aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/lldb/source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/lldb/source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp')
-rw-r--r--contrib/llvm-project/lldb/source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp14473
1 files changed, 14473 insertions, 0 deletions
diff --git a/contrib/llvm-project/lldb/source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp b/contrib/llvm-project/lldb/source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp
new file mode 100644
index 000000000000..147c00e51b40
--- /dev/null
+++ b/contrib/llvm-project/lldb/source/Plugins/Instruction/ARM/EmulateInstructionARM.cpp
@@ -0,0 +1,14473 @@
+//===-- EmulateInstructionARM.cpp -----------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include <cstdlib>
+#include <optional>
+
+#include "EmulateInstructionARM.h"
+#include "EmulationStateARM.h"
+#include "lldb/Core/Address.h"
+#include "lldb/Core/PluginManager.h"
+#include "lldb/Host/PosixApi.h"
+#include "lldb/Interpreter/OptionValueArray.h"
+#include "lldb/Interpreter/OptionValueDictionary.h"
+#include "lldb/Symbol/UnwindPlan.h"
+#include "lldb/Utility/ArchSpec.h"
+#include "lldb/Utility/Stream.h"
+
+#include "Plugins/Process/Utility/ARMDefines.h"
+#include "Plugins/Process/Utility/ARMUtils.h"
+#include "Utility/ARM_DWARF_Registers.h"
+
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/MathExtras.h"
+
+using namespace lldb;
+using namespace lldb_private;
+
+LLDB_PLUGIN_DEFINE_ADV(EmulateInstructionARM, InstructionARM)
+
+// Convenient macro definitions.
+#define APSR_C Bit32(m_opcode_cpsr, CPSR_C_POS)
+#define APSR_V Bit32(m_opcode_cpsr, CPSR_V_POS)
+
+#define AlignPC(pc_val) (pc_val & 0xFFFFFFFC)
+
+//
+// ITSession implementation
+//
+
+static std::optional<RegisterInfo> GetARMDWARFRegisterInfo(unsigned reg_num) {
+ RegisterInfo reg_info;
+ ::memset(&reg_info, 0, sizeof(RegisterInfo));
+ ::memset(reg_info.kinds, LLDB_INVALID_REGNUM, sizeof(reg_info.kinds));
+
+ if (reg_num >= dwarf_q0 && reg_num <= dwarf_q15) {
+ reg_info.byte_size = 16;
+ reg_info.format = eFormatVectorOfUInt8;
+ reg_info.encoding = eEncodingVector;
+ }
+
+ if (reg_num >= dwarf_d0 && reg_num <= dwarf_d31) {
+ reg_info.byte_size = 8;
+ reg_info.format = eFormatFloat;
+ reg_info.encoding = eEncodingIEEE754;
+ } else if (reg_num >= dwarf_s0 && reg_num <= dwarf_s31) {
+ reg_info.byte_size = 4;
+ reg_info.format = eFormatFloat;
+ reg_info.encoding = eEncodingIEEE754;
+ } else if (reg_num >= dwarf_f0 && reg_num <= dwarf_f7) {
+ reg_info.byte_size = 12;
+ reg_info.format = eFormatFloat;
+ reg_info.encoding = eEncodingIEEE754;
+ } else {
+ reg_info.byte_size = 4;
+ reg_info.format = eFormatHex;
+ reg_info.encoding = eEncodingUint;
+ }
+
+ reg_info.kinds[eRegisterKindDWARF] = reg_num;
+
+ switch (reg_num) {
+ case dwarf_r0:
+ reg_info.name = "r0";
+ break;
+ case dwarf_r1:
+ reg_info.name = "r1";
+ break;
+ case dwarf_r2:
+ reg_info.name = "r2";
+ break;
+ case dwarf_r3:
+ reg_info.name = "r3";
+ break;
+ case dwarf_r4:
+ reg_info.name = "r4";
+ break;
+ case dwarf_r5:
+ reg_info.name = "r5";
+ break;
+ case dwarf_r6:
+ reg_info.name = "r6";
+ break;
+ case dwarf_r7:
+ reg_info.name = "r7";
+ reg_info.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FP;
+ break;
+ case dwarf_r8:
+ reg_info.name = "r8";
+ break;
+ case dwarf_r9:
+ reg_info.name = "r9";
+ break;
+ case dwarf_r10:
+ reg_info.name = "r10";
+ break;
+ case dwarf_r11:
+ reg_info.name = "r11";
+ break;
+ case dwarf_r12:
+ reg_info.name = "r12";
+ break;
+ case dwarf_sp:
+ reg_info.name = "sp";
+ reg_info.alt_name = "r13";
+ reg_info.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_SP;
+ break;
+ case dwarf_lr:
+ reg_info.name = "lr";
+ reg_info.alt_name = "r14";
+ reg_info.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_RA;
+ break;
+ case dwarf_pc:
+ reg_info.name = "pc";
+ reg_info.alt_name = "r15";
+ reg_info.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_PC;
+ break;
+ case dwarf_cpsr:
+ reg_info.name = "cpsr";
+ reg_info.kinds[eRegisterKindGeneric] = LLDB_REGNUM_GENERIC_FLAGS;
+ break;
+
+ case dwarf_s0:
+ reg_info.name = "s0";
+ break;
+ case dwarf_s1:
+ reg_info.name = "s1";
+ break;
+ case dwarf_s2:
+ reg_info.name = "s2";
+ break;
+ case dwarf_s3:
+ reg_info.name = "s3";
+ break;
+ case dwarf_s4:
+ reg_info.name = "s4";
+ break;
+ case dwarf_s5:
+ reg_info.name = "s5";
+ break;
+ case dwarf_s6:
+ reg_info.name = "s6";
+ break;
+ case dwarf_s7:
+ reg_info.name = "s7";
+ break;
+ case dwarf_s8:
+ reg_info.name = "s8";
+ break;
+ case dwarf_s9:
+ reg_info.name = "s9";
+ break;
+ case dwarf_s10:
+ reg_info.name = "s10";
+ break;
+ case dwarf_s11:
+ reg_info.name = "s11";
+ break;
+ case dwarf_s12:
+ reg_info.name = "s12";
+ break;
+ case dwarf_s13:
+ reg_info.name = "s13";
+ break;
+ case dwarf_s14:
+ reg_info.name = "s14";
+ break;
+ case dwarf_s15:
+ reg_info.name = "s15";
+ break;
+ case dwarf_s16:
+ reg_info.name = "s16";
+ break;
+ case dwarf_s17:
+ reg_info.name = "s17";
+ break;
+ case dwarf_s18:
+ reg_info.name = "s18";
+ break;
+ case dwarf_s19:
+ reg_info.name = "s19";
+ break;
+ case dwarf_s20:
+ reg_info.name = "s20";
+ break;
+ case dwarf_s21:
+ reg_info.name = "s21";
+ break;
+ case dwarf_s22:
+ reg_info.name = "s22";
+ break;
+ case dwarf_s23:
+ reg_info.name = "s23";
+ break;
+ case dwarf_s24:
+ reg_info.name = "s24";
+ break;
+ case dwarf_s25:
+ reg_info.name = "s25";
+ break;
+ case dwarf_s26:
+ reg_info.name = "s26";
+ break;
+ case dwarf_s27:
+ reg_info.name = "s27";
+ break;
+ case dwarf_s28:
+ reg_info.name = "s28";
+ break;
+ case dwarf_s29:
+ reg_info.name = "s29";
+ break;
+ case dwarf_s30:
+ reg_info.name = "s30";
+ break;
+ case dwarf_s31:
+ reg_info.name = "s31";
+ break;
+
+ // FPA Registers 0-7
+ case dwarf_f0:
+ reg_info.name = "f0";
+ break;
+ case dwarf_f1:
+ reg_info.name = "f1";
+ break;
+ case dwarf_f2:
+ reg_info.name = "f2";
+ break;
+ case dwarf_f3:
+ reg_info.name = "f3";
+ break;
+ case dwarf_f4:
+ reg_info.name = "f4";
+ break;
+ case dwarf_f5:
+ reg_info.name = "f5";
+ break;
+ case dwarf_f6:
+ reg_info.name = "f6";
+ break;
+ case dwarf_f7:
+ reg_info.name = "f7";
+ break;
+
+ // Intel wireless MMX general purpose registers 0 - 7 XScale accumulator
+ // register 0 - 7 (they do overlap with wCGR0 - wCGR7)
+ case dwarf_wCGR0:
+ reg_info.name = "wCGR0/ACC0";
+ break;
+ case dwarf_wCGR1:
+ reg_info.name = "wCGR1/ACC1";
+ break;
+ case dwarf_wCGR2:
+ reg_info.name = "wCGR2/ACC2";
+ break;
+ case dwarf_wCGR3:
+ reg_info.name = "wCGR3/ACC3";
+ break;
+ case dwarf_wCGR4:
+ reg_info.name = "wCGR4/ACC4";
+ break;
+ case dwarf_wCGR5:
+ reg_info.name = "wCGR5/ACC5";
+ break;
+ case dwarf_wCGR6:
+ reg_info.name = "wCGR6/ACC6";
+ break;
+ case dwarf_wCGR7:
+ reg_info.name = "wCGR7/ACC7";
+ break;
+
+ // Intel wireless MMX data registers 0 - 15
+ case dwarf_wR0:
+ reg_info.name = "wR0";
+ break;
+ case dwarf_wR1:
+ reg_info.name = "wR1";
+ break;
+ case dwarf_wR2:
+ reg_info.name = "wR2";
+ break;
+ case dwarf_wR3:
+ reg_info.name = "wR3";
+ break;
+ case dwarf_wR4:
+ reg_info.name = "wR4";
+ break;
+ case dwarf_wR5:
+ reg_info.name = "wR5";
+ break;
+ case dwarf_wR6:
+ reg_info.name = "wR6";
+ break;
+ case dwarf_wR7:
+ reg_info.name = "wR7";
+ break;
+ case dwarf_wR8:
+ reg_info.name = "wR8";
+ break;
+ case dwarf_wR9:
+ reg_info.name = "wR9";
+ break;
+ case dwarf_wR10:
+ reg_info.name = "wR10";
+ break;
+ case dwarf_wR11:
+ reg_info.name = "wR11";
+ break;
+ case dwarf_wR12:
+ reg_info.name = "wR12";
+ break;
+ case dwarf_wR13:
+ reg_info.name = "wR13";
+ break;
+ case dwarf_wR14:
+ reg_info.name = "wR14";
+ break;
+ case dwarf_wR15:
+ reg_info.name = "wR15";
+ break;
+
+ case dwarf_spsr:
+ reg_info.name = "spsr";
+ break;
+ case dwarf_spsr_fiq:
+ reg_info.name = "spsr_fiq";
+ break;
+ case dwarf_spsr_irq:
+ reg_info.name = "spsr_irq";
+ break;
+ case dwarf_spsr_abt:
+ reg_info.name = "spsr_abt";
+ break;
+ case dwarf_spsr_und:
+ reg_info.name = "spsr_und";
+ break;
+ case dwarf_spsr_svc:
+ reg_info.name = "spsr_svc";
+ break;
+
+ case dwarf_r8_usr:
+ reg_info.name = "r8_usr";
+ break;
+ case dwarf_r9_usr:
+ reg_info.name = "r9_usr";
+ break;
+ case dwarf_r10_usr:
+ reg_info.name = "r10_usr";
+ break;
+ case dwarf_r11_usr:
+ reg_info.name = "r11_usr";
+ break;
+ case dwarf_r12_usr:
+ reg_info.name = "r12_usr";
+ break;
+ case dwarf_r13_usr:
+ reg_info.name = "r13_usr";
+ break;
+ case dwarf_r14_usr:
+ reg_info.name = "r14_usr";
+ break;
+ case dwarf_r8_fiq:
+ reg_info.name = "r8_fiq";
+ break;
+ case dwarf_r9_fiq:
+ reg_info.name = "r9_fiq";
+ break;
+ case dwarf_r10_fiq:
+ reg_info.name = "r10_fiq";
+ break;
+ case dwarf_r11_fiq:
+ reg_info.name = "r11_fiq";
+ break;
+ case dwarf_r12_fiq:
+ reg_info.name = "r12_fiq";
+ break;
+ case dwarf_r13_fiq:
+ reg_info.name = "r13_fiq";
+ break;
+ case dwarf_r14_fiq:
+ reg_info.name = "r14_fiq";
+ break;
+ case dwarf_r13_irq:
+ reg_info.name = "r13_irq";
+ break;
+ case dwarf_r14_irq:
+ reg_info.name = "r14_irq";
+ break;
+ case dwarf_r13_abt:
+ reg_info.name = "r13_abt";
+ break;
+ case dwarf_r14_abt:
+ reg_info.name = "r14_abt";
+ break;
+ case dwarf_r13_und:
+ reg_info.name = "r13_und";
+ break;
+ case dwarf_r14_und:
+ reg_info.name = "r14_und";
+ break;
+ case dwarf_r13_svc:
+ reg_info.name = "r13_svc";
+ break;
+ case dwarf_r14_svc:
+ reg_info.name = "r14_svc";
+ break;
+
+ // Intel wireless MMX control register in co-processor 0 - 7
+ case dwarf_wC0:
+ reg_info.name = "wC0";
+ break;
+ case dwarf_wC1:
+ reg_info.name = "wC1";
+ break;
+ case dwarf_wC2:
+ reg_info.name = "wC2";
+ break;
+ case dwarf_wC3:
+ reg_info.name = "wC3";
+ break;
+ case dwarf_wC4:
+ reg_info.name = "wC4";
+ break;
+ case dwarf_wC5:
+ reg_info.name = "wC5";
+ break;
+ case dwarf_wC6:
+ reg_info.name = "wC6";
+ break;
+ case dwarf_wC7:
+ reg_info.name = "wC7";
+ break;
+
+ // VFP-v3/Neon
+ case dwarf_d0:
+ reg_info.name = "d0";
+ break;
+ case dwarf_d1:
+ reg_info.name = "d1";
+ break;
+ case dwarf_d2:
+ reg_info.name = "d2";
+ break;
+ case dwarf_d3:
+ reg_info.name = "d3";
+ break;
+ case dwarf_d4:
+ reg_info.name = "d4";
+ break;
+ case dwarf_d5:
+ reg_info.name = "d5";
+ break;
+ case dwarf_d6:
+ reg_info.name = "d6";
+ break;
+ case dwarf_d7:
+ reg_info.name = "d7";
+ break;
+ case dwarf_d8:
+ reg_info.name = "d8";
+ break;
+ case dwarf_d9:
+ reg_info.name = "d9";
+ break;
+ case dwarf_d10:
+ reg_info.name = "d10";
+ break;
+ case dwarf_d11:
+ reg_info.name = "d11";
+ break;
+ case dwarf_d12:
+ reg_info.name = "d12";
+ break;
+ case dwarf_d13:
+ reg_info.name = "d13";
+ break;
+ case dwarf_d14:
+ reg_info.name = "d14";
+ break;
+ case dwarf_d15:
+ reg_info.name = "d15";
+ break;
+ case dwarf_d16:
+ reg_info.name = "d16";
+ break;
+ case dwarf_d17:
+ reg_info.name = "d17";
+ break;
+ case dwarf_d18:
+ reg_info.name = "d18";
+ break;
+ case dwarf_d19:
+ reg_info.name = "d19";
+ break;
+ case dwarf_d20:
+ reg_info.name = "d20";
+ break;
+ case dwarf_d21:
+ reg_info.name = "d21";
+ break;
+ case dwarf_d22:
+ reg_info.name = "d22";
+ break;
+ case dwarf_d23:
+ reg_info.name = "d23";
+ break;
+ case dwarf_d24:
+ reg_info.name = "d24";
+ break;
+ case dwarf_d25:
+ reg_info.name = "d25";
+ break;
+ case dwarf_d26:
+ reg_info.name = "d26";
+ break;
+ case dwarf_d27:
+ reg_info.name = "d27";
+ break;
+ case dwarf_d28:
+ reg_info.name = "d28";
+ break;
+ case dwarf_d29:
+ reg_info.name = "d29";
+ break;
+ case dwarf_d30:
+ reg_info.name = "d30";
+ break;
+ case dwarf_d31:
+ reg_info.name = "d31";
+ break;
+
+ // NEON 128-bit vector registers (overlays the d registers)
+ case dwarf_q0:
+ reg_info.name = "q0";
+ break;
+ case dwarf_q1:
+ reg_info.name = "q1";
+ break;
+ case dwarf_q2:
+ reg_info.name = "q2";
+ break;
+ case dwarf_q3:
+ reg_info.name = "q3";
+ break;
+ case dwarf_q4:
+ reg_info.name = "q4";
+ break;
+ case dwarf_q5:
+ reg_info.name = "q5";
+ break;
+ case dwarf_q6:
+ reg_info.name = "q6";
+ break;
+ case dwarf_q7:
+ reg_info.name = "q7";
+ break;
+ case dwarf_q8:
+ reg_info.name = "q8";
+ break;
+ case dwarf_q9:
+ reg_info.name = "q9";
+ break;
+ case dwarf_q10:
+ reg_info.name = "q10";
+ break;
+ case dwarf_q11:
+ reg_info.name = "q11";
+ break;
+ case dwarf_q12:
+ reg_info.name = "q12";
+ break;
+ case dwarf_q13:
+ reg_info.name = "q13";
+ break;
+ case dwarf_q14:
+ reg_info.name = "q14";
+ break;
+ case dwarf_q15:
+ reg_info.name = "q15";
+ break;
+
+ default:
+ return {};
+ }
+ return reg_info;
+}
+
+// A8.6.50
+// Valid return values are {1, 2, 3, 4}, with 0 signifying an error condition.
+static uint32_t CountITSize(uint32_t ITMask) {
+ // First count the trailing zeros of the IT mask.
+ uint32_t TZ = llvm::countr_zero(ITMask);
+ if (TZ > 3) {
+ return 0;
+ }
+ return (4 - TZ);
+}
+
+// Init ITState. Note that at least one bit is always 1 in mask.
+bool ITSession::InitIT(uint32_t bits7_0) {
+ ITCounter = CountITSize(Bits32(bits7_0, 3, 0));
+ if (ITCounter == 0)
+ return false;
+
+ // A8.6.50 IT
+ unsigned short FirstCond = Bits32(bits7_0, 7, 4);
+ if (FirstCond == 0xF) {
+ return false;
+ }
+ if (FirstCond == 0xE && ITCounter != 1) {
+ return false;
+ }
+
+ ITState = bits7_0;
+ return true;
+}
+
+// Update ITState if necessary.
+void ITSession::ITAdvance() {
+ // assert(ITCounter);
+ --ITCounter;
+ if (ITCounter == 0)
+ ITState = 0;
+ else {
+ unsigned short NewITState4_0 = Bits32(ITState, 4, 0) << 1;
+ SetBits32(ITState, 4, 0, NewITState4_0);
+ }
+}
+
+// Return true if we're inside an IT Block.
+bool ITSession::InITBlock() { return ITCounter != 0; }
+
+// Return true if we're the last instruction inside an IT Block.
+bool ITSession::LastInITBlock() { return ITCounter == 1; }
+
+// Get condition bits for the current thumb instruction.
+uint32_t ITSession::GetCond() {
+ if (InITBlock())
+ return Bits32(ITState, 7, 4);
+ else
+ return COND_AL;
+}
+
+// ARM constants used during decoding
+#define REG_RD 0
+#define LDM_REGLIST 1
+#define SP_REG 13
+#define LR_REG 14
+#define PC_REG 15
+#define PC_REGLIST_BIT 0x8000
+
+#define ARMv4 (1u << 0)
+#define ARMv4T (1u << 1)
+#define ARMv5T (1u << 2)
+#define ARMv5TE (1u << 3)
+#define ARMv5TEJ (1u << 4)
+#define ARMv6 (1u << 5)
+#define ARMv6K (1u << 6)
+#define ARMv6T2 (1u << 7)
+#define ARMv7 (1u << 8)
+#define ARMv7S (1u << 9)
+#define ARMv8 (1u << 10)
+#define ARMvAll (0xffffffffu)
+
+#define ARMV4T_ABOVE \
+ (ARMv4T | ARMv5T | ARMv5TE | ARMv5TEJ | ARMv6 | ARMv6K | ARMv6T2 | ARMv7 | \
+ ARMv7S | ARMv8)
+#define ARMV5_ABOVE \
+ (ARMv5T | ARMv5TE | ARMv5TEJ | ARMv6 | ARMv6K | ARMv6T2 | ARMv7 | ARMv7S | \
+ ARMv8)
+#define ARMV5TE_ABOVE \
+ (ARMv5TE | ARMv5TEJ | ARMv6 | ARMv6K | ARMv6T2 | ARMv7 | ARMv7S | ARMv8)
+#define ARMV5J_ABOVE \
+ (ARMv5TEJ | ARMv6 | ARMv6K | ARMv6T2 | ARMv7 | ARMv7S | ARMv8)
+#define ARMV6_ABOVE (ARMv6 | ARMv6K | ARMv6T2 | ARMv7 | ARMv7S | ARMv8)
+#define ARMV6T2_ABOVE (ARMv6T2 | ARMv7 | ARMv7S | ARMv8)
+#define ARMV7_ABOVE (ARMv7 | ARMv7S | ARMv8)
+
+#define No_VFP 0
+#define VFPv1 (1u << 1)
+#define VFPv2 (1u << 2)
+#define VFPv3 (1u << 3)
+#define AdvancedSIMD (1u << 4)
+
+#define VFPv1_ABOVE (VFPv1 | VFPv2 | VFPv3 | AdvancedSIMD)
+#define VFPv2_ABOVE (VFPv2 | VFPv3 | AdvancedSIMD)
+#define VFPv2v3 (VFPv2 | VFPv3)
+
+//
+// EmulateInstructionARM implementation
+//
+
+void EmulateInstructionARM::Initialize() {
+ PluginManager::RegisterPlugin(GetPluginNameStatic(),
+ GetPluginDescriptionStatic(), CreateInstance);
+}
+
+void EmulateInstructionARM::Terminate() {
+ PluginManager::UnregisterPlugin(CreateInstance);
+}
+
+llvm::StringRef EmulateInstructionARM::GetPluginDescriptionStatic() {
+ return "Emulate instructions for the ARM architecture.";
+}
+
+EmulateInstruction *
+EmulateInstructionARM::CreateInstance(const ArchSpec &arch,
+ InstructionType inst_type) {
+ if (EmulateInstructionARM::SupportsEmulatingInstructionsOfTypeStatic(
+ inst_type)) {
+ if (arch.GetTriple().getArch() == llvm::Triple::arm) {
+ std::unique_ptr<EmulateInstructionARM> emulate_insn_up(
+ new EmulateInstructionARM(arch));
+
+ if (emulate_insn_up)
+ return emulate_insn_up.release();
+ } else if (arch.GetTriple().getArch() == llvm::Triple::thumb) {
+ std::unique_ptr<EmulateInstructionARM> emulate_insn_up(
+ new EmulateInstructionARM(arch));
+
+ if (emulate_insn_up)
+ return emulate_insn_up.release();
+ }
+ }
+
+ return nullptr;
+}
+
+bool EmulateInstructionARM::SetTargetTriple(const ArchSpec &arch) {
+ if (arch.GetTriple().getArch() == llvm::Triple::arm)
+ return true;
+ else if (arch.GetTriple().getArch() == llvm::Triple::thumb)
+ return true;
+
+ return false;
+}
+
+// Write "bits (32) UNKNOWN" to memory address "address". Helper function for
+// many ARM instructions.
+bool EmulateInstructionARM::WriteBits32UnknownToMemory(addr_t address) {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextWriteMemoryRandomBits;
+ context.SetNoArgs();
+
+ uint32_t random_data = rand();
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ return MemAWrite(context, address, random_data, addr_byte_size);
+}
+
+// Write "bits (32) UNKNOWN" to register n. Helper function for many ARM
+// instructions.
+bool EmulateInstructionARM::WriteBits32Unknown(int n) {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextWriteRegisterRandomBits;
+ context.SetNoArgs();
+
+ bool success;
+ uint32_t data =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n, data))
+ return false;
+
+ return true;
+}
+
+std::optional<RegisterInfo>
+EmulateInstructionARM::GetRegisterInfo(lldb::RegisterKind reg_kind,
+ uint32_t reg_num) {
+ if (reg_kind == eRegisterKindGeneric) {
+ switch (reg_num) {
+ case LLDB_REGNUM_GENERIC_PC:
+ reg_kind = eRegisterKindDWARF;
+ reg_num = dwarf_pc;
+ break;
+ case LLDB_REGNUM_GENERIC_SP:
+ reg_kind = eRegisterKindDWARF;
+ reg_num = dwarf_sp;
+ break;
+ case LLDB_REGNUM_GENERIC_FP:
+ reg_kind = eRegisterKindDWARF;
+ reg_num = dwarf_r7;
+ break;
+ case LLDB_REGNUM_GENERIC_RA:
+ reg_kind = eRegisterKindDWARF;
+ reg_num = dwarf_lr;
+ break;
+ case LLDB_REGNUM_GENERIC_FLAGS:
+ reg_kind = eRegisterKindDWARF;
+ reg_num = dwarf_cpsr;
+ break;
+ default:
+ return {};
+ }
+ }
+
+ if (reg_kind == eRegisterKindDWARF)
+ return GetARMDWARFRegisterInfo(reg_num);
+ return {};
+}
+
+uint32_t EmulateInstructionARM::GetFramePointerRegisterNumber() const {
+ if (m_arch.GetTriple().isAndroid())
+ return LLDB_INVALID_REGNUM; // Don't use frame pointer on android
+ bool is_apple = false;
+ if (m_arch.GetTriple().getVendor() == llvm::Triple::Apple)
+ is_apple = true;
+ switch (m_arch.GetTriple().getOS()) {
+ case llvm::Triple::Darwin:
+ case llvm::Triple::MacOSX:
+ case llvm::Triple::IOS:
+ case llvm::Triple::TvOS:
+ case llvm::Triple::WatchOS:
+ case llvm::Triple::XROS:
+ case llvm::Triple::BridgeOS:
+ is_apple = true;
+ break;
+ default:
+ break;
+ }
+
+ /* On Apple iOS et al, the frame pointer register is always r7.
+ * Typically on other ARM systems, thumb code uses r7; arm code uses r11.
+ * Windows on ARM, which is in thumb mode, uses r11 though.
+ */
+
+ uint32_t fp_regnum = 11;
+
+ if (is_apple)
+ fp_regnum = 7;
+
+ if (m_opcode_mode == eModeThumb && !m_arch.GetTriple().isOSWindows())
+ fp_regnum = 7;
+
+ return fp_regnum;
+}
+
+uint32_t EmulateInstructionARM::GetFramePointerDWARFRegisterNumber() const {
+ bool is_apple = false;
+ if (m_arch.GetTriple().getVendor() == llvm::Triple::Apple)
+ is_apple = true;
+ switch (m_arch.GetTriple().getOS()) {
+ case llvm::Triple::Darwin:
+ case llvm::Triple::MacOSX:
+ case llvm::Triple::IOS:
+ is_apple = true;
+ break;
+ default:
+ break;
+ }
+
+ /* On Apple iOS et al, the frame pointer register is always r7.
+ * Typically on other ARM systems, thumb code uses r7; arm code uses r11.
+ * Windows on ARM, which is in thumb mode, uses r11 though.
+ */
+
+ uint32_t fp_regnum = dwarf_r11;
+
+ if (is_apple)
+ fp_regnum = dwarf_r7;
+
+ if (m_opcode_mode == eModeThumb && !m_arch.GetTriple().isOSWindows())
+ fp_regnum = dwarf_r7;
+
+ return fp_regnum;
+}
+
+// Push Multiple Registers stores multiple registers to the stack, storing to
+// consecutive memory locations ending just below the address in SP, and
+// updates
+// SP to point to the start of the stored data.
+bool EmulateInstructionARM::EmulatePUSH(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ NullCheckIfThumbEE(13);
+ address = SP - 4*BitCount(registers);
+
+ for (i = 0 to 14)
+ {
+ if (registers<i> == '1')
+ {
+ if i == 13 && i != LowestSetBit(registers) // Only possible for encoding A1
+ MemA[address,4] = bits(32) UNKNOWN;
+ else
+ MemA[address,4] = R[i];
+ address = address + 4;
+ }
+ }
+
+ if (registers<15> == '1') // Only possible for encoding A1 or A2
+ MemA[address,4] = PCStoreValue();
+
+ SP = SP - 4*BitCount(registers);
+ }
+#endif
+
+ bool success = false;
+ if (ConditionPassed(opcode)) {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t registers = 0;
+ uint32_t Rt; // the source register
+ switch (encoding) {
+ case eEncodingT1:
+ registers = Bits32(opcode, 7, 0);
+ // The M bit represents LR.
+ if (Bit32(opcode, 8))
+ registers |= (1u << 14);
+ // if BitCount(registers) < 1 then UNPREDICTABLE;
+ if (BitCount(registers) < 1)
+ return false;
+ break;
+ case eEncodingT2:
+ // Ignore bits 15 & 13.
+ registers = Bits32(opcode, 15, 0) & ~0xa000;
+ // if BitCount(registers) < 2 then UNPREDICTABLE;
+ if (BitCount(registers) < 2)
+ return false;
+ break;
+ case eEncodingT3:
+ Rt = Bits32(opcode, 15, 12);
+ // if BadReg(t) then UNPREDICTABLE;
+ if (BadReg(Rt))
+ return false;
+ registers = (1u << Rt);
+ break;
+ case eEncodingA1:
+ registers = Bits32(opcode, 15, 0);
+ // Instead of return false, let's handle the following case as well,
+ // which amounts to pushing one reg onto the full descending stacks.
+ // if BitCount(register_list) < 2 then SEE STMDB / STMFD;
+ break;
+ case eEncodingA2:
+ Rt = Bits32(opcode, 15, 12);
+ // if t == 13 then UNPREDICTABLE;
+ if (Rt == dwarf_sp)
+ return false;
+ registers = (1u << Rt);
+ break;
+ default:
+ return false;
+ }
+ addr_t sp_offset = addr_byte_size * BitCount(registers);
+ addr_t addr = sp - sp_offset;
+ uint32_t i;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextPushRegisterOnStack;
+ std::optional<RegisterInfo> sp_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_sp);
+ for (i = 0; i < 15; ++i) {
+ if (BitIsSet(registers, i)) {
+ std::optional<RegisterInfo> reg_info =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + i);
+ context.SetRegisterToRegisterPlusOffset(*reg_info, *sp_reg, addr - sp);
+ uint32_t reg_value = ReadCoreReg(i, &success);
+ if (!success)
+ return false;
+ if (!MemAWrite(context, addr, reg_value, addr_byte_size))
+ return false;
+ addr += addr_byte_size;
+ }
+ }
+
+ if (BitIsSet(registers, 15)) {
+ std::optional<RegisterInfo> reg_info =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_pc);
+ context.SetRegisterToRegisterPlusOffset(*reg_info, *sp_reg, addr - sp);
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+ if (!MemAWrite(context, addr, pc, addr_byte_size))
+ return false;
+ }
+
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned(-sp_offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_SP, sp - sp_offset))
+ return false;
+ }
+ return true;
+}
+
+// Pop Multiple Registers loads multiple registers from the stack, loading from
+// consecutive memory locations staring at the address in SP, and updates
+// SP to point just above the loaded data.
+bool EmulateInstructionARM::EmulatePOP(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations(); NullCheckIfThumbEE(13);
+ address = SP;
+ for i = 0 to 14
+ if registers<i> == '1' then
+ R[i] = if UnalignedAllowed then MemU[address,4] else MemA[address,4]; address = address + 4;
+ if registers<15> == '1' then
+ if UnalignedAllowed then
+ LoadWritePC(MemU[address,4]);
+ else
+ LoadWritePC(MemA[address,4]);
+ if registers<13> == '0' then SP = SP + 4*BitCount(registers);
+ if registers<13> == '1' then SP = bits(32) UNKNOWN;
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t registers = 0;
+ uint32_t Rt; // the destination register
+ switch (encoding) {
+ case eEncodingT1:
+ registers = Bits32(opcode, 7, 0);
+ // The P bit represents PC.
+ if (Bit32(opcode, 8))
+ registers |= (1u << 15);
+ // if BitCount(registers) < 1 then UNPREDICTABLE;
+ if (BitCount(registers) < 1)
+ return false;
+ break;
+ case eEncodingT2:
+ // Ignore bit 13.
+ registers = Bits32(opcode, 15, 0) & ~0x2000;
+ // if BitCount(registers) < 2 || (P == '1' && M == '1') then
+ // UNPREDICTABLE;
+ if (BitCount(registers) < 2 || (Bit32(opcode, 15) && Bit32(opcode, 14)))
+ return false;
+ // if registers<15> == '1' && InITBlock() && !LastInITBlock() then
+ // UNPREDICTABLE;
+ if (BitIsSet(registers, 15) && InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingT3:
+ Rt = Bits32(opcode, 15, 12);
+ // if t == 13 || (t == 15 && InITBlock() && !LastInITBlock()) then
+ // UNPREDICTABLE;
+ if (Rt == 13)
+ return false;
+ if (Rt == 15 && InITBlock() && !LastInITBlock())
+ return false;
+ registers = (1u << Rt);
+ break;
+ case eEncodingA1:
+ registers = Bits32(opcode, 15, 0);
+ // Instead of return false, let's handle the following case as well,
+ // which amounts to popping one reg from the full descending stacks.
+ // if BitCount(register_list) < 2 then SEE LDM / LDMIA / LDMFD;
+
+ // if registers<13> == '1' && ArchVersion() >= 7 then UNPREDICTABLE;
+ if (BitIsSet(opcode, 13) && ArchVersion() >= ARMv7)
+ return false;
+ break;
+ case eEncodingA2:
+ Rt = Bits32(opcode, 15, 12);
+ // if t == 13 then UNPREDICTABLE;
+ if (Rt == dwarf_sp)
+ return false;
+ registers = (1u << Rt);
+ break;
+ default:
+ return false;
+ }
+ addr_t sp_offset = addr_byte_size * BitCount(registers);
+ addr_t addr = sp;
+ uint32_t i, data;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextPopRegisterOffStack;
+
+ std::optional<RegisterInfo> sp_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_sp);
+
+ for (i = 0; i < 15; ++i) {
+ if (BitIsSet(registers, i)) {
+ context.SetAddress(addr);
+ data = MemARead(context, addr, 4, 0, &success);
+ if (!success)
+ return false;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + i,
+ data))
+ return false;
+ addr += addr_byte_size;
+ }
+ }
+
+ if (BitIsSet(registers, 15)) {
+ context.SetRegisterPlusOffset(*sp_reg, addr - sp);
+ data = MemARead(context, addr, 4, 0, &success);
+ if (!success)
+ return false;
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ // addr += addr_byte_size;
+ }
+
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned(sp_offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_SP, sp + sp_offset))
+ return false;
+ }
+ return true;
+}
+
+// Set r7 or ip to point to saved value residing within the stack.
+// ADD (SP plus immediate)
+bool EmulateInstructionARM::EmulateADDRdSPImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(SP, imm32, '0');
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t Rd; // the destination register
+ uint32_t imm32;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = 7;
+ imm32 = Bits32(opcode, 7, 0) << 2; // imm32 = ZeroExtend(imm8:'00', 32)
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+ addr_t sp_offset = imm32;
+ addr_t addr = sp + sp_offset; // a pointer to the stack area
+
+ EmulateInstruction::Context context;
+ if (Rd == GetFramePointerRegisterNumber())
+ context.type = eContextSetFramePointer;
+ else
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ std::optional<RegisterInfo> sp_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_sp);
+ context.SetRegisterPlusOffset(*sp_reg, sp_offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + Rd,
+ addr))
+ return false;
+ }
+ return true;
+}
+
+// Set r7 or ip to the current stack pointer.
+// MOV (register)
+bool EmulateInstructionARM::EmulateMOVRdSP(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ result = R[m];
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ // APSR.C unchanged
+ // APSR.V unchanged
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t Rd; // the destination register
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = 7;
+ break;
+ case eEncodingA1:
+ Rd = 12;
+ break;
+ default:
+ return false;
+ }
+
+ EmulateInstruction::Context context;
+ if (Rd == GetFramePointerRegisterNumber())
+ context.type = EmulateInstruction::eContextSetFramePointer;
+ else
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ std::optional<RegisterInfo> sp_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_sp);
+ context.SetRegisterPlusOffset(*sp_reg, 0);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + Rd, sp))
+ return false;
+ }
+ return true;
+}
+
+// Move from high register (r8-r15) to low register (r0-r7).
+// MOV (register)
+bool EmulateInstructionARM::EmulateMOVLowHigh(const uint32_t opcode,
+ const ARMEncoding encoding) {
+ return EmulateMOVRdRm(opcode, encoding);
+}
+
+// Move from register to register.
+// MOV (register)
+bool EmulateInstructionARM::EmulateMOVRdRm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ result = R[m];
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ // APSR.C unchanged
+ // APSR.V unchanged
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rm; // the source register
+ uint32_t Rd; // the destination register
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bit32(opcode, 7) << 3 | Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 6, 3);
+ setflags = false;
+ if (Rd == 15 && InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = true;
+ if (InITBlock())
+ return false;
+ break;
+ case eEncodingT3:
+ Rd = Bits32(opcode, 11, 8);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ // if setflags && (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
+ if (setflags && (BadReg(Rd) || BadReg(Rm)))
+ return false;
+ // if !setflags && (d == 15 || m == 15 || (d == 13 && m == 13)) then
+ // UNPREDICTABLE;
+ if (!setflags && (Rd == 15 || Rm == 15 || (Rd == 13 && Rm == 13)))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ uint32_t result = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ // The context specifies that Rm is to be moved into Rd.
+ EmulateInstruction::Context context;
+ if (Rd == 13)
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ else if (Rd == GetFramePointerRegisterNumber() && Rm == 13)
+ context.type = EmulateInstruction::eContextSetFramePointer;
+ else
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + Rm);
+ context.SetRegisterPlusOffset(*dwarf_reg, 0);
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags))
+ return false;
+ }
+ return true;
+}
+
+// Move (immediate) writes an immediate value to the destination register. It
+// can optionally update the condition flags based on the value.
+// MOV (immediate)
+bool EmulateInstructionARM::EmulateMOVRdImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ result = imm32;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+ }
+#endif
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd; // the destination register
+ uint32_t imm32; // the immediate value to be written to Rd
+ uint32_t carry =
+ 0; // the carry bit after ThumbExpandImm_C or ARMExpandImm_C.
