aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp')
-rw-r--r--contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp1027
1 files changed, 1027 insertions, 0 deletions
diff --git a/contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp b/contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp
new file mode 100644
index 000000000000..f3df8a2c27f5
--- /dev/null
+++ b/contrib/llvm-project/lldb/source/Symbol/DWARFCallFrameInfo.cpp
@@ -0,0 +1,1027 @@
+//===-- DWARFCallFrameInfo.cpp --------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "lldb/Symbol/DWARFCallFrameInfo.h"
+#include "lldb/Core/Debugger.h"
+#include "lldb/Core/Module.h"
+#include "lldb/Core/Section.h"
+#include "lldb/Core/dwarf.h"
+#include "lldb/Host/Host.h"
+#include "lldb/Symbol/ObjectFile.h"
+#include "lldb/Symbol/UnwindPlan.h"
+#include "lldb/Target/RegisterContext.h"
+#include "lldb/Target/Thread.h"
+#include "lldb/Utility/ArchSpec.h"
+#include "lldb/Utility/LLDBLog.h"
+#include "lldb/Utility/Log.h"
+#include "lldb/Utility/Timer.h"
+#include <cstring>
+#include <list>
+#include <optional>
+
+using namespace lldb;
+using namespace lldb_private;
+using namespace lldb_private::dwarf;
+
+// GetDwarfEHPtr
+//
+// Used for calls when the value type is specified by a DWARF EH Frame pointer
+// encoding.
+static uint64_t
+GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
+ uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
+ addr_t data_addr) //, BSDRelocs *data_relocs) const
+{
+ if (eh_ptr_enc == DW_EH_PE_omit)
+ return ULLONG_MAX; // Value isn't in the buffer...
+
+ uint64_t baseAddress = 0;
+ uint64_t addressValue = 0;
+ const uint32_t addr_size = DE.GetAddressByteSize();
+ assert(addr_size == 4 || addr_size == 8);
+
+ bool signExtendValue = false;
+ // Decode the base part or adjust our offset
+ switch (eh_ptr_enc & 0x70) {
+ case DW_EH_PE_pcrel:
+ signExtendValue = true;
+ baseAddress = *offset_ptr;
+ if (pc_rel_addr != LLDB_INVALID_ADDRESS)
+ baseAddress += pc_rel_addr;
+ // else
+ // Log::GlobalWarning ("PC relative pointer encoding found with
+ // invalid pc relative address.");
+ break;
+
+ case DW_EH_PE_textrel:
+ signExtendValue = true;
+ if (text_addr != LLDB_INVALID_ADDRESS)
+ baseAddress = text_addr;
+ // else
+ // Log::GlobalWarning ("text relative pointer encoding being
+ // decoded with invalid text section address, setting base address
+ // to zero.");
+ break;
+
+ case DW_EH_PE_datarel:
+ signExtendValue = true;
+ if (data_addr != LLDB_INVALID_ADDRESS)
+ baseAddress = data_addr;
+ // else
+ // Log::GlobalWarning ("data relative pointer encoding being
+ // decoded with invalid data section address, setting base address
+ // to zero.");
+ break;
+
+ case DW_EH_PE_funcrel:
+ signExtendValue = true;
+ break;
+
+ case DW_EH_PE_aligned: {
+ // SetPointerSize should be called prior to extracting these so the pointer
+ // size is cached
+ assert(addr_size != 0);
+ if (addr_size) {
+ // Align to a address size boundary first
+ uint32_t alignOffset = *offset_ptr % addr_size;
+ if (alignOffset)
+ offset_ptr += addr_size - alignOffset;
+ }
+ } break;
+
+ default:
+ break;
+ }
+
+ // Decode the value part
+ switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
+ case DW_EH_PE_absptr: {
+ addressValue = DE.GetAddress(offset_ptr);
+ // if (data_relocs)
+ // addressValue = data_relocs->Relocate(*offset_ptr -
+ // addr_size, *this, addressValue);
+ } break;
+ case DW_EH_PE_uleb128:
+ addressValue = DE.GetULEB128(offset_ptr);
+ break;
+ case DW_EH_PE_udata2:
+ addressValue = DE.GetU16(offset_ptr);
+ break;
+ case DW_EH_PE_udata4:
+ addressValue = DE.GetU32(offset_ptr);
+ break;
+ case DW_EH_PE_udata8:
+ addressValue = DE.GetU64(offset_ptr);
+ break;
+ case DW_EH_PE_sleb128:
+ addressValue = DE.GetSLEB128(offset_ptr);
+ break;
+ case DW_EH_PE_sdata2:
+ addressValue = (int16_t)DE.GetU16(offset_ptr);
+ break;
+ case DW_EH_PE_sdata4:
+ addressValue = (int32_t)DE.GetU32(offset_ptr);
+ break;
+ case DW_EH_PE_sdata8:
+ addressValue = (int64_t)DE.GetU64(offset_ptr);
+ break;
+ default:
+ // Unhandled encoding type
+ assert(eh_ptr_enc);
+ break;
+ }
+
+ // Since we promote everything to 64 bit, we may need to sign extend
