empty expression it would have been caught by the if
+ // above.
+ assert(!bracket_expr.empty());
+
+ if (!bracket_expr.contains('-')) {
+ // if no separator, this is of the form [N]. Note that this cannot be
+ // an unbounded range of the form [], because that case was handled
+ // above with an unconditional return.
+ unsigned long index = 0;
+ if (bracket_expr.getAsInteger(0, index)) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+
+ // from here on we do have a valid index
+ if (root_compiler_type_info.Test(eTypeIsArray)) {
+ ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index);
+ if (!child_valobj_sp)
+ child_valobj_sp = root->GetSyntheticArrayMember(index, true);
+ if (!child_valobj_sp)
+ if (root->HasSyntheticValue() &&
+ llvm::expectedToStdOptional(
+ root->GetSyntheticValue()->GetNumChildren())
+ .value_or(0) > index)
+ child_valobj_sp =
+ root->GetSyntheticValue()->GetChildAtIndex(index);
+ if (child_valobj_sp) {
+ root = child_valobj_sp;
+ remainder =
+ temp_expression.substr(close_bracket_position + 1); // skip ]
+ *final_result = ValueObject::eExpressionPathEndResultTypePlain;
+ continue;
+ } else {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonNoSuchChild;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+ } else if (root_compiler_type_info.Test(eTypeIsPointer)) {
+ if (*what_next ==
+ ValueObject::
+ eExpressionPathAftermathDereference && // if this is a
+ // ptr-to-scalar, I
+ // am accessing it
+ // by index and I
+ // would have
+ // deref'ed anyway,
+ // then do it now
+ // and use this as
+ // a bitfield
+ pointee_compiler_type_info.Test(eTypeIsScalar)) {
+ Status error;
+ root = root->Dereference(error);
+ if (error.Fail() || !root) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ } else {
+ *what_next = eExpressionPathAftermathNothing;
+ continue;
+ }
+ } else {
+ if (root->GetCompilerType().GetMinimumLanguage() ==
+ eLanguageTypeObjC &&
+ pointee_compiler_type_info.AllClear(eTypeIsPointer) &&
+ root->HasSyntheticValue() &&
+ (options.m_synthetic_children_traversal ==
+ GetValueForExpressionPathOptions::
+ SyntheticChildrenTraversal::ToSynthetic ||
+ options.m_synthetic_children_traversal ==
+ GetValueForExpressionPathOptions::
+ SyntheticChildrenTraversal::Both)) {
+ root = root->GetSyntheticValue()->GetChildAtIndex(index);
+ } else
+ root = root->GetSyntheticArrayMember(index, true);
+ if (!root) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonNoSuchChild;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ } else {
+ remainder =
+ temp_expression.substr(close_bracket_position + 1); // skip ]
+ *final_result = ValueObject::eExpressionPathEndResultTypePlain;
+ continue;
+ }
+ }
+ } else if (root_compiler_type_info.Test(eTypeIsScalar)) {
+ root = root->GetSyntheticBitFieldChild(index, index, true);
+ if (!root) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonNoSuchChild;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ } else // we do not know how to expand members of bitfields, so we
+ // just return and let the caller do any further processing
+ {
+ *reason_to_stop = ValueObject::
+ eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
+ *final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
+ return root;
+ }
+ } else if (root_compiler_type_info.Test(eTypeIsVector)) {
+ root = root->GetChildAtIndex(index);
+ if (!root) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonNoSuchChild;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return ValueObjectSP();
+ } else {
+ remainder =
+ temp_expression.substr(close_bracket_position + 1); // skip ]
+ *final_result = ValueObject::eExpressionPathEndResultTypePlain;
+ continue;
+ }
+ } else if (options.m_synthetic_children_traversal ==
+ GetValueForExpressionPathOptions::
+ SyntheticChildrenTraversal::ToSynthetic ||
+ options.m_synthetic_children_traversal ==
+ GetValueForExpressionPathOptions::
+ SyntheticChildrenTraversal::Both) {
+ if (root->HasSyntheticValue())
+ root = root->GetSyntheticValue();
+ else if (!root->IsSynthetic()) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+ // if we are here, then root itself is a synthetic VO.. should be
+ // good to go
+
+ if (!root) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+ root = root->GetChildAtIndex(index);
+ if (!root) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonNoSuchChild;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ } else {
+ remainder =
+ temp_expression.substr(close_bracket_position + 1); // skip ]
+ *final_result = ValueObject::eExpressionPathEndResultTypePlain;
+ continue;
+ }
+ } else {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonNoSuchChild;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+ } else {
+ // we have a low and a high index
+ llvm::StringRef sleft, sright;
+ unsigned long low_index, high_index;
+ std::tie(sleft, sright) = bracket_expr.split('-');
+ if (sleft.getAsInteger(0, low_index) ||
+ sright.getAsInteger(0, high_index)) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+
+ if (low_index > high_index) // swap indices if required
+ std::swap(low_index, high_index);
+
+ if (root_compiler_type_info.Test(
+ eTypeIsScalar)) // expansion only works for scalars
+ {
+ root = root->GetSyntheticBitFieldChild(low_index, high_index, true);