+ // for setflags == false, this value is a don't care initialized to
+ // 0 to silence the static analyzer
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 10, 8);
+ setflags = !InITBlock();
+ imm32 = Bits32(opcode, 7, 0); // imm32 = ZeroExtend(imm8, 32)
+ carry = APSR_C;
+
+ break;
+
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(opcode, APSR_C, carry);
+ if (BadReg(Rd))
+ return false;
+
+ break;
+
+ case eEncodingT3: {
+ // d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:i:imm3:imm8,
+ // 32);
+ Rd = Bits32(opcode, 11, 8);
+ setflags = false;
+ uint32_t imm4 = Bits32(opcode, 19, 16);
+ uint32_t imm3 = Bits32(opcode, 14, 12);
+ uint32_t i = Bit32(opcode, 26);
+ uint32_t imm8 = Bits32(opcode, 7, 0);
+ imm32 = (imm4 << 12) | (i << 11) | (imm3 << 8) | imm8;
+
+ // if BadReg(d) then UNPREDICTABLE;
+ if (BadReg(Rd))
+ return false;
+ } break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); setflags = (S == '1'); (imm32, carry) =
+ // ARMExpandImm_C(imm12, APSR.C);
+ Rd = Bits32(opcode, 15, 12);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm_C(opcode, APSR_C, carry);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if ((Rd == 15) && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+
+ break;
+
+ case eEncodingA2: {
+ // d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm4:imm12, 32);
+ Rd = Bits32(opcode, 15, 12);
+ setflags = false;
+ uint32_t imm4 = Bits32(opcode, 19, 16);
+ uint32_t imm12 = Bits32(opcode, 11, 0);
+ imm32 = (imm4 << 12) | imm12;
+
+ // if d == 15 then UNPREDICTABLE;
+ if (Rd == 15)
+ return false;
+ } break;
+
+ default:
+ return false;
+ }
+ uint32_t result = imm32;
+
+ // The context specifies that an immediate is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// MUL multiplies two register values. The least significant 32 bits of the
+// result are written to the destination
+// register. These 32 bits do not depend on whether the source register values
+// are considered to be signed values or unsigned values.
+//
+// Optionally, it can update the condition flags based on the result. In the
+// Thumb instruction set, this option is limited to only a few forms of the
+// instruction.
+bool EmulateInstructionARM::EmulateMUL(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final results
+ operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
+ result = operand1 * operand2;
+ R[d] = result<31:0>;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ if ArchVersion() == 4 then
+ APSR.C = bit UNKNOWN;
+ // else APSR.C unchanged
+ // APSR.V always unchanged
+#endif
+
+ if (ConditionPassed(opcode)) {
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool setflags;
+
+ // EncodingSpecificOperations();
+ switch (encoding) {
+ case eEncodingT1:
+ // d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm); setflags = !InITBlock();
+ d = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ m = Bits32(opcode, 2, 0);
+ setflags = !InITBlock();
+
+ // if ArchVersion() < 6 && d == n then UNPREDICTABLE;
+ if ((ArchVersion() < ARMv6) && (d == n))
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = FALSE;
+ d = Bits32(opcode, 11, 8);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+ setflags = false;
+
+ // if BadReg(d) || BadReg(n) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg(d) || BadReg(n) || BadReg(m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
+ d = Bits32(opcode, 19, 16);
+ n = Bits32(opcode, 3, 0);
+ m = Bits32(opcode, 11, 8);
+ setflags = BitIsSet(opcode, 20);
+
+ // if d == 15 || n == 15 || m == 15 then UNPREDICTABLE;
+ if ((d == 15) || (n == 15) || (m == 15))
+ return false;
+
+ // if ArchVersion() < 6 && d == n then UNPREDICTABLE;
+ if ((ArchVersion() < ARMv6) && (d == n))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ bool success = false;
+
+ // operand1 = SInt(R[n]); // operand1 = UInt(R[n]) produces the same final
+ // results
+ uint64_t operand1 =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ // operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final
+ // results
+ uint64_t operand2 =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // result = operand1 * operand2;
+ uint64_t result = operand1 * operand2;
+
+ // R[d] = result<31:0>;
+ std::optional<RegisterInfo> op1_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> op2_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ context.SetRegisterRegisterOperands(*op1_reg, *op2_reg);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + d,
+ (0x0000ffff & result)))
+ return false;
+
+ // if setflags then
+ if (setflags) {
+ // APSR.N = result<31>;
+ // APSR.Z = IsZeroBit(result);
+ m_new_inst_cpsr = m_opcode_cpsr;
+ SetBit32(m_new_inst_cpsr, CPSR_N_POS, Bit32(result, 31));
+ SetBit32(m_new_inst_cpsr, CPSR_Z_POS, result == 0 ? 1 : 0);
+ if (m_new_inst_cpsr != m_opcode_cpsr) {
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_FLAGS, m_new_inst_cpsr))
+ return false;
+ }
+
+ // if ArchVersion() == 4 then
+ // APSR.C = bit UNKNOWN;
+ }
+ }
+ return true;
+}
+
+// Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to
+// the destination register. It can optionally update the condition flags based
+// on the value.
+bool EmulateInstructionARM::EmulateMVNImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ result = NOT(imm32);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+ }
+#endif
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd; // the destination register
+ uint32_t imm32; // the output after ThumbExpandImm_C or ARMExpandImm_C
+ uint32_t carry; // the carry bit after ThumbExpandImm_C or ARMExpandImm_C
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(opcode, APSR_C, carry);
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm_C(opcode, APSR_C, carry);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ uint32_t result = ~imm32;
+
+ // The context specifies that an immediate is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise NOT (register) writes the bitwise inverse of a register value to the
+// destination register. It can optionally update the condition flags based on
+// the result.
+bool EmulateInstructionARM::EmulateMVNReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = NOT(shifted);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+ }
+#endif
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rm; // the source register
+ uint32_t Rd; // the destination register
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ uint32_t carry; // the carry bit after the shift operation
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ if (InITBlock())
+ return false;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
+ if (BadReg(Rd) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+ bool success = false;
+ uint32_t value = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted =
+ Shift_C(value, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = ~shifted;
+
+ // The context specifies that an immediate is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// PC relative immediate load into register, possibly followed by ADD (SP plus
+// register).
+// LDR (literal)
+bool EmulateInstructionARM::EmulateLDRRtPCRelative(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ base = Align(PC,4);
+ address = if add then (base + imm32) else (base - imm32);
+ data = MemU[address,4];
+ if t == 15 then
+ if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ elsif UnalignedSupport() || address<1:0> = '00' then
+ R[t] = data;
+ else // Can only apply before ARMv7
+ if CurrentInstrSet() == InstrSet_ARM then
+ R[t] = ROR(data, 8*UInt(address<1:0>));
+ else
+ R[t] = bits(32) UNKNOWN;
+ }
+#endif
+
+ if (ConditionPassed(opcode)) {
+ bool success = false;
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ // PC relative immediate load context
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ std::optional<RegisterInfo> pc_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_pc);
+ context.SetRegisterPlusOffset(*pc_reg, 0);
+
+ uint32_t Rt; // the destination register
+ uint32_t imm32; // immediate offset from the PC
+ bool add; // +imm32 or -imm32?
+ addr_t base; // the base address
+ addr_t address; // the PC relative address
+ uint32_t data; // the literal data value from the PC relative load
+ switch (encoding) {
+ case eEncodingT1:
+ Rt = Bits32(opcode, 10, 8);
+ imm32 = Bits32(opcode, 7, 0) << 2; // imm32 = ZeroExtend(imm8:'00', 32);
+ add = true;
+ break;
+ case eEncodingT2:
+ Rt = Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 11, 0) << 2; // imm32 = ZeroExtend(imm12, 32);
+ add = BitIsSet(opcode, 23);
+ if (Rt == 15 && InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ base = Align(pc, 4);
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ context.SetRegisterPlusOffset(*pc_reg, address - base);
+ data = MemURead(context, address, 4, 0, &success);
+ if (!success)
+ return false;
+
+ if (Rt == 15) {
+ if (Bits32(address, 1, 0) == 0) {
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ } else
+ return false;
+ } else if (UnalignedSupport() || Bits32(address, 1, 0) == 0) {
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + Rt,
+ data))
+ return false;
+ } else // We don't handle ARM for now.
+ return false;
+ }
+ return true;
+}
+
+// An add operation to adjust the SP.
+// ADD (SP plus immediate)
+bool EmulateInstructionARM::EmulateADDSPImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(SP, imm32, '0');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t imm32; // the immediate operand
+ uint32_t d;
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ // d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(imm8:'00', 32);
+ d = Bits32(opcode, 10, 8);
+ imm32 = (Bits32(opcode, 7, 0) << 2);
+ setflags = false;
+ break;
+
+ case eEncodingT2:
+ // d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);
+ d = 13;
+ imm32 = ThumbImm7Scaled(opcode); // imm32 = ZeroExtend(imm7:'00', 32)
+ setflags = false;
+ break;
+
+ case eEncodingT3:
+ // d = UInt(Rd); setflags = (S == "1"); imm32 =
+ // ThumbExpandImm(i:imm3:imm8);
+ d = Bits32(opcode, 11, 8);
+ imm32 = ThumbExpandImm(opcode);
+ setflags = Bit32(opcode, 20);
+
+ // if Rd == "1111" && S == "1" then SEE CMN (immediate);
+ if (d == 15 && setflags == 1)
+ return false; // CMN (immediate) not yet supported
+
+ // if d == 15 && S == "0" then UNPREDICTABLE;
+ if (d == 15 && setflags == 0)
+ return false;
+ break;
+
+ case eEncodingT4: {
+ // if Rn == '1111' then SEE ADR;
+ // d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
+ d = Bits32(opcode, 11, 8);
+ setflags = false;
+ uint32_t i = Bit32(opcode, 26);
+ uint32_t imm3 = Bits32(opcode, 14, 12);
+ uint32_t imm8 = Bits32(opcode, 7, 0);
+ imm32 = (i << 11) | (imm3 << 8) | imm8;
+
+ // if d == 15 then UNPREDICTABLE;
+ if (d == 15)
+ return false;
+ } break;
+
+ default:
+ return false;
+ }
+ // (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
+ AddWithCarryResult res = AddWithCarry(sp, imm32, 0);
+
+ EmulateInstruction::Context context;
+ if (d == 13)
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ else
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+
+ std::optional<RegisterInfo> sp_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_sp);
+ context.SetRegisterPlusOffset(*sp_reg, res.result - sp);
+
+ if (d == 15) {
+ if (!ALUWritePC(context, res.result))
+ return false;
+ } else {
+ // R[d] = result;
+ // if setflags then
+ // APSR.N = result<31>;
+ // APSR.Z = IsZeroBit(result);
+ // APSR.C = carry;
+ // APSR.V = overflow;
+ if (!WriteCoreRegOptionalFlags(context, res.result, d, setflags,
+ res.carry_out, res.overflow))
+ return false;
+ }
+ }
+ return true;
+}
+
+// An add operation to adjust the SP.
+// ADD (SP plus register)
+bool EmulateInstructionARM::EmulateADDSPRm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(SP, shifted, '0');
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t Rm; // the second operand
+ switch (encoding) {
+ case eEncodingT2:
+ Rm = Bits32(opcode, 6, 3);
+ break;
+ default:
+ return false;
+ }
+ int32_t reg_value = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ addr_t addr = (int32_t)sp + reg_value; // the adjusted stack pointer value
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ std::optional<RegisterInfo> sp_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_sp);
+ std::optional<RegisterInfo> other_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + Rm);
+ context.SetRegisterRegisterOperands(*sp_reg, *other_reg);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_SP, addr))
+ return false;
+ }
+ return true;
+}
+
+// Branch with Link and Exchange Instruction Sets (immediate) calls a
+// subroutine at a PC-relative address, and changes instruction set from ARM to
+// Thumb, or from Thumb to ARM.
+// BLX (immediate)
+bool EmulateInstructionARM::EmulateBLXImmediate(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ if CurrentInstrSet() == InstrSet_ARM then
+ LR = PC - 4;
+ else
+ LR = PC<31:1> : '1';
+ if targetInstrSet == InstrSet_ARM then
+ targetAddress = Align(PC,4) + imm32;
+ else
+ targetAddress = PC + imm32;
+ SelectInstrSet(targetInstrSet);
+ BranchWritePC(targetAddress);
+ }
+#endif
+
+ bool success = true;
+
+ if (ConditionPassed(opcode)) {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRelativeBranchImmediate;
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+ addr_t lr; // next instruction address
+ addr_t target; // target address
+ int32_t imm32; // PC-relative offset
+ switch (encoding) {
+ case eEncodingT1: {
+ lr = pc | 1u; // return address
+ uint32_t S = Bit32(opcode, 26);
+ uint32_t imm10 = Bits32(opcode, 25, 16);
+ uint32_t J1 = Bit32(opcode, 13);
+ uint32_t J2 = Bit32(opcode, 11);
+ uint32_t imm11 = Bits32(opcode, 10, 0);
+ uint32_t I1 = !(J1 ^ S);
+ uint32_t I2 = !(J2 ^ S);
+ uint32_t imm25 =
+ (S << 24) | (I1 << 23) | (I2 << 22) | (imm10 << 12) | (imm11 << 1);
+ imm32 = llvm::SignExtend32<25>(imm25);
+ target = pc + imm32;
+ SelectInstrSet(eModeThumb);
+ context.SetISAAndImmediateSigned(eModeThumb, 4 + imm32);
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ }
+ case eEncodingT2: {
+ lr = pc | 1u; // return address
+ uint32_t S = Bit32(opcode, 26);
+ uint32_t imm10H = Bits32(opcode, 25, 16);
+ uint32_t J1 = Bit32(opcode, 13);
+ uint32_t J2 = Bit32(opcode, 11);
+ uint32_t imm10L = Bits32(opcode, 10, 1);
+ uint32_t I1 = !(J1 ^ S);
+ uint32_t I2 = !(J2 ^ S);
+ uint32_t imm25 =
+ (S << 24) | (I1 << 23) | (I2 << 22) | (imm10H << 12) | (imm10L << 2);
+ imm32 = llvm::SignExtend32<25>(imm25);
+ target = Align(pc, 4) + imm32;
+ SelectInstrSet(eModeARM);
+ context.SetISAAndImmediateSigned(eModeARM, 4 + imm32);
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ }
+ case eEncodingA1:
+ lr = pc - 4; // return address
+ imm32 = llvm::SignExtend32<26>(Bits32(opcode, 23, 0) << 2);
+ target = Align(pc, 4) + imm32;
+ SelectInstrSet(eModeARM);
+ context.SetISAAndImmediateSigned(eModeARM, 8 + imm32);
+ break;
+ case eEncodingA2:
+ lr = pc - 4; // return address
+ imm32 = llvm::SignExtend32<26>(Bits32(opcode, 23, 0) << 2 |
+ Bits32(opcode, 24, 24) << 1);
+ target = pc + imm32;
+ SelectInstrSet(eModeThumb);
+ context.SetISAAndImmediateSigned(eModeThumb, 8 + imm32);
+ break;
+ default:
+ return false;
+ }
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_RA, lr))
+ return false;
+ if (!BranchWritePC(context, target))
+ return false;
+ if (m_opcode_cpsr != m_new_inst_cpsr)
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_FLAGS, m_new_inst_cpsr))
+ return false;
+ }
+ return true;
+}
+
+// Branch with Link and Exchange (register) calls a subroutine at an address
+// and instruction set specified by a register.
+// BLX (register)
+bool EmulateInstructionARM::EmulateBLXRm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ target = R[m];
+ if CurrentInstrSet() == InstrSet_ARM then
+ next_instr_addr = PC - 4;
+ LR = next_instr_addr;
+ else
+ next_instr_addr = PC - 2;
+ LR = next_instr_addr<31:1> : '1';
+ BXWritePC(target);
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextAbsoluteBranchRegister;
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ addr_t lr; // next instruction address
+ if (!success)
+ return false;
+ uint32_t Rm; // the register with the target address
+ switch (encoding) {
+ case eEncodingT1:
+ lr = (pc - 2) | 1u; // return address
+ Rm = Bits32(opcode, 6, 3);
+ // if m == 15 then UNPREDICTABLE;
+ if (Rm == 15)
+ return false;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingA1:
+ lr = pc - 4; // return address
+ Rm = Bits32(opcode, 3, 0);
+ // if m == 15 then UNPREDICTABLE;
+ if (Rm == 15)
+ return false;
+ break;
+ default:
+ return false;
+ }
+ addr_t target = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + Rm);
+ context.SetRegister(*dwarf_reg);
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_RA, lr))
+ return false;
+ if (!BXWritePC(context, target))
+ return false;
+ }
+ return true;
+}
+
+// Branch and Exchange causes a branch to an address and instruction set
+// specified by a register.
+bool EmulateInstructionARM::EmulateBXRm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ BXWritePC(R[m]);
+ }
+#endif
+
+ if (ConditionPassed(opcode)) {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextAbsoluteBranchRegister;
+ uint32_t Rm; // the register with the target address
+ switch (encoding) {
+ case eEncodingT1:
+ Rm = Bits32(opcode, 6, 3);
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingA1:
+ Rm = Bits32(opcode, 3, 0);
+ break;
+ default:
+ return false;
+ }
+ bool success = false;
+ addr_t target = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + Rm);
+ context.SetRegister(*dwarf_reg);
+ if (!BXWritePC(context, target))
+ return false;
+ }
+ return true;
+}
+
+// Branch and Exchange Jazelle attempts to change to Jazelle state. If the
+// attempt fails, it branches to an address and instruction set specified by a
+// register as though it were a BX instruction.
+//
+// TODO: Emulate Jazelle architecture?
+// We currently assume that switching to Jazelle state fails, thus
+// treating BXJ as a BX operation.
+bool EmulateInstructionARM::EmulateBXJRm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ if JMCR.JE == '0' || CurrentInstrSet() == InstrSet_ThumbEE then
+ BXWritePC(R[m]);
+ else
+ if JazelleAcceptsExecution() then
+ SwitchToJazelleExecution();
+ else
+ SUBARCHITECTURE_DEFINED handler call;
+ }
+#endif
+
+ if (ConditionPassed(opcode)) {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextAbsoluteBranchRegister;
+ uint32_t Rm; // the register with the target address
+ switch (encoding) {
+ case eEncodingT1:
+ Rm = Bits32(opcode, 19, 16);
+ if (BadReg(Rm))
+ return false;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingA1:
+ Rm = Bits32(opcode, 3, 0);
+ if (Rm == 15)
+ return false;
+ break;
+ default:
+ return false;
+ }
+ bool success = false;
+ addr_t target = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + Rm);
+ context.SetRegister(*dwarf_reg);
+ if (!BXWritePC(context, target))
+ return false;
+ }
+ return true;
+}
+
+// Set r7 to point to some ip offset.
+// SUB (immediate)
+bool EmulateInstructionARM::EmulateSUBR7IPImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ if (ConditionPassed(opcode)) {
+ bool success = false;
+ const addr_t ip = ReadCoreReg(12, &success);
+ if (!success)
+ return false;
+ uint32_t imm32;
+ switch (encoding) {
+ case eEncodingA1:
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+ addr_t ip_offset = imm32;
+ addr_t addr = ip - ip_offset; // the adjusted ip value
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r12);
+ context.SetRegisterPlusOffset(*dwarf_reg, -ip_offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r7, addr))
+ return false;
+ }
+ return true;
+}
+
+// Set ip to point to some stack offset.
+// SUB (SP minus immediate)
+bool EmulateInstructionARM::EmulateSUBIPSPImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ if (ConditionPassed(opcode)) {
+ bool success = false;
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t imm32;
+ switch (encoding) {
+ case eEncodingA1:
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+ addr_t sp_offset = imm32;
+ addr_t addr = sp - sp_offset; // the adjusted stack pointer value
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_SP);
+ context.SetRegisterPlusOffset(*dwarf_reg, -sp_offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r12, addr))
+ return false;
+ }
+ return true;
+}
+
+// This instruction subtracts an immediate value from the SP value, and writes
+// the result to the destination register.
+//
+// If Rd == 13 => A sub operation to adjust the SP -- allocate space for local
+// storage.
+bool EmulateInstructionARM::EmulateSUBSPImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(SP, NOT(imm32), '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+ }
+#endif
+
+ bool success = false;
+ if (ConditionPassed(opcode)) {
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rd;
+ bool setflags;
+ uint32_t imm32;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = 13;
+ setflags = false;
+ imm32 = ThumbImm7Scaled(opcode); // imm32 = ZeroExtend(imm7:'00', 32)
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (Rd == 15 && setflags)
+ return EmulateCMPImm(opcode, eEncodingT2);
+ if (Rd == 15 && !setflags)
+ return false;
+ break;
+ case eEncodingT3:
+ Rd = Bits32(opcode, 11, 8);
+ setflags = false;
+ imm32 = ThumbImm12(opcode); // imm32 = ZeroExtend(i:imm3:imm8, 32)
+ if (Rd == 15)
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ AddWithCarryResult res = AddWithCarry(sp, ~imm32, 1);
+
+ EmulateInstruction::Context context;
+ if (Rd == 13) {
+ uint64_t imm64 = imm32; // Need to expand it to 64 bits before attempting
+ // to negate it, or the wrong
+ // value gets passed down to context.SetImmediateSigned.
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned(-imm64); // the stack pointer offset
+ } else {
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ }
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// A store operation to the stack that also updates the SP.
+bool EmulateInstructionARM::EmulateSTRRtSP(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
+ if wback then R[n] = offset_addr;
+ }
+#endif
+
+ bool success = false;
+ if (ConditionPassed(opcode)) {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+ uint32_t Rt; // the source register
+ uint32_t imm12;
+ uint32_t
+ Rn; // This function assumes Rn is the SP, but we should verify that.
+
+ bool index;
+ bool add;
+ bool wback;
+ switch (encoding) {
+ case eEncodingA1:
+ Rt = Bits32(opcode, 15, 12);
+ imm12 = Bits32(opcode, 11, 0);
+ Rn = Bits32(opcode, 19, 16);
+
+ if (Rn != 13) // 13 is the SP reg on ARM. Verify that Rn == SP.
+ return false;
+
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = (BitIsClear(opcode, 24) || BitIsSet(opcode, 21));
+
+ if (wback && ((Rn == 15) || (Rn == Rt)))
+ return false;
+ break;
+ default:
+ return false;
+ }
+ addr_t offset_addr;
+ if (add)
+ offset_addr = sp + imm12;
+ else
+ offset_addr = sp - imm12;
+
+ addr_t addr;
+ if (index)
+ addr = offset_addr;
+ else
+ addr = sp;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextPushRegisterOnStack;
+ std::optional<RegisterInfo> sp_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_sp);
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + Rt);
+
+ context.SetRegisterToRegisterPlusOffset(*dwarf_reg, *sp_reg, addr - sp);
+ if (Rt != 15) {
+ uint32_t reg_value = ReadCoreReg(Rt, &success);
+ if (!success)
+ return false;
+ if (!MemUWrite(context, addr, reg_value, addr_byte_size))
+ return false;
+ } else {
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+ if (!MemUWrite(context, addr, pc, addr_byte_size))
+ return false;
+ }
+
+ if (wback) {
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned(addr - sp);
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_SP, offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// Vector Push stores multiple extension registers to the stack. It also
+// updates SP to point to the start of the stored data.
+bool EmulateInstructionARM::EmulateVPUSH(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(13);
+ address = SP - imm32;
+ SP = SP - imm32;
+ if single_regs then
+ for r = 0 to regs-1
+ MemA[address,4] = S[d+r]; address = address+4;
+ else
+ for r = 0 to regs-1
+ // Store as two word-aligned words in the correct order for
+ // current endianness.
+ MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
+ MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
+ address = address+8;
+ }
+#endif
+
+ bool success = false;
+ if (ConditionPassed(opcode)) {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+ bool single_regs;
+ uint32_t d; // UInt(D:Vd) or UInt(Vd:D) starting register
+ uint32_t imm32; // stack offset
+ uint32_t regs; // number of registers
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1:
+ single_regs = false;
+ d = Bit32(opcode, 22) << 4 | Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
+ // If UInt(imm8) is odd, see "FSTMX".
+ regs = Bits32(opcode, 7, 0) / 2;
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if (regs == 0 || regs > 16 || (d + regs) > 32)
+ return false;
+ break;
+ case eEncodingT2:
+ case eEncodingA2:
+ single_regs = true;
+ d = Bits32(opcode, 15, 12) << 1 | Bit32(opcode, 22);
+ imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
+ regs = Bits32(opcode, 7, 0);
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if (regs == 0 || regs > 16 || (d + regs) > 32)
+ return false;
+ break;
+ default:
+ return false;
+ }
+ uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
+ uint32_t reg_byte_size = single_regs ? addr_byte_size : addr_byte_size * 2;
+ addr_t sp_offset = imm32;
+ addr_t addr = sp - sp_offset;
+ uint32_t i;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextPushRegisterOnStack;
+
+ std::optional<RegisterInfo> sp_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_sp);
+ for (i = 0; i < regs; ++i) {
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, start_reg + d + i);
+ context.SetRegisterToRegisterPlusOffset(*dwarf_reg, *sp_reg, addr - sp);
+ // uint64_t to accommodate 64-bit registers.
+ uint64_t reg_value = ReadRegisterUnsigned(*dwarf_reg, 0, &success);
+ if (!success)
+ return false;
+ if (!MemAWrite(context, addr, reg_value, reg_byte_size))
+ return false;
+ addr += reg_byte_size;
+ }
+
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned(-sp_offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_SP, sp - sp_offset))
+ return false;
+ }
+ return true;
+}
+
+// Vector Pop loads multiple extension registers from the stack. It also
+// updates SP to point just above the loaded data.
+bool EmulateInstructionARM::EmulateVPOP(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(13);
+ address = SP;
+ SP = SP + imm32;
+ if single_regs then
+ for r = 0 to regs-1
+ S[d+r] = MemA[address,4]; address = address+4;
+ else
+ for r = 0 to regs-1
+ word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
+ // Combine the word-aligned words in the correct order for
+ // current endianness.
+ D[d+r] = if BigEndian() then word1:word2 else word2:word1;
+ }
+#endif
+
+ bool success = false;
+ if (ConditionPassed(opcode)) {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ const addr_t sp = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+ bool single_regs;
+ uint32_t d; // UInt(D:Vd) or UInt(Vd:D) starting register
+ uint32_t imm32; // stack offset
+ uint32_t regs; // number of registers
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1:
+ single_regs = false;
+ d = Bit32(opcode, 22) << 4 | Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
+ // If UInt(imm8) is odd, see "FLDMX".
+ regs = Bits32(opcode, 7, 0) / 2;
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if (regs == 0 || regs > 16 || (d + regs) > 32)
+ return false;
+ break;
+ case eEncodingT2:
+ case eEncodingA2:
+ single_regs = true;
+ d = Bits32(opcode, 15, 12) << 1 | Bit32(opcode, 22);
+ imm32 = Bits32(opcode, 7, 0) * addr_byte_size;
+ regs = Bits32(opcode, 7, 0);
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if (regs == 0 || regs > 16 || (d + regs) > 32)
+ return false;
+ break;
+ default:
+ return false;
+ }
+ uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
+ uint32_t reg_byte_size = single_regs ? addr_byte_size : addr_byte_size * 2;
+ addr_t sp_offset = imm32;
+ addr_t addr = sp;
+ uint32_t i;
+ uint64_t data; // uint64_t to accommodate 64-bit registers.
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextPopRegisterOffStack;
+
+ for (i = 0; i < regs; ++i) {
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, start_reg + d + i);
+ context.SetAddress(addr);
+ data = MemARead(context, addr, reg_byte_size, 0, &success);
+ if (!success)
+ return false;
+ if (!WriteRegisterUnsigned(context, *dwarf_reg, data))
+ return false;
+ addr += reg_byte_size;
+ }
+
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ context.SetImmediateSigned(sp_offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_SP, sp + sp_offset))
+ return false;
+ }
+ return true;
+}
+
+// SVC (previously SWI)
+bool EmulateInstructionARM::EmulateSVC(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ CallSupervisor();
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ addr_t lr; // next instruction address
+ if (!success)
+ return false;
+ uint32_t imm32; // the immediate constant
+ uint32_t mode; // ARM or Thumb mode
+ switch (encoding) {
+ case eEncodingT1:
+ lr = (pc + 2) | 1u; // return address
+ imm32 = Bits32(opcode, 7, 0);
+ mode = eModeThumb;
+ break;
+ case eEncodingA1:
+ lr = pc + 4; // return address
+ imm32 = Bits32(opcode, 23, 0);
+ mode = eModeARM;
+ break;
+ default:
+ return false;
+ }
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextSupervisorCall;
+ context.SetISAAndImmediate(mode, imm32);
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_RA, lr))
+ return false;
+ }
+ return true;
+}
+
+// If Then makes up to four following instructions (the IT block) conditional.
+bool EmulateInstructionARM::EmulateIT(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ EncodingSpecificOperations();
+ ITSTATE.IT<7:0> = firstcond:mask;
+#endif
+
+ m_it_session.InitIT(Bits32(opcode, 7, 0));
+ return true;
+}
+
+bool EmulateInstructionARM::EmulateNop(const uint32_t opcode,
+ const ARMEncoding encoding) {
+ // NOP, nothing to do...
+ return true;
+}
+
+// Branch causes a branch to a target address.
+bool EmulateInstructionARM::EmulateB(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations();
+ BranchWritePC(PC + imm32);
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRelativeBranchImmediate;
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+ addr_t target; // target address
+ int32_t imm32; // PC-relative offset
+ switch (encoding) {
+ case eEncodingT1:
+ // The 'cond' field is handled in EmulateInstructionARM::CurrentCond().
+ imm32 = llvm::SignExtend32<9>(Bits32(opcode, 7, 0) << 1);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned(eModeThumb, 4 + imm32);
+ break;
+ case eEncodingT2:
+ imm32 = llvm::SignExtend32<12>(Bits32(opcode, 10, 0) << 1);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned(eModeThumb, 4 + imm32);
+ break;
+ case eEncodingT3:
+ // The 'cond' field is handled in EmulateInstructionARM::CurrentCond().
+ {
+ if (Bits32(opcode, 25, 23) == 7)
+ return false; // See Branches and miscellaneous control on page
+ // A6-235.
+
+ uint32_t S = Bit32(opcode, 26);
+ uint32_t imm6 = Bits32(opcode, 21, 16);
+ uint32_t J1 = Bit32(opcode, 13);
+ uint32_t J2 = Bit32(opcode, 11);
+ uint32_t imm11 = Bits32(opcode, 10, 0);
+ uint32_t imm21 =
+ (S << 20) | (J2 << 19) | (J1 << 18) | (imm6 << 12) | (imm11 << 1);
+ imm32 = llvm::SignExtend32<21>(imm21);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned(eModeThumb, 4 + imm32);
+ break;
+ }
+ case eEncodingT4: {
+ uint32_t S = Bit32(opcode, 26);
+ uint32_t imm10 = Bits32(opcode, 25, 16);
+ uint32_t J1 = Bit32(opcode, 13);
+ uint32_t J2 = Bit32(opcode, 11);
+ uint32_t imm11 = Bits32(opcode, 10, 0);
+ uint32_t I1 = !(J1 ^ S);
+ uint32_t I2 = !(J2 ^ S);
+ uint32_t imm25 =
+ (S << 24) | (I1 << 23) | (I2 << 22) | (imm10 << 12) | (imm11 << 1);
+ imm32 = llvm::SignExtend32<25>(imm25);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned(eModeThumb, 4 + imm32);
+ break;
+ }
+ case eEncodingA1:
+ imm32 = llvm::SignExtend32<26>(Bits32(opcode, 23, 0) << 2);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned(eModeARM, 8 + imm32);
+ break;
+ default:
+ return false;
+ }
+ if (!BranchWritePC(context, target))
+ return false;
+ }
+ return true;
+}
+
+// Compare and Branch on Nonzero and Compare and Branch on Zero compare the
+// value in a register with zero and conditionally branch forward a constant
+// value. They do not affect the condition flags. CBNZ, CBZ
+bool EmulateInstructionARM::EmulateCB(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ EncodingSpecificOperations();
+ if nonzero ^ IsZero(R[n]) then
+ BranchWritePC(PC + imm32);
+#endif
+
+ bool success = false;
+
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Bits32(opcode, 2, 0), &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRelativeBranchImmediate;
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ addr_t target; // target address
+ uint32_t imm32; // PC-relative offset to branch forward
+ bool nonzero;
+ switch (encoding) {
+ case eEncodingT1:
+ imm32 = Bit32(opcode, 9) << 6 | Bits32(opcode, 7, 3) << 1;
+ nonzero = BitIsSet(opcode, 11);
+ target = pc + imm32;
+ context.SetISAAndImmediateSigned(eModeThumb, 4 + imm32);
+ break;
+ default:
+ return false;
+ }
+ if (m_ignore_conditions || (nonzero ^ (reg_val == 0)))
+ if (!BranchWritePC(context, target))
+ return false;
+
+ return true;
+}
+
+// Table Branch Byte causes a PC-relative forward branch using a table of
+// single byte offsets.
+// A base register provides a pointer to the table, and a second register
+// supplies an index into the table.
+// The branch length is twice the value of the byte returned from the table.
+//
+// Table Branch Halfword causes a PC-relative forward branch using a table of
+// single halfword offsets.
+// A base register provides a pointer to the table, and a second register
+// supplies an index into the table.
+// The branch length is twice the value of the halfword returned from the
+// table. TBB, TBH
+bool EmulateInstructionARM::EmulateTB(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ if is_tbh then
+ halfwords = UInt(MemU[R[n]+LSL(R[m],1), 2]);
+ else
+ halfwords = UInt(MemU[R[n]+R[m], 1]);
+ BranchWritePC(PC + 2*halfwords);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rn; // the base register which contains the address of the table of
+ // branch lengths
+ uint32_t Rm; // the index register which contains an integer pointing to a
+ // byte/halfword in the table
+ bool is_tbh; // true if table branch halfword
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ is_tbh = BitIsSet(opcode, 4);
+ if (Rn == 13 || BadReg(Rm))
+ return false;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ // Read the address of the table from the operand register Rn. The PC can
+ // be used, in which case the table immediately follows this instruction.
+ uint32_t base = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // the table index
+ uint32_t index = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ // the offsetted table address
+ addr_t addr = base + (is_tbh ? index * 2 : index);
+
+ // PC-relative offset to branch forward
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextTableBranchReadMemory;
+ uint32_t offset = MemURead(context, addr, is_tbh ? 2 : 1, 0, &success) * 2;
+ if (!success)
+ return false;
+
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ // target address
+ addr_t target = pc + offset;
+ context.type = EmulateInstruction::eContextRelativeBranchImmediate;
+ context.SetISAAndImmediateSigned(eModeThumb, 4 + offset);
+
+ if (!BranchWritePC(context, target))
+ return false;
+ }
+
+ return true;
+}
+
+// This instruction adds an immediate value to a register value, and writes the
+// result to the destination register. It can optionally update the condition
+// flags based on the result.
+bool EmulateInstructionARM::EmulateADDImmThumb(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t d;
+ uint32_t n;
+ bool setflags;
+ uint32_t imm32;
+ uint32_t carry_out;
+
+ // EncodingSpecificOperations();
+ switch (encoding) {
+ case eEncodingT1:
+ // d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); imm32 =
+ // ZeroExtend(imm3, 32);
+ d = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ imm32 = Bits32(opcode, 8, 6);
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); imm32 =
+ // ZeroExtend(imm8, 32);
+ d = Bits32(opcode, 10, 8);
+ n = Bits32(opcode, 10, 8);
+ setflags = !InITBlock();
+ imm32 = Bits32(opcode, 7, 0);
+
+ break;
+
+ case eEncodingT3:
+ // if Rd == '1111' && S == '1' then SEE CMN (immediate);
+ // d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 =
+ // ThumbExpandImm(i:imm3:imm8);
+ d = Bits32(opcode, 11, 8);
+ n = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(opcode, APSR_C, carry_out);
+
+ // if Rn == '1101' then SEE ADD (SP plus immediate);
+ if (n == 13)
+ return EmulateADDSPImm(opcode, eEncodingT3);
+
+ // if BadReg(d) || n == 15 then UNPREDICTABLE;
+ if (BadReg(d) || (n == 15))
+ return false;
+
+ break;
+
+ case eEncodingT4: {
+ // if Rn == '1111' then SEE ADR;
+ // d = UInt(Rd); n = UInt(Rn); setflags = FALSE; imm32 =
+ // ZeroExtend(i:imm3:imm8, 32);
+ d = Bits32(opcode, 11, 8);
+ n = Bits32(opcode, 19, 16);
+ setflags = false;
+ uint32_t i = Bit32(opcode, 26);
+ uint32_t imm3 = Bits32(opcode, 14, 12);
+ uint32_t imm8 = Bits32(opcode, 7, 0);
+ imm32 = (i << 11) | (imm3 << 8) | imm8;
+
+ // if Rn == '1101' then SEE ADD (SP plus immediate);
+ if (n == 13)
+ return EmulateADDSPImm(opcode, eEncodingT4);
+
+ // if BadReg(d) then UNPREDICTABLE;
+ if (BadReg(d))
+ return false;
+
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ uint64_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ //(result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
+ AddWithCarryResult res = AddWithCarry(Rn, imm32, 0);
+
+ std::optional<RegisterInfo> reg_n =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ context.SetRegisterPlusOffset(*reg_n, imm32);
+
+ // R[d] = result;
+ // if setflags then
+ // APSR.N = result<31>;
+ // APSR.Z = IsZeroBit(result);
+ // APSR.C = carry;
+ // APSR.V = overflow;
+ if (!WriteCoreRegOptionalFlags(context, res.result, d, setflags,
+ res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// This instruction adds an immediate value to a register value, and writes the
+// result to the destination register. It can optionally update the condition
+// flags based on the result.
+bool EmulateInstructionARM::EmulateADDImmARM(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn;
+ uint32_t
+ imm32; // the immediate value to be added to the value obtained from Rn
+ bool setflags;
+ switch (encoding) {
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(val1, imm32, 0);
+
+ EmulateInstruction::Context context;
+ if (Rd == 13)
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ else if (Rd == GetFramePointerRegisterNumber())
+ context.type = EmulateInstruction::eContextSetFramePointer;
+ else
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, Rn);
+ context.SetRegisterPlusOffset(*dwarf_reg, imm32);
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// This instruction adds a register value and an optionally-shifted register
+// value, and writes the result to the destination register. It can optionally
+// update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateADDReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rn = Bits32(opcode, 5, 3);
+ Rm = Bits32(opcode, 8, 6);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Rn = Bit32(opcode, 7) << 3 | Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 6, 3);
+ setflags = false;
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ if (Rn == 15 && Rm == 15)
+ return false;
+ if (Rd == 15 && InITBlock() && !LastInITBlock())
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(val1, shifted, 0);
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ std::optional<RegisterInfo> op1_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + Rn);
+ std::optional<RegisterInfo> op2_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + Rm);
+ context.SetRegisterRegisterOperands(*op1_reg, *op2_reg);
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// Compare Negative (immediate) adds a register value and an immediate value.
