diff options
Diffstat (limited to 'contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp')
-rw-r--r-- | contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp | 1027 |
1 files changed, 1027 insertions, 0 deletions
diff --git a/contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp b/contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp new file mode 100644 index 000000000000..f3df8a2c27f5 --- /dev/null +++ b/contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp @@ -0,0 +1,1027 @@ +//===-- DWARFCallFrameInfo.cpp --------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "lldb/Symbol/DWARFCallFrameInfo.h" +#include "lldb/Core/Debugger.h" +#include "lldb/Core/Module.h" +#include "lldb/Core/Section.h" +#include "lldb/Core/dwarf.h" +#include "lldb/Host/Host.h" +#include "lldb/Symbol/ObjectFile.h" +#include "lldb/Symbol/UnwindPlan.h" +#include "lldb/Target/RegisterContext.h" +#include "lldb/Target/Thread.h" +#include "lldb/Utility/ArchSpec.h" +#include "lldb/Utility/LLDBLog.h" +#include "lldb/Utility/Log.h" +#include "lldb/Utility/Timer.h" +#include <cstring> +#include <list> +#include <optional> + +using namespace lldb; +using namespace lldb_private; +using namespace lldb_private::dwarf; + +// GetDwarfEHPtr +// +// Used for calls when the value type is specified by a DWARF EH Frame pointer +// encoding. +static uint64_t +GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr, + uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr, + addr_t data_addr) //, BSDRelocs *data_relocs) const +{ + if (eh_ptr_enc == DW_EH_PE_omit) + return ULLONG_MAX; // Value isn't in the buffer... + + uint64_t baseAddress = 0; + uint64_t addressValue = 0; + const uint32_t addr_size = DE.GetAddressByteSize(); + assert(addr_size == 4 || addr_size == 8); + + bool signExtendValue = false; + // Decode the base part or adjust our offset + switch (eh_ptr_enc & 0x70) { + case DW_EH_PE_pcrel: + signExtendValue = true; + baseAddress = *offset_ptr; + if (pc_rel_addr != LLDB_INVALID_ADDRESS) + baseAddress += pc_rel_addr; + // else + // Log::GlobalWarning ("PC relative pointer encoding found with + // invalid pc relative address."); + break; + + case DW_EH_PE_textrel: + signExtendValue = true; + if (text_addr != LLDB_INVALID_ADDRESS) + baseAddress = text_addr; + // else + // Log::GlobalWarning ("text relative pointer encoding being + // decoded with invalid text section address, setting base address + // to zero."); + break; + + case DW_EH_PE_datarel: + signExtendValue = true; + if (data_addr != LLDB_INVALID_ADDRESS) + baseAddress = data_addr; + // else + // Log::GlobalWarning ("data relative pointer encoding being + // decoded with invalid data section address, setting base address + // to zero."); + break; + + case DW_EH_PE_funcrel: + signExtendValue = true; + break; + + case DW_EH_PE_aligned: { + // SetPointerSize should be called prior to extracting these so the pointer + // size is cached + assert(addr_size != 0); + if (addr_size) { + // Align to a address size boundary first + uint32_t alignOffset = *offset_ptr % addr_size; + if (alignOffset) + offset_ptr += addr_size - alignOffset; + } + } break; + + default: + break; + } + + // Decode the value part + switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) { + case DW_EH_PE_absptr: { + addressValue = DE.GetAddress(offset_ptr); + // if (data_relocs) + // addressValue = data_relocs->Relocate(*offset_ptr - + // addr_size, *this, addressValue); + } break; + case DW_EH_PE_uleb128: + addressValue = DE.GetULEB128(offset_ptr); + break; + case DW_EH_PE_udata2: + addressValue = DE.GetU16(offset_ptr); + break; + case DW_EH_PE_udata4: + addressValue = DE.GetU32(offset_ptr); + break; + case DW_EH_PE_udata8: + addressValue = DE.GetU64(offset_ptr); + break; + case DW_EH_PE_sleb128: + addressValue = DE.GetSLEB128(offset_ptr); + break; + case DW_EH_PE_sdata2: + addressValue = (int16_t)DE.GetU16(offset_ptr); + break; + case DW_EH_PE_sdata4: + addressValue = (int32_t)DE.GetU32(offset_ptr); + break; + case DW_EH_PE_sdata8: + addressValue = (int64_t)DE.GetU64(offset_ptr); + break; + default: + // Unhandled encoding type + assert(eh_ptr_enc); + break; + } + + // Since we promote everything to 64 bit, we may need to sign extend + if (signExtendValue && addr_size < sizeof(baseAddress)) { + uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull); + if (sign_bit & addressValue) { + uint64_t mask = ~sign_bit + 