diff options
Diffstat (limited to 'contrib/llvm-project/lldb/source/Symbol/Symtab.cpp')
-rw-r--r-- | contrib/llvm-project/lldb/source/Symbol/Symtab.cpp | 1374 |
1 files changed, 1374 insertions, 0 deletions
diff --git a/contrib/llvm-project/lldb/source/Symbol/Symtab.cpp b/contrib/llvm-project/lldb/source/Symbol/Symtab.cpp new file mode 100644 index 000000000000..5b5bf5c3f6f8 --- /dev/null +++ b/contrib/llvm-project/lldb/source/Symbol/Symtab.cpp @@ -0,0 +1,1374 @@ +//===-- Symtab.cpp --------------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include <map> +#include <set> + +#include "lldb/Core/DataFileCache.h" +#include "lldb/Core/Module.h" +#include "lldb/Core/RichManglingContext.h" +#include "lldb/Core/Section.h" +#include "lldb/Symbol/ObjectFile.h" +#include "lldb/Symbol/Symbol.h" +#include "lldb/Symbol/SymbolContext.h" +#include "lldb/Symbol/Symtab.h" +#include "lldb/Target/Language.h" +#include "lldb/Utility/DataEncoder.h" +#include "lldb/Utility/Endian.h" +#include "lldb/Utility/RegularExpression.h" +#include "lldb/Utility/Stream.h" +#include "lldb/Utility/Timer.h" + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Support/DJB.h" + +using namespace lldb; +using namespace lldb_private; + +Symtab::Symtab(ObjectFile *objfile) + : m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this), + m_name_to_symbol_indices(), m_mutex(), + m_file_addr_to_index_computed(false), m_name_indexes_computed(false), + m_loaded_from_cache(false), m_saved_to_cache(false) { + m_name_to_symbol_indices.emplace(std::make_pair( + lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>())); + m_name_to_symbol_indices.emplace(std::make_pair( + lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>())); + m_name_to_symbol_indices.emplace(std::make_pair( + lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>())); + m_name_to_symbol_indices.emplace(std::make_pair( + lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>())); +} + +Symtab::~Symtab() = default; + +void Symtab::Reserve(size_t count) { + // Clients should grab the mutex from this symbol table and lock it manually + // when calling this function to avoid performance issues. + m_symbols.reserve(count); +} + +Symbol *Symtab::Resize(size_t count) { + // Clients should grab the mutex from this symbol table and lock it manually + // when calling this function to avoid performance issues. + m_symbols.resize(count); + return m_symbols.empty() ? nullptr : &m_symbols[0]; +} + +uint32_t Symtab::AddSymbol(const Symbol &symbol) { + // Clients should grab the mutex from this symbol table and lock it manually + // when calling this function to avoid performance issues. + uint32_t symbol_idx = m_symbols.size(); + auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); + name_to_index.Clear(); + m_file_addr_to_index.Clear(); + m_symbols.push_back(symbol); + m_file_addr_to_index_computed = false; + m_name_indexes_computed = false; + return symbol_idx; +} + +size_t Symtab::GetNumSymbols() const { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + return m_symbols.size(); +} + +void Symtab::SectionFileAddressesChanged() { + m_file_addr_to_index.Clear(); + m_file_addr_to_index_computed = false; +} + +void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order, + Mangled::NamePreference name_preference) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); + s->Indent(); + const FileSpec &file_spec = m_objfile->GetFileSpec(); + const char *object_name = nullptr; + if (m_objfile->GetModule()) + object_name = m_objfile->GetModule()->GetObjectName().GetCString(); + + if (file_spec) + s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64, + file_spec.GetPath().c_str(), object_name ? "(" : "", + object_name ? object_name : "", object_name ? ")" : "", + (uint64_t)m_symbols.size()); + else + s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size()); + + if (!m_symbols.empty()) { + switch (sort_order) { + case eSortOrderNone: { + s->PutCString(":\n"); + DumpSymbolHeader(s); + const_iterator begin = m_symbols.begin(); + const_iterator end = m_symbols.end(); + for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { + s->Indent(); + pos->Dump(s, target, std::distance(begin, pos), name_preference); + } + } + break; + + case eSortOrderByName: { + // Although we maintain a lookup by exact name map, the table isn't + // sorted by name. So we must make the ordered symbol list up ourselves. + s->PutCString(" (sorted by name):\n"); + DumpSymbolHeader(s); + + std::multimap<llvm::StringRef, const Symbol *> name_map; + for (const Symbol &symbol : m_symbols) + name_map.emplace(symbol.GetName().GetStringRef(), &symbol); + + for (const auto &name_to_symbol : name_map) { + const Symbol *symbol = name_to_symbol.second; + s->Indent(); + symbol->Dump(s, target, symbol - &m_symbols[0], name_preference); + } + } break; + + case eSortOrderBySize: { + s->PutCString(" (sorted by size):\n"); + DumpSymbolHeader(s); + + std::multimap<size_t, const Symbol *, std::greater<size_t>> size_map; + for (const Symbol &symbol : m_symbols) + size_map.emplace(symbol.GetByteSize(), &symbol); + + size_t idx = 0; + for (const auto &size_to_symbol : size_map) { + const Symbol *symbol = size_to_symbol.second; + s->Indent(); + symbol->Dump(s, target, idx++, name_preference); + } + } break; + + case eSortOrderByAddress: + s->PutCString(" (sorted by address):\n"); + DumpSymbolHeader(s); + if (!m_file_addr_to_index_computed) + InitAddressIndexes(); + const size_t num_entries = m_file_addr_to_index.GetSize(); + for (size_t i = 0; i < num_entries; ++i) { + s->Indent(); + const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data; + m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference); + } + break; + } + } else { + s->PutCString("\n"); + } +} + +void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes, + Mangled::NamePreference name_preference) const { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + const size_t num_symbols = GetNumSymbols(); + // s->Printf("%.