+ if (signExtendValue && addr_size < sizeof(baseAddress)) {
+ uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
+ if (sign_bit & addressValue) {
+ uint64_t mask = ~sign_bit + 1;
+ addressValue |= mask;
+ }
+ }
+ return baseAddress + addressValue;
+}
+
+DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
+ SectionSP &section_sp, Type type)
+ : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
+
+bool DWARFCallFrameInfo::GetUnwindPlan(const Address &addr,
+ UnwindPlan &unwind_plan) {
+ return GetUnwindPlan(AddressRange(addr, 1), unwind_plan);
+}
+
+bool DWARFCallFrameInfo::GetUnwindPlan(const AddressRange &range,
+ UnwindPlan &unwind_plan) {
+ FDEEntryMap::Entry fde_entry;
+ Address addr = range.GetBaseAddress();
+
+ // Make sure that the Address we're searching for is the same object file as
+ // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
+ ModuleSP module_sp = addr.GetModule();
+ if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
+ module_sp->GetObjectFile() != &m_objfile)
+ return false;
+
+ if (std::optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range))
+ return FDEToUnwindPlan(entry->data, addr, unwind_plan);
+ return false;
+}
+
+bool DWARFCallFrameInfo::GetAddressRange(Address addr, AddressRange &range) {
+
+ // Make sure that the Address we're searching for is the same object file as
+ // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
+ ModuleSP module_sp = addr.GetModule();
+ if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
+ module_sp->GetObjectFile() != &m_objfile)
+ return false;
+
+ if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
+ return false;
+ GetFDEIndex();
+ FDEEntryMap::Entry *fde_entry =
+ m_fde_index.FindEntryThatContains(addr.GetFileAddress());
+ if (!fde_entry)
+ return false;
+
+ range = AddressRange(fde_entry->base, fde_entry->size,
+ m_objfile.GetSectionList());
+ return true;
+}
+
+std::optional<DWARFCallFrameInfo::FDEEntryMap::Entry>
+DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) {
+ if (!m_section_sp || m_section_sp->IsEncrypted())
+ return std::nullopt;
+
+ GetFDEIndex();
+
+ addr_t start_file_addr = range.GetBaseAddress().GetFileAddress();
+ const FDEEntryMap::Entry *fde =
+ m_fde_index.FindEntryThatContainsOrFollows(start_file_addr);
+ if (fde && fde->DoesIntersect(
+ FDEEntryMap::Range(start_file_addr, range.GetByteSize())))
+ return *fde;
+
+ return std::nullopt;
+}
+
+void DWARFCallFrameInfo::GetFunctionAddressAndSizeVector(
+ FunctionAddressAndSizeVector &function_info) {
+ GetFDEIndex();
+ const size_t count = m_fde_index.GetSize();
+ function_info.Clear();
+ if (count > 0)
+ function_info.Reserve(count);
+ for (size_t i = 0; i < count; ++i) {
+ const FDEEntryMap::Entry *func_offset_data_entry =
+ m_fde_index.GetEntryAtIndex(i);
+ if (func_offset_data_entry) {
+ FunctionAddressAndSizeVector::Entry function_offset_entry(
+ func_offset_data_entry->base, func_offset_data_entry->size);
+ function_info.Append(function_offset_entry);
+ }
+ }
+}
+
+const DWARFCallFrameInfo::CIE *
+DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
+ cie_map_t::iterator pos = m_cie_map.find(cie_offset);
+
+ if (pos != m_cie_map.end()) {
+ // Parse and cache the CIE
+ if (pos->second == nullptr)
+ pos->second = ParseCIE(cie_offset);
+
+ return pos->second.get();
+ }
+ return nullptr;
+}
+
+DWARFCallFrameInfo::CIESP
+DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
+ CIESP cie_sp(new CIE(cie_offset));
+ lldb::offset_t offset = cie_offset;
+ if (!m_cfi_data_initialized)
+ GetCFIData();
+ uint32_t length = m_cfi_data.GetU32(&offset);
+ dw_offset_t cie_id, end_offset;
+ bool is_64bit = (length == UINT32_MAX);
+ if (is_64bit) {
+ length = m_cfi_data.GetU64(&offset);
+ cie_id = m_cfi_data.GetU64(&offset);
+ end_offset = cie_offset + length + 12;
+ } else {
+ cie_id = m_cfi_data.GetU32(&offset);
+ end_offset = cie_offset + length + 4;
+ }
+ if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
+ (m_type == EH && cie_id == 0ul))) {
+ size_t i;
+ // cie.offset = cie_offset;
+ // cie.length = length;
+ // cie.cieID = cieID;
+ cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
