diff options
Diffstat (limited to 'contrib/llvm-project/lldb/source/Target/Memory.cpp')
-rw-r--r-- | contrib/llvm-project/lldb/source/Target/Memory.cpp | 434 |
1 files changed, 434 insertions, 0 deletions
diff --git a/contrib/llvm-project/lldb/source/Target/Memory.cpp b/contrib/llvm-project/lldb/source/Target/Memory.cpp new file mode 100644 index 000000000000..45786415d23b --- /dev/null +++ b/contrib/llvm-project/lldb/source/Target/Memory.cpp @@ -0,0 +1,434 @@ +//===-- Memory.cpp --------------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "lldb/Target/Memory.h" +#include "lldb/Target/Process.h" +#include "lldb/Utility/DataBufferHeap.h" +#include "lldb/Utility/LLDBLog.h" +#include "lldb/Utility/Log.h" +#include "lldb/Utility/RangeMap.h" +#include "lldb/Utility/State.h" + +#include <cinttypes> +#include <memory> + +using namespace lldb; +using namespace lldb_private; + +// MemoryCache constructor +MemoryCache::MemoryCache(Process &process) + : m_mutex(), m_L1_cache(), m_L2_cache(), m_invalid_ranges(), + m_process(process), + m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize()) {} + +// Destructor +MemoryCache::~MemoryCache() = default; + +void MemoryCache::Clear(bool clear_invalid_ranges) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + m_L1_cache.clear(); + m_L2_cache.clear(); + if (clear_invalid_ranges) + m_invalid_ranges.Clear(); + m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize(); +} + +void MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, + size_t src_len) { + AddL1CacheData( + addr, DataBufferSP(new DataBufferHeap(DataBufferHeap(src, src_len)))); +} + +void MemoryCache::AddL1CacheData(lldb::addr_t addr, + const DataBufferSP &data_buffer_sp) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + m_L1_cache[addr] = data_buffer_sp; +} + +void MemoryCache::Flush(addr_t addr, size_t size) { + if (size == 0) + return; + + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + // Erase any blocks from the L1 cache that intersect with the flush range + if (!m_L1_cache.empty()) { + AddrRange flush_range(addr, size); + BlockMap::iterator pos = m_L1_cache.upper_bound(addr); + if (pos != m_L1_cache.begin()) { + --pos; + } + while (pos != m_L1_cache.end()) { + AddrRange chunk_range(pos->first, pos->second->GetByteSize()); + if (!chunk_range.DoesIntersect(flush_range)) + break; + pos = m_L1_cache.erase(pos); + } + } + + if (!m_L2_cache.empty()) { + const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size; + const addr_t end_addr = (addr + size - 1); + const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size); + const addr_t last_cache_line_addr = + end_addr - (end_addr % cache_line_byte_size); + // Watch for overflow where size will cause us to go off the end of the + // 64 bit address space + uint32_t num_cache_lines; + if (last_cache_line_addr >= first_cache_line_addr) + num_cache_lines = ((last_cache_line_addr - first_cache_line_addr) / + cache_line_byte_size) + + 1; + else + num_cache_lines = + (UINT64_MAX - first_cache_line_addr + 1) / cache_line_byte_size; + + uint32_t cache_idx = 0; + for (addr_t curr_addr = first_cache_line_addr; cache_idx < num_cache_lines; + curr_addr += cache_line_byte_size, ++cache_idx) { + BlockMap::iterator pos = m_L2_cache.find(curr_addr); + if (pos != m_L2_cache.end()) + m_L2_cache.erase(pos); + } + } +} + +void MemoryCache::AddInvalidRange(lldb::addr_t base_addr, + lldb::addr_t byte_size) { + if (byte_size > 0) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + InvalidRanges::Entry range(base_addr, byte_size); + m_invalid_ranges.Append(range); + m_invalid_ranges.Sort(); + } +} + +bool MemoryCache::RemoveInvalidRange(lldb::addr_t base_addr, + lldb::addr_t byte_size) { + if (byte_size > 0) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr); + if (idx != UINT32_MAX) { + const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex(idx); + if (entry->GetRangeBase() == base_addr && + entry->GetByteSize() == byte_size) + return m_invalid_ranges.RemoveEntryAtIndex(idx); + } + } + return false; +} + +lldb::DataBufferSP MemoryCache::GetL2CacheLine(lldb::addr_t line_base_addr, + Status &error) { + // This function assumes that the address given is aligned correctly. + assert((line_base_addr % m_L2_cache_line_byte_size) == 0); + + std::lock_guard<std::recursive_mutex> guard(m_mutex); + auto pos = m_L2_cache.find(line_base_addr); + if (pos != m_L2_cache.end()) + return pos->second; + + auto data_buffer_heap_sp = + std::make_shared<DataBufferHeap>(m_L2_cache_line_byte_size, 0); + size_t process_bytes_read = m_process.ReadMemoryFromInferior( + line_base_addr, data_buffer_heap_sp->GetBytes(), + data_buffer_heap_sp->GetByteSize(), error); + + // If we failed a read, not much we can do. + if (process_bytes_read == 0) + return lldb::DataBufferSP(); + + // If we didn't get a complete read, we can still cache what we did get. + if (process_bytes_read < m_L2_cache_line_byte_size) + data_buffer_heap_sp->SetByteSize(process_bytes_read); + + m_L2_cache[line_base_addr] = data_buffer_heap_sp; + return data_buffer_heap_sp; +} + +size_t MemoryCache::Read(addr_t addr, void *dst, size_t dst_len, + Status &error) { + if (!dst || dst_len == 0) + return 0; + + std::lock_guard<std::recursive_mutex> guard(m_mutex); + // FIXME: We should do a more thorough check to make sure that we're not + // overlapping with any invalid ranges (e.g. Read 0x100 - 0x200 but there's an + // invalid range 0x180 - 0x280). `FindEntryThatContains` has an implementation + // that takes a range, but it only checks to see if the argument is contained + // by an existing invalid range. It cannot check if the argument contains + // invalid ranges and cannot check for overlaps. + if (m_invalid_ranges.FindEntryThatContains(addr)) { + error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, addr); + return 0; + } + + // Check the L1 cache for a range that contains the entire memory read. + // L1 cache contains chunks of memory that are not required to be the size of + // an L2 cache line. We avoid trying to do partial reads from the L1 cache to + // simplify the implementation. + if (!m_L1_cache.empty()) { + AddrRange read_range(addr, dst_len); + BlockMap::iterator pos = m_L1_cache.upper_bound(addr); + if (pos != m_L1_cache.begin()) { + --pos; + } + AddrRange chunk_range(pos->first, pos->second->GetByteSize()); + if (chunk_range.Contains(read_range)) { + memcpy(dst, pos->second->GetBytes() + (addr - chunk_range.GetRangeBase()), + dst_len); + return dst_len; + } + } + + // If the size of the read is greater than the size of an L2 cache line, we'll + // just read from the inferior. If that read is successful, we'll cache what + // we read in the L1 cache for future use. + if (dst_len > m_L2_cache_line_byte_size) { + size_t bytes_read = + m_process.ReadMemoryFromInferior(addr, dst, dst_len, error); + if (bytes_read > 0) + AddL1CacheData(addr, dst, bytes_read); + return bytes_read; + } + + // If the size of the read fits inside one L2 cache line, we'll try reading + // from the L2 cache. Note that if the range of memory we're reading sits + // between two contiguous cache lines, we'll touch two cache lines instead of + // just one. + + // We're going to have all of our loads and reads be cache line aligned. + addr_t cache_line_offset = addr % m_L2_cache_line_byte_size; + addr_t cache_line_base_addr = addr - cache_line_offset; + DataBufferSP first_cache_line = GetL2CacheLine(cache_line_base_addr, error); + // If we get nothing, then the read to the