+// It updates the condition flags based on the result, and discards the result.
+bool EmulateInstructionARM::EmulateCMNImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], imm32, '0');
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rn; // the first operand
+ uint32_t imm32; // the immediate value to be compared with
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (Rn == 15)
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(reg_val, imm32, 0);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ return WriteFlags(context, res.result, res.carry_out, res.overflow);
+}
+
+// Compare Negative (register) adds a register value and an optionally-shifted
+// register value. It updates the condition flags based on the result, and
+// discards the result.
+bool EmulateInstructionARM::EmulateCMNReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rn; // the first operand
+ uint32_t Rm; // the second operand
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if n == 15 || BadReg(m) then UNPREDICTABLE;
+ if (Rn == 15 || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from register Rn.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the register value from register Rm.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(val1, shifted, 0);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ return WriteFlags(context, res.result, res.carry_out, res.overflow);
+}
+
+// Compare (immediate) subtracts an immediate value from a register value. It
+// updates the condition flags based on the result, and discards the result.
+bool EmulateInstructionARM::EmulateCMPImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rn; // the first operand
+ uint32_t imm32; // the immediate value to be compared with
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 10, 8);
+ imm32 = Bits32(opcode, 7, 0);
+ break;
+ case eEncodingT2:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (Rn == 15)
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ return WriteFlags(context, res.result, res.carry_out, res.overflow);
+}
+
+// Compare (register) subtracts an optionally-shifted register value from a
+// register value. It updates the condition flags based on the result, and
+// discards the result.
+bool EmulateInstructionARM::EmulateCMPReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rn; // the first operand
+ uint32_t Rm; // the second operand
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rn = Bit32(opcode, 7) << 3 | Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 6, 3);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ if (Rn < 8 && Rm < 8)
+ return false;
+ if (Rn == 15 || Rm == 15)
+ return false;
+ break;
+ case eEncodingT3:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (Rn == 15 || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from register Rn.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the register value from register Rm.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(val1, ~shifted, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ return WriteFlags(context, res.result, res.carry_out, res.overflow);
+}
+
+// Arithmetic Shift Right (immediate) shifts a register value right by an
+// immediate number of bits, shifting in copies of its sign bit, and writes the
+// result to the destination register. It can optionally update the condition
+// flags based on the result.
+bool EmulateInstructionARM::EmulateASRImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftImm(opcode, encoding, SRType_ASR);
+}
+
+// Arithmetic Shift Right (register) shifts a register value right by a
+// variable number of bits, shifting in copies of its sign bit, and writes the
+// result to the destination register. The variable number of bits is read from
+// the bottom byte of a register. It can optionally update the condition flags
+// based on the result.
+bool EmulateInstructionARM::EmulateASRReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shift_n = UInt(R[m]<7:0>);
+ (result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftReg(opcode, encoding, SRType_ASR);
+}
+
+// Logical Shift Left (immediate) shifts a register value left by an immediate
+// number of bits, shifting in zeros, and writes the result to the destination
+// register. It can optionally update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateLSLImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry) = Shift_C(R[m], SRType_LSL, shift_n, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftImm(opcode, encoding, SRType_LSL);
+}
+
+// Logical Shift Left (register) shifts a register value left by a variable
+// number of bits, shifting in zeros, and writes the result to the destination
+// register. The variable number of bits is read from the bottom byte of a
+// register. It can optionally update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateLSLReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shift_n = UInt(R[m]<7:0>);
+ (result, carry) = Shift_C(R[m], SRType_LSL, shift_n, APSR.C);
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftReg(opcode, encoding, SRType_LSL);
+}
+
+// Logical Shift Right (immediate) shifts a register value right by an
+// immediate number of bits, shifting in zeros, and writes the result to the
+// destination register. It can optionally update the condition flags based on
+// the result.
+bool EmulateInstructionARM::EmulateLSRImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry) = Shift_C(R[m], SRType_LSR, shift_n, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftImm(opcode, encoding, SRType_LSR);
+}
+
+// Logical Shift Right (register) shifts a register value right by a variable
+// number of bits, shifting in zeros, and writes the result to the destination
+// register. The variable number of bits is read from the bottom byte of a
+// register. It can optionally update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateLSRReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shift_n = UInt(R[m]<7:0>);
+ (result, carry) = Shift_C(R[m], SRType_LSR, shift_n, APSR.C);
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftReg(opcode, encoding, SRType_LSR);
+}
+
+// Rotate Right (immediate) provides the value of the contents of a register
+// rotated by a constant value. The bits that are rotated off the right end are
+// inserted into the vacated bit positions on the left. It can optionally
+// update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateRORImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry) = Shift_C(R[m], SRType_ROR, shift_n, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftImm(opcode, encoding, SRType_ROR);
+}
+
+// Rotate Right (register) provides the value of the contents of a register
+// rotated by a variable number of bits. The bits that are rotated off the
+// right end are inserted into the vacated bit positions on the left. The
+// variable number of bits is read from the bottom byte of a register. It can
+// optionally update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateRORReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shift_n = UInt(R[m]<7:0>);
+ (result, carry) = Shift_C(R[m], SRType_ROR, shift_n, APSR.C);
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftReg(opcode, encoding, SRType_ROR);
+}
+
+// Rotate Right with Extend provides the value of the contents of a register
+// shifted right by one place, with the carry flag shifted into bit [31].
+//
+// RRX can optionally update the condition flags based on the result.
+// In that case, bit [0] is shifted into the carry flag.
+bool EmulateInstructionARM::EmulateRRX(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry) = Shift_C(R[m], SRType_RRX, 1, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ return EmulateShiftImm(opcode, encoding, SRType_RRX);
+}
+
+bool EmulateInstructionARM::EmulateShiftImm(const uint32_t opcode,
+ const ARMEncoding encoding,
+ ARM_ShifterType shift_type) {
+ // assert(shift_type == SRType_ASR
+ // || shift_type == SRType_LSL
+ // || shift_type == SRType_LSR
+ // || shift_type == SRType_ROR
+ // || shift_type == SRType_RRX);
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd; // the destination register
+ uint32_t Rm; // the first operand register
+ uint32_t imm5; // encoding for the shift amount
+ uint32_t carry; // the carry bit after the shift operation
+ bool setflags;
+
+ // Special case handling!
+ // A8.6.139 ROR (immediate) -- Encoding T1
+ ARMEncoding use_encoding = encoding;
+ if (shift_type == SRType_ROR && use_encoding == eEncodingT1) {
+ // Morph the T1 encoding from the ARM Architecture Manual into T2
+ // encoding to have the same decoding of bit fields as the other Thumb2
+ // shift operations.
+ use_encoding = eEncodingT2;
+ }
+
+ switch (use_encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ imm5 = Bits32(opcode, 10, 6);
+ break;
+ case eEncodingT2:
+ // A8.6.141 RRX
+ // There's no imm form of RRX instructions.
+ if (shift_type == SRType_RRX)
+ return false;
+
+ Rd = Bits32(opcode, 11, 8);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ imm5 = Bits32(opcode, 14, 12) << 2 | Bits32(opcode, 7, 6);
+ if (BadReg(Rd) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ imm5 = Bits32(opcode, 11, 7);
+ break;
+ default:
+ return false;
+ }
+
+ // A8.6.139 ROR (immediate)
+ if (shift_type == SRType_ROR && imm5 == 0)
+ shift_type = SRType_RRX;
+
+ // Get the first operand.
+ uint32_t value = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ // Decode the shift amount if not RRX.
+ uint32_t amt =
+ (shift_type == SRType_RRX ? 1 : DecodeImmShift(shift_type, imm5));
+
+ uint32_t result = Shift_C(value, shift_type, amt, APSR_C, carry, &success);
+ if (!success)
+ return false;
+
+ // The context specifies that an immediate is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+bool EmulateInstructionARM::EmulateShiftReg(const uint32_t opcode,
+ const ARMEncoding encoding,
+ ARM_ShifterType shift_type) {
+ // assert(shift_type == SRType_ASR
+ // || shift_type == SRType_LSL
+ // || shift_type == SRType_LSR
+ // || shift_type == SRType_ROR);
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand register
+ uint32_t
+ Rm; // the register whose bottom byte contains the amount to shift by
+ uint32_t carry; // the carry bit after the shift operation
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rn = Rd;
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 3, 0);
+ Rm = Bits32(opcode, 11, 8);
+ setflags = BitIsSet(opcode, 20);
+ if (Rd == 15 || Rn == 15 || Rm == 15)
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ // Get the first operand.
+ uint32_t value = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+ // Get the Rm register content.
+ uint32_t val = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ // Get the shift amount.
+ uint32_t amt = Bits32(val, 7, 0);
+
+ uint32_t result = Shift_C(value, shift_type, amt, APSR_C, carry, &success);
+ if (!success)
+ return false;
+
+ // The context specifies that an immediate is to be moved into Rd.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// LDM loads multiple registers from consecutive memory locations, using an
+// address from a base register. Optionally the address just above the highest
+// of those locations can be written back to the base register.
+bool EmulateInstructionARM::EmulateLDM(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed()
+ EncodingSpecificOperations(); NullCheckIfThumbEE (n);
+ address = R[n];
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ R[i] = MemA[address, 4]; address = address + 4;
+ if registers<15> == '1' then
+ LoadWritePC (MemA[address, 4]);
+
+ if wback && registers<n> == '0' then R[n] = R[n] + 4 * BitCount (registers);
+ if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only possible for encoding A1
+
+#endif
+
+ bool success = false;
+ if (ConditionPassed(opcode)) {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ switch (encoding) {
+ case eEncodingT1:
+ // n = UInt(Rn); registers = '00000000':register_list; wback =
+ // (registers<n> == '0');
+ n = Bits32(opcode, 10, 8);
+ registers = Bits32(opcode, 7, 0);
+ registers = registers & 0x00ff; // Make sure the top 8 bits are zeros.
+ wback = BitIsClear(registers, n);
+ // if BitCount(registers) < 1 then UNPREDICTABLE;
+ if (BitCount(registers) < 1)
+ return false;
+ break;
+ case eEncodingT2:
+ // if W == '1' && Rn == '1101' then SEE POP;
+ // n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ registers = registers & 0xdfff; // Make sure bit 13 is zero.
+ wback = BitIsSet(opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then
+ // UNPREDICTABLE;
+ if ((n == 15) || (BitCount(registers) < 2) ||
+ (BitIsSet(opcode, 14) && BitIsSet(opcode, 15)))
+ return false;
+
+ // if registers<15> == '1' && InITBlock() && !LastInITBlock() then
+ // UNPREDICTABLE;
+ if (BitIsSet(registers, 15) && InITBlock() && !LastInITBlock())
+ return false;
+
+ // if wback && registers<n> == '1' then UNPREDICTABLE;
+ if (wback && BitIsSet(registers, n))
+ return false;
+ break;
+
+ case eEncodingA1:
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ wback = BitIsSet(opcode, 21);
+ if ((n == 15) || (BitCount(registers) < 1))
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ int32_t offset = 0;
+ const addr_t base_address =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ context.SetRegisterPlusOffset(*dwarf_reg, offset);
+
+ for (int i = 0; i < 14; ++i) {
+ if (BitIsSet(registers, i)) {
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ context.SetRegisterPlusOffset(*dwarf_reg, offset);
+ if (wback && (n == 13)) // Pop Instruction
+ {
+ context.type = EmulateInstruction::eContextPopRegisterOffStack;
+ context.SetAddress(base_address + offset);
+ }
+
+ // R[i] = MemA [address, 4]; address = address + 4;
+ uint32_t data = MemARead(context, base_address + offset, addr_byte_size,
+ 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + i,
+ data))
+ return false;
+
+ offset += addr_byte_size;
+ }
+ }
+
+ if (BitIsSet(registers, 15)) {
+ // LoadWritePC (MemA [address, 4]);
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ context.SetRegisterPlusOffset(*dwarf_reg, offset);
+ uint32_t data =
+ MemARead(context, base_address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ }
+
+ if (wback && BitIsClear(registers, n)) {
+ // R[n] = R[n] + 4 * BitCount (registers)
+ int32_t offset = addr_byte_size * BitCount(registers);
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset(*dwarf_reg, offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ base_address + offset))
+ return false;
+ }
+ if (wback && BitIsSet(registers, n))
+ // R[n] bits(32) UNKNOWN;
+ return WriteBits32Unknown(n);
+ }
+ return true;
+}
+
+// LDMDA loads multiple registers from consecutive memory locations using an
+// address from a base register.
+// The consecutive memory locations end at this address and the address just
+// below the lowest of those locations can optionally be written back to the
+// base register.
+bool EmulateInstructionARM::EmulateLDMDA(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ address = R[n] - 4*BitCount(registers) + 4;
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ R[i] = MemA[address,4]; address = address + 4;
+
+ if registers<15> == '1' then
+ LoadWritePC(MemA[address,4]);
+
+ if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
+ if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ // EncodingSpecificOperations();
+ switch (encoding) {
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ wback = BitIsSet(opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount(registers) < 1))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+ // address = R[n] - 4*BitCount(registers) + 4;
+
+ int32_t offset = 0;
+ addr_t Rn = ReadCoreReg(n, &success);
+
+ if (!success)
+ return false;
+
+ addr_t address =
+ Rn - (addr_byte_size * BitCount(registers)) + addr_byte_size;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ context.SetRegisterPlusOffset(*dwarf_reg, offset);
+
+ // for i = 0 to 14
+ for (int i = 0; i < 14; ++i) {
+ // if registers<i> == '1' then
+ if (BitIsSet(registers, i)) {
+ // R[i] = MemA[address,4]; address = address + 4;
+ context.SetRegisterPlusOffset(*dwarf_reg, Rn - (address + offset));
+ uint32_t data =
+ MemARead(context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + i,
+ data))
+ return false;
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then
+ // LoadWritePC(MemA[address,4]);
+ if (BitIsSet(registers, 15)) {
+ context.SetRegisterPlusOffset(*dwarf_reg, offset);
+ uint32_t data =
+ MemARead(context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ }
+
+ // if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
+ if (wback && BitIsClear(registers, n)) {
+
+ offset = (addr_byte_size * BitCount(registers)) * -1;
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned(offset);
+ addr_t addr = Rn + offset;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ addr))
+ return false;
+ }
+
+ // if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
+ if (wback && BitIsSet(registers, n))
+ return WriteBits32Unknown(n);
+ }
+ return true;
+}
+
+// LDMDB loads multiple registers from consecutive memory locations using an
+// address from a base register. The
+// consecutive memory locations end just below this address, and the address of
+// the lowest of those locations can be optionally written back to the base
+// register.
+bool EmulateInstructionARM::EmulateLDMDB(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ address = R[n] - 4*BitCount(registers);
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ R[i] = MemA[address,4]; address = address + 4;
+ if registers<15> == '1' then
+ LoadWritePC(MemA[address,4]);
+
+ if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
+ if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only possible for encoding A1
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ switch (encoding) {
+ case eEncodingT1:
+ // n = UInt(Rn); registers = P:M:'0':register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ registers = registers & 0xdfff; // Make sure bit 13 is a zero.
+ wback = BitIsSet(opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 2 || (P == '1' && M == '1') then
+ // UNPREDICTABLE;
+ if ((n == 15) || (BitCount(registers) < 2) ||
+ (BitIsSet(opcode, 14) && BitIsSet(opcode, 15)))
+ return false;
+
+ // if registers<15> == '1' && InITBlock() && !LastInITBlock() then
+ // UNPREDICTABLE;
+ if (BitIsSet(registers, 15) && InITBlock() && !LastInITBlock())
+ return false;
+
+ // if wback && registers<n> == '1' then UNPREDICTABLE;
+ if (wback && BitIsSet(registers, n))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ wback = BitIsSet(opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount(registers) < 1))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // address = R[n] - 4*BitCount(registers);
+
+ int32_t offset = 0;
+ addr_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+
+ if (!success)
+ return false;
+
+ addr_t address = Rn - (addr_byte_size * BitCount(registers));
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ context.SetRegisterPlusOffset(*dwarf_reg, Rn - address);
+
+ for (int i = 0; i < 14; ++i) {
+ if (BitIsSet(registers, i)) {
+ // R[i] = MemA[address,4]; address = address + 4;
+ context.SetRegisterPlusOffset(*dwarf_reg, Rn - (address + offset));
+ uint32_t data =
+ MemARead(context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + i,
+ data))
+ return false;
+
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then
+ // LoadWritePC(MemA[address,4]);
+ if (BitIsSet(registers, 15)) {
+ context.SetRegisterPlusOffset(*dwarf_reg, offset);
+ uint32_t data =
+ MemARead(context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ }
+
+ // if wback && registers<n> == '0' then R[n] = R[n] - 4*BitCount(registers);
+ if (wback && BitIsClear(registers, n)) {
+
+ offset = (addr_byte_size * BitCount(registers)) * -1;
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned(offset);
+ addr_t addr = Rn + offset;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ addr))
+ return false;
+ }
+
+ // if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only
+ // possible for encoding A1
+ if (wback && BitIsSet(registers, n))
+ return WriteBits32Unknown(n);
+ }
+ return true;
+}
+
+// LDMIB loads multiple registers from consecutive memory locations using an
+// address from a base register. The
+// consecutive memory locations start just above this address, and thea ddress
+// of the last of those locations can optinoally be written back to the base
+// register.
+bool EmulateInstructionARM::EmulateLDMIB(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ address = R[n] + 4;
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ R[i] = MemA[address,4]; address = address + 4;
+ if registers<15> == '1' then
+ LoadWritePC(MemA[address,4]);
+
+ if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
+ if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ switch (encoding) {
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ wback = BitIsSet(opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount(registers) < 1))
+ return false;
+
+ break;
+ default:
+ return false;
+ }
+ // address = R[n] + 4;
+
+ int32_t offset = 0;
+ addr_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+
+ if (!success)
+ return false;
+
+ addr_t address = Rn + addr_byte_size;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ context.SetRegisterPlusOffset(*dwarf_reg, offset);
+
+ for (int i = 0; i < 14; ++i) {
+ if (BitIsSet(registers, i)) {
+ // R[i] = MemA[address,4]; address = address + 4;
+
+ context.SetRegisterPlusOffset(*dwarf_reg, offset + addr_byte_size);
+ uint32_t data =
+ MemARead(context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + i,
+ data))
+ return false;
+
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then
+ // LoadWritePC(MemA[address,4]);
+ if (BitIsSet(registers, 15)) {
+ context.SetRegisterPlusOffset(*dwarf_reg, offset);
+ uint32_t data =
+ MemARead(context, address + offset, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ // In ARMv5T and above, this is an interworking branch.
+ if (!LoadWritePC(context, data))
+ return false;
+ }
+
+ // if wback && registers<n> == '0' then R[n] = R[n] + 4*BitCount(registers);
+ if (wback && BitIsClear(registers, n)) {
+
+ offset = addr_byte_size * BitCount(registers);
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned(offset);
+ addr_t addr = Rn + offset;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ addr))
+ return false;
+ }
+
+ // if wback && registers<n> == '1' then R[n] = bits(32) UNKNOWN; // Only
+ // possible for encoding A1
+ if (wback && BitIsSet(registers, n))
+ return WriteBits32Unknown(n);
+ }
+ return true;
+}
+
+// Load Register (immediate) calculates an address from a base register value
+// and an immediate offset, loads a word from memory, and writes to a register.
+// LDR (immediate, Thumb)
+bool EmulateInstructionARM::EmulateLDRRtRnImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if (ConditionPassed())
+ {
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,4];
+ if wback then R[n] = offset_addr;
+ if t == 15 then
+ if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ elsif UnalignedSupport() || address<1:0> = '00' then
+ R[t] = data;
+ else R[t] = bits(32) UNKNOWN; // Can only apply before ARMv7
+ }
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rt; // the destination register
+ uint32_t Rn; // the base register
+ uint32_t imm32; // the immediate offset used to form the address
+ addr_t offset_addr; // the offset address
+ addr_t address; // the calculated address
+ uint32_t data; // the literal data value from memory load
+ bool add, index, wback;
+ switch (encoding) {
+ case eEncodingT1:
+ Rt = Bits32(opcode, 2, 0);
+ Rn = Bits32(opcode, 5, 3);
+ imm32 = Bits32(opcode, 10, 6) << 2; // imm32 = ZeroExtend(imm5:'00', 32);
+ // index = TRUE; add = TRUE; wback = FALSE
+ add = true;
+ index = true;
+ wback = false;
+
+ break;
+
+ case eEncodingT2:
+ // t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
+ Rt = Bits32(opcode, 10, 8);
+ Rn = 13;
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ break;
+
+ case eEncodingT3:
+ // if Rn == '1111' then SEE LDR (literal);
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ Rt = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if ((Rt == 15) && InITBlock() && !LastInITBlock())
+ return false;
+
+ break;
+
+ case eEncodingT4:
+ // if Rn == '1111' then SEE LDR (literal);
+ // if P == '1' && U == '1' && W == '0' then SEE LDRT;
+ // if Rn == '1101' && P == '0' && U == '1' && W == '1' && imm8 ==
+ // '00000100' then SEE POP;
+ // if P == '0' && W == '0' then UNDEFINED;
+ if (BitIsClear(opcode, 10) && BitIsClear(opcode, 8))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ Rt = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet(opcode, 10);
+ add = BitIsSet(opcode, 9);
+ wback = BitIsSet(opcode, 8);
+
+ // if (wback && n == t) || (t == 15 && InITBlock() && !LastInITBlock())
+ // then UNPREDICTABLE;
+ if ((wback && (Rn == Rt)) ||
+ ((Rt == 15) && InITBlock() && !LastInITBlock()))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+ uint32_t base = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+ if (add)
+ offset_addr = base + imm32;
+ else
+ offset_addr = base - imm32;
+
+ address = (index ? offset_addr : base);
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + Rn);
+ if (wback) {
+ EmulateInstruction::Context ctx;
+ if (Rn == 13) {
+ ctx.type = eContextAdjustStackPointer;
+ ctx.SetImmediateSigned((int32_t)(offset_addr - base));
+ } else if (Rn == GetFramePointerRegisterNumber()) {
+ ctx.type = eContextSetFramePointer;
+ ctx.SetRegisterPlusOffset(*base_reg, (int32_t)(offset_addr - base));
+ } else {
+ ctx.type = EmulateInstruction::eContextAdjustBaseRegister;
+ ctx.SetRegisterPlusOffset(*base_reg, (int32_t)(offset_addr - base));
+ }
+
+ if (!WriteRegisterUnsigned(ctx, eRegisterKindDWARF, dwarf_r0 + Rn,
+ offset_addr))
+ return false;
+ }
+
+ // Prepare to write to the Rt register.
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, (int32_t)(offset_addr - base));
+
+ // Read memory from the address.
+ data = MemURead(context, address, 4, 0, &success);
+ if (!success)
+ return false;
+
+ if (Rt == 15) {
+ if (Bits32(address, 1, 0) == 0) {
+ if (!LoadWritePC(context, data))
+ return false;
+ } else
+ return false;
+ } else if (UnalignedSupport() || Bits32(address, 1, 0) == 0) {
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + Rt,
+ data))
+ return false;
+ } else
+ WriteBits32Unknown(Rt);
+ }
+ return true;
+}
+
+// STM (Store Multiple Increment After) stores multiple registers to consecutive
+// memory locations using an address
+// from a base register. The consecutive memory locations start at this
+// address, and the address just above the last of those locations can
+// optionally be written back to the base register.
+bool EmulateInstructionARM::EmulateSTM(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ address = R[n];
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ if i == n && wback && i != LowestSetBit(registers) then
+ MemA[address,4] = bits(32) UNKNOWN; // Only possible for encodings T1 and A1
+ else
+ MemA[address,4] = R[i];
+ address = address + 4;
+
+ if registers<15> == '1' then // Only possible for encoding A1
+ MemA[address,4] = PCStoreValue();
+ if wback then R[n] = R[n] + 4*BitCount(registers);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // n = UInt(Rn); registers = '00000000':register_list; wback = TRUE;
+ n = Bits32(opcode, 10, 8);
+ registers = Bits32(opcode, 7, 0);
+ registers = registers & 0x00ff; // Make sure the top 8 bits are zeros.
+ wback = true;
+
+ // if BitCount(registers) < 1 then UNPREDICTABLE;
+ if (BitCount(registers) < 1)
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ // n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ registers = registers & 0x5fff; // Make sure bits 15 & 13 are zeros.
+ wback = BitIsSet(opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount(registers) < 2))
+ return false;
+
+ // if wback && registers<n> == '1' then UNPREDICTABLE;
+ if (wback && BitIsSet(registers, n))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ wback = BitIsSet(opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount(registers) < 1))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // address = R[n];
+ int32_t offset = 0;
+ const addr_t address =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterStore;
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ // for i = 0 to 14
+ uint32_t lowest_set_bit = 14;
+ for (uint32_t i = 0; i < 14; ++i) {
+ // if registers<i> == '1' then
+ if (BitIsSet(registers, i)) {
+ if (i < lowest_set_bit)
+ lowest_set_bit = i;
+ // if i == n && wback && i != LowestSetBit(registers) then
+ if ((i == n) && wback && (i != lowest_set_bit))
+ // MemA[address,4] = bits(32) UNKNOWN; // Only possible for encodings
+ // T1 and A1
+ WriteBits32UnknownToMemory(address + offset);
+ else {
+ // MemA[address,4] = R[i];
+ uint32_t data = ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + i,
+ 0, &success);
+ if (!success)
+ return false;
+
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + i);
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg, offset);
+ if (!MemAWrite(context, address + offset, data, addr_byte_size))
+ return false;
+ }
+
+ // address = address + 4;
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then // Only possible for encoding A1
+ // MemA[address,4] = PCStoreValue();
+ if (BitIsSet(registers, 15)) {
+ std::optional<RegisterInfo> pc_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_pc);
+ context.SetRegisterPlusOffset(*pc_reg, 8);
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite(context, address + offset, pc, addr_byte_size))
+ return false;
+ }
+
+ // if wback then R[n] = R[n] + 4*BitCount(registers);
+ if (wback) {
+ offset = addr_byte_size * BitCount(registers);
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned(offset);
+ addr_t data = address + offset;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// STMDA (Store Multiple Decrement After) stores multiple registers to
+// consecutive memory locations using an address from a base register. The
+// consecutive memory locations end at this address, and the address just below
+// the lowest of those locations can optionally be written back to the base
+// register.
+bool EmulateInstructionARM::EmulateSTMDA(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ address = R[n] - 4*BitCount(registers) + 4;
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ if i == n && wback && i != LowestSetBit(registers) then
+ MemA[address,4] = bits(32) UNKNOWN;
+ else
+ MemA[address,4] = R[i];
+ address = address + 4;
+
+ if registers<15> == '1' then
+ MemA[address,4] = PCStoreValue();
+
+ if wback then R[n] = R[n] - 4*BitCount(registers);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ // EncodingSpecificOperations();
+ switch (encoding) {
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ wback = BitIsSet(opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || (BitCount(registers) < 1))
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ // address = R[n] - 4*BitCount(registers) + 4;
+ int32_t offset = 0;
+ addr_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ addr_t address = Rn - (addr_byte_size * BitCount(registers)) + 4;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterStore;
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ // for i = 0 to 14
+ uint32_t lowest_bit_set = 14;
+ for (uint32_t i = 0; i < 14; ++i) {
+ // if registers<i> == '1' then
+ if (BitIsSet(registers, i)) {
+ if (i < lowest_bit_set)
+ lowest_bit_set = i;
+ // if i == n && wback && i != LowestSetBit(registers) then
+ if ((i == n) && wback && (i != lowest_bit_set))
+ // MemA[address,4] = bits(32) UNKNOWN;
+ WriteBits32UnknownToMemory(address + offset);
+ else {
+ // MemA[address,4] = R[i];
+ uint32_t data = ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + i,
+ 0, &success);
+ if (!success)
+ return false;
+
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + i);
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ Rn - (address + offset));
+ if (!MemAWrite(context, address + offset, data, addr_byte_size))
+ return false;
+ }
+
+ // address = address + 4;
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then
+ // MemA[address,4] = PCStoreValue();
+ if (BitIsSet(registers, 15)) {
+ std::optional<RegisterInfo> pc_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_pc);
+ context.SetRegisterPlusOffset(*pc_reg, 8);
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite(context, address + offset, pc, addr_byte_size))
+ return false;
+ }
+
+ // if wback then R[n] = R[n] - 4*BitCount(registers);
+ if (wback) {
+ offset = (addr_byte_size * BitCount(registers)) * -1;
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned(offset);
+ addr_t data = Rn + offset;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// STMDB (Store Multiple Decrement Before) stores multiple registers to
+// consecutive memory locations using an address from a base register. The
+// consecutive memory locations end just below this address, and the address of
+// the first of those locations can optionally be written back to the base
+// register.
+bool EmulateInstructionARM::EmulateSTMDB(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ address = R[n] - 4*BitCount(registers);
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ if i == n && wback && i != LowestSetBit(registers) then
+ MemA[address,4] = bits(32) UNKNOWN; // Only possible for encoding A1
+ else
+ MemA[address,4] = R[i];
+ address = address + 4;
+
+ if registers<15> == '1' then // Only possible for encoding A1
+ MemA[address,4] = PCStoreValue();
+
+ if wback then R[n] = R[n] - 4*BitCount(registers);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // if W == '1' && Rn == '1101' then SEE PUSH;
+ if ((BitIsSet(opcode, 21)) && (Bits32(opcode, 19, 16) == 13)) {
+ // See PUSH
+ }
+ // n = UInt(Rn); registers = '0':M:'0':register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ registers = registers & 0x5fff; // Make sure bits 15 & 13 are zeros.
+ wback = BitIsSet(opcode, 21);
+ // if n == 15 || BitCount(registers) < 2 then UNPREDICTABLE;
+ if ((n == 15) || BitCount(registers) < 2)
+ return false;
+ // if wback && registers<n> == '1' then UNPREDICTABLE;
+ if (wback && BitIsSet(registers, n))
+ return false;
+ break;
+
+ case eEncodingA1:
+ // if W == '1' && Rn == '1101' && BitCount(register_list) >= 2 then SEE
+ // PUSH;
+ if (BitIsSet(opcode, 21) && (Bits32(opcode, 19, 16) == 13) &&
+ BitCount(Bits32(opcode, 15, 0)) >= 2) {
+ // See Push
+ }
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ wback = BitIsSet(opcode, 21);
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) || BitCount(registers) < 1)
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ // address = R[n] - 4*BitCount(registers);
+
+ int32_t offset = 0;
+ addr_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t address = Rn - (addr_byte_size * BitCount(registers));
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterStore;
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ // for i = 0 to 14
+ uint32_t lowest_set_bit = 14;
+ for (uint32_t i = 0; i < 14; ++i) {
+ // if registers<i> == '1' then
+ if (BitIsSet(registers, i)) {
+ if (i < lowest_set_bit)
+ lowest_set_bit = i;
+ // if i == n && wback && i != LowestSetBit(registers) then
+ if ((i == n) && wback && (i != lowest_set_bit))
+ // MemA[address,4] = bits(32) UNKNOWN; // Only possible for encoding
+ // A1
+ WriteBits32UnknownToMemory(address + offset);
+ else {
+ // MemA[address,4] = R[i];
+ uint32_t data = ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + i,
+ 0, &success);
+ if (!success)
+ return false;
+
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + i);
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ Rn - (address + offset));
+ if (!MemAWrite(context, address + offset, data, addr_byte_size))
+ return false;
+ }
+
+ // address = address + 4;
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then // Only possible for encoding A1
+ // MemA[address,4] = PCStoreValue();
+ if (BitIsSet(registers, 15)) {
+ std::optional<RegisterInfo> pc_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_pc);
+ context.SetRegisterPlusOffset(*pc_reg, 8);
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite(context, address + offset, pc, addr_byte_size))
+ return false;
+ }
+
+ // if wback then R[n] = R[n] - 4*BitCount(registers);
+ if (wback) {
+ offset = (addr_byte_size * BitCount(registers)) * -1;
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned(offset);
+ addr_t data = Rn + offset;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// STMIB (Store Multiple Increment Before) stores multiple registers to
+// consecutive memory locations using an address from a base register. The
+// consecutive memory locations start just above this address, and the address
+// of the last of those locations can optionally be written back to the base
+// register.
+bool EmulateInstructionARM::EmulateSTMIB(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ address = R[n] + 4;
+
+ for i = 0 to 14
+ if registers<i> == '1' then
+ if i == n && wback && i != LowestSetBit(registers) then
+ MemA[address,4] = bits(32) UNKNOWN;
+ else
+ MemA[address,4] = R[i];
+ address = address + 4;
+
+ if registers<15> == '1' then
+ MemA[address,4] = PCStoreValue();
+
+ if wback then R[n] = R[n] + 4*BitCount(registers);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t n;
+ uint32_t registers = 0;
+ bool wback;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ // EncodingSpecificOperations();
+ switch (encoding) {
+ case eEncodingA1:
+ // n = UInt(Rn); registers = register_list; wback = (W == '1');
+ n = Bits32(opcode, 19, 16);
+ registers = Bits32(opcode, 15, 0);
+ wback = BitIsSet(opcode, 21);
+
+ // if n == 15 || BitCount(registers) < 1 then UNPREDICTABLE;
+ if ((n == 15) && (BitCount(registers) < 1))
+ return false;
+ break;
+ default:
+ return false;
+ }
+ // address = R[n] + 4;
+
+ int32_t offset = 0;
+ addr_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ addr_t address = Rn + addr_byte_size;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextRegisterStore;
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ uint32_t lowest_set_bit = 14;
+ // for i = 0 to 14
+ for (uint32_t i = 0; i < 14; ++i) {
+ // if registers<i> == '1' then
+ if (BitIsSet(registers, i)) {
+ if (i < lowest_set_bit)
+ lowest_set_bit = i;
+ // if i == n && wback && i != LowestSetBit(registers) then
+ if ((i == n) && wback && (i != lowest_set_bit))
+ // MemA[address,4] = bits(32) UNKNOWN;
+ WriteBits32UnknownToMemory(address + offset);
+ // else
+ else {
+ // MemA[address,4] = R[i];
+ uint32_t data = ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + i,
+ 0, &success);
+ if (!success)
+ return false;
+
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + i);
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ offset + addr_byte_size);
+ if (!MemAWrite(context, address + offset, data, addr_byte_size))
+ return false;
+ }
+
+ // address = address + 4;
+ offset += addr_byte_size;
+ }
+ }
+
+ // if registers<15> == '1' then
+ // MemA[address,4] = PCStoreValue();
+ if (BitIsSet(registers, 15)) {
+ std::optional<RegisterInfo> pc_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_pc);
+ context.SetRegisterPlusOffset(*pc_reg, 8);
+ const uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite(context, address + offset, pc, addr_byte_size))
+ return false;
+ }
+
+ // if wback then R[n] = R[n] + 4*BitCount(registers);
+ if (wback) {
+ offset = addr_byte_size * BitCount(registers);
+ context.type = EmulateInstruction::eContextAdjustBaseRegister;
+ context.SetImmediateSigned(offset);
+ addr_t data = Rn + offset;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// STR (store immediate) calculates an address from a base register value and an
+// immediate offset, and stores a word
+// from a register to memory. It can use offset, post-indexed, or pre-indexed
+// addressing.
+bool EmulateInstructionARM::EmulateSTRThumb(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ if UnalignedSupport() || address<1:0> == '00' then
+ MemU[address,4] = R[t];
+ else // Can only occur before ARMv7
+ MemU[address,4] = bits(32) UNKNOWN;
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+ // EncodingSpecificOperations (); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ imm32 = Bits32(opcode, 10, 6) << 2;
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = false;
+ wback = false;
+ break;
+
+ case eEncodingT2:
+ // t = UInt(Rt); n = 13; imm32 = ZeroExtend(imm8:'00', 32);
+ t = Bits32(opcode, 10, 8);
+ n = 13;
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+ break;
+
+ case eEncodingT3:
+ // if Rn == '1111' then UNDEFINED;
+ if (Bits32(opcode, 19, 16) == 15)
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+ break;
+
+ case eEncodingT4:
+ // if P == '1' && U == '1' && W == '0' then SEE STRT;
+ // if Rn == '1101' && P == '1' && U == '0' && W == '1' && imm8 ==
+ // '00000100' then SEE PUSH;
+ // if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
+ if ((Bits32(opcode, 19, 16) == 15) ||
+ (BitIsClear(opcode, 10) && BitIsClear(opcode, 8)))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet(opcode, 10);
+ add = BitIsSet(opcode, 9);
+ wback = BitIsSet(opcode, 8);
+
+ // if t == 15 || (wback && n == t) then UNPREDICTABLE;
+ if ((t == 15) || (wback && (n == t)))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint32_t base_address = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ if (add)
+ offset_addr = base_address + imm32;
+ else
+ offset_addr = base_address - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = base_address;
+
+ EmulateInstruction::Context context;
+ if (n == 13)
+ context.type = eContextPushRegisterOnStack;
+ else
+ context.type = eContextRegisterStore;
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ // if UnalignedSupport() || address<1:0> == '00' then
+ if (UnalignedSupport() ||
+ (BitIsClear(address, 1) && BitIsClear(address, 0))) {
+ // MemU[address,4] = R[t];
+ uint32_t data =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
+ if (!success)
+ return false;
+
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t);
+ int32_t offset = address - base_address;
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg, offset);
+ if (!MemUWrite(context, address, data, addr_byte_size))
+ return false;
+ } else {
+ // MemU[address,4] = bits(32) UNKNOWN;
+ WriteBits32UnknownToMemory(address);
+ }
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ if (n == 13)
+ context.type = eContextAdjustStackPointer;
+ else
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// STR (Store Register) calculates an address from a base register value and an
+// offset register value, stores a
+// word from a register to memory. The offset register value can optionally
+// be shifted.