*p: ", (int)sizeof(void*) * 2, this); + s->Indent(); + s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n", + (uint64_t)indexes.size(), (uint64_t)m_symbols.size()); + s->IndentMore(); + + if (!indexes.empty()) { + std::vector<uint32_t>::const_iterator pos; + std::vector<uint32_t>::const_iterator end = indexes.end(); + DumpSymbolHeader(s); + for (pos = indexes.begin(); pos != end; ++pos) { + size_t idx = *pos; + if (idx < num_symbols) { + s->Indent(); + m_symbols[idx].Dump(s, target, idx, name_preference); + } + } + } + s->IndentLess(); +} + +void Symtab::DumpSymbolHeader(Stream *s) { + s->Indent(" Debug symbol\n"); + s->Indent(" |Synthetic symbol\n"); + s->Indent(" ||Externally Visible\n"); + s->Indent(" |||\n"); + s->Indent("Index UserID DSX Type File Address/Value Load " + "Address Size Flags Name\n"); + s->Indent("------- ------ --- --------------- ------------------ " + "------------------ ------------------ ---------- " + "----------------------------------\n"); +} + +static int CompareSymbolID(const void *key, const void *p) { + const user_id_t match_uid = *(const user_id_t *)key; + const user_id_t symbol_uid = ((const Symbol *)p)->GetID(); + if (match_uid < symbol_uid) + return -1; + if (match_uid > symbol_uid) + return 1; + return 0; +} + +Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + Symbol *symbol = + (Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(), + sizeof(m_symbols[0]), CompareSymbolID); + return symbol; +} + +Symbol *Symtab::SymbolAtIndex(size_t idx) { + // Clients should grab the mutex from this symbol table and lock it manually + // when calling this function to avoid performance issues. + if (idx < m_symbols.size()) + return &m_symbols[idx]; + return nullptr; +} + +const Symbol *Symtab::SymbolAtIndex(size_t idx) const { + // Clients should grab the mutex from this symbol table and lock it manually + // when calling this function to avoid performance issues. + if (idx < m_symbols.size()) + return &m_symbols[idx]; + return nullptr; +} + +static bool lldb_skip_name(llvm::StringRef mangled, + Mangled::ManglingScheme scheme) { + switch (scheme) { + case Mangled::eManglingSchemeItanium: { + if (mangled.size() < 3 || !mangled.starts_with("_Z")) + return true; + + // Avoid the following types of symbols in the index. + switch (mangled[2]) { + case 'G': // guard variables + case 'T': // virtual tables, VTT structures, typeinfo structures + names + case 'Z': // named local entities (if we eventually handle + // eSymbolTypeData, we will want this back) + return true; + + default: + break; + } + + // Include this name in the index. + return false; + } + + // No filters for this scheme yet. Include all names in indexing. + case Mangled::eManglingSchemeMSVC: + case Mangled::eManglingSchemeRustV0: + case Mangled::eManglingSchemeD: + case Mangled::eManglingSchemeSwift: + return false; + + // Don't try and demangle things we can't categorize. + case Mangled::eManglingSchemeNone: + return true; + } + llvm_unreachable("unknown scheme!"); +} + +void Symtab::InitNameIndexes() { + // Protected function, no need to lock mutex... + if (!m_name_indexes_computed) { + m_name_indexes_computed = true; + ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); + LLDB_SCOPED_TIMER(); + + // Collect all loaded language plugins. + std::vector<Language *> languages; + Language::ForEach([&languages](Language *l) { + languages.push_back(l); + return true; + }); + + auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); + auto &basename_to_index = + GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); + auto &method_to_index = + GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); + auto &selector_to_index = + GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector); + // Create the name index vector to be able to quickly search by name + const size_t num_symbols = m_symbols.size(); + name_to_index.Reserve(num_symbols); + + // The "const char *" in "class_contexts" and backlog::value_type::second + // must come from a ConstString::GetCString() + std::set<const char *> class_contexts; + std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog; + backlog.reserve(num_symbols / 2); + + // Instantiation of the demangler is expensive, so better use a single one + // for all entries during batch processing. + RichManglingContext rmc; + for (uint32_t value = 0; value < num_symbols; ++value) { + Symbol *symbol = &m_symbols[value]; + + // Don't let trampolines get into the lookup by name map If we ever need + // the trampoline symbols to be searchable by name we can remove this and + // then possibly add a new bool to any of the Symtab functions that + // lookup symbols by name to indicate if they want trampolines. We also + // don't want any synthetic symbols with auto generated names in the + // name lookups. + if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName()) + continue; + + // If the symbol's name string matched a Mangled::ManglingScheme, it is + // stored in the mangled field. + Mangled &mangled = symbol->GetMangled(); + if (ConstString name = mangled.GetMangledName()) { + name_to_index.Append(name, value); + + if (symbol->ContainsLinkerAnnotations()) { + // If the symbol has