+ cie_sp->version = m_cfi_data.GetU8(&offset);
+ if (cie_sp->version > CFI_VERSION4) {
+ Debugger::ReportError(
+ llvm::formatv("CIE parse error: CFI version {0} is not supported",
+ cie_sp->version));
+ return nullptr;
+ }
+
+ for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
+ cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
+ if (cie_sp->augmentation[i] == '\0') {
+ // Zero out remaining bytes in augmentation string
+ for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
+ cie_sp->augmentation[j] = '\0';
+
+ break;
+ }
+ }
+
+ if (i == CFI_AUG_MAX_SIZE &&
+ cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
+ Debugger::ReportError(llvm::formatv(
+ "CIE parse error: CIE augmentation string was too large "
+ "for the fixed sized buffer of {0} bytes.",
+ CFI_AUG_MAX_SIZE));
+ return nullptr;
+ }
+
+ // m_cfi_data uses address size from target architecture of the process may
+ // ignore these fields?
+ if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
+ cie_sp->address_size = m_cfi_data.GetU8(&offset);
+ cie_sp->segment_size = m_cfi_data.GetU8(&offset);
+ }
+
+ cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
+
+ cie_sp->return_addr_reg_num =
+ m_type == DWARF && cie_sp->version >= CFI_VERSION3
+ ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
+ : m_cfi_data.GetU8(&offset);
+
+ if (cie_sp->augmentation[0]) {
+ // Get the length of the eh_frame augmentation data which starts with a
+ // ULEB128 length in bytes
+ const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
+ const size_t aug_data_end = offset + aug_data_len;
+ const size_t aug_str_len = strlen(cie_sp->augmentation);
+ // A 'z' may be present as the first character of the string.
+ // If present, the Augmentation Data field shall be present. The contents
+ // of the Augmentation Data shall be interpreted according to other
+ // characters in the Augmentation String.
+ if (cie_sp->augmentation[0] == 'z') {
+ // Extract the Augmentation Data
+ size_t aug_str_idx = 0;
+ for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
+ char aug = cie_sp->augmentation[aug_str_idx];
+ switch (aug) {
+ case 'L':
+ // Indicates the presence of one argument in the Augmentation Data
+ // of the CIE, and a corresponding argument in the Augmentation
+ // Data of the FDE. The argument in the Augmentation Data of the
+ // CIE is 1-byte and represents the pointer encoding used for the
+ // argument in the Augmentation Data of the FDE, which is the
+ // address of a language-specific data area (LSDA). The size of the
+ // LSDA pointer is specified by the pointer encoding used.
+ cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
+ break;
+
+ case 'P':
+ // Indicates the presence of two arguments in the Augmentation Data
+ // of the CIE. The first argument is 1-byte and represents the
+ // pointer encoding used for the second argument, which is the
+ // address of a personality routine handler. The size of the
+ // personality routine pointer is specified by the pointer encoding
+ // used.
+ //
+ // The address of the personality function will be stored at this
+ // location. Pre-execution, it will be all zero's so don't read it
+ // until we're trying to do an unwind & the reloc has been
+ // resolved.
+ {
+ uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
+ const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
+ cie_sp->personality_loc = GetGNUEHPointer(
+ m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
+ LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
+ }
+ break;
+
+ case 'R':
+ // A 'R' may be present at any position after the
+ // first character of the string. The Augmentation Data shall
+ // include a 1 byte argument that represents the pointer encoding
+ // for the address pointers used in the FDE. Example: 0x1B ==
+ // DW_EH_PE_pcrel | DW_EH_PE_sdata4
+ cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
+ break;
+ }
+ }
+ } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
+ // If the Augmentation string has the value "eh", then the EH Data
+ // field shall be present
+ }
+
+ // Set the offset to be the end of the augmentation data just in case we
+ // didn't understand any of the data.