+ if (!root) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonNoSuchChild;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ } else {
+ *reason_to_stop = ValueObject::
+ eExpressionPathScanEndReasonBitfieldRangeOperatorMet;
+ *final_result = ValueObject::eExpressionPathEndResultTypeBitfield;
+ return root;
+ }
+ } else if (root_compiler_type_info.Test(
+ eTypeIsPointer) && // if this is a ptr-to-scalar, I am
+ // accessing it by index and I would
+ // have deref'ed anyway, then do it
+ // now and use this as a bitfield
+ *what_next ==
+ ValueObject::eExpressionPathAftermathDereference &&
+ pointee_compiler_type_info.Test(eTypeIsScalar)) {
+ Status error;
+ root = root->Dereference(error);
+ if (error.Fail() || !root) {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonDereferencingFailed;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ } else {
+ *what_next = ValueObject::eExpressionPathAftermathNothing;
+ continue;
+ }
+ } else {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet;
+ *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange;
+ return root;
+ }
+ }
+ break;
+ }
+ default: // some non-separator is in the way
+ {
+ *reason_to_stop =
+ ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol;
+ *final_result = ValueObject::eExpressionPathEndResultTypeInvalid;
+ return nullptr;
+ }
+ }
+ }
+}
+
+llvm::Error ValueObject::Dump(Stream &s) {
+ return Dump(s, DumpValueObjectOptions(*this));
+}
+
+llvm::Error ValueObject::Dump(Stream &s,
+ const DumpValueObjectOptions &options) {
+ ValueObjectPrinter printer(*this, &s, options);
+ return printer.PrintValueObject();
+}
+
+ValueObjectSP ValueObject::CreateConstantValue(ConstString name) {
+ ValueObjectSP valobj_sp;
+
+ if (UpdateValueIfNeeded(false) && m_error.Success()) {
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+
+ DataExtractor data;
+ data.SetByteOrder(m_data.GetByteOrder());
+ data.SetAddressByteSize(m_data.GetAddressByteSize());
+
+ if (IsBitfield()) {
+ Value v(Scalar(GetValueAsUnsigned(UINT64_MAX)));
+ m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get());
+ } else
+ m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get());
+
+ valobj_sp = ValueObjectConstResult::Create(
+ exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data,
+ GetAddressOf());
+ }
+
+ if (!valobj_sp) {
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ valobj_sp = ValueObjectConstResult::Create(
+ exe_ctx.GetBestExecutionContextScope(), m_error);
+ }
+ return valobj_sp;
+}
+
+ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable(
+ lldb::DynamicValueType dynValue, bool synthValue) {
+ ValueObjectSP result_sp;
+ switch (dynValue) {
+ case lldb::eDynamicCanRunTarget:
+ case lldb::eDynamicDontRunTarget: {
+ if (!IsDynamic())
+ result_sp = GetDynamicValue(dynValue);
+ } break;
+ case lldb::eNoDynamicValues: {
+ if (IsDynamic())
+ result_sp = GetStaticValue();
+ } break;
+ }
+ if (!result_sp)
+ result_sp = GetSP();
+ assert(result_sp);
+
+ bool is_synthetic = result_sp->IsSynthetic();
+ if (synthValue && !is_synthetic) {
+ if (auto synth_sp = result_sp->GetSyntheticValue())
+ return synth_sp;
+ }
+ if (!synthValue && is_synthetic) {
+ if (auto non_synth_sp = result_sp->GetNonSyntheticValue())
+ return non_synth_sp;
+ }
+
+ return result_sp;
+}
+
+ValueObjectSP ValueObject::Dereference(Status &error) {
+ if (m_deref_valobj)
+ return m_deref_valobj->GetSP();
+
+ const bool is_pointer_or_reference_type = IsPointerOrReferenceType();
+ if (is_pointer_or_reference_type) {
+ bool omit_empty_base_classes = true;
+ bool ignore_array_bounds = false;
+
+ std::string child_name_str;
+ uint32_t child_byte_size = 0;
+ int32_t child_byte_offset = 0;
+ uint32_t child_bitfield_bit_size = 0;
+ uint32_t child_bitfield_bit_offset = 0;
+ bool child_is_base_class = false;
+ bool child_is_deref_of_parent = false;
+ const bool transparent_pointers = false;
+ CompilerType compiler_type = GetCompilerType();
+ uint64_t language_flags = 0;
+
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+
+ CompilerType child_compiler_type;
+ auto child_compiler_type_or_err = compiler_type.GetChildCompilerTypeAtIndex(
+ &exe_ctx, 0, transparent_pointers, omit_empty_base_classes,
+ ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset,
+ child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class,
+ child_is_deref_of_parent, this, language_flags);
+ if (!child_compiler_type_or_err)
+ LLDB_LOG_ERROR(GetLog(LLDBLog::Types),
+ child_compiler_type_or_err.takeError(),
+ "could not find child: {0}");
+ else
+ child_compiler_type = *child_compiler_type_or_err;
+
+ if (child_compiler_type && child_byte_size) {
+ ConstString child_name;
+ if (!child_name_str.empty())
+ child_name.SetCString(child_name_str.c_str());
+
+ m_deref_valobj = new ValueObjectChild(
+ *this, child_compiler_type, child_name, child_byte_size,
+ child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset,
+ child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid,
+ language_flags);
+ }
+
+ // In case of incomplete child compiler type, use the pointee type and try
+ // to recreate a new ValueObjectChild using it.
+ if (!m_deref_valobj) {
+ // FIXME(#59012): C++ stdlib formatters break with incomplete types (e.g.
+ // `std::vector<int> &`). Remove ObjC restriction once that's resolved.