1; + addressValue |= mask; + } + } + return baseAddress + addressValue; +} + +DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile, + SectionSP §ion_sp, Type type) + : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {} + +bool DWARFCallFrameInfo::GetUnwindPlan(const Address &addr, + UnwindPlan &unwind_plan) { + return GetUnwindPlan(AddressRange(addr, 1), unwind_plan); +} + +bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange &range, + UnwindPlan &unwind_plan) { + FDEEntryMap::Entry fde_entry; + Address addr = range.GetBaseAddress(); + + // Make sure that the Address we're searching for is the same object file as + // this DWARFCallFrameInfo, we only store File offsets in m_fde_index. + ModuleSP module_sp = addr.GetModule(); + if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr || + module_sp->GetObjectFile() != &m_objfile) + return false; + + if (std::optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range)) + return FDEToUnwindPlan(entry->data, addr, unwind_plan); + return false; +} + +bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) { + + // Make sure that the Address we're searching for is the same object file as + // this DWARFCallFrameInfo, we only store File offsets in m_fde_index. + ModuleSP module_sp = addr.GetModule(); + if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr || + module_sp->GetObjectFile() != &m_objfile) + return false; + + if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted()) + return false; + GetFDEIndex(); + FDEEntryMap::Entry *fde_entry = + m_fde_index.FindEntryThatContains(addr.GetFileAddress()); + if (!fde_entry) + return false; + + range = AddressRange(fde_entry->base, fde_entry->size, + m_objfile.GetSectionList()); + return true; +} + +std::optional<DWARFCallFrameInfo::FDEEntryMap::Entry> +DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) { + if (!m_section_sp || m_section_sp->IsEncrypted()) + return std::nullopt; + + GetFDEIndex(); + + addr_t start_file_addr = range.GetBaseAddress().GetFileAddress(); + const FDEEntryMap::Entry *fde = + m_fde_index.FindEntryThatContainsOrFollows(start_file_addr); + if (fde && fde->DoesIntersect( + FDEEntryMap::Range(start_file_addr, range.GetByteSize()))) + return *fde; + + return std::nullopt; +} + +void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector( + FunctionAddressAndSizeVector &function_info) { + GetFDEIndex(); + const size_t count = m_fde_index.GetSize(); + function_info.Clear(); + if (count > 0) + function_info.Reserve(count); + for (size_t i = 0; i < count; ++i) { + const FDEEntryMap::Entry *func_offset_data_entry = + m_fde_index.GetEntryAtIndex(i); + if (func_offset_data_entry) { + FunctionAddressAndSizeVector::Entry function_offset_entry( + func_offset_data_entry->base, func_offset_data_entry->size); + function_info.Append(function_offset_entry); + } + } +} + +const DWARFCallFrameInfo::CIE * +DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) { + cie_map_t::iterator pos = m_cie_map.find(cie_offset); + + if (pos != m_cie_map.end()) { + // Parse and cache the CIE + if (pos->second == nullptr) + pos->second = ParseCIE(cie_offset); + + return pos->second.get(); + } + return nullptr; +} + +DWARFCallFrameInfo::CIESP +DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) { + CIESP cie_sp(new CIE(cie_offset)); + lldb::offset_t offset = cie_offset; + if (!m_cfi_data_initialized) + GetCFIData(); + uint32_t length = m_cfi_data.GetU32(&offset); + dw_offset_t cie_id, end_offset; + bool is_64bit = (length == UINT32_MAX); + if (is_64bit) { + length = m_cfi_data.GetU64(&offset); + cie_id = m_cfi_data.GetU64(&offset); + end_offset = cie_offset + length + 12; + } else { + cie_id = m_cfi_data.GetU32(&offset); + end_offset = cie_offset + length + 4; + } + if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) || + (m_type == EH && cie_id == 0ul))) { + size_t i; + // cie.offset = cie_offset; + // cie.length = length; + // cie.cieID = cieID; + cie_sp->ptr_encoding = DW_EH_PE_absptr; // default + cie_sp->version = m_cfi_data.GetU8(&offset); + if (cie_sp->version > CFI_VERSION4) { + Debugger::ReportError( + llvm::formatv("CIE parse error: CFI version {0} is not supported", + cie_sp->version)); + return nullptr; + } + + for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) { + cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset); + if (cie_sp->augmentation[i] == '\0') { + // Zero out remaining bytes in augmentation