+ offset = (uint32_t)aug_data_end;
+ }
+
+ if (end_offset > offset) {
+ cie_sp->inst_offset = offset;
+ cie_sp->inst_length = end_offset - offset;
+ }
+ while (offset < end_offset) {
+ uint8_t inst = m_cfi_data.GetU8(&offset);
+ uint8_t primary_opcode = inst & 0xC0;
+ uint8_t extended_opcode = inst & 0x3F;
+
+ if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
+ cie_sp->data_align, offset,
+ cie_sp->initial_row))
+ break; // Stop if we hit an unrecognized opcode
+ }
+ }
+
+ return cie_sp;
+}
+
+void DWARFCallFrameInfo::GetCFIData() {
+ if (!m_cfi_data_initialized) {
+ Log *log = GetLog(LLDBLog::Unwind);
+ if (log)
+ m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
+ m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
+ m_cfi_data_initialized = true;
+ }
+}
+// Scan through the eh_frame or debug_frame section looking for FDEs and noting
+// the start/end addresses of the functions and a pointer back to the
+// function's FDE for later expansion. Internalize CIEs as we come across them.
+
+void DWARFCallFrameInfo::GetFDEIndex() {
+ if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
+ return;
+
+ if (m_fde_index_initialized)
+ return;
+
+ std::lock_guard<std::mutex> guard(m_fde_index_mutex);
+
+ if (m_fde_index_initialized) // if two threads hit the locker
+ return;
+
+ LLDB_SCOPED_TIMERF("%s", m_objfile.GetFileSpec().GetFilename().AsCString(""));
+
+ bool clear_address_zeroth_bit = false;
+ if (ArchSpec arch = m_objfile.GetArchitecture()) {
+ if (arch.GetTriple().getArch() == llvm::Triple::arm ||
+ arch.GetTriple().getArch() == llvm::Triple::thumb)
+ clear_address_zeroth_bit = true;
+ }
+
+ lldb::offset_t offset = 0;
+ if (!m_cfi_data_initialized)
+ GetCFIData();
+ while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
+ const dw_offset_t current_entry = offset;
+ dw_offset_t cie_id, next_entry, cie_offset;
+ uint32_t len = m_cfi_data.GetU32(&offset);
+ bool is_64bit = (len == UINT32_MAX);
+ if (is_64bit) {
+ len = m_cfi_data.GetU64(&offset);
+ cie_id = m_cfi_data.GetU64(&offset);
+ next_entry = current_entry + len + 12;
+ cie_offset = current_entry + 12 - cie_id;
+ } else {
+ cie_id = m_cfi_data.GetU32(&offset);
+ next_entry = current_entry + len + 4;
+ cie_offset = current_entry + 4 - cie_id;
+ }
+
+ if (next_entry > m_cfi_data.GetByteSize() + 1) {
+ Debugger::ReportError(llvm::formatv("Invalid fde/cie next entry offset "
+ "of {0:x} found in cie/fde at {1:x}",
+ next_entry, current_entry));
+ // Don't trust anything in this eh_frame section if we find blatantly
+ // invalid data.
+ m_fde_index.Clear();
+ m_fde_index_initialized = true;
+ return;
+ }
+
+ // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
+ // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
+ // variable cie_offset should be equal to cie_id for debug_frame.
+ // FDE entries with cie_id == 0 shouldn't be ignored for it.
+ if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
+ auto cie_sp = ParseCIE(current_entry);
+ if (!cie_sp) {
+ // Cannot parse, the reason is already logged
+ m_fde_index.Clear();
+ m_fde_index_initialized = true;
+ return;
+ }
+
+ m_cie_map[current_entry] = std::move(cie_sp);
+ offset = next_entry;
+ continue;
+ }
+
+ if (m_type == DWARF)
+ cie_offset = cie_id;
+
+ if (cie_offset > m_cfi_data.GetByteSize()) {
+ Debugger::ReportError(llvm::formatv("Invalid cie offset of {0:x} "
+ "found in cie/fde at {1:x}",
+ cie_offset, current_entry));
+ // Don't trust anything in this eh_frame section if we find blatantly
+ // invalid data.
