aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp1808
1 files changed, 1808 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp b/contrib/llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp
new file mode 100644
index 000000000000..dc7eaf6a5fe7
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/AtomicExpandPass.cpp
@@ -0,0 +1,1808 @@
+//===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a pass (at IR level) to replace atomic instructions with
+// __atomic_* library calls, or target specific instruction which implement the
+// same semantics in a way which better fits the target backend. This can
+// include the use of (intrinsic-based) load-linked/store-conditional loops,
+// AtomicCmpXchg, or type coercions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/AtomicExpandUtils.h"
+#include "llvm/CodeGen/RuntimeLibcalls.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "atomic-expand"
+
+namespace {
+
+ class AtomicExpand: public FunctionPass {
+ const TargetLowering *TLI = nullptr;
+
+ public:
+ static char ID; // Pass identification, replacement for typeid
+
+ AtomicExpand() : FunctionPass(ID) {
+ initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override;
+
+ private:
+ bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
+ IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
+ LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
+ bool tryExpandAtomicLoad(LoadInst *LI);
+ bool expandAtomicLoadToLL(LoadInst *LI);
+ bool expandAtomicLoadToCmpXchg(LoadInst *LI);
+ StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
+ bool expandAtomicStore(StoreInst *SI);
+ bool tryExpandAtomicRMW(AtomicRMWInst *AI);
+ Value *
+ insertRMWLLSCLoop(IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
+ AtomicOrdering MemOpOrder,
+ function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
+ void expandAtomicOpToLLSC(
+ Instruction *I, Type *ResultTy, Value *Addr, AtomicOrdering MemOpOrder,
+ function_ref<Value *(IRBuilder<> &, Value *)> PerformOp);
+ void expandPartwordAtomicRMW(
+ AtomicRMWInst *I,
+ TargetLoweringBase::AtomicExpansionKind ExpansionKind);
+ AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
+ void expandPartwordCmpXchg(AtomicCmpXchgInst *I);
+ void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
+ void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
+
+ AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
+ static Value *insertRMWCmpXchgLoop(
+ IRBuilder<> &Builder, Type *ResultType, Value *Addr,
+ AtomicOrdering MemOpOrder,
+ function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
+ CreateCmpXchgInstFun CreateCmpXchg);
+ bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
+
+ bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
+ bool isIdempotentRMW(AtomicRMWInst *RMWI);
+ bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
+
+ bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, unsigned Align,
+ Value *PointerOperand, Value *ValueOperand,
+ Value *CASExpected, AtomicOrdering Ordering,
+ AtomicOrdering Ordering2,
+ ArrayRef<RTLIB::Libcall> Libcalls);
+ void expandAtomicLoadToLibcall(LoadInst *LI);
+ void expandAtomicStoreToLibcall(StoreInst *LI);
+ void expandAtomicRMWToLibcall(AtomicRMWInst *I);
+ void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
+
+ friend bool
+ llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
+ CreateCmpXchgInstFun CreateCmpXchg);
+ };
+
+} // end anonymous namespace
+
+char AtomicExpand::ID = 0;
+
+char &llvm::AtomicExpandID = AtomicExpand::ID;
+
+INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions",
+ false, false)
+
+FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
+
+// Helper functions to retrieve the size of atomic instructions.
+static unsigned getAtomicOpSize(LoadInst *LI) {
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ return DL.getTypeStoreSize(LI->getType());
+}
+
+static unsigned getAtomicOpSize(StoreInst *SI) {
+ const DataLayout &DL = SI->getModule()->getDataLayout();
+ return DL.getTypeStoreSize(SI->getValueOperand()->getType());
+}
+
+static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
+ const DataLayout &DL = RMWI->getModule()->getDataLayout();
+ return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
+}
+
+static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
+ const DataLayout &DL = CASI->getModule()->getDataLayout();
+ return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
+}
+
+// Helper functions to retrieve the alignment of atomic instructions.
+static unsigned getAtomicOpAlign(LoadInst *LI) {
+ unsigned Align = LI->getAlignment();
+ // In the future, if this IR restriction is relaxed, we should
+ // return DataLayout::getABITypeAlignment when there's no align
+ // value.
+ assert(Align != 0 && "An atomic LoadInst always has an explicit alignment");
+ return Align;
+}
+
+static unsigned getAtomicOpAlign(StoreInst *SI) {
+ unsigned Align = SI->getAlignment();
+ // In the future, if this IR restriction is relaxed, we should
+ // return DataLayout::getABITypeAlignment when there's no align
+ // value.
+ assert(Align != 0 && "An atomic StoreInst always has an explicit alignment");
+ return Align;
+}
+
+static unsigned getAtomicOpAlign(AtomicRMWInst *RMWI) {
+ // TODO(PR27168): This instruction has no alignment attribute, but unlike the
+ // default alignment for load/store, the default here is to assume
+ // it has NATURAL alignment, not DataLayout-specified alignment.
+ const DataLayout &DL = RMWI->getModule()->getDataLayout();
+ return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
+}
+
+static unsigned getAtomicOpAlign(AtomicCmpXchgInst *CASI) {
+ // TODO(PR27168): same comment as above.
+ const DataLayout &DL = CASI->getModule()->getDataLayout();
+ return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
+}
+
+// Determine if a particular atomic operation has a supported size,
+// and is of appropriate alignment, to be passed through for target
+// lowering. (Versus turning into a __atomic libcall)
+template <typename Inst>
+static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
+ unsigned Size = getAtomicOpSize(I);
+ unsigned Align = getAtomicOpAlign(I);
+ return Align >= Size && Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
+}
+
+bool AtomicExpand::runOnFunction(Function &F) {
+ auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
+ if (!TPC)
+ return false;
+
+ auto &TM = TPC->getTM<TargetMachine>();
+ if (!TM.getSubtargetImpl(F)->enableAtomicExpand())
+ return false;
+ TLI = TM.getSubtargetImpl(F)->getTargetLowering();
+
+ SmallVector<Instruction *, 1> AtomicInsts;
+
+ // Changing control-flow while iterating through it is a bad idea, so gather a
+ // list of all atomic instructions before we start.
+ for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
+ Instruction *I = &*II;
+ if (I->isAtomic() && !isa<FenceInst>(I))
+ AtomicInsts.push_back(I);
+ }
+
+ bool MadeChange = false;
+ for (auto I : AtomicInsts) {
+ auto LI = dyn_cast<LoadInst>(I);
+ auto SI = dyn_cast<StoreInst>(I);
+ auto RMWI = dyn_cast<AtomicRMWInst>(I);
+ auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
+ assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
+
+ // If the Size/Alignment is not supported, replace with a libcall.
+ if (LI) {
+ if (!atomicSizeSupported(TLI, LI)) {
+ expandAtomicLoadToLibcall(LI);
+ MadeChange = true;
+ continue;
+ }
+ } else if (SI) {
+ if (!atomicSizeSupported(TLI, SI)) {
+ expandAtomicStoreToLibcall(SI);
+ MadeChange = true;
+ continue;
+ }
+ } else if (RMWI) {
+ if (!atomicSizeSupported(TLI, RMWI)) {
+ expandAtomicRMWToLibcall(RMWI);
+ MadeChange = true;
+ continue;
+ }
+ } else if (CASI) {
+ if (!atomicSizeSupported(TLI, CASI)) {
+ expandAtomicCASToLibcall(CASI);
+ MadeChange = true;
+ continue;
+ }
+ }
+
+ if (TLI->shouldInsertFencesForAtomic(I)) {
+ auto FenceOrdering = AtomicOrdering::Monotonic;
+ if (LI && isAcquireOrStronger(LI->getOrdering())) {
+ FenceOrdering = LI->getOrdering();
+ LI->setOrdering(AtomicOrdering::Monotonic);
+ } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
+ FenceOrdering = SI->getOrdering();
+ SI->setOrdering(AtomicOrdering::Monotonic);
+ } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
+ isAcquireOrStronger(RMWI->getOrdering()))) {
+ FenceOrdering = RMWI->getOrdering();
+ RMWI->setOrdering(AtomicOrdering::Monotonic);
+ } else if (CASI &&
+ TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
+ TargetLoweringBase::AtomicExpansionKind::None &&
+ (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
+ isAcquireOrStronger(CASI->getSuccessOrdering()))) {
+ // If a compare and swap is lowered to LL/SC, we can do smarter fence
+ // insertion, with a stronger one on the success path than on the
+ // failure path. As a result, fence insertion is directly done by
+ // expandAtomicCmpXchg in that case.
