aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/AssignmentTrackingAnalysis.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/AssignmentTrackingAnalysis.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/AssignmentTrackingAnalysis.cpp2426
1 files changed, 2426 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/AssignmentTrackingAnalysis.cpp b/contrib/llvm-project/llvm/lib/CodeGen/AssignmentTrackingAnalysis.cpp
new file mode 100644
index 000000000000..7098824dbe4b
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/AssignmentTrackingAnalysis.cpp
@@ -0,0 +1,2426 @@
+#include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
+#include "llvm/ADT/DenseMapInfo.h"
+#include "llvm/ADT/IntervalMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/UniqueVector.h"
+#include "llvm/Analysis/Interval.h"
+#include "llvm/BinaryFormat/Dwarf.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/PrintPasses.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include <assert.h>
+#include <cstdint>
+#include <optional>
+#include <sstream>
+#include <unordered_map>
+
+using namespace llvm;
+#define DEBUG_TYPE "debug-ata"
+
+STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal");
+STATISTIC(NumDefsRemoved, "Number of dbg locs removed");
+STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned");
+STATISTIC(NumWedgesChanged, "Number of dbg wedges changed");
+
+static cl::opt<unsigned>
+ MaxNumBlocks("debug-ata-max-blocks", cl::init(10000),
+ cl::desc("Maximum num basic blocks before debug info dropped"),
+ cl::Hidden);
+/// Option for debugging the pass, determines if the memory location fragment
+/// filling happens after generating the variable locations.
+static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill", cl::init(true),
+ cl::Hidden);
+/// Print the results of the analysis. Respects -filter-print-funcs.
+static cl::opt<bool> PrintResults("print-debug-ata", cl::init(false),
+ cl::Hidden);
+
+// Implicit conversions are disabled for enum class types, so unfortunately we
+// need to create a DenseMapInfo wrapper around the specified underlying type.
+template <> struct llvm::DenseMapInfo<VariableID> {
+ using Wrapped = DenseMapInfo<unsigned>;
+ static inline VariableID getEmptyKey() {
+ return static_cast<VariableID>(Wrapped::getEmptyKey());
+ }
+ static inline VariableID getTombstoneKey() {
+ return static_cast<VariableID>(Wrapped::getTombstoneKey());
+ }
+ static unsigned getHashValue(const VariableID &Val) {
+ return Wrapped::getHashValue(static_cast<unsigned>(Val));
+ }
+ static bool isEqual(const VariableID &LHS, const VariableID &RHS) {
+ return LHS == RHS;
+ }
+};
+
+/// Helper class to build FunctionVarLocs, since that class isn't easy to
+/// modify. TODO: There's not a great deal of value in the split, it could be
+/// worth merging the two classes.
+class FunctionVarLocsBuilder {
+ friend FunctionVarLocs;
+ UniqueVector<DebugVariable> Variables;
+ // Use an unordered_map so we don't invalidate iterators after
+ // insert/modifications.
+ std::unordered_map<const Instruction *, SmallVector<VarLocInfo>>
+ VarLocsBeforeInst;
+
+ SmallVector<VarLocInfo> SingleLocVars;
+
+public:
+ /// Find or insert \p V and return the ID.
+ VariableID insertVariable(DebugVariable V) {
+ return static_cast<VariableID>(Variables.insert(V));
+ }
+
+ /// Get a variable from its \p ID.
+ const DebugVariable &getVariable(VariableID ID) const {
+ return Variables[static_cast<unsigned>(ID)];
+ }
+
+ /// Return ptr to wedge of defs or nullptr if no defs come just before /p
+ /// Before.
+ const SmallVectorImpl<VarLocInfo> *getWedge(const Instruction *Before) const {
+ auto R = VarLocsBeforeInst.find(Before);
+ if (R == VarLocsBeforeInst.end())
+ return nullptr;
+ return &R->second;
+ }
+
+ /// Replace the defs that come just before /p Before with /p Wedge.
+ void setWedge(const Instruction *Before, SmallVector<VarLocInfo> &&Wedge) {
+ VarLocsBeforeInst[Before] = std::move(Wedge);
+ }
+
+ /// Add a def for a variable that is valid for its lifetime.
+ void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL,
+ Value *V) {
+ VarLocInfo VarLoc;
+ VarLoc.VariableID = insertVariable(Var);
+ VarLoc.Expr = Expr;
+ VarLoc.DL = DL;
+ VarLoc.V = V;
+ SingleLocVars.emplace_back(VarLoc);
+ }
+
+ /// Add a def to the wedge of defs just before /p Before.
+ void addVarLoc(Instruction *Before, DebugVariable Var, DIExpression *Expr,
+ DebugLoc DL, Value *V) {
+ VarLocInfo VarLoc;
+ VarLoc.VariableID = insertVariable(Var);
+ VarLoc.Expr = Expr;
+ VarLoc.DL = DL;
+ VarLoc.V = V;
+ VarLocsBeforeInst[Before].emplace_back(VarLoc);
+ }
+};
+
+void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const {
+ // Print the variable table first. TODO: Sorting by variable could make the
+ // output more stable?
+ unsigned Counter = -1;
+ OS << "=== Variables ===\n";
+ for (const DebugVariable &V : Variables) {
+ ++Counter;
+ // Skip first entry because it is a dummy entry.
+ if (Counter == 0) {
+ continue;
+ }
+ OS << "[" << Counter << "] " << V.getVariable()->getName();
+ if (auto F = V.getFragment())
+ OS << " bits [" << F->OffsetInBits << ", "
+ << F->OffsetInBits + F->SizeInBits << ")";
+ if (const auto *IA = V.getInlinedAt())
+ OS << " inlined-at " << *IA;
+ OS << "\n";
+ }
+
+ auto PrintLoc = [&OS](const VarLocInfo &Loc) {
+ OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]"
+ << " Expr=" << *Loc.Expr << " V=" << *Loc.V << "\n";
+ };
+
+ // Print the single location variables.
+ OS << "=== Single location vars ===\n";
+ for (auto It = single_locs_begin(), End = single_locs_end(); It != End;
+ ++It) {
+ PrintLoc(*It);
+ }
+
+ // Print the non-single-location defs in line with IR.
+ OS << "=== In-line variable defs ===";
+ for (const BasicBlock &BB : Fn) {
+ OS << "\n" << BB.getName() << ":\n";
+ for (const Instruction &I : BB) {
+ for (auto It = locs_begin(&I), End = locs_end(&I); It != End; ++It) {
+ PrintLoc(*It);
+ }
+ OS << I << "\n";
+ }
+ }
+}
+
+void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) {
+ // Add the single-location variables first.
+ for (const auto &VarLoc : Builder.SingleLocVars)
+ VarLocRecords.emplace_back(VarLoc);
+ // Mark the end of the section.
+ SingleVarLocEnd = VarLocRecords.size();
+
+ // Insert a contiguous block of VarLocInfos for each instruction, mapping it
+ // to the start and end position in the vector with VarLocsBeforeInst.
+ for (auto &P : Builder.VarLocsBeforeInst) {
+ unsigned BlockStart = VarLocRecords.size();
+ for (const VarLocInfo &VarLoc : P.second)
+ VarLocRecords.emplace_back(VarLoc);
+ unsigned BlockEnd = VarLocRecords.size();
+ // Record the start and end indices.
+ if (BlockEnd != BlockStart)
+ VarLocsBeforeInst[P.first] = {BlockStart, BlockEnd};
+ }
+
+ // Copy the Variables vector from the builder's UniqueVector.
+ assert(Variables.empty() && "Expect clear before init");
+ // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values
+ // are one-based) so reserve an extra and insert a dummy.
+ Variables.reserve(Builder.Variables.size() + 1);
+ Variables.push_back(DebugVariable(nullptr, std::nullopt, nullptr));
+ Variables.append(Builder.Variables.begin(), Builder.Variables.end());
+}
+
+void FunctionVarLocs::clear() {
+ Variables.clear();
+ VarLocRecords.clear();
+ VarLocsBeforeInst.clear();
+ SingleVarLocEnd = 0;
+}
+
+/// Walk backwards along constant GEPs and bitcasts to the base storage from \p
+/// Start as far as possible. Prepend \Expression with the offset and append it
+/// with a DW_OP_deref that haes been implicit until now. Returns the walked-to
+/// value and modified expression.
+static std::pair<Value *, DIExpression *>
+walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start,
+ DIExpression *Expression) {
+ APInt OffsetInBytes(DL.getTypeSizeInBits(Start->getType()), false);
+ Value *End =
+ Start->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetInBytes);
+ SmallVector<uint64_t, 3> Ops;
+ if (OffsetInBytes.getBoolValue()) {
+ Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()};
+ Expression = DIExpression::prependOpcodes(
+ Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false);
+ }
+ Expression = DIExpression::append(Expression, {dwarf::DW_OP_deref});
+ return {End, Expression};
+}
+
+/// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression
+/// doesn't explicitly describe a memory location with DW_OP_deref or if the
+/// expression is too complex to interpret.
+static std::optional<int64_t>
+getDerefOffsetInBytes(const DIExpression *DIExpr) {
+ int64_t Offset = 0;
+ const unsigned NumElements = DIExpr->getNumElements();
+ const auto Elements = DIExpr->getElements();
+ unsigned NextElement = 0;
+ // Extract the offset.
+ if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) {
+ Offset = Elements[1];
+ NextElement = 2;
+ } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) {
+ NextElement = 3;
+ if (Elements[2] == dwarf::DW_OP_plus)
+ Offset = Elements[1];
+ else if (Elements[2] == dwarf::DW_OP_minus)
+ Offset = -Elements[1];
+ else
+ return std::nullopt;
+ }
+
+ // If that's all there is it means there's no deref.
+ if (NextElement >= NumElements)
+ return std::nullopt;
+
+ // Check the next element is DW_OP_deref - otherwise this is too complex or
+ // isn't a deref expression.
+ if (Elements[NextElement] != dwarf::DW_OP_deref)
+ return std::nullopt;
+
+ // Check the final operation is either the DW_OP_deref or is a fragment.
+ if (NumElements == NextElement + 1)
+ return Offset; // Ends with deref.
+ else if (NumElements == NextElement + 3 &&
+ Elements[NextElement] == dwarf::DW_OP_LLVM_fragment)
+ return Offset; // Ends with deref + fragment.
+
+ // Don't bother trying to interpret anything more complex.
+ return std::nullopt;
+}
+
+/// A whole (unfragmented) source variable.
+using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>;
+static DebugAggregate getAggregate(const DbgVariableIntrinsic *DII) {
+ return DebugAggregate(DII->getVariable(), DII->getDebugLoc().getInlinedAt());
+}
+static DebugAggregate getAggregate(const DebugVariable &Var) {
+ return DebugAggregate(Var.getVariable(), Var.getInlinedAt());
+}
+
+namespace {
+/// In dwarf emission, the following sequence
+/// 1. dbg.value ... Fragment(0, 64)
+/// 2. dbg.value ... Fragment(0, 32)
+/// effectively sets Fragment(32, 32) to undef (each def sets all bits not in
+/// the intersection of the fragments to having "no location"). This makes
+/// sense for implicit location values because splitting the computed values
+/// could be troublesome, and is probably quite uncommon. When we convert
+/// dbg.assigns to dbg.value+deref this kind of thing is common, and describing
+/// a location (memory) rather than a value means we don't need to worry about
+/// splitting any values, so we try to recover the rest of the fragment
+/// location here.
+/// This class performs a(nother) dataflow analysis over the function, adding
+/// variable locations so that any bits of a variable with a memory location
+/// have that location explicitly reinstated at each subsequent variable
+/// location definition that that doesn't overwrite those bits. i.e. after a
+/// variable location def, insert new defs for the memory location with
+/// fragments for the difference of "all bits currently in memory" and "the
+/// fragment of the second def".
+class MemLocFragmentFill {
+ Function &Fn;
+ FunctionVarLocsBuilder *FnVarLocs;
+ const DenseSet<DebugAggregate> *VarsWithStackSlot;
+
+ // 0 = no memory location.