+ m_fde_index.Clear();
+ m_fde_index_initialized = true;
+ return;
+ }
+
+ const CIE *cie = GetCIE(cie_offset);
+ if (cie) {
+ const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
+ const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
+ const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
+
+ lldb::addr_t addr =
+ GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
+ text_addr, data_addr);
+ if (clear_address_zeroth_bit)
+ addr &= ~1ull;
+
+ lldb::addr_t length = GetGNUEHPointer(
+ m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
+ pc_rel_addr, text_addr, data_addr);
+ FDEEntryMap::Entry fde(addr, length, current_entry);
+ m_fde_index.Append(fde);
+ } else {
+ Debugger::ReportError(llvm::formatv(
+ "unable to find CIE at {0:x} for cie_id = {1:x} for entry at {2:x}.",
+ cie_offset, cie_id, current_entry));
+ }
+ offset = next_entry;
+ }
+ m_fde_index.Sort();
+ m_fde_index_initialized = true;
+}
+
+bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
+ Address startaddr,
+ UnwindPlan &unwind_plan) {
+ Log *log = GetLog(LLDBLog::Unwind);
+ lldb::offset_t offset = dwarf_offset;
+ lldb::offset_t current_entry = offset;
+
+ if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
+ return false;
+
+ if (!m_cfi_data_initialized)
+ GetCFIData();
+
+ uint32_t length = m_cfi_data.GetU32(&offset);
+ dw_offset_t cie_offset;
+ bool is_64bit = (length == UINT32_MAX);
+ if (is_64bit) {
+ length = m_cfi_data.GetU64(&offset);
+ cie_offset = m_cfi_data.GetU64(&offset);
+ } else {
+ cie_offset = m_cfi_data.GetU32(&offset);
+ }
+
+ // FDE entries with zeroth cie_offset may occur for debug_frame.
+ assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
+
+ // Translate the CIE_id from the eh_frame format, which is relative to the
+ // FDE offset, into a __eh_frame section offset
+ if (m_type == EH) {
+ unwind_plan.SetSourceName("eh_frame CFI");
+ cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
+ unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
+ } else {
+ unwind_plan.SetSourceName("DWARF CFI");
+ // In theory the debug_frame info should be valid at all call sites
+ // ("asynchronous unwind info" as it is sometimes called) but in practice
+ // gcc et al all emit call frame info for the prologue and call sites, but
+ // not for the epilogue or all the other locations during the function
+ // reliably.
+ unwind_plan.SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
+ }
+ unwind_plan.SetSourcedFromCompiler(eLazyBoolYes);
+
+ const CIE *cie = GetCIE(cie_offset);
+ assert(cie != nullptr);
+
+ const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
+
+ const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
+ const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
+ const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
+ lldb::addr_t range_base =
+ GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
+ text_addr, data_addr);
+ lldb::addr_t range_len = GetGNUEHPointer(
+ m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
+ pc_rel_addr, text_addr, data_addr);
+ AddressRange range(range_base, m_objfile.GetAddressByteSize(),
+ m_objfile.GetSectionList());
+ range.SetByteSize(range_len);
+
+ addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
+
+ if (cie->augmentation[0] == 'z') {
+ uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
+ offset_t saved_offset = offset;
+ lsda_data_file_address =
+ GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
+ pc_rel_addr, text_addr, data_addr);
+ if (offset - saved_offset != aug_data_len) {
+ // There is more in the augmentation region than we know how to process;
+ // don't read anything.
+ lsda_data_file_address = LLDB_INVALID_ADDRESS;
+ }
+ offset = saved_offset;
+ }
+ offset += aug_data_len;
+ }
+ unwind_plan.SetUnwindPlanForSignalTrap(
+ strchr(cie->augmentation, 'S') ? eLazyBoolYes : eLazyBoolNo);
+
+ Address lsda_data;
+ Address personality_function_ptr;
+
+ if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
+ cie->personality_loc != LLDB_INVALID_ADDRESS) {
+ m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
+ lsda_data);
+ m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
+ personality_function_ptr);
+ }
+
+ if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
+ unwind_plan.SetLSDAAddress(lsda_data);
+ unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
+ }
+
+ uint32_t code_align = cie->code_align;
+ int32_t data_align = cie->data_align;
+
+ unwind_plan.SetPlanValidAddressRange(range);
+ UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
+ *cie_initial_row = cie->initial_row;
+ UnwindPlan::RowSP row(cie_initial_row);
+
+ unwind_plan.SetRegisterKind(GetRegisterKind());
+ unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
+
+ std::vector<UnwindPlan::RowSP> stack;
+
+ UnwindPlan::Row::RegisterLocation reg_location;
+ while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
+ uint8_t inst = m_cfi_data.GetU8(&offset);
+ uint8_t primary_opcode = inst & 0xC0;
+ uint8_t extended_opcode = inst & 0x3F;
+
+ if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
+ offset, *row)) {
+ if (primary_opcode) {
+ switch (primary_opcode) {
+ case DW_CFA_advance_loc: // (Row Creation Instruction)
+ { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
+ // takes a single argument that represents a constant delta. The
+ // required action is to create a new table row with a location value
+ // that is computed by taking the current entry's location value and
+ // adding (delta * code_align). All other values in the new row are
+ // initially identical to the current row.