+ if (Language::LanguageIsObjC(GetPreferredDisplayLanguage()) &&
+ HasSyntheticValue()) {
+ child_compiler_type = compiler_type.GetPointeeType();
+
+ if (child_compiler_type) {
+ ConstString child_name;
+ if (!child_name_str.empty())
+ child_name.SetCString(child_name_str.c_str());
+
+ m_deref_valobj = new ValueObjectChild(
+ *this, child_compiler_type, child_name, child_byte_size,
+ child_byte_offset, child_bitfield_bit_size,
+ child_bitfield_bit_offset, child_is_base_class,
+ child_is_deref_of_parent, eAddressTypeInvalid, language_flags);
+ }
+ }
+ }
+
+ } else if (HasSyntheticValue()) {
+ m_deref_valobj =
+ GetSyntheticValue()->GetChildMemberWithName("$$dereference$$").get();
+ } else if (IsSynthetic()) {
+ m_deref_valobj = GetChildMemberWithName("$$dereference$$").get();
+ }
+
+ if (m_deref_valobj) {
+ error.Clear();
+ return m_deref_valobj->GetSP();
+ } else {
+ StreamString strm;
+ GetExpressionPath(strm);
+
+ if (is_pointer_or_reference_type)
+ error.SetErrorStringWithFormat("dereference failed: (%s) %s",
+ GetTypeName().AsCString("<invalid type>"),
+ strm.GetData());
+ else
+ error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s",
+ GetTypeName().AsCString("<invalid type>"),
+ strm.GetData());
+ return ValueObjectSP();
+ }
+}
+
+ValueObjectSP ValueObject::AddressOf(Status &error) {
+ if (m_addr_of_valobj_sp)
+ return m_addr_of_valobj_sp;
+
+ AddressType address_type = eAddressTypeInvalid;
+ const bool scalar_is_load_address = false;
+ addr_t addr = GetAddressOf(scalar_is_load_address, &address_type);
+ error.Clear();
+ if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) {
+ switch (address_type) {
+ case eAddressTypeInvalid: {
+ StreamString expr_path_strm;
+ GetExpressionPath(expr_path_strm);
+ error.SetErrorStringWithFormat("'%s' is not in memory",
+ expr_path_strm.GetData());
+ } break;
+
+ case eAddressTypeFile:
+ case eAddressTypeLoad: {
+ CompilerType compiler_type = GetCompilerType();
+ if (compiler_type) {
+ std::string name(1, '&');
+ name.append(m_name.AsCString(""));
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ m_addr_of_valobj_sp = ValueObjectConstResult::Create(
+ exe_ctx.GetBestExecutionContextScope(),
+ compiler_type.GetPointerType(), ConstString(name.c_str()), addr,
+ eAddressTypeInvalid, m_data.GetAddressByteSize());
+ }
+ } break;
+ default:
+ break;
+ }
+ } else {
+ StreamString expr_path_strm;
+ GetExpressionPath(expr_path_strm);
+ error.SetErrorStringWithFormat("'%s' doesn't have a valid address",
+ expr_path_strm.GetData());
+ }
+
+ return m_addr_of_valobj_sp;
+}
+
+ValueObjectSP ValueObject::DoCast(const CompilerType &compiler_type) {
+ return ValueObjectCast::Create(*this, GetName(), compiler_type);
+}
+
+ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) {
+ // Only allow casts if the original type is equal or larger than the cast
+ // type, unless we know this is a load address. Getting the size wrong for
+ // a host side storage could leak lldb memory, so we absolutely want to
+ // prevent that. We may not always get the right value, for instance if we
+ // have an expression result value that's copied into a storage location in
+ // the target may not have copied enough memory. I'm not trying to fix that
+ // here, I'm just making Cast from a smaller to a larger possible in all the
+ // cases where that doesn't risk making a Value out of random lldb memory.
+ // You have to check the ValueObject's Value for the address types, since
+ // ValueObjects that use live addresses will tell you they fetch data from the
+ // live address, but once they are made, they actually don't.
+ // FIXME: Can we make ValueObject's with a live address fetch "more data" from
+ // the live address if it is still valid?
+
+ Status error;
+ CompilerType my_type = GetCompilerType();
+
+ ExecutionContextScope *exe_scope
+ = ExecutionContext(GetExecutionContextRef())
+ .GetBestExecutionContextScope();
+ if (compiler_type.GetByteSize(exe_scope)
+ <= GetCompilerType().GetByteSize(exe_scope)
+ || m_value.GetValueType() == Value::ValueType::LoadAddress)
+ return DoCast(compiler_type);
+
+ error.SetErrorString("Can only cast to a type that is equal to or smaller "
+ "than the orignal type.");
+
+ return ValueObjectConstResult::Create(
+ ExecutionContext(GetExecutionContextRef()).GetBestExecutionContextScope(),
+ error);
+}
+
+lldb::ValueObjectSP ValueObject::Clone(ConstString new_name) {
+ return ValueObjectCast::Create(*this, new_name, GetCompilerType());
+}
+
+ValueObjectSP ValueObject::CastPointerType(const char *name,
+ CompilerType &compiler_type) {
+ ValueObjectSP valobj_sp;
+ AddressType address_type;
+ addr_t ptr_value = GetPointerValue(&address_type);
+
+ if (ptr_value != LLDB_INVALID_ADDRESS) {
+ Address ptr_addr(ptr_value);
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ valobj_sp = ValueObjectMemory::Create(
+ exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type);
+ }
+ return valobj_sp;
+}
+
+ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) {
+ ValueObjectSP valobj_sp;
+ AddressType address_type;
+ addr_t ptr_value = GetPointerValue(&address_type);
+
+ if (ptr_value != LLDB_INVALID_ADDRESS) {
+ Address ptr_addr(ptr_value);
+ ExecutionContext exe_ctx(GetExecutionContextRef());
+ valobj_sp = ValueObjectMemory::Create(
+ exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp);
+ }
+ return valobj_sp;
+}
+
+lldb::addr_t ValueObject::GetLoadAddress() {
+ lldb::addr_t addr_value = LLDB_INVALID_ADDRESS;
+ if (auto target_sp = GetTargetSP()) {
+ const bool scalar_is_load_address = true;
+ AddressType addr_type;
+ addr_value = GetAddressOf(scalar_is_load_address, &addr_type);
+ if (addr_type == eAddressTypeFile) {
+ lldb::ModuleSP module_sp(GetModule());
+ if (!module_sp)
+ addr_value = LLDB_INVALID_ADDRESS;
+ else {
+ Address tmp_addr;
+ module_sp->ResolveFileAddress(addr_value, tmp_addr);
+ addr_value = tmp_addr.GetLoadAddress(target_sp.get());
+ }
+ } else if (addr_type == eAddressTypeHost ||
+ addr_type == eAddressTypeInvalid)
+ addr_value = LLDB_INVALID_ADDRESS;
+ }
+ return addr_value;
+}
+
+llvm::Expected<lldb::ValueObjectSP> ValueObject::CastDerivedToBaseType(
+ CompilerType type, const llvm::ArrayRef<uint32_t> &base_type_indices) {
+ // Make sure the starting type and the target type are both valid for this
+ // type of cast; otherwise return the shared pointer to the original
+ // (unchanged) ValueObject.