+bool EmulateInstructionARM::EmulateSTRRegister(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ if t == 15 then // Only possible for encoding A1
+ data = PCStoreValue();
+ else
+ data = R[t];
+ if UnalignedSupport() || address<1:0> == '00' || CurrentInstrSet() == InstrSet_ARM then
+ MemU[address,4] = data;
+ else // Can only occur before ARMv7
+ MemU[address,4] = bits(32) UNKNOWN;
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+ bool index;
+ bool add;
+ bool wback;
+
+ // EncodingSpecificOperations (); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation
+ // in ThumbEE";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ m = Bits32(opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then UNDEFINED;
+ if (Bits32(opcode, 19, 16) == 15)
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32(opcode, 5, 4);
+
+ // if t == 15 || BadReg(m) then UNPREDICTABLE;
+ if ((t == 15) || (BadReg(m)))
+ return false;
+ break;
+
+ case eEncodingA1: {
+ // if P == '0' && W == '1' then SEE STRT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') ||
+ // (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = (BitIsClear(opcode, 24) || BitIsSet(opcode, 21));
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ uint32_t typ = Bits32(opcode, 6, 5);
+ uint32_t imm5 = Bits32(opcode, 11, 7);
+ shift_n = DecodeImmShift(typ, imm5, shift_t);
+
+ // if m == 15 then UNPREDICTABLE;
+ if (m == 15)
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+ }
+ default:
+ return false;
+ }
+
+ addr_t offset_addr;
+ addr_t address;
+ int32_t offset = 0;
+
+ addr_t base_address =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rm_data =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset = Shift(Rm_data, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ if (add)
+ offset_addr = base_address + offset;
+ else
+ offset_addr = base_address - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = base_address;
+
+ uint32_t data;
+ // if t == 15 then // Only possible for encoding A1
+ if (t == 15)
+ // data = PCStoreValue();
+ data = ReadCoreReg(PC_REG, &success);
+ else
+ // data = R[t];
+ data =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
+
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+
+ // if UnalignedSupport() || address<1:0> == '00' || CurrentInstrSet() ==
+ // InstrSet_ARM then
+ if (UnalignedSupport() ||
+ (BitIsClear(address, 1) && BitIsClear(address, 0)) ||
+ CurrentInstrSet() == eModeARM) {
+ // MemU[address,4] = data;
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t);
+
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ address - base_address);
+ if (!MemUWrite(context, address, data, addr_byte_size))
+ return false;
+
+ } else
+ // MemU[address,4] = bits(32) UNKNOWN;
+ WriteBits32UnknownToMemory(address);
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextRegisterLoad;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+bool EmulateInstructionARM::EmulateSTRBThumb(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ MemU[address,1] = R[t]<7:0>;
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ imm32 = Bits32(opcode, 10, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then UNDEFINED;
+ if (Bits32(opcode, 19, 16) == 15)
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if BadReg(t) then UNPREDICTABLE;
+ if (BadReg(t))
+ return false;
+ break;
+
+ case eEncodingT3:
+ // if P == '1' && U == '1' && W == '0' then SEE STRBT;
+ // if Rn == '1111' || (P == '0' && W == '0') then UNDEFINED;
+ if (Bits32(opcode, 19, 16) == 15)
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet(opcode, 10);
+ add = BitIsSet(opcode, 9);
+ wback = BitIsSet(opcode, 8);
+
+ // if BadReg(t) || (wback && n == t) then UNPREDICTABLE
+ if ((BadReg(t)) || (wback && (n == t)))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ addr_t offset_addr;
+ addr_t address;
+ addr_t base_address =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ if (add)
+ offset_addr = base_address + imm32;
+ else
+ offset_addr = base_address - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = base_address;
+
+ // MemU[address,1] = R[t]<7:0>
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ address - base_address);
+
+ uint32_t data =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
+ if (!success)
+ return false;
+
+ data = Bits32(data, 7, 0);
+
+ if (!MemUWrite(context, address, data, 1))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextRegisterLoad;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// STRH (register) calculates an address from a base register value and an
+// offset register value, and stores a
+// halfword from a register to memory. The offset register value can be
+// shifted left by 0, 1, 2, or 3 bits.
+bool EmulateInstructionARM::EmulateSTRHRegister(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ if UnalignedSupport() || address<0> == '0' then
+ MemU[address,2] = R[t]<15:0>;
+ else // Can only occur before ARMv7
+ MemU[address,2] = bits(16) UNKNOWN;
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation
+ // in ThumbEE";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ m = Bits32(opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then UNDEFINED;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+ if (n == 15)
+ return false;
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32(opcode, 5, 4);
+
+ // if BadReg(t) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg(t) || BadReg(m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // if P == '0' && W == '1' then SEE STRHT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') ||
+ // (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = (BitIsClear(opcode, 24) || BitIsSet(opcode, 21));
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ // if t == 15 || m == 15 then UNPREDICTABLE;
+ if ((t == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ uint32_t offset = Shift(Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+
+ // if UnalignedSupport() || address<0> == '0' then
+ if (UnalignedSupport() || BitIsClear(address, 0)) {
+ // MemU[address,2] = R[t]<15:0>;
+ uint32_t Rt = ReadCoreReg(t, &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> offset_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t);
+ context.SetRegisterToRegisterPlusIndirectOffset(*base_reg, *offset_reg,
+ *data_reg);
+
+ if (!MemUWrite(context, address, Bits32(Rt, 15, 0), 2))
+ return false;
+ } else // Can only occur before ARMv7
+ {
+ // MemU[address,2] = bits(16) UNKNOWN;
+ }
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// Add with Carry (immediate) adds an immediate value and the carry flag value
+// to a register value, and writes the result to the destination register. It
+// can optionally update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateADCImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], imm32, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn;
+ uint32_t
+ imm32; // the immediate value to be added to the value obtained from Rn
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (BadReg(Rd) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ int32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(val1, imm32, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// Add with Carry (register) adds a register value, the carry flag value, and
+// an optionally-shifted register value, and writes the result to the
+// destination register. It can optionally update the condition flags based on
+// the result.
+bool EmulateInstructionARM::EmulateADCReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], shifted, APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ int32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ int32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(val1, shifted, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// This instruction adds an immediate value to the PC value to form a PC-
+// relative address, and writes the result to the destination register.
+bool EmulateInstructionARM::EmulateADR(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
+ if d == 15 then // Can only occur for ARM encodings
+ ALUWritePC(result);
+ else
+ R[d] = result;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd;
+ uint32_t imm32; // the immediate value to be added/subtracted to/from the PC
+ bool add;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 10, 8);
+ imm32 = ThumbImm8Scaled(opcode); // imm32 = ZeroExtend(imm8:'00', 32)
+ add = true;
+ break;
+ case eEncodingT2:
+ case eEncodingT3:
+ Rd = Bits32(opcode, 11, 8);
+ imm32 = ThumbImm12(opcode); // imm32 = ZeroExtend(i:imm3:imm8, 32)
+ add = (Bits32(opcode, 24, 21) == 0); // 0b0000 => ADD; 0b0101 => SUB
+ if (BadReg(Rd))
+ return false;
+ break;
+ case eEncodingA1:
+ case eEncodingA2:
+ Rd = Bits32(opcode, 15, 12);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+ add = (Bits32(opcode, 24, 21) == 0x4); // 0b0100 => ADD; 0b0010 => SUB
+ break;
+ default:
+ return false;
+ }
+
+ // Read the PC value.
+ uint32_t pc = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = (add ? Align(pc, 4) + imm32 : Align(pc, 4) - imm32);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreReg(context, result, Rd))
+ return false;
+ }
+ return true;
+}
+
+// This instruction performs a bitwise AND of a register value and an immediate
+// value, and writes the result to the destination register. It can optionally
+// update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateANDImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] AND imm32;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn;
+ uint32_t
+ imm32; // the immediate value to be ANDed to the value obtained from Rn
+ bool setflags;
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(
+ opcode, APSR_C,
+ carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ // if Rd == '1111' && S == '1' then SEE TST (immediate);
+ if (Rd == 15 && setflags)
+ return EmulateTSTImm(opcode, eEncodingT1);
+ if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 =
+ ARMExpandImm_C(opcode, APSR_C,
+ carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 & imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// This instruction performs a bitwise AND of a register value and an
+// optionally-shifted register value, and writes the result to the destination
+// register. It can optionally update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateANDReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] AND shifted;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ uint32_t carry;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if Rd == '1111' && S == '1' then SEE TST (register);
+ if (Rd == 15 && setflags)
+ return EmulateTSTReg(opcode, eEncodingT2);
+ if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 & shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise Bit Clear (immediate) performs a bitwise AND of a register value and
+// the complement of an immediate value, and writes the result to the
+// destination register. It can optionally update the condition flags based on
+// the result.
+bool EmulateInstructionARM::EmulateBICImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] AND NOT(imm32);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn;
+ uint32_t imm32; // the immediate value to be bitwise inverted and ANDed to
+ // the value obtained from Rn
+ bool setflags;
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(
+ opcode, APSR_C,
+ carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ if (BadReg(Rd) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 =
+ ARMExpandImm_C(opcode, APSR_C,
+ carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 & ~imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise Bit Clear (register) performs a bitwise AND of a register value and
+// the complement of an optionally-shifted register value, and writes the
+// result to the destination register. It can optionally update the condition
+// flags based on the result.
+bool EmulateInstructionARM::EmulateBICReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] AND NOT(shifted);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ uint32_t carry;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 & ~shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// LDR (immediate, ARM) calculates an address from a base register value and an
+// immediate offset, loads a word
+// from memory, and writes it to a register. It can use offset, post-indexed,
+// or pre-indexed addressing.
+bool EmulateInstructionARM::EmulateLDRImmediateARM(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,4];
+ if wback then R[n] = offset_addr;
+ if t == 15 then
+ if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ elsif UnalignedSupport() || address<1:0> = '00' then
+ R[t] = data;
+ else // Can only apply before ARMv7
+ R[t] = ROR(data, 8*UInt(address<1:0>));
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding) {
+ case eEncodingA1:
+ // if Rn == '1111' then SEE LDR (literal);
+ // if P == '0' && W == '1' then SEE LDRT;
+ // if Rn == '1101' && P == '0' && U == '1' && W == '0' && imm12 ==
+ // '000000000100' then SEE POP;
+ // t == UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 11, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') ||
+ // (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = (BitIsClear(opcode, 24) || BitIsSet(opcode, 21));
+
+ // if wback && n == t then UNPREDICTABLE;
+ if (wback && (n == t))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ addr_t address;
+ addr_t offset_addr;
+ addr_t base_address = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ if (add)
+ offset_addr = base_address + imm32;
+ else
+ offset_addr = base_address - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = base_address;
+
+ // data = MemU[address,4];
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - base_address);
+
+ uint64_t data = MemURead(context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+
+ // if t == 15 then
+ if (t == 15) {
+ // if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ if (BitIsClear(address, 1) && BitIsClear(address, 0)) {
+ // LoadWritePC (data);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - base_address);
+ LoadWritePC(context, data);
+ } else
+ return false;
+ }
+ // elsif UnalignedSupport() || address<1:0> = '00' then
+ else if (UnalignedSupport() ||
+ (BitIsClear(address, 1) && BitIsClear(address, 0))) {
+ // R[t] = data;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - base_address);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ data))
+ return false;
+ }
+ // else // Can only apply before ARMv7
+ else {
+ // R[t] = ROR(data, 8*UInt(address<1:0>));
+ data = ROR(data, Bits32(address, 1, 0), &success);
+ if (!success)
+ return false;
+ context.type = eContextRegisterLoad;
+ context.SetImmediate(data);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// LDR (register) calculates an address from a base register value and an offset
+// register value, loads a word
+// from memory, and writes it to a register. The offset register value can
+// optionally be shifted.
+bool EmulateInstructionARM::EmulateLDRRegister(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,4];
+ if wback then R[n] = offset_addr;
+ if t == 15 then
+ if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ elsif UnalignedSupport() || address<1:0> = '00' then
+ R[t] = data;
+ else // Can only apply before ARMv7
+ if CurrentInstrSet() == InstrSet_ARM then
+ R[t] = ROR(data, 8*UInt(address<1:0>));
+ else
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ switch (encoding) {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation
+ // in ThumbEE";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ m = Bits32(opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then SEE LDR (literal);
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32(opcode, 5, 4);
+
+ // if BadReg(m) then UNPREDICTABLE;
+ if (BadReg(m))
+ return false;
+
+ // if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if ((t == 15) && InITBlock() && !LastInITBlock())
+ return false;
+
+ break;
+
+ case eEncodingA1: {
+ // if P == '0' && W == '1' then SEE LDRT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') ||
+ // (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = (BitIsClear(opcode, 24) || BitIsSet(opcode, 21));
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ uint32_t type = Bits32(opcode, 6, 5);
+ uint32_t imm5 = Bits32(opcode, 11, 7);
+ shift_n = DecodeImmShift(type, imm5, shift_t);
+
+ // if m == 15 then UNPREDICTABLE;
+ if (m == 15)
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+ } break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rm =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C); -- Note "The APSR is
+ // an application level alias for the CPSR".
+ addr_t offset =
+ Shift(Rm, shift_t, shift_n, Bit32(m_opcode_cpsr, APSR_C), &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // data = MemU[address,4];
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+
+ uint64_t data = MemURead(context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+
+ // if t == 15 then
+ if (t == 15) {
+ // if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
+ if (BitIsClear(address, 1) && BitIsClear(address, 0)) {
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+ LoadWritePC(context, data);
+ } else
+ return false;
+ }
+ // elsif UnalignedSupport() || address<1:0> = '00' then
+ else if (UnalignedSupport() ||
+ (BitIsClear(address, 1) && BitIsClear(address, 0))) {
+ // R[t] = data;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ data))
+ return false;
+ } else // Can only apply before ARMv7
+ {
+ // if CurrentInstrSet() == InstrSet_ARM then
+ if (CurrentInstrSet() == eModeARM) {
+ // R[t] = ROR(data, 8*UInt(address<1:0>));
+ data = ROR(data, Bits32(address, 1, 0), &success);
+ if (!success)
+ return false;
+ context.type = eContextRegisterLoad;
+ context.SetImmediate(data);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ data))
+ return false;
+ } else {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown(t);
+ }
+ }
+ }
+ return true;
+}
+
+// LDRB (immediate, Thumb)
+bool EmulateInstructionARM::EmulateLDRBImmediate(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ R[t] = ZeroExtend(MemU[address,1], 32);
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ imm32 = Bits32(opcode, 10, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ break;
+
+ case eEncodingT2:
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if Rt == '1111' then SEE PLD;
+ if (t == 15)
+ return false; // PLD is not implemented yet
+
+ // if Rn == '1111' then SEE LDRB (literal);
+ if (n == 15)
+ return EmulateLDRBLiteral(opcode, eEncodingT1);
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingT3:
+ // if P == '1' && U == '1' && W == '0' then SEE LDRBT;
+ // if P == '0' && W == '0' then UNDEFINED;
+ if (BitIsClear(opcode, 10) && BitIsClear(opcode, 8))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet(opcode, 10);
+ add = BitIsSet(opcode, 9);
+ wback = BitIsSet(opcode, 8);
+
+ // if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE PLD;
+ if (t == 15)
+ return false; // PLD is not implemented yet
+
+ // if Rn == '1111' then SEE LDRB (literal);
+ if (n == 15)
+ return EmulateLDRBLiteral(opcode, eEncodingT1);
+
+ // if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
+ if (BadReg(t) || (wback && (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t address;
+ addr_t offset_addr;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // R[t] = ZeroExtend(MemU[address,1], 32);
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg, address - Rn);
+
+ uint64_t data = MemURead(context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// LDRB (literal) calculates an address from the PC value and an immediate
+// offset, loads a byte from memory,
+// zero-extends it to form a 32-bit word and writes it to a register.
+bool EmulateInstructionARM::EmulateLDRBLiteral(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ base = Align(PC,4);
+ address = if add then (base + imm32) else (base - imm32);
+ R[t] = ZeroExtend(MemU[address,1], 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t imm32;
+ bool add;
+ switch (encoding) {
+ case eEncodingT1:
+ // t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
+ t = Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 11, 0);
+ add = BitIsSet(opcode, 23);
+
+ // if Rt == '1111' then SEE PLD;
+ if (t == 15)
+ return false; // PLD is not implemented yet
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // t == UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
+ t = Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 11, 0);
+ add = BitIsSet(opcode, 23);
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ // base = Align(PC,4);
+ uint32_t pc_val = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ uint32_t base = AlignPC(pc_val);
+
+ addr_t address;
+ // address = if add then (base + imm32) else (base - imm32);
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ // R[t] = ZeroExtend(MemU[address,1], 32);
+ EmulateInstruction::Context context;
+ context.type = eContextRelativeBranchImmediate;
+ context.SetImmediate(address - base);
+
+ uint64_t data = MemURead(context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+ }
+ return true;
+}
+
+// LDRB (register) calculates an address from a base register value and an
+// offset rigister value, loads a byte from memory, zero-extends it to form a
+// 32-bit word, and writes it to a register. The offset register value can
+// optionally be shifted.
+bool EmulateInstructionARM::EmulateLDRBRegister(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ R[t] = ZeroExtend(MemU[address,1],32);
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ m = Bits32(opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+
+ case eEncodingT2:
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32(opcode, 5, 4);
+
+ // if Rt == '1111' then SEE PLD;
+ if (t == 15)
+ return false; // PLD is not implemented yet
+
+ // if Rn == '1111' then SEE LDRB (literal);
+ if (n == 15)
+ return EmulateLDRBLiteral(opcode, eEncodingT1);
+
+ // if t == 13 || BadReg(m) then UNPREDICTABLE;
+ if ((t == 13) || BadReg(m))
+ return false;
+ break;
+
+ case eEncodingA1: {
+ // if P == '0' && W == '1' then SEE LDRBT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') ||
+ // (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = (BitIsClear(opcode, 24) || BitIsSet(opcode, 21));
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ uint32_t type = Bits32(opcode, 6, 5);
+ uint32_t imm5 = Bits32(opcode, 11, 7);
+ shift_n = DecodeImmShift(type, imm5, shift_t);
+
+ // if t == 15 || m == 15 then UNPREDICTABLE;
+ if ((t == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+ } break;
+
+ default:
+ return false;
+ }
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ uint32_t Rm =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t offset = Shift(Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ uint32_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // R[t] = ZeroExtend(MemU[address,1],32);
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+
+ uint64_t data = MemURead(context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// LDRH (immediate, Thumb) calculates an address from a base register value and
+// an immediate offset, loads a
+// halfword from memory, zero-extends it to form a 32-bit word, and writes it
+// to a register. It can use offset, post-indexed, or pre-indexed addressing.
+bool EmulateInstructionARM::EmulateLDRHImmediate(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,2];
+ if wback then R[n] = offset_addr;
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = ZeroExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'0', 32);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ imm32 = Bits32(opcode, 10, 6) << 1;
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ break;
+
+ case eEncodingT2:
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // if Rn == '1111' then SEE LDRH (literal);
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+ break;
+
+ case eEncodingT3:
+ // if Rn == '1111' then SEE LDRH (literal);
+ // if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE
+ // "Unallocated memory hints";
+ // if P == '1' && U == '1' && W == '0' then SEE LDRHT;
+ // if P == '0' && W == '0' then UNDEFINED;
+ if (BitIsClear(opcode, 10) && BitIsClear(opcode, 8))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet(opcode, 10);
+ add = BitIsSet(opcode, 9);
+ wback = BitIsSet(opcode, 8);
+
+ // if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
+ if (BadReg(t) || (wback && (n == t)))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint32_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // data = MemU[address,2];
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+
+ uint64_t data = MemURead(context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport() || BitIsClear(address, 0)) {
+ // R[t] = ZeroExtend(data, 32);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ data))
+ return false;
+ } else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown(t);
+ }
+ }
+ return true;
+}
+
+// LDRH (literal) calculates an address from the PC value and an immediate
+// offset, loads a halfword from memory,
+// zero-extends it to form a 32-bit word, and writes it to a register.
+bool EmulateInstructionARM::EmulateLDRHLiteral(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ base = Align(PC,4);
+ address = if add then (base + imm32) else (base - imm32);
+ data = MemU[address,2];
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = ZeroExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t imm32;
+ bool add;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ switch (encoding) {
+ case eEncodingT1:
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
+ t = Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 11, 0);
+ add = BitIsSet(opcode, 23);
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingA1: {
+ uint32_t imm4H = Bits32(opcode, 11, 8);
+ uint32_t imm4L = Bits32(opcode, 3, 0);
+
+ // t == UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
+ t = Bits32(opcode, 15, 12);
+ imm32 = (imm4H << 4) | imm4L;
+ add = BitIsSet(opcode, 23);
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ // base = Align(PC,4);
+ uint64_t pc_value = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ addr_t base = AlignPC(pc_value);
+ addr_t address;
+
+ // address = if add then (base + imm32) else (base - imm32);
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ // data = MemU[address,2];
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - base);
+
+ uint64_t data = MemURead(context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport() || BitIsClear(address, 0)) {
+ // R[t] = ZeroExtend(data, 32);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - base);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ data))
+ return false;
+
+ } else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown(t);
+ }
+ }
+ return true;
+}
+
+// LDRH (literal) calculates an address from a base register value and an offset
+// register value, loads a halfword
+// from memory, zero-extends it to form a 32-bit word, and writes it to a
+// register. The offset register value can be shifted left by 0, 1, 2, or 3
+// bits.
+bool EmulateInstructionARM::EmulateLDRHRegister(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,2];
+ if wback then R[n] = offset_addr;
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = ZeroExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation
+ // in ThumbEE";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ m = Bits32(opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then SEE LDRH (literal);
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32(opcode, 5, 4);
+
+ // if t == 13 || BadReg(m) then UNPREDICTABLE;
+ if ((t == 13) || BadReg(m))
+ return false;
+ break;
+
+ case eEncodingA1:
+ // if P == '0' && W == '1' then SEE LDRHT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') ||
+ // (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = (BitIsClear(opcode, 24) || BitIsSet(opcode, 21));
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ // if t == 15 || m == 15 then UNPREDICTABLE;
+ if ((t == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+
+ uint64_t Rm =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t offset = Shift(Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ uint64_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // data = MemU[address,2];
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> offset_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset(*base_reg, *offset_reg);
+ uint64_t data = MemURead(context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport() || BitIsClear(address, 0)) {
+ // R[t] = ZeroExtend(data, 32);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset(*base_reg, *offset_reg);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ data))
+ return false;
+ } else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown(t);
+ }
+ }
+ return true;
+}
+
+// LDRSB (immediate) calculates an address from a base register value and an
+// immediate offset, loads a byte from
+// memory, sign-extends it to form a 32-bit word, and writes it to a register.
+// It can use offset, post-indexed, or pre-indexed addressing.
+bool EmulateInstructionARM::EmulateLDRSBImmediate(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ R[t] = SignExtend(MemU[address,1], 32);
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // if Rt == '1111' then SEE PLI;
+ // if Rn == '1111' then SEE LDRSB (literal);
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ // if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE PLI;
+ // if Rn == '1111' then SEE LDRSB (literal);
+ // if P == '1' && U == '1' && W == '0' then SEE LDRSBT;
+ // if P == '0' && W == '0' then UNDEFINED;
+ if (BitIsClear(opcode, 10) && BitIsClear(opcode, 8))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet(opcode, 10);
+ add = BitIsSet(opcode, 9);
+ wback = BitIsSet(opcode, 8);
+
+ // if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
+ if (((t == 13) ||
+ ((t == 15) && (BitIsClear(opcode, 10) || BitIsSet(opcode, 9) ||
+ BitIsSet(opcode, 8)))) ||
+ (wback && (n == t)))
+ return false;
+
+ break;
+
+ case eEncodingA1: {
+ // if Rn == '1111' then SEE LDRSB (literal);
+ // if P == '0' && W == '1' then SEE LDRSBT;
+ // t == UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+
+ uint32_t imm4H = Bits32(opcode, 11, 8);
+ uint32_t imm4L = Bits32(opcode, 3, 0);
+ imm32 = (imm4H << 4) | imm4L;
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') ||
+ // (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = (BitIsClear(opcode, 24) || BitIsSet(opcode, 21));
+
+ // if t == 15 || (wback && n == t) then UNPREDICTABLE;
+ if ((t == 15) || (wback && (n == t)))
+ return false;
+
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ uint64_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // R[t] = SignExtend(MemU[address,1], 32);
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+
+ uint64_t unsigned_data = MemURead(context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ int64_t signed_data = llvm::SignExtend64<8>(unsigned_data);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ (uint64_t)signed_data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+// LDRSB (literal) calculates an address from the PC value and an immediate
+// offset, loads a byte from memory,
+// sign-extends it to form a 32-bit word, and writes tit to a register.
+bool EmulateInstructionARM::EmulateLDRSBLiteral(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ base = Align(PC,4);
+ address = if add then (base + imm32) else (base - imm32);
+ R[t] = SignExtend(MemU[address,1], 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t imm32;
+ bool add;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ switch (encoding) {
+ case eEncodingT1:
+ // if Rt == '1111' then SEE PLI;
+ // t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
+ t = Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 11, 0);
+ add = BitIsSet(opcode, 23);
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingA1: {
+ // t == UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
+ t = Bits32(opcode, 15, 12);
+ uint32_t imm4H = Bits32(opcode, 11, 8);
+ uint32_t imm4L = Bits32(opcode, 3, 0);
+ imm32 = (imm4H << 4) | imm4L;
+ add = BitIsSet(opcode, 23);
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ // base = Align(PC,4);
+ uint64_t pc_value = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+ uint64_t base = AlignPC(pc_value);
+
+ // address = if add then (base + imm32) else (base - imm32);
+ addr_t address;
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ // R[t] = SignExtend(MemU[address,1], 32);
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - base);
+
+ uint64_t unsigned_data = MemURead(context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ int64_t signed_data = llvm::SignExtend64<8>(unsigned_data);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ (uint64_t)signed_data))
+ return false;
+ }
+ return true;
+}
+
+// LDRSB (register) calculates an address from a base register value and an
+// offset register value, loadsa byte from
+// memory, sign-extends it to form a 32-bit word, and writes it to a register.
+// The offset register value can be shifted left by 0, 1, 2, or 3 bits.
+bool EmulateInstructionARM::EmulateLDRSBRegister(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ R[t] = SignExtend(MemU[address,1], 32);
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ m = Bits32(opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rt == '1111' then SEE PLI;
+ // if Rn == '1111' then SEE LDRSB (literal);
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32(opcode, 5, 4);
+
+ // if t == 13 || BadReg(m) then UNPREDICTABLE;
+ if ((t == 13) || BadReg(m))
+ return false;
+ break;
+
+ case eEncodingA1:
+ // if P == '0' && W == '1' then SEE LDRSBT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') ||
+ // (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsClear(opcode, 24) || BitIsSet(opcode, 21);
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ // if t == 15 || m == 15 then UNPREDICTABLE;
+ if ((t == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ addr_t offset = Shift(Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ uint64_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // R[t] = SignExtend(MemU[address,1], 32);
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> offset_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset(*base_reg, *offset_reg);
+
+ uint64_t unsigned_data = MemURead(context, address, 1, 0, &success);
+ if (!success)
+ return false;
+
+ int64_t signed_data = llvm::SignExtend64<8>(unsigned_data);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ (uint64_t)signed_data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// LDRSH (immediate) calculates an address from a base register value and an
+// immediate offset, loads a halfword from
+// memory, sign-extends it to form a 32-bit word, and writes it to a register.
+// It can use offset, post-indexed, or pre-indexed addressing.
+bool EmulateInstructionARM::EmulateLDRSHImmediate(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,2];
+ if wback then R[n] = offset_addr;
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = SignExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // if Rn == '1111' then SEE LDRSH (literal);
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 11, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then SEE LDRSH (literal);
+ // if Rt == '1111' && P == '1' && U == '0' && W == '0' then SEE
+ // "Unallocated memory hints";
+ // if P == '1' && U == '1' && W == '0' then SEE LDRSHT;
+ // if P == '0' && W == '0' then UNDEFINED;
+ if (BitIsClear(opcode, 10) && BitIsClear(opcode, 8))
+ return false;
+
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet(opcode, 10);
+ add = BitIsSet(opcode, 9);
+ wback = BitIsSet(opcode, 8);
+
+ // if BadReg(t) || (wback && n == t) then UNPREDICTABLE;
+ if (BadReg(t) || (wback && (n == t)))
+ return false;
+
+ break;
+
+ case eEncodingA1: {
+ // if Rn == '1111' then SEE LDRSH (literal);
+ // if P == '0' && W == '1' then SEE LDRSHT;
+ // t == UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ uint32_t imm4H = Bits32(opcode, 11, 8);
+ uint32_t imm4L = Bits32(opcode, 3, 0);
+ imm32 = (imm4H << 4) | imm4L;
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') ||
+ // (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsClear(opcode, 24) || BitIsSet(opcode, 21);
+
+ // if t == 15 || (wback && n == t) then UNPREDICTABLE;
+ if ((t == 15) || (wback && (n == t)))
+ return false;
+
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint64_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // data = MemU[address,2];
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+
+ uint64_t data = MemURead(context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport() || BitIsClear(address, 0)) {
+ // R[t] = SignExtend(data, 32);
+ int64_t signed_data = llvm::SignExtend64<16>(data);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ (uint64_t)signed_data))
+ return false;
+ } else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown(t);
+ }
+ }
+ return true;
+}
+
+// LDRSH (literal) calculates an address from the PC value and an immediate
+// offset, loads a halfword from memory,
+// sign-extends it to from a 32-bit word, and writes it to a register.
+bool EmulateInstructionARM::EmulateLDRSHLiteral(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ base = Align(PC,4);
+ address = if add then (base + imm32) else (base - imm32);
+ data = MemU[address,2];
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = SignExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t imm32;
+ bool add;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(15);
+ switch (encoding) {
+ case eEncodingT1:
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // t = UInt(Rt); imm32 = ZeroExtend(imm12, 32); add = (U == '1');
+ t = Bits32(opcode, 15, 12);
+ imm32 = Bits32(opcode, 11, 0);
+ add = BitIsSet(opcode, 23);
+
+ // if t == 13 then UNPREDICTABLE;
+ if (t == 13)
+ return false;
+
+ break;
+
+ case eEncodingA1: {
+ // t == UInt(Rt); imm32 = ZeroExtend(imm4H:imm4L, 32); add = (U == '1');
+ t = Bits32(opcode, 15, 12);
+ uint32_t imm4H = Bits32(opcode, 11, 8);
+ uint32_t imm4L = Bits32(opcode, 3, 0);
+ imm32 = (imm4H << 4) | imm4L;
+ add = BitIsSet(opcode, 23);
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+
+ break;
+ }
+ default:
+ return false;
+ }
+
+ // base = Align(PC,4);
+ uint64_t pc_value = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ uint64_t base = AlignPC(pc_value);
+
+ addr_t address;
+ // address = if add then (base + imm32) else (base - imm32);
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ // data = MemU[address,2];
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, imm32);
+
+ uint64_t data = MemURead(context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport() || BitIsClear(address, 0)) {
+ // R[t] = SignExtend(data, 32);
+ int64_t signed_data = llvm::SignExtend64<16>(data);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ (uint64_t)signed_data))
+ return false;
+ } else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown(t);
+ }
+ }
+ return true;
+}
+
+// LDRSH (register) calculates an address from a base register value and an
+// offset register value, loads a halfword
+// from memory, sign-extends it to form a 32-bit word, and writes it to a
+// register. The offset register value can be shifted left by 0, 1, 2, or 3
+// bits.
+bool EmulateInstructionARM::EmulateLDRSHRegister(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ address = if index then offset_addr else R[n];
+ data = MemU[address,2];
+ if wback then R[n] = offset_addr;
+ if UnalignedSupport() || address<0> = '0' then
+ R[t] = SignExtend(data, 32);
+ else // Can only apply before ARMv7
+ R[t] = bits(32) UNKNOWN;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ // EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ switch (encoding) {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then SEE "Modified operation
+ // in ThumbEE";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ m = Bits32(opcode, 8, 6);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // if Rn == '1111' then SEE LDRSH (literal);
+ // if Rt == '1111' then SEE "Unallocated memory hints";
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = TRUE; add = TRUE; wback = FALSE;
+ index = true;
+ add = true;
+ wback = false;
+
+ // (shift_t, shift_n) = (SRType_LSL, UInt(imm2));
+ shift_t = SRType_LSL;
+ shift_n = Bits32(opcode, 5, 4);
+
+ // if t == 13 || BadReg(m) then UNPREDICTABLE;
+ if ((t == 13) || BadReg(m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // if P == '0' && W == '1' then SEE LDRSHT;
+ // t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') ||
+ // (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsClear(opcode, 24) || BitIsSet(opcode, 21);
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ // if t == 15 || m == 15 then UNPREDICTABLE;
+ if ((t == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ uint64_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ // offset = Shift(R[m], shift_t, shift_n, APSR.C);
+ addr_t offset = Shift(Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ addr_t address;
+
+ // offset_addr = if add then (R[n] + offset) else (R[n] - offset);
+ if (add)
+ offset_addr = Rn + offset;
+ else
+ offset_addr = Rn - offset;
+
+ // address = if index then offset_addr else R[n];
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // data = MemU[address,2];
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> offset_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset(*base_reg, *offset_reg);
+
+ uint64_t data = MemURead(context, address, 2, 0, &success);
+ if (!success)
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+
+ // if UnalignedSupport() || address<0> = '0' then
+ if (UnalignedSupport() || BitIsClear(address, 0)) {
+ // R[t] = SignExtend(data, 32);
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusIndirectOffset(*base_reg, *offset_reg);
+
+ int64_t signed_data = llvm::SignExtend64<16>(data);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t,
+ (uint64_t)signed_data))
+ return false;
+ } else // Can only apply before ARMv7
+ {
+ // R[t] = bits(32) UNKNOWN;
+ WriteBits32Unknown(t);
+ }
+ }
+ return true;
+}
+
+// SXTB extracts an 8-bit value from a register, sign-extends it to 32 bits, and
+// writes the result to the destination
+// register. You can specifiy a rotation by 0, 8, 16, or 24 bits before
+// extracting the 8-bit value.
+bool EmulateInstructionARM::EmulateSXTB(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ rotated = ROR(R[m], rotation);
+ R[d] = SignExtend(rotated<7:0>, 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t d;
+ uint32_t m;
+ uint32_t rotation;
+
+ // EncodingSpecificOperations();
+ switch (encoding) {
+ case eEncodingT1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = 0;
+ d = Bits32(opcode, 2, 0);
+ m = Bits32(opcode, 5, 3);
+ rotation = 0;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32(opcode, 11, 8);
+ m = Bits32(opcode, 3, 0);
+ rotation = Bits32(opcode, 5, 4) << 3;
+
+ // if BadReg(d) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg(d) || BadReg(m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32(opcode, 15, 12);
+ m = Bits32(opcode, 3, 0);
+ rotation = Bits32(opcode, 11, 10) << 3;
+
+ // if d == 15 || m == 15 then UNPREDICTABLE;
+ if ((d == 15) || (m == 15))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // rotated = ROR(R[m], rotation);
+ uint64_t rotated = ROR(Rm, rotation, &success);
+ if (!success)
+ return false;
+
+ // R[d] = SignExtend(rotated<7:0>, 32);
+ int64_t data = llvm::SignExtend64<8>(rotated);
+
+ std::optional<RegisterInfo> source_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegister(*source_reg);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + d,
+ (uint64_t)data))
+ return false;
+ }
+ return true;
+}
+
+// SXTH extracts a 16-bit value from a register, sign-extends it to 32 bits, and
+// writes the result to the destination
+// register. You can specify a rotation by 0, 8, 16, or 24 bits before
+// extracting the 16-bit value.
+bool EmulateInstructionARM::EmulateSXTH(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ rotated = ROR(R[m], rotation);
+ R[d] = SignExtend(rotated<15:0>, 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t d;
+ uint32_t m;
+ uint32_t rotation;
+
+ // EncodingSpecificOperations();
+ switch (encoding) {
+ case eEncodingT1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = 0;
+ d = Bits32(opcode, 2, 0);
+ m = Bits32(opcode, 5, 3);
+ rotation = 0;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32(opcode, 11, 8);
+ m = Bits32(opcode, 3, 0);
+ rotation = Bits32(opcode, 5, 4) << 3;
+
+ // if BadReg(d) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg(d) || BadReg(m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32(opcode, 15, 12);
+ m = Bits32(opcode, 3, 0);
+ rotation = Bits32(opcode, 11, 10) << 3;
+
+ // if d == 15 || m == 15 then UNPREDICTABLE;
+ if ((d == 15) || (m == 15))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // rotated = ROR(R[m], rotation);
+ uint64_t rotated = ROR(Rm, rotation, &success);
+ if (!success)
+ return false;
+
+ // R[d] = SignExtend(rotated<15:0>, 32);
+ std::optional<RegisterInfo> source_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegister(*source_reg);
+
+ int64_t data = llvm::SignExtend64<16>(rotated);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + d,
+ (uint64_t)data))
+ return false;
+ }
+
+ return true;
+}
+
+// UXTB extracts an 8-bit value from a register, zero-extends it to 32 bits, and
+// writes the result to the destination
+// register. You can specify a rotation by 0, 8, 16, or 24 bits before
+// extracting the 8-bit value.
+bool EmulateInstructionARM::EmulateUXTB(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ rotated = ROR(R[m], rotation);
+ R[d] = ZeroExtend(rotated<7:0>, 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t d;
+ uint32_t m;
+ uint32_t rotation;
+
+ // EncodingSpecificOperations();
+ switch (encoding) {
+ case eEncodingT1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = 0;
+ d = Bits32(opcode, 2, 0);
+ m = Bits32(opcode, 5, 3);
+ rotation = 0;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32(opcode, 11, 8);
+ m = Bits32(opcode, 3, 0);
+ rotation = Bits32(opcode, 5, 4) << 3;
+
+ // if BadReg(d) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg(d) || BadReg(m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32(opcode, 15, 12);
+ m = Bits32(opcode, 3, 0);
+ rotation = Bits32(opcode, 11, 10) << 3;
+
+ // if d == 15 || m == 15 then UNPREDICTABLE;
+ if ((d == 15) || (m == 15))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // rotated = ROR(R[m], rotation);
+ uint64_t rotated = ROR(Rm, rotation, &success);
+ if (!success)
+ return false;
+
+ // R[d] = ZeroExtend(rotated<7:0>, 32);
+ std::optional<RegisterInfo> source_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegister(*source_reg);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + d,
+ Bits32(rotated, 7, 0)))
+ return false;
+ }
+ return true;
+}
+
+// UXTH extracts a 16-bit value from a register, zero-extends it to 32 bits, and
+// writes the result to the destination
+// register. You can specify a rotation by 0, 8, 16, or 24 bits before
+// extracting the 16-bit value.