string + for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j) + cie_sp->augmentation[j] = '\0'; + + break; + } + } + + if (i == CFI_AUG_MAX_SIZE && + cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') { + Debugger::ReportError(llvm::formatv( + "CIE parse error: CIE augmentation string was too large " + "for the fixed sized buffer of {0} bytes.", + CFI_AUG_MAX_SIZE)); + return nullptr; + } + + // m_cfi_data uses address size from target architecture of the process may + // ignore these fields? + if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) { + cie_sp->address_size = m_cfi_data.GetU8(&offset); + cie_sp->segment_size = m_cfi_data.GetU8(&offset); + } + + cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset); + cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset); + + cie_sp->return_addr_reg_num = + m_type == DWARF && cie_sp->version >= CFI_VERSION3 + ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset)) + : m_cfi_data.GetU8(&offset); + + if (cie_sp->augmentation[0]) { + // Get the length of the eh_frame augmentation data which starts with a + // ULEB128 length in bytes + const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset); + const size_t aug_data_end = offset + aug_data_len; + const size_t aug_str_len = strlen(cie_sp->augmentation); + // A 'z' may be present as the first character of the string. + // If present, the Augmentation Data field shall be present. The contents + // of the Augmentation Data shall be interpreted according to other + // characters in the Augmentation String. + if (cie_sp->augmentation[0] == 'z') { + // Extract the Augmentation Data + size_t aug_str_idx = 0; + for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) { + char aug = cie_sp->augmentation[aug_str_idx]; + switch (aug) { + case 'L': + // Indicates the presence of one argument in the Augmentation Data + // of the CIE, and a corresponding argument in the Augmentation + // Data of the FDE. The argument in the Augmentation Data of the + // CIE is 1-byte and represents the pointer encoding used for the + // argument in the Augmentation Data of the FDE, which is the + // address of a language-specific data area (LSDA). The size of the + // LSDA pointer is specified by the pointer encoding used. + cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset); + break; + + case 'P': + // Indicates the presence of two arguments in the Augmentation Data + // of the CIE. The first argument is 1-byte and represents the + // pointer encoding used for the second argument, which is the + // address of a personality routine handler. The size of the + // personality routine pointer is specified by the pointer encoding + // used. + // + // The address of the personality function will be stored at this + // location. Pre-execution, it will be all zero's so don't read it + // until we're trying to do an unwind & the reloc has been + // resolved. + { + uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset); + const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress(); + cie_sp->personality_loc = GetGNUEHPointer( + m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr, + LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS); + } + break; + + case 'R': + // A 'R' may be present at any position after the + // first character of the string. The Augmentation Data shall + // include a 1 byte argument that represents the pointer encoding + // for the address pointers used in the FDE. Example: 0x1B == + // DW_EH_PE_pcrel | DW_EH_PE_sdata4 + cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset); + break; + } + } + } else if (strcmp(cie_sp->augmentation, "eh") == 0) { + // If the Augmentation string has the value "eh", then the EH Data + // field shall be present + } + + // Set the offset to be the end of the augmentation data just in case we + // didn't understand any of the data. + offset = (uint32_t)aug_data_end; + } + + if (end_offset > offset) { + cie_sp->inst_offset = offset; + cie_sp->inst_length = end_offset - offset; + } + while (offset < end_offset) { + uint8_t inst = m_cfi_data.GetU8(&offset); + uint8_t primary_opcode = inst & 0xC0; + uint8_t extended_opcode = inst & 0x3F; + + if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, + cie_sp->data_align, offset, + cie_sp->initial_row)) + break; // Stop if we hit an unrecognized opcode + } + } + + return cie_sp; +} + +void DWARFCallFrameInfo::GetCFIData() { + if (!m_cfi_data_initialized) { + Log *log = GetLog(LLDBLog::Unwind); + if (log) + m_objfile.GetModule()->LogMessage(log, "Reading EH frame info"); + m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data); + m_cfi_data_initialized = true; + } +} +// Scan through the eh_frame or debug_frame section looking for FDEs and noting +// the start/end addresses of the functions and a pointer back to the +// function's FDE for later expansion. Internalize CIEs as we come across them. + +void DWARFCallFrameInfo::GetFDEIndex() { + if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted()) + return; + + if (m_fde_index_initialized) + return; + + std::lock_guard<std::mutex> guard(m_fde_index_mutex); + + if (m_fde_index_initialized) // if two threads hit the locker + return; + + LLDB_SCOPED_TIMERF("%s", m_objfile.GetFileSpec().GetFilename().AsCString("")); + + bool clear_address_zeroth_bit = false; + if (ArchSpec arch = m_objfile.GetArchitecture()) { + if (arch.GetTriple().getArch() == llvm::Triple::arm || + arch.GetTriple().getArch() == llvm::Triple::thumb) + clear_address_zeroth_bit = true; + } + + lldb::offset_t offset = 0; + if (!m_cfi_data_initialized) + GetCFIData(); + while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) { + const dw_offset_t current_entry = offset; + dw_offset_t cie_id, next_entry, cie_offset; + uint32_t len = m_cfi_data.GetU32(&offset); + bool is_64bit = (len == UINT32_MAX); + if (is_64bit) { + len = m_cfi_data.GetU64(&offset); + cie_id = m_cfi_data.GetU64(&offset); + next_entry = current_entry + len + 12; + cie_offset = current_entry + 12 - cie_id; + } else { + cie_id = m_cfi_data.GetU32(&offset); + next_entry = current_entry + len + 4; + cie_offset = current_entry + 4 - cie_id; + } + + if (next_entry > m_cfi_data.GetByteSize() + 1) { + Debugger::ReportError(llvm::formatv("Invalid fde/cie next entry offset " + "of {0:x} found in cie/fde at {1:x}", + next_entry, current_entry)); + // Don't trust anything in this eh_frame section if we find blatantly + // invalid data. + m_fde_index.Clear(); + m_fde_index_initialized = true; + return; + } + + // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id + // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So, + // variable cie_offset should be equal to cie_id for debug_frame. + // FDE entries with cie_id == 0 shouldn't be ignored for it. + if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) { + auto cie_sp = ParseCIE(current_entry); + if (!cie_sp) { + // Cannot parse, the reason is already logged + m_fde_index.Clear(); + m_fde_index_initialized = true; + return; + } + + m_cie_map[current_entry] = std::move(cie_sp); + offset = next_entry; + continue; + } + + if (m_type == DWARF) + cie_offset = cie_id; + + if (cie_offset > m_cfi_data.GetByteSize()) { + Debugger::ReportError(llvm::formatv("Invalid cie offset of {0:x} " + "found in cie/fde at {1:x}", + cie_offset, current_entry)); + // Don't trust anything in this eh_frame section if we find blatantly + // invalid data. + m_fde_index.Clear(); + m_fde_index_initialized = true; + return; + } + + const CIE *cie = GetCIE(cie_offset); + if (cie) { + const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress(); + const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS; + const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS; + + lldb::addr_t addr = + GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr, + text_addr, data_addr); + if (clear_address_zeroth_bit) + addr &= ~1ull; + + lldb::addr_t length = GetGNUEHPointer( + m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, + pc_rel_addr, text_addr, data_addr); + FDEEntryMap::Entry fde(addr, length, current_entry); + m_fde_index.Append(fde); + } else { + Debugger::ReportError(llvm::formatv( + "unable to find CIE at {0:x} for cie_id = {1:x} for entry at {2:x}.", + cie_offset, cie_id, current_entry)); + } + offset = next_entry; + } + m_fde_index.Sort(); + m_fde_index_initialized = true; +} + +bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset, + Address startaddr, + UnwindPlan &unwind_plan) { + Log *log = GetLog(LLDBLog::Unwind); + lldb::offset_t offset = dwarf_offset; + lldb::offset_t current_entry = offset; + + if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted()) + return false; + + if (!m_cfi_data_initialized) + GetCFIData(); + + uint32_t length = m_cfi_data.GetU32(&offset); + dw_offset_t cie_offset; + bool is_64bit = (length == UINT32_MAX); + if (is_64bit) { + length = m_cfi_data.GetU64(&offset); + cie_offset = m_cfi_data.GetU64(&offset); + } else { + cie_offset = m_cfi_data.GetU32(&offset); + } + + // FDE entries with zeroth cie_offset may occur for debug_frame. + assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX); + + // Translate the CIE_id from the eh_frame format, which is relative to the + // FDE offset, into a __eh_frame section offset + if (m_type == EH) { + unwind_plan.SetSourceName("eh_frame CFI"); + cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset; + unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); + } else { + unwind_plan.SetSourceName("DWARF CFI"); + // In theory the debug_frame info should be valid at all call sites + // ("asynchronous unwind info" as it is sometimes called) but in practice + // gcc et al all emit call frame info for the prologue and call sites, but + // not for the epilogue or all the other locations during the function + // reliably. + unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo); + } + unwind_plan.SetSourcedFromCompiler(eLazyBoolYes); + + const CIE *cie = GetCIE(cie_offset); + assert(cie != nullptr); + + const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4); + + const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress(); + const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS; + const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS; + lldb::addr_t range_base = + GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr, + text_addr, data_addr); + lldb::addr_t range_len = GetGNUEHPointer( + m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, + pc_rel_addr, text_addr, data_addr); + AddressRange range(range_base, m_objfile.GetAddressByteSize(), + m_objfile.GetSectionList()); + range.SetByteSize(range_len); + + addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS; + + if (cie->augmentation[0] == 'z') { + uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset); + if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) { + offset_t saved_offset = offset; + lsda_data_file_address = + GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding, + pc_rel_addr, text_addr, data_addr); + if (offset - saved_offset != aug_data_len) { + // There is more in the augmentation region than we know how to process; + // don't read anything. + lsda_data_file_address = LLDB_INVALID_ADDRESS; + } + offset = saved_offset; + } + offset += aug_data_len; + } + unwind_plan.SetUnwindPlanForSignalTrap( + strchr(cie->augmentation, 'S') ? eLazyBoolYes : eLazyBoolNo); + + Address lsda_data; + Address personality_function_ptr; + + if (lsda_data_file_address != LLDB_INVALID_ADDRESS && + cie->personality_loc != LLDB_INVALID_ADDRESS) { + m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address, + lsda_data); + m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc, + personality_function_ptr); + } + + if (lsda_data.IsValid() && personality_function_ptr.IsValid()) { + unwind_plan.SetLSDAAddress(lsda_data); + unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr); + } + + uint32_t code_align = cie->code_align; + int32_t data_align = cie->data_align; + + unwind_plan.SetPlanValidAddressRange(range); + UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row; + *cie_initial_row = cie->initial_row; + UnwindPlan::RowSP row(cie_initial_row); + + unwind_plan.SetRegisterKind(GetRegisterKind()); + unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num); + + std::vector<UnwindPlan::RowSP> stack; + + UnwindPlan::Row::RegisterLocation reg_location; + while (m_cfi_data.ValidOffset(offset) && offset < end_offset) { + uint8_t inst = m_cfi_data.GetU8(&offset); + uint8_t primary_opcode = inst & 0xC0; + uint8_t extended_opcode = inst & 0x3F; + + if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align, + offset, *row)) { + if (primary_opcode) { + switch (primary_opcode) { + case DW_CFA_advance_loc: // (Row Creation Instruction) + { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta + // takes a single argument that represents a constant delta. The + // required action is to create a new table row with a location value + // that is computed by taking the current entry's location value and + // adding (delta * code_align). All other values in the new row are + // initially identical to the current row. + unwind_plan.AppendRow(row); + UnwindPlan::Row *newrow = new UnwindPlan::Row; + *newrow = *row.get(); + row.reset(newrow); + row->SlideOffset(extended_opcode * code_align); + break; + } + + case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are + // register + // takes a single argument that represents a register number. The + // required action is to change the rule for the indicated register + // to the rule assigned it by the initial_instructions in the CIE. + uint32_t reg_num = extended_opcode; + // We only keep enough register locations around to unwind what is in + // our thread, and these are organized by the register index in that + // state, so we need to convert our eh_frame register number from the + // EH frame info, to a register index + + if (unwind_plan.IsValidRowIndex(0) && + unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, + reg_location)) + row->SetRegisterInfo(reg_num, reg_location); + else { + // If the register was not set in the first row, remove the + // register info to keep the unmodified value from the caller. + row->RemoveRegisterInfo(reg_num); + } + break; + } + } + } else { + switch (extended_opcode) { + case DW_CFA_set_loc: // 0x1 (Row Creation Instruction) + { + // DW_CFA_set_loc takes a single argument that represents an address. + // The required action is to create a new table row using the + // specified address as the location. All other values in the new row + // are initially identical to the current row. The new location value + // should always be greater than the current one. + unwind_plan.AppendRow(row); + UnwindPlan::Row *newrow = new UnwindPlan::Row; + *newrow = *row.get(); + row.reset(newrow); + row->SetOffset(m_cfi_data.GetAddress(&offset) - + startaddr.GetFileAddress()); + break; + } + + case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction) + { + // takes a single uword argument that represents a constant delta. + // This instruction is identical to DW_CFA_advance_loc except for the + // encoding and size of the delta argument. + unwind_plan.AppendRow(row); + UnwindPlan::Row *newrow = new UnwindPlan::Row; + *newrow = *row.get(); + row.reset(newrow); + row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align); + break; + } + + case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction) + { + // takes a single uword argument that represents a constant delta. + // This instruction is identical to DW_CFA_advance_loc except for the + // encoding and size of the delta argument. + unwind_plan.AppendRow(row); + UnwindPlan::Row *newrow = new UnwindPlan::Row; + *newrow = *row.get(); + row.reset(newrow); + row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align); + break; + } + + case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction) + { + // takes a single uword argument that represents a constant delta. + // This instruction is identical to DW_CFA_advance_loc except for the + // encoding and size of the delta argument. + unwind_plan.AppendRow(row); + UnwindPlan::Row *newrow = new UnwindPlan::Row; + *newrow = *row.get(); + row.reset(newrow); + row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align); + break; + } + + case DW_CFA_restore_extended: // 0x6 + { + // takes a single unsigned LEB128 argument that represents a register + // number. This instruction is identical to DW_CFA_restore except for + // the encoding and size of the register argument. + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + if (unwind_plan.IsValidRowIndex(0) && + unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, + reg_location)) + row->SetRegisterInfo(reg_num, reg_location); + break; + } + + case DW_CFA_remember_state: // 0xA + { + // These instructions define a stack of information. Encountering the + // DW_CFA_remember_state instruction means to save the rules for + // every register on the current row on the stack. Encountering the + // DW_CFA_restore_state instruction means to pop the set of rules off + // the stack and place them in the current row. (This operation is + // useful for compilers that move epilogue code into the body of a + // function.) + stack.push_back(row); + UnwindPlan::Row *newrow = new UnwindPlan::Row; + *newrow = *row.get(); + row.reset(newrow); + break; + } + + case DW_CFA_restore_state: // 0xB + { + // These instructions define a stack of information. Encountering the + // DW_CFA_remember_state instruction means to save the rules for + // every register on the current row on the stack. Encountering the + // DW_CFA_restore_state instruction means to