+ using BaseAddress = unsigned;
+ using OffsetInBitsTy = unsigned;
+ using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>;
+ using FragsInMemMap = IntervalMap<
+ OffsetInBitsTy, BaseAddress,
+ IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize,
+ FragTraits>;
+ FragsInMemMap::Allocator IntervalMapAlloc;
+ using VarFragMap = DenseMap<unsigned, FragsInMemMap>;
+
+ /// IDs for memory location base addresses in maps. Use 0 to indicate that
+ /// there's no memory location.
+ UniqueVector<Value *> Bases;
+ UniqueVector<DebugAggregate> Aggregates;
+ DenseMap<const BasicBlock *, VarFragMap> LiveIn;
+ DenseMap<const BasicBlock *, VarFragMap> LiveOut;
+
+ struct FragMemLoc {
+ unsigned Var;
+ unsigned Base;
+ unsigned OffsetInBits;
+ unsigned SizeInBits;
+ DebugLoc DL;
+ };
+ using InsertMap = MapVector<Instruction *, SmallVector<FragMemLoc>>;
+
+ /// BBInsertBeforeMap holds a description for the set of location defs to be
+ /// inserted after the analysis is complete. It is updated during the dataflow
+ /// and the entry for a block is CLEARED each time it is (re-)visited. After
+ /// the dataflow is complete, each block entry will contain the set of defs
+ /// calculated during the final (fixed-point) iteration.
+ DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap;
+
+ static bool intervalMapsAreEqual(const FragsInMemMap &A,
+ const FragsInMemMap &B) {
+ auto AIt = A.begin(), AEnd = A.end();
+ auto BIt = B.begin(), BEnd = B.end();
+ for (; AIt != AEnd; ++AIt, ++BIt) {
+ if (BIt == BEnd)
+ return false; // B has fewer elements than A.
+ if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop())
+ return false; // Interval is different.
+ if (*AIt != *BIt)
+ return false; // Value at interval is different.
+ }
+ // AIt == AEnd. Check BIt is also now at end.
+ return BIt == BEnd;
+ }
+
+ static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) {
+ if (A.size() != B.size())
+ return false;
+ for (const auto &APair : A) {
+ auto BIt = B.find(APair.first);
+ if (BIt == B.end())
+ return false;
+ if (!intervalMapsAreEqual(APair.second, BIt->second))
+ return false;
+ }
+ return true;
+ }
+
+ /// Return a string for the value that \p BaseID represents.
+ std::string toString(unsigned BaseID) {
+ if (BaseID)
+ return Bases[BaseID]->getName().str();
+ else
+ return "None";
+ }
+
+ /// Format string describing an FragsInMemMap (IntervalMap) interval.
+ std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) {
+ std::string String;
+ std::stringstream S(String);
+ if (It.valid()) {
+ S << "[" << It.start() << ", " << It.stop()
+ << "): " << toString(It.value());
+ } else {
+ S << "invalid iterator (end)";
+ }
+ if (Newline)
+ S << "\n";
+ return S.str();
+ };
+
+ FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) {
+ FragsInMemMap Result(IntervalMapAlloc);
+ for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) {
+ LLVM_DEBUG(dbgs() << "a " << toString(AIt));
+ // This is basically copied from process() and inverted (process is
+ // performing something like a union whereas this is more of an
+ // intersect).
+
+ // There's no work to do if interval `a` overlaps no fragments in map `B`.
+ if (!B.overlaps(AIt.start(), AIt.stop()))
+ continue;
+
+ // Does StartBit intersect an existing fragment?
+ auto FirstOverlap = B.find(AIt.start());
+ assert(FirstOverlap != B.end());
+ bool IntersectStart = FirstOverlap.start() < AIt.start();
+ LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false)
+ << ", IntersectStart: " << IntersectStart << "\n");
+
+ // Does EndBit intersect an existing fragment?
+ auto LastOverlap = B.find(AIt.stop());
+ bool IntersectEnd =
+ LastOverlap != B.end() && LastOverlap.start() < AIt.stop();
+ LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false)
+ << ", IntersectEnd: " << IntersectEnd << "\n");
+
+ // Check if both ends of `a` intersect the same interval `b`.
+ if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
+ // Insert `a` (`a` is contained in `b`) if the values match.
+ // [ a ]
+ // [ - b - ]
+ // -
+ // [ r ]
+ LLVM_DEBUG(dbgs() << "- a is contained within "
+ << toString(FirstOverlap));
+ if (*AIt && *AIt == *FirstOverlap)
+ Result.insert(AIt.start(), AIt.stop(), *AIt);
+ } else {
+ // There's an overlap but `a` is not fully contained within
+ // `b`. Shorten any end-point intersections.
+ // [ - a - ]
+ // [ - b - ]
+ // -
+ // [ r ]
+ auto Next = FirstOverlap;
+ if (IntersectStart) {
+ LLVM_DEBUG(dbgs() << "- insert intersection of a and "
+ << toString(FirstOverlap));
+ if (*AIt && *AIt == *FirstOverlap)
+ Result.insert(AIt.start(), FirstOverlap.stop(), *AIt);
+ ++Next;
+ }
+ // [ - a - ]
+ // [ - b - ]
+ // -
+ // [ r ]
+ if (IntersectEnd) {
+ LLVM_DEBUG(dbgs() << "- insert intersection of a and "
+ << toString(LastOverlap));
+ if (*AIt && *AIt == *LastOverlap)
+ Result.insert(LastOverlap.start(), AIt.stop(), *AIt);
+ }
+
+ // Insert all intervals in map `B` that are contained within interval
+ // `a` where the values match.
+ // [ - - a - - ]
+ // [ b1 ] [ b2 ]
+ // -
+ // [ r1 ] [ r2 ]
+ while (Next != B.end() && Next.start() < AIt.stop() &&
+ Next.stop() <= AIt.stop()) {
+ LLVM_DEBUG(dbgs()
+ << "- insert intersection of a and " << toString(Next));
+ if (*AIt && *AIt == *Next)
+ Result.insert(Next.start(), Next.stop(), *Next);
+ ++Next;
+ }
+ }
+ }
+ return Result;
+ }
+
+ /// Meet \p A and \p B, storing the result in \p A.
+ void meetVars(VarFragMap &A, const VarFragMap &B) {
+ // Meet A and B.
+ //
+ // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b)
+ for (auto It = A.begin(), End = A.end(); It != End; ++It) {
+ unsigned AVar = It->first;
+ FragsInMemMap &AFrags = It->second;
+ auto BIt = B.find(AVar);
+ if (BIt == B.end()) {
+ A.erase(It);
+ continue; // Var has no bits defined in B.
+ }
+ LLVM_DEBUG(dbgs() << "meet fragment maps for "
+ << Aggregates[AVar].first->getName() << "\n");
+ AFrags = meetFragments(AFrags, BIt->second);
+ }
+ }
+
+ bool meet(const BasicBlock &BB,
+ const SmallPtrSet<BasicBlock *, 16> &Visited) {
+ LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName()
+ << "\n");
+
+ VarFragMap BBLiveIn;
+ bool FirstMeet = true;
+ // LiveIn locs for BB is the meet of the already-processed preds' LiveOut
+ // locs.
+ for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
+ // Ignore preds that haven't been processed yet. This is essentially the
+ // same as initialising all variables to implicit top value (⊤) which is
+ // the identity value for the meet operation.
+ const BasicBlock *Pred = *I;
+ if (!Visited.count(Pred))
+ continue;
+
+ auto PredLiveOut = LiveOut.find(Pred);
+ assert(PredLiveOut != LiveOut.end());
+
+ if (FirstMeet) {
+ LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n");
+ BBLiveIn = PredLiveOut->second;
+ FirstMeet = false;
+ } else {
+ LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName()
+ << "\n");
+ meetVars(BBLiveIn, PredLiveOut->second);
+ }
+
+ // An empty set is ⊥ for the intersect-like meet operation. If we've
+ // already got ⊥ there's no need to run the code - we know the result is
+ // ⊥ since `meet(a, ⊥) = ⊥`.
+ if (BBLiveIn.size() == 0)
+ break;
+ }
+
+ auto CurrentLiveInEntry = LiveIn.find(&BB);
+ // If there's no LiveIn entry for the block yet, add it.
+ if (CurrentLiveInEntry == LiveIn.end()) {
+ LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName()
+ << "\n");
+ LiveIn[&BB] = std::move(BBLiveIn);
+ return /*Changed=*/true;
+ }
+
+ // If the LiveIn set has changed (expensive check) update it and return
+ // true.
+ if (!varFragMapsAreEqual(BBLiveIn, CurrentLiveInEntry->second)) {
+ LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n");
+ CurrentLiveInEntry->second = std::move(BBLiveIn);
+ return /*Changed=*/true;
+ }
+
+ LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n");
+ return /*Changed=*/false;
+ }
+
+ void insertMemLoc(BasicBlock &BB, Instruction &Before, unsigned Var,
+ unsigned StartBit, unsigned EndBit, unsigned Base,
+ DebugLoc DL) {
+ assert(StartBit < EndBit && "Cannot create fragment of size <= 0");
+ if (!Base)
+ return;
+ FragMemLoc Loc;
+ Loc.Var = Var;
+ Loc.OffsetInBits = StartBit;
+ Loc.SizeInBits = EndBit - StartBit;
+ assert(Base && "Expected a non-zero ID for Base address");
+ Loc.Base = Base;
+ Loc.DL = DL;
+ BBInsertBeforeMap[&BB][&Before].push_back(Loc);
+ LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName()
+ << " bits [" << StartBit << ", " << EndBit << ")\n");
+ }
+
+ void addDef(const VarLocInfo &VarLoc, Instruction &Before, BasicBlock &BB,
+ VarFragMap &LiveSet) {
+ DebugVariable DbgVar = FnVarLocs->getVariable(VarLoc.VariableID);
+ if (skipVariable(DbgVar.getVariable()))
+ return;
+ // Don't bother doing anything for this variables if we know it's fully
+ // promoted. We're only interested in variables that (sometimes) live on
+ // the stack here.
+ if (!VarsWithStackSlot->count(getAggregate(DbgVar)))
+ return;
+ unsigned Var = Aggregates.insert(
+ DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt()));
+
+ // [StartBit: EndBit) are the bits affected by this def.
+ const DIExpression *DIExpr = VarLoc.Expr;
+ unsigned StartBit;
+ unsigned EndBit;
+ if (auto Frag = DIExpr->getFragmentInfo()) {
+ StartBit = Frag->OffsetInBits;
+ EndBit = StartBit + Frag->SizeInBits;
+ } else {
+ assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits()));
+ StartBit = 0;
+ EndBit = *DbgVar.getVariable()->getSizeInBits();
+ }
+
+ // We will only fill fragments for simple memory-describing dbg.value
+ // intrinsics. If the fragment offset is the same as the offset from the
+ // base pointer, do The Thing, otherwise fall back to normal dbg.value
+ // behaviour. AssignmentTrackingLowering has generated DIExpressions
+ // written in terms of the base pointer.
+ // TODO: Remove this condition since the fragment offset doesn't always
+ // equal the offset from base pointer (e.g. for a SROA-split variable).
+ const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr);
+ const unsigned Base =
+ DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit
+ ? Bases.insert(VarLoc.V)
+ : 0;
+ LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " ["
+ << StartBit << ", " << EndBit << "): " << toString(Base)
+ << "\n");
+
+ // First of all, any locs that use mem that are disrupted need reinstating.
+ // Unfortunately, IntervalMap doesn't let us insert intervals that overlap
+ // with existing intervals so this code involves a lot of fiddling around
+ // with intervals to do that manually.
+ auto FragIt = LiveSet.find(Var);
+
+ // Check if the variable does not exist in the map.
+ if (FragIt == LiveSet.end()) {
+ // Add this variable to the BB map.
+ auto P = LiveSet.try_emplace(Var, FragsInMemMap(IntervalMapAlloc));
+ assert(P.second && "Var already in map?");
+ // Add the interval to the fragment map.