+bool EmulateInstructionARM::EmulateUXTH(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ rotated = ROR(R[m], rotation);
+ R[d] = ZeroExtend(rotated<15:0>, 32);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t d;
+ uint32_t m;
+ uint32_t rotation;
+
+ switch (encoding) {
+ case eEncodingT1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = 0;
+ d = Bits32(opcode, 2, 0);
+ m = Bits32(opcode, 5, 3);
+ rotation = 0;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32(opcode, 11, 8);
+ m = Bits32(opcode, 3, 0);
+ rotation = Bits32(opcode, 5, 4) << 3;
+
+ // if BadReg(d) || BadReg(m) then UNPREDICTABLE;
+ if (BadReg(d) || BadReg(m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); m = UInt(Rm); rotation = UInt(rotate:'000');
+ d = Bits32(opcode, 15, 12);
+ m = Bits32(opcode, 3, 0);
+ rotation = Bits32(opcode, 11, 10) << 3;
+
+ // if d == 15 || m == 15 then UNPREDICTABLE;
+ if ((d == 15) || (m == 15))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint64_t Rm =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + m, 0, &success);
+ if (!success)
+ return false;
+
+ // rotated = ROR(R[m], rotation);
+ uint64_t rotated = ROR(Rm, rotation, &success);
+ if (!success)
+ return false;
+
+ // R[d] = ZeroExtend(rotated<15:0>, 32);
+ std::optional<RegisterInfo> source_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegister(*source_reg);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + d,
+ Bits32(rotated, 15, 0)))
+ return false;
+ }
+ return true;
+}
+
+// RFE (Return From Exception) loads the PC and the CPSR from the word at the
+// specified address and the following
+// word respectively.
+bool EmulateInstructionARM::EmulateRFE(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ if !CurrentModeIsPrivileged() || CurrentInstrSet() == InstrSet_ThumbEE then
+ UNPREDICTABLE;
+ else
+ address = if increment then R[n] else R[n]-8;
+ if wordhigher then address = address+4;
+ CPSRWriteByInstr(MemA[address+4,4], '1111', TRUE);
+ BranchWritePC(MemA[address,4]);
+ if wback then R[n] = if increment then R[n]+8 else R[n]-8;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t n;
+ bool wback;
+ bool increment;
+ bool wordhigher;
+
+ // EncodingSpecificOperations();
+ switch (encoding) {
+ case eEncodingT1:
+ // n = UInt(Rn); wback = (W == '1'); increment = FALSE; wordhigher =
+ // FALSE;
+ n = Bits32(opcode, 19, 16);
+ wback = BitIsSet(opcode, 21);
+ increment = false;
+ wordhigher = false;
+
+ // if n == 15 then UNPREDICTABLE;
+ if (n == 15)
+ return false;
+
+ // if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ // n = UInt(Rn); wback = (W == '1'); increment = TRUE; wordhigher = FALSE;
+ n = Bits32(opcode, 19, 16);
+ wback = BitIsSet(opcode, 21);
+ increment = true;
+ wordhigher = false;
+
+ // if n == 15 then UNPREDICTABLE;
+ if (n == 15)
+ return false;
+
+ // if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // n = UInt(Rn);
+ n = Bits32(opcode, 19, 16);
+
+ // wback = (W == '1'); inc = (U == '1'); wordhigher = (P == U);
+ wback = BitIsSet(opcode, 21);
+ increment = BitIsSet(opcode, 23);
+ wordhigher = (Bit32(opcode, 24) == Bit32(opcode, 23));
+
+ // if n == 15 then UNPREDICTABLE;
+ if (n == 15)
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // if !CurrentModeIsPrivileged() || CurrentInstrSet() == InstrSet_ThumbEE
+ // then
+ if (!CurrentModeIsPrivileged())
+ // UNPREDICTABLE;
+ return false;
+ else {
+ uint64_t Rn =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + n, 0, &success);
+ if (!success)
+ return false;
+
+ addr_t address;
+ // address = if increment then R[n] else R[n]-8;
+ if (increment)
+ address = Rn;
+ else
+ address = Rn - 8;
+
+ // if wordhigher then address = address+4;
+ if (wordhigher)
+ address = address + 4;
+
+ // CPSRWriteByInstr(MemA[address+4,4], '1111', TRUE);
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ EmulateInstruction::Context context;
+ context.type = eContextReturnFromException;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+
+ uint64_t data = MemARead(context, address + 4, 4, 0, &success);
+ if (!success)
+ return false;
+
+ CPSRWriteByInstr(data, 15, true);
+
+ // BranchWritePC(MemA[address,4]);
+ uint64_t data2 = MemARead(context, address, 4, 0, &success);
+ if (!success)
+ return false;
+
+ BranchWritePC(context, data2);
+
+ // if wback then R[n] = if increment then R[n]+8 else R[n]-8;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ if (increment) {
+ context.SetOffset(8);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ Rn + 8))
+ return false;
+ } else {
+ context.SetOffset(-8);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ Rn - 8))
+ return false;
+ }
+ } // if wback
+ }
+ } // if ConditionPassed()
+ return true;
+}
+
+// Bitwise Exclusive OR (immediate) performs a bitwise exclusive OR of a
+// register value and an immediate value, and writes the result to the
+// destination register. It can optionally update the condition flags based on
+// the result.
+bool EmulateInstructionARM::EmulateEORImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] EOR imm32;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn;
+ uint32_t
+ imm32; // the immediate value to be ORed to the value obtained from Rn
+ bool setflags;
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(
+ opcode, APSR_C,
+ carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ // if Rd == '1111' && S == '1' then SEE TEQ (immediate);
+ if (Rd == 15 && setflags)
+ return EmulateTEQImm(opcode, eEncodingT1);
+ if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 =
+ ARMExpandImm_C(opcode, APSR_C,
+ carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 ^ imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise Exclusive OR (register) performs a bitwise exclusive OR of a
+// register value and an optionally-shifted register value, and writes the
+// result to the destination register. It can optionally update the condition
+// flags based on the result.
+bool EmulateInstructionARM::EmulateEORReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] EOR shifted;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ uint32_t carry;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if Rd == '1111' && S == '1' then SEE TEQ (register);
+ if (Rd == 15 && setflags)
+ return EmulateTEQReg(opcode, eEncodingT1);
+ if (Rd == 13 || (Rd == 15 && !setflags) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 ^ shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise OR (immediate) performs a bitwise (inclusive) OR of a register value
+// and an immediate value, and writes the result to the destination register.
+// It can optionally update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateORRImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] OR imm32;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn;
+ uint32_t
+ imm32; // the immediate value to be ORed to the value obtained from Rn
+ bool setflags;
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm_C(
+ opcode, APSR_C,
+ carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ // if Rn == '1111' then SEE MOV (immediate);
+ if (Rn == 15)
+ return EmulateMOVRdImm(opcode, eEncodingT2);
+ if (BadReg(Rd) || Rn == 13)
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 =
+ ARMExpandImm_C(opcode, APSR_C,
+ carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 | imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Bitwise OR (register) performs a bitwise (inclusive) OR of a register value
+// and an optionally-shifted register value, and writes the result to the
+// destination register. It can optionally update the condition flags based on
+// the result.
+bool EmulateInstructionARM::EmulateORRReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] OR shifted;
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd, Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ bool setflags;
+ uint32_t carry;
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if Rn == '1111' then SEE MOV (register);
+ if (Rn == 15)
+ return EmulateMOVRdRm(opcode, eEncodingT3);
+ if (BadReg(Rd) || Rn == 13 || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 | shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteCoreRegOptionalFlags(context, result, Rd, setflags, carry))
+ return false;
+ }
+ return true;
+}
+
+// Reverse Subtract (immediate) subtracts a register value from an immediate
+// value, and writes the result to the destination register. It can optionally
+// update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateRSBImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ bool setflags;
+ uint32_t
+ imm32; // the immediate value to be added to the value obtained from Rn
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rn = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ imm32 = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (BadReg(Rd) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(~reg_val, imm32, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ return WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow);
+}
+
+// Reverse Subtract (register) subtracts a register value from an optionally-
+// shifted register value, and writes the result to the destination register.
+// It can optionally update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateRSBReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ uint32_t Rm; // the second operand
+ bool setflags;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ // if (BadReg(d) || BadReg(m)) then UNPREDICTABLE;
+ if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from register Rn.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the register value from register Rm.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(~val1, shifted, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ return WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow);
+}
+
+// Reverse Subtract with Carry (immediate) subtracts a register value and the
+// value of NOT (Carry flag) from an immediate value, and writes the result to
+// the destination register. It can optionally update the condition flags based
+// on the result.
+bool EmulateInstructionARM::EmulateRSCImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(NOT(R[n]), imm32, APSR.C);
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ bool setflags;
+ uint32_t
+ imm32; // the immediate value to be added to the value obtained from Rn
+ switch (encoding) {
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(~reg_val, imm32, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ return WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow);
+}
+
+// Reverse Subtract with Carry (register) subtracts a register value and the
+// value of NOT (Carry flag) from an optionally-shifted register value, and
+// writes the result to the destination register. It can optionally update the
+// condition flags based on the result.
+bool EmulateInstructionARM::EmulateRSCReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(NOT(R[n]), shifted, APSR.C);
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ uint32_t Rm; // the second operand
+ bool setflags;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ switch (encoding) {
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from register Rn.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the register value from register Rm.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(~val1, shifted, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ return WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow);
+}
+
+// Subtract with Carry (immediate) subtracts an immediate value and the value
+// of
+// NOT (Carry flag) from a register value, and writes the result to the
+// destination register.
+// It can optionally update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateSBCImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ bool setflags;
+ uint32_t
+ imm32; // the immediate value to be added to the value obtained from Rn
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+ if (BadReg(Rd) || BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ return WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow);
+}
+
+// Subtract with Carry (register) subtracts an optionally-shifted register
+// value and the value of
+// NOT (Carry flag) from a register value, and writes the result to the
+// destination register.
+// It can optionally update the condition flags based on the result.
+bool EmulateInstructionARM::EmulateSBCReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), APSR.C);
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ uint32_t Rm; // the second operand
+ bool setflags;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (BadReg(Rd) || BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from register Rn.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the register value from register Rm.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(val2, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ AddWithCarryResult res = AddWithCarry(val1, ~shifted, APSR_C);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+ return WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow);
+}
+
+// This instruction subtracts an immediate value from a register value, and
+// writes the result to the destination register. It can optionally update the
+// condition flags based on the result.
+bool EmulateInstructionARM::EmulateSUBImmThumb(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ bool setflags;
+ uint32_t imm32; // the immediate value to be subtracted from the value
+ // obtained from Rn
+ switch (encoding) {
+ case eEncodingT1:
+ Rd = Bits32(opcode, 2, 0);
+ Rn = Bits32(opcode, 5, 3);
+ setflags = !InITBlock();
+ imm32 = Bits32(opcode, 8, 6); // imm32 = ZeroExtend(imm3, 32)
+ break;
+ case eEncodingT2:
+ Rd = Rn = Bits32(opcode, 10, 8);
+ setflags = !InITBlock();
+ imm32 = Bits32(opcode, 7, 0); // imm32 = ZeroExtend(imm8, 32)
+ break;
+ case eEncodingT3:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbExpandImm(opcode); // imm32 = ThumbExpandImm(i:imm3:imm8)
+
+ // if Rd == '1111' && S == '1' then SEE CMP (immediate);
+ if (Rd == 15 && setflags)
+ return EmulateCMPImm(opcode, eEncodingT2);
+
+ // if Rn == '1101' then SEE SUB (SP minus immediate);
+ if (Rn == 13)
+ return EmulateSUBSPImm(opcode, eEncodingT2);
+
+ // if d == 13 || (d == 15 && S == '0') || n == 15 then UNPREDICTABLE;
+ if (Rd == 13 || (Rd == 15 && !setflags) || Rn == 15)
+ return false;
+ break;
+ case eEncodingT4:
+ Rd = Bits32(opcode, 11, 8);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ThumbImm12(opcode); // imm32 = ZeroExtend(i:imm3:imm8, 32)
+
+ // if Rn == '1111' then SEE ADR;
+ if (Rn == 15)
+ return EmulateADR(opcode, eEncodingT2);
+
+ // if Rn == '1101' then SEE SUB (SP minus immediate);
+ if (Rn == 13)
+ return EmulateSUBSPImm(opcode, eEncodingT3);
+
+ if (BadReg(Rd))
+ return false;
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, 1);
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ return WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow);
+}
+
+// This instruction subtracts an immediate value from a register value, and
+// writes the result to the destination register. It can optionally update the
+// condition flags based on the result.
+bool EmulateInstructionARM::EmulateSUBImmARM(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(imm32), '1');
+ if d == 15 then
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rd; // the destination register
+ uint32_t Rn; // the first operand
+ bool setflags;
+ uint32_t imm32; // the immediate value to be subtracted from the value
+ // obtained from Rn
+ switch (encoding) {
+ case eEncodingA1:
+ Rd = Bits32(opcode, 15, 12);
+ Rn = Bits32(opcode, 19, 16);
+ setflags = BitIsSet(opcode, 20);
+ imm32 = ARMExpandImm(opcode); // imm32 = ARMExpandImm(imm12)
+
+ // if Rn == '1111' && S == '0' then SEE ADR;
+ if (Rn == 15 && !setflags)
+ return EmulateADR(opcode, eEncodingA2);
+
+ // if Rn == '1101' then SEE SUB (SP minus immediate);
+ if (Rn == 13)
+ return EmulateSUBSPImm(opcode, eEncodingA1);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (Rd == 15 && setflags)
+ return EmulateSUBSPcLrEtc(opcode, encoding);
+ break;
+ default:
+ return false;
+ }
+ // Read the register value from the operand register Rn.
+ uint32_t reg_val = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(reg_val, ~imm32, 1);
+
+ EmulateInstruction::Context context;
+ if (Rd == 13)
+ context.type = EmulateInstruction::eContextAdjustStackPointer;
+ else
+ context.type = EmulateInstruction::eContextRegisterPlusOffset;
+
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, Rn);
+ int64_t imm32_signed = imm32;
+ context.SetRegisterPlusOffset(*dwarf_reg, -imm32_signed);
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, Rd, setflags,
+ res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// Test Equivalence (immediate) performs a bitwise exclusive OR operation on a
+// register value and an immediate value. It updates the condition flags based
+// on the result, and discards the result.
+bool EmulateInstructionARM::EmulateTEQImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] EOR imm32;
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rn;
+ uint32_t
+ imm32; // the immediate value to be ANDed to the value obtained from Rn
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ThumbExpandImm_C(
+ opcode, APSR_C,
+ carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ if (BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 =
+ ARMExpandImm_C(opcode, APSR_C,
+ carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 ^ imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteFlags(context, result, carry))
+ return false;
+ }
+ return true;
+}
+
+// Test Equivalence (register) performs a bitwise exclusive OR operation on a
+// register value and an optionally-shifted register value. It updates the
+// condition flags based on the result, and discards the result.
+bool EmulateInstructionARM::EmulateTEQReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] EOR shifted;
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ uint32_t carry;
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 ^ shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteFlags(context, result, carry))
+ return false;
+ }
+ return true;
+}
+
+// Test (immediate) performs a bitwise AND operation on a register value and an
+// immediate value. It updates the condition flags based on the result, and
+// discards the result.
+bool EmulateInstructionARM::EmulateTSTImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ result = R[n] AND imm32;
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rn;
+ uint32_t
+ imm32; // the immediate value to be ANDed to the value obtained from Rn
+ uint32_t carry; // the carry bit after ARM/Thumb Expand operation
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 = ThumbExpandImm_C(
+ opcode, APSR_C,
+ carry); // (imm32, carry) = ThumbExpandImm(i:imm3:imm8, APSR.C)
+ if (BadReg(Rn))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ imm32 =
+ ARMExpandImm_C(opcode, APSR_C,
+ carry); // (imm32, carry) = ARMExpandImm(imm12, APSR.C)
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ uint32_t result = val1 & imm32;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteFlags(context, result, carry))
+ return false;
+ }
+ return true;
+}
+
+// Test (register) performs a bitwise AND operation on a register value and an
+// optionally-shifted register value. It updates the condition flags based on
+// the result, and discards the result.
+bool EmulateInstructionARM::EmulateTSTReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ // ARM pseudo code...
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ (shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
+ result = R[n] AND shifted;
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ // APSR.V unchanged
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t Rn, Rm;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n; // the shift applied to the value read from Rm
+ uint32_t carry;
+ switch (encoding) {
+ case eEncodingT1:
+ Rn = Bits32(opcode, 2, 0);
+ Rm = Bits32(opcode, 5, 3);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+ break;
+ case eEncodingT2:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+ if (BadReg(Rn) || BadReg(Rm))
+ return false;
+ break;
+ case eEncodingA1:
+ Rn = Bits32(opcode, 19, 16);
+ Rm = Bits32(opcode, 3, 0);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+ default:
+ return false;
+ }
+
+ // Read the first operand.
+ uint32_t val1 = ReadCoreReg(Rn, &success);
+ if (!success)
+ return false;
+
+ // Read the second operand.
+ uint32_t val2 = ReadCoreReg(Rm, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift_C(val2, shift_t, shift_n, APSR_C, carry, &success);
+ if (!success)
+ return false;
+ uint32_t result = val1 & shifted;
+
+ EmulateInstruction::Context context;
+ context.type = EmulateInstruction::eContextImmediate;
+ context.SetNoArgs();
+
+ if (!WriteFlags(context, result, carry))
+ return false;
+ }
+ return true;
+}
+
+// A8.6.216 SUB (SP minus register)
+bool EmulateInstructionARM::EmulateSUBSPReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(SP, NOT(shifted), '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t d;
+ uint32_t m;
+ bool setflags;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ switch (encoding) {
+ case eEncodingT1:
+ // d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
+ d = Bits32(opcode, 11, 8);
+ m = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+
+ // if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then
+ // UNPREDICTABLE;
+ if ((d == 13) && ((shift_t != SRType_LSL) || (shift_n > 3)))
+ return false;
+
+ // if d == 15 || BadReg(m) then UNPREDICTABLE;
+ if ((d == 15) || BadReg(m))
+ return false;
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); m = UInt(Rm); setflags = (S == '1');
+ d = Bits32(opcode, 15, 12);
+ m = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if (d == 15 && setflags)
+ EmulateSUBSPcLrEtc(opcode, encoding);
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+ break;
+
+ default:
+ return false;
+ }
+
+ // shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // (result, carry, overflow) = AddWithCarry(SP, NOT(shifted), '1');
+ uint32_t sp_val = ReadCoreReg(SP_REG, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(sp_val, ~shifted, 1);
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ std::optional<RegisterInfo> sp_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_sp);
+ std::optional<RegisterInfo> dwarf_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+ context.SetRegisterRegisterOperands(*sp_reg, *dwarf_reg);
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, dwarf_r0 + d, setflags,
+ res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// A8.6.7 ADD (register-shifted register)
+bool EmulateInstructionARM::EmulateADDRegShift(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shift_n = UInt(R[s]<7:0>);
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ uint32_t s;
+ bool setflags;
+ ARM_ShifterType shift_t;
+
+ switch (encoding) {
+ case eEncodingA1:
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); s = UInt(Rs);
+ d = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+ s = Bits32(opcode, 11, 8);
+
+ // setflags = (S == '1'); shift_t = DecodeRegShift(type);
+ setflags = BitIsSet(opcode, 20);
+ shift_t = DecodeRegShift(Bits32(opcode, 6, 5));
+
+ // if d == 15 || n == 15 || m == 15 || s == 15 then UNPREDICTABLE;
+ if ((d == 15) || (n == 15) || (m == 15) || (s == 15))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ // shift_n = UInt(R[s]<7:0>);
+ uint32_t Rs = ReadCoreReg(s, &success);
+ if (!success)
+ return false;
+
+ uint32_t shift_n = Bits32(Rs, 7, 0);
+
+ // shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // (result, carry, overflow) = AddWithCarry(R[n], shifted, '0');
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(Rn, shifted, 0);
+
+ // R[d] = result;
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ std::optional<RegisterInfo> reg_n =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> reg_m =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+
+ context.SetRegisterRegisterOperands(*reg_n, *reg_m);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + d,
+ res.result))
+ return false;
+
+ // if setflags then
+ // APSR.N = result<31>;
+ // APSR.Z = IsZeroBit(result);
+ // APSR.C = carry;
+ // APSR.V = overflow;
+ if (setflags)
+ return WriteFlags(context, res.result, res.carry_out, res.overflow);
+ }
+ return true;
+}
+
+// A8.6.213 SUB (register)
+bool EmulateInstructionARM::EmulateSUBReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
+ if d == 15 then // Can only occur for ARM encoding
+ ALUWritePC(result); // setflags is always FALSE here
+ else
+ R[d] = result;
+ if setflags then
+ APSR.N = result<31>;
+ APSR.Z = IsZeroBit(result);
+ APSR.C = carry;
+ APSR.V = overflow;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool setflags;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+
+ switch (encoding) {
+ case eEncodingT1:
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
+ d = Bits32(opcode, 2, 0);
+ n = Bits32(opcode, 5, 3);
+ m = Bits32(opcode, 8, 6);
+ setflags = !InITBlock();
+
+ // (shift_t, shift_n) = (SRType_LSL, 0);
+ shift_t = SRType_LSL;
+ shift_n = 0;
+
+ break;
+
+ case eEncodingT2:
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S =="1");
+ d = Bits32(opcode, 11, 8);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+
+ // if Rd == "1111" && S == "1" then SEE CMP (register);
+ if (d == 15 && setflags == 1)
+ return EmulateCMPImm(opcode, eEncodingT3);
+
+ // if Rn == "1101" then SEE SUB (SP minus register);
+ if (n == 13)
+ return EmulateSUBSPReg(opcode, eEncodingT1);
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
+ shift_n = DecodeImmShiftThumb(opcode, shift_t);
+
+ // if d == 13 || (d == 15 && S == '0') || n == 15 || BadReg(m) then
+ // UNPREDICTABLE;
+ if ((d == 13) || ((d == 15) && BitIsClear(opcode, 20)) || (n == 15) ||
+ BadReg(m))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // if Rn == '1101' then SEE SUB (SP minus register);
+ // d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1');
+ d = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+ setflags = BitIsSet(opcode, 20);
+
+ // if Rd == '1111' && S == '1' then SEE SUBS PC, LR and related
+ // instructions;
+ if ((d == 15) && setflags)
+ EmulateSUBSPcLrEtc(opcode, encoding);
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // shifted = Shift(R[m], shift_t, shift_n, APSR.C);
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ uint32_t shifted = Shift(Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+
+ // (result, carry, overflow) = AddWithCarry(R[n], NOT(shifted), '1');
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult res = AddWithCarry(Rn, ~shifted, 1);
+
+ // if d == 15 then // Can only occur for ARM encoding ALUWritePC(result);
+ // // setflags is always FALSE here else
+ // R[d] = result;
+ // if setflags then
+ // APSR.N = result<31>;
+ // APSR.Z = IsZeroBit(result);
+ // APSR.C = carry;
+ // APSR.V = overflow;
+
+ EmulateInstruction::Context context;
+ context.type = eContextArithmetic;
+ std::optional<RegisterInfo> reg_n =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> reg_m =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+ context.SetRegisterRegisterOperands(*reg_n, *reg_m);
+
+ if (!WriteCoreRegOptionalFlags(context, res.result, dwarf_r0 + d, setflags,
+ res.carry_out, res.overflow))
+ return false;
+ }
+ return true;
+}
+
+// A8.6.202 STREX
+// Store Register Exclusive calculates an address from a base register value
+// and an immediate offset, and stores a word from a register to memory if the
+// executing processor has exclusive access to the memory addressed.
+bool EmulateInstructionARM::EmulateSTREX(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ address = R[n] + imm32;
+ if ExclusiveMonitorsPass(address,4) then
+ MemA[address,4] = R[t];
+ R[d] = 0;
+ else
+ R[d] = 1;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t d;
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ switch (encoding) {
+ case eEncodingT1:
+ // d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 =
+ // ZeroExtend(imm8:'00',
+ // 32);
+ d = Bits32(opcode, 11, 8);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // if BadReg(d) || BadReg(t) || n == 15 then UNPREDICTABLE;
+ if (BadReg(d) || BadReg(t) || (n == 15))
+ return false;
+
+ // if d == n || d == t then UNPREDICTABLE;
+ if ((d == n) || (d == t))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // d = UInt(Rd); t = UInt(Rt); n = UInt(Rn); imm32 = Zeros(32); // Zero
+ // offset
+ d = Bits32(opcode, 15, 12);
+ t = Bits32(opcode, 3, 0);
+ n = Bits32(opcode, 19, 16);
+ imm32 = 0;
+
+ // if d == 15 || t == 15 || n == 15 then UNPREDICTABLE;
+ if ((d == 15) || (t == 15) || (n == 15))
+ return false;
+
+ // if d == n || d == t then UNPREDICTABLE;
+ if ((d == n) || (d == t))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // address = R[n] + imm32;
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ addr_t address = Rn + imm32;
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t);
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg, imm32);
+
+ // if ExclusiveMonitorsPass(address,4) then if (ExclusiveMonitorsPass
+ // (address, addr_byte_size)) -- For now, for the sake of emulation, we
+ // will say this
+ // always return
+ // true.
+ if (true) {
+ // MemA[address,4] = R[t];
+ uint32_t Rt =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_r0 + t, 0, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite(context, address, Rt, addr_byte_size))
+ return false;
+
+ // R[d] = 0;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t, 0))
+ return false;
+ }
+#if 0 // unreachable because if true
+ else
+ {
+ // R[d] = 1;
+ if (!WriteRegisterUnsigned (context, eRegisterKindDWARF, dwarf_r0 + t, 1))
+ return false;
+ }
+#endif // unreachable because if true
+ }
+ return true;
+}
+
+// A8.6.197 STRB (immediate, ARM)
+bool EmulateInstructionARM::EmulateSTRBImmARM(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ MemU[address,1] = R[t]<7:0>;
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding) {
+ case eEncodingA1:
+ // if P == '0' && W == '1' then SEE STRBT;
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 11, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsClear(opcode, 24) || BitIsSet(opcode, 21);
+
+ // if t == 15 then UNPREDICTABLE;
+ if (t == 15)
+ return false;
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // MemU[address,1] = R[t]<7:0>;
+ uint32_t Rt = ReadCoreReg(t, &success);
+ if (!success)
+ return false;
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t);
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg, address - Rn);
+
+ if (!MemUWrite(context, address, Bits32(Rt, 7, 0), 1))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.194 STR (immediate, ARM)
+bool EmulateInstructionARM::EmulateSTRImmARM(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ switch (encoding) {
+ case eEncodingA1:
+ // if P == '0' && W == '1' then SEE STRT;
+ // if Rn == '1101' && P == '1' && U == '0' && W == '1' && imm12 ==
+ // '000000000100' then SEE PUSH;
+ // t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm12, 32);
+ t = Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 11, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsClear(opcode, 24) || BitIsSet(opcode, 21);
+
+ // if wback && (n == 15 || n == t) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t)))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t);
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg, address - Rn);
+
+ // MemU[address,4] = if t == 15 then PCStoreValue() else R[t];
+ uint32_t Rt = ReadCoreReg(t, &success);
+ if (!success)
+ return false;
+
+ if (t == 15) {
+ uint32_t pc_value = ReadCoreReg(PC_REG, &success);
+ if (!success)
+ return false;
+
+ if (!MemUWrite(context, address, pc_value, addr_byte_size))
+ return false;
+ } else {
+ if (!MemUWrite(context, address, Rt, addr_byte_size))
+ return false;
+ }
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetImmediate(offset_addr);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.66 LDRD (immediate)
+// Load Register Dual (immediate) calculates an address from a base register
+// value and an immediate offset, loads two words from memory, and writes them
+// to two registers. It can use offset, post-indexed, or pre-indexed
+// addressing.
+bool EmulateInstructionARM::EmulateLDRDImmediate(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ R[t] = MemA[address,4];
+ R[t2] = MemA[address+4,4];
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t t2;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding) {
+ case eEncodingT1:
+ // if P == '0' && W == '0' then SEE 'Related encodings';
+ // if Rn == '1111' then SEE LDRD (literal);
+ // t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 =
+ // ZeroExtend(imm8:'00', 32);
+ t = Bits32(opcode, 15, 12);
+ t2 = Bits32(opcode, 11, 8);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsSet(opcode, 21);
+
+ // if wback && (n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == t) || (n == t2)))
+ return false;
+
+ // if BadReg(t) || BadReg(t2) || t == t2 then UNPREDICTABLE;
+ if (BadReg(t) || BadReg(t2) || (t == t2))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // if Rn == '1111' then SEE LDRD (literal);
+ // if Rt<0> == '1' then UNPREDICTABLE;
+ // t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L,
+ // 32);
+ t = Bits32(opcode, 15, 12);
+ if (BitIsSet(t, 0))
+ return false;
+ t2 = t + 1;
+ n = Bits32(opcode, 19, 16);
+ imm32 = (Bits32(opcode, 11, 8) << 4) | Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsClear(opcode, 24) || BitIsSet(opcode, 21);
+
+ // if P == '0' && W == '1' then UNPREDICTABLE;
+ if (BitIsClear(opcode, 24) && BitIsSet(opcode, 21))
+ return false;
+
+ // if wback && (n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == t) || (n == t2)))
+ return false;
+
+ // if t2 == 15 then UNPREDICTABLE;
+ if (t2 == 15)
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // R[t] = MemA[address,4];
+
+ EmulateInstruction::Context context;
+ if (n == 13)
+ context.type = eContextPopRegisterOffStack;
+ else
+ context.type = eContextRegisterLoad;
+ context.SetAddress(address);
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t data = MemARead(context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+
+ // R[t2] = MemA[address+4,4];
+ context.SetAddress(address + 4);
+ data = MemARead(context, address + 4, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t2,
+ data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.68 LDRD (register)
+// Load Register Dual (register) calculates an address from a base register
+// value and a register offset, loads two words from memory, and writes them to
+// two registers. It can use offset, post-indexed or pre-indexed addressing.
+bool EmulateInstructionARM::EmulateLDRDRegister(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
+ address = if index then offset_addr else R[n];
+ R[t] = MemA[address,4];
+ R[t2] = MemA[address+4,4];
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t t2;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding) {
+ case eEncodingA1:
+ // if Rt<0> == '1' then UNPREDICTABLE;
+ // t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ if (BitIsSet(t, 0))
+ return false;
+ t2 = t + 1;
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsClear(opcode, 24) || BitIsSet(opcode, 21);
+
+ // if P == '0' && W == '1' then UNPREDICTABLE;
+ if (BitIsClear(opcode, 24) && BitIsSet(opcode, 21))
+ return false;
+
+ // if t2 == 15 || m == 15 || m == t || m == t2 then UNPREDICTABLE;
+ if ((t2 == 15) || (m == 15) || (m == t) || (m == t2))
+ return false;
+
+ // if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t) || (n == t2)))
+ return false;
+
+ // if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;
+ if ((ArchVersion() < 6) && wback && (m == n))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + Rm;
+ else
+ offset_addr = Rn - Rm;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ EmulateInstruction::Context context;
+ if (n == 13)
+ context.type = eContextPopRegisterOffStack;
+ else
+ context.type = eContextRegisterLoad;
+ context.SetAddress(address);
+
+ // R[t] = MemA[address,4];
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t data = MemARead(context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t, data))
+ return false;
+
+ // R[t2] = MemA[address+4,4];
+
+ data = MemARead(context, address + 4, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + t2,
+ data))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.200 STRD (immediate)
+// Store Register Dual (immediate) calculates an address from a base register
+// value and an immediate offset, and stores two words from two registers to
+// memory. It can use offset, post-indexed, or pre-indexed addressing.
+bool EmulateInstructionARM::EmulateSTRDImm(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); NullCheckIfThumbEE(n);
+ offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ address = if index then offset_addr else R[n];
+ MemA[address,4] = R[t];
+ MemA[address+4,4] = R[t2];
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t t2;
+ uint32_t n;
+ uint32_t imm32;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding) {
+ case eEncodingT1:
+ // if P == '0' && W == '0' then SEE 'Related encodings';
+ // t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 =
+ // ZeroExtend(imm8:'00', 32);
+ t = Bits32(opcode, 15, 12);
+ t2 = Bits32(opcode, 11, 8);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // index = (P == '1'); add = (U == '1'); wback = (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsSet(opcode, 21);
+
+ // if wback && (n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == t) || (n == t2)))
+ return false;
+
+ // if n == 15 || BadReg(t) || BadReg(t2) then UNPREDICTABLE;
+ if ((n == 15) || BadReg(t) || BadReg(t2))
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // if Rt<0> == '1' then UNPREDICTABLE;
+ // t = UInt(Rt); t2 = t+1; n = UInt(Rn); imm32 = ZeroExtend(imm4H:imm4L,
+ // 32);
+ t = Bits32(opcode, 15, 12);
+ if (BitIsSet(t, 0))
+ return false;
+
+ t2 = t + 1;
+ n = Bits32(opcode, 19, 16);
+ imm32 = (Bits32(opcode, 11, 8) << 4) | Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsClear(opcode, 24) || BitIsSet(opcode, 21);
+
+ // if P == '0' && W == '1' then UNPREDICTABLE;
+ if (BitIsClear(opcode, 24) && BitIsSet(opcode, 21))
+ return false;
+
+ // if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t) || (n == t2)))
+ return false;
+
+ // if t2 == 15 then UNPREDICTABLE;
+ if (t2 == 15)
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + imm32;
+ else
+ offset_addr = Rn - imm32;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+
+ // MemA[address,4] = R[t];
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t);
+
+ uint32_t data = ReadCoreReg(t, &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ if (n == 13)
+ context.type = eContextPushRegisterOnStack;
+ else
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg, address - Rn);
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ if (!MemAWrite(context, address, data, addr_byte_size))
+ return false;
+
+ // MemA[address+4,4] = R[t2];
+ data_reg = GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t2);
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ (address + 4) - Rn);
+
+ data = ReadCoreReg(t2, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite(context, address + 4, data, addr_byte_size))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ if (n == 13)
+ context.type = eContextAdjustStackPointer;
+ else
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.201 STRD (register)
+bool EmulateInstructionARM::EmulateSTRDReg(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
+ address = if index then offset_addr else R[n];
+ MemA[address,4] = R[t];
+ MemA[address+4,4] = R[t2];
+ if wback then R[n] = offset_addr;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t t;
+ uint32_t t2;
+ uint32_t n;
+ uint32_t m;
+ bool index;
+ bool add;
+ bool wback;
+
+ switch (encoding) {
+ case eEncodingA1:
+ // if Rt<0> == '1' then UNPREDICTABLE;
+ // t = UInt(Rt); t2 = t+1; n = UInt(Rn); m = UInt(Rm);
+ t = Bits32(opcode, 15, 12);
+ if (BitIsSet(t, 0))
+ return false;
+
+ t2 = t + 1;
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // index = (P == '1'); add = (U == '1'); wback = (P == '0') || (W == '1');
+ index = BitIsSet(opcode, 24);
+ add = BitIsSet(opcode, 23);
+ wback = BitIsClear(opcode, 24) || BitIsSet(opcode, 21);
+
+ // if P == '0' && W == '1' then UNPREDICTABLE;
+ if (BitIsClear(opcode, 24) && BitIsSet(opcode, 21))
+ return false;
+
+ // if t2 == 15 || m == 15 then UNPREDICTABLE;
+ if ((t2 == 15) || (m == 15))
+ return false;
+
+ // if wback && (n == 15 || n == t || n == t2) then UNPREDICTABLE;
+ if (wback && ((n == 15) || (n == t) || (n == t2)))
+ return false;
+
+ // if ArchVersion() < 6 && wback && m == n then UNPREDICTABLE;
+ if ((ArchVersion() < 6) && wback && (m == n))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ // offset_addr = if add then (R[n] + R[m]) else (R[n] - R[m]);
+ addr_t offset_addr;
+ if (add)
+ offset_addr = Rn + Rm;
+ else
+ offset_addr = Rn - Rm;
+
+ // address = if index then offset_addr else R[n];
+ addr_t address;
+ if (index)
+ address = offset_addr;
+ else
+ address = Rn;
+ // MemA[address,4] = R[t];
+ uint32_t Rt = ReadCoreReg(t, &success);
+ if (!success)
+ return false;
+
+ EmulateInstruction::Context context;
+ if (t == 13)
+ context.type = eContextPushRegisterOnStack;
+ else
+ context.type = eContextRegisterStore;
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> offset_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + m);
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t);
+ context.SetRegisterToRegisterPlusIndirectOffset(*base_reg, *offset_reg,
+ *data_reg);
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+
+ if (!MemAWrite(context, address, Rt, addr_byte_size))
+ return false;
+
+ // MemA[address+4,4] = R[t2];
+ uint32_t Rt2 = ReadCoreReg(t2, &success);
+ if (!success)
+ return false;
+
+ data_reg = GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + t2);
+
+ context.SetRegisterToRegisterPlusIndirectOffset(*base_reg, *offset_reg,
+ *data_reg);
+
+ if (!MemAWrite(context, address + 4, Rt2, addr_byte_size))
+ return false;
+
+ // if wback then R[n] = offset_addr;
+ if (wback) {
+ context.type = eContextAdjustBaseRegister;
+ context.SetAddress(offset_addr);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ offset_addr))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.319 VLDM
+// Vector Load Multiple loads multiple extension registers from consecutive
+// memory locations using an address from an ARM core register.
+bool EmulateInstructionARM::EmulateVLDM(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
+ address = if add then R[n] else R[n]-imm32;
+ if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
+ for r = 0 to regs-1
+ if single_regs then
+ S[d+r] = MemA[address,4]; address = address+4;
+ else
+ word1 = MemA[address,4]; word2 = MemA[address+4,4]; address = address+8;
+ // Combine the word-aligned words in the correct order for
+ // current endianness.