inferior likely failed. Nothing to + // do here. + if (!first_cache_line) + return 0; + + // If the cache line was not filled out completely and the offset is greater + // than what we have available, we can't do anything further here. + if (cache_line_offset >= first_cache_line->GetByteSize()) + return 0; + + uint8_t *dst_buf = (uint8_t *)dst; + size_t bytes_left = dst_len; + size_t read_size = first_cache_line->GetByteSize() - cache_line_offset; + if (read_size > bytes_left) + read_size = bytes_left; + + memcpy(dst_buf + dst_len - bytes_left, + first_cache_line->GetBytes() + cache_line_offset, read_size); + bytes_left -= read_size; + + // If the cache line was not filled out completely and we still have data to + // read, we can't do anything further. + if (first_cache_line->GetByteSize() < m_L2_cache_line_byte_size && + bytes_left > 0) + return dst_len - bytes_left; + + // We'll hit this scenario if our read straddles two cache lines. + if (bytes_left > 0) { + cache_line_base_addr += m_L2_cache_line_byte_size; + + // FIXME: Until we are able to more thoroughly check for invalid ranges, we + // will have to check the second line to see if it is in an invalid range as + // well. See the check near the beginning of the function for more details. + if (m_invalid_ranges.FindEntryThatContains(cache_line_base_addr)) { + error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, + cache_line_base_addr); + return dst_len - bytes_left; + } + + DataBufferSP second_cache_line = + GetL2CacheLine(cache_line_base_addr, error); + if (!second_cache_line) + return dst_len - bytes_left; + + read_size = bytes_left; + if (read_size > second_cache_line->GetByteSize()) + read_size = second_cache_line->GetByteSize(); + + memcpy(dst_buf + dst_len - bytes_left, second_cache_line->GetBytes(), + read_size); + bytes_left -= read_size; + + return dst_len - bytes_left; + } + + return dst_len; +} + +AllocatedBlock::AllocatedBlock(lldb::addr_t addr, uint32_t byte_size, + uint32_t permissions, uint32_t chunk_size) + : m_range(addr, byte_size), m_permissions(permissions), + m_chunk_size(chunk_size) +{ + // The entire address range is free to start with. + m_free_blocks.Append(m_range); + assert(byte_size > chunk_size); +} + +AllocatedBlock::~AllocatedBlock() = default; + +lldb::addr_t AllocatedBlock::ReserveBlock(uint32_t size) { + // We must return something valid for zero bytes. + if (size == 0) + size = 1; + Log *log = GetLog(LLDBLog::Process); + + const size_t free_count = m_free_blocks.GetSize(); + for (size_t i=0; i<free_count; ++i) + { + auto &free_block = m_free_blocks.GetEntryRef(i); + const lldb::addr_t range_size = free_block.GetByteSize(); + if (range_size >= size) + { + // We found a free block that is big enough for our data. Figure out how + // many chunks we will need and calculate the resulting block size we + // will reserve. + addr_t addr = free_block.GetRangeBase(); + size_t num_chunks = CalculateChunksNeededForSize(size); + lldb::addr_t block_size = num_chunks * m_chunk_size; + lldb::addr_t bytes_left = range_size - block_size; + if (bytes_left == 0) + { + // The newly allocated block will take all of the bytes in this + // available block, so we can just add it to the allocated ranges and + // remove the range from the free ranges. + m_reserved_blocks.Insert(free_block, false); + m_free_blocks.RemoveEntryAtIndex(i); + } + else + { + // Make the new allocated range and add it to the allocated ranges. + Range<lldb::addr_t, uint32_t> reserved_block(free_block); + reserved_block.SetByteSize(block_size); + // Insert the reserved range and don't combine it with other blocks in + // the reserved blocks list. + m_reserved_blocks.Insert(reserved_block, false); + // Adjust the free range in place since