+ if (!type.IsPointerType() && !type.IsReferenceType())
+ return llvm::make_error<llvm::StringError>(
+ "Invalid target type: should be a pointer or a reference",
+ llvm::inconvertibleErrorCode());
+
+ CompilerType start_type = GetCompilerType();
+ if (start_type.IsReferenceType())
+ start_type = start_type.GetNonReferenceType();
+
+ auto target_record_type =
+ type.IsPointerType() ? type.GetPointeeType() : type.GetNonReferenceType();
+ auto start_record_type =
+ start_type.IsPointerType() ? start_type.GetPointeeType() : start_type;
+
+ if (!target_record_type.IsRecordType() || !start_record_type.IsRecordType())
+ return llvm::make_error<llvm::StringError>(
+ "Underlying start & target types should be record types",
+ llvm::inconvertibleErrorCode());
+
+ if (target_record_type.CompareTypes(start_record_type))
+ return llvm::make_error<llvm::StringError>(
+ "Underlying start & target types should be different",
+ llvm::inconvertibleErrorCode());
+
+ if (base_type_indices.empty())
+ return llvm::make_error<llvm::StringError>(
+ "Children sequence must be non-empty", llvm::inconvertibleErrorCode());
+
+ // Both the starting & target types are valid for the cast, and the list of
+ // base class indices is non-empty, so we can proceed with the cast.
+
+ lldb::TargetSP target = GetTargetSP();
+ // The `value` can be a pointer, but GetChildAtIndex works for pointers too.
+ lldb::ValueObjectSP inner_value = GetSP();
+
+ for (const uint32_t i : base_type_indices)
+ // Create synthetic value if needed.
+ inner_value =
+ inner_value->GetChildAtIndex(i, /*can_create_synthetic*/ true);
+
+ // At this point type of `inner_value` should be the dereferenced target
+ // type.
+ CompilerType inner_value_type = inner_value->GetCompilerType();
+ if (type.IsPointerType()) {
+ if (!inner_value_type.CompareTypes(type.GetPointeeType()))
+ return llvm::make_error<llvm::StringError>(
+ "casted value doesn't match the desired type",
+ llvm::inconvertibleErrorCode());
+
+ uintptr_t addr = inner_value->GetLoadAddress();
+ llvm::StringRef name = "";
+ ExecutionContext exe_ctx(target.get(), false);
+ return ValueObject::CreateValueObjectFromAddress(name, addr, exe_ctx, type,
+ /* do deref */ false);
+ }
+
+ // At this point the target type should be a reference.
+ if (!inner_value_type.CompareTypes(type.GetNonReferenceType()))
+ return llvm::make_error<llvm::StringError>(
+ "casted value doesn't match the desired type",
+ llvm::inconvertibleErrorCode());
+
+ return lldb::ValueObjectSP(inner_value->Cast(type.GetNonReferenceType()));
+}
+
+llvm::Expected<lldb::ValueObjectSP>
+ValueObject::CastBaseToDerivedType(CompilerType type, uint64_t offset) {
+ // Make sure the starting type and the target type are both valid for this
+ // type of cast; otherwise return the shared pointer to the original
+ // (unchanged) ValueObject.
+ if (!type.IsPointerType() && !type.IsReferenceType())
+ return llvm::make_error<llvm::StringError>(
+ "Invalid target type: should be a pointer or a reference",
+ llvm::inconvertibleErrorCode());
+
+ CompilerType start_type = GetCompilerType();
+ if (start_type.IsReferenceType())
+ start_type = start_type.GetNonReferenceType();
+
+ auto target_record_type =
+ type.IsPointerType() ? type.GetPointeeType() : type.GetNonReferenceType();
+ auto start_record_type =
+ start_type.IsPointerType() ? start_type.GetPointeeType() : start_type;
+
+ if (!target_record_type.IsRecordType() || !start_record_type.IsRecordType())
+ return llvm::make_error<llvm::StringError>(
+ "Underlying start & target types should be record types",
+ llvm::inconvertibleErrorCode());
+
+ if (target_record_type.CompareTypes(start_record_type))
+ return llvm::make_error<llvm::StringError>(
+ "Underlying start & target types should be different",
+ llvm::inconvertibleErrorCode());
+
+ CompilerType virtual_base;
+ if (target_record_type.IsVirtualBase(start_record_type, &virtual_base)) {
+ if (!virtual_base.IsValid())
+ return llvm::make_error<llvm::StringError>(
+ "virtual base should be valid", llvm::inconvertibleErrorCode());
+ return llvm::make_error<llvm::StringError>(
+ llvm::Twine("cannot cast " + start_type.TypeDescription() + " to " +
+ type.TypeDescription() + " via virtual base " +
+ virtual_base.TypeDescription()),
+ llvm::inconvertibleErrorCode());
+ }
+
+ // Both the starting & target types are valid for the cast, so we can
+ // proceed with the cast.