linker annotations, also add the version without + // the annotations. + ConstString stripped = ConstString( + m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); + name_to_index.Append(stripped, value); + } + + const SymbolType type = symbol->GetType(); + if (type == eSymbolTypeCode || type == eSymbolTypeResolver) { + if (mangled.GetRichManglingInfo(rmc, lldb_skip_name)) { + RegisterMangledNameEntry(value, class_contexts, backlog, rmc); + continue; + } + } + } + + // Symbol name strings that didn't match a Mangled::ManglingScheme, are + // stored in the demangled field. + if (ConstString name = mangled.GetDemangledName()) { + name_to_index.Append(name, value); + + if (symbol->ContainsLinkerAnnotations()) { + // If the symbol has linker annotations, also add the version without + // the annotations. + name = ConstString( + m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef())); + name_to_index.Append(name, value); + } + + // If the demangled name turns out to be an ObjC name, and is a category + // name, add the version without categories to the index too. + for (Language *lang : languages) { + for (auto variant : lang->GetMethodNameVariants(name)) { + if (variant.GetType() & lldb::eFunctionNameTypeSelector) + selector_to_index.Append(variant.GetName(), value); + else if (variant.GetType() & lldb::eFunctionNameTypeFull) + name_to_index.Append(variant.GetName(), value); + else if (variant.GetType() & lldb::eFunctionNameTypeMethod) + method_to_index.Append(variant.GetName(), value); + else if (variant.GetType() & lldb::eFunctionNameTypeBase) + basename_to_index.Append(variant.GetName(), value); + } + } + } + } + + for (const auto &record : backlog) { + RegisterBacklogEntry(record.first, record.second, class_contexts); + } + + name_to_index.Sort(); + name_to_index.SizeToFit(); + selector_to_index.Sort(); + selector_to_index.SizeToFit(); + basename_to_index.Sort(); + basename_to_index.SizeToFit(); + method_to_index.Sort(); + method_to_index.SizeToFit(); + } +} + +void Symtab::RegisterMangledNameEntry( + uint32_t value, std::set<const char *> &class_contexts, + std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog, + RichManglingContext &rmc) { + // Only register functions that have a base name. + llvm::StringRef base_name = rmc.ParseFunctionBaseName(); + if (base_name.empty()) + return; + + // The base name will be our entry's name. + NameToIndexMap::Entry entry(ConstString(base_name), value); + llvm::StringRef decl_context = rmc.ParseFunctionDeclContextName(); + + // Register functions with no context. + if (decl_context.empty()) { + // This has to be a basename + auto &basename_to_index = + GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); + basename_to_index.Append(entry); + // If there is no context (no namespaces or class scopes that come before + // the function name) then this also could be a fullname. + auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); + name_to_index.Append(entry); + return; + } + + // Make sure we have a pool-string pointer and see if we already know the + // context name. + const char *decl_context_ccstr = ConstString(decl_context).GetCString(); + auto it = class_contexts.find(decl_context_ccstr); + + auto &method_to_index = + GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); + // Register constructors and destructors. They are methods and create + // declaration contexts. + if (rmc.IsCtorOrDtor()) { + method_to_index.Append(entry); + if (it == class_contexts.end()) + class_contexts.insert(it, decl_context_ccstr); + return; + } + + // Register regular methods with a known declaration context. + if (it != class_contexts.end()) { + method_to_index.Append(entry); + return; + } + + // Regular methods in unknown declaration contexts are put to the backlog. We + // will revisit them once we processed all remaining symbols. + backlog.push_back(std::make_pair(entry, decl_context_ccstr)); +} + +void Symtab::RegisterBacklogEntry( + const NameToIndexMap::Entry &entry, const char *decl_context, + const std::set<const char *> &class_contexts) { + auto &method_to_index = + GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod); + auto it = class_contexts.find(decl_context); + if (it != class_contexts.end()) { + method_to_index.Append(entry); + } else { + // If we got here, we have something that had a context (was inside + // a namespace or class) yet we don't know the entry + method_to_index.Append(entry); + auto &basename_to_index = + GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase); + basename_to_index.Append(entry); + } +} + +void Symtab::PreloadSymbols() { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + InitNameIndexes(); +} + +void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes, + bool add_demangled, bool add_mangled, + NameToIndexMap &name_to_index_map) const { + LLDB_SCOPED_TIMER(); + if (add_demangled || add_mangled) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + // Create the name index vector to be able to quickly search by name + const size_t num_indexes = indexes.size(); + for (size_t i = 0; i < num_indexes; ++i) { + uint32_t value = indexes[i]; + assert(i < m_symbols.size()); + const Symbol *symbol = &m_symbols[value]; + + const Mangled &mangled = symbol->GetMangled(); + if (add_demangled) { + if (ConstString name = mangled.GetDemangledName()) + name_to_index_map.Append(name, value); + } + + if (add_mangled) { + if (ConstString name = mangled.GetMangledName()) + name_to_index_map.Append(name, value); + } + } + } +} + +uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, + std::vector<uint32_t> &indexes, + uint32_t