+ D[d+r] = if BigEndian() then word1:word2 else word2:word1;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ bool single_regs;
+ bool add;
+ bool wback;
+ uint32_t d;
+ uint32_t n;
+ uint32_t imm32;
+ uint32_t regs;
+
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1:
+ // if P == '0' && U == '0' && W == '0' then SEE 'Related encodings';
+ // if P == '0' && U == '1' && W == '1' && Rn == '1101' then SEE VPOP;
+ // if P == '1' && W == '0' then SEE VLDR;
+ // if P == U && W == '1' then UNDEFINED;
+ if ((Bit32(opcode, 24) == Bit32(opcode, 23)) && BitIsSet(opcode, 21))
+ return false;
+
+ // // Remaining combinations are PUW = 010 (IA without !), 011 (IA with
+ // !), 101 (DB with !)
+ // single_regs = FALSE; add = (U == '1'); wback = (W == '1');
+ single_regs = false;
+ add = BitIsSet(opcode, 23);
+ wback = BitIsSet(opcode, 21);
+
+ // d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
+ d = (Bit32(opcode, 22) << 4) | Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see 'FLDMX'.
+ regs = Bits32(opcode, 7, 0) / 2;
+
+ // if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then
+ // UNPREDICTABLE;
+ if (n == 15 && (wback || CurrentInstrSet() != eModeARM))
+ return false;
+
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if ((regs == 0) || (regs > 16) || ((d + regs) > 32))
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ case eEncodingA2:
+ // if P == '0' && U == '0' && W == '0' then SEE 'Related encodings';
+ // if P == '0' && U == '1' && W == '1' && Rn == '1101' then SEE VPOP;
+ // if P == '1' && W == '0' then SEE VLDR;
+ // if P == U && W == '1' then UNDEFINED;
+ if ((Bit32(opcode, 24) == Bit32(opcode, 23)) && BitIsSet(opcode, 21))
+ return false;
+
+ // // Remaining combinations are PUW = 010 (IA without !), 011 (IA with
+ // !), 101 (DB with !) single_regs = TRUE; add = (U == '1'); wback = (W
+ // == '1'); d =
+ // UInt(Vd:D); n = UInt(Rn);
+ single_regs = true;
+ add = BitIsSet(opcode, 23);
+ wback = BitIsSet(opcode, 21);
+ d = (Bits32(opcode, 15, 12) << 1) | Bit32(opcode, 22);
+ n = Bits32(opcode, 19, 16);
+
+ // imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+ regs = Bits32(opcode, 7, 0);
+
+ // if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then
+ // UNPREDICTABLE;
+ if ((n == 15) && (wback || (CurrentInstrSet() != eModeARM)))
+ return false;
+
+ // if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
+ if ((regs == 0) || ((d + regs) > 32))
+ return false;
+ break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // address = if add then R[n] else R[n]-imm32;
+ addr_t address;
+ if (add)
+ address = Rn;
+ else
+ address = Rn - imm32;
+
+ // if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
+ EmulateInstruction::Context context;
+
+ if (wback) {
+ uint32_t value;
+ if (add)
+ value = Rn + imm32;
+ else
+ value = Rn - imm32;
+
+ context.type = eContextAdjustBaseRegister;
+ context.SetImmediateSigned(value - Rn);
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ value))
+ return false;
+ }
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
+
+ context.type = eContextRegisterLoad;
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ // for r = 0 to regs-1
+ for (uint32_t r = 0; r < regs; ++r) {
+ if (single_regs) {
+ // S[d+r] = MemA[address,4]; address = address+4;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+
+ uint32_t data = MemARead(context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF,
+ start_reg + d + r, data))
+ return false;
+
+ address = address + 4;
+ } else {
+ // word1 = MemA[address,4]; word2 = MemA[address+4,4]; address =
+ // address+8;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+ uint32_t word1 =
+ MemARead(context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ context.SetRegisterPlusOffset(*base_reg, (address + 4) - Rn);
+ uint32_t word2 =
+ MemARead(context, address + 4, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ address = address + 8;
+ // // Combine the word-aligned words in the correct order for current
+ // endianness.
+ // D[d+r] = if BigEndian() then word1:word2 else word2:word1;
+ uint64_t data;
+ if (GetByteOrder() == eByteOrderBig) {
+ data = word1;
+ data = (data << 32) | word2;
+ } else {
+ data = word2;
+ data = (data << 32) | word1;
+ }
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF,
+ start_reg + d + r, data))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+// A8.6.399 VSTM
+// Vector Store Multiple stores multiple extension registers to consecutive
+// memory locations using an address from an
+// ARM core register.
+bool EmulateInstructionARM::EmulateVSTM(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
+ address = if add then R[n] else R[n]-imm32;
+ if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
+ for r = 0 to regs-1
+ if single_regs then
+ MemA[address,4] = S[d+r]; address = address+4;
+ else
+ // Store as two word-aligned words in the correct order for
+ // current endianness.
+ MemA[address,4] = if BigEndian() then D[d+r]<63:32> else D[d+r]<31:0>;
+ MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else D[d+r]<63:32>;
+ address = address+8;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ bool single_regs;
+ bool add;
+ bool wback;
+ uint32_t d;
+ uint32_t n;
+ uint32_t imm32;
+ uint32_t regs;
+
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1:
+ // if P == '0' && U == '0' && W == '0' then SEE 'Related encodings';
+ // if P == '1' && U == '0' && W == '1' && Rn == '1101' then SEE VPUSH;
+ // if P == '1' && W == '0' then SEE VSTR;
+ // if P == U && W == '1' then UNDEFINED;
+ if ((Bit32(opcode, 24) == Bit32(opcode, 23)) && BitIsSet(opcode, 21))
+ return false;
+
+ // // Remaining combinations are PUW = 010 (IA without !), 011 (IA with
+ // !), 101 (DB with !)
+ // single_regs = FALSE; add = (U == '1'); wback = (W == '1');
+ single_regs = false;
+ add = BitIsSet(opcode, 23);
+ wback = BitIsSet(opcode, 21);
+
+ // d = UInt(D:Vd); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
+ d = (Bit32(opcode, 22) << 4) | Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // regs = UInt(imm8) DIV 2; // If UInt(imm8) is odd, see 'FSTMX'.
+ regs = Bits32(opcode, 7, 0) / 2;
+
+ // if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then
+ // UNPREDICTABLE;
+ if ((n == 15) && (wback || (CurrentInstrSet() != eModeARM)))
+ return false;
+
+ // if regs == 0 || regs > 16 || (d+regs) > 32 then UNPREDICTABLE;
+ if ((regs == 0) || (regs > 16) || ((d + regs) > 32))
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ case eEncodingA2:
+ // if P == '0' && U == '0' && W == '0' then SEE 'Related encodings';
+ // if P == '1' && U == '0' && W == '1' && Rn == '1101' then SEE VPUSH;
+ // if P == '1' && W == '0' then SEE VSTR;
+ // if P == U && W == '1' then UNDEFINED;
+ if ((Bit32(opcode, 24) == Bit32(opcode, 23)) && BitIsSet(opcode, 21))
+ return false;
+
+ // // Remaining combinations are PUW = 010 (IA without !), 011 (IA with
+ // !), 101 (DB with !) single_regs = TRUE; add = (U == '1'); wback = (W
+ // == '1'); d =
+ // UInt(Vd:D); n = UInt(Rn);
+ single_regs = true;
+ add = BitIsSet(opcode, 23);
+ wback = BitIsSet(opcode, 21);
+ d = (Bits32(opcode, 15, 12) << 1) | Bit32(opcode, 22);
+ n = Bits32(opcode, 19, 16);
+
+ // imm32 = ZeroExtend(imm8:'00', 32); regs = UInt(imm8);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+ regs = Bits32(opcode, 7, 0);
+
+ // if n == 15 && (wback || CurrentInstrSet() != InstrSet_ARM) then
+ // UNPREDICTABLE;
+ if ((n == 15) && (wback || (CurrentInstrSet() != eModeARM)))
+ return false;
+
+ // if regs == 0 || (d+regs) > 32 then UNPREDICTABLE;
+ if ((regs == 0) || ((d + regs) > 32))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // address = if add then R[n] else R[n]-imm32;
+ addr_t address;
+ if (add)
+ address = Rn;
+ else
+ address = Rn - imm32;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = if add then R[n]+imm32 else R[n]-imm32;
+ if (wback) {
+ uint32_t value;
+ if (add)
+ value = Rn + imm32;
+ else
+ value = Rn - imm32;
+
+ context.type = eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset(*base_reg, value - Rn);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ value))
+ return false;
+ }
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t start_reg = single_regs ? dwarf_s0 : dwarf_d0;
+
+ context.type = eContextRegisterStore;
+ // for r = 0 to regs-1
+ for (uint32_t r = 0; r < regs; ++r) {
+
+ if (single_regs) {
+ // MemA[address,4] = S[d+r]; address = address+4;
+ uint32_t data = ReadRegisterUnsigned(eRegisterKindDWARF,
+ start_reg + d + r, 0, &success);
+ if (!success)
+ return false;
+
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, start_reg + d + r);
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ address - Rn);
+ if (!MemAWrite(context, address, data, addr_byte_size))
+ return false;
+
+ address = address + 4;
+ } else {
+ // // Store as two word-aligned words in the correct order for current
+ // endianness. MemA[address,4] = if BigEndian() then D[d+r]<63:32> else
+ // D[d+r]<31:0>;
+ // MemA[address+4,4] = if BigEndian() then D[d+r]<31:0> else
+ // D[d+r]<63:32>;
+ uint64_t data = ReadRegisterUnsigned(eRegisterKindDWARF,
+ start_reg + d + r, 0, &success);
+ if (!success)
+ return false;
+
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, start_reg + d + r);
+
+ if (GetByteOrder() == eByteOrderBig) {
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ address - Rn);
+ if (!MemAWrite(context, address, Bits64(data, 63, 32),
+ addr_byte_size))
+ return false;
+
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ (address + 4) - Rn);
+ if (!MemAWrite(context, address + 4, Bits64(data, 31, 0),
+ addr_byte_size))
+ return false;
+ } else {
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ address - Rn);
+ if (!MemAWrite(context, address, Bits64(data, 31, 0), addr_byte_size))
+ return false;
+
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ (address + 4) - Rn);
+ if (!MemAWrite(context, address + 4, Bits64(data, 63, 32),
+ addr_byte_size))
+ return false;
+ }
+ // address = address+8;
+ address = address + 8;
+ }
+ }
+ }
+ return true;
+}
+
+// A8.6.320
+// This instruction loads a single extension register from memory, using an
+// address from an ARM core register, with an optional offset.
+bool EmulateInstructionARM::EmulateVLDR(const uint32_t opcode,
+ ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
+ base = if n == 15 then Align(PC,4) else R[n];
+ address = if add then (base + imm32) else (base - imm32);
+ if single_reg then
+ S[d] = MemA[address,4];
+ else
+ word1 = MemA[address,4]; word2 = MemA[address+4,4];
+ // Combine the word-aligned words in the correct order for current
+ // endianness.
+ D[d] = if BigEndian() then word1:word2 else word2:word1;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ bool single_reg;
+ bool add;
+ uint32_t imm32;
+ uint32_t d;
+ uint32_t n;
+
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1:
+ // single_reg = FALSE; add = (U == '1'); imm32 = ZeroExtend(imm8:'00',
+ // 32);
+ single_reg = false;
+ add = BitIsSet(opcode, 23);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // d = UInt(D:Vd); n = UInt(Rn);
+ d = (Bit32(opcode, 22) << 4) | Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+
+ break;
+
+ case eEncodingT2:
+ case eEncodingA2:
+ // single_reg = TRUE; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
+ single_reg = true;
+ add = BitIsSet(opcode, 23);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // d = UInt(Vd:D); n = UInt(Rn);
+ d = (Bits32(opcode, 15, 12) << 1) | Bit32(opcode, 22);
+ n = Bits32(opcode, 19, 16);
+
+ break;
+
+ default:
+ return false;
+ }
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // base = if n == 15 then Align(PC,4) else R[n];
+ uint32_t base;
+ if (n == 15)
+ base = AlignPC(Rn);
+ else
+ base = Rn;
+
+ // address = if add then (base + imm32) else (base - imm32);
+ addr_t address;
+ if (add)
+ address = base + imm32;
+ else
+ address = base - imm32;
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t start_reg = single_reg ? dwarf_s0 : dwarf_d0;
+
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - base);
+
+ if (single_reg) {
+ // S[d] = MemA[address,4];
+ uint32_t data = MemARead(context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, start_reg + d,
+ data))
+ return false;
+ } else {
+ // word1 = MemA[address,4]; word2 = MemA[address+4,4];
+ uint32_t word1 = MemARead(context, address, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+
+ context.SetRegisterPlusOffset(*base_reg, (address + 4) - base);
+ uint32_t word2 =
+ MemARead(context, address + 4, addr_byte_size, 0, &success);
+ if (!success)
+ return false;
+ // // Combine the word-aligned words in the correct order for current
+ // endianness.
+ // D[d] = if BigEndian() then word1:word2 else word2:word1;
+ uint64_t data64;
+ if (GetByteOrder() == eByteOrderBig) {
+ data64 = word1;
+ data64 = (data64 << 32) | word2;
+ } else {
+ data64 = word2;
+ data64 = (data64 << 32) | word1;
+ }
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, start_reg + d,
+ data64))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.400 VSTR
+// This instruction stores a signle extension register to memory, using an
+// address from an ARM core register, with an optional offset.
+bool EmulateInstructionARM::EmulateVSTR(const uint32_t opcode,
+ ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckVFPEnabled(TRUE); NullCheckIfThumbEE(n);
+ address = if add then (R[n] + imm32) else (R[n] - imm32);
+ if single_reg then
+ MemA[address,4] = S[d];
+ else
+ // Store as two word-aligned words in the correct order for current
+ // endianness.
+ MemA[address,4] = if BigEndian() then D[d]<63:32> else D[d]<31:0>;
+ MemA[address+4,4] = if BigEndian() then D[d]<31:0> else D[d]<63:32>;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ bool single_reg;
+ bool add;
+ uint32_t imm32;
+ uint32_t d;
+ uint32_t n;
+
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1:
+ // single_reg = FALSE; add = (U == '1'); imm32 = ZeroExtend(imm8:'00',
+ // 32);
+ single_reg = false;
+ add = BitIsSet(opcode, 23);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // d = UInt(D:Vd); n = UInt(Rn);
+ d = (Bit32(opcode, 22) << 4) | Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+
+ // if n == 15 && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;
+ if ((n == 15) && (CurrentInstrSet() != eModeARM))
+ return false;
+
+ break;
+
+ case eEncodingT2:
+ case eEncodingA2:
+ // single_reg = TRUE; add = (U == '1'); imm32 = ZeroExtend(imm8:'00', 32);
+ single_reg = true;
+ add = BitIsSet(opcode, 23);
+ imm32 = Bits32(opcode, 7, 0) << 2;
+
+ // d = UInt(Vd:D); n = UInt(Rn);
+ d = (Bits32(opcode, 15, 12) << 1) | Bit32(opcode, 22);
+ n = Bits32(opcode, 19, 16);
+
+ // if n == 15 && CurrentInstrSet() != InstrSet_ARM then UNPREDICTABLE;
+ if ((n == 15) && (CurrentInstrSet() != eModeARM))
+ return false;
+
+ break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // address = if add then (R[n] + imm32) else (R[n] - imm32);
+ addr_t address;
+ if (add)
+ address = Rn + imm32;
+ else
+ address = Rn - imm32;
+
+ const uint32_t addr_byte_size = GetAddressByteSize();
+ uint32_t start_reg = single_reg ? dwarf_s0 : dwarf_d0;
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, start_reg + d);
+ EmulateInstruction::Context context;
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg, address - Rn);
+
+ if (single_reg) {
+ // MemA[address,4] = S[d];
+ uint32_t data =
+ ReadRegisterUnsigned(eRegisterKindDWARF, start_reg + d, 0, &success);
+ if (!success)
+ return false;
+
+ if (!MemAWrite(context, address, data, addr_byte_size))
+ return false;
+ } else {
+ // // Store as two word-aligned words in the correct order for current
+ // endianness.
+ // MemA[address,4] = if BigEndian() then D[d]<63:32> else D[d]<31:0>;
+ // MemA[address+4,4] = if BigEndian() then D[d]<31:0> else D[d]<63:32>;
+ uint64_t data =
+ ReadRegisterUnsigned(eRegisterKindDWARF, start_reg + d, 0, &success);
+ if (!success)
+ return false;
+
+ if (GetByteOrder() == eByteOrderBig) {
+ if (!MemAWrite(context, address, Bits64(data, 63, 32), addr_byte_size))
+ return false;
+
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ (address + 4) - Rn);
+ if (!MemAWrite(context, address + 4, Bits64(data, 31, 0),
+ addr_byte_size))
+ return false;
+ } else {
+ if (!MemAWrite(context, address, Bits64(data, 31, 0), addr_byte_size))
+ return false;
+
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ (address + 4) - Rn);
+ if (!MemAWrite(context, address + 4, Bits64(data, 63, 32),
+ addr_byte_size))
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+// A8.6.307 VLDI1 (multiple single elements) This instruction loads elements
+// from memory into one, two, three or four registers, without de-interleaving.
+// Every element of each register is loaded.
+bool EmulateInstructionARM::EmulateVLD1Multiple(const uint32_t opcode,
+ ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
+ address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
+ for r = 0 to regs-1
+ for e = 0 to elements-1
+ Elem[D[d+r],e,esize] = MemU[address,ebytes];
+ address = address + ebytes;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t regs;
+ uint32_t alignment;
+ uint32_t ebytes;
+ uint32_t esize;
+ uint32_t elements;
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool wback;
+ bool register_index;
+
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1: {
+ // case type of
+ // when '0111'
+ // regs = 1; if align<1> == '1' then UNDEFINED;
+ // when '1010'
+ // regs = 2; if align == '11' then UNDEFINED;
+ // when '0110'
+ // regs = 3; if align<1> == '1' then UNDEFINED;
+ // when '0010'
+ // regs = 4;
+ // otherwise
+ // SEE 'Related encodings';
+ uint32_t type = Bits32(opcode, 11, 8);
+ uint32_t align = Bits32(opcode, 5, 4);
+ if (type == 7) // '0111'
+ {
+ regs = 1;
+ if (BitIsSet(align, 1))
+ return false;
+ } else if (type == 10) // '1010'
+ {
+ regs = 2;
+ if (align == 3)
+ return false;
+
+ } else if (type == 6) // '0110'
+ {
+ regs = 3;
+ if (BitIsSet(align, 1))
+ return false;
+ } else if (type == 2) // '0010'
+ {
+ regs = 4;
+ } else
+ return false;
+
+ // alignment = if align == '00' then 1 else 4 << UInt(align);
+ if (align == 0)
+ alignment = 1;
+ else
+ alignment = 4 << align;
+
+ // ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
+ ebytes = 1 << Bits32(opcode, 7, 6);
+ esize = 8 * ebytes;
+ elements = 8 / ebytes;
+
+ // d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
+ d = (Bit32(opcode, 22) << 4) | Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 15);
+ m = Bits32(opcode, 3, 0);
+
+ // wback = (m != 15); register_index = (m != 15 && m != 13);
+ wback = (m != 15);
+ register_index = ((m != 15) && (m != 13));
+
+ // if d+regs > 32 then UNPREDICTABLE;
+ if ((d + regs) > 32)
+ return false;
+ } break;
+
+ default:
+ return false;
+ }
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // address = R[n]; if (address MOD alignment) != 0 then
+ // GenerateAlignmentException();
+ addr_t address = Rn;
+ if ((address % alignment) != 0)
+ return false;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
+ if (wback) {
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ uint32_t offset;
+ if (register_index)
+ offset = Rm;
+ else
+ offset = 8 * regs;
+
+ uint32_t value = Rn + offset;
+ context.type = eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset(*base_reg, offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ value))
+ return false;
+ }
+
+ // for r = 0 to regs-1
+ for (uint32_t r = 0; r < regs; ++r) {
+ // for e = 0 to elements-1
+ uint64_t assembled_data = 0;
+ for (uint32_t e = 0; e < elements; ++e) {
+ // Elem[D[d+r],e,esize] = MemU[address,ebytes];
+ context.type = eContextRegisterLoad;
+ context.SetRegisterPlusOffset(*base_reg, address - Rn);
+ uint64_t data = MemURead(context, address, ebytes, 0, &success);
+ if (!success)
+ return false;
+
+ assembled_data =
+ (data << (e * esize)) |
+ assembled_data; // New data goes to the left of existing data
+
+ // address = address + ebytes;
+ address = address + ebytes;
+ }
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_d0 + d + r,
+ assembled_data))
+ return false;
+ }
+ }
+ return true;
+}
+
+// A8.6.308 VLD1 (single element to one lane)
+//
+bool EmulateInstructionARM::EmulateVLD1Single(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
+ address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ Elem[D[d],index,esize] = MemU[address,ebytes];
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t ebytes;
+ uint32_t esize;
+ uint32_t index;
+ uint32_t alignment;
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool wback;
+ bool register_index;
+
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1: {
+ uint32_t size = Bits32(opcode, 11, 10);
+ uint32_t index_align = Bits32(opcode, 7, 4);
+ // if size == '11' then SEE VLD1 (single element to all lanes);
+ if (size == 3)
+ return EmulateVLD1SingleAll(opcode, encoding);
+ // case size of
+ if (size == 0) // when '00'
+ {
+ // if index_align<0> != '0' then UNDEFINED;
+ if (BitIsClear(index_align, 0))
+ return false;
+
+ // ebytes = 1; esize = 8; index = UInt(index_align<3:1>); alignment = 1;
+ ebytes = 1;
+ esize = 8;
+ index = Bits32(index_align, 3, 1);
+ alignment = 1;
+ } else if (size == 1) // when '01'
+ {
+ // if index_align<1> != '0' then UNDEFINED;
+ if (BitIsClear(index_align, 1))
+ return false;
+
+ // ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
+ ebytes = 2;
+ esize = 16;
+ index = Bits32(index_align, 3, 2);
+
+ // alignment = if index_align<0> == '0' then 1 else 2;
+ if (BitIsClear(index_align, 0))
+ alignment = 1;
+ else
+ alignment = 2;
+ } else if (size == 2) // when '10'
+ {
+ // if index_align<2> != '0' then UNDEFINED;
+ if (BitIsClear(index_align, 2))
+ return false;
+
+ // if index_align<1:0> != '00' && index_align<1:0> != '11' then
+ // UNDEFINED;
+ if ((Bits32(index_align, 1, 0) != 0) &&
+ (Bits32(index_align, 1, 0) != 3))
+ return false;
+
+ // ebytes = 4; esize = 32; index = UInt(index_align<3>);
+ ebytes = 4;
+ esize = 32;
+ index = Bit32(index_align, 3);
+
+ // alignment = if index_align<1:0> == '00' then 1 else 4;
+ if (Bits32(index_align, 1, 0) == 0)
+ alignment = 1;
+ else
+ alignment = 4;
+ } else {
+ return false;
+ }
+ // d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
+ d = (Bit32(opcode, 22) << 4) | Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // wback = (m != 15); register_index = (m != 15 && m != 13); if n == 15
+ // then UNPREDICTABLE;
+ wback = (m != 15);
+ register_index = ((m != 15) && (m != 13));
+
+ if (n == 15)
+ return false;
+
+ } break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // address = R[n]; if (address MOD alignment) != 0 then
+ // GenerateAlignmentException();
+ addr_t address = Rn;
+ if ((address % alignment) != 0)
+ return false;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ if (wback) {
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ uint32_t offset;
+ if (register_index)
+ offset = Rm;
+ else
+ offset = ebytes;
+
+ uint32_t value = Rn + offset;
+
+ context.type = eContextAdjustBaseRegister;
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ context.SetRegisterPlusOffset(*base_reg, offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ value))
+ return false;
+ }
+
+ // Elem[D[d],index,esize] = MemU[address,ebytes];
+ uint32_t element = MemURead(context, address, esize, 0, &success);
+ if (!success)
+ return false;
+
+ element = element << (index * esize);
+
+ uint64_t reg_data =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_d0 + d, 0, &success);
+ if (!success)
+ return false;
+
+ uint64_t all_ones = -1;
+ uint64_t mask = all_ones
+ << ((index + 1) * esize); // mask is all 1's to left of
+ // where 'element' goes, & all 0's
+ // at element & to the right of element.
+ if (index > 0)
+ mask = mask | Bits64(all_ones, (index * esize) - 1,
+ 0); // add 1's to the right of where 'element' goes.
+ // now mask should be 0's where element goes & 1's everywhere else.
+
+ uint64_t masked_reg =
+ reg_data & mask; // Take original reg value & zero out 'element' bits
+ reg_data =
+ masked_reg & element; // Put 'element' into those bits in reg_data.
+
+ context.type = eContextRegisterLoad;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + d,
+ reg_data))
+ return false;
+ }
+ return true;
+}
+
+// A8.6.391 VST1 (multiple single elements) Vector Store (multiple single
+// elements) stores elements to memory from one, two, three, or four registers,
+// without interleaving. Every element of each register is stored.
+bool EmulateInstructionARM::EmulateVST1Multiple(const uint32_t opcode,
+ ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
+ address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
+ for r = 0 to regs-1
+ for e = 0 to elements-1
+ MemU[address,ebytes] = Elem[D[d+r],e,esize];
+ address = address + ebytes;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t regs;
+ uint32_t alignment;
+ uint32_t ebytes;
+ uint32_t esize;
+ uint32_t elements;
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool wback;
+ bool register_index;
+
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1: {
+ uint32_t type = Bits32(opcode, 11, 8);
+ uint32_t align = Bits32(opcode, 5, 4);
+
+ // case type of
+ if (type == 7) // when '0111'
+ {
+ // regs = 1; if align<1> == '1' then UNDEFINED;
+ regs = 1;
+ if (BitIsSet(align, 1))
+ return false;
+ } else if (type == 10) // when '1010'
+ {
+ // regs = 2; if align == '11' then UNDEFINED;
+ regs = 2;
+ if (align == 3)
+ return false;
+ } else if (type == 6) // when '0110'
+ {
+ // regs = 3; if align<1> == '1' then UNDEFINED;
+ regs = 3;
+ if (BitIsSet(align, 1))
+ return false;
+ } else if (type == 2) // when '0010'
+ // regs = 4;
+ regs = 4;
+ else // otherwise
+ // SEE 'Related encodings';
+ return false;
+
+ // alignment = if align == '00' then 1 else 4 << UInt(align);
+ if (align == 0)
+ alignment = 1;
+ else
+ alignment = 4 << align;
+
+ // ebytes = 1 << UInt(size); esize = 8 * ebytes; elements = 8 DIV ebytes;
+ ebytes = 1 << Bits32(opcode, 7, 6);
+ esize = 8 * ebytes;
+ elements = 8 / ebytes;
+
+ // d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
+ d = (Bit32(opcode, 22) << 4) | Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // wback = (m != 15); register_index = (m != 15 && m != 13);
+ wback = (m != 15);
+ register_index = ((m != 15) && (m != 13));
+
+ // if d+regs > 32 then UNPREDICTABLE; if n == 15 then UNPREDICTABLE;
+ if ((d + regs) > 32)
+ return false;
+
+ if (n == 15)
+ return false;
+
+ } break;
+
+ default:
+ return false;
+ }
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // address = R[n]; if (address MOD alignment) != 0 then
+ // GenerateAlignmentException();
+ addr_t address = Rn;
+ if ((address % alignment) != 0)
+ return false;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = R[n] + (if register_index then R[m] else 8*regs);
+ if (wback) {
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ uint32_t offset;
+ if (register_index)
+ offset = Rm;
+ else
+ offset = 8 * regs;
+
+ context.type = eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset(*base_reg, offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ Rn + offset))
+ return false;
+ }
+
+ context.type = eContextRegisterStore;
+ // for r = 0 to regs-1
+ for (uint32_t r = 0; r < regs; ++r) {
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_d0 + d + r);
+ uint64_t register_data = ReadRegisterUnsigned(
+ eRegisterKindDWARF, dwarf_d0 + d + r, 0, &success);
+ if (!success)
+ return false;
+
+ // for e = 0 to elements-1
+ for (uint32_t e = 0; e < elements; ++e) {
+ // MemU[address,ebytes] = Elem[D[d+r],e,esize];
+ uint64_t word = Bits64(register_data, ((e + 1) * esize) - 1, e * esize);
+
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg,
+ address - Rn);
+ if (!MemUWrite(context, address, word, ebytes))
+ return false;
+
+ // address = address + ebytes;
+ address = address + ebytes;
+ }
+ }
+ }
+ return true;
+}
+
+// A8.6.392 VST1 (single element from one lane) This instruction stores one
+// element to memory from one element of a register.
+bool EmulateInstructionARM::EmulateVST1Single(const uint32_t opcode,
+ ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
+ address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ MemU[address,ebytes] = Elem[D[d],index,esize];
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t ebytes;
+ uint32_t esize;
+ uint32_t index;
+ uint32_t alignment;
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool wback;
+ bool register_index;
+
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1: {
+ uint32_t size = Bits32(opcode, 11, 10);
+ uint32_t index_align = Bits32(opcode, 7, 4);
+
+ // if size == '11' then UNDEFINED;
+ if (size == 3)
+ return false;
+
+ // case size of
+ if (size == 0) // when '00'
+ {
+ // if index_align<0> != '0' then UNDEFINED;
+ if (BitIsClear(index_align, 0))
+ return false;
+ // ebytes = 1; esize = 8; index = UInt(index_align<3:1>); alignment = 1;
+ ebytes = 1;
+ esize = 8;
+ index = Bits32(index_align, 3, 1);
+ alignment = 1;
+ } else if (size == 1) // when '01'
+ {
+ // if index_align<1> != '0' then UNDEFINED;
+ if (BitIsClear(index_align, 1))
+ return false;
+
+ // ebytes = 2; esize = 16; index = UInt(index_align<3:2>);
+ ebytes = 2;
+ esize = 16;
+ index = Bits32(index_align, 3, 2);
+
+ // alignment = if index_align<0> == '0' then 1 else 2;
+ if (BitIsClear(index_align, 0))
+ alignment = 1;
+ else
+ alignment = 2;
+ } else if (size == 2) // when '10'
+ {
+ // if index_align<2> != '0' then UNDEFINED;
+ if (BitIsClear(index_align, 2))
+ return false;
+
+ // if index_align<1:0> != '00' && index_align<1:0> != '11' then
+ // UNDEFINED;
+ if ((Bits32(index_align, 1, 0) != 0) &&
+ (Bits32(index_align, 1, 0) != 3))
+ return false;
+
+ // ebytes = 4; esize = 32; index = UInt(index_align<3>);
+ ebytes = 4;
+ esize = 32;
+ index = Bit32(index_align, 3);
+
+ // alignment = if index_align<1:0> == '00' then 1 else 4;
+ if (Bits32(index_align, 1, 0) == 0)
+ alignment = 1;
+ else
+ alignment = 4;
+ } else {
+ return false;
+ }
+ // d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
+ d = (Bit32(opcode, 22) << 4) | Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // wback = (m != 15); register_index = (m != 15 && m != 13); if n == 15
+ // then UNPREDICTABLE;
+ wback = (m != 15);
+ register_index = ((m != 15) && (m != 13));
+
+ if (n == 15)
+ return false;
+ } break;
+
+ default:
+ return false;
+ }
+
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // address = R[n]; if (address MOD alignment) != 0 then
+ // GenerateAlignmentException();
+ addr_t address = Rn;
+ if ((address % alignment) != 0)
+ return false;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ if (wback) {
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ uint32_t offset;
+ if (register_index)
+ offset = Rm;
+ else
+ offset = ebytes;
+
+ context.type = eContextAdjustBaseRegister;
+ context.SetRegisterPlusOffset(*base_reg, offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ Rn + offset))
+ return false;
+ }
+
+ // MemU[address,ebytes] = Elem[D[d],index,esize];
+ uint64_t register_data =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_d0 + d, 0, &success);
+ if (!success)
+ return false;
+
+ uint64_t word =
+ Bits64(register_data, ((index + 1) * esize) - 1, index * esize);
+
+ std::optional<RegisterInfo> data_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_d0 + d);
+ context.type = eContextRegisterStore;
+ context.SetRegisterToRegisterPlusOffset(*data_reg, *base_reg, address - Rn);
+
+ if (!MemUWrite(context, address, word, ebytes))
+ return false;
+ }
+ return true;
+}
+
+// A8.6.309 VLD1 (single element to all lanes) This instruction loads one
+// element from memory into every element of one or two vectors.
+bool EmulateInstructionARM::EmulateVLD1SingleAll(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations(); CheckAdvSIMDEnabled(); NullCheckIfThumbEE(n);
+ address = R[n]; if (address MOD alignment) != 0 then GenerateAlignmentException();
+ if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ replicated_element = Replicate(MemU[address,ebytes], elements);
+ for r = 0 to regs-1
+ D[d+r] = replicated_element;
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t ebytes;
+ uint32_t elements;
+ uint32_t regs;
+ uint32_t alignment;
+ uint32_t d;
+ uint32_t n;
+ uint32_t m;
+ bool wback;
+ bool register_index;
+
+ switch (encoding) {
+ case eEncodingT1:
+ case eEncodingA1: {
+ // if size == '11' || (size == '00' && a == '1') then UNDEFINED;
+ uint32_t size = Bits32(opcode, 7, 6);
+ if ((size == 3) || ((size == 0) && BitIsSet(opcode, 4)))
+ return false;
+
+ // ebytes = 1 << UInt(size); elements = 8 DIV ebytes; regs = if T == '0'
+ // then 1 else 2;
+ ebytes = 1 << size;
+ elements = 8 / ebytes;
+ if (BitIsClear(opcode, 5))
+ regs = 1;
+ else
+ regs = 2;
+
+ // alignment = if a == '0' then 1 else ebytes;
+ if (BitIsClear(opcode, 4))
+ alignment = 1;
+ else
+ alignment = ebytes;
+
+ // d = UInt(D:Vd); n = UInt(Rn); m = UInt(Rm);
+ d = (Bit32(opcode, 22) << 4) | Bits32(opcode, 15, 12);
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+
+ // wback = (m != 15); register_index = (m != 15 && m != 13);
+ wback = (m != 15);
+ register_index = ((m != 15) && (m != 13));
+
+ // if d+regs > 32 then UNPREDICTABLE; if n == 15 then UNPREDICTABLE;
+ if ((d + regs) > 32)
+ return false;
+
+ if (n == 15)
+ return false;
+ } break;
+
+ default:
+ return false;
+ }
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ // address = R[n]; if (address MOD alignment) != 0 then
+ // GenerateAlignmentException();
+ addr_t address = Rn;
+ if ((address % alignment) != 0)
+ return false;
+
+ EmulateInstruction::Context context;
+ // if wback then R[n] = R[n] + (if register_index then R[m] else ebytes);
+ if (wback) {
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ uint32_t offset;
+ if (register_index)
+ offset = Rm;
+ else
+ offset = ebytes;
+
+ context.type = eContextAdjustBaseRegister;
+ std::optional<RegisterInfo> base_reg =
+ GetRegisterInfo(eRegisterKindDWARF, dwarf_r0 + n);
+ context.SetRegisterPlusOffset(*base_reg, offset);
+
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_r0 + n,
+ Rn + offset))
+ return false;
+ }
+
+ // replicated_element = Replicate(MemU[address,ebytes], elements);
+
+ context.type = eContextRegisterLoad;
+ uint64_t word = MemURead(context, address, ebytes, 0, &success);
+ if (!success)
+ return false;
+
+ uint64_t replicated_element = 0;
+ uint32_t esize = ebytes * 8;
+ for (uint32_t e = 0; e < elements; ++e)
+ replicated_element =
+ (replicated_element << esize) | Bits64(word, esize - 1, 0);
+
+ // for r = 0 to regs-1
+ for (uint32_t r = 0; r < regs; ++r) {
+ // D[d+r] = replicated_element;
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_d0 + d + r,
+ replicated_element))
+ return false;
+ }
+ }
+ return true;
+}
+
+// B6.2.13 SUBS PC, LR and related instructions The SUBS PC, LR, #<const?
+// instruction provides an exception return without the use of the stack. It
+// subtracts the immediate constant from the LR, branches to the resulting
+// address, and also copies the SPSR to the CPSR.