+
+ lldb::TargetSP target = GetTargetSP();
+ auto pointer_type =
+ type.IsPointerType() ? type : type.GetNonReferenceType().GetPointerType();
+
+ uintptr_t addr =
+ type.IsPointerType() ? GetValueAsUnsigned(0) : GetLoadAddress();
+
+ llvm::StringRef name = "";
+ ExecutionContext exe_ctx(target.get(), false);
+ lldb::ValueObjectSP value = ValueObject::CreateValueObjectFromAddress(
+ name, addr - offset, exe_ctx, pointer_type, /* do_deref */ false);
+
+ if (type.IsPointerType())
+ return value;
+
+ // At this point the target type is a reference. Since `value` is a pointer,
+ // it has to be dereferenced.
+ Status error;
+ return value->Dereference(error);
+}
+
+lldb::ValueObjectSP ValueObject::CastToBasicType(CompilerType type) {
+ bool is_scalar = GetCompilerType().IsScalarType();
+ bool is_enum = GetCompilerType().IsEnumerationType();
+ bool is_pointer =
+ GetCompilerType().IsPointerType() || GetCompilerType().IsNullPtrType();
+ bool is_float = GetCompilerType().IsFloat();
+ bool is_integer = GetCompilerType().IsInteger();
+
+ if (!type.IsScalarType()) {
+ m_error.SetErrorString("target type must be a scalar");
+ return GetSP();
+ }
+
+ if (!is_scalar && !is_enum && !is_pointer) {
+ m_error.SetErrorString("argument must be a scalar, enum, or pointer");
+ return GetSP();
+ }
+
+ lldb::TargetSP target = GetTargetSP();
+ uint64_t type_byte_size = 0;
+ uint64_t val_byte_size = 0;
+ if (auto temp = type.GetByteSize(target.get()))
+ type_byte_size = temp.value();
+ if (auto temp = GetCompilerType().GetByteSize(target.get()))
+ val_byte_size = temp.value();
+
+ if (is_pointer) {
+ if (!type.IsInteger() && !type.IsBoolean()) {
+ m_error.SetErrorString("target type must be an integer or boolean");
+ return GetSP();
+ }
+ if (!type.IsBoolean() && type_byte_size < val_byte_size) {
+ m_error.SetErrorString(
+ "target type cannot be smaller than the pointer type");
+ return GetSP();
+ }
+ }
+
+ if (type.IsBoolean()) {
+ if (!is_scalar || is_integer)
+ return ValueObject::CreateValueObjectFromBool(
+ target, GetValueAsUnsigned(0) != 0, "result");
+ else if (is_scalar && is_float) {
+ auto float_value_or_err = GetValueAsAPFloat();
+ if (float_value_or_err)
+ return ValueObject::CreateValueObjectFromBool(
+ target, !float_value_or_err->isZero(), "result");
+ else {
+ m_error.SetErrorStringWithFormat(
+ "cannot get value as APFloat: %s",
+ llvm::toString(float_value_or_err.takeError()).c_str());
+ return GetSP();
+ }
+ }
+ }
+
+ if (type.IsInteger()) {
+ if (!is_scalar || is_integer) {
+ auto int_value_or_err = GetValueAsAPSInt();
+ if (int_value_or_err) {
+ // Get the value as APSInt and extend or truncate it to the requested
+ // size.
+ llvm::APSInt ext =
+ int_value_or_err->extOrTrunc(type_byte_size * CHAR_BIT);
+ return ValueObject::CreateValueObjectFromAPInt(target, ext, type,
+ "result");
+ } else {
+ m_error.SetErrorStringWithFormat(
+ "cannot get value as APSInt: %s",
+ llvm::toString(int_value_or_err.takeError()).c_str());
+ ;
+ return GetSP();
+ }
+ } else if (is_scalar && is_float) {
+ llvm::APSInt integer(type_byte_size * CHAR_BIT, !type.IsSigned());
+ bool is_exact;
+ auto float_value_or_err = GetValueAsAPFloat();
+ if (float_value_or_err) {
+ llvm::APFloatBase::opStatus status =
+ float_value_or_err->convertToInteger(
+ integer, llvm::APFloat::rmTowardZero, &is_exact);
+
+ // Casting floating point values that are out of bounds of the target
+ // type is undefined behaviour.
+ if (status & llvm::APFloatBase::opInvalidOp) {
+ m_error.SetErrorStringWithFormat(
+ "invalid type cast detected: %s",
+ llvm::toString(float_value_or_err.takeError()).c_str());
+ return GetSP();
+ }
+ return ValueObject::CreateValueObjectFromAPInt(target, integer, type,
+ "result");
+ }
+ }
+ }
+
+ if (type.IsFloat()) {
+ if (!is_scalar) {
+ auto int_value_or_err = GetValueAsAPSInt();
+ if (int_value_or_err) {
+ llvm::APSInt ext =
+ int_value_or_err->extOrTrunc(type_byte_size * CHAR_BIT);
+ Scalar scalar_int(ext);
+ llvm::APFloat f = scalar_int.CreateAPFloatFromAPSInt(
+ type.GetCanonicalType().GetBasicTypeEnumeration());
+ return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
+ "result");
+ } else {
+ m_error.SetErrorStringWithFormat(
+ "cannot get value as APSInt: %s",
+ llvm::toString(int_value_or_err.takeError()).c_str());
+ return GetSP();
+ }
+ } else {
+ if (is_integer) {
+ auto int_value_or_err = GetValueAsAPSInt();
+ if (int_value_or_err) {
+ Scalar scalar_int(*int_value_or_err);
+ llvm::APFloat f = scalar_int.CreateAPFloatFromAPSInt(
+ type.GetCanonicalType().GetBasicTypeEnumeration());
+ return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
+ "result");
+ } else {
+ m_error.SetErrorStringWithFormat(
+ "cannot get value as APSInt: %s",
+ llvm::toString(int_value_or_err.takeError()).c_str());
+ return GetSP();
+ }
+ }
+ if (is_float) {
+ auto float_value_or_err = GetValueAsAPFloat();
+ if (float_value_or_err) {
+ Scalar scalar_float(*float_value_or_err);