+ P.first->second.insert(StartBit, EndBit, Base);
+ return;
+ }
+ // The variable has an entry in the map.
+
+ FragsInMemMap &FragMap = FragIt->second;
+ // First check the easy case: the new fragment `f` doesn't overlap with any
+ // intervals.
+ if (!FragMap.overlaps(StartBit, EndBit)) {
+ LLVM_DEBUG(dbgs() << "- No overlaps\n");
+ FragMap.insert(StartBit, EndBit, Base);
+ return;
+ }
+ // There is at least one overlap.
+
+ // Does StartBit intersect an existing fragment?
+ auto FirstOverlap = FragMap.find(StartBit);
+ assert(FirstOverlap != FragMap.end());
+ bool IntersectStart = FirstOverlap.start() < StartBit;
+
+ // Does EndBit intersect an existing fragment?
+ auto LastOverlap = FragMap.find(EndBit);
+ bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit;
+
+ // Check if both ends of `f` intersect the same interval `i`.
+ if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) {
+ LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n");
+ // Shorten `i` so that there's space to insert `f`.
+ // [ f ]
+ // [ - i - ]
+ // +
+ // [ i ][ f ][ i ]
+
+ // Save values for use after inserting a new interval.
+ auto EndBitOfOverlap = FirstOverlap.stop();
+ unsigned OverlapValue = FirstOverlap.value();
+
+ // Shorten the overlapping interval.
+ FirstOverlap.setStop(StartBit);
+ insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
+ OverlapValue, VarLoc.DL);
+
+ // Insert a new interval to represent the end part.
+ FragMap.insert(EndBit, EndBitOfOverlap, OverlapValue);
+ insertMemLoc(BB, Before, Var, EndBit, EndBitOfOverlap, OverlapValue,
+ VarLoc.DL);
+
+ // Insert the new (middle) fragment now there is space.
+ FragMap.insert(StartBit, EndBit, Base);
+ } else {
+ // There's an overlap but `f` may not be fully contained within
+ // `i`. Shorten any end-point intersections so that we can then
+ // insert `f`.
+ // [ - f - ]
+ // [ - i - ]
+ // | |
+ // [ i ]
+ // Shorten any end-point intersections.
+ if (IntersectStart) {
+ LLVM_DEBUG(dbgs() << "- Intersect interval at start\n");
+ // Split off at the intersection.
+ FirstOverlap.setStop(StartBit);
+ insertMemLoc(BB, Before, Var, FirstOverlap.start(), StartBit,
+ *FirstOverlap, VarLoc.DL);
+ }
+ // [ - f - ]
+ // [ - i - ]
+ // | |
+ // [ i ]
+ if (IntersectEnd) {
+ LLVM_DEBUG(dbgs() << "- Intersect interval at end\n");
+ // Split off at the intersection.
+ LastOverlap.setStart(EndBit);
+ insertMemLoc(BB, Before, Var, EndBit, LastOverlap.stop(), *LastOverlap,
+ VarLoc.DL);
+ }
+
+ LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n");
+ // FirstOverlap and LastOverlap have been shortened such that they're
+ // no longer overlapping with [StartBit, EndBit). Delete any overlaps
+ // that remain (these will be fully contained within `f`).
+ // [ - f - ] }
+ // [ - i - ] } Intersection shortening that has happened above.
+ // | | }
+ // [ i ] }
+ // -----------------
+ // [i2 ] } Intervals fully contained within `f` get erased.
+ // -----------------
+ // [ - f - ][ i ] } Completed insertion.
+ auto It = FirstOverlap;
+ if (IntersectStart)
+ ++It; // IntersectStart: first overlap has been shortened.
+ while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) {
+ LLVM_DEBUG(dbgs() << "- Erase " << toString(It));
+ It.erase(); // This increments It after removing the interval.
+ }
+ // We've dealt with all the overlaps now!
+ assert(!FragMap.overlaps(StartBit, EndBit));
+ LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n");
+ FragMap.insert(StartBit, EndBit, Base);
+ }
+ }
+
+ bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); }
+
+ void process(BasicBlock &BB, VarFragMap &LiveSet) {
+ BBInsertBeforeMap[&BB].clear();
+ for (auto &I : BB) {
+ if (const auto *Locs = FnVarLocs->getWedge(&I)) {
+ for (const VarLocInfo &Loc : *Locs) {
+ addDef(Loc, I, *I.getParent(), LiveSet);
+ }
+ }
+ }
+ }
+
+public:
+ MemLocFragmentFill(Function &Fn,
+ const DenseSet<DebugAggregate> *VarsWithStackSlot)
+ : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot) {}
+
+ /// Add variable locations to \p FnVarLocs so that any bits of a variable
+ /// with a memory location have that location explicitly reinstated at each
+ /// subsequent variable location definition that that doesn't overwrite those
+ /// bits. i.e. after a variable location def, insert new defs for the memory
+ /// location with fragments for the difference of "all bits currently in
+ /// memory" and "the fragment of the second def". e.g.
+ ///
+ /// Before:
+ ///
+ /// var x bits 0 to 63: value in memory
+ /// more instructions
+ /// var x bits 0 to 31: value is %0
+ ///
+ /// After:
+ ///
+ /// var x bits 0 to 63: value in memory
+ /// more instructions
+ /// var x bits 0 to 31: value is %0
+ /// var x bits 32 to 61: value in memory ; <-- new loc def
+ ///
+ void run(FunctionVarLocsBuilder *FnVarLocs) {
+ if (!EnableMemLocFragFill)
+ return;
+
+ this->FnVarLocs = FnVarLocs;
+
+ // Prepare for traversal.
+ //
+ ReversePostOrderTraversal<Function *> RPOT(&Fn);
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Worklist;
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Pending;
+ DenseMap<unsigned int, BasicBlock *> OrderToBB;
+ DenseMap<BasicBlock *, unsigned int> BBToOrder;
+ { // Init OrderToBB and BBToOrder.
+ unsigned int RPONumber = 0;
+ for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
+ OrderToBB[RPONumber] = *RI;
+ BBToOrder[*RI] = RPONumber;
+ Worklist.push(RPONumber);
+ ++RPONumber;
+ }
+ LiveIn.init(RPONumber);
+ LiveOut.init(RPONumber);
+ }
+
+ // Perform the traversal.
+ //
+ // This is a standard "intersect of predecessor outs" dataflow problem. To
+ // solve it, we perform meet() and process() using the two worklist method
+ // until the LiveIn data for each block becomes unchanging.
+ //
+ // This dataflow is essentially working on maps of sets and at each meet we
+ // intersect the maps and the mapped sets. So, initialized live-in maps
+ // monotonically decrease in value throughout the dataflow.
+ SmallPtrSet<BasicBlock *, 16> Visited;
+ while (!Worklist.empty() || !Pending.empty()) {
+ // We track what is on the pending worklist to avoid inserting the same
+ // thing twice. We could avoid this with a custom priority queue, but
+ // this is probably not worth it.
+ SmallPtrSet<BasicBlock *, 16> OnPending;
+ LLVM_DEBUG(dbgs() << "Processing Worklist\n");
+ while (!Worklist.empty()) {
+ BasicBlock *BB = OrderToBB[Worklist.top()];
+ LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
+ Worklist.pop();
+ bool InChanged = meet(*BB, Visited);
+ // Always consider LiveIn changed on the first visit.
+ InChanged |= Visited.insert(BB).second;
+ if (InChanged) {
+ LLVM_DEBUG(dbgs()
+ << BB->getName() << " has new InLocs, process it\n");
+ // Mutate a copy of LiveIn while processing BB. Once we've processed
+ // the terminator LiveSet is the LiveOut set for BB.
+ // This is an expensive copy!
+ VarFragMap LiveSet = LiveIn[BB];
+
+ // Process the instructions in the block.
+ process(*BB, LiveSet);
+
+ // Relatively expensive check: has anything changed in LiveOut for BB?
+ if (!varFragMapsAreEqual(LiveOut[BB], LiveSet)) {
+ LLVM_DEBUG(dbgs() << BB->getName()
+ << " has new OutLocs, add succs to worklist: [ ");
+ LiveOut[BB] = std::move(LiveSet);
+ for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
+ if (OnPending.insert(*I).second) {
+ LLVM_DEBUG(dbgs() << I->getName() << " ");
+ Pending.push(BBToOrder[*I]);
+ }
+ }
+ LLVM_DEBUG(dbgs() << "]\n");
+ }
+ }
+ }
+ Worklist.swap(Pending);
+ // At this point, pending must be empty, since it was just the empty
+ // worklist
+ assert(Pending.empty() && "Pending should be empty");
+ }
+
+ // Insert new location defs.
+ for (auto Pair : BBInsertBeforeMap) {
+ InsertMap &Map = Pair.second;
+ for (auto Pair : Map) {
+ Instruction *InsertBefore = Pair.first;
+ assert(InsertBefore && "should never be null");
+ auto FragMemLocs = Pair.second;
+ auto &Ctx = Fn.getContext();
+
+ for (auto FragMemLoc : FragMemLocs) {
+ DIExpression *Expr = DIExpression::get(Ctx, std::nullopt);
+ Expr = *DIExpression::createFragmentExpression(
+ Expr, FragMemLoc.OffsetInBits, FragMemLoc.SizeInBits);
+ Expr = DIExpression::prepend(Expr, DIExpression::DerefAfter,
+ FragMemLoc.OffsetInBits / 8);
+ DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr,
+ FragMemLoc.DL.getInlinedAt());
+ FnVarLocs->addVarLoc(InsertBefore, Var, Expr, FragMemLoc.DL,
+ Bases[FragMemLoc.Base]);
+ }
+ }
+ }
+ }
+};
+
+/// AssignmentTrackingLowering encapsulates a dataflow analysis over a function
+/// that interprets assignment tracking debug info metadata and stores in IR to
+/// create a map of variable locations.
+class AssignmentTrackingLowering {
+public:
+ /// The kind of location in use for a variable, where Mem is the stack home,
+ /// Val is an SSA value or const, and None means that there is not one single
+ /// kind (either because there are multiple or because there is none; it may
+ /// prove useful to split this into two values in the future).
+ ///
+ /// LocKind is a join-semilattice with the partial order:
+ /// None > Mem, Val
+ ///
+ /// i.e.
+ /// join(Mem, Mem) = Mem
+ /// join(Val, Val) = Val
+ /// join(Mem, Val) = None
+ /// join(None, Mem) = None
+ /// join(None, Val) = None
+ /// join(None, None) = None
+ ///
+ /// Note: the order is not `None > Val > Mem` because we're using DIAssignID
+ /// to name assignments and are not tracking the actual stored values.
+ /// Therefore currently there's no way to ensure that Mem values and Val
+ /// values are the same. This could be a future extension, though it's not
+ /// clear that many additional locations would be recovered that way in
+ /// practice as the likelihood of this sitation arising naturally seems
+ /// incredibly low.
+ enum class LocKind { Mem, Val, None };
+
+ /// An abstraction of the assignment of a value to a variable or memory
+ /// location.
+ ///
+ /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a
+ /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or
+ /// can't) know the ID of the last assignment that took place.
+ ///
+ /// The Status of the Assignment (Known or NoneOrPhi) is another
+ /// join-semilattice. The partial order is:
+ /// NoneOrPhi > Known {id_0, id_1, ...id_N}
+ ///
+ /// i.e. for all values x and y where x != y:
+ /// join(x, x) = x
+ /// join(x, y) = NoneOrPhi
+ struct Assignment {
+ enum S { Known, NoneOrPhi } Status;
+ /// ID of the assignment. nullptr if Status is not Known.
+ DIAssignID *ID;
+ /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field.
+ /// May be nullptr.
+ DbgAssignIntrinsic *Source;
+
+ bool isSameSourceAssignment(const Assignment &Other) const {
+ // Don't include Source in the equality check. Assignments are
+ // defined by their ID, not debug intrinsic(s).