+ FenceOrdering = CASI->getSuccessOrdering();
+ CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
+ CASI->setFailureOrdering(AtomicOrdering::Monotonic);
+ }
+
+ if (FenceOrdering != AtomicOrdering::Monotonic) {
+ MadeChange |= bracketInstWithFences(I, FenceOrdering);
+ }
+ }
+
+ if (LI) {
+ if (LI->getType()->isFloatingPointTy()) {
+ // TODO: add a TLI hook to control this so that each target can
+ // convert to lowering the original type one at a time.
+ LI = convertAtomicLoadToIntegerType(LI);
+ assert(LI->getType()->isIntegerTy() && "invariant broken");
+ MadeChange = true;
+ }
+
+ MadeChange |= tryExpandAtomicLoad(LI);
+ } else if (SI) {
+ if (SI->getValueOperand()->getType()->isFloatingPointTy()) {
+ // TODO: add a TLI hook to control this so that each target can
+ // convert to lowering the original type one at a time.
+ SI = convertAtomicStoreToIntegerType(SI);
+ assert(SI->getValueOperand()->getType()->isIntegerTy() &&
+ "invariant broken");
+ MadeChange = true;
+ }
+
+ if (TLI->shouldExpandAtomicStoreInIR(SI))
+ MadeChange |= expandAtomicStore(SI);
+ } else if (RMWI) {
+ // There are two different ways of expanding RMW instructions:
+ // - into a load if it is idempotent
+ // - into a Cmpxchg/LL-SC loop otherwise
+ // we try them in that order.
+
+ if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
+ MadeChange = true;
+ } else {
+ unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
+ unsigned ValueSize = getAtomicOpSize(RMWI);
+ AtomicRMWInst::BinOp Op = RMWI->getOperation();
+ if (ValueSize < MinCASSize &&
+ (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
+ Op == AtomicRMWInst::And)) {
+ RMWI = widenPartwordAtomicRMW(RMWI);
+ MadeChange = true;
+ }
+
+ MadeChange |= tryExpandAtomicRMW(RMWI);
+ }
+ } else if (CASI) {
+ // TODO: when we're ready to make the change at the IR level, we can
+ // extend convertCmpXchgToInteger for floating point too.
+ assert(!CASI->getCompareOperand()->getType()->isFloatingPointTy() &&
+ "unimplemented - floating point not legal at IR level");
+ if (CASI->getCompareOperand()->getType()->isPointerTy() ) {
+ // TODO: add a TLI hook to control this so that each target can
+ // convert to lowering the original type one at a time.
+ CASI = convertCmpXchgToIntegerType(CASI);
+ assert(CASI->getCompareOperand()->getType()->isIntegerTy() &&
+ "invariant broken");
+ MadeChange = true;
+ }
+
+ MadeChange |= tryExpandAtomicCmpXchg(CASI);
+ }
+ }
+ return MadeChange;
+}
+
+bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
+ IRBuilder<> Builder(I);
+
+ auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
+
+ auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
+ // We have a guard here because not every atomic operation generates a
+ // trailing fence.
+ if (TrailingFence)
+ TrailingFence->moveAfter(I);
+
+ return (LeadingFence || TrailingFence);
+}
+
+/// Get the iX type with the same bitwidth as T.
+IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
+ const DataLayout &DL) {
+ EVT VT = TLI->getMemValueType(DL, T);
+ unsigned BitWidth = VT.getStoreSizeInBits();
+ assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
+ return IntegerType::get(T->getContext(), BitWidth);
+}
+
+/// Convert an atomic load of a non-integral type to an integer load of the
+/// equivalent bitwidth. See the function comment on
+/// convertAtomicStoreToIntegerType for background.
+LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
+ auto *M = LI->getModule();
+ Type *NewTy = getCorrespondingIntegerType(LI->getType(),
+ M->getDataLayout());
+
+ IRBuilder<> Builder(LI);
+
+ Value *Addr = LI->getPointerOperand();
+ Type *PT = PointerType::get(NewTy,
+ Addr->getType()->getPointerAddressSpace());
+ Value *NewAddr = Builder.CreateBitCast(Addr, PT);
+
+ auto *NewLI = Builder.CreateLoad(NewTy, NewAddr);
+ NewLI->setAlignment(LI->getAlignment());
+ NewLI->setVolatile(LI->isVolatile());
+ NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
+ LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
+
+ Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
+ LI->replaceAllUsesWith(NewVal);
+ LI->eraseFromParent();
+ return NewLI;
+}
+
+bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
+ switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
+ case TargetLoweringBase::AtomicExpansionKind::None:
+ return false;
+ case TargetLoweringBase::AtomicExpansionKind::LLSC:
+ expandAtomicOpToLLSC(
+ LI, LI->getType(), LI->getPointerOperand(), LI->getOrdering(),
+ [](IRBuilder<> &Builder, Value *Loaded) { return Loaded; });
+ return true;
+ case TargetLoweringBase::AtomicExpansionKind::LLOnly:
+ return expandAtomicLoadToLL(LI);
+ case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
+ return expandAtomicLoadToCmpXchg(LI);
+ default:
+ llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
+ }
+}
+
+bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
+ IRBuilder<> Builder(LI);
+
+ // On some architectures, load-linked instructions are atomic for larger
+ // sizes than normal loads. For example, the only 64-bit load guaranteed
+ // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
+ Value *Val =
+ TLI->emitLoadLinked(Builder, LI->getPointerOperand(), LI->getOrdering());
+ TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
+
+ LI->replaceAllUsesWith(Val);
+ LI->eraseFromParent();
+
+ return true;
+}
+
+bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
+ IRBuilder<> Builder(LI);
+ AtomicOrdering Order = LI->getOrdering();
+ if (Order == AtomicOrdering::Unordered)
+ Order = AtomicOrdering::Monotonic;
+
+ Value *Addr = LI->getPointerOperand();
+ Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
+ Constant *DummyVal = Constant::getNullValue(Ty);
+
+ Value *Pair = Builder.CreateAtomicCmpXchg(
+ Addr, DummyVal, DummyVal, Order,
+ AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
+ Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
+
+ LI->replaceAllUsesWith(Loaded);
+ LI->eraseFromParent();
+
+ return true;
+}
+
+/// Convert an atomic store of a non-integral type to an integer store of the
+/// equivalent bitwidth. We used to not support floating point or vector
+/// atomics in the IR at all. The backends learned to deal with the bitcast
+/// idiom because that was the only way of expressing the notion of a atomic
+/// float or vector store. The long term plan is to teach each backend to
+/// instruction select from the original atomic store, but as a migration
+/// mechanism, we convert back to the old format which the backends understand.
+/// Each backend will need individual work to recognize the new format.
+StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
+ IRBuilder<> Builder(SI);
+ auto *M = SI->getModule();
+ Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
+ M->getDataLayout());
+ Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
+
+ Value *Addr = SI->getPointerOperand();
+ Type *PT = PointerType::get(NewTy,
+ Addr->getType()->getPointerAddressSpace());
+ Value *NewAddr = Builder.CreateBitCast(Addr, PT);
+
+ StoreInst *NewSI = Builder.CreateStore(NewVal, NewAddr);
+ NewSI->setAlignment(SI->getAlignment());
+ NewSI->setVolatile(SI->isVolatile());
+ NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
+ LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
+ SI->eraseFromParent();
+ return NewSI;
+}
+
+bool AtomicExpand::expandAtomicStore(StoreInst *SI) {
+ // This function is only called on atomic stores that are too large to be
+ // atomic if implemented as a native store. So we replace them by an
+ // atomic swap, that can be implemented for example as a ldrex/strex on ARM
+ // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
+ // It is the responsibility of the target to only signal expansion via
+ // shouldExpandAtomicRMW in cases where this is required and possible.