we won't change the sorted + // ordering of the m_free_blocks list. + free_block.SetRangeBase(reserved_block.GetRangeEnd()); + free_block.SetByteSize(bytes_left); + } + LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, addr); + return addr; + } + } + + LLDB_LOGV(log, "({0}) (size = {1} ({1:x})) => {2:x}", this, size, + LLDB_INVALID_ADDRESS); + return LLDB_INVALID_ADDRESS; +} + +bool AllocatedBlock::FreeBlock(addr_t addr) { + bool success = false; + auto entry_idx = m_reserved_blocks.FindEntryIndexThatContains(addr); + if (entry_idx != UINT32_MAX) + { + m_free_blocks.Insert(m_reserved_blocks.GetEntryRef(entry_idx), true); + m_reserved_blocks.RemoveEntryAtIndex(entry_idx); + success = true; + } + Log *log = GetLog(LLDBLog::Process); + LLDB_LOGV(log, "({0}) (addr = {1:x}) => {2}", this, addr, success); + return success; +} + +AllocatedMemoryCache::AllocatedMemoryCache(Process &process) + : m_process(process), m_mutex(), m_memory_map() {} + +AllocatedMemoryCache::~AllocatedMemoryCache() = default; + +void AllocatedMemoryCache::Clear(bool deallocate_memory) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + if (m_process.IsAlive() && deallocate_memory) { + PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); + for (pos = m_memory_map.begin(); pos != end; ++pos) + m_process.DoDeallocateMemory(pos->second->GetBaseAddress()); + } + m_memory_map.clear(); +} + +AllocatedMemoryCache::AllocatedBlockSP +AllocatedMemoryCache::AllocatePage(uint32_t byte_size, uint32_t permissions, + uint32_t chunk_size, Status &error) { + AllocatedBlockSP block_sp; + const size_t page_size = 4096; + const size_t num_pages = (byte_size + page_size - 1) / page_size; + const size_t page_byte_size = num_pages * page_size; + + addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error); + + Log *log = GetLog(LLDBLog::Process); + if (log) { + LLDB_LOGF(log, + "Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 + ", permissions = %s) => 0x%16.16" PRIx64, + (uint32_t)page_byte_size, GetPermissionsAsCString(permissions), + (uint64_t)addr); + } + + if (addr != LLDB_INVALID_ADDRESS) { + block_sp = std::make_shared<AllocatedBlock>(addr, page_byte_size, + permissions, chunk_size); + m_memory_map.insert(std::make_pair(permissions, block_sp)); + } + return block_sp; +} + +lldb::addr_t AllocatedMemoryCache::AllocateMemory(size_t byte_size, + uint32_t permissions, + Status &error) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + addr_t addr = LLDB_INVALID_ADDRESS; + std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> + range = m_memory_map.equal_range(permissions); + + for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; + ++pos) { + addr = (*pos).second->ReserveBlock(byte_size); + if (addr != LLDB_INVALID_ADDRESS) + break; + } + + if (addr == LLDB_INVALID_ADDRESS) { + AllocatedBlockSP block_sp(AllocatePage(byte_size, permissions, 16, error)); + + if (block_sp) + addr = block_sp->ReserveBlock(byte_size); + } + Log *log = GetLog(LLDBLog::Process); + LLDB_LOGF(log, + "AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 + ", permissions = %s) => 0x%16.16" PRIx64, + (uint32_t)byte_size, GetPermissionsAsCString(permissions), + (uint64_t)addr); + return addr; +} + +bool AllocatedMemoryCache::DeallocateMemory(lldb::addr_t addr) { + std::lock_guard<std::recursive_mutex> guard(m_mutex); + + PermissionsToBlockMap::iterator pos, end = m_memory_map.end(); + bool success = false; + for (pos = m_memory_map.begin(); pos != end; ++pos) { + if (pos->second->Contains(addr)) { + success = pos->second->FreeBlock(addr); + break; + } + } + Log *log = GetLog(LLDBLog::Process); + LLDB_LOGF(log, + "AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 + ") => %i", + (uint64_t)addr, success); + return success; +} |