pop the set of rules off + // the stack and place them in the current row. (This operation is + // useful for compilers that move epilogue code into the body of a + // function.) + if (stack.empty()) { + LLDB_LOG(log, + "DWARFCallFrameInfo::{0}(dwarf_offset: " + "{1:x16}, startaddr: [{2:x16}] encountered " + "DW_CFA_restore_state but state stack " + "is empty. Corrupt unwind info?", + __FUNCTION__, dwarf_offset, startaddr.GetFileAddress()); + break; + } + lldb::addr_t offset = row->GetOffset(); + row = stack.back(); + stack.pop_back(); + row->SetOffset(offset); + break; + } + + case DW_CFA_GNU_args_size: // 0x2e + { + // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128 + // operand representing an argument size. This instruction specifies + // the total of the size of the arguments which have been pushed onto + // the stack. + + // TODO: Figure out how we should handle this. + m_cfi_data.GetULEB128(&offset); + break; + } + + case DW_CFA_val_offset: // 0x14 + case DW_CFA_val_offset_sf: // 0x15 + default: + break; + } + } + } + } + unwind_plan.AppendRow(row); + + return true; +} + +bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode, + uint8_t extended_opcode, + int32_t data_align, + lldb::offset_t &offset, + UnwindPlan::Row &row) { + UnwindPlan::Row::RegisterLocation reg_location; + + if (primary_opcode) { + switch (primary_opcode) { + case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are + // register + // takes two arguments: an unsigned LEB128 constant representing a + // factored offset and a register number. The required action is to + // change the rule for the register indicated by the register number to + // be an offset(N) rule with a value of (N = factored offset * + // data_align). + uint8_t reg_num = extended_opcode; + int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align; + reg_location.SetAtCFAPlusOffset(op_offset); + row.SetRegisterInfo(reg_num, reg_location); + return true; + } + } + } else { + switch (extended_opcode) { + case DW_CFA_nop: // 0x0 + return true; + + case DW_CFA_offset_extended: // 0x5 + { + // takes two unsigned LEB128 arguments representing a register number and + // a factored offset. This instruction is identical to DW_CFA_offset + // except for the encoding and size of the register argument. + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align; + UnwindPlan::Row::RegisterLocation reg_location; + reg_location.SetAtCFAPlusOffset(op_offset); + row.SetRegisterInfo(reg_num, reg_location); + return true; + } + + case DW_CFA_undefined: // 0x7 + { + // takes a single unsigned LEB128 argument that represents a register + // number. The required action is to set the rule for the specified + // register to undefined. + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + UnwindPlan::Row::RegisterLocation reg_location; + reg_location.SetUndefined(); + row.SetRegisterInfo(reg_num, reg_location); + return true; + } + + case DW_CFA_same_value: // 0x8 + { + // takes a single unsigned LEB128 argument that represents a register + // number. The required action is to set the rule for the specified + // register to same value. + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + UnwindPlan::Row::RegisterLocation reg_location; + reg_location.SetSame(); + row.SetRegisterInfo(reg_num, reg_location); + return true; + } + + case DW_CFA_register: // 0x9 + { + // takes two unsigned LEB128 arguments representing register numbers. The + // required action is to set the rule for the first register to be the + // second register. + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + UnwindPlan::Row::RegisterLocation reg_location; + reg_location.SetInRegister(other_reg_num); + row.SetRegisterInfo(reg_num, reg_location); + return true; + } + + case DW_CFA_def_cfa: // 0xC (CFA Definition Instruction) + { + // Takes two unsigned LEB128 operands representing a register number and + // a (non-factored) offset. The required action is to define the current + // CFA rule to use the provided register and offset. + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset); + row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset); + return true; + } + + case DW_CFA_def_cfa_register: // 0xD (CFA Definition Instruction) + { + // takes a single unsigned LEB128 argument representing a register + // number. The required action is to define the current CFA rule to use + // the provided register (but to keep the