+ IRBuilder<> Builder(SI);
+ AtomicRMWInst *AI =
+ Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
+ SI->getValueOperand(), SI->getOrdering());
+ SI->eraseFromParent();
+
+ // Now we have an appropriate swap instruction, lower it as usual.
+ return tryExpandAtomicRMW(AI);
+}
+
+static void createCmpXchgInstFun(IRBuilder<> &Builder, Value *Addr,
+ Value *Loaded, Value *NewVal,
+ AtomicOrdering MemOpOrder,
+ Value *&Success, Value *&NewLoaded) {
+ Type *OrigTy = NewVal->getType();
+
+ // This code can go away when cmpxchg supports FP types.
+ bool NeedBitcast = OrigTy->isFloatingPointTy();
+ if (NeedBitcast) {
+ IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
+ unsigned AS = Addr->getType()->getPointerAddressSpace();
+ Addr = Builder.CreateBitCast(Addr, IntTy->getPointerTo(AS));
+ NewVal = Builder.CreateBitCast(NewVal, IntTy);
+ Loaded = Builder.CreateBitCast(Loaded, IntTy);
+ }
+
+ Value* Pair = Builder.CreateAtomicCmpXchg(
+ Addr, Loaded, NewVal, MemOpOrder,
+ AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
+ Success = Builder.CreateExtractValue(Pair, 1, "success");
+ NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
+
+ if (NeedBitcast)
+ NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
+}
+
+/// Emit IR to implement the given atomicrmw operation on values in registers,
+/// returning the new value.
+static Value *performAtomicOp(AtomicRMWInst::BinOp Op, IRBuilder<> &Builder,
+ Value *Loaded, Value *Inc) {
+ Value *NewVal;
+ switch (Op) {
+ case AtomicRMWInst::Xchg:
+ return Inc;
+ case AtomicRMWInst::Add:
+ return Builder.CreateAdd(Loaded, Inc, "new");
+ case AtomicRMWInst::Sub:
+ return Builder.CreateSub(Loaded, Inc, "new");
+ case AtomicRMWInst::And:
+ return Builder.CreateAnd(Loaded, Inc, "new");
+ case AtomicRMWInst::Nand:
+ return Builder.CreateNot(Builder.CreateAnd(Loaded, Inc), "new");
+ case AtomicRMWInst::Or:
+ return Builder.CreateOr(Loaded, Inc, "new");
+ case AtomicRMWInst::Xor:
+ return Builder.CreateXor(Loaded, Inc, "new");
+ case AtomicRMWInst::Max:
+ NewVal = Builder.CreateICmpSGT(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ case AtomicRMWInst::Min:
+ NewVal = Builder.CreateICmpSLE(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ case AtomicRMWInst::UMax:
+ NewVal = Builder.CreateICmpUGT(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ case AtomicRMWInst::UMin:
+ NewVal = Builder.CreateICmpULE(Loaded, Inc);
+ return Builder.CreateSelect(NewVal, Loaded, Inc, "new");
+ case AtomicRMWInst::FAdd:
+ return Builder.CreateFAdd(Loaded, Inc, "new");
+ case AtomicRMWInst::FSub:
+ return Builder.CreateFSub(Loaded, Inc, "new");
+ default:
+ llvm_unreachable("Unknown atomic op");
+ }
+}
+
+bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
+ switch (TLI->shouldExpandAtomicRMWInIR(AI)) {
+ case TargetLoweringBase::AtomicExpansionKind::None:
+ return false;
+ case TargetLoweringBase::AtomicExpansionKind::LLSC: {
+ unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
+ unsigned ValueSize = getAtomicOpSize(AI);
+ if (ValueSize < MinCASSize) {
+ llvm_unreachable(
+ "MinCmpXchgSizeInBits not yet supported for LL/SC architectures.");
+ } else {
+ auto PerformOp = [&](IRBuilder<> &Builder, Value *Loaded) {
+ return performAtomicOp(AI->getOperation(), Builder, Loaded,
+ AI->getValOperand());
+ };
+ expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
+ AI->getOrdering(), PerformOp);
+ }
+ return true;
+ }
+ case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
+ unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
+ unsigned ValueSize = getAtomicOpSize(AI);
+ if (ValueSize < MinCASSize) {
+ // TODO: Handle atomicrmw fadd/fsub
+ if (AI->getType()->isFloatingPointTy())
+ return false;
+
+ expandPartwordAtomicRMW(AI,
+ TargetLoweringBase::AtomicExpansionKind::CmpXChg);
+ } else {
+ expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
+ }
+ return true;
+ }
+ case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
+ expandAtomicRMWToMaskedIntrinsic(AI);
+ return true;
+ }
+ default:
+ llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
+ }
+}
+
+namespace {
+
+/// Result values from createMaskInstrs helper.
+struct PartwordMaskValues {
+ Type *WordType;
+ Type *ValueType;
+ Value *AlignedAddr;
+ Value *ShiftAmt;
+ Value *Mask;
+ Value *Inv_Mask;
+};
+
+} // end anonymous namespace
+
+/// This is a helper function which builds instructions to provide
+/// values necessary for partword atomic operations. It takes an
+/// incoming address, Addr, and ValueType, and constructs the address,
+/// shift-amounts and masks needed to work with a larger value of size
+/// WordSize.
+///
+/// AlignedAddr: Addr rounded down to a multiple of WordSize
+///
+/// ShiftAmt: Number of bits to right-shift a WordSize value loaded
+/// from AlignAddr for it to have the same value as if
+/// ValueType was loaded from Addr.
+///
+/// Mask: Value to mask with the value loaded from AlignAddr to
+/// include only the part that would've been loaded from Addr.
+///
+/// Inv_Mask: The inverse of Mask.
+static PartwordMaskValues createMaskInstrs(IRBuilder<> &Builder, Instruction *I,
+ Type *ValueType, Value *Addr,
+ unsigned WordSize) {
+ PartwordMaskValues Ret;
+
+ BasicBlock *BB = I->getParent();
+ Function *F = BB->getParent();
+ Module *M = I->getModule();
+
+ LLVMContext &Ctx = F->getContext();
+ const DataLayout &DL = M->getDataLayout();
+
+ unsigned ValueSize = DL.getTypeStoreSize(ValueType);
+
+ assert(ValueSize < WordSize);
+
+ Ret.ValueType = ValueType;
+ Ret.WordType = Type::getIntNTy(Ctx, WordSize * 8);
+
+ Type *WordPtrType =
+ Ret.WordType->getPointerTo(Addr->getType()->getPointerAddressSpace());
+
+ Value *AddrInt = Builder.CreatePtrToInt(Addr, DL.getIntPtrType(Ctx));
+ Ret.AlignedAddr = Builder.CreateIntToPtr(
+ Builder.CreateAnd(AddrInt, ~(uint64_t)(WordSize - 1)), WordPtrType,
+ "AlignedAddr");
+
+ Value *PtrLSB = Builder.CreateAnd(AddrInt, WordSize - 1, "PtrLSB");
+ if (DL.isLittleEndian()) {
+ // turn bytes into bits
+ Ret.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
+ } else {
+ // turn bytes into bits, and count from the other side.
+ Ret.ShiftAmt =
+ Builder.CreateShl(Builder.CreateXor(PtrLSB, WordSize - ValueSize), 3);
+ }
+
+ Ret.ShiftAmt = Builder.CreateTrunc(Ret.ShiftAmt, Ret.WordType, "ShiftAmt");
+ Ret.Mask = Builder.CreateShl(
+ ConstantInt::get(Ret.WordType, (1 << ValueSize * 8) - 1), Ret.ShiftAmt,
+ "Mask");
+ Ret.Inv_Mask = Builder.CreateNot(Ret.Mask, "Inv_Mask");
+
+ return Ret;
+}
+
+/// Emit IR to implement a masked version of a given atomicrmw
+/// operation. (That is, only the bits under the Mask should be
+/// affected by the operation)
+static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
+ IRBuilder<> &Builder, Value *Loaded,
+ Value *Shifted_Inc, Value *Inc,
+ const PartwordMaskValues &PMV) {
+ // TODO: update to use
+ // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
+ // to merge bits from two values without requiring PMV.Inv_Mask.