start_idx, + uint32_t end_index) const { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + uint32_t prev_size = indexes.size(); + + const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); + + for (uint32_t i = start_idx; i < count; ++i) { + if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type) + indexes.push_back(i); + } + + return indexes.size() - prev_size; +} + +uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue( + SymbolType symbol_type, uint32_t flags_value, + std::vector<uint32_t> &indexes, uint32_t start_idx, + uint32_t end_index) const { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + uint32_t prev_size = indexes.size(); + + const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); + + for (uint32_t i = start_idx; i < count; ++i) { + if ((symbol_type == eSymbolTypeAny || + m_symbols[i].GetType() == symbol_type) && + m_symbols[i].GetFlags() == flags_value) + indexes.push_back(i); + } + + return indexes.size() - prev_size; +} + +uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type, + Debug symbol_debug_type, + Visibility symbol_visibility, + std::vector<uint32_t> &indexes, + uint32_t start_idx, + uint32_t end_index) const { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + uint32_t prev_size = indexes.size(); + + const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index); + + for (uint32_t i = start_idx; i < count; ++i) { + if (symbol_type == eSymbolTypeAny || + m_symbols[i].GetType() == symbol_type) { + if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) + indexes.push_back(i); + } + } + + return indexes.size() - prev_size; +} + +uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const { + if (!m_symbols.empty()) { + const Symbol *first_symbol = &m_symbols[0]; + if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size()) + return symbol - first_symbol; + } + return UINT32_MAX; +} + +struct SymbolSortInfo { + const bool sort_by_load_addr; + const Symbol *symbols; +}; + +namespace { +struct SymbolIndexComparator { + const std::vector<Symbol> &symbols; + std::vector<lldb::addr_t> &addr_cache; + + // Getting from the symbol to the Address to the File Address involves some + // work. Since there are potentially many symbols here, and we're using this + // for sorting so we're going to be computing the address many times, cache + // that in addr_cache. The array passed in has to be the same size as the + // symbols array passed into the member variable symbols, and should be + // initialized with LLDB_INVALID_ADDRESS. + // NOTE: You have to make addr_cache externally and pass it in because + // std::stable_sort + // makes copies of the comparator it is initially passed in, and you end up + // spending huge amounts of time copying this array... + + SymbolIndexComparator(const std::vector<Symbol> &s, + std::vector<lldb::addr_t> &a) + : symbols(s), addr_cache(a) { + assert(symbols.size() == addr_cache.size()); + } + bool operator()(uint32_t index_a, uint32_t index_b) { + addr_t value_a = addr_cache[index_a]; + if (value_a == LLDB_INVALID_ADDRESS) { + value_a = symbols[index_a].GetAddressRef().GetFileAddress(); + addr_cache[index_a] = value_a; + } + + addr_t value_b = addr_cache[index_b]; + if (value_b == LLDB_INVALID_ADDRESS) { + value_b = symbols[index_b].GetAddressRef().GetFileAddress(); + addr_cache[index_b] = value_b; + } + + if (value_a == value_b) { + // The if the values are equal, use the original symbol user ID + lldb::user_id_t uid_a = symbols[index_a].GetID(); + lldb::user_id_t uid_b = symbols[index_b].GetID(); + if (uid_a < uid_b) + return true; + if (uid_a > uid_b) + return false; + return false; + } else if (value_a < value_b) + return true; + + return false; + } +}; +} + +void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes, + bool remove_duplicates) const { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + LLDB_SCOPED_TIMER(); + // No need to sort if we have zero or one items... + if (indexes.size() <= 1) + return; + + // Sort the indexes in place using std::stable_sort. + // NOTE: The use of std::stable_sort instead of llvm::sort here is strictly + // for performance, not correctness. The indexes vector tends to be "close" + // to sorted, which the stable sort handles better. + + std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS); + + SymbolIndexComparator comparator(m_symbols, addr_cache); + std::stable_sort(indexes.begin(), indexes.end(), comparator); + + // Remove any duplicates if requested + if (remove_duplicates) { + auto last = std::unique(indexes.begin(), indexes.end()); + indexes.erase(last, indexes.end()); + } +} + +uint32_t Symtab::GetNameIndexes(ConstString symbol_name, + std::vector<uint32_t> &indexes) { + auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone); + const uint32_t count = name_to_index.GetValues(symbol_name, indexes); + if (count) + return count; + // Synthetic symbol names are not added to the name indexes, but they start + // with a prefix and end with a the symbol UserID. This allows users to find + // these symbols without having to add them to the name indexes. These + // queries will not happen very often since the names don't mean anything, so + // performance is not paramount in this case. + llvm::StringRef name = symbol_name.GetStringRef(); + // String the synthetic prefix if the name starts with it. + if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix())) + return 0; // Not a synthetic symbol name + + // Extract the user ID from the symbol name + unsigned long long uid = 0; + if (getAsUnsignedInteger(name, /*Radix=*/10, uid)) + return 