+bool EmulateInstructionARM::EmulateSUBSPcLrEtc(const uint32_t opcode,
+ const ARMEncoding encoding) {
+#if 0
+ if ConditionPassed() then
+ EncodingSpecificOperations();
+ if CurrentInstrSet() == InstrSet_ThumbEE then
+ UNPREDICTABLE;
+ operand2 = if register_form then Shift(R[m], shift_t, shift_n, APSR.C) else imm32;
+ case opcode of
+ when '0000' result = R[n] AND operand2; // AND
+ when '0001' result = R[n] EOR operand2; // EOR
+ when '0010' (result, -, -) = AddWithCarry(R[n], NOT(operand2), '1'); // SUB
+ when '0011' (result, -, -) = AddWithCarry(NOT(R[n]), operand2, '1'); // RSB
+ when '0100' (result, -, -) = AddWithCarry(R[n], operand2, '0'); // ADD
+ when '0101' (result, -, -) = AddWithCarry(R[n], operand2, APSR.c); // ADC
+ when '0110' (result, -, -) = AddWithCarry(R[n], NOT(operand2), APSR.C); // SBC
+ when '0111' (result, -, -) = AddWithCarry(NOT(R[n]), operand2, APSR.C); // RSC
+ when '1100' result = R[n] OR operand2; // ORR
+ when '1101' result = operand2; // MOV
+ when '1110' result = R[n] AND NOT(operand2); // BIC
+ when '1111' result = NOT(operand2); // MVN
+ CPSRWriteByInstr(SPSR[], '1111', TRUE);
+ BranchWritePC(result);
+#endif
+
+ bool success = false;
+
+ if (ConditionPassed(opcode)) {
+ uint32_t n;
+ uint32_t m;
+ uint32_t imm32;
+ bool register_form;
+ ARM_ShifterType shift_t;
+ uint32_t shift_n;
+ uint32_t code;
+
+ switch (encoding) {
+ case eEncodingT1:
+ // if CurrentInstrSet() == InstrSet_ThumbEE then UNPREDICTABLE n = 14;
+ // imm32 = ZeroExtend(imm8, 32); register_form = FALSE; opcode = '0010';
+ // // = SUB
+ n = 14;
+ imm32 = Bits32(opcode, 7, 0);
+ register_form = false;
+ code = 2;
+
+ // if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
+ if (InITBlock() && !LastInITBlock())
+ return false;
+
+ break;
+
+ case eEncodingA1:
+ // n = UInt(Rn); imm32 = ARMExpandImm(imm12); register_form = FALSE;
+ n = Bits32(opcode, 19, 16);
+ imm32 = ARMExpandImm(opcode);
+ register_form = false;
+ code = Bits32(opcode, 24, 21);
+
+ break;
+
+ case eEncodingA2:
+ // n = UInt(Rn); m = UInt(Rm); register_form = TRUE;
+ n = Bits32(opcode, 19, 16);
+ m = Bits32(opcode, 3, 0);
+ register_form = true;
+
+ // (shift_t, shift_n) = DecodeImmShift(type, imm5);
+ shift_n = DecodeImmShiftARM(opcode, shift_t);
+
+ break;
+
+ default:
+ return false;
+ }
+
+ // operand2 = if register_form then Shift(R[m], shift_t, shift_n, APSR.C)
+ // else imm32;
+ uint32_t operand2;
+ if (register_form) {
+ uint32_t Rm = ReadCoreReg(m, &success);
+ if (!success)
+ return false;
+
+ operand2 = Shift(Rm, shift_t, shift_n, APSR_C, &success);
+ if (!success)
+ return false;
+ } else {
+ operand2 = imm32;
+ }
+
+ uint32_t Rn = ReadCoreReg(n, &success);
+ if (!success)
+ return false;
+
+ AddWithCarryResult result;
+
+ // case opcode of
+ switch (code) {
+ case 0: // when '0000'
+ // result = R[n] AND operand2; // AND
+ result.result = Rn & operand2;
+ break;
+
+ case 1: // when '0001'
+ // result = R[n] EOR operand2; // EOR
+ result.result = Rn ^ operand2;
+ break;
+
+ case 2: // when '0010'
+ // (result, -, -) = AddWithCarry(R[n], NOT(operand2), '1'); // SUB
+ result = AddWithCarry(Rn, ~(operand2), 1);
+ break;
+
+ case 3: // when '0011'
+ // (result, -, -) = AddWithCarry(NOT(R[n]), operand2, '1'); // RSB
+ result = AddWithCarry(~(Rn), operand2, 1);
+ break;
+
+ case 4: // when '0100'
+ // (result, -, -) = AddWithCarry(R[n], operand2, '0'); // ADD
+ result = AddWithCarry(Rn, operand2, 0);
+ break;
+
+ case 5: // when '0101'
+ // (result, -, -) = AddWithCarry(R[n], operand2, APSR.c); // ADC
+ result = AddWithCarry(Rn, operand2, APSR_C);
+ break;
+
+ case 6: // when '0110'
+ // (result, -, -) = AddWithCarry(R[n], NOT(operand2), APSR.C); // SBC
+ result = AddWithCarry(Rn, ~(operand2), APSR_C);
+ break;
+
+ case 7: // when '0111'
+ // (result, -, -) = AddWithCarry(NOT(R[n]), operand2, APSR.C); // RSC
+ result = AddWithCarry(~(Rn), operand2, APSR_C);
+ break;
+
+ case 10: // when '1100'
+ // result = R[n] OR operand2; // ORR
+ result.result = Rn | operand2;
+ break;
+
+ case 11: // when '1101'
+ // result = operand2; // MOV
+ result.result = operand2;
+ break;
+
+ case 12: // when '1110'
+ // result = R[n] AND NOT(operand2); // BIC
+ result.result = Rn & ~(operand2);
+ break;
+
+ case 15: // when '1111'
+ // result = NOT(operand2); // MVN
+ result.result = ~(operand2);
+ break;
+
+ default:
+ return false;
+ }
+ // CPSRWriteByInstr(SPSR[], '1111', TRUE);
+
+ // For now, in emulation mode, we don't have access to the SPSR, so we will
+ // use the CPSR instead, and hope for the best.
+ uint32_t spsr =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_cpsr, 0, &success);
+ if (!success)
+ return false;
+
+ CPSRWriteByInstr(spsr, 15, true);
+
+ // BranchWritePC(result);
+ EmulateInstruction::Context context;
+ context.type = eContextAdjustPC;
+ context.SetImmediate(result.result);
+
+ BranchWritePC(context, result.result);
+ }
+ return true;
+}
+
+EmulateInstructionARM::ARMOpcode *
+EmulateInstructionARM::GetARMOpcodeForInstruction(const uint32_t opcode,
+ uint32_t arm_isa) {
+ static ARMOpcode g_arm_opcodes[] = {
+ // Prologue instructions
+
+ // push register(s)
+ {0x0fff0000, 0x092d0000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulatePUSH, "push <registers>"},
+ {0x0fff0fff, 0x052d0004, ARMvAll, eEncodingA2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulatePUSH, "push <register>"},
+
+ // set r7 to point to a stack offset
+ {0x0ffff000, 0x028d7000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADDRdSPImm, "add r7, sp, #<const>"},
+ {0x0ffff000, 0x024c7000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBR7IPImm, "sub r7, ip, #<const>"},
+ // copy the stack pointer to ip
+ {0x0fffffff, 0x01a0c00d, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMOVRdSP, "mov ip, sp"},
+ {0x0ffff000, 0x028dc000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADDRdSPImm, "add ip, sp, #<const>"},
+ {0x0ffff000, 0x024dc000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBIPSPImm, "sub ip, sp, #<const>"},
+
+ // adjust the stack pointer
+ {0x0ffff000, 0x024dd000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPImm, "sub sp, sp, #<const>"},
+ {0x0fef0010, 0x004d0000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPReg,
+ "sub{s}<c> <Rd>, sp, <Rm>{,<shift>}"},
+
+ // push one register
+ // if Rn == '1101' && imm12 == '000000000100' then SEE PUSH;
+ {0x0e5f0000, 0x040d0000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRRtSP, "str Rt, [sp, #-imm12]!"},
+
+ // vector push consecutive extension register(s)
+ {0x0fbf0f00, 0x0d2d0b00, ARMV6T2_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateVPUSH, "vpush.64 <list>"},
+ {0x0fbf0f00, 0x0d2d0a00, ARMV6T2_ABOVE, eEncodingA2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateVPUSH, "vpush.32 <list>"},
+
+ // Epilogue instructions
+
+ {0x0fff0000, 0x08bd0000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulatePOP, "pop <registers>"},
+ {0x0fff0fff, 0x049d0004, ARMvAll, eEncodingA2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulatePOP, "pop <register>"},
+ {0x0fbf0f00, 0x0cbd0b00, ARMV6T2_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateVPOP, "vpop.64 <list>"},
+ {0x0fbf0f00, 0x0cbd0a00, ARMV6T2_ABOVE, eEncodingA2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateVPOP, "vpop.32 <list>"},
+
+ // Supervisor Call (previously Software Interrupt)
+ {0x0f000000, 0x0f000000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSVC, "svc #imm24"},
+
+ // Branch instructions
+ // To resolve ambiguity, "blx <label>" should come before "b #imm24" and
+ // "bl <label>".
+ {0xfe000000, 0xfa000000, ARMV5_ABOVE, eEncodingA2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBLXImmediate, "blx <label>"},
+ {0x0f000000, 0x0a000000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateB, "b #imm24"},
+ {0x0f000000, 0x0b000000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBLXImmediate, "bl <label>"},
+ {0x0ffffff0, 0x012fff30, ARMV5_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBLXRm, "blx <Rm>"},
+ // for example, "bx lr"
+ {0x0ffffff0, 0x012fff10, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBXRm, "bx <Rm>"},
+ // bxj
+ {0x0ffffff0, 0x012fff20, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBXJRm, "bxj <Rm>"},
+
+ // Data-processing instructions
+ // adc (immediate)
+ {0x0fe00000, 0x02a00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADCImm, "adc{s}<c> <Rd>, <Rn>, #const"},
+ // adc (register)
+ {0x0fe00010, 0x00a00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADCReg,
+ "adc{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // add (immediate)
+ {0x0fe00000, 0x02800000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADDImmARM,
+ "add{s}<c> <Rd>, <Rn>, #const"},
+ // add (register)
+ {0x0fe00010, 0x00800000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADDReg,
+ "add{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // add (register-shifted register)
+ {0x0fe00090, 0x00800010, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADDRegShift,
+ "add{s}<c> <Rd>, <Rn>, <Rm>, <type> <RS>"},
+ // adr
+ {0x0fff0000, 0x028f0000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADR, "add<c> <Rd>, PC, #<const>"},
+ {0x0fff0000, 0x024f0000, ARMvAll, eEncodingA2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADR, "sub<c> <Rd>, PC, #<const>"},
+ // and (immediate)
+ {0x0fe00000, 0x02000000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateANDImm, "and{s}<c> <Rd>, <Rn>, #const"},
+ // and (register)
+ {0x0fe00010, 0x00000000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateANDReg,
+ "and{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // bic (immediate)
+ {0x0fe00000, 0x03c00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBICImm, "bic{s}<c> <Rd>, <Rn>, #const"},
+ // bic (register)
+ {0x0fe00010, 0x01c00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBICReg,
+ "bic{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // eor (immediate)
+ {0x0fe00000, 0x02200000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateEORImm, "eor{s}<c> <Rd>, <Rn>, #const"},
+ // eor (register)
+ {0x0fe00010, 0x00200000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateEORReg,
+ "eor{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // orr (immediate)
+ {0x0fe00000, 0x03800000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateORRImm, "orr{s}<c> <Rd>, <Rn>, #const"},
+ // orr (register)
+ {0x0fe00010, 0x01800000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateORRReg,
+ "orr{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // rsb (immediate)
+ {0x0fe00000, 0x02600000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRSBImm, "rsb{s}<c> <Rd>, <Rn>, #<const>"},
+ // rsb (register)
+ {0x0fe00010, 0x00600000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRSBReg,
+ "rsb{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // rsc (immediate)
+ {0x0fe00000, 0x02e00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRSCImm, "rsc{s}<c> <Rd>, <Rn>, #<const>"},
+ // rsc (register)
+ {0x0fe00010, 0x00e00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRSCReg,
+ "rsc{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // sbc (immediate)
+ {0x0fe00000, 0x02c00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSBCImm, "sbc{s}<c> <Rd>, <Rn>, #<const>"},
+ // sbc (register)
+ {0x0fe00010, 0x00c00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSBCReg,
+ "sbc{s}<c> <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // sub (immediate, ARM)
+ {0x0fe00000, 0x02400000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBImmARM,
+ "sub{s}<c> <Rd>, <Rn>, #<const>"},
+ // sub (sp minus immediate)
+ {0x0fef0000, 0x024d0000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPImm, "sub{s}<c> <Rd>, sp, #<const>"},
+ // sub (register)
+ {0x0fe00010, 0x00400000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBReg,
+ "sub{s}<c> <Rd>, <Rn>, <Rm>{,<shift>}"},
+ // teq (immediate)
+ {0x0ff0f000, 0x03300000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateTEQImm, "teq<c> <Rn>, #const"},
+ // teq (register)
+ {0x0ff0f010, 0x01300000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateTEQReg, "teq<c> <Rn>, <Rm> {,<shift>}"},
+ // tst (immediate)
+ {0x0ff0f000, 0x03100000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateTSTImm, "tst<c> <Rn>, #const"},
+ // tst (register)
+ {0x0ff0f010, 0x01100000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateTSTReg, "tst<c> <Rn>, <Rm> {,<shift>}"},
+
+ // mov (immediate)
+ {0x0fef0000, 0x03a00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMOVRdImm, "mov{s}<c> <Rd>, #<const>"},
+ {0x0ff00000, 0x03000000, ARMV6T2_ABOVE, eEncodingA2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMOVRdImm, "movw<c> <Rd>, #<imm16>"},
+ // mov (register)
+ {0x0fef0ff0, 0x01a00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMOVRdRm, "mov{s}<c> <Rd>, <Rm>"},
+ // mvn (immediate)
+ {0x0fef0000, 0x03e00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMVNImm, "mvn{s}<c> <Rd>, #<const>"},
+ // mvn (register)
+ {0x0fef0010, 0x01e00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMVNReg,
+ "mvn{s}<c> <Rd>, <Rm> {,<shift>}"},
+ // cmn (immediate)
+ {0x0ff0f000, 0x03700000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateCMNImm, "cmn<c> <Rn>, #<const>"},
+ // cmn (register)
+ {0x0ff0f010, 0x01700000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateCMNReg, "cmn<c> <Rn>, <Rm> {,<shift>}"},
+ // cmp (immediate)
+ {0x0ff0f000, 0x03500000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateCMPImm, "cmp<c> <Rn>, #<const>"},
+ // cmp (register)
+ {0x0ff0f010, 0x01500000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateCMPReg, "cmp<c> <Rn>, <Rm> {,<shift>}"},
+ // asr (immediate)
+ {0x0fef0070, 0x01a00040, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateASRImm, "asr{s}<c> <Rd>, <Rm>, #imm"},
+ // asr (register)
+ {0x0fef00f0, 0x01a00050, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateASRReg, "asr{s}<c> <Rd>, <Rn>, <Rm>"},
+ // lsl (immediate)
+ {0x0fef0070, 0x01a00000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLSLImm, "lsl{s}<c> <Rd>, <Rm>, #imm"},
+ // lsl (register)
+ {0x0fef00f0, 0x01a00010, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLSLReg, "lsl{s}<c> <Rd>, <Rn>, <Rm>"},
+ // lsr (immediate)
+ {0x0fef0070, 0x01a00020, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLSRImm, "lsr{s}<c> <Rd>, <Rm>, #imm"},
+ // lsr (register)
+ {0x0fef00f0, 0x01a00050, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLSRReg, "lsr{s}<c> <Rd>, <Rn>, <Rm>"},
+ // rrx is a special case encoding of ror (immediate)
+ {0x0fef0ff0, 0x01a00060, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRRX, "rrx{s}<c> <Rd>, <Rm>"},
+ // ror (immediate)
+ {0x0fef0070, 0x01a00060, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRORImm, "ror{s}<c> <Rd>, <Rm>, #imm"},
+ // ror (register)
+ {0x0fef00f0, 0x01a00070, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRORReg, "ror{s}<c> <Rd>, <Rn>, <Rm>"},
+ // mul
+ {0x0fe000f0, 0x00000090, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMUL, "mul{s}<c> <Rd>,<R>,<Rm>"},
+
+ // subs pc, lr and related instructions
+ {0x0e10f000, 0x0210f000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPcLrEtc,
+ "<opc>S<c> PC,#<const> | <Rn>,#<const>"},
+ {0x0e10f010, 0x0010f000, ARMvAll, eEncodingA2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPcLrEtc,
+ "<opc>S<c> PC,<Rn>,<Rm{,<shift>}"},
+
+ // Load instructions
+ {0x0fd00000, 0x08900000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDM, "ldm<c> <Rn>{!} <registers>"},
+ {0x0fd00000, 0x08100000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDMDA, "ldmda<c> <Rn>{!} <registers>"},
+ {0x0fd00000, 0x09100000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDMDB, "ldmdb<c> <Rn>{!} <registers>"},
+ {0x0fd00000, 0x09900000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDMIB, "ldmib<c> <Rn<{!} <registers>"},
+ {0x0e500000, 0x04100000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRImmediateARM,
+ "ldr<c> <Rt> [<Rn> {#+/-<imm12>}]"},
+ {0x0e500010, 0x06100000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRRegister,
+ "ldr<c> <Rt> [<Rn> +/-<Rm> {<shift>}] {!}"},
+ {0x0e5f0000, 0x045f0000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRBLiteral, "ldrb<c> <Rt>, [...]"},
+ {0xfe500010, 0x06500000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRBRegister,
+ "ldrb<c> <Rt>, [<Rn>,+/-<Rm>{, <shift>}]{!}"},
+ {0x0e5f00f0, 0x005f00b0, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRHLiteral, "ldrh<c> <Rt>, <label>"},
+ {0x0e5000f0, 0x001000b0, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRHRegister,
+ "ldrh<c> <Rt>,[<Rn>,+/-<Rm>]{!}"},
+ {0x0e5000f0, 0x005000d0, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSBImmediate,
+ "ldrsb<c> <Rt>, [<Rn>{,#+/-<imm8>}]"},
+ {0x0e5f00f0, 0x005f00d0, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSBLiteral, "ldrsb<c> <Rt> <label>"},
+ {0x0e5000f0, 0x001000d0, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSBRegister,
+ "ldrsb<c> <Rt>,[<Rn>,+/-<Rm>]{!}"},
+ {0x0e5000f0, 0x005000f0, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSHImmediate,
+ "ldrsh<c> <Rt>,[<Rn>{,#+/-<imm8>}]"},
+ {0x0e5f00f0, 0x005f00f0, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSHLiteral, "ldrsh<c> <Rt>,<label>"},
+ {0x0e5000f0, 0x001000f0, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSHRegister,
+ "ldrsh<c> <Rt>,[<Rn>,+/-<Rm>]{!}"},
+ {0x0e5000f0, 0x004000d0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRDImmediate,
+ "ldrd<c> <Rt>, <Rt2>, [<Rn>,#+/-<imm8>]!"},
+ {0x0e500ff0, 0x000000d0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRDRegister,
+ "ldrd<c> <Rt>, <Rt2>, [<Rn>, +/-<Rm>]{!}"},
+ {0x0e100f00, 0x0c100b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32,
+ &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>"},
+ {0x0e100f00, 0x0c100a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32,
+ &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>"},
+ {0x0f300f00, 0x0d100b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32,
+ &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Dd>, [<Rn>{,#+/-<imm>}]"},
+ {0x0f300f00, 0x0d100a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32,
+ &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Sd>, [<Rn>{,#+/-<imm>}]"},
+ {0xffb00000, 0xf4200000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32,
+ &EmulateInstructionARM::EmulateVLD1Multiple,
+ "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+ {0xffb00300, 0xf4a00000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32,
+ &EmulateInstructionARM::EmulateVLD1Single,
+ "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+ {0xffb00f00, 0xf4a00c00, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32,
+ &EmulateInstructionARM::EmulateVLD1SingleAll,
+ "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+
+ // Store instructions
+ {0x0fd00000, 0x08800000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTM, "stm<c> <Rn>{!} <registers>"},
+ {0x0fd00000, 0x08000000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTMDA, "stmda<c> <Rn>{!} <registers>"},
+ {0x0fd00000, 0x09000000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTMDB, "stmdb<c> <Rn>{!} <registers>"},
+ {0x0fd00000, 0x09800000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTMIB, "stmib<c> <Rn>{!} <registers>"},
+ {0x0e500010, 0x06000000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRRegister,
+ "str<c> <Rt> [<Rn> +/-<Rm> {<shift>}]{!}"},
+ {0x0e5000f0, 0x000000b0, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRHRegister,
+ "strh<c> <Rt>,[<Rn>,+/-<Rm>[{!}"},
+ {0x0ff00ff0, 0x01800f90, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTREX, "strex<c> <Rd>, <Rt>, [<Rn>]"},
+ {0x0e500000, 0x04400000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRBImmARM,
+ "strb<c> <Rt>,[<Rn>,#+/-<imm12>]!"},
+ {0x0e500000, 0x04000000, ARMvAll, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRImmARM,
+ "str<c> <Rt>,[<Rn>,#+/-<imm12>]!"},
+ {0x0e5000f0, 0x004000f0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRDImm,
+ "strd<c> <Rt>, <Rt2>, [<Rn> #+/-<imm8>]!"},
+ {0x0e500ff0, 0x000000f0, ARMV5TE_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRDReg,
+ "strd<c> <Rt>, <Rt2>, [<Rn>, +/-<Rm>]{!}"},
+ {0x0e100f00, 0x0c000b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32,
+ &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!} <list>"},
+ {0x0e100f00, 0x0c000a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32,
+ &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!} <list>"},
+ {0x0f300f00, 0x0d000b00, ARMvAll, eEncodingA1, VFPv2_ABOVE, eSize32,
+ &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Dd> [<Rn>{,#+/-<imm>}]"},
+ {0x0f300f00, 0x0d000a00, ARMvAll, eEncodingA2, VFPv2v3, eSize32,
+ &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Sd> [<Rn>{,#+/-<imm>}]"},
+ {0xffb00000, 0xf4000000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32,
+ &EmulateInstructionARM::EmulateVST1Multiple,
+ "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+ {0xffb00300, 0xf4800000, ARMvAll, eEncodingA1, AdvancedSIMD, eSize32,
+ &EmulateInstructionARM::EmulateVST1Single,
+ "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+
+ // Other instructions
+ {0x0fff00f0, 0x06af00f0, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSXTB, "sxtb<c> <Rd>,<Rm>{,<rotation>}"},
+ {0x0fff00f0, 0x06bf0070, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSXTH, "sxth<c> <Rd>,<Rm>{,<rotation>}"},
+ {0x0fff00f0, 0x06ef0070, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateUXTB, "uxtb<c> <Rd>,<Rm>{,<rotation>}"},
+ {0x0fff00f0, 0x06ff0070, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateUXTH, "uxth<c> <Rd>,<Rm>{,<rotation>}"},
+ {0xfe500000, 0xf8100000, ARMV6_ABOVE, eEncodingA1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRFE, "rfe{<amode>} <Rn>{!}"}
+
+ };
+ static const size_t k_num_arm_opcodes = std::size(g_arm_opcodes);
+
+ for (size_t i = 0; i < k_num_arm_opcodes; ++i) {
+ if ((g_arm_opcodes[i].mask & opcode) == g_arm_opcodes[i].value &&
+ (g_arm_opcodes[i].variants & arm_isa) != 0)
+ return &g_arm_opcodes[i];
+ }
+ return nullptr;
+}
+
+EmulateInstructionARM::ARMOpcode *
+EmulateInstructionARM::GetThumbOpcodeForInstruction(const uint32_t opcode,
+ uint32_t arm_isa) {
+
+ static ARMOpcode g_thumb_opcodes[] = {
+ // Prologue instructions
+
+ // push register(s)
+ {0xfffffe00, 0x0000b400, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulatePUSH, "push <registers>"},
+ {0xffff0000, 0xe92d0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulatePUSH, "push.w <registers>"},
+ {0xffff0fff, 0xf84d0d04, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulatePUSH, "push.w <register>"},
+
+ // set r7 to point to a stack offset
+ {0xffffff00, 0x0000af00, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateADDRdSPImm, "add r7, sp, #imm"},
+ // copy the stack pointer to r7
+ {0xffffffff, 0x0000466f, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateMOVRdSP, "mov r7, sp"},
+ // move from high register to low register (comes after "mov r7, sp" to
+ // resolve ambiguity)
+ {0xffffffc0, 0x00004640, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateMOVLowHigh, "mov r0-r7, r8-r15"},
+
+ // PC-relative load into register (see also EmulateADDSPRm)
+ {0xfffff800, 0x00004800, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDRRtPCRelative, "ldr <Rt>, [PC, #imm]"},
+
+ // adjust the stack pointer
+ {0xffffff87, 0x00004485, ARMvAll, eEncodingT2, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateADDSPRm, "add sp, <Rm>"},
+ {0xffffff80, 0x0000b080, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSUBSPImm, "sub sp, sp, #imm"},
+ {0xfbef8f00, 0xf1ad0d00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPImm, "sub.w sp, sp, #<const>"},
+ {0xfbff8f00, 0xf2ad0d00, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPImm, "subw sp, sp, #imm12"},
+ {0xffef8000, 0xebad0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPReg,
+ "sub{s}<c> <Rd>, sp, <Rm>{,<shift>}"},
+
+ // vector push consecutive extension register(s)
+ {0xffbf0f00, 0xed2d0b00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateVPUSH, "vpush.64 <list>"},
+ {0xffbf0f00, 0xed2d0a00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateVPUSH, "vpush.32 <list>"},
+
+ // Epilogue instructions
+
+ {0xfffff800, 0x0000a800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateADDSPImm, "add<c> <Rd>, sp, #imm"},
+ {0xffffff80, 0x0000b000, ARMvAll, eEncodingT2, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateADDSPImm, "add sp, #imm"},
+ {0xfffffe00, 0x0000bc00, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulatePOP, "pop <registers>"},
+ {0xffff0000, 0xe8bd0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulatePOP, "pop.w <registers>"},
+ {0xffff0fff, 0xf85d0d04, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulatePOP, "pop.w <register>"},
+ {0xffbf0f00, 0xecbd0b00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateVPOP, "vpop.64 <list>"},
+ {0xffbf0f00, 0xecbd0a00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateVPOP, "vpop.32 <list>"},
+
+ // Supervisor Call (previously Software Interrupt)
+ {0xffffff00, 0x0000df00, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSVC, "svc #imm8"},
+
+ // If Then makes up to four following instructions conditional.
+ // The next 5 opcode _must_ come before the if then instruction
+ {0xffffffff, 0x0000bf00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateNop, "nop"},
+ {0xffffffff, 0x0000bf10, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateNop, "nop YIELD (yield hint)"},
+ {0xffffffff, 0x0000bf20, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateNop, "nop WFE (wait for event hint)"},
+ {0xffffffff, 0x0000bf30, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateNop, "nop WFI (wait for interrupt hint)"},
+ {0xffffffff, 0x0000bf40, ARMV7_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateNop, "nop SEV (send event hint)"},
+ {0xffffff00, 0x0000bf00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateIT, "it{<x>{<y>{<z>}}} <firstcond>"},
+
+ // Branch instructions
+ // To resolve ambiguity, "b<c> #imm8" should come after "svc #imm8".
+ {0xfffff000, 0x0000d000, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateB, "b<c> #imm8 (outside IT)"},
+ {0xfffff800, 0x0000e000, ARMvAll, eEncodingT2, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateB, "b<c> #imm11 (outside or last in IT)"},
+ {0xf800d000, 0xf0008000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateB, "b<c>.w #imm8 (outside IT)"},
+ {0xf800d000, 0xf0009000, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateB,
+ "b<c>.w #imm8 (outside or last in IT)"},
+ // J1 == J2 == 1
+ {0xf800d000, 0xf000d000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBLXImmediate, "bl <label>"},
+ // J1 == J2 == 1
+ {0xf800d001, 0xf000c000, ARMV5_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBLXImmediate, "blx <label>"},
+ {0xffffff87, 0x00004780, ARMV5_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateBLXRm, "blx <Rm>"},
+ // for example, "bx lr"
+ {0xffffff87, 0x00004700, ARMvAll, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBXRm, "bx <Rm>"},
+ // bxj
+ {0xfff0ffff, 0xf3c08f00, ARMV5J_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBXJRm, "bxj <Rm>"},
+ // compare and branch
+ {0xfffff500, 0x0000b100, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateCB, "cb{n}z <Rn>, <label>"},
+ // table branch byte
+ {0xfff0fff0, 0xe8d0f000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateTB, "tbb<c> <Rn>, <Rm>"},
+ // table branch halfword
+ {0xfff0fff0, 0xe8d0f010, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateTB, "tbh<c> <Rn>, <Rm>, lsl #1"},
+
+ // Data-processing instructions
+ // adc (immediate)
+ {0xfbe08000, 0xf1400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADCImm, "adc{s}<c> <Rd>, <Rn>, #<const>"},
+ // adc (register)
+ {0xffffffc0, 0x00004140, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateADCReg, "adcs|adc<c> <Rdn>, <Rm>"},
+ {0xffe08000, 0xeb400000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADCReg,
+ "adc{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // add (register)
+ {0xfffffe00, 0x00001800, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateADDReg, "adds|add<c> <Rd>, <Rn>, <Rm>"},
+ // Make sure "add sp, <Rm>" comes before this instruction, so there's no
+ // ambiguity decoding the two.
+ {0xffffff00, 0x00004400, ARMvAll, eEncodingT2, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateADDReg, "add<c> <Rdn>, <Rm>"},
+ // adr
+ {0xfffff800, 0x0000a000, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateADR, "add<c> <Rd>, PC, #<const>"},
+ {0xfbff8000, 0xf2af0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADR, "sub<c> <Rd>, PC, #<const>"},
+ {0xfbff8000, 0xf20f0000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADR, "add<c> <Rd>, PC, #<const>"},
+ // and (immediate)
+ {0xfbe08000, 0xf0000000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateANDImm, "and{s}<c> <Rd>, <Rn>, #<const>"},
+ // and (register)
+ {0xffffffc0, 0x00004000, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateANDReg, "ands|and<c> <Rdn>, <Rm>"},
+ {0xffe08000, 0xea000000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateANDReg,
+ "and{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // bic (immediate)
+ {0xfbe08000, 0xf0200000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBICImm, "bic{s}<c> <Rd>, <Rn>, #<const>"},
+ // bic (register)
+ {0xffffffc0, 0x00004380, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateBICReg, "bics|bic<c> <Rdn>, <Rm>"},
+ {0xffe08000, 0xea200000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateBICReg,
+ "bic{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // eor (immediate)
+ {0xfbe08000, 0xf0800000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateEORImm, "eor{s}<c> <Rd>, <Rn>, #<const>"},
+ // eor (register)
+ {0xffffffc0, 0x00004040, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateEORReg, "eors|eor<c> <Rdn>, <Rm>"},
+ {0xffe08000, 0xea800000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateEORReg,
+ "eor{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // orr (immediate)
+ {0xfbe08000, 0xf0400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateORRImm, "orr{s}<c> <Rd>, <Rn>, #<const>"},
+ // orr (register)
+ {0xffffffc0, 0x00004300, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateORRReg, "orrs|orr<c> <Rdn>, <Rm>"},
+ {0xffe08000, 0xea400000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateORRReg,
+ "orr{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // rsb (immediate)
+ {0xffffffc0, 0x00004240, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateRSBImm, "rsbs|rsb<c> <Rd>, <Rn>, #0"},
+ {0xfbe08000, 0xf1c00000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRSBImm,
+ "rsb{s}<c>.w <Rd>, <Rn>, #<const>"},
+ // rsb (register)
+ {0xffe08000, 0xea400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRSBReg,
+ "rsb{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // sbc (immediate)
+ {0xfbe08000, 0xf1600000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSBCImm, "sbc{s}<c> <Rd>, <Rn>, #<const>"},
+ // sbc (register)
+ {0xffffffc0, 0x00004180, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSBCReg, "sbcs|sbc<c> <Rdn>, <Rm>"},
+ {0xffe08000, 0xeb600000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSBCReg,
+ "sbc{s}<c>.w <Rd>, <Rn>, <Rm> {,<shift>}"},
+ // add (immediate, Thumb)
+ {0xfffffe00, 0x00001c00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateADDImmThumb,
+ "adds|add<c> <Rd>,<Rn>,#<imm3>"},
+ {0xfffff800, 0x00003000, ARMV4T_ABOVE, eEncodingT2, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateADDImmThumb, "adds|add<c> <Rdn>,#<imm8>"},
+ {0xfbe08000, 0xf1000000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADDImmThumb,
+ "add{s}<c>.w <Rd>,<Rn>,#<const>"},
+ {0xfbf08000, 0xf2000000, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateADDImmThumb,
+ "addw<c> <Rd>,<Rn>,#<imm12>"},
+ // sub (immediate, Thumb)
+ {0xfffffe00, 0x00001e00, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSUBImmThumb,
+ "subs|sub<c> <Rd>, <Rn> #imm3"},
+ {0xfffff800, 0x00003800, ARMvAll, eEncodingT2, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSUBImmThumb, "subs|sub<c> <Rdn>, #imm8"},
+ {0xfbe08000, 0xf1a00000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBImmThumb,
+ "sub{s}<c>.w <Rd>, <Rn>, #<const>"},
+ {0xfbf08000, 0xf2a00000, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBImmThumb,
+ "subw<c> <Rd>, <Rn>, #imm12"},
+ // sub (sp minus immediate)
+ {0xfbef8000, 0xf1ad0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPImm, "sub{s}.w <Rd>, sp, #<const>"},
+ {0xfbff8000, 0xf2ad0000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPImm, "subw<c> <Rd>, sp, #imm12"},
+ // sub (register)
+ {0xfffffe00, 0x00001a00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSUBReg, "subs|sub<c> <Rd>, <Rn>, <Rm>"},
+ {0xffe08000, 0xeba00000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBReg,
+ "sub{s}<c>.w <Rd>, <Rn>, <Rm>{,<shift>}"},
+ // teq (immediate)
+ {0xfbf08f00, 0xf0900f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateTEQImm, "teq<c> <Rn>, #<const>"},
+ // teq (register)
+ {0xfff08f00, 0xea900f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateTEQReg, "teq<c> <Rn>, <Rm> {,<shift>}"},
+ // tst (immediate)
+ {0xfbf08f00, 0xf0100f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateTSTImm, "tst<c> <Rn>, #<const>"},
+ // tst (register)
+ {0xffffffc0, 0x00004200, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateTSTReg, "tst<c> <Rdn>, <Rm>"},
+ {0xfff08f00, 0xea100f00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateTSTReg, "tst<c>.w <Rn>, <Rm> {,<shift>}"},
+
+ // move from high register to high register
+ {0xffffff00, 0x00004600, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateMOVRdRm, "mov<c> <Rd>, <Rm>"},
+ // move from low register to low register
+ {0xffffffc0, 0x00000000, ARMvAll, eEncodingT2, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateMOVRdRm, "movs <Rd>, <Rm>"},
+ // mov{s}<c>.w <Rd>, <Rm>
+ {0xffeff0f0, 0xea4f0000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMOVRdRm, "mov{s}<c>.w <Rd>, <Rm>"},
+ // move immediate
+ {0xfffff800, 0x00002000, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateMOVRdImm, "movs|mov<c> <Rd>, #imm8"},
+ {0xfbef8000, 0xf04f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMOVRdImm, "mov{s}<c>.w <Rd>, #<const>"},
+ {0xfbf08000, 0xf2400000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMOVRdImm, "movw<c> <Rd>,#<imm16>"},
+ // mvn (immediate)
+ {0xfbef8000, 0xf06f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMVNImm, "mvn{s} <Rd>, #<const>"},
+ // mvn (register)
+ {0xffffffc0, 0x000043c0, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateMVNReg, "mvns|mvn<c> <Rd>, <Rm>"},
+ {0xffef8000, 0xea6f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMVNReg,
+ "mvn{s}<c>.w <Rd>, <Rm> {,<shift>}"},
+ // cmn (immediate)
+ {0xfbf08f00, 0xf1100f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateCMNImm, "cmn<c> <Rn>, #<const>"},
+ // cmn (register)
+ {0xffffffc0, 0x000042c0, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateCMNReg, "cmn<c> <Rn>, <Rm>"},
+ {0xfff08f00, 0xeb100f00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateCMNReg, "cmn<c> <Rn>, <Rm> {,<shift>}"},
+ // cmp (immediate)
+ {0xfffff800, 0x00002800, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateCMPImm, "cmp<c> <Rn>, #imm8"},
+ {0xfbf08f00, 0xf1b00f00, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateCMPImm, "cmp<c>.w <Rn>, #<const>"},
+ // cmp (register) (Rn and Rm both from r0-r7)
+ {0xffffffc0, 0x00004280, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateCMPReg, "cmp<c> <Rn>, <Rm>"},
+ // cmp (register) (Rn and Rm not both from r0-r7)
+ {0xffffff00, 0x00004500, ARMvAll, eEncodingT2, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateCMPReg, "cmp<c> <Rn>, <Rm>"},
+ {0xfff08f00, 0xebb00f00, ARMvAll, eEncodingT3, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateCMPReg,
+ "cmp<c>.w <Rn>, <Rm> {, <shift>}"},
+ // asr (immediate)
+ {0xfffff800, 0x00001000, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateASRImm, "asrs|asr<c> <Rd>, <Rm>, #imm"},
+ {0xffef8030, 0xea4f0020, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateASRImm, "asr{s}<c>.w <Rd>, <Rm>, #imm"},
+ // asr (register)
+ {0xffffffc0, 0x00004100, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateASRReg, "asrs|asr<c> <Rdn>, <Rm>"},
+ {0xffe0f0f0, 0xfa40f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateASRReg, "asr{s}<c>.w <Rd>, <Rn>, <Rm>"},
+ // lsl (immediate)
+ {0xfffff800, 0x00000000, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLSLImm, "lsls|lsl<c> <Rd>, <Rm>, #imm"},
+ {0xffef8030, 0xea4f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLSLImm, "lsl{s}<c>.w <Rd>, <Rm>, #imm"},
+ // lsl (register)
+ {0xffffffc0, 0x00004080, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLSLReg, "lsls|lsl<c> <Rdn>, <Rm>"},
+ {0xffe0f0f0, 0xfa00f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLSLReg, "lsl{s}<c>.w <Rd>, <Rn>, <Rm>"},
+ // lsr (immediate)
+ {0xfffff800, 0x00000800, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLSRImm, "lsrs|lsr<c> <Rd>, <Rm>, #imm"},
+ {0xffef8030, 0xea4f0010, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLSRImm, "lsr{s}<c>.w <Rd>, <Rm>, #imm"},
+ // lsr (register)
+ {0xffffffc0, 0x000040c0, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLSRReg, "lsrs|lsr<c> <Rdn>, <Rm>"},
+ {0xffe0f0f0, 0xfa20f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLSRReg, "lsr{s}<c>.w <Rd>, <Rn>, <Rm>"},
+ // rrx is a special case encoding of ror (immediate)
+ {0xffeff0f0, 0xea4f0030, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRRX, "rrx{s}<c>.w <Rd>, <Rm>"},
+ // ror (immediate)
+ {0xffef8030, 0xea4f0030, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRORImm, "ror{s}<c>.w <Rd>, <Rm>, #imm"},
+ // ror (register)
+ {0xffffffc0, 0x000041c0, ARMvAll, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateRORReg, "rors|ror<c> <Rdn>, <Rm>"},
+ {0xffe0f0f0, 0xfa60f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRORReg, "ror{s}<c>.w <Rd>, <Rn>, <Rm>"},
+ // mul
+ {0xffffffc0, 0x00004340, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateMUL, "muls <Rdm>,<Rn>,<Rdm>"},
+ // mul
+ {0xfff0f0f0, 0xfb00f000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateMUL, "mul<c> <Rd>,<Rn>,<Rm>"},
+
+ // subs pc, lr and related instructions
+ {0xffffff00, 0xf3de8f00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSUBSPcLrEtc, "SUBS<c> PC, LR, #<imm8>"},
+
+ // RFE instructions *** IMPORTANT *** THESE MUST BE LISTED **BEFORE** THE
+ // LDM.. Instructions in this table;
+ // otherwise the wrong instructions will be selected.