+ switch (Op) {
+ case AtomicRMWInst::Xchg: {
+ Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
+ Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
+ return FinalVal;
+ }
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Xor:
+ case AtomicRMWInst::And:
+ llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ case AtomicRMWInst::Nand: {
+ // The other arithmetic ops need to be masked into place.
+ Value *NewVal = performAtomicOp(Op, Builder, Loaded, Shifted_Inc);
+ Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
+ Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
+ Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
+ return FinalVal;
+ }
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin: {
+ // Finally, comparison ops will operate on the full value, so
+ // truncate down to the original size, and expand out again after
+ // doing the operation.
+ Value *Loaded_Shiftdown = Builder.CreateTrunc(
+ Builder.CreateLShr(Loaded, PMV.ShiftAmt), PMV.ValueType);
+ Value *NewVal = performAtomicOp(Op, Builder, Loaded_Shiftdown, Inc);
+ Value *NewVal_Shiftup = Builder.CreateShl(
+ Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
+ Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
+ Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shiftup);
+ return FinalVal;
+ }
+ default:
+ llvm_unreachable("Unknown atomic op");
+ }
+}
+
+/// Expand a sub-word atomicrmw operation into an appropriate
+/// word-sized operation.
+///
+/// It will create an LL/SC or cmpxchg loop, as appropriate, the same
+/// way as a typical atomicrmw expansion. The only difference here is
+/// that the operation inside of the loop must operate only upon a
+/// part of the value.
+void AtomicExpand::expandPartwordAtomicRMW(
+ AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
+ assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg);
+
+ AtomicOrdering MemOpOrder = AI->getOrdering();
+
+ IRBuilder<> Builder(AI);
+
+ PartwordMaskValues PMV =
+ createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
+ TLI->getMinCmpXchgSizeInBits() / 8);
+
+ Value *ValOperand_Shifted =
+ Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
+ PMV.ShiftAmt, "ValOperand_Shifted");
+
+ auto PerformPartwordOp = [&](IRBuilder<> &Builder, Value *Loaded) {
+ return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
+ ValOperand_Shifted, AI->getValOperand(), PMV);
+ };
+
+ // TODO: When we're ready to support LLSC conversions too, use
+ // insertRMWLLSCLoop here for ExpansionKind==LLSC.
+ Value *OldResult =
+ insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder,
+ PerformPartwordOp, createCmpXchgInstFun);
+ Value *FinalOldResult = Builder.CreateTrunc(
+ Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
+ AI->replaceAllUsesWith(FinalOldResult);
+ AI->eraseFromParent();
+}
+
+// Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
+AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
+ IRBuilder<> Builder(AI);
+ AtomicRMWInst::BinOp Op = AI->getOperation();
+
+ assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
+ Op == AtomicRMWInst::And) &&
+ "Unable to widen operation");
+
+ PartwordMaskValues PMV =
+ createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
+ TLI->getMinCmpXchgSizeInBits() / 8);
+
+ Value *ValOperand_Shifted =
+ Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
+ PMV.ShiftAmt, "ValOperand_Shifted");
+
+ Value *NewOperand;
+
+ if (Op == AtomicRMWInst::And)
+ NewOperand =
+ Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
+ else
+ NewOperand = ValOperand_Shifted;
+
+ AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(Op, PMV.AlignedAddr,
+ NewOperand, AI->getOrdering());
+
+ Value *FinalOldResult = Builder.CreateTrunc(
+ Builder.CreateLShr(NewAI, PMV.ShiftAmt), PMV.ValueType);
+ AI->replaceAllUsesWith(FinalOldResult);
+ AI->eraseFromParent();
+ return NewAI;
+}
+
+void AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
+ // The basic idea here is that we're expanding a cmpxchg of a
+ // smaller memory size up to a word-sized cmpxchg. To do this, we
+ // need to add a retry-loop for strong cmpxchg, so that
+ // modifications to other parts of the word don't cause a spurious
+ // failure.
+
+ // This generates code like the following:
+ // [[Setup mask values PMV.*]]
+ // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
+ // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
+ // %InitLoaded = load i32* %addr
+ // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
+ // br partword.cmpxchg.loop
+ // partword.cmpxchg.loop:
+ // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
+ // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
+ // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
+ // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
+ // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
+ // i32 %FullWord_NewVal success_ordering failure_ordering
+ // %OldVal = extractvalue { i32, i1 } %NewCI, 0
+ // %Success = extractvalue { i32, i1 } %NewCI, 1
+ // br i1 %Success, label %partword.cmpxchg.end,
+ // label %partword.cmpxchg.failure
+ // partword.cmpxchg.failure:
+ // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
+ // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
+ // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
+ // label %partword.cmpxchg.end
+ // partword.cmpxchg.end:
+ // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
+ // %FinalOldVal = trunc i32 %tmp1 to i8
+ // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
+ // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
+
+ Value *Addr = CI->getPointerOperand();
+ Value *Cmp = CI->getCompareOperand();
+ Value *NewVal = CI->getNewValOperand();
+
+ BasicBlock *BB = CI->getParent();
+ Function *F = BB->getParent();
+ IRBuilder<> Builder(CI);
+ LLVMContext &Ctx = Builder.getContext();
+
+ const int WordSize = TLI->getMinCmpXchgSizeInBits() / 8;
+
+ BasicBlock *EndBB =
+ BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
+ auto FailureBB =
+ BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
+ auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
+
+ // The split call above "helpfully" added a branch at the end of BB
+ // (to the wrong place).
+ std::prev(BB->end())->eraseFromParent();
+ Builder.SetInsertPoint(BB);
+
+ PartwordMaskValues PMV = createMaskInstrs(
+ Builder, CI, CI->getCompareOperand()->getType(), Addr, WordSize);
+
+ // Shift the incoming values over, into the right location in the word.
+ Value *NewVal_Shifted =
+ Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
+ Value *Cmp_Shifted =
+ Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
+
+ // Load the entire current word, and mask into place the expected and new
+ // values
+ LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
+ InitLoaded->setVolatile(CI->isVolatile());
+ Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
+ Builder.CreateBr(LoopBB);
+
+ // partword.cmpxchg.loop:
+ Builder.SetInsertPoint(LoopBB);
+ PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
+ Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
+
+ // Mask/Or the expected and new values into place in the loaded word.
+ Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
+ Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
+ AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
+ PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, CI->getSuccessOrdering(),
+ CI->getFailureOrdering(), CI->getSyncScopeID());
+ NewCI->setVolatile(CI->isVolatile());
+ // When we're building a strong cmpxchg, we need a loop, so you
+ // might think we could use a weak cmpxchg inside. But, using strong
+ // allows the below comparison for ShouldContinue, and we're
+ // expecting the underlying cmpxchg to be a machine instruction,
+ // which is strong anyways.
+ NewCI->setWeak(CI->isWeak());
+
+ Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
+ Value *Success = Builder.CreateExtractValue(NewCI, 1);
+
+ if (CI->isWeak())
+ Builder.CreateBr(EndBB);
+ else
+ Builder.CreateCondBr(Success, EndBB, FailureBB);
+
+ // partword.cmpxchg.failure:
+ Builder.SetInsertPoint(FailureBB);
+ // Upon failure, verify that the masked-out part of the loaded value
+ // has been modified. If it didn't, abort the cmpxchg, since the
+ // masked-in part must've.
+ Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
+ Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
+ Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
+
+ // Add the second value to the phi from above
+ Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
+
+ // partword.cmpxchg.end:
+ Builder.SetInsertPoint(CI);
+
+ Value *FinalOldVal = Builder.CreateTrunc(
+ Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
+ Value *Res = UndefValue::get(CI->getType());
+ Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
+ Res = Builder.CreateInsertValue(Res, Success, 1);
+
+ CI->replaceAllUsesWith(Res);
+ CI->eraseFromParent();
+}
+
+void AtomicExpand::expandAtomicOpToLLSC(
+ Instruction *I, Type *ResultType, Value *Addr, AtomicOrdering MemOpOrder,
+ function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
+ IRBuilder<> Builder(I);
+ Value *Loaded =
+ insertRMWLLSCLoop(Builder, ResultType, Addr, MemOpOrder, PerformOp);
+
+ I->replaceAllUsesWith(Loaded);
+ I->eraseFromParent();
+}
+
+void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
+ IRBuilder<> Builder(AI);
+
+ PartwordMaskValues PMV =
+ createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
+ TLI->getMinCmpXchgSizeInBits() / 8);
+
+ // The value operand must be sign-extended for signed min/max so that the
+ // target's signed comparison instructions can be used. Otherwise, just
+ // zero-ext.
+ Instruction::CastOps CastOp = Instruction::ZExt;
+ AtomicRMWInst::BinOp RMWOp = AI->getOperation();
+ if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
+ CastOp = Instruction::SExt;
+
+ Value *ValOperand_Shifted = Builder.CreateShl(
+ Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
+ PMV.ShiftAmt, "ValOperand_Shifted");
+ Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
+ Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
+ AI->getOrdering());
+ Value *FinalOldResult = Builder.CreateTrunc(
+ Builder.CreateLShr(OldResult, PMV.ShiftAmt), PMV.ValueType);
+ AI->replaceAllUsesWith(FinalOldResult);
+ AI->eraseFromParent();
+}
+
+void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
+ IRBuilder<> Builder(CI);
+
+ PartwordMaskValues PMV = createMaskInstrs(
+ Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
+ TLI->getMinCmpXchgSizeInBits() / 8);
+
+ Value *CmpVal_Shifted = Builder.CreateShl(
+ Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
+ "CmpVal_Shifted");
+ Value *NewVal_Shifted = Builder.CreateShl(
+ Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
+ "NewVal_Shifted");
+ Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
+ Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
+ CI->getSuccessOrdering());
+ Value *FinalOldVal = Builder.CreateTrunc(
+ Builder.CreateLShr(OldVal, PMV.ShiftAmt), PMV.ValueType);
+
+ Value *Res = UndefValue::get(CI->getType());
+ Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
+ Value *Success = Builder.CreateICmpEQ(
+ CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
+ Res = Builder.CreateInsertValue(Res, Success, 1);
+
+ CI->replaceAllUsesWith(Res);
+ CI->eraseFromParent();
+}
+
+Value *AtomicExpand::insertRMWLLSCLoop(
+ IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
+ AtomicOrdering MemOpOrder,
+ function_ref<Value *(IRBuilder<> &, Value *)> PerformOp) {
+ LLVMContext &Ctx = Builder.getContext();
+ BasicBlock *BB = Builder.GetInsertBlock();
+ Function *F = BB->getParent();
+
+ // Given: atomicrmw some_op iN* %addr, iN %incr ordering
+ //
+ // The standard expansion we produce is:
+ // [...]
+ // atomicrmw.start:
+ // %loaded = @load.linked(%addr)
+ // %new = some_op iN %loaded, %incr
+ // %stored = @store_conditional(%new, %addr)
+ // %try_again = icmp i32 ne %stored, 0
+ // br i1 %try_again, label %loop, label %atomicrmw.end
+ // atomicrmw.end:
+ // [...]
+ BasicBlock *ExitBB =
+ BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
+ BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
+
+ // The split call above "helpfully" added a branch at the end of BB (to the
+ // wrong place).
+ std::prev(BB->end())->eraseFromParent();
+ Builder.SetInsertPoint(BB);
+ Builder.CreateBr(LoopBB);
+
+ // Start the main loop block now that we've taken care of the preliminaries.
+ Builder.SetInsertPoint(LoopBB);
+ Value *Loaded = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
+
+ Value *NewVal = PerformOp(Builder, Loaded);
+
+ Value *StoreSuccess =
+ TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
+ Value *TryAgain = Builder.CreateICmpNE(
+ StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
+ Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
+
+ Builder.SetInsertPoint(ExitBB, ExitBB->begin());
+ return Loaded;
+}
+
+/// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
+/// the equivalent bitwidth. We used to not support pointer cmpxchg in the
+/// IR. As a migration step, we convert back to what use to be the standard
+/// way to represent a pointer cmpxchg so that we can update backends one by
+/// one.
+AtomicCmpXchgInst *AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
+ auto *M = CI->getModule();
+ Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
+ M->getDataLayout());
+
+ IRBuilder<> Builder(CI);
+
+ Value *Addr = CI->getPointerOperand();
+ Type *PT = PointerType::get(NewTy,
+ Addr->getType()->getPointerAddressSpace());
+ Value *NewAddr = Builder.CreateBitCast(Addr, PT);
+
+ Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
+ Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
+
+
+ auto *NewCI = Builder.CreateAtomicCmpXchg(NewAddr, NewCmp, NewNewVal,
+ CI->getSuccessOrdering(),
+ CI->getFailureOrdering(),
+ CI->getSyncScopeID());
+ NewCI->setVolatile(CI->isVolatile());
+ NewCI->setWeak(CI->isWeak());
+ LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
+
+ Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
+ Value *Succ = Builder.CreateExtractValue(NewCI, 1);
+
+ OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
+
+ Value *Res = UndefValue::get(CI->getType());
+ Res = Builder.CreateInsertValue(Res, OldVal, 0);
+ Res = Builder.CreateInsertValue(Res, Succ, 1);
+
+ CI->replaceAllUsesWith(Res);
+ CI->eraseFromParent();
+ return NewCI;
+}
+
+bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
+ AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
+ AtomicOrdering FailureOrder = CI->getFailureOrdering();
+ Value *Addr = CI->getPointerOperand();
+ BasicBlock *BB = CI->getParent();
+ Function *F = BB->getParent();
+ LLVMContext &Ctx = F->getContext();
+ // If shouldInsertFencesForAtomic() returns true, then the target does not
+ // want to deal with memory orders, and emitLeading/TrailingFence should take
+ // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
+ // should preserve the ordering.
+ bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
+ AtomicOrdering MemOpOrder =
+ ShouldInsertFencesForAtomic ? AtomicOrdering::Monotonic : SuccessOrder;
+
+ // In implementations which use a barrier to achieve release semantics, we can
+ // delay emitting this barrier until we know a store is actually going to be
+ // attempted. The cost of this delay is that we need 2 copies of the block
+ // emitting the load-linked, affecting code size.
+ //
+ // Ideally, this logic would be unconditional except for the minsize check
+ // since in other cases the extra blocks naturally collapse down to the
+ // minimal loop. Unfortunately, this puts too much stress on later
+ // optimisations so we avoid emitting the extra logic in those cases too.
+ bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
+ SuccessOrder != AtomicOrdering::Monotonic &&
+ SuccessOrder != AtomicOrdering::Acquire &&
+ !F->hasMinSize();
+
+ // There's no overhead for sinking the release barrier in a weak cmpxchg, so
+ // do it even on minsize.
+ bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
+
+ // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
+ //
+ // The full expansion we produce is:
+ // [...]
+ // cmpxchg.start:
+ // %unreleasedload = @load.linked(%addr)
+ // %should_store = icmp eq %unreleasedload, %desired
+ // br i1 %should_store, label %cmpxchg.fencedstore,
+ // label %cmpxchg.nostore
+ // cmpxchg.releasingstore:
+ // fence?
+ // br label cmpxchg.trystore
+ // cmpxchg.trystore:
+ // %loaded.trystore = phi [%unreleasedload, %releasingstore],
+ // [%releasedload, %cmpxchg.releasedload]
+ // %stored = @store_conditional(%new, %addr)
+ // %success = icmp eq i32 %stored, 0
+ // br i1 %success, label %cmpxchg.success,
+ // label %cmpxchg.releasedload/%cmpxchg.failure
+ // cmpxchg.releasedload:
+ // %releasedload = @load.linked(%addr)
+ // %should_store = icmp eq %releasedload, %desired
+ // br i1 %should_store, label %cmpxchg.trystore,
+ // label %cmpxchg.failure
+ // cmpxchg.success:
+ // fence?