0; // Failed to extract the user ID as an integer + Symbol *symbol = FindSymbolByID(uid); + if (symbol == nullptr) + return 0; + const uint32_t symbol_idx = GetIndexForSymbol(symbol); + if (symbol_idx == UINT32_MAX) + return 0; + indexes.push_back(symbol_idx); + return 1; +} + +uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, + std::vector<uint32_t> &indexes) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + if (symbol_name) { + if (!m_name_indexes_computed) + InitNameIndexes(); + + return GetNameIndexes(symbol_name, indexes); + } + return 0; +} + +uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name, + Debug symbol_debug_type, + Visibility symbol_visibility, + std::vector<uint32_t> &indexes) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + LLDB_SCOPED_TIMER(); + if (symbol_name) { + const size_t old_size = indexes.size(); + if (!m_name_indexes_computed) + InitNameIndexes(); + + std::vector<uint32_t> all_name_indexes; + const size_t name_match_count = + GetNameIndexes(symbol_name, all_name_indexes); + for (size_t i = 0; i < name_match_count; ++i) { + if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type, + symbol_visibility)) + indexes.push_back(all_name_indexes[i]); + } + return indexes.size() - old_size; + } + return 0; +} + +uint32_t +Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name, + SymbolType symbol_type, + std::vector<uint32_t> &indexes) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) { + std::vector<uint32_t>::iterator pos = indexes.begin(); + while (pos != indexes.end()) { + if (symbol_type == eSymbolTypeAny || + m_symbols[*pos].GetType() == symbol_type) + ++pos; + else + pos = indexes.erase(pos); + } + } + return indexes.size(); +} + +uint32_t Symtab::AppendSymbolIndexesWithNameAndType( + ConstString symbol_name, SymbolType symbol_type, + Debug symbol_debug_type, Visibility symbol_visibility, + std::vector<uint32_t> &indexes) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type, + symbol_visibility, indexes) > 0) { + std::vector<uint32_t>::iterator pos = indexes.begin(); + while (pos != indexes.end()) { + if (symbol_type == eSymbolTypeAny || + m_symbols[*pos].GetType() == symbol_type) + ++pos; + else + pos = indexes.erase(pos); + } + } + return indexes.size(); +} + +uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( + const RegularExpression ®exp, SymbolType symbol_type, + std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + uint32_t prev_size = indexes.size(); + uint32_t sym_end = m_symbols.size(); + + for (uint32_t i = 0; i < sym_end; i++) { + if (symbol_type == eSymbolTypeAny || + m_symbols[i].GetType() == symbol_type) { + const char *name = + m_symbols[i].GetMangled().GetName(name_preference).AsCString(); + if (name) { + if (regexp.Execute(name)) + indexes.push_back(i); + } + } + } + return indexes.size() - prev_size; +} + +uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType( + const RegularExpression ®exp, SymbolType symbol_type, + Debug symbol_debug_type, Visibility symbol_visibility, + std::vector<uint32_t> &indexes, Mangled::NamePreference name_preference) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + uint32_t prev_size = indexes.size(); + uint32_t sym_end = m_symbols.size(); + + for (uint32_t i = 0; i < sym_end; i++) { + if (symbol_type == eSymbolTypeAny || + m_symbols[i].GetType() == symbol_type) { + if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility)) + continue; + + const char *name = + m_symbols[i].GetMangled().GetName(name_preference).AsCString(); + if (name) { + if (regexp.Execute(name)) + indexes.push_back(i); + } + } + } + return indexes.size() - prev_size; +} + +Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type, + Debug symbol_debug_type, + Visibility symbol_visibility, + uint32_t &start_idx) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + const size_t count = m_symbols.size(); + for (size_t idx = start_idx; idx < count; ++idx) { + if (symbol_type == eSymbolTypeAny || + m_symbols[idx].GetType() == symbol_type) { + if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) { + start_idx = idx; + return &m_symbols[idx]; + } + } + } + return nullptr; +} + +void +Symtab::FindAllSymbolsWithNameAndType(ConstString name, + SymbolType symbol_type, + std::vector<uint32_t> &symbol_indexes) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + // Initialize all of the lookup by name indexes before converting NAME to a + // uniqued string NAME_STR below. + if (!m_name_indexes_computed) + InitNameIndexes(); + + if (name) { + // The string table did have a string that matched, but we need to check + // the symbols and match the symbol_type if any was given. + AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes); + } +} + +void Symtab::FindAllSymbolsWithNameAndType( + ConstString name, SymbolType symbol_type, Debug symbol_debug_type, + Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + LLDB_SCOPED_TIMER(); + // Initialize all of the lookup by name indexes before converting NAME to a + // uniqued string NAME_STR below. + if (!m_name_indexes_computed) + InitNameIndexes(); + + if (name) { + // The string table did have a string that matched, but we need to check + // the symbols and match the symbol_type if any was given. + AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, + symbol_visibility, symbol_indexes); + } +} + +void Symtab::FindAllSymbolsMatchingRexExAndType( + const RegularExpression ®ex, SymbolType symbol_type, + Debug symbol_debug_type, Visibility symbol_visibility, + std::vector<uint32_t> &symbol_indexes, + Mangled::NamePreference