+ return std::tie(Status, ID) == std::tie(Other.Status, Other.ID);
+ }
+ void dump(raw_ostream &OS) {
+ static const char *LUT[] = {"Known", "NoneOrPhi"};
+ OS << LUT[Status] << "(id=";
+ if (ID)
+ OS << ID;
+ else
+ OS << "null";
+ OS << ", s=";
+ if (Source)
+ OS << *Source;
+ else
+ OS << "null";
+ OS << ")";
+ }
+
+ static Assignment make(DIAssignID *ID, DbgAssignIntrinsic *Source) {
+ return Assignment(Known, ID, Source);
+ }
+ static Assignment makeFromMemDef(DIAssignID *ID) {
+ return Assignment(Known, ID, nullptr);
+ }
+ static Assignment makeNoneOrPhi() {
+ return Assignment(NoneOrPhi, nullptr, nullptr);
+ }
+ // Again, need a Top value?
+ Assignment()
+ : Status(NoneOrPhi), ID(nullptr), Source(nullptr) {
+ } // Can we delete this?
+ Assignment(S Status, DIAssignID *ID, DbgAssignIntrinsic *Source)
+ : Status(Status), ID(ID), Source(Source) {
+ // If the Status is Known then we expect there to be an assignment ID.
+ assert(Status == NoneOrPhi || ID);
+ }
+ };
+
+ using AssignmentMap = DenseMap<VariableID, Assignment>;
+ using LocMap = DenseMap<VariableID, LocKind>;
+ using OverlapMap = DenseMap<VariableID, SmallVector<VariableID, 4>>;
+ using UntaggedStoreAssignmentMap =
+ DenseMap<const Instruction *,
+ SmallVector<std::pair<VariableID, at::AssignmentInfo>>>;
+
+private:
+ /// Map a variable to the set of variables that it fully contains.
+ OverlapMap VarContains;
+ /// Map untagged stores to the variable fragments they assign to. Used by
+ /// processUntaggedInstruction.
+ UntaggedStoreAssignmentMap UntaggedStoreVars;
+
+ // Machinery to defer inserting dbg.values.
+ using InsertMap = MapVector<Instruction *, SmallVector<VarLocInfo>>;
+ InsertMap InsertBeforeMap;
+ /// Clear the location definitions currently cached for insertion after /p
+ /// After.
+ void resetInsertionPoint(Instruction &After);
+ void emitDbgValue(LocKind Kind, const DbgVariableIntrinsic *Source,
+ Instruction *After);
+
+ static bool mapsAreEqual(const AssignmentMap &A, const AssignmentMap &B) {
+ if (A.size() != B.size())
+ return false;
+ for (const auto &Pair : A) {
+ VariableID Var = Pair.first;
+ const Assignment &AV = Pair.second;
+ auto R = B.find(Var);
+ // Check if this entry exists in B, otherwise ret false.
+ if (R == B.end())
+ return false;
+ // Check that the assignment value is the same.
+ if (!AV.isSameSourceAssignment(R->second))
+ return false;
+ }
+ return true;
+ }
+
+ /// Represents the stack and debug assignments in a block. Used to describe
+ /// the live-in and live-out values for blocks, as well as the "current"
+ /// value as we process each instruction in a block.
+ struct BlockInfo {
+ /// Dominating assignment to memory for each variable.
+ AssignmentMap StackHomeValue;
+ /// Dominating assignemnt to each variable.
+ AssignmentMap DebugValue;
+ /// Location kind for each variable. LiveLoc indicates whether the
+ /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue
+ /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of
+ /// preference. This cannot be derived by inspecting DebugValue and
+ /// StackHomeValue due to the fact that there's no distinction in
+ /// Assignment (the class) between whether an assignment is unknown or a
+ /// merge of multiple assignments (both are Status::NoneOrPhi). In other
+ /// words, the memory location may well be valid while both DebugValue and
+ /// StackHomeValue contain Assignments that have a Status of NoneOrPhi.
+ LocMap LiveLoc;
+
+ /// Compare every element in each map to determine structural equality
+ /// (slow).
+ bool operator==(const BlockInfo &Other) const {
+ return LiveLoc == Other.LiveLoc &&
+ mapsAreEqual(StackHomeValue, Other.StackHomeValue) &&
+ mapsAreEqual(DebugValue, Other.DebugValue);
+ }
+ bool operator!=(const BlockInfo &Other) const { return !(*this == Other); }
+ bool isValid() {
+ return LiveLoc.size() == DebugValue.size() &&
+ LiveLoc.size() == StackHomeValue.size();
+ }
+ };
+
+ Function &Fn;
+ const DataLayout &Layout;
+ const DenseSet<DebugAggregate> *VarsWithStackSlot;
+ FunctionVarLocsBuilder *FnVarLocs;
+ DenseMap<const BasicBlock *, BlockInfo> LiveIn;
+ DenseMap<const BasicBlock *, BlockInfo> LiveOut;
+
+ /// Helper for process methods to track variables touched each frame.
+ DenseSet<VariableID> VarsTouchedThisFrame;
+
+ /// The set of variables that sometimes are not located in their stack home.
+ DenseSet<DebugAggregate> NotAlwaysStackHomed;
+
+ VariableID getVariableID(const DebugVariable &Var) {
+ return static_cast<VariableID>(FnVarLocs->insertVariable(Var));
+ }
+
+ /// Join the LiveOut values of preds that are contained in \p Visited into
+ /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB]
+ /// values monotonically increase. See the @link joinMethods join methods
+ /// @endlink documentation for more info.
+ bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited);
+ ///@name joinMethods
+ /// Functions that implement `join` (the least upper bound) for the
+ /// join-semilattice types used in the dataflow. There is an explicit bottom
+ /// value (⊥) for some types and and explicit top value (⊤) for all types.
+ /// By definition:
+ ///
+ /// Join(A, B) >= A && Join(A, B) >= B
+ /// Join(A, ⊥) = A
+ /// Join(A, ⊤) = ⊤
+ ///
+ /// These invariants are important for monotonicity.
+ ///
+ /// For the map-type functions, all unmapped keys in an empty map are
+ /// associated with a bottom value (⊥). This represents their values being
+ /// unknown. Unmapped keys in non-empty maps (joining two maps with a key
+ /// only present in one) represents either a variable going out of scope or
+ /// dropped debug info. It is assumed the key is associated with a top value
+ /// (⊤) in this case (unknown location / assignment).
+ ///@{
+ static LocKind joinKind(LocKind A, LocKind B);
+ static LocMap joinLocMap(const LocMap &A, const LocMap &B);
+ static Assignment joinAssignment(const Assignment &A, const Assignment &B);
+ static AssignmentMap joinAssignmentMap(const AssignmentMap &A,
+ const AssignmentMap &B);
+ static BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B);
+ ///@}
+
+ /// Process the instructions in \p BB updating \p LiveSet along the way. \p
+ /// LiveSet must be initialized with the current live-in locations before
+ /// calling this.
+ void process(BasicBlock &BB, BlockInfo *LiveSet);
+ ///@name processMethods
+ /// Methods to process instructions in order to update the LiveSet (current
+ /// location information).
+ ///@{
+ void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet);
+ void processDbgInstruction(Instruction &I, BlockInfo *LiveSet);
+ /// Update \p LiveSet after encountering an instruction with a DIAssignID
+ /// attachment, \p I.
+ void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet);
+ /// Update \p LiveSet after encountering an instruciton without a DIAssignID
+ /// attachment, \p I.
+ void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet);
+ void processDbgAssign(DbgAssignIntrinsic &DAI, BlockInfo *LiveSet);
+ void processDbgValue(DbgValueInst &DVI, BlockInfo *LiveSet);
+ /// Add an assignment to memory for the variable /p Var.
+ void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
+ /// Add an assignment to the variable /p Var.
+ void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV);
+ ///@}
+
+ /// Set the LocKind for \p Var.
+ void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K);
+ /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to
+ /// have been called for \p Var first.
+ LocKind getLocKind(BlockInfo *LiveSet, VariableID Var);
+ /// Return true if \p Var has an assignment in \p M matching \p AV.
+ bool hasVarWithAssignment(VariableID Var, const Assignment &AV,
+ const AssignmentMap &M);
+
+ /// Emit info for variables that are fully promoted.
+ bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs);
+
+public:
+ AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout,
+ const DenseSet<DebugAggregate> *VarsWithStackSlot)
+ : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {}
+ /// Run the analysis, adding variable location info to \p FnVarLocs. Returns
+ /// true if any variable locations have been added to FnVarLocs.
+ bool run(FunctionVarLocsBuilder *FnVarLocs);
+};
+} // namespace
+
+void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var,
+ LocKind K) {
+ auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) {
+ VarsTouchedThisFrame.insert(Var);
+ LiveSet->LiveLoc[Var] = K;
+ };
+ SetKind(LiveSet, Var, K);
+
+ // Update the LocKind for all fragments contained within Var.
+ for (VariableID Frag : VarContains[Var])
+ SetKind(LiveSet, Frag, K);
+}
+
+AssignmentTrackingLowering::LocKind
+AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) {
+ auto Pair = LiveSet->LiveLoc.find(Var);
+ assert(Pair != LiveSet->LiveLoc.end());
+ return Pair->second;
+}
+
+void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var,
+ const Assignment &AV) {
+ auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) {
+ LiveSet->StackHomeValue[Var] = AV;
+ // Add default (Var -> ⊤) to DebugValue if Var isn't in DebugValue yet.
+ LiveSet->DebugValue.insert({Var, Assignment::makeNoneOrPhi()});
+ // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers
+ // of addMemDef will call setLocKind to override.
+ LiveSet->LiveLoc.insert({Var, LocKind::None});
+ };
+ AddDef(LiveSet, Var, AV);
+
+ // Use this assigment for all fragments contained within Var, but do not
+ // provide a Source because we cannot convert Var's value to a value for the
+ // fragment.
+ Assignment FragAV = AV;
+ FragAV.Source = nullptr;
+ for (VariableID Frag : VarContains[Var])
+ AddDef(LiveSet, Frag, FragAV);
+}
+
+void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var,
+ const Assignment &AV) {
+ auto AddDef = [](BlockInfo *LiveSet, VariableID Var, Assignment AV) {
+ LiveSet->DebugValue[Var] = AV;
+ // Add default (Var -> ⊤) to StackHome if Var isn't in StackHome yet.
+ LiveSet->StackHomeValue.insert({Var, Assignment::makeNoneOrPhi()});
+ // Add default (Var -> ⊤) to LiveLocs if Var isn't in LiveLocs yet. Callers
+ // of addDbgDef will call setLocKind to override.
+ LiveSet->LiveLoc.insert({Var, LocKind::None});
+ };
+ AddDef(LiveSet, Var, AV);
+
+ // Use this assigment for all fragments contained within Var, but do not
+ // provide a Source because we cannot convert Var's value to a value for the
+ // fragment.
+ Assignment FragAV = AV;
+ FragAV.Source = nullptr;
+ for (VariableID Frag : VarContains[Var])
+ AddDef(LiveSet, Frag, FragAV);
+}
+
+static DIAssignID *getIDFromInst(const Instruction &I) {
+ return cast<DIAssignID>(I.getMetadata(LLVMContext::MD_DIAssignID));
+}
+
+static DIAssignID *getIDFromMarker(const DbgAssignIntrinsic &DAI) {
+ return cast<DIAssignID>(DAI.getAssignID());
+}
+
+/// Return true if \p Var has an assignment in \p M matching \p AV.
+bool AssignmentTrackingLowering::hasVarWithAssignment(VariableID Var,
+ const Assignment &AV,
+ const AssignmentMap &M) {
+ auto AssignmentIsMapped = [](VariableID Var, const Assignment &AV,
+ const AssignmentMap &M) {
+ auto R = M.find(Var);
+ if (R == M.end())
+ return false;
+ return AV.isSameSourceAssignment(R->second);
+ };
+
+ if (!AssignmentIsMapped(Var, AV, M))
+ return false;
+
+ // Check all the frags contained within Var as these will have all been
+ // mapped to AV at the last store to Var.