+ llvm::APFloat f = scalar_float.CreateAPFloatFromAPFloat(
+ type.GetCanonicalType().GetBasicTypeEnumeration());
+ return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
+ "result");
+ } else {
+ m_error.SetErrorStringWithFormat(
+ "cannot get value as APFloat: %s",
+ llvm::toString(float_value_or_err.takeError()).c_str());
+ return GetSP();
+ }
+ }
+ }
+ }
+
+ m_error.SetErrorString("Unable to perform requested cast");
+ return GetSP();
+}
+
+lldb::ValueObjectSP ValueObject::CastToEnumType(CompilerType type) {
+ bool is_enum = GetCompilerType().IsEnumerationType();
+ bool is_integer = GetCompilerType().IsInteger();
+ bool is_float = GetCompilerType().IsFloat();
+
+ if (!is_enum && !is_integer && !is_float) {
+ m_error.SetErrorString("argument must be an integer, a float, or an enum");
+ return GetSP();
+ }
+
+ if (!type.IsEnumerationType()) {
+ m_error.SetErrorString("target type must be an enum");
+ return GetSP();
+ }
+
+ lldb::TargetSP target = GetTargetSP();
+ uint64_t byte_size = 0;
+ if (auto temp = type.GetByteSize(target.get()))
+ byte_size = temp.value();
+
+ if (is_float) {
+ llvm::APSInt integer(byte_size * CHAR_BIT, !type.IsSigned());
+ bool is_exact;
+ auto value_or_err = GetValueAsAPFloat();
+ if (value_or_err) {
+ llvm::APFloatBase::opStatus status = value_or_err->convertToInteger(
+ integer, llvm::APFloat::rmTowardZero, &is_exact);
+
+ // Casting floating point values that are out of bounds of the target
+ // type is undefined behaviour.
+ if (status & llvm::APFloatBase::opInvalidOp) {
+ m_error.SetErrorStringWithFormat(
+ "invalid type cast detected: %s",
+ llvm::toString(value_or_err.takeError()).c_str());
+ return GetSP();
+ }
+ return ValueObject::CreateValueObjectFromAPInt(target, integer, type,
+ "result");
+ } else {
+ m_error.SetErrorString("cannot get value as APFloat");
+ return GetSP();
+ }
+ } else {
+ // Get the value as APSInt and extend or truncate it to the requested size.
+ auto value_or_err = GetValueAsAPSInt();
+ if (value_or_err) {
+ llvm::APSInt ext = value_or_err->extOrTrunc(byte_size * CHAR_BIT);
+ return ValueObject::CreateValueObjectFromAPInt(target, ext, type,
+ "result");
+ } else {
+ m_error.SetErrorStringWithFormat(
+ "cannot get value as APSInt: %s",
+ llvm::toString(value_or_err.takeError()).c_str());
+ return GetSP();
+ }
+ }
+ m_error.SetErrorString("Cannot perform requested cast");
+ return GetSP();
+}
+
+ValueObject::EvaluationPoint::EvaluationPoint() : m_mod_id(), m_exe_ctx_ref() {}
+
+ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope,
+ bool use_selected)
+ : m_mod_id(), m_exe_ctx_ref() {
+ ExecutionContext exe_ctx(exe_scope);
+ TargetSP target_sp(exe_ctx.GetTargetSP());
+ if (target_sp) {
+ m_exe_ctx_ref.SetTargetSP(target_sp);
+ ProcessSP process_sp(exe_ctx.GetProcessSP());
+ if (!process_sp)
+ process_sp = target_sp->GetProcessSP();
+
+ if (process_sp) {
+ m_mod_id = process_sp->GetModID();
+ m_exe_ctx_ref.SetProcessSP(process_sp);
+
+ ThreadSP thread_sp(exe_ctx.GetThreadSP());
+
+ if (!thread_sp) {
+ if (use_selected)
+ thread_sp = process_sp->GetThreadList().GetSelectedThread();
+ }
+
+ if (thread_sp) {
+ m_exe_ctx_ref.SetThreadSP(thread_sp);
+
+ StackFrameSP frame_sp(exe_ctx.GetFrameSP());
+ if (!frame_sp) {
+ if (use_selected)
+ frame_sp = thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame);
+ }
+ if (frame_sp)
+ m_exe_ctx_ref.SetFrameSP(frame_sp);
+ }
+ }
+ }
+}
+
+ValueObject::EvaluationPoint::EvaluationPoint(
+ const ValueObject::EvaluationPoint &rhs)
+ : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref) {}
+
+ValueObject::EvaluationPoint::~EvaluationPoint() = default;
+
+// This function checks the EvaluationPoint against the current process state.
+// If the current state matches the evaluation point, or the evaluation point
+// is already invalid, then we return false, meaning "no change". If the
+// current state is different, we update our state, and return true meaning
+// "yes, change". If we did see a change, we also set m_needs_update to true,
+// so future calls to NeedsUpdate will return true. exe_scope will be set to
+// the current execution context scope.
+
+bool ValueObject::EvaluationPoint::SyncWithProcessState(
+ bool accept_invalid_exe_ctx) {
+ // Start with the target, if it is NULL, then we're obviously not going to
+ // get any further:
+ const bool thread_and_frame_only_if_stopped = true;
+ ExecutionContext exe_ctx(
+ m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped));
+
+ if (exe_ctx.GetTargetPtr() == nullptr)
+ return false;
+
+ // If we don't have a process nothing can change.
+ Process *process = exe_ctx.GetProcessPtr();
+ if (process == nullptr)
+ return false;
+
+ // If our stop id is the current stop ID, nothing has changed:
+ ProcessModID current_mod_id = process->GetModID();
+
+ // If the current stop id is 0, either we haven't run yet, or the process
+ // state has been cleared. In either case, we aren't going to be able to sync
+ // with the process state.