+ unwind_plan.AppendRow(row);
+ UnwindPlan::Row *newrow = new UnwindPlan::Row;
+ *newrow = *row.get();
+ row.reset(newrow);
+ row->SlideOffset(extended_opcode * code_align);
+ break;
+ }
+
+ case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
+ // register
+ // takes a single argument that represents a register number. The
+ // required action is to change the rule for the indicated register
+ // to the rule assigned it by the initial_instructions in the CIE.
+ uint32_t reg_num = extended_opcode;
+ // We only keep enough register locations around to unwind what is in
+ // our thread, and these are organized by the register index in that
+ // state, so we need to convert our eh_frame register number from the
+ // EH frame info, to a register index
+
+ if (unwind_plan.IsValidRowIndex(0) &&
+ unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
+ reg_location))
+ row->SetRegisterInfo(reg_num, reg_location);
+ else {
+ // If the register was not set in the first row, remove the
+ // register info to keep the unmodified value from the caller.
+ row->RemoveRegisterInfo(reg_num);
+ }
+ break;
+ }
+ }
+ } else {
+ switch (extended_opcode) {
+ case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
+ {
+ // DW_CFA_set_loc takes a single argument that represents an address.
+ // The required action is to create a new table row using the
+ // specified address as the location. All other values in the new row
+ // are initially identical to the current row. The new location value
+ // should always be greater than the current one.
+ unwind_plan.AppendRow(row);
+ UnwindPlan::Row *newrow = new UnwindPlan::Row;
+ *newrow = *row.get();
+ row.reset(newrow);
+ row->SetOffset(m_cfi_data.GetAddress(&offset) -
+ startaddr.GetFileAddress());
+ break;
+ }
+
+ case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
+ {
+ // takes a single uword argument that represents a constant delta.
+ // This instruction is identical to DW_CFA_advance_loc except for the
+ // encoding and size of the delta argument.
+ unwind_plan.AppendRow(row);
+ UnwindPlan::Row *newrow = new UnwindPlan::Row;
+ *newrow = *row.get();
+ row.reset(newrow);
+ row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
+ break;
+ }
+
+ case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
+ {
+ // takes a single uword argument that represents a constant delta.
+ // This instruction is identical to DW_CFA_advance_loc except for the
+ // encoding and size of the delta argument.
+ unwind_plan.AppendRow(row);
+ UnwindPlan::Row *newrow = new UnwindPlan::Row;
+ *newrow = *row.get();
+ row.reset(newrow);
+ row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
+ break;
+ }
+
+ case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
+ {
+ // takes a single uword argument that represents a constant delta.
+ // This instruction is identical to DW_CFA_advance_loc except for the
+ // encoding and size of the delta argument.
+ unwind_plan.AppendRow(row);
+ UnwindPlan::Row *newrow = new UnwindPlan::Row;
+ *newrow = *row.get();
+ row.reset(newrow);
+ row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
+ break;
+ }
+
+ case DW_CFA_restore_extended: // 0x6
+ {
+ // takes a single unsigned LEB128 argument that represents a register
+ // number. This instruction is identical to DW_CFA_restore except for
+ // the encoding and size of the register argument.
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ if (unwind_plan.IsValidRowIndex(0) &&
+ unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
+ reg_location))
+ row->SetRegisterInfo(reg_num, reg_location);
+ break;
+ }
+
+ case DW_CFA_remember_state: // 0xA
+ {
+ // These instructions define a stack of information. Encountering the
+ // DW_CFA_remember_state instruction means to save the rules for
+ // every register on the current row on the stack. Encountering the
+ // DW_CFA_restore_state instruction means to pop the set of rules off
+ // the stack and place them in the current row. (This operation is
+ // useful for compilers that move epilogue code into the body of a
+ // function.)