+ for (VariableID Frag : VarContains[Var])
+ if (!AssignmentIsMapped(Frag, AV, M))
+ return false;
+ return true;
+}
+
+#ifndef NDEBUG
+const char *locStr(AssignmentTrackingLowering::LocKind Loc) {
+ using LocKind = AssignmentTrackingLowering::LocKind;
+ switch (Loc) {
+ case LocKind::Val:
+ return "Val";
+ case LocKind::Mem:
+ return "Mem";
+ case LocKind::None:
+ return "None";
+ };
+ llvm_unreachable("unknown LocKind");
+}
+#endif
+
+void AssignmentTrackingLowering::emitDbgValue(
+ AssignmentTrackingLowering::LocKind Kind,
+ const DbgVariableIntrinsic *Source, Instruction *After) {
+
+ DILocation *DL = Source->getDebugLoc();
+ auto Emit = [this, Source, After, DL](Value *Val, DIExpression *Expr) {
+ assert(Expr);
+ if (!Val)
+ Val = PoisonValue::get(Type::getInt1Ty(Source->getContext()));
+
+ // Find a suitable insert point.
+ Instruction *InsertBefore = After->getNextNode();
+ assert(InsertBefore && "Shouldn't be inserting after a terminator");
+
+ VariableID Var = getVariableID(DebugVariable(Source));
+ VarLocInfo VarLoc;
+ VarLoc.VariableID = static_cast<VariableID>(Var);
+ VarLoc.Expr = Expr;
+ VarLoc.V = Val;
+ VarLoc.DL = DL;
+ // Insert it into the map for later.
+ InsertBeforeMap[InsertBefore].push_back(VarLoc);
+ };
+
+ // NOTE: This block can mutate Kind.
+ if (Kind == LocKind::Mem) {
+ const auto *DAI = cast<DbgAssignIntrinsic>(Source);
+ // Check the address hasn't been dropped (e.g. the debug uses may not have
+ // been replaced before deleting a Value).
+ if (DAI->isKillAddress()) {
+ // The address isn't valid so treat this as a non-memory def.
+ Kind = LocKind::Val;
+ } else {
+ Value *Val = DAI->getAddress();
+ DIExpression *Expr = DAI->getAddressExpression();
+ assert(!Expr->getFragmentInfo() &&
+ "fragment info should be stored in value-expression only");
+ // Copy the fragment info over from the value-expression to the new
+ // DIExpression.
+ if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) {
+ auto FragInfo = *OptFragInfo;
+ Expr = *DIExpression::createFragmentExpression(
+ Expr, FragInfo.OffsetInBits, FragInfo.SizeInBits);
+ }
+ // The address-expression has an implicit deref, add it now.
+ std::tie(Val, Expr) =
+ walkToAllocaAndPrependOffsetDeref(Layout, Val, Expr);
+ Emit(Val, Expr);
+ return;
+ }
+ }
+
+ if (Kind == LocKind::Val) {
+ /// Get the value component, converting to Undef if it is variadic.
+ Value *Val =
+ Source->hasArgList() ? nullptr : Source->getVariableLocationOp(0);
+ Emit(Val, Source->getExpression());
+ return;
+ }
+
+ if (Kind == LocKind::None) {
+ Emit(nullptr, Source->getExpression());
+ return;
+ }
+}
+
+void AssignmentTrackingLowering::processNonDbgInstruction(
+ Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
+ if (I.hasMetadata(LLVMContext::MD_DIAssignID))
+ processTaggedInstruction(I, LiveSet);
+ else
+ processUntaggedInstruction(I, LiveSet);
+}
+
+void AssignmentTrackingLowering::processUntaggedInstruction(
+ Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
+ // Interpret stack stores that are not tagged as an assignment in memory for
+ // the variables associated with that address. These stores may not be tagged
+ // because a) the store cannot be represented using dbg.assigns (non-const
+ // length or offset) or b) the tag was accidentally dropped during
+ // optimisations. For these stores we fall back to assuming that the stack
+ // home is a valid location for the variables. The benefit is that this
+ // prevents us missing an assignment and therefore incorrectly maintaining
+ // earlier location definitions, and in many cases it should be a reasonable
+ // assumption. However, this will occasionally lead to slight
+ // inaccuracies. The value of a hoisted untagged store will be visible
+ // "early", for example.
+ assert(!I.hasMetadata(LLVMContext::MD_DIAssignID));
+ auto It = UntaggedStoreVars.find(&I);
+ if (It == UntaggedStoreVars.end())
+ return; // No variables associated with the store destination.
+
+ LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I
+ << "\n");
+ // Iterate over the variables that this store affects, add a NoneOrPhi dbg
+ // and mem def, set lockind to Mem, and emit a location def for each.
+ for (auto [Var, Info] : It->second) {
+ // This instruction is treated as both a debug and memory assignment,
+ // meaning the memory location should be used. We don't have an assignment
+ // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one.
+ addMemDef(LiveSet, Var, Assignment::makeNoneOrPhi());
+ addDbgDef(LiveSet, Var, Assignment::makeNoneOrPhi());
+ setLocKind(LiveSet, Var, LocKind::Mem);
+ LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem)
+ << "\n");
+ // Build the dbg location def to insert.
+ //
+ // DIExpression: Add fragment and offset.
+ DebugVariable V = FnVarLocs->getVariable(Var);
+ DIExpression *DIE = DIExpression::get(I.getContext(), std::nullopt);
+ if (auto Frag = V.getFragment()) {
+ auto R = DIExpression::createFragmentExpression(DIE, Frag->OffsetInBits,
+ Frag->SizeInBits);
+ assert(R && "unexpected createFragmentExpression failure");
+ DIE = *R;
+ }
+ SmallVector<uint64_t, 3> Ops;
+ if (Info.OffsetInBits)
+ Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8};
+ Ops.push_back(dwarf::DW_OP_deref);
+ DIE = DIExpression::prependOpcodes(DIE, Ops, /*StackValue=*/false,
+ /*EntryValue=*/false);
+ // Find a suitable insert point.
+ Instruction *InsertBefore = I.getNextNode();
+ assert(InsertBefore && "Shouldn't be inserting after a terminator");
+
+ // Get DILocation for this unrecorded assignment.
+ DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt());
+ const DILocation *DILoc = DILocation::get(
+ Fn.getContext(), 0, 0, V.getVariable()->getScope(), InlinedAt);
+
+ VarLocInfo VarLoc;
+ VarLoc.VariableID = static_cast<VariableID>(Var);
+ VarLoc.Expr = DIE;
+ VarLoc.V = const_cast<AllocaInst *>(Info.Base);
+ VarLoc.DL = DILoc;
+ // 3. Insert it into the map for later.
+ InsertBeforeMap[InsertBefore].push_back(VarLoc);
+ }
+}
+
+void AssignmentTrackingLowering::processTaggedInstruction(
+ Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
+ auto Linked = at::getAssignmentMarkers(&I);
+ // No dbg.assign intrinsics linked.
+ // FIXME: All vars that have a stack slot this store modifies that don't have
+ // a dbg.assign linked to it should probably treat this like an untagged
+ // store.
+ if (Linked.empty())
+ return;
+
+ LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n");
+ for (DbgAssignIntrinsic *DAI : Linked) {
+ VariableID Var = getVariableID(DebugVariable(DAI));
+ // Something has gone wrong if VarsWithStackSlot doesn't contain a variable
+ // that is linked to a store.
+ assert(VarsWithStackSlot->count(getAggregate(DAI)) &&
+ "expected DAI's variable to have stack slot");
+
+ Assignment AV = Assignment::makeFromMemDef(getIDFromInst(I));
+ addMemDef(LiveSet, Var, AV);
+
+ LLVM_DEBUG(dbgs() << " linked to " << *DAI << "\n");
+ LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
+ << " -> ");
+
+ // The last assignment to the stack is now AV. Check if the last debug
+ // assignment has a matching Assignment.
+ if (hasVarWithAssignment(Var, AV, LiveSet->DebugValue)) {
+ // The StackHomeValue and DebugValue for this variable match so we can
+ // emit a stack home location here.
+ LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
+ LLVM_DEBUG(dbgs() << " Stack val: "; AV.dump(dbgs()); dbgs() << "\n");
+ LLVM_DEBUG(dbgs() << " Debug val: ";
+ LiveSet->DebugValue[Var].dump(dbgs()); dbgs() << "\n");
+ setLocKind(LiveSet, Var, LocKind::Mem);
+ emitDbgValue(LocKind::Mem, DAI, &I);
+ continue;
+ }
+
+ // The StackHomeValue and DebugValue for this variable do not match. I.e.
+ // The value currently stored in the stack is not what we'd expect to
+ // see, so we cannot use emit a stack home location here. Now we will
+ // look at the live LocKind for the variable and determine an appropriate
+ // dbg.value to emit.
+ LocKind PrevLoc = getLocKind(LiveSet, Var);
+ switch (PrevLoc) {
+ case LocKind::Val: {
+ // The value in memory in memory has changed but we're not currently
+ // using the memory location. Do nothing.
+ LLVM_DEBUG(dbgs() << "Val, (unchanged)\n";);
+ setLocKind(LiveSet, Var, LocKind::Val);
+ } break;
+ case LocKind::Mem: {
+ // There's been an assignment to memory that we were using as a
+ // location for this variable, and the Assignment doesn't match what
+ // we'd expect to see in memory.
+ if (LiveSet->DebugValue[Var].Status == Assignment::NoneOrPhi) {
+ // We need to terminate any previously open location now.
+ LLVM_DEBUG(dbgs() << "None, No Debug value available\n";);
+ setLocKind(LiveSet, Var, LocKind::None);
+ emitDbgValue(LocKind::None, DAI, &I);
+ } else {
+ // The previous DebugValue Value can be used here.
+ LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n";);
+ setLocKind(LiveSet, Var, LocKind::Val);
+ Assignment PrevAV = LiveSet->DebugValue.lookup(Var);
+ if (PrevAV.Source) {
+ emitDbgValue(LocKind::Val, PrevAV.Source, &I);
+ } else {
+ // PrevAV.Source is nullptr so we must emit undef here.
+ emitDbgValue(LocKind::None, DAI, &I);
+ }
+ }
+ } break;
+ case LocKind::None: {
+ // There's been an assignment to memory and we currently are
+ // not tracking a location for the variable. Do not emit anything.
+ LLVM_DEBUG(dbgs() << "None, (unchanged)\n";);
+ setLocKind(LiveSet, Var, LocKind::None);
+ } break;
+ }
+ }
+}
+
+void AssignmentTrackingLowering::processDbgAssign(DbgAssignIntrinsic &DAI,
+ BlockInfo *LiveSet) {
+ // Only bother tracking variables that are at some point stack homed. Other
+ // variables can be dealt with trivially later.
+ if (!VarsWithStackSlot->count(getAggregate(&DAI)))
+ return;
+
+ VariableID Var = getVariableID(DebugVariable(&DAI));
+ Assignment AV = Assignment::make(getIDFromMarker(DAI), &DAI);
+ addDbgDef(LiveSet, Var, AV);
+
+ LLVM_DEBUG(dbgs() << "processDbgAssign on " << DAI << "\n";);
+ LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
+ << " -> ");
+
+ // Check if the DebugValue and StackHomeValue both hold the same
+ // Assignment.
+ if (hasVarWithAssignment(Var, AV, LiveSet->StackHomeValue)) {
+ // They match. We can use the stack home because the debug intrinsics state
+ // that an assignment happened here, and we know that specific assignment
+ // was the last one to take place in memory for this variable.
+ LocKind Kind;
+ if (DAI.isKillAddress()) {
+ LLVM_DEBUG(
+ dbgs()
+ << "Val, Stack matches Debug program but address is killed\n";);
+ Kind = LocKind::Val;
+ } else {
+ LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n";);
+ Kind = LocKind::Mem;
+ };
+ setLocKind(LiveSet, Var, Kind);
+ emitDbgValue(Kind, &DAI, &DAI);
+ } else {
+ // The last assignment to the memory location isn't the one that we want to
+ // show to the user so emit a dbg.value(Value). Value may be undef.
+ LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n";);
+ setLocKind(LiveSet, Var, LocKind::Val);
+ emitDbgValue(LocKind::Val, &DAI, &DAI);
+ }
+}
+
+void AssignmentTrackingLowering::processDbgValue(DbgValueInst &DVI,
+ BlockInfo *LiveSet) {
+ // Only other tracking variables that are at some point stack homed.
+ // Other variables can be dealt with trivally later.
+ if (!VarsWithStackSlot->count(getAggregate(&DVI)))
+ return;
+
+ VariableID Var = getVariableID(DebugVariable(&DVI));
+ // We have no ID to create an Assignment with so we mark this assignment as
+ // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine
+ // the assignment responsible for setting this value.
+ // This is fine; dbg.values are essentially interchangable with unlinked
+ // dbg.assigns, and some passes such as mem2reg and instcombine add them to
+ // PHIs for promoted variables.
+ Assignment AV = Assignment::makeNoneOrPhi();
+ addDbgDef(LiveSet, Var, AV);
+
+ LLVM_DEBUG(dbgs() << "processDbgValue on " << DVI << "\n";);
+ LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var))
+ << " -> Val, dbg.value override");
+
+ setLocKind(LiveSet, Var, LocKind::Val);
+ emitDbgValue(LocKind::Val, &DVI, &DVI);
+}
+
+void AssignmentTrackingLowering::processDbgInstruction(
+ Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) {
+ assert(!isa<DbgAddrIntrinsic>(&I) && "unexpected dbg.addr");
+ if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(&I))
+ processDbgAssign(*DAI, LiveSet);
+ else if (auto *DVI = dyn_cast<DbgValueInst>(&I))
+ processDbgValue(*DVI, LiveSet);
+}
+
+void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) {
+ assert(!After.isTerminator() && "Can't insert after a terminator");
+ auto R = InsertBeforeMap.find(After.getNextNode());
+ if (R == InsertBeforeMap.end())
+ return;
+ R->second.clear();
+}
+
+void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) {
+ for (auto II = BB.begin(), EI = BB.end(); II != EI;) {
+ assert(VarsTouchedThisFrame.empty());
+ // Process the instructions in "frames". A "frame" includes a single
+ // non-debug instruction followed any debug instructions before the
+ // next non-debug instruction.
+ if (!isa<DbgInfoIntrinsic>(&*II)) {
+ if (II->isTerminator())
+ break;
+ resetInsertionPoint(*II);
+ processNonDbgInstruction(*II, LiveSet);
+ assert(LiveSet->isValid());
+ ++II;
+ }
+ while (II != EI) {
+ if (!isa<DbgInfoIntrinsic>(&*II))
+ break;
+ resetInsertionPoint(*II);
+ processDbgInstruction(*II, LiveSet);
+ assert(LiveSet->isValid());
+ ++II;
+ }
+
+ // We've processed everything in the "frame". Now determine which variables
+ // cannot be represented by a dbg.declare.
+ for (auto Var : VarsTouchedThisFrame) {
+ LocKind Loc = getLocKind(LiveSet, Var);
+ // If a variable's LocKind is anything other than LocKind::Mem then we
+ // must note that it cannot be represented with a dbg.declare.
+ // Note that this check is enough without having to check the result of
+ // joins() because for join to produce anything other than Mem after
+ // we've already seen a Mem we'd be joining None or Val with Mem. In that
+ // case, we've already hit this codepath when we set the LocKind to Val
+ // or None in that block.
+ if (Loc != LocKind::Mem) {
+ DebugVariable DbgVar = FnVarLocs->getVariable(Var);
+ DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()};
+ NotAlwaysStackHomed.insert(Aggr);
+ }
+ }
+ VarsTouchedThisFrame.clear();
+ }
+}
+
+AssignmentTrackingLowering::LocKind
+AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) {
+ // Partial order:
+ // None > Mem, Val
+ return A == B ? A : LocKind::None;
+}
+
+AssignmentTrackingLowering::LocMap
+AssignmentTrackingLowering::joinLocMap(const LocMap &A, const LocMap &B) {
+ // Join A and B.
+ //
+ // U = join(a, b) for a in A, b in B where Var(a) == Var(b)
+ // D = join(x, ⊤) for x where Var(x) is in A xor B
+ // Join = U ∪ D
+ //
+ // This is achieved by performing a join on elements from A and B with
+ // variables common to both A and B (join elements indexed by var intersect),
+ // then adding LocKind::None elements for vars in A xor B. The latter part is
+ // equivalent to performing join on elements with variables in A xor B with
+ // LocKind::None (⊤) since join(x, ⊤) = ⊤.
+ LocMap Join;
+ SmallVector<VariableID, 16> SymmetricDifference;
+ // Insert the join of the elements with common vars into Join. Add the
+ // remaining elements to into SymmetricDifference.
+ for (const auto &[Var, Loc] : A) {
+ // If this Var doesn't exist in B then add it to the symmetric difference
+ // set.
+ auto R = B.find(Var);
+ if (R == B.end()) {
+ SymmetricDifference.push_back(Var);
+ continue;
+ }
+ // There is an entry for Var in both, join it.
+ Join[Var] = joinKind(Loc, R->second);
+ }
+ unsigned IntersectSize = Join.size();
+ (void)IntersectSize;
+
+ // Add the elements in B with variables that are not in A into
+ // SymmetricDifference.
+ for (const auto &Pair : B) {
+ VariableID Var = Pair.first;
+ if (A.count(Var) == 0)
+ SymmetricDifference.push_back(Var);
+ }
+
+ // Add SymmetricDifference elements to Join and return the result.
+ for (const auto &Var : SymmetricDifference)
+ Join.insert({Var, LocKind::None});
+
+ assert(Join.size() == (IntersectSize + SymmetricDifference.size()));
+ assert(Join.size() >= A.size() && Join.size() >= B.size());
+ return Join;
+}
+
+AssignmentTrackingLowering::Assignment
+AssignmentTrackingLowering::joinAssignment(const Assignment &A,
+ const Assignment &B) {
+ // Partial order:
+ // NoneOrPhi(null, null) > Known(v, ?s)
+
+ // If either are NoneOrPhi the join is NoneOrPhi.
+ // If either value is different then the result is
+ // NoneOrPhi (joining two values is a Phi).
+ if (!A.isSameSourceAssignment(B))
+ return Assignment::makeNoneOrPhi();
+ if (A.Status == Assignment::NoneOrPhi)
+ return Assignment::makeNoneOrPhi();
+
+ // Source is used to lookup the value + expression in the debug program if
+ // the stack slot gets assigned a value earlier than expected. Because
+ // we're only tracking the one dbg.assign, we can't capture debug PHIs.
+ // It's unlikely that we're losing out on much coverage by avoiding that
+ // extra work.
+ // The Source may differ in this situation:
+ // Pred.1:
+ // dbg.assign i32 0, ..., !1, ...
+ // Pred.2:
+ // dbg.assign i32 1, ..., !1, ...
+ // Here the same assignment (!1) was performed in both preds in the source,
+ // but we can't use either one unless they are identical (e.g. .we don't
+ // want to arbitrarily pick between constant values).
+ auto JoinSource = [&]() -> DbgAssignIntrinsic * {
+ if (A.Source == B.Source)
+ return A.Source;
+ if (A.Source == nullptr || B.Source == nullptr)
+ return nullptr;
+ if (A.Source->isIdenticalTo(B.Source))
+ return A.Source;
+ return nullptr;
+ };
+ DbgAssignIntrinsic *Source = JoinSource();
+ assert(A.Status == B.Status && A.Status == Assignment::Known);
+ assert(A.ID == B.ID);
+ return Assignment::make(A.ID, Source);
+}
+
+AssignmentTrackingLowering::AssignmentMap
+AssignmentTrackingLowering::joinAssignmentMap(const AssignmentMap &A,
+ const AssignmentMap &B) {
+ // Join A and B.
+ //
+ // U = join(a, b) for a in A, b in B where Var(a) == Var(b)
+ // D = join(x, ⊤) for x where Var(x) is in A xor B
+ // Join = U ∪ D
+ //
+ // This is achieved by performing a join on elements from A and B with
+ // variables common to both A and B (join elements indexed by var intersect),
+ // then adding LocKind::None elements for vars in A xor B. The latter part is
+ // equivalent to performing join on elements with variables in A xor B with
+ // Status::NoneOrPhi (⊤) since join(x, ⊤) = ⊤.
+ AssignmentMap Join;
+ SmallVector<VariableID, 16> SymmetricDifference;
+ // Insert the join of the elements with common vars into Join. Add the
+ // remaining elements to into SymmetricDifference.
+ for (const auto &[Var, AV] : A) {
+ // If this Var doesn't exist in B then add it to the symmetric difference
+ // set.
+ auto R = B.find(Var);
+ if (R == B.end()) {
+ SymmetricDifference.push_back(Var);
+ continue;
+ }
+ // There is an entry for Var in both, join it.
+ Join[Var] = joinAssignment(AV, R->second);
+ }
+ unsigned IntersectSize = Join.size();
+ (void)IntersectSize;
+
+ // Add the elements in B with variables that are not in A into
+ // SymmetricDifference.
+ for (const auto &Pair : B) {
+ VariableID Var = Pair.first;
+ if (A.count(Var) == 0)
+ SymmetricDifference.push_back(Var);
+ }
+
+ // Add SymmetricDifference elements to Join and return the result.
+ for (auto Var : SymmetricDifference)
+ Join.insert({Var, Assignment::makeNoneOrPhi()});
+
+ assert(Join.size() == (IntersectSize + SymmetricDifference.size()));
+ assert(Join.size() >= A.size() && Join.size() >= B.size());
+ return Join;
+}
+
+AssignmentTrackingLowering::BlockInfo
+AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A,
+ const BlockInfo &B) {
+ BlockInfo Join;
+ Join.LiveLoc = joinLocMap(A.LiveLoc, B.LiveLoc);
+ Join.StackHomeValue = joinAssignmentMap(A.StackHomeValue, B.StackHomeValue);
+ Join.DebugValue = joinAssignmentMap(A.DebugValue, B.DebugValue);
+ assert(Join.isValid());
+ return Join;
+}
+
+bool AssignmentTrackingLowering::join(
+ const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) {
+ BlockInfo BBLiveIn;
+ bool FirstJoin = true;
+ // LiveIn locs for BB is the join of the already-processed preds' LiveOut
+ // locs.
+ for (auto I = pred_begin(&BB), E = pred_end(&BB); I != E; I++) {
+ // Ignore backedges if we have not visited the predecessor yet. As the
+ // predecessor hasn't yet had locations propagated into it, most locations
+ // will not yet be valid, so treat them as all being uninitialized and
+ // potentially valid. If a location guessed to be correct here is
+ // invalidated later, we will remove it when we revisit this block. This
+ // is essentially the same as initialising all LocKinds and Assignments to
+ // an implicit ⊥ value which is the identity value for the join operation.
+ const BasicBlock *Pred = *I;
+ if (!Visited.count(Pred))
+ continue;
+
+ auto PredLiveOut = LiveOut.find(Pred);
+ // Pred must have been processed already. See comment at start of this loop.
+ assert(PredLiveOut != LiveOut.end());
+
+ // Perform the join of BBLiveIn (current live-in info) and PrevLiveOut.
+ if (FirstJoin)
+ BBLiveIn = PredLiveOut->second;
+ else
+ BBLiveIn = joinBlockInfo(std::move(BBLiveIn), PredLiveOut->second);
+ FirstJoin = false;
+ }
+
+ auto CurrentLiveInEntry = LiveIn.find(&BB);
+ // Check if there isn't an entry, or there is but the LiveIn set has changed
+ // (expensive check).
+ if (CurrentLiveInEntry == LiveIn.end() ||
+ BBLiveIn != CurrentLiveInEntry->second) {
+ LiveIn[&BB] = std::move(BBLiveIn);
+ // A change has occured.
+ return true;
+ }
+ // No change.
+ return false;
+}
+
+/// Return true if A fully contains B.