name_preference) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type, + symbol_visibility, symbol_indexes, + name_preference); +} + +Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name, + SymbolType symbol_type, + Debug symbol_debug_type, + Visibility symbol_visibility) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + LLDB_SCOPED_TIMER(); + if (!m_name_indexes_computed) + InitNameIndexes(); + + if (name) { + std::vector<uint32_t> matching_indexes; + // The string table did have a string that matched, but we need to check + // the symbols and match the symbol_type if any was given. + if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type, + symbol_visibility, + matching_indexes)) { + std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end(); + for (pos = matching_indexes.begin(); pos != end; ++pos) { + Symbol *symbol = SymbolAtIndex(*pos); + + if (symbol->Compare(name, symbol_type)) + return symbol; + } + } + } + return nullptr; +} + +typedef struct { + const Symtab *symtab; + const addr_t file_addr; + Symbol *match_symbol; + const uint32_t *match_index_ptr; + addr_t match_offset; +} SymbolSearchInfo; + +// Add all the section file start address & size to the RangeVector, recusively +// adding any children sections. +static void AddSectionsToRangeMap(SectionList *sectlist, + RangeVector<addr_t, addr_t> §ion_ranges) { + const int num_sections = sectlist->GetNumSections(0); + for (int i = 0; i < num_sections; i++) { + SectionSP sect_sp = sectlist->GetSectionAtIndex(i); + if (sect_sp) { + SectionList &child_sectlist = sect_sp->GetChildren(); + + // If this section has children, add the children to the RangeVector. + // Else add this section to the RangeVector. + if (child_sectlist.GetNumSections(0) > 0) { + AddSectionsToRangeMap(&child_sectlist, section_ranges); + } else { + size_t size = sect_sp->GetByteSize(); + if (size > 0) { + addr_t base_addr = sect_sp->GetFileAddress(); + RangeVector<addr_t, addr_t>::Entry entry; + entry.SetRangeBase(base_addr); + entry.SetByteSize(size); + section_ranges.Append(entry); + } + } + } + } +} + +void Symtab::InitAddressIndexes() { + // Protected function, no need to lock mutex... + if (!m_file_addr_to_index_computed && !m_symbols.empty()) { + m_file_addr_to_index_computed = true; + + FileRangeToIndexMap::Entry entry; + const_iterator begin = m_symbols.begin(); + const_iterator end = m_symbols.end(); + for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) { + if (pos->ValueIsAddress()) { + entry.SetRangeBase(pos->GetAddressRef().GetFileAddress()); + entry.SetByteSize(pos->GetByteSize()); + entry.data = std::distance(begin, pos); + m_file_addr_to_index.Append(entry); + } + } + const size_t num_entries = m_file_addr_to_index.GetSize(); + if (num_entries > 0) { + m_file_addr_to_index.Sort(); + + // Create a RangeVector with the start & size of all the sections for + // this objfile. We'll need to check this for any FileRangeToIndexMap + // entries with an uninitialized size, which could potentially be a large + // number so reconstituting the weak pointer is busywork when it is + // invariant information. + SectionList *sectlist = m_objfile->GetSectionList(); + RangeVector<addr_t, addr_t> section_ranges; + if (sectlist) { + AddSectionsToRangeMap(sectlist, section_ranges); + section_ranges.Sort(); + } + + // Iterate through the FileRangeToIndexMap and fill in the size for any + // entries that didn't already have a size from the Symbol (e.g. if we + // have a plain linker symbol with an address only, instead of debug info + // where we get an address and a size and a type, etc.) + for (size_t i = 0; i < num_entries; i++) { + FileRangeToIndexMap::Entry *entry = + m_file_addr_to_index.GetMutableEntryAtIndex(i); + if (entry->GetByteSize() == 0) { + addr_t curr_base_addr = entry->GetRangeBase(); + const RangeVector<addr_t, addr_t>::Entry *containing_section = + section_ranges.FindEntryThatContains(curr_base_addr); + + // Use the end of the section as the default max size of the symbol + addr_t sym_size = 0; + if (containing_section) { + sym_size = + containing_section->GetByteSize() - + (entry->GetRangeBase() - containing_section->GetRangeBase()); + } + + for (size_t j = i; j < num_entries; j++) { + FileRangeToIndexMap::Entry *next_entry = + m_file_addr_to_index.GetMutableEntryAtIndex(j); + addr_t next_base_addr = next_entry->GetRangeBase(); + if (next_base_addr > curr_base_addr) { + addr_t size_to_next_symbol = next_base_addr - curr_base_addr; + + // Take the difference between this symbol and the next one as + // its size, if it is less than the size of the section. + if (sym_size == 0 || size_to_next_symbol < sym_size) { + sym_size = size_to_next_symbol; + } + break; + } + } + + if (sym_size > 0) { + entry->SetByteSize(sym_size); + Symbol &symbol = m_symbols[entry->data]; + symbol.SetByteSize(sym_size); + symbol.SetSizeIsSynthesized(true); + } + } + } + + // Sort again in case the range size changes the ordering + m_file_addr_to_index.Sort(); + } + } +} + +void Symtab::Finalize() { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + // Calculate the size of symbols inside InitAddressIndexes. + InitAddressIndexes(); + // Shrink to fit the symbols so we don't waste memory + m_symbols.shrink_to_fit(); + SaveToCache(); +} + +Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + if (!m_file_addr_to_index_computed) + InitAddressIndexes(); + + const FileRangeToIndexMap::Entry *entry = + m_file_addr_to_index.FindEntryStartsAt(file_addr); + if (entry) { + Symbol *symbol = SymbolAtIndex(entry->data); + if (symbol->GetFileAddress() == file_addr) + return symbol; + } + return