+ stack.push_back(row);
+ UnwindPlan::Row *newrow = new UnwindPlan::Row;
+ *newrow = *row.get();
+ row.reset(newrow);
+ break;
+ }
+
+ case DW_CFA_restore_state: // 0xB
+ {
+ // These instructions define a stack of information. Encountering the
+ // DW_CFA_remember_state instruction means to save the rules for
+ // every register on the current row on the stack. Encountering the
+ // DW_CFA_restore_state instruction means to pop the set of rules off
+ // the stack and place them in the current row. (This operation is
+ // useful for compilers that move epilogue code into the body of a
+ // function.)
+ if (stack.empty()) {
+ LLDB_LOG(log,
+ "DWARFCallFrameInfo::{0}(dwarf_offset: "
+ "{1:x16}, startaddr: [{2:x16}] encountered "
+ "DW_CFA_restore_state but state stack "
+ "is empty. Corrupt unwind info?",
+ __FUNCTION__, dwarf_offset, startaddr.GetFileAddress());
+ break;
+ }
+ lldb::addr_t offset = row->GetOffset();
+ row = stack.back();
+ stack.pop_back();
+ row->SetOffset(offset);
+ break;
+ }
+
+ case DW_CFA_GNU_args_size: // 0x2e
+ {
+ // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
+ // operand representing an argument size. This instruction specifies
+ // the total of the size of the arguments which have been pushed onto
+ // the stack.
+
+ // TODO: Figure out how we should handle this.
+ m_cfi_data.GetULEB128(&offset);
+ break;
+ }
+
+ case DW_CFA_val_offset: // 0x14
+ case DW_CFA_val_offset_sf: // 0x15
+ default:
+ break;
+ }
+ }
+ }
+ }
+ unwind_plan.AppendRow(row);
+
+ return true;
+}
+
+bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
+ uint8_t extended_opcode,
+ int32_t data_align,
+ lldb::offset_t &offset,
+ UnwindPlan::Row &row) {
+ UnwindPlan::Row::RegisterLocation reg_location;
+
+ if (primary_opcode) {
+ switch (primary_opcode) {
+ case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
+ // register
+ // takes two arguments: an unsigned LEB128 constant representing a
+ // factored offset and a register number. The required action is to
+ // change the rule for the register indicated by the register number to
+ // be an offset(N) rule with a value of (N = factored offset *
+ // data_align).
+ uint8_t reg_num = extended_opcode;
+ int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
+ reg_location.SetAtCFAPlusOffset(op_offset);
+ row.SetRegisterInfo(reg_num, reg_location);
+ return true;
+ }
+ }
+ } else {
+ switch (extended_opcode) {
+ case DW_CFA_nop: // 0x0
+ return true;
+
+ case DW_CFA_offset_extended: // 0x5
+ {
+ // takes two unsigned LEB128 arguments representing a register number and
+ // a factored offset. This instruction is identical to DW_CFA_offset
+ // except for the encoding and size of the register argument.
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
+ UnwindPlan::Row::RegisterLocation reg_location;
+ reg_location.SetAtCFAPlusOffset(op_offset);
+ row.SetRegisterInfo(reg_num, reg_location);
+ return true;
+ }
+
+ case DW_CFA_undefined: // 0x7
+ {
+ // takes a single unsigned LEB128 argument that represents a register
+ // number. The required action is to set the rule for the specified
+ // register to undefined.
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ UnwindPlan::Row::RegisterLocation reg_location;
+ reg_location.SetUndefined();
+ row.SetRegisterInfo(reg_num, reg_location);
+ return true;
+ }
+
+ case DW_CFA_same_value: // 0x8
+ {
+ // takes a single unsigned LEB128 argument that represents a register
+ // number. The required action is to set the rule for the specified
+ // register to same value.
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ UnwindPlan::Row::RegisterLocation reg_location;
+ reg_location.SetSame();
+ row.SetRegisterInfo(reg_num, reg_location);
+ return true;
+ }
+
+ case DW_CFA_register: // 0x9
+ {
+ // takes two unsigned LEB128 arguments representing register numbers. The
+ // required action is to set the rule for the first register to be the
+ // second register.