+static bool fullyContains(DIExpression::FragmentInfo A,
+ DIExpression::FragmentInfo B) {
+ auto ALeft = A.OffsetInBits;
+ auto BLeft = B.OffsetInBits;
+ if (BLeft < ALeft)
+ return false;
+
+ auto ARight = ALeft + A.SizeInBits;
+ auto BRight = BLeft + B.SizeInBits;
+ if (BRight > ARight)
+ return false;
+ return true;
+}
+
+static std::optional<at::AssignmentInfo>
+getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) {
+ // Don't bother checking if this is an AllocaInst. We know this
+ // instruction has no tag which means there are no variables associated
+ // with it.
+ if (const auto *SI = dyn_cast<StoreInst>(&I))
+ return at::getAssignmentInfo(Layout, SI);
+ if (const auto *MI = dyn_cast<MemIntrinsic>(&I))
+ return at::getAssignmentInfo(Layout, MI);
+ // Alloca or non-store-like inst.
+ return std::nullopt;
+}
+
+/// Build a map of {Variable x: Variables y} where all variable fragments
+/// contained within the variable fragment x are in set y. This means that
+/// y does not contain all overlaps because partial overlaps are excluded.
+///
+/// While we're iterating over the function, add single location defs for
+/// dbg.declares to \p FnVarLocs
+///
+/// Finally, populate UntaggedStoreVars with a mapping of untagged stores to
+/// the stored-to variable fragments.
+///
+/// These tasks are bundled together to reduce the number of times we need
+/// to iterate over the function as they can be achieved together in one pass.
+static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares(
+ Function &Fn, FunctionVarLocsBuilder *FnVarLocs,
+ AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars) {
+ DenseSet<DebugVariable> Seen;
+ // Map of Variable: [Fragments].
+ DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap;
+ // Iterate over all instructions:
+ // - dbg.declare -> add single location variable record
+ // - dbg.* -> Add fragments to FragmentMap
+ // - untagged store -> Add fragments to FragmentMap and update
+ // UntaggedStoreVars.
+ // We need to add fragments for untagged stores too so that we can correctly
+ // clobber overlapped fragment locations later.
+ for (auto &BB : Fn) {
+ for (auto &I : BB) {
+ if (auto *DDI = dyn_cast<DbgDeclareInst>(&I)) {
+ FnVarLocs->addSingleLocVar(DebugVariable(DDI), DDI->getExpression(),
+ DDI->getDebugLoc(), DDI->getAddress());
+ } else if (auto *DII = dyn_cast<DbgVariableIntrinsic>(&I)) {
+ DebugVariable DV = DebugVariable(DII);
+ DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
+ if (Seen.insert(DV).second)
+ FragmentMap[DA].push_back(DV);
+ } else if (auto Info = getUntaggedStoreAssignmentInfo(
+ I, Fn.getParent()->getDataLayout())) {
+ // Find markers linked to this alloca.
+ for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(Info->Base)) {
+ // Discard the fragment if it covers the entire variable.
+ std::optional<DIExpression::FragmentInfo> FragInfo =
+ [&Info, DAI]() -> std::optional<DIExpression::FragmentInfo> {
+ DIExpression::FragmentInfo F;
+ F.OffsetInBits = Info->OffsetInBits;
+ F.SizeInBits = Info->SizeInBits;
+ if (auto ExistingFrag = DAI->getExpression()->getFragmentInfo())
+ F.OffsetInBits += ExistingFrag->OffsetInBits;
+ if (auto Sz = DAI->getVariable()->getSizeInBits()) {
+ if (F.OffsetInBits == 0 && F.SizeInBits == *Sz)
+ return std::nullopt;
+ }
+ return F;
+ }();
+
+ DebugVariable DV = DebugVariable(DAI->getVariable(), FragInfo,
+ DAI->getDebugLoc().getInlinedAt());
+ DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()};
+
+ // Cache this info for later.
+ UntaggedStoreVars[&I].push_back(
+ {FnVarLocs->insertVariable(DV), *Info});
+
+ if (Seen.insert(DV).second)
+ FragmentMap[DA].push_back(DV);
+ }
+ }
+ }
+ }
+
+ // Sort the fragment map for each DebugAggregate in non-descending
+ // order of fragment size. Assert no entries are duplicates.
+ for (auto &Pair : FragmentMap) {
+ SmallVector<DebugVariable, 8> &Frags = Pair.second;
+ std::sort(
+ Frags.begin(), Frags.end(), [](DebugVariable Next, DebugVariable Elmt) {
+ assert(!(Elmt.getFragmentOrDefault() == Next.getFragmentOrDefault()));
+ return Elmt.getFragmentOrDefault().SizeInBits >
+ Next.getFragmentOrDefault().SizeInBits;
+ });
+ }
+
+ // Build the map.
+ AssignmentTrackingLowering::OverlapMap Map;
+ for (auto Pair : FragmentMap) {
+ auto &Frags = Pair.second;
+ for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) {
+ DIExpression::FragmentInfo Frag = It->getFragmentOrDefault();
+ // Find the frags that this is contained within.
+ //
+ // Because Frags is sorted by size and none have the same offset and
+ // size, we know that this frag can only be contained by subsequent
+ // elements.
+ SmallVector<DebugVariable, 8>::iterator OtherIt = It;
+ ++OtherIt;
+ VariableID ThisVar = FnVarLocs->insertVariable(*It);
+ for (; OtherIt != IEnd; ++OtherIt) {
+ DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault();
+ VariableID OtherVar = FnVarLocs->insertVariable(*OtherIt);
+ if (fullyContains(OtherFrag, Frag))
+ Map[OtherVar].push_back(ThisVar);
+ }
+ }
+ }
+
+ return Map;
+}
+
+bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) {
+ if (Fn.size() > MaxNumBlocks) {
+ LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName()
+ << ": too many blocks (" << Fn.size() << ")\n");
+ at::deleteAll(&Fn);
+ return false;
+ }
+
+ FnVarLocs = FnVarLocsBuilder;
+
+ // The general structure here is inspired by VarLocBasedImpl.cpp
+ // (LiveDebugValues).
+
+ // Build the variable fragment overlap map.
+ // Note that this pass doesn't handle partial overlaps correctly (FWIW
+ // neither does LiveDebugVariables) because that is difficult to do and
+ // appears to be rare occurance.
+ VarContains =
+ buildOverlapMapAndRecordDeclares(Fn, FnVarLocs, UntaggedStoreVars);
+
+ // Prepare for traversal.
+ ReversePostOrderTraversal<Function *> RPOT(&Fn);
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Worklist;
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Pending;
+ DenseMap<unsigned int, BasicBlock *> OrderToBB;
+ DenseMap<BasicBlock *, unsigned int> BBToOrder;
+ { // Init OrderToBB and BBToOrder.
+ unsigned int RPONumber = 0;
+ for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
+ OrderToBB[RPONumber] = *RI;
+ BBToOrder[*RI] = RPONumber;
+ Worklist.push(RPONumber);
+ ++RPONumber;
+ }
+ LiveIn.init(RPONumber);
+ LiveOut.init(RPONumber);
+ }
+
+ // Perform the traversal.
+ //
+ // This is a standard "union of predecessor outs" dataflow problem. To solve
+ // it, we perform join() and process() using the two worklist method until
+ // the LiveIn data for each block becomes unchanging. The "proof" that this
+ // terminates can be put together by looking at the comments around LocKind,
+ // Assignment, and the various join methods, which show that all the elements
+ // involved are made up of join-semilattices; LiveIn(n) can only
+ // monotonically increase in value throughout the dataflow.
+ //
+ SmallPtrSet<BasicBlock *, 16> Visited;
+ while (!Worklist.empty()) {
+ // We track what is on the pending worklist to avoid inserting the same
+ // thing twice.
+ SmallPtrSet<BasicBlock *, 16> OnPending;
+ LLVM_DEBUG(dbgs() << "Processing Worklist\n");
+ while (!Worklist.empty()) {
+ BasicBlock *BB = OrderToBB[Worklist.top()];
+ LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n");
+ Worklist.pop();
+ bool InChanged = join(*BB, Visited);
+ // Always consider LiveIn changed on the first visit.
+ InChanged |= Visited.insert(BB).second;
+ if (InChanged) {
+ LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n");
+ // Mutate a copy of LiveIn while processing BB. After calling process
+ // LiveSet is the LiveOut set for BB.
+ BlockInfo LiveSet = LiveIn[BB];
+
+ // Process the instructions in the block.
+ process(*BB, &LiveSet);
+
+ // Relatively expensive check: has anything changed in LiveOut for BB?
+ if (LiveOut[BB] != LiveSet) {
+ LLVM_DEBUG(dbgs() << BB->getName()
+ << " has new OutLocs, add succs to worklist: [ ");
+ LiveOut[BB] = std::move(LiveSet);
+ for (auto I = succ_begin(BB), E = succ_end(BB); I != E; I++) {
+ if (OnPending.insert(*I).second) {
+ LLVM_DEBUG(dbgs() << I->getName() << " ");
+ Pending.push(BBToOrder[*I]);
+ }
+ }
+ LLVM_DEBUG(dbgs() << "]\n");
+ }
+ }
+ }
+ Worklist.swap(Pending);
+ // At this point, pending must be empty, since it was just the empty
+ // worklist
+ assert(Pending.empty() && "Pending should be empty");
+ }
+
+ // That's the hard part over. Now we just have some admin to do.
+
+ // Record whether we inserted any intrinsics.
+ bool InsertedAnyIntrinsics = false;
+
+ // Identify and add defs for single location variables.
+ //
+ // Go through all of the defs that we plan to add. If the aggregate variable
+ // it's a part of is not in the NotAlwaysStackHomed set we can emit a single
+ // location def and omit the rest. Add an entry to AlwaysStackHomed so that
+ // we can identify those uneeded defs later.
+ DenseSet<DebugAggregate> AlwaysStackHomed;
+ for (const auto &Pair : InsertBeforeMap) {
+ const auto &Vec = Pair.second;
+ for (VarLocInfo VarLoc : Vec) {
+ DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
+ DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
+
+ // Skip this Var if it's not always stack homed.
+ if (NotAlwaysStackHomed.contains(Aggr))
+ continue;
+
+ // Skip complex cases such as when different fragments of a variable have
+ // been split into different allocas. Skipping in this case means falling
+ // back to using a list of defs (which could reduce coverage, but is no
+ // less correct).
+ bool Simple =
+ VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref();
+ if (!Simple) {
+ NotAlwaysStackHomed.insert(Aggr);
+ continue;
+ }
+
+ // All source assignments to this variable remain and all stores to any
+ // part of the variable store to the same address (with varying
+ // offsets). We can just emit a single location for the whole variable.
+ //
+ // Unless we've already done so, create the single location def now.
+ if (AlwaysStackHomed.insert(Aggr).second) {
+ assert(isa<AllocaInst>(VarLoc.V));
+ // TODO: When more complex cases are handled VarLoc.Expr should be
+ // built appropriately rather than always using an empty DIExpression.
+ // The assert below is a reminder.
+ assert(Simple);
+ VarLoc.Expr = DIExpression::get(Fn.getContext(), std::nullopt);
+ DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
+ FnVarLocs->addSingleLocVar(Var, VarLoc.Expr, VarLoc.DL, VarLoc.V);
+ InsertedAnyIntrinsics = true;
+ }
+ }
+ }
+
+ // Insert the other DEFs.
+ for (const auto &[InsertBefore, Vec] : InsertBeforeMap) {
+ SmallVector<VarLocInfo> NewDefs;
+ for (const VarLocInfo &VarLoc : Vec) {
+ DebugVariable Var = FnVarLocs->getVariable(VarLoc.VariableID);
+ DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()};
+ // If this variable is always stack homed then we have already inserted a
+ // dbg.declare and deleted this dbg.value.