+ if (current_mod_id.GetStopID() == 0)
+ return false;
+
+ bool changed = false;
+ const bool was_valid = m_mod_id.IsValid();
+ if (was_valid) {
+ if (m_mod_id == current_mod_id) {
+ // Everything is already up to date in this object, no need to update the
+ // execution context scope.
+ changed = false;
+ } else {
+ m_mod_id = current_mod_id;
+ m_needs_update = true;
+ changed = true;
+ }
+ }
+
+ // Now re-look up the thread and frame in case the underlying objects have
+ // gone away & been recreated. That way we'll be sure to return a valid
+ // exe_scope. If we used to have a thread or a frame but can't find it
+ // anymore, then mark ourselves as invalid.
+
+ if (!accept_invalid_exe_ctx) {
+ if (m_exe_ctx_ref.HasThreadRef()) {
+ ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP());
+ if (thread_sp) {
+ if (m_exe_ctx_ref.HasFrameRef()) {
+ StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP());
+ if (!frame_sp) {
+ // We used to have a frame, but now it is gone
+ SetInvalid();
+ changed = was_valid;
+ }
+ }
+ } else {
+ // We used to have a thread, but now it is gone
+ SetInvalid();
+ changed = was_valid;
+ }
+ }
+ }
+
+ return changed;
+}
+
+void ValueObject::EvaluationPoint::SetUpdated() {
+ ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP());
+ if (process_sp)
+ m_mod_id = process_sp->GetModID();
+ m_needs_update = false;
+}
+
+void ValueObject::ClearUserVisibleData(uint32_t clear_mask) {
+ if ((clear_mask & eClearUserVisibleDataItemsValue) ==
+ eClearUserVisibleDataItemsValue)
+ m_value_str.clear();
+
+ if ((clear_mask & eClearUserVisibleDataItemsLocation) ==
+ eClearUserVisibleDataItemsLocation)
+ m_location_str.clear();
+
+ if ((clear_mask & eClearUserVisibleDataItemsSummary) ==
+ eClearUserVisibleDataItemsSummary)
+ m_summary_str.clear();
+
+ if ((clear_mask & eClearUserVisibleDataItemsDescription) ==
+ eClearUserVisibleDataItemsDescription)
+ m_object_desc_str.clear();
+
+ if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) ==
+ eClearUserVisibleDataItemsSyntheticChildren) {
+ if (m_synthetic_value)
+ m_synthetic_value = nullptr;
+ }
+}
+
+SymbolContextScope *ValueObject::GetSymbolContextScope() {
+ if (m_parent) {
+ if (!m_parent->IsPointerOrReferenceType())
+ return m_parent->GetSymbolContextScope();
+ }
+ return nullptr;
+}
+
+lldb::ValueObjectSP
+ValueObject::CreateValueObjectFromExpression(llvm::StringRef name,
+ llvm::StringRef expression,
+ const ExecutionContext &exe_ctx) {
+ return CreateValueObjectFromExpression(name, expression, exe_ctx,
+ EvaluateExpressionOptions());
+}
+
+lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression(
+ llvm::StringRef name, llvm::StringRef expression,
+ const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) {
+ lldb::ValueObjectSP retval_sp;
+ lldb::TargetSP target_sp(exe_ctx.GetTargetSP());
+ if (!target_sp)
+ return retval_sp;
+ if (expression.empty())
+ return retval_sp;
+ target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(),
+ retval_sp, options);
+ if (retval_sp && !name.empty())
+ retval_sp->SetName(ConstString(name));
+ return retval_sp;
+}
+
+lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress(
+ llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx,
+ CompilerType type, bool do_deref) {
+ if (type) {
+ CompilerType pointer_type(type.GetPointerType());
+ if (!do_deref)
+ pointer_type = type;
+ if (pointer_type) {
+ lldb::DataBufferSP buffer(
+ new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t)));
+ lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create(
+ exe_ctx.GetBestExecutionContextScope(), pointer_type,
+ ConstString(name), buffer, exe_ctx.GetByteOrder(),
+ exe_ctx.GetAddressByteSize()));
+ if (ptr_result_valobj_sp) {
+ if (do_deref)
+ ptr_result_valobj_sp->GetValue().SetValueType(
+ Value::ValueType::LoadAddress);
+ Status err;
+ if (do_deref)
+ ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err);
+ if (ptr_result_valobj_sp && !name.empty())
+ ptr_result_valobj_sp->SetName(ConstString(name));
+ }
+ return ptr_result_valobj_sp;
+ }
+ }
+ return lldb::ValueObjectSP();
+}
+
+lldb::ValueObjectSP ValueObject::CreateValueObjectFromData(
+ llvm::StringRef name, const DataExtractor &data,
+ const ExecutionContext &exe_ctx, CompilerType type) {
+ lldb::ValueObjectSP new_value_sp;
+ new_value_sp = ValueObjectConstResult::Create(
+ exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data,
+ LLDB_INVALID_ADDRESS);
+ new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad);
+ if (new_value_sp && !name.empty())
+ new_value_sp->SetName(ConstString(name));
+ return new_value_sp;
+}
+
+lldb::ValueObjectSP
+ValueObject::CreateValueObjectFromAPInt(lldb::TargetSP target,
+ const llvm::APInt &v, CompilerType type,
+ llvm::StringRef name) {
+ ExecutionContext exe_ctx(target.get(), false);
+ uint64_t byte_size = 0;
+ if (auto temp = type.GetByteSize(target.get()))
+ byte_size = temp.value();
+ lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
+ reinterpret_cast<const void *>(v.getRawData()), byte_size,
+ exe_ctx.GetByteOrder(), exe_ctx.GetAddressByteSize());