+
+ {0xffd0ffff, 0xe810c000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRFE, "rfedb<c> <Rn>{!}"},
+ {0xffd0ffff, 0xe990c000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateRFE, "rfe{ia}<c> <Rn>{!}"},
+
+ // Load instructions
+ {0xfffff800, 0x0000c800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDM, "ldm<c> <Rn>{!} <registers>"},
+ {0xffd02000, 0xe8900000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDM, "ldm<c>.w <Rn>{!} <registers>"},
+ {0xffd00000, 0xe9100000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDMDB, "ldmdb<c> <Rn>{!} <registers>"},
+ {0xfffff800, 0x00006800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDRRtRnImm, "ldr<c> <Rt>, [<Rn>{,#imm}]"},
+ {0xfffff800, 0x00009800, ARMV4T_ABOVE, eEncodingT2, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDRRtRnImm, "ldr<c> <Rt>, [SP{,#imm}]"},
+ {0xfff00000, 0xf8d00000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRRtRnImm,
+ "ldr<c>.w <Rt>, [<Rn>{,#imm12}]"},
+ {0xfff00800, 0xf8500800, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRRtRnImm,
+ "ldr<c> <Rt>, [<Rn>{,#+/-<imm8>}]{!}"},
+ // Thumb2 PC-relative load into register
+ {0xff7f0000, 0xf85f0000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRRtPCRelative,
+ "ldr<c>.w <Rt>, [PC, +/-#imm}]"},
+ {0xfffffe00, 0x00005800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDRRegister, "ldr<c> <Rt>, [<Rn>, <Rm>]"},
+ {0xfff00fc0, 0xf8500000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRRegister,
+ "ldr<c>.w <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]"},
+ {0xfffff800, 0x00007800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDRBImmediate,
+ "ldrb<c> <Rt>,[<Rn>{,#<imm5>}]"},
+ {0xfff00000, 0xf8900000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRBImmediate,
+ "ldrb<c>.w <Rt>,[<Rn>{,#<imm12>}]"},
+ {0xfff00800, 0xf8100800, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRBImmediate,
+ "ldrb<c> <Rt>,[<Rn>, #+/-<imm8>]{!}"},
+ {0xff7f0000, 0xf81f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRBLiteral, "ldrb<c> <Rt>,[...]"},
+ {0xfffffe00, 0x00005c00, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDRBRegister, "ldrb<c> <Rt>,[<Rn>,<Rm>]"},
+ {0xfff00fc0, 0xf8100000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRBRegister,
+ "ldrb<c>.w <Rt>,[<Rn>,<Rm>{,LSL #imm2>}]"},
+ {0xfffff800, 0x00008800, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDRHImmediate,
+ "ldrh<c> <Rt>, [<Rn>{,#<imm>}]"},
+ {0xfff00000, 0xf8b00000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRHImmediate,
+ "ldrh<c>.w <Rt>,[<Rn>{,#<imm12>}]"},
+ {0xfff00800, 0xf8300800, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRHImmediate,
+ "ldrh<c> <Rt>,[<Rn>,#+/-<imm8>]{!}"},
+ {0xff7f0000, 0xf83f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRHLiteral, "ldrh<c> <Rt>, <label>"},
+ {0xfffffe00, 0x00005a00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDRHRegister,
+ "ldrh<c> <Rt>, [<Rn>,<Rm>]"},
+ {0xfff00fc0, 0xf8300000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRHRegister,
+ "ldrh<c>.w <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]"},
+ {0xfff00000, 0xf9900000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSBImmediate,
+ "ldrsb<c> <Rt>,[<Rn>,#<imm12>]"},
+ {0xfff00800, 0xf9100800, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSBImmediate,
+ "ldrsb<c> <Rt>,[<Rn>,#+/-<imm8>]"},
+ {0xff7f0000, 0xf91f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSBLiteral, "ldrsb<c> <Rt>, <label>"},
+ {0xfffffe00, 0x00005600, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDRSBRegister,
+ "ldrsb<c> <Rt>,[<Rn>,<Rm>]"},
+ {0xfff00fc0, 0xf9100000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSBRegister,
+ "ldrsb<c>.w <Rt>,[<Rn>,<Rm>{,LSL #imm2>}]"},
+ {0xfff00000, 0xf9b00000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSHImmediate,
+ "ldrsh<c> <Rt>,[<Rn>,#<imm12>]"},
+ {0xfff00800, 0xf9300800, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSHImmediate,
+ "ldrsh<c> <Rt>,[<Rn>,#+/-<imm8>]"},
+ {0xff7f0000, 0xf93f0000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSHLiteral, "ldrsh<c> <Rt>,<label>"},
+ {0xfffffe00, 0x00005e00, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateLDRSHRegister,
+ "ldrsh<c> <Rt>,[<Rn>,<Rm>]"},
+ {0xfff00fc0, 0xf9300000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRSHRegister,
+ "ldrsh<c>.w <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]"},
+ {0xfe500000, 0xe8500000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateLDRDImmediate,
+ "ldrd<c> <Rt>, <Rt2>, [<Rn>,#+/-<imm>]!"},
+ {0xfe100f00, 0xec100b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32,
+ &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>"},
+ {0xfe100f00, 0xec100a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32,
+ &EmulateInstructionARM::EmulateVLDM, "vldm{mode}<c> <Rn>{!}, <list>"},
+ {0xffe00f00, 0xed100b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32,
+ &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Dd>, [<Rn>{,#+/-<imm>}]"},
+ {0xff300f00, 0xed100a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32,
+ &EmulateInstructionARM::EmulateVLDR, "vldr<c> <Sd>, {<Rn>{,#+/-<imm>}]"},
+ {0xffb00000, 0xf9200000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32,
+ &EmulateInstructionARM::EmulateVLD1Multiple,
+ "vld1<c>.<size> <list>, [<Rn>{@<align>}],<Rm>"},
+ {0xffb00300, 0xf9a00000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32,
+ &EmulateInstructionARM::EmulateVLD1Single,
+ "vld1<c>.<size> <list>, [<Rn>{@<align>}],<Rm>"},
+ {0xffb00f00, 0xf9a00c00, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32,
+ &EmulateInstructionARM::EmulateVLD1SingleAll,
+ "vld1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+
+ // Store instructions
+ {0xfffff800, 0x0000c000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSTM, "stm<c> <Rn>{!} <registers>"},
+ {0xffd00000, 0xe8800000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTM, "stm<c>.w <Rn>{!} <registers>"},
+ {0xffd00000, 0xe9000000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTMDB, "stmdb<c> <Rn>{!} <registers>"},
+ {0xfffff800, 0x00006000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSTRThumb, "str<c> <Rt>, [<Rn>{,#<imm>}]"},
+ {0xfffff800, 0x00009000, ARMV4T_ABOVE, eEncodingT2, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSTRThumb, "str<c> <Rt>, [SP,#<imm>]"},
+ {0xfff00000, 0xf8c00000, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRThumb,
+ "str<c>.w <Rt>, [<Rn>,#<imm12>]"},
+ {0xfff00800, 0xf8400800, ARMV6T2_ABOVE, eEncodingT4, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRThumb,
+ "str<c> <Rt>, [<Rn>,#+/-<imm8>]"},
+ {0xfffffe00, 0x00005000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSTRRegister, "str<c> <Rt> ,{<Rn>, <Rm>]"},
+ {0xfff00fc0, 0xf8400000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRRegister,
+ "str<c>.w <Rt>, [<Rn>, <Rm> {lsl #imm2>}]"},
+ {0xfffff800, 0x00007000, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSTRBThumb,
+ "strb<c> <Rt>, [<Rn>, #<imm5>]"},
+ {0xfff00000, 0xf8800000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRBThumb,
+ "strb<c>.w <Rt>, [<Rn>, #<imm12>]"},
+ {0xfff00800, 0xf8000800, ARMV6T2_ABOVE, eEncodingT3, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRBThumb,
+ "strb<c> <Rt> ,[<Rn>, #+/-<imm8>]{!}"},
+ {0xfffffe00, 0x00005200, ARMV4T_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSTRHRegister, "strh<c> <Rt>,[<Rn>,<Rm>]"},
+ {0xfff00fc0, 0xf8200000, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRHRegister,
+ "strh<c>.w <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]"},
+ {0xfff00000, 0xe8400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTREX,
+ "strex<c> <Rd>, <Rt>, [<Rn{,#<imm>}]"},
+ {0xfe500000, 0xe8400000, ARMV6T2_ABOVE, eEncodingT1, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSTRDImm,
+ "strd<c> <Rt>, <Rt2>, [<Rn>, #+/-<imm>]!"},
+ {0xfe100f00, 0xec000b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32,
+ &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!}, <list>"},
+ {0xfea00f00, 0xec000a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32,
+ &EmulateInstructionARM::EmulateVSTM, "vstm{mode}<c> <Rn>{!}, <list>"},
+ {0xff300f00, 0xed000b00, ARMvAll, eEncodingT1, VFPv2_ABOVE, eSize32,
+ &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Dd>, [<Rn>{,#+/-<imm>}]"},
+ {0xff300f00, 0xed000a00, ARMvAll, eEncodingT2, VFPv2v3, eSize32,
+ &EmulateInstructionARM::EmulateVSTR, "vstr<c> <Sd>, [<Rn>{,#+/-<imm>}]"},
+ {0xffb00000, 0xf9000000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32,
+ &EmulateInstructionARM::EmulateVST1Multiple,
+ "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+ {0xffb00300, 0xf9800000, ARMvAll, eEncodingT1, AdvancedSIMD, eSize32,
+ &EmulateInstructionARM::EmulateVST1Single,
+ "vst1<c>.<size> <list>, [<Rn>{@<align>}], <Rm>"},
+
+ // Other instructions
+ {0xffffffc0, 0x0000b240, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSXTB, "sxtb<c> <Rd>,<Rm>"},
+ {0xfffff080, 0xfa4ff080, ARMV6_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSXTB, "sxtb<c>.w <Rd>,<Rm>{,<rotation>}"},
+ {0xffffffc0, 0x0000b200, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateSXTH, "sxth<c> <Rd>,<Rm>"},
+ {0xfffff080, 0xfa0ff080, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateSXTH, "sxth<c>.w <Rd>,<Rm>{,<rotation>}"},
+ {0xffffffc0, 0x0000b2c0, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateUXTB, "uxtb<c> <Rd>,<Rm>"},
+ {0xfffff080, 0xfa5ff080, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateUXTB, "uxtb<c>.w <Rd>,<Rm>{,<rotation>}"},
+ {0xffffffc0, 0x0000b280, ARMV6_ABOVE, eEncodingT1, No_VFP, eSize16,
+ &EmulateInstructionARM::EmulateUXTH, "uxth<c> <Rd>,<Rm>"},
+ {0xfffff080, 0xfa1ff080, ARMV6T2_ABOVE, eEncodingT2, No_VFP, eSize32,
+ &EmulateInstructionARM::EmulateUXTH, "uxth<c>.w <Rd>,<Rm>{,<rotation>}"},
+ };
+
+ const size_t k_num_thumb_opcodes = std::size(g_thumb_opcodes);
+ for (size_t i = 0; i < k_num_thumb_opcodes; ++i) {
+ if ((g_thumb_opcodes[i].mask & opcode) == g_thumb_opcodes[i].value &&
+ (g_thumb_opcodes[i].variants & arm_isa) != 0)
+ return &g_thumb_opcodes[i];
+ }
+ return nullptr;
+}
+
+bool EmulateInstructionARM::SetArchitecture(const ArchSpec &arch) {
+ m_arch = arch;
+ m_arm_isa = 0;
+ llvm::StringRef arch_cstr = arch.GetArchitectureName();
+ if (arch_cstr.equals_insensitive("armv4t"))
+ m_arm_isa = ARMv4T;
+ else if (arch_cstr.equals_insensitive("armv5tej"))
+ m_arm_isa = ARMv5TEJ;
+ else if (arch_cstr.equals_insensitive("armv5te"))
+ m_arm_isa = ARMv5TE;
+ else if (arch_cstr.equals_insensitive("armv5t"))
+ m_arm_isa = ARMv5T;
+ else if (arch_cstr.equals_insensitive("armv6k"))
+ m_arm_isa = ARMv6K;
+ else if (arch_cstr.equals_insensitive("armv6t2"))
+ m_arm_isa = ARMv6T2;
+ else if (arch_cstr.equals_insensitive("armv7s"))
+ m_arm_isa = ARMv7S;
+ else if (arch_cstr.equals_insensitive("arm"))
+ m_arm_isa = ARMvAll;
+ else if (arch_cstr.equals_insensitive("thumb"))
+ m_arm_isa = ARMvAll;
+ else if (arch_cstr.starts_with_insensitive("armv4"))
+ m_arm_isa = ARMv4;
+ else if (arch_cstr.starts_with_insensitive("armv6"))
+ m_arm_isa = ARMv6;
+ else if (arch_cstr.starts_with_insensitive("armv7"))
+ m_arm_isa = ARMv7;
+ else if (arch_cstr.starts_with_insensitive("armv8"))
+ m_arm_isa = ARMv8;
+ return m_arm_isa != 0;
+}
+
+bool EmulateInstructionARM::SetInstruction(const Opcode &insn_opcode,
+ const Address &inst_addr,
+ Target *target) {
+ if (EmulateInstruction::SetInstruction(insn_opcode, inst_addr, target)) {
+ if (m_arch.GetTriple().getArch() == llvm::Triple::thumb ||
+ m_arch.IsAlwaysThumbInstructions())
+ m_opcode_mode = eModeThumb;
+ else {
+ AddressClass addr_class = inst_addr.GetAddressClass();
+
+ if ((addr_class == AddressClass::eCode) ||
+ (addr_class == AddressClass::eUnknown))
+ m_opcode_mode = eModeARM;
+ else if (addr_class == AddressClass::eCodeAlternateISA)
+ m_opcode_mode = eModeThumb;
+ else
+ return false;
+ }
+ if (m_opcode_mode == eModeThumb || m_arch.IsAlwaysThumbInstructions())
+ m_opcode_cpsr = CPSR_MODE_USR | MASK_CPSR_T;
+ else
+ m_opcode_cpsr = CPSR_MODE_USR;
+ return true;
+ }
+ return false;
+}
+
+bool EmulateInstructionARM::ReadInstruction() {
+ bool success = false;
+ m_opcode_cpsr = ReadRegisterUnsigned(eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_FLAGS, 0, &success);
+ if (success) {
+ addr_t pc =
+ ReadRegisterUnsigned(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC,
+ LLDB_INVALID_ADDRESS, &success);
+ if (success) {
+ Context read_inst_context;
+ read_inst_context.type = eContextReadOpcode;
+ read_inst_context.SetNoArgs();
+
+ if ((m_opcode_cpsr & MASK_CPSR_T) || m_arch.IsAlwaysThumbInstructions()) {
+ m_opcode_mode = eModeThumb;
+ uint32_t thumb_opcode = MemARead(read_inst_context, pc, 2, 0, &success);
+
+ if (success) {
+ if ((thumb_opcode & 0xe000) != 0xe000 ||
+ ((thumb_opcode & 0x1800u) == 0)) {
+ m_opcode.SetOpcode16(thumb_opcode, GetByteOrder());
+ } else {
+ m_opcode.SetOpcode32(
+ (thumb_opcode << 16) |
+ MemARead(read_inst_context, pc + 2, 2, 0, &success),
+ GetByteOrder());
+ }
+ }
+ } else {
+ m_opcode_mode = eModeARM;
+ m_opcode.SetOpcode32(MemARead(read_inst_context, pc, 4, 0, &success),
+ GetByteOrder());
+ }
+
+ if (!m_ignore_conditions) {
+ // If we are not ignoreing the conditions then init the it session from
+ // the current value of cpsr.
+ uint32_t it = (Bits32(m_opcode_cpsr, 15, 10) << 2) |
+ Bits32(m_opcode_cpsr, 26, 25);
+ if (it != 0)
+ m_it_session.InitIT(it);
+ }
+ }
+ }
+ if (!success) {
+ m_opcode_mode = eModeInvalid;
+ m_addr = LLDB_INVALID_ADDRESS;
+ }
+ return success;
+}
+
+uint32_t EmulateInstructionARM::ArchVersion() { return m_arm_isa; }
+
+bool EmulateInstructionARM::ConditionPassed(const uint32_t opcode) {
+ // If we are ignoring conditions, then always return true. this allows us to
+ // iterate over disassembly code and still emulate an instruction even if we
+ // don't have all the right bits set in the CPSR register...
+ if (m_ignore_conditions)
+ return true;
+
+ const uint32_t cond = CurrentCond(opcode);
+ if (cond == UINT32_MAX)
+ return false;
+
+ bool result = false;
+ switch (UnsignedBits(cond, 3, 1)) {
+ case 0:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ result = (m_opcode_cpsr & MASK_CPSR_Z) != 0;
+ break;
+ case 1:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ result = (m_opcode_cpsr & MASK_CPSR_C) != 0;
+ break;
+ case 2:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ result = (m_opcode_cpsr & MASK_CPSR_N) != 0;
+ break;
+ case 3:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ result = (m_opcode_cpsr & MASK_CPSR_V) != 0;
+ break;
+ case 4:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else
+ result = ((m_opcode_cpsr & MASK_CPSR_C) != 0) &&
+ ((m_opcode_cpsr & MASK_CPSR_Z) == 0);
+ break;
+ case 5:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else {
+ bool n = (m_opcode_cpsr & MASK_CPSR_N);
+ bool v = (m_opcode_cpsr & MASK_CPSR_V);
+ result = n == v;
+ }
+ break;
+ case 6:
+ if (m_opcode_cpsr == 0)
+ result = true;
+ else {
+ bool n = (m_opcode_cpsr & MASK_CPSR_N);
+ bool v = (m_opcode_cpsr & MASK_CPSR_V);
+ result = n == v && ((m_opcode_cpsr & MASK_CPSR_Z) == 0);
+ }
+ break;
+ case 7:
+ // Always execute (cond == 0b1110, or the special 0b1111 which gives
+ // opcodes different meanings, but always means execution happens.
+ return true;
+ }
+
+ if (cond & 1)
+ result = !result;
+ return result;
+}
+
+uint32_t EmulateInstructionARM::CurrentCond(const uint32_t opcode) {
+ switch (m_opcode_mode) {
+ case eModeInvalid:
+ break;
+
+ case eModeARM:
+ return UnsignedBits(opcode, 31, 28);
+
+ case eModeThumb:
+ // For T1 and T3 encodings of the Branch instruction, it returns the 4-bit
+ // 'cond' field of the encoding.
+ {
+ const uint32_t byte_size = m_opcode.GetByteSize();
+ if (byte_size == 2) {
+ if (Bits32(opcode, 15, 12) == 0x0d && Bits32(opcode, 11, 8) != 0x0f)
+ return Bits32(opcode, 11, 8);
+ } else if (byte_size == 4) {
+ if (Bits32(opcode, 31, 27) == 0x1e && Bits32(opcode, 15, 14) == 0x02 &&
+ Bits32(opcode, 12, 12) == 0x00 && Bits32(opcode, 25, 22) <= 0x0d) {
+ return Bits32(opcode, 25, 22);
+ }
+ } else
+ // We have an invalid thumb instruction, let's bail out.
+ break;
+
+ return m_it_session.GetCond();
+ }
+ }
+ return UINT32_MAX; // Return invalid value
+}
+
+bool EmulateInstructionARM::InITBlock() {
+ return CurrentInstrSet() == eModeThumb && m_it_session.InITBlock();
+}
+
+bool EmulateInstructionARM::LastInITBlock() {
+ return CurrentInstrSet() == eModeThumb && m_it_session.LastInITBlock();
+}
+
+bool EmulateInstructionARM::BadMode(uint32_t mode) {
+
+ switch (mode) {
+ case 16:
+ return false; // '10000'
+ case 17:
+ return false; // '10001'
+ case 18:
+ return false; // '10010'
+ case 19:
+ return false; // '10011'
+ case 22:
+ return false; // '10110'
+ case 23:
+ return false; // '10111'
+ case 27:
+ return false; // '11011'
+ case 31:
+ return false; // '11111'
+ default:
+ return true;
+ }
+ return true;
+}
+
+bool EmulateInstructionARM::CurrentModeIsPrivileged() {
+ uint32_t mode = Bits32(m_opcode_cpsr, 4, 0);
+
+ if (BadMode(mode))
+ return false;
+
+ if (mode == 16)
+ return false;
+
+ return true;
+}
+
+void EmulateInstructionARM::CPSRWriteByInstr(uint32_t value, uint32_t bytemask,
+ bool affect_execstate) {
+ bool privileged = CurrentModeIsPrivileged();
+
+ uint32_t tmp_cpsr = Bits32(m_opcode_cpsr, 23, 20) << 20;
+
+ if (BitIsSet(bytemask, 3)) {
+ tmp_cpsr = tmp_cpsr | (Bits32(value, 31, 27) << 27);
+ if (affect_execstate)
+ tmp_cpsr = tmp_cpsr | (Bits32(value, 26, 24) << 24);
+ }
+
+ if (BitIsSet(bytemask, 2)) {
+ tmp_cpsr = tmp_cpsr | (Bits32(value, 19, 16) << 16);
+ }
+
+ if (BitIsSet(bytemask, 1)) {
+ if (affect_execstate)
+ tmp_cpsr = tmp_cpsr | (Bits32(value, 15, 10) << 10);
+ tmp_cpsr = tmp_cpsr | (Bit32(value, 9) << 9);
+ if (privileged)
+ tmp_cpsr = tmp_cpsr | (Bit32(value, 8) << 8);
+ }
+
+ if (BitIsSet(bytemask, 0)) {
+ if (privileged)
+ tmp_cpsr = tmp_cpsr | (Bits32(value, 7, 6) << 6);
+ if (affect_execstate)
+ tmp_cpsr = tmp_cpsr | (Bit32(value, 5) << 5);
+ if (privileged)
+ tmp_cpsr = tmp_cpsr | Bits32(value, 4, 0);
+ }
+
+ m_opcode_cpsr = tmp_cpsr;
+}
+
+bool EmulateInstructionARM::BranchWritePC(const Context &context,
+ uint32_t addr) {
+ addr_t target;
+
+ // Check the current instruction set.
+ if (CurrentInstrSet() == eModeARM)
+ target = addr & 0xfffffffc;
+ else
+ target = addr & 0xfffffffe;
+
+ return WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_PC, target);
+}
+
+// As a side effect, BXWritePC sets context.arg2 to eModeARM or eModeThumb by
+// inspecting addr.
+bool EmulateInstructionARM::BXWritePC(Context &context, uint32_t addr) {
+ addr_t target;
+ // If the CPSR is changed due to switching between ARM and Thumb ISETSTATE,
+ // we want to record it and issue a WriteRegister callback so the clients can
+ // track the mode changes accordingly.
+ bool cpsr_changed = false;
+
+ if (BitIsSet(addr, 0)) {
+ if (CurrentInstrSet() != eModeThumb) {
+ SelectInstrSet(eModeThumb);
+ cpsr_changed = true;
+ }
+ target = addr & 0xfffffffe;
+ context.SetISA(eModeThumb);
+ } else if (BitIsClear(addr, 1)) {
+ if (CurrentInstrSet() != eModeARM) {
+ SelectInstrSet(eModeARM);
+ cpsr_changed = true;
+ }
+ target = addr & 0xfffffffc;
+ context.SetISA(eModeARM);
+ } else
+ return false; // address<1:0> == '10' => UNPREDICTABLE
+
+ if (cpsr_changed) {
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_FLAGS, m_new_inst_cpsr))
+ return false;
+ }
+ return WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_PC, target);
+}
+
+// Dispatches to either BXWritePC or BranchWritePC based on architecture
+// versions.
+bool EmulateInstructionARM::LoadWritePC(Context &context, uint32_t addr) {
+ if (ArchVersion() >= ARMv5T)
+ return BXWritePC(context, addr);
+ else
+ return BranchWritePC((const Context)context, addr);
+}
+
+// Dispatches to either BXWritePC or BranchWritePC based on architecture
+// versions and current instruction set.
+bool EmulateInstructionARM::ALUWritePC(Context &context, uint32_t addr) {
+ if (ArchVersion() >= ARMv7 && CurrentInstrSet() == eModeARM)
+ return BXWritePC(context, addr);
+ else
+ return BranchWritePC((const Context)context, addr);
+}
+
+EmulateInstructionARM::Mode EmulateInstructionARM::CurrentInstrSet() {
+ return m_opcode_mode;
+}
+
+// Set the 'T' bit of our CPSR. The m_opcode_mode gets updated when the next
+// ReadInstruction() is performed. This function has a side effect of updating
+// the m_new_inst_cpsr member variable if necessary.
+bool EmulateInstructionARM::SelectInstrSet(Mode arm_or_thumb) {
+ m_new_inst_cpsr = m_opcode_cpsr;
+ switch (arm_or_thumb) {
+ default:
+ return false;
+ case eModeARM:
+ // Clear the T bit.
+ m_new_inst_cpsr &= ~MASK_CPSR_T;
+ break;
+ case eModeThumb:
+ // Set the T bit.
+ m_new_inst_cpsr |= MASK_CPSR_T;
+ break;
+ }
+ return true;
+}
+
+// This function returns TRUE if the processor currently provides support for
+// unaligned memory accesses, or FALSE otherwise. This is always TRUE in ARMv7,
+// controllable by the SCTLR.U bit in ARMv6, and always FALSE before ARMv6.
+bool EmulateInstructionARM::UnalignedSupport() {
+ return (ArchVersion() >= ARMv7);
+}
+
+// The main addition and subtraction instructions can produce status
+// information about both unsigned carry and signed overflow conditions. This
+// status information can be used to synthesize multi-word additions and
+// subtractions.
+EmulateInstructionARM::AddWithCarryResult
+EmulateInstructionARM::AddWithCarry(uint32_t x, uint32_t y, uint8_t carry_in) {
+ uint32_t result;
+ uint8_t carry_out;
+ uint8_t overflow;
+
+ uint64_t unsigned_sum = x + y + carry_in;
+ int64_t signed_sum = (int32_t)x + (int32_t)y + (int32_t)carry_in;
+
+ result = UnsignedBits(unsigned_sum, 31, 0);
+ // carry_out = (result == unsigned_sum ? 0 : 1);
+ overflow = ((int32_t)result == signed_sum ? 0 : 1);
+
+ if (carry_in)
+ carry_out = ((int32_t)x >= (int32_t)(~y)) ? 1 : 0;
+ else
+ carry_out = ((int32_t)x > (int32_t)y) ? 1 : 0;
+
+ AddWithCarryResult res = {result, carry_out, overflow};
+ return res;
+}
+
+uint32_t EmulateInstructionARM::ReadCoreReg(uint32_t num, bool *success) {
+ lldb::RegisterKind reg_kind;
+ uint32_t reg_num;
+ switch (num) {
+ case SP_REG:
+ reg_kind = eRegisterKindGeneric;
+ reg_num = LLDB_REGNUM_GENERIC_SP;
+ break;
+ case LR_REG:
+ reg_kind = eRegisterKindGeneric;
+ reg_num = LLDB_REGNUM_GENERIC_RA;
+ break;
+ case PC_REG:
+ reg_kind = eRegisterKindGeneric;
+ reg_num = LLDB_REGNUM_GENERIC_PC;
+ break;
+ default:
+ if (num < SP_REG) {
+ reg_kind = eRegisterKindDWARF;
+ reg_num = dwarf_r0 + num;
+ } else {
+ // assert(0 && "Invalid register number");
+ *success = false;
+ return UINT32_MAX;
+ }
+ break;
+ }
+
+ // Read our register.
+ uint32_t val = ReadRegisterUnsigned(reg_kind, reg_num, 0, success);
+
+ // When executing an ARM instruction , PC reads as the address of the current
+ // instruction plus 8. When executing a Thumb instruction , PC reads as the
+ // address of the current instruction plus 4.
+ if (num == 15) {
+ if (CurrentInstrSet() == eModeARM)
+ val += 8;
+ else
+ val += 4;
+ }
+
+ return val;
+}
+
+// Write the result to the ARM core register Rd, and optionally update the
+// condition flags based on the result.
+//
+// This helper method tries to encapsulate the following pseudocode from the
+// ARM Architecture Reference Manual:
+//
+// if d == 15 then // Can only occur for encoding A1
+// ALUWritePC(result); // setflags is always FALSE here
+// else
+// R[d] = result;
+// if setflags then
+// APSR.N = result<31>;
+// APSR.Z = IsZeroBit(result);
+// APSR.C = carry;
+// // APSR.V unchanged
+//
+// In the above case, the API client does not pass in the overflow arg, which
+// defaults to ~0u.
+bool EmulateInstructionARM::WriteCoreRegOptionalFlags(
+ Context &context, const uint32_t result, const uint32_t Rd, bool setflags,
+ const uint32_t carry, const uint32_t overflow) {
+ if (Rd == 15) {
+ if (!ALUWritePC(context, result))
+ return false;
+ } else {
+ lldb::RegisterKind reg_kind;
+ uint32_t reg_num;
+ switch (Rd) {
+ case SP_REG:
+ reg_kind = eRegisterKindGeneric;
+ reg_num = LLDB_REGNUM_GENERIC_SP;
+ break;
+ case LR_REG:
+ reg_kind = eRegisterKindGeneric;
+ reg_num = LLDB_REGNUM_GENERIC_RA;
+ break;
+ default:
+ reg_kind = eRegisterKindDWARF;
+ reg_num = dwarf_r0 + Rd;
+ }
+ if (!WriteRegisterUnsigned(context, reg_kind, reg_num, result))
+ return false;
+ if (setflags)
+ return WriteFlags(context, result, carry, overflow);
+ }
+ return true;
+}
+
+// This helper method tries to encapsulate the following pseudocode from the
+// ARM Architecture Reference Manual:
+//
+// APSR.N = result<31>;
+// APSR.Z = IsZeroBit(result);
+// APSR.C = carry;
+// APSR.V = overflow
+//
+// Default arguments can be specified for carry and overflow parameters, which
+// means not to update the respective flags.
+bool EmulateInstructionARM::WriteFlags(Context &context, const uint32_t result,
+ const uint32_t carry,
+ const uint32_t overflow) {
+ m_new_inst_cpsr = m_opcode_cpsr;
+ SetBit32(m_new_inst_cpsr, CPSR_N_POS, Bit32(result, CPSR_N_POS));
+ SetBit32(m_new_inst_cpsr, CPSR_Z_POS, result == 0 ? 1 : 0);
+ if (carry != ~0u)
+ SetBit32(m_new_inst_cpsr, CPSR_C_POS, carry);
+ if (overflow != ~0u)
+ SetBit32(m_new_inst_cpsr, CPSR_V_POS, overflow);
+ if (m_new_inst_cpsr != m_opcode_cpsr) {
+ if (!WriteRegisterUnsigned(context, eRegisterKindGeneric,
+ LLDB_REGNUM_GENERIC_FLAGS, m_new_inst_cpsr))
+ return false;
+ }
+ return true;
+}
+
+bool EmulateInstructionARM::EvaluateInstruction(uint32_t evaluate_options) {
+ ARMOpcode *opcode_data = nullptr;
+
+ if (m_opcode_mode == eModeThumb)
+ opcode_data =
+ GetThumbOpcodeForInstruction(m_opcode.GetOpcode32(), m_arm_isa);
+ else if (m_opcode_mode == eModeARM)
+ opcode_data = GetARMOpcodeForInstruction(m_opcode.GetOpcode32(), m_arm_isa);
+
+ const bool auto_advance_pc =
+ evaluate_options & eEmulateInstructionOptionAutoAdvancePC;
+ m_ignore_conditions =
+ evaluate_options & eEmulateInstructionOptionIgnoreConditions;
+
+ bool success = false;
+ if (m_opcode_cpsr == 0 || !m_ignore_conditions) {
+ m_opcode_cpsr =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_cpsr, 0, &success);
+ }
+
+ // Only return false if we are unable to read the CPSR if we care about
+ // conditions
+ if (!success && !m_ignore_conditions)
+ return false;
+
+ uint32_t orig_pc_value = 0;
+ if (auto_advance_pc) {
+ orig_pc_value =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_pc, 0, &success);
+ if (!success)
+ return false;
+ }
+
+ // Call the Emulate... function if we managed to decode the opcode.
+ if (opcode_data) {
+ success = (this->*opcode_data->callback)(m_opcode.GetOpcode32(),
+ opcode_data->encoding);
+ if (!success)
+ return false;
+ }
+
+ // Advance the ITSTATE bits to their values for the next instruction if we
+ // haven't just executed an IT instruction what initialized it.
+ if (m_opcode_mode == eModeThumb && m_it_session.InITBlock() &&
+ (opcode_data == nullptr ||
+ opcode_data->callback != &EmulateInstructionARM::EmulateIT))
+ m_it_session.ITAdvance();
+
+ if (auto_advance_pc) {
+ uint32_t after_pc_value =
+ ReadRegisterUnsigned(eRegisterKindDWARF, dwarf_pc, 0, &success);
+ if (!success)
+ return false;
+
+ if (after_pc_value == orig_pc_value) {
+ after_pc_value += m_opcode.GetByteSize();
+
+ EmulateInstruction::Context context;
+ context.type = eContextAdvancePC;
+ context.SetNoArgs();
+ if (!WriteRegisterUnsigned(context, eRegisterKindDWARF, dwarf_pc,
+ after_pc_value))
+ return false;
+ }
+ }
+ return true;
+}
+
+EmulateInstruction::InstructionCondition
+EmulateInstructionARM::GetInstructionCondition() {
+ const uint32_t cond = CurrentCond(m_opcode.GetOpcode32());
+ if (cond == 0xe || cond == 0xf || cond == UINT32_MAX)
+ return EmulateInstruction::UnconditionalCondition;
+ return cond;
+}
+
+bool EmulateInstructionARM::TestEmulation(Stream &out_stream, ArchSpec &arch,
+ OptionValueDictionary *test_data) {
+ if (!test_data) {
+ out_stream.Printf("TestEmulation: Missing test data.\n");
+ return false;
+ }
+
+ static constexpr llvm::StringLiteral opcode_key("opcode");
+ static constexpr llvm::StringLiteral before_key("before_state");
+ static constexpr llvm::StringLiteral after_key("after_state");
+
+ OptionValueSP value_sp = test_data->GetValueForKey(opcode_key);
+
+ uint32_t test_opcode;
+ if ((value_sp.get() == nullptr) ||
+ (value_sp->GetType() != OptionValue::eTypeUInt64)) {
+ out_stream.Printf("TestEmulation: Error reading opcode from test file.\n");
+ return false;
+ }
+ test_opcode = value_sp->GetValueAs<uint64_t>().value_or(0);
+
+ if (arch.GetTriple().getArch() == llvm::Triple::thumb ||
+ arch.IsAlwaysThumbInstructions()) {
+ m_opcode_mode = eModeThumb;
+ if (test_opcode < 0x10000)
+ m_opcode.SetOpcode16(test_opcode, endian::InlHostByteOrder());
+ else
+ m_opcode.SetOpcode32(test_opcode, endian::InlHostByteOrder());
+ } else if (arch.GetTriple().getArch() == llvm::Triple::arm) {
+ m_opcode_mode = eModeARM;
+ m_opcode.SetOpcode32(test_opcode, endian::InlHostByteOrder());
+ } else {
+ out_stream.Printf("TestEmulation: Invalid arch.\n");
+ return false;
+ }
+
+ EmulationStateARM before_state;
+ EmulationStateARM after_state;
+
+ value_sp = test_data->GetValueForKey(before_key);
+ if ((value_sp.get() == nullptr) ||
+ (value_sp->GetType() != OptionValue::eTypeDictionary)) {
+ out_stream.Printf("TestEmulation: Failed to find 'before' state.\n");
+ return false;
+ }
+
+ OptionValueDictionary *state_dictionary = value_sp->GetAsDictionary();
+ if (!before_state.LoadStateFromDictionary(state_dictionary)) {
+ out_stream.Printf("TestEmulation: Failed loading 'before' state.\n");
+ return false;
+ }
+
+ value_sp = test_data->GetValueForKey(after_key);
+ if ((value_sp.get() == nullptr) ||
+ (value_sp->GetType() != OptionValue::eTypeDictionary)) {
+ out_stream.Printf("TestEmulation: Failed to find 'after' state.\n");
+ return false;
+ }
+
+ state_dictionary = value_sp->GetAsDictionary();
+ if (!after_state.LoadStateFromDictionary(state_dictionary)) {
+ out_stream.Printf("TestEmulation: Failed loading 'after' state.\n");
+ return false;
+ }
+
+ SetBaton((void *)&before_state);
+ SetCallbacks(&EmulationStateARM::ReadPseudoMemory,
+ &EmulationStateARM::WritePseudoMemory,
+ &EmulationStateARM::ReadPseudoRegister,
+ &EmulationStateARM::WritePseudoRegister);
+
+ bool success = EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
+ if (!success) {
+ out_stream.Printf("TestEmulation: EvaluateInstruction() failed.\n");
+ return false;
+ }
+
+ success = before_state.CompareState(after_state, out_stream);
+ if (!success)
+ out_stream.Printf("TestEmulation: State after emulation does not match "
+ "'after' state.\n");
+
+ return success;
+}
+//
+//
+// const char *
+// EmulateInstructionARM::GetRegisterName (uint32_t reg_kind, uint32_t reg_num)
+//{
+// if (reg_kind == eRegisterKindGeneric)
+// {
+// switch (reg_num)
+// {
+// case LLDB_REGNUM_GENERIC_PC: return "pc";
+// case LLDB_REGNUM_GENERIC_SP: return "sp";
+// case LLDB_REGNUM_GENERIC_FP: return "fp";
+// case LLDB_REGNUM_GENERIC_RA: return "lr";
+// case LLDB_REGNUM_GENERIC_FLAGS: return "cpsr";
+// default: return NULL;
+// }
+// }
+// else if (reg_kind == eRegisterKindDWARF)
+// {
+// return GetARMDWARFRegisterName (reg_num);
+// }
+// return NULL;
+//}
+//
+bool EmulateInstructionARM::CreateFunctionEntryUnwind(UnwindPlan &unwind_plan) {
+ unwind_plan.Clear();
+ unwind_plan.SetRegisterKind(eRegisterKindDWARF);
+
+ UnwindPlan::RowSP row(new UnwindPlan::Row);
+
+ // Our previous Call Frame Address is the stack pointer
+ row->GetCFAValue().SetIsRegisterPlusOffset(dwarf_sp, 0);
+
+ unwind_plan.AppendRow(row);
+ unwind_plan.SetSourceName("EmulateInstructionARM");
+ unwind_plan.SetSourcedFromCompiler(eLazyBoolNo);
+ unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolYes);
+ unwind_plan.SetUnwindPlanForSignalTrap(eLazyBoolNo);
+ unwind_plan.SetReturnAddressRegister(dwarf_lr);
+ return true;
+}