nullptr; +} + +Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + if (!m_file_addr_to_index_computed) + InitAddressIndexes(); + + const FileRangeToIndexMap::Entry *entry = + m_file_addr_to_index.FindEntryThatContains(file_addr); + if (entry) { + Symbol *symbol = SymbolAtIndex(entry->data); + if (symbol->ContainsFileAddress(file_addr)) + return symbol; + } + return nullptr; +} + +void Symtab::ForEachSymbolContainingFileAddress( + addr_t file_addr, std::function<bool(Symbol *)> const &callback) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + if (!m_file_addr_to_index_computed) + InitAddressIndexes(); + + std::vector<uint32_t> all_addr_indexes; + + // Get all symbols with file_addr + const size_t addr_match_count = + m_file_addr_to_index.FindEntryIndexesThatContain(file_addr, + all_addr_indexes); + + for (size_t i = 0; i < addr_match_count; ++i) { + Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]); + if (symbol->ContainsFileAddress(file_addr)) { + if (!callback(symbol)) + break; + } + } +} + +void Symtab::SymbolIndicesToSymbolContextList( + std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) { + // No need to protect this call using m_mutex all other method calls are + // already thread safe. + + const bool merge_symbol_into_function = true; + size_t num_indices = symbol_indexes.size(); + if (num_indices > 0) { + SymbolContext sc; + sc.module_sp = m_objfile->GetModule(); + for (size_t i = 0; i < num_indices; i++) { + sc.symbol = SymbolAtIndex(symbol_indexes[i]); + if (sc.symbol) + sc_list.AppendIfUnique(sc, merge_symbol_into_function); + } + } +} + +void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask, + SymbolContextList &sc_list) { + std::vector<uint32_t> symbol_indexes; + + // eFunctionNameTypeAuto should be pre-resolved by a call to + // Module::LookupInfo::LookupInfo() + assert((name_type_mask & eFunctionNameTypeAuto) == 0); + + if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) { + std::vector<uint32_t> temp_symbol_indexes; + FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes); + + unsigned temp_symbol_indexes_size = temp_symbol_indexes.size(); + if (temp_symbol_indexes_size > 0) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + for (unsigned i = 0; i < temp_symbol_indexes_size; i++) { + SymbolContext sym_ctx; + sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]); + if (sym_ctx.symbol) { + switch (sym_ctx.symbol->GetType()) { + case eSymbolTypeCode: + case eSymbolTypeResolver: + case eSymbolTypeReExported: + case eSymbolTypeAbsolute: + symbol_indexes.push_back(temp_symbol_indexes[i]); + break; + default: + break; + } + } + } + } + } + + if (!m_name_indexes_computed) + InitNameIndexes(); + + for (lldb::FunctionNameType type : + {lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod, + lldb::eFunctionNameTypeSelector}) { + if (name_type_mask & type) { + auto map = GetNameToSymbolIndexMap(type); + + const UniqueCStringMap<uint32_t>::Entry *match; + for (match = map.FindFirstValueForName(name); match != nullptr; + match = map.FindNextValueForName(match)) { + symbol_indexes.push_back(match->value); + } + } + } + + if (!symbol_indexes.empty()) { + llvm::sort(symbol_indexes); + symbol_indexes.erase( + std::unique(symbol_indexes.begin(), symbol_indexes.end()), + symbol_indexes.end()); + SymbolIndicesToSymbolContextList(symbol_indexes, sc_list); + } +} + +const Symbol *Symtab::GetParent(Symbol *child_symbol) const { + uint32_t child_idx = GetIndexForSymbol(child_symbol); + if (child_idx != UINT32_MAX && child_idx > 0) { + for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) { + const Symbol *symbol = SymbolAtIndex(idx); + const uint32_t sibling_idx = symbol->GetSiblingIndex(); + if (sibling_idx != UINT32_MAX && sibling_idx > child_idx) + return symbol; + } + } + return nullptr; +} + +std::string Symtab::GetCacheKey() { + std::string key; + llvm::raw_string_ostream strm(key); + // Symbol table can come from different object files for the same module. A + // module can have one object file as the main executable and might have + // another object file in a separate symbol file. + strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-" + << llvm::format_hex(m_objfile->GetCacheHash(), 10); + return strm.str(); +} + +void Symtab::SaveToCache() { + DataFileCache *cache = Module::GetIndexCache(); + if (!cache) + return; // Caching is not enabled. + InitNameIndexes(); // Init the name indexes so we can cache them as well. + const auto byte_order = endian::InlHostByteOrder(); + DataEncoder file(byte_order, /*addr_size=*/8); + // Encode will return false if the symbol table's object file doesn't have + // anything to make a signature from. + if (Encode(file)) + if (cache->SetCachedData(GetCacheKey(), file.GetData())) + SetWasSavedToCache(); +} + +constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP"); + +static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab, + const UniqueCStringMap<uint32_t> &cstr_map) { + encoder.AppendData(kIdentifierCStrMap); + encoder.AppendU32(cstr_map.GetSize()); + for (const auto &entry: cstr_map) { + // Make sure there are no empty strings. + assert((bool)entry.cstring); + encoder.AppendU32(strtab.Add(entry.cstring)); + encoder.AppendU32(entry.value); + } +} + +bool DecodeCStrMap(const DataExtractor &data, lldb::offset_t *offset_ptr, + const StringTableReader &strtab, + UniqueCStringMap<uint32_t> &cstr_map) { + llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4); + if (identifier != kIdentifierCStrMap) + return false; + const uint32_t count = data.GetU32(offset_ptr); + cstr_map.Reserve(count); + for (uint32_t i=0; i<count; ++i) + { + llvm::StringRef str(strtab.Get(data.GetU32(offset_ptr))); + uint32_t value = data.GetU32(offset_ptr); + // No empty strings in the name indexes in Symtab + if (str.empty()) + return false; + cstr_map.Append(ConstString(str), value); + } + // We must sort the UniqueCStringMap after decoding it since it is a vector + // of UniqueCStringMap::Entry objects which contain a ConstString and type T. + // ConstString objects are sorted by "const char *" and then type T and + // the "const char *" are point values that will depend on the order in which + // ConstString objects are created and in which of the 256 string pools they + // are created in. So after we decode all of the entries, we must sort the + // name map to ensure name lookups succeed. If we encode and decode within + // the same process we wouldn't need to sort, so unit testing didn't catch + // this issue when first checked in. + cstr_map.Sort(); + return true; +} + +constexpr llvm::StringLiteral kIdentifierSymbolTable("SYMB"); +constexpr uint32_t CURRENT_CACHE_VERSION = 1; + +/// The encoding format for the symbol table is as follows: +/// +/// Signature signature; +/// ConstStringTable strtab; +/// Identifier four character code: 'SYMB' +/// uint32_t version; +/// uint32_t num_symbols; +/// Symbol symbols[num_symbols]; +/// uint8_t num_cstr_maps; +/// UniqueCStringMap<uint32_t> cstr_maps[num_cstr_maps] +bool Symtab::Encode(DataEncoder &encoder) const { + // Name indexes must be computed before calling this function. + assert(m_name_indexes_computed); + + // Encode the object file's signature + CacheSignature signature(m_objfile); + if (!signature.Encode(encoder)) + return false; + ConstStringTable strtab; + + // Encoder the symbol table into a separate encoder first. This allows us + // gather all of the strings we willl need in "strtab" as we will need to + // write the string table out before the symbol table. + DataEncoder symtab_encoder(encoder.GetByteOrder(), + encoder.GetAddressByteSize()); + symtab_encoder.AppendData(kIdentifierSymbolTable); + // Encode the symtab data version. + symtab_encoder.AppendU32(CURRENT_CACHE_VERSION); + // Encode the number of symbols. + symtab_encoder.AppendU32(m_symbols.size()); + // Encode the symbol data for all symbols. + for (const auto &symbol: m_symbols) + symbol.Encode(symtab_encoder, strtab); + + // Emit a byte for how many C string maps we emit. We will fix this up after + // we emit the C string maps since we skip emitting C string maps if they are + // empty. + size_t num_cmaps_offset = symtab_encoder.GetByteSize(); + uint8_t num_cmaps = 0; + symtab_encoder.AppendU8(0); + for (const auto &pair: m_name_to_symbol_indices) { + if (pair.second.IsEmpty()) + continue; + ++num_cmaps; + symtab_encoder.AppendU8(pair.first); + EncodeCStrMap(symtab_encoder, strtab, pair.second); + } + if (num_cmaps > 0) + symtab_encoder.PutU8(num_cmaps_offset, num_cmaps); + + // Now that all strings have been gathered, we will emit the string table. + strtab.Encode(encoder); + // Followed by the symbol table data. + encoder.AppendData(symtab_encoder.GetData()); + return true; +} + +bool Symtab::Decode(const DataExtractor &data, lldb::offset_t *offset_ptr, + bool &signature_mismatch) { + signature_mismatch = false; + CacheSignature signature; + StringTableReader strtab; + { // Scope for "elapsed" object below so it can measure the time parse. + ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime()); + if (!signature.Decode(data, offset_ptr)) + return false; + if (CacheSignature(m_objfile) != signature) { + signature_mismatch = true; + return false; + } + // We now decode the string table for all strings in the data cache file. + if (!strtab.Decode(data, offset_ptr)) + return false; + + // And now we can decode the symbol table with string table we just decoded. + llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4); + if (identifier != kIdentifierSymbolTable) + return false; + const uint32_t version = data.GetU32(offset_ptr); + if (version != CURRENT_CACHE_VERSION) + return false; + const uint32_t num_symbols = data.GetU32(offset_ptr); + if (num_symbols == 0) + return true; + m_symbols.resize(num_symbols); + SectionList *sections = m_objfile->GetModule()->GetSectionList(); + for (uint32_t i=0; i<num_symbols; ++i) { + if (!m_symbols[i].Decode(data, offset_ptr, sections, strtab)) + return false; + } + } + + { // Scope for "elapsed" object below so it can measure the time to index. + ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime()); + const uint8_t num_cstr_maps = data.GetU8(offset_ptr); + for (uint8_t i=0; i<num_cstr_maps; ++i) { + uint8_t type = data.GetU8(offset_ptr); + UniqueCStringMap<uint32_t> &cstr_map = + GetNameToSymbolIndexMap((lldb::FunctionNameType)type); + if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map)) + return false; + } + m_name_indexes_computed = true; + } + return true; +} + +bool Symtab::LoadFromCache() { + DataFileCache *cache = Module::GetIndexCache(); + if (!cache) + return false; + + std::unique_ptr<llvm::MemoryBuffer> mem_buffer_up = + cache->GetCachedData(GetCacheKey()); + if (!mem_buffer_up) + return false; + DataExtractor data(mem_buffer_up->getBufferStart(), + mem_buffer_up->getBufferSize(), + m_objfile->GetByteOrder(), + m_objfile->GetAddressByteSize()); + bool signature_mismatch = false; + lldb::offset_t offset = 0; + const bool result = Decode(data, &offset, signature_mismatch); + if (signature_mismatch) + cache->RemoveCacheFile(GetCacheKey()); + if (result) + SetWasLoadedFromCache(); + return result; +} |