old offset). + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, + row.GetCFAValue().GetOffset()); + return true; + } + + case DW_CFA_def_cfa_offset: // 0xE (CFA Definition Instruction) + { + // Takes a single unsigned LEB128 operand representing a (non-factored) + // offset. The required action is to define the current CFA rule to use + // the provided offset (but to keep the old register). + int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset); + row.GetCFAValue().SetIsRegisterPlusOffset( + row.GetCFAValue().GetRegisterNumber(), op_offset); + return true; + } + + case DW_CFA_def_cfa_expression: // 0xF (CFA Definition Instruction) + { + size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset); + const uint8_t *block_data = + static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len)); + row.GetCFAValue().SetIsDWARFExpression(block_data, block_len); + return true; + } + + case DW_CFA_expression: // 0x10 + { + // Takes two operands: an unsigned LEB128 value representing a register + // number, and a DW_FORM_block value representing a DWARF expression. The + // required action is to change the rule for the register indicated by + // the register number to be an expression(E) rule where E is the DWARF + // expression. That is, the DWARF expression computes the address. The + // value of the CFA is pushed on the DWARF evaluation stack prior to + // execution of the DWARF expression. + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset); + const uint8_t *block_data = + static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len)); + UnwindPlan::Row::RegisterLocation reg_location; + reg_location.SetAtDWARFExpression(block_data, block_len); + row.SetRegisterInfo(reg_num, reg_location); + return true; + } + + case DW_CFA_offset_extended_sf: // 0x11 + { + // takes two operands: an unsigned LEB128 value representing a register + // number and a signed LEB128 factored offset. This instruction is + // identical to DW_CFA_offset_extended except that the second operand is + // signed and factored. + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align; + UnwindPlan::Row::RegisterLocation reg_location; + reg_location.SetAtCFAPlusOffset(op_offset); + row.SetRegisterInfo(reg_num, reg_location); + return true; + } + + case DW_CFA_def_cfa_sf: // 0x12 (CFA Definition Instruction) + { + // Takes two operands: an unsigned LEB128 value representing a register + // number and a signed LEB128 factored offset. This instruction is + // identical to DW_CFA_def_cfa except that the second operand is signed + // and factored. + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align; + row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset); + return true; + } + + case DW_CFA_def_cfa_offset_sf: // 0x13 (CFA Definition Instruction) + { + // takes a signed LEB128 operand representing a factored offset. This + // instruction is identical to DW_CFA_def_cfa_offset except that the + // operand is signed and factored. + int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align; + uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber(); + row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset); + return true; + } + + case DW_CFA_val_expression: // 0x16 + { + // takes two operands: an unsigned LEB128 value representing a register + // number, and a DW_FORM_block value representing a DWARF expression. The + // required action is to change the rule for the register indicated by + // the register number to be a val_expression(E) rule where E is the + // DWARF expression. That is, the DWARF expression computes the value of + // the given register. The value of the CFA is pushed on the DWARF + // evaluation stack prior to execution of the DWARF expression. + uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); + uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset); + const uint8_t *block_data = + (const uint8_t *)m_cfi_data.GetData(&offset, block_len); + reg_location.SetIsDWARFExpression(block_data, block_len); + row.SetRegisterInfo(reg_num, reg_location); + return true; + } + } + } + return false; +} + +void DWARFCallFrameInfo::ForEachFDEEntries( + const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) { + GetFDEIndex(); + + for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) { + const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i); + if (!callback(entry.base, entry.size, entry.data)) + break; + } +} |