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ UnwindPlan::Row::RegisterLocation reg_location;
+ reg_location.SetInRegister(other_reg_num);
+ row.SetRegisterInfo(reg_num, reg_location);
+ return true;
+ }
+
+ case DW_CFA_def_cfa: // 0xC (CFA Definition Instruction)
+ {
+ // Takes two unsigned LEB128 operands representing a register number and
+ // a (non-factored) offset. The required action is to define the current
+ // CFA rule to use the provided register and offset.
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
+ row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
+ return true;
+ }
+
+ case DW_CFA_def_cfa_register: // 0xD (CFA Definition Instruction)
+ {
+ // takes a single unsigned LEB128 argument representing a register
+ // number. The required action is to define the current CFA rule to use
+ // the provided register (but to keep the old offset).
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
+ row.GetCFAValue().GetOffset());
+ return true;
+ }
+
+ case DW_CFA_def_cfa_offset: // 0xE (CFA Definition Instruction)
+ {
+ // Takes a single unsigned LEB128 operand representing a (non-factored)
+ // offset. The required action is to define the current CFA rule to use
+ // the provided offset (but to keep the old register).
+ int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
+ row.GetCFAValue().SetIsRegisterPlusOffset(
+ row.GetCFAValue().GetRegisterNumber(), op_offset);
+ return true;
+ }
+
+ case DW_CFA_def_cfa_expression: // 0xF (CFA Definition Instruction)
+ {
+ size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
+ const uint8_t *block_data =
+ static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
+ row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
+ return true;
+ }
+
+ case DW_CFA_expression: // 0x10
+ {
+ // Takes two operands: an unsigned LEB128 value representing a register
+ // number, and a DW_FORM_block value representing a DWARF expression. The
+ // required action is to change the rule for the register indicated by
+ // the register number to be an expression(E) rule where E is the DWARF
+ // expression. That is, the DWARF expression computes the address. The
+ // value of the CFA is pushed on the DWARF evaluation stack prior to
+ // execution of the DWARF expression.
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ const uint8_t *block_data =
+ static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
+ UnwindPlan::Row::RegisterLocation reg_location;
+ reg_location.SetAtDWARFExpression(block_data, block_len);
+ row.SetRegisterInfo(reg_num, reg_location);
+ return true;
+ }
+
+ case DW_CFA_offset_extended_sf: // 0x11
+ {
+ // takes two operands: an unsigned LEB128 value representing a register
+ // number and a signed LEB128 factored offset. This instruction is
+ // identical to DW_CFA_offset_extended except that the second operand is
+ // signed and factored.
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
+ UnwindPlan::Row::RegisterLocation reg_location;
+ reg_location.SetAtCFAPlusOffset(op_offset);
+ row.SetRegisterInfo(reg_num, reg_location);
+ return true;
+ }
+
+ case DW_CFA_def_cfa_sf: // 0x12 (CFA Definition Instruction)
+ {
+ // Takes two operands: an unsigned LEB128 value representing a register
+ // number and a signed LEB128 factored offset. This instruction is
+ // identical to DW_CFA_def_cfa except that the second operand is signed
+ // and factored.
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
+ row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
+ return true;
+ }
+
+ case DW_CFA_def_cfa_offset_sf: // 0x13 (CFA Definition Instruction)
+ {
+ // takes a signed LEB128 operand representing a factored offset. This
+ // instruction is identical to DW_CFA_def_cfa_offset except that the
+ // operand is signed and factored.
+ int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
+ uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
+ row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
+ return true;
+ }
+
+ case DW_CFA_val_expression: // 0x16
+ {
+ // takes two operands: an unsigned LEB128 value representing a register
+ // number, and a DW_FORM_block value representing a DWARF expression. The
+ // required action is to change the rule for the register indicated by
+ // the register number to be a val_expression(E) rule where E is the
+ // DWARF expression. That is, the DWARF expression computes the value of
+ // the given register. The value of the CFA is pushed on the DWARF
+ // evaluation stack prior to execution of the DWARF expression.
+ uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
+ const uint8_t *block_data =
+ (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
+ reg_location.SetIsDWARFExpression(block_data, block_len);
+ row.SetRegisterInfo(reg_num, reg_location);
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+void DWARFCallFrameInfo::ForEachFDEEntries(
+ const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
+ GetFDEIndex();
+
+ for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
+ const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
+ if (!callback(entry.base, entry.size, entry.data))
+ break;
+ }
+}