+ // br label %cmpxchg.end
+ // cmpxchg.nostore:
+ // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
+ // [%releasedload,
+ // %cmpxchg.releasedload/%cmpxchg.trystore]
+ // @load_linked_fail_balance()?
+ // br label %cmpxchg.failure
+ // cmpxchg.failure:
+ // fence?
+ // br label %cmpxchg.end
+ // cmpxchg.end:
+ // %loaded = phi [%loaded.nostore, %cmpxchg.failure],
+ // [%loaded.trystore, %cmpxchg.trystore]
+ // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
+ // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
+ // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
+ // [...]
+ BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
+ auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
+ auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
+ auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
+ auto ReleasedLoadBB =
+ BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
+ auto TryStoreBB =
+ BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
+ auto ReleasingStoreBB =
+ BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
+ auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
+
+ // This grabs the DebugLoc from CI
+ IRBuilder<> Builder(CI);
+
+ // The split call above "helpfully" added a branch at the end of BB (to the
+ // wrong place), but we might want a fence too. It's easiest to just remove
+ // the branch entirely.
+ std::prev(BB->end())->eraseFromParent();
+ Builder.SetInsertPoint(BB);
+ if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
+ TLI->emitLeadingFence(Builder, CI, SuccessOrder);
+ Builder.CreateBr(StartBB);
+
+ // Start the main loop block now that we've taken care of the preliminaries.
+ Builder.SetInsertPoint(StartBB);
+ Value *UnreleasedLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
+ Value *ShouldStore = Builder.CreateICmpEQ(
+ UnreleasedLoad, CI->getCompareOperand(), "should_store");
+
+ // If the cmpxchg doesn't actually need any ordering when it fails, we can
+ // jump straight past that fence instruction (if it exists).
+ Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
+
+ Builder.SetInsertPoint(ReleasingStoreBB);
+ if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
+ TLI->emitLeadingFence(Builder, CI, SuccessOrder);
+ Builder.CreateBr(TryStoreBB);
+
+ Builder.SetInsertPoint(TryStoreBB);
+ Value *StoreSuccess = TLI->emitStoreConditional(
+ Builder, CI->getNewValOperand(), Addr, MemOpOrder);
+ StoreSuccess = Builder.CreateICmpEQ(
+ StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
+ BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
+ Builder.CreateCondBr(StoreSuccess, SuccessBB,
+ CI->isWeak() ? FailureBB : RetryBB);
+
+ Builder.SetInsertPoint(ReleasedLoadBB);
+ Value *SecondLoad;
+ if (HasReleasedLoadBB) {
+ SecondLoad = TLI->emitLoadLinked(Builder, Addr, MemOpOrder);
+ ShouldStore = Builder.CreateICmpEQ(SecondLoad, CI->getCompareOperand(),
+ "should_store");
+
+ // If the cmpxchg doesn't actually need any ordering when it fails, we can
+ // jump straight past that fence instruction (if it exists).
+ Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
+ } else
+ Builder.CreateUnreachable();
+
+ // Make sure later instructions don't get reordered with a fence if
+ // necessary.
+ Builder.SetInsertPoint(SuccessBB);
+ if (ShouldInsertFencesForAtomic)
+ TLI->emitTrailingFence(Builder, CI, SuccessOrder);
+ Builder.CreateBr(ExitBB);
+
+ Builder.SetInsertPoint(NoStoreBB);
+ // In the failing case, where we don't execute the store-conditional, the
+ // target might want to balance out the load-linked with a dedicated
+ // instruction (e.g., on ARM, clearing the exclusive monitor).
+ TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
+ Builder.CreateBr(FailureBB);
+
+ Builder.SetInsertPoint(FailureBB);
+ if (ShouldInsertFencesForAtomic)
+ TLI->emitTrailingFence(Builder, CI, FailureOrder);
+ Builder.CreateBr(ExitBB);
+
+ // Finally, we have control-flow based knowledge of whether the cmpxchg
+ // succeeded or not. We expose this to later passes by converting any
+ // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
+ // PHI.
+ Builder.SetInsertPoint(ExitBB, ExitBB->begin());
+ PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
+ Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
+ Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
+
+ // Setup the builder so we can create any PHIs we need.
+ Value *Loaded;
+ if (!HasReleasedLoadBB)
+ Loaded = UnreleasedLoad;
+ else {
+ Builder.SetInsertPoint(TryStoreBB, TryStoreBB->begin());
+ PHINode *TryStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
+ TryStoreLoaded->addIncoming(UnreleasedLoad, ReleasingStoreBB);
+ TryStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
+
+ Builder.SetInsertPoint(NoStoreBB, NoStoreBB->begin());
+ PHINode *NoStoreLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
+ NoStoreLoaded->addIncoming(UnreleasedLoad, StartBB);
+ NoStoreLoaded->addIncoming(SecondLoad, ReleasedLoadBB);
+
+ Builder.SetInsertPoint(ExitBB, ++ExitBB->begin());
+ PHINode *ExitLoaded = Builder.CreatePHI(UnreleasedLoad->getType(), 2);
+ ExitLoaded->addIncoming(TryStoreLoaded, SuccessBB);
+ ExitLoaded->addIncoming(NoStoreLoaded, FailureBB);
+
+ Loaded = ExitLoaded;
+ }
+
+ // Look for any users of the cmpxchg that are just comparing the loaded value
+ // against the desired one, and replace them with the CFG-derived version.
+ SmallVector<ExtractValueInst *, 2> PrunedInsts;
+ for (auto User : CI->users()) {
+ ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
+ if (!EV)
+ continue;
+
+ assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
+ "weird extraction from { iN, i1 }");
+
+ if (EV->getIndices()[0] == 0)
+ EV->replaceAllUsesWith(Loaded);
+ else
+ EV->replaceAllUsesWith(Success);
+
+ PrunedInsts.push_back(EV);
+ }
+
+ // We can remove the instructions now we're no longer iterating through them.
+ for (auto EV : PrunedInsts)
+ EV->eraseFromParent();
+
+ if (!CI->use_empty()) {
+ // Some use of the full struct return that we don't understand has happened,
+ // so we've got to reconstruct it properly.
+ Value *Res;
+ Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
+ Res = Builder.CreateInsertValue(Res, Success, 1);
+
+ CI->replaceAllUsesWith(Res);
+ }
+
+ CI->eraseFromParent();
+ return true;
+}
+
+bool AtomicExpand::isIdempotentRMW(AtomicRMWInst* RMWI) {
+ auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
+ if(!C)
+ return false;
+
+ AtomicRMWInst::BinOp Op = RMWI->getOperation();
+ switch(Op) {
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Xor:
+ return C->isZero();
+ case AtomicRMWInst::And:
+ return C->isMinusOne();
+ // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
+ default:
+ return false;
+ }
+}
+
+bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst* RMWI) {
+ if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
+ tryExpandAtomicLoad(ResultingLoad);
+ return true;
+ }
+ return false;
+}
+
+Value *AtomicExpand::insertRMWCmpXchgLoop(
+ IRBuilder<> &Builder, Type *ResultTy, Value *Addr,
+ AtomicOrdering MemOpOrder,
+ function_ref<Value *(IRBuilder<> &, Value *)> PerformOp,
+ CreateCmpXchgInstFun CreateCmpXchg) {
+ LLVMContext &Ctx = Builder.getContext();
+ BasicBlock *BB = Builder.GetInsertBlock();
+ Function *F = BB->getParent();
+
+ // Given: atomicrmw some_op iN* %addr, iN %incr ordering
+ //
+ // The standard expansion we produce is:
+ // [...]
+ // %init_loaded = load atomic iN* %addr
+ // br label %loop
+ // loop:
+ // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
+ // %new = some_op iN %loaded, %incr
+ // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
+ // %new_loaded = extractvalue { iN, i1 } %pair, 0
+ // %success = extractvalue { iN, i1 } %pair, 1
+ // br i1 %success, label %atomicrmw.end, label %loop
+ // atomicrmw.end:
+ // [...]