+ return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, type);
+}
+
+lldb::ValueObjectSP ValueObject::CreateValueObjectFromAPFloat(
+ lldb::TargetSP target, const llvm::APFloat &v, CompilerType type,
+ llvm::StringRef name) {
+ return CreateValueObjectFromAPInt(target, v.bitcastToAPInt(), type, name);
+}
+
+lldb::ValueObjectSP
+ValueObject::CreateValueObjectFromBool(lldb::TargetSP target, bool value,
+ llvm::StringRef name) {
+ CompilerType target_type;
+ if (target) {
+ for (auto type_system_sp : target->GetScratchTypeSystems())
+ if (auto compiler_type =
+ type_system_sp->GetBasicTypeFromAST(lldb::eBasicTypeBool)) {
+ target_type = compiler_type;
+ break;
+ }
+ }
+ ExecutionContext exe_ctx(target.get(), false);
+ uint64_t byte_size = 0;
+ if (auto temp = target_type.GetByteSize(target.get()))
+ byte_size = temp.value();
+ lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
+ reinterpret_cast<const void *>(&value), byte_size, exe_ctx.GetByteOrder(),
+ exe_ctx.GetAddressByteSize());
+ return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx,
+ target_type);
+}
+
+lldb::ValueObjectSP ValueObject::CreateValueObjectFromNullptr(
+ lldb::TargetSP target, CompilerType type, llvm::StringRef name) {
+ if (!type.IsNullPtrType()) {
+ lldb::ValueObjectSP ret_val;
+ return ret_val;
+ }
+ uintptr_t zero = 0;
+ ExecutionContext exe_ctx(target.get(), false);
+ uint64_t byte_size = 0;
+ if (auto temp = type.GetByteSize(target.get()))
+ byte_size = temp.value();
+ lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
+ reinterpret_cast<const void *>(zero), byte_size, exe_ctx.GetByteOrder(),
+ exe_ctx.GetAddressByteSize());
+ return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, type);
+}
+
+ModuleSP ValueObject::GetModule() {
+ ValueObject *root(GetRoot());
+ if (root != this)
+ return root->GetModule();
+ return lldb::ModuleSP();
+}
+
+ValueObject *ValueObject::GetRoot() {
+ if (m_root)
+ return m_root;
+ return (m_root = FollowParentChain([](ValueObject *vo) -> bool {
+ return (vo->m_parent != nullptr);
+ }));
+}
+
+ValueObject *
+ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) {
+ ValueObject *vo = this;
+ while (vo) {
+ if (!f(vo))
+ break;
+ vo = vo->m_parent;
+ }
+ return vo;
+}
+
+AddressType ValueObject::GetAddressTypeOfChildren() {
+ if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) {
+ ValueObject *root(GetRoot());
+ if (root != this)
+ return root->GetAddressTypeOfChildren();
+ }
+ return m_address_type_of_ptr_or_ref_children;
+}
+
+lldb::DynamicValueType ValueObject::GetDynamicValueType() {
+ ValueObject *with_dv_info = this;
+ while (with_dv_info) {
+ if (with_dv_info->HasDynamicValueTypeInfo())
+ return with_dv_info->GetDynamicValueTypeImpl();
+ with_dv_info = with_dv_info->m_parent;
+ }
+ return lldb::eNoDynamicValues;
+}
+
+lldb::Format ValueObject::GetFormat() const {
+ const ValueObject *with_fmt_info = this;
+ while (with_fmt_info) {
+ if (with_fmt_info->m_format != lldb::eFormatDefault)
+ return with_fmt_info->m_format;
+ with_fmt_info = with_fmt_info->m_parent;
+ }
+ return m_format;
+}
+
+lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() {
+ lldb::LanguageType type = m_preferred_display_language;
+ if (m_preferred_display_language == lldb::eLanguageTypeUnknown) {
+ if (GetRoot()) {
+ if (GetRoot() == this) {
+ if (StackFrameSP frame_sp = GetFrameSP()) {
+ const SymbolContext &sc(
+ frame_sp->GetSymbolContext(eSymbolContextCompUnit));
+ if (CompileUnit *cu = sc.comp_unit)
+ type = cu->GetLanguage();
+ }
+ } else {
+ type = GetRoot()->GetPreferredDisplayLanguage();
+ }
+ }
+ }
+ return (m_preferred_display_language = type); // only compute it once
+}
+
+void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) {
+ if (m_preferred_display_language == lldb::eLanguageTypeUnknown)
+ SetPreferredDisplayLanguage(lt);
+}
+
+bool ValueObject::CanProvideValue() {
+ // we need to support invalid types as providers of values because some bare-
+ // board debugging scenarios have no notion of types, but still manage to
+ // have raw numeric values for things like registers. sigh.
+ CompilerType type = GetCompilerType();
+ return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue));
+}
+
+
+
+ValueObjectSP ValueObject::Persist() {
+ if (!UpdateValueIfNeeded())
+ return nullptr;
+
+ TargetSP target_sp(GetTargetSP());
+ if (!target_sp)
+ return nullptr;
+
+ PersistentExpressionState *persistent_state =
+ target_sp->GetPersistentExpressionStateForLanguage(
+ GetPreferredDisplayLanguage());
+
+ if (!persistent_state)
+ return nullptr;
+
+ ConstString name = persistent_state->GetNextPersistentVariableName();
+
+ ValueObjectSP const_result_sp =
+ ValueObjectConstResult::Create(target_sp.get(), GetValue(), name);
+
+ ExpressionVariableSP persistent_var_sp =
+ persistent_state->CreatePersistentVariable(const_result_sp);
+ persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp;
+ persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference;
+
+ return persistent_var_sp->GetValueObject();
+}
+
+lldb::ValueObjectSP ValueObject::GetVTable() {
+ return ValueObjectVTable::Create(*this);
+}