aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp549
1 files changed, 549 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp b/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp
new file mode 100644
index 000000000000..8c9065aec7fa
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/InterleavedAccessPass.cpp
@@ -0,0 +1,549 @@
+//===- InterleavedAccessPass.cpp ------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Interleaved Access pass, which identifies
+// interleaved memory accesses and transforms them into target specific
+// intrinsics.
+//
+// An interleaved load reads data from memory into several vectors, with
+// DE-interleaving the data on a factor. An interleaved store writes several
+// vectors to memory with RE-interleaving the data on a factor.
+//
+// As interleaved accesses are difficult to identified in CodeGen (mainly
+// because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
+// IR), we identify and transform them to intrinsics in this pass so the
+// intrinsics can be easily matched into target specific instructions later in
+// CodeGen.
+//
+// E.g. An interleaved load (Factor = 2):
+// %wide.vec = load <8 x i32>, <8 x i32>* %ptr
+// %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
+// %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
+//
+// It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
+// intrinsic in ARM backend.
+//
+// In X86, this can be further optimized into a set of target
+// specific loads followed by an optimized sequence of shuffles.
+//
+// E.g. An interleaved store (Factor = 3):
+// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
+// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
+// store <12 x i32> %i.vec, <12 x i32>* %ptr
+//
+// It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
+// intrinsic in ARM backend.
+//
+// Similarly, a set of interleaved stores can be transformed into an optimized
+// sequence of shuffles followed by a set of target specific stores for X86.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/InterleavedAccess.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <cassert>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "interleaved-access"
+
+static cl::opt<bool> LowerInterleavedAccesses(
+ "lower-interleaved-accesses",
+ cl::desc("Enable lowering interleaved accesses to intrinsics"),
+ cl::init(true), cl::Hidden);
+
+namespace {
+
+class InterleavedAccessImpl {
+ friend class InterleavedAccess;
+
+public:
+ InterleavedAccessImpl() = default;
+ InterleavedAccessImpl(DominatorTree *DT, const TargetLowering *TLI)
+ : DT(DT), TLI(TLI), MaxFactor(TLI->getMaxSupportedInterleaveFactor()) {}
+ bool runOnFunction(Function &F);
+
+private:
+ DominatorTree *DT = nullptr;
+ const TargetLowering *TLI = nullptr;
+
+ /// The maximum supported interleave factor.
+ unsigned MaxFactor = 0u;
+
+ /// Transform an interleaved load into target specific intrinsics.
+ bool lowerInterleavedLoad(LoadInst *LI,
+ SmallVector<Instruction *, 32> &DeadInsts);
+
+ /// Transform an interleaved store into target specific intrinsics.
+ bool lowerInterleavedStore(StoreInst *SI,
+ SmallVector<Instruction *, 