+ BasicBlock *ExitBB =
+ BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
+ BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
+
+ // The split call above "helpfully" added a branch at the end of BB (to the
+ // wrong place), but we want a load. It's easiest to just remove
+ // the branch entirely.
+ std::prev(BB->end())->eraseFromParent();
+ Builder.SetInsertPoint(BB);
+ LoadInst *InitLoaded = Builder.CreateLoad(ResultTy, Addr);
+ // Atomics require at least natural alignment.
+ InitLoaded->setAlignment(ResultTy->getPrimitiveSizeInBits() / 8);
+ Builder.CreateBr(LoopBB);
+
+ // Start the main loop block now that we've taken care of the preliminaries.
+ Builder.SetInsertPoint(LoopBB);
+ PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
+ Loaded->addIncoming(InitLoaded, BB);
+
+ Value *NewVal = PerformOp(Builder, Loaded);
+
+ Value *NewLoaded = nullptr;
+ Value *Success = nullptr;
+
+ CreateCmpXchg(Builder, Addr, Loaded, NewVal,
+ MemOpOrder == AtomicOrdering::Unordered
+ ? AtomicOrdering::Monotonic
+ : MemOpOrder,
+ Success, NewLoaded);
+ assert(Success && NewLoaded);
+
+ Loaded->addIncoming(NewLoaded, LoopBB);
+
+ Builder.CreateCondBr(Success, ExitBB, LoopBB);
+
+ Builder.SetInsertPoint(ExitBB, ExitBB->begin());
+ return NewLoaded;
+}
+
+bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
+ unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
+ unsigned ValueSize = getAtomicOpSize(CI);
+
+ switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
+ default:
+ llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
+ case TargetLoweringBase::AtomicExpansionKind::None:
+ if (ValueSize < MinCASSize)
+ expandPartwordCmpXchg(CI);
+ return false;
+ case TargetLoweringBase::AtomicExpansionKind::LLSC: {
+ assert(ValueSize >= MinCASSize &&
+ "MinCmpXchgSizeInBits not yet supported for LL/SC expansions.");
+ return expandAtomicCmpXchg(CI);
+ }
+ case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
+ expandAtomicCmpXchgToMaskedIntrinsic(CI);
+ return true;
+ }
+}
+
+// Note: This function is exposed externally by AtomicExpandUtils.h
+bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
+ CreateCmpXchgInstFun CreateCmpXchg) {
+ IRBuilder<> Builder(AI);
+ Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
+ Builder, AI->getType(), AI->getPointerOperand(), AI->getOrdering(),
+ [&](IRBuilder<> &Builder, Value *Loaded) {
+ return performAtomicOp(AI->getOperation(), Builder, Loaded,
+ AI->getValOperand());
+ },
+ CreateCmpXchg);
+
+ AI->replaceAllUsesWith(Loaded);
+ AI->eraseFromParent();
+ return true;
+}
+
+// In order to use one of the sized library calls such as
+// __atomic_fetch_add_4, the alignment must be sufficient, the size
+// must be one of the potentially-specialized sizes, and the value
+// type must actually exist in C on the target (otherwise, the
+// function wouldn't actually be defined.)
+static bool canUseSizedAtomicCall(unsigned Size, unsigned Align,
+ const DataLayout &DL) {
+ // TODO: "LargestSize" is an approximation for "largest type that
+ // you can express in C". It seems to be the case that int128 is
+ // supported on all 64-bit platforms, otherwise only up to 64-bit
+ // integers are supported. If we get this wrong, then we'll try to
+ // call a sized libcall that doesn't actually exist. There should
+ // really be some more reliable way in LLVM of determining integer
+ // sizes which are valid in the target's C ABI...
+ unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
+ return Align >= Size &&
+ (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
+ Size <= LargestSize;
+}
+
+void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
+ static const RTLIB::Libcall Libcalls[6] = {
+ RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
+ RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
+ unsigned Size = getAtomicOpSize(I);
+ unsigned Align = getAtomicOpAlign(I);
+
+ bool expanded = expandAtomicOpToLibcall(
+ I, Size, Align, I->getPointerOperand(), nullptr, nullptr,
+ I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
+ (void)expanded;
+ assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Load");
+}
+
+void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
+ static const RTLIB::Libcall Libcalls[6] = {
+ RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
+ RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
+ unsigned Size = getAtomicOpSize(I);
+ unsigned Align = getAtomicOpAlign(I);
+
+ bool expanded = expandAtomicOpToLibcall(
+ I, Size, Align, I->getPointerOperand(), I->getValueOperand(), nullptr,
+ I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
+ (void)expanded;
+ assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor Store");
+}
+
+void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
+ static const RTLIB::Libcall Libcalls[6] = {
+ RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
+ RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
+ RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
+ unsigned Size = getAtomicOpSize(I);
+ unsigned Align = getAtomicOpAlign(I);
+
+ bool expanded = expandAtomicOpToLibcall(
+ I, Size, Align, I->getPointerOperand(), I->getNewValOperand(),
+ I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
+ Libcalls);
+ (void)expanded;
+ assert(expanded && "expandAtomicOpToLibcall shouldn't fail tor CAS");
+}
+
+static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
+ static const RTLIB::Libcall LibcallsXchg[6] = {
+ RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
+ RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
+ RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
+ static const RTLIB::Libcall LibcallsAdd[6] = {
+ RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
+ RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
+ RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
+ static const RTLIB::Libcall LibcallsSub[6] = {
+ RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
+ RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
+ RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
+ static const RTLIB::Libcall LibcallsAnd[6] = {
+ RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
+ RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
+ RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
+ static const RTLIB::Libcall LibcallsOr[6] = {
+ RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
+ RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
+ RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
+ static const RTLIB::Libcall LibcallsXor[6] = {
+ RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
+ RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
+ RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
+ static const RTLIB::Libcall LibcallsNand[6] = {
+ RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
+ RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
+ RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
+
+ switch (Op) {
+ case AtomicRMWInst::BAD_BINOP:
+ llvm_unreachable("Should not have BAD_BINOP.");
+ case AtomicRMWInst::Xchg:
+ return makeArrayRef(LibcallsXchg);
+ case AtomicRMWInst::Add:
+ return makeArrayRef(LibcallsAdd);
+ case AtomicRMWInst::Sub:
+ return makeArrayRef(LibcallsSub);
+ case AtomicRMWInst::And:
+ return makeArrayRef(LibcallsAnd);
+ case AtomicRMWInst::Or:
+ return makeArrayRef(LibcallsOr);
+ case AtomicRMWInst::Xor:
+ return makeArrayRef(LibcallsXor);
+ case AtomicRMWInst::Nand:
+ return makeArrayRef(LibcallsNand);
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ case AtomicRMWInst::FAdd:
+ case AtomicRMWInst::FSub:
+ // No atomic libcalls are available for max/min/umax/umin.
+ return {};
+ }
+ llvm_unreachable("Unexpected AtomicRMW operation.");
+}
+
+void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
+ ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
+
+ unsigned Size = getAtomicOpSize(I);
+ unsigned Align = getAtomicOpAlign(I);
+
+ bool Success = false;
+ if (!Libcalls.empty())
+ Success = expandAtomicOpToLibcall(
+ I, Size, Align, I->getPointerOperand(), I->getValOperand(), nullptr,
+ I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
+
+ // The expansion failed: either there were no libcalls at all for
+ // the operation (min/max), or there were only size-specialized
+ // libcalls (add/sub/etc) and we needed a generic. So, expand to a
+ // CAS libcall, via a CAS loop, instead.
+ if (!Success) {
+ expandAtomicRMWToCmpXchg(I, [this](IRBuilder<> &Builder, Value *Addr,
+ Value *Loaded, Value *NewVal,
+ AtomicOrdering MemOpOrder,
+ Value *&Success, Value *&NewLoaded) {
+ // Create the CAS instruction normally...
+ AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
+ Addr, Loaded, NewVal, MemOpOrder,
+ AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder));
+ Success = Builder.CreateExtractValue(Pair, 1, "success");
+ NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
+
+ // ...and then expand the CAS into a libcall.