+ if (AlwaysStackHomed.contains(Aggr))
+ continue;
+ NewDefs.push_back(VarLoc);
+ InsertedAnyIntrinsics = true;
+ }
+
+ FnVarLocs->setWedge(InsertBefore, std::move(NewDefs));
+ }
+
+ InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs);
+
+ return InsertedAnyIntrinsics;
+}
+
+bool AssignmentTrackingLowering::emitPromotedVarLocs(
+ FunctionVarLocsBuilder *FnVarLocs) {
+ bool InsertedAnyIntrinsics = false;
+ // Go through every block, translating debug intrinsics for fully promoted
+ // variables into FnVarLocs location defs. No analysis required for these.
+ for (auto &BB : Fn) {
+ for (auto &I : BB) {
+ // Skip instructions other than dbg.values and dbg.assigns.
+ auto *DVI = dyn_cast<DbgValueInst>(&I);
+ if (!DVI)
+ continue;
+ // Skip variables that haven't been promoted - we've dealt with those
+ // already.
+ if (VarsWithStackSlot->contains(getAggregate(DVI)))
+ continue;
+ // Wrapper to get a single value (or undef) from DVI.
+ auto GetValue = [DVI]() -> Value * {
+ // We can't handle variadic DIExpressions yet so treat those as
+ // kill locations.
+ if (DVI->isKillLocation() || DVI->getValue() == nullptr ||
+ DVI->hasArgList())
+ return PoisonValue::get(Type::getInt32Ty(DVI->getContext()));
+ return DVI->getValue();
+ };
+ Instruction *InsertBefore = I.getNextNode();
+ assert(InsertBefore && "Unexpected: debug intrinsics after a terminator");
+ FnVarLocs->addVarLoc(InsertBefore, DebugVariable(DVI),
+ DVI->getExpression(), DVI->getDebugLoc(),
+ GetValue());
+ InsertedAnyIntrinsics = true;
+ }
+ }
+ return InsertedAnyIntrinsics;
+}
+
+/// Remove redundant definitions within sequences of consecutive location defs.
+/// This is done using a backward scan to keep the last def describing a
+/// specific variable/fragment.
+///
+/// This implements removeRedundantDbgInstrsUsingBackwardScan from
+/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
+/// FunctionVarLocsBuilder instead of with intrinsics.
+static bool
+removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB,
+ FunctionVarLocsBuilder &FnVarLocs) {
+ bool Changed = false;
+ SmallDenseSet<DebugVariable> VariableSet;
+
+ // Scan over the entire block, not just over the instructions mapped by
+ // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
+ // instructions.
+ for (const Instruction &I : reverse(*BB)) {
+ if (!isa<DbgVariableIntrinsic>(I)) {
+ // Sequence of consecutive defs ended. Clear map for the next one.
+ VariableSet.clear();
+ }
+
+ // Get the location defs that start just before this instruction.
+ const auto *Locs = FnVarLocs.getWedge(&I);
+ if (!Locs)
+ continue;
+
+ NumWedgesScanned++;
+ bool ChangedThisWedge = false;
+ // The new pruned set of defs, reversed because we're scanning backwards.
+ SmallVector<VarLocInfo> NewDefsReversed;
+
+ // Iterate over the existing defs in reverse.
+ for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) {
+ NumDefsScanned++;
+ const DebugVariable &Key = FnVarLocs.getVariable(RIt->VariableID);
+ bool FirstDefOfFragment = VariableSet.insert(Key).second;
+
+ // If the same variable fragment is described more than once it is enough
+ // to keep the last one (i.e. the first found in this reverse iteration).
+ if (FirstDefOfFragment) {
+ // New def found: keep it.
+ NewDefsReversed.push_back(*RIt);
+ } else {
+ // Redundant def found: throw it away. Since the wedge of defs is being
+ // rebuilt, doing nothing is the same as deleting an entry.
+ ChangedThisWedge = true;
+ NumDefsRemoved++;
+ }
+ continue;
+ }
+
+ // Un-reverse the defs and replace the wedge with the pruned version.
+ if (ChangedThisWedge) {
+ std::reverse(NewDefsReversed.begin(), NewDefsReversed.end());
+ FnVarLocs.setWedge(&I, std::move(NewDefsReversed));
+ NumWedgesChanged++;
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+/// Remove redundant location defs using a forward scan. This can remove a
+/// location definition that is redundant due to indicating that a variable has
+/// the same value as is already being indicated by an earlier def.
+///
+/// This implements removeRedundantDbgInstrsUsingForwardScan from
+/// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with
+/// FunctionVarLocsBuilder instead of with intrinsics
+static bool
+removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB,
+ FunctionVarLocsBuilder &FnVarLocs) {
+ bool Changed = false;
+ DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
+
+ // Scan over the entire block, not just over the instructions mapped by
+ // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
+ // instructions.
+ for (const Instruction &I : *BB) {
+ // Get the defs that come just before this instruction.
+ const auto *Locs = FnVarLocs.getWedge(&I);
+ if (!Locs)
+ continue;
+
+ NumWedgesScanned++;
+ bool ChangedThisWedge = false;
+ // The new pruned set of defs.
+ SmallVector<VarLocInfo> NewDefs;
+
+ // Iterate over the existing defs.
+ for (const VarLocInfo &Loc : *Locs) {
+ NumDefsScanned++;
+ DebugVariable Key(FnVarLocs.getVariable(Loc.VariableID).getVariable(),
+ std::nullopt, Loc.DL.getInlinedAt());
+ auto VMI = VariableMap.find(Key);
+
+ // Update the map if we found a new value/expression describing the
+ // variable, or if the variable wasn't mapped already.
+ if (VMI == VariableMap.end() || VMI->second.first != Loc.V ||
+ VMI->second.second != Loc.Expr) {
+ VariableMap[Key] = {Loc.V, Loc.Expr};
+ NewDefs.push_back(Loc);
+ continue;
+ }
+
+ // Did not insert this Loc, which is the same as removing it.
+ ChangedThisWedge = true;
+ NumDefsRemoved++;
+ }
+
+ // Replace the existing wedge with the pruned version.
+ if (ChangedThisWedge) {
+ FnVarLocs.setWedge(&I, std::move(NewDefs));
+ NumWedgesChanged++;
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+static bool
+removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB,
+ FunctionVarLocsBuilder &FnVarLocs) {
+ assert(BB->isEntryBlock());
+ // Do extra work to ensure that we remove semantically unimportant undefs.
+ //
+ // This is to work around the fact that SelectionDAG will hoist dbg.values
+ // using argument values to the top of the entry block. That can move arg
+ // dbg.values before undef and constant dbg.values which they previously
+ // followed. The easiest thing to do is to just try to feed SelectionDAG
+ // input it's happy with.
+ //
+ // Map of {Variable x: Fragments y} where the fragments y of variable x have
+ // have at least one non-undef location defined already. Don't use directly,
+ // instead call DefineBits and HasDefinedBits.
+ SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>>
+ VarsWithDef;
+ // Specify that V (a fragment of A) has a non-undef location.
+ auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
+ VarsWithDef[A].insert(V.getFragmentOrDefault());
+ };
+ // Return true if a non-undef location has been defined for V (a fragment of
+ // A). Doesn't imply that the location is currently non-undef, just that a
+ // non-undef location has been seen previously.
+ auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) {
+ auto FragsIt = VarsWithDef.find(A);
+ if (FragsIt == VarsWithDef.end())
+ return false;
+ return llvm::any_of(FragsIt->second, [V](auto Frag) {
+ return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault());
+ });
+ };
+
+ bool Changed = false;
+ DenseMap<DebugVariable, std::pair<Value *, DIExpression *>> VariableMap;
+
+ // Scan over the entire block, not just over the instructions mapped by
+ // FnVarLocs, because wedges in FnVarLocs may only be seperated by debug
+ // instructions.
+ for (const Instruction &I : *BB) {
+ // Get the defs that come just before this instruction.
+ const auto *Locs = FnVarLocs.getWedge(&I);
+ if (!Locs)
+ continue;
+
+ NumWedgesScanned++;
+ bool ChangedThisWedge = false;
+ // The new pruned set of defs.
+ SmallVector<VarLocInfo> NewDefs;
+
+ // Iterate over the existing defs.
+ for (const VarLocInfo &Loc : *Locs) {
+ NumDefsScanned++;
+ DebugAggregate Aggr{FnVarLocs.getVariable(Loc.VariableID).getVariable(),
+ Loc.DL.getInlinedAt()};
+ DebugVariable Var = FnVarLocs.getVariable(Loc.VariableID);
+
+ // Remove undef entries that are encountered before any non-undef
+ // intrinsics from the entry block.
+ if (isa<UndefValue>(Loc.V) && !HasDefinedBits(Aggr, Var)) {
+ // Did not insert this Loc, which is the same as removing it.
+ NumDefsRemoved++;
+ ChangedThisWedge = true;
+ continue;
+ }
+
+ DefineBits(Aggr, Var);
+ NewDefs.push_back(Loc);
+ }
+
+ // Replace the existing wedge with the pruned version.
+ if (ChangedThisWedge) {
+ FnVarLocs.setWedge(&I, std::move(NewDefs));
+ NumWedgesChanged++;
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+static bool removeRedundantDbgLocs(const BasicBlock *BB,
+ FunctionVarLocsBuilder &FnVarLocs) {
+ bool MadeChanges = false;
+ MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs);
+ if (BB->isEntryBlock())
+ MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs);
+ MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs);
+
+ if (MadeChanges)
+ LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName()
+ << "\n");
+ return MadeChanges;
+}
+
+static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) {
+ DenseSet<DebugAggregate> Result;
+ for (auto &BB : Fn) {
+ for (auto &I : BB) {
+ // Any variable linked to an instruction is considered
+ // interesting. Ideally we only need to check Allocas, however, a
+ // DIAssignID might get dropped from an alloca but not stores. In that
+ // case, we need to consider the variable interesting for NFC behaviour
+ // with this change. TODO: Consider only looking at allocas.
+ for (DbgAssignIntrinsic *DAI : at::getAssignmentMarkers(&I)) {
+ Result.insert({DAI->getVariable(), DAI->getDebugLoc().getInlinedAt()});
+ }
+ }
+ }
+ return Result;
+}
+
+static void analyzeFunction(Function &Fn, const DataLayout &Layout,
+ FunctionVarLocsBuilder *FnVarLocs) {
+ // The analysis will generate location definitions for all variables, but we
+ // only need to perform a dataflow on the set of variables which have a stack
+ // slot. Find those now.
+ DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn);
+
+ bool Changed = false;
+
+ // Use a scope block to clean up AssignmentTrackingLowering before running
+ // MemLocFragmentFill to reduce peak memory consumption.
+ {
+ AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot);
+ Changed = Pass.run(FnVarLocs);
+ }
+
+ if (Changed) {
+ MemLocFragmentFill Pass(Fn, &VarsWithStackSlot);
+ Pass.run(FnVarLocs);
+
+ // Remove redundant entries. As well as reducing memory consumption and
+ // avoiding waiting cycles later by burning some now, this has another
+ // important job. That is to work around some SelectionDAG quirks. See
+ // removeRedundantDbgLocsUsingForwardScan comments for more info on that.
+ for (auto &BB : Fn)
+ removeRedundantDbgLocs(&BB, *FnVarLocs);
+ }
+}
+
+bool AssignmentTrackingAnalysis::runOnFunction(Function &F) {
+ if (!isAssignmentTrackingEnabled(*F.getParent()))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName()
+ << "\n");
+ auto DL = std::make_unique<DataLayout>(F.getParent());
+
+ // Clear previous results.
+ Results->clear();
+
+ FunctionVarLocsBuilder Builder;
+ analyzeFunction(F, *DL.get(), &Builder);
+
+ // Save these results.
+ Results->init(Builder);
+
+ if (PrintResults && isFunctionInPrintList(F.getName()))
+ Results->print(errs(), F);
+
+ // Return false because this pass does not modify the function.
+ return false;
+}
+
+AssignmentTrackingAnalysis::AssignmentTrackingAnalysis()
+ : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {}
+
+char AssignmentTrackingAnalysis::ID = 0;
+
+INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE,
+ "Assignment Tracking Analysis", false, true)