+ expandAtomicCASToLibcall(Pair);
+ });
+ }
+}
+
+// A helper routine for the above expandAtomic*ToLibcall functions.
+//
+// 'Libcalls' contains an array of enum values for the particular
+// ATOMIC libcalls to be emitted. All of the other arguments besides
+// 'I' are extracted from the Instruction subclass by the
+// caller. Depending on the particular call, some will be null.
+bool AtomicExpand::expandAtomicOpToLibcall(
+ Instruction *I, unsigned Size, unsigned Align, Value *PointerOperand,
+ Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
+ AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
+ assert(Libcalls.size() == 6);
+
+ LLVMContext &Ctx = I->getContext();
+ Module *M = I->getModule();
+ const DataLayout &DL = M->getDataLayout();
+ IRBuilder<> Builder(I);
+ IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
+
+ bool UseSizedLibcall = canUseSizedAtomicCall(Size, Align, DL);
+ Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
+
+ unsigned AllocaAlignment = DL.getPrefTypeAlignment(SizedIntTy);
+
+ // TODO: the "order" argument type is "int", not int32. So
+ // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
+ ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
+ assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
+ Constant *OrderingVal =
+ ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
+ Constant *Ordering2Val = nullptr;
+ if (CASExpected) {
+ assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
+ Ordering2Val =
+ ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
+ }
+ bool HasResult = I->getType() != Type::getVoidTy(Ctx);
+
+ RTLIB::Libcall RTLibType;
+ if (UseSizedLibcall) {
+ switch (Size) {
+ case 1: RTLibType = Libcalls[1]; break;
+ case 2: RTLibType = Libcalls[2]; break;
+ case 4: RTLibType = Libcalls[3]; break;
+ case 8: RTLibType = Libcalls[4]; break;
+ case 16: RTLibType = Libcalls[5]; break;
+ }
+ } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
+ RTLibType = Libcalls[0];
+ } else {
+ // Can't use sized function, and there's no generic for this
+ // operation, so give up.
+ return false;
+ }
+
+ // Build up the function call. There's two kinds. First, the sized
+ // variants. These calls are going to be one of the following (with
+ // N=1,2,4,8,16):
+ // iN __atomic_load_N(iN *ptr, int ordering)
+ // void __atomic_store_N(iN *ptr, iN val, int ordering)
+ // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
+ // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
+ // int success_order, int failure_order)
+ //
+ // Note that these functions can be used for non-integer atomic
+ // operations, the values just need to be bitcast to integers on the
+ // way in and out.
+ //
+ // And, then, the generic variants. They look like the following:
+ // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
+ // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
+ // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
+ // int ordering)
+ // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
+ // void *desired, int success_order,
+ // int failure_order)
+ //
+ // The different signatures are built up depending on the
+ // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
+ // variables.
+
+ AllocaInst *AllocaCASExpected = nullptr;
+ Value *AllocaCASExpected_i8 = nullptr;
+ AllocaInst *AllocaValue = nullptr;
+ Value *AllocaValue_i8 = nullptr;
+ AllocaInst *AllocaResult = nullptr;
+ Value *AllocaResult_i8 = nullptr;
+
+ Type *ResultTy;
+ SmallVector<Value *, 6> Args;
+ AttributeList Attr;
+
+ // 'size' argument.
+ if (!UseSizedLibcall) {
+ // Note, getIntPtrType is assumed equivalent to size_t.
+ Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
+ }
+
+ // 'ptr' argument.
+ // note: This assumes all address spaces share a common libfunc
+ // implementation and that addresses are convertable. For systems without
+ // that property, we'd need to extend this mechanism to support AS-specific
+ // families of atomic intrinsics.
+ auto PtrTypeAS = PointerOperand->getType()->getPointerAddressSpace();
+ Value *PtrVal = Builder.CreateBitCast(PointerOperand,
+ Type::getInt8PtrTy(Ctx, PtrTypeAS));
+ PtrVal = Builder.CreateAddrSpaceCast(PtrVal, Type::getInt8PtrTy(Ctx));
+ Args.push_back(PtrVal);
+
+ // 'expected' argument, if present.
+ if (CASExpected) {
+ AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
+ AllocaCASExpected->setAlignment(AllocaAlignment);
+ unsigned AllocaAS = AllocaCASExpected->getType()->getPointerAddressSpace();
+
+ AllocaCASExpected_i8 =
+ Builder.CreateBitCast(AllocaCASExpected,
+ Type::getInt8PtrTy(Ctx, AllocaAS));
+ Builder.CreateLifetimeStart(AllocaCASExpected_i8, SizeVal64);
+ Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
+ Args.push_back(AllocaCASExpected_i8);
+ }
+
+ // 'val' argument ('desired' for cas), if present.
+ if (ValueOperand) {
+ if (UseSizedLibcall) {
+ Value *IntValue =
+ Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
+ Args.push_back(IntValue);
+ } else {
+ AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
+ AllocaValue->setAlignment(AllocaAlignment);
+ AllocaValue_i8 =
+ Builder.CreateBitCast(AllocaValue, Type::getInt8PtrTy(Ctx));
+ Builder.CreateLifetimeStart(AllocaValue_i8, SizeVal64);
+ Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
+ Args.push_back(AllocaValue_i8);
+ }
+ }
+
+ // 'ret' argument.
+ if (!CASExpected && HasResult && !UseSizedLibcall) {
+ AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
+ AllocaResult->setAlignment(AllocaAlignment);
+ unsigned AllocaAS = AllocaResult->getType()->getPointerAddressSpace();
+ AllocaResult_i8 =
+ Builder.CreateBitCast(AllocaResult, Type::getInt8PtrTy(Ctx, AllocaAS));
+ Builder.CreateLifetimeStart(AllocaResult_i8, SizeVal64);
+ Args.push_back(AllocaResult_i8);
+ }
+
+ // 'ordering' ('success_order' for cas) argument.
+ Args.push_back(OrderingVal);
+
+ // 'failure_order' argument, if present.
+ if (Ordering2Val)
+ Args.push_back(Ordering2Val);
+
+ // Now, the return type.
+ if (CASExpected) {
+ ResultTy = Type::getInt1Ty(Ctx);
+ Attr = Attr.addAttribute(Ctx, AttributeList::ReturnIndex, Attribute::ZExt);
+ } else if (HasResult && UseSizedLibcall)
+ ResultTy = SizedIntTy;
+ else
+ ResultTy = Type::getVoidTy(Ctx);
+
+ // Done with setting up arguments and return types, create the call:
+ SmallVector<Type *, 6> ArgTys;
+ for (Value *Arg : Args)
+ ArgTys.push_back(Arg->getType());
+ FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
+ FunctionCallee LibcallFn =
+ M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
+ CallInst *Call = Builder.CreateCall(LibcallFn, Args);
+ Call->setAttributes(Attr);
+ Value *Result = Call;
+
+ // And then, extract the results...
+ if (ValueOperand && !UseSizedLibcall)
+ Builder.CreateLifetimeEnd(AllocaValue_i8, SizeVal64);
+
+ if (CASExpected) {
+ // The final result from the CAS is {load of 'expected' alloca, bool result
+ // from call}
+ Type *FinalResultTy = I->getType();
+ Value *V = UndefValue::get(FinalResultTy);
+ Value *ExpectedOut = Builder.CreateAlignedLoad(
+ CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
+ Builder.CreateLifetimeEnd(AllocaCASExpected_i8, SizeVal64);
+ V = Builder.CreateInsertValue(V, ExpectedOut, 0);
+ V = Builder.CreateInsertValue(V, Result, 1);
+ I->replaceAllUsesWith(V);
+ } else if (HasResult) {
+ Value *V;
+ if (UseSizedLibcall)
+ V = Builder.CreateBitOrPointerCast(Result, I->getType());
+ else {
+ V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
+ AllocaAlignment);
+ Builder.CreateLifetimeEnd(AllocaResult_i8, SizeVal64);
+ }
+ I->replaceAllUsesWith(V);
+ }
+ I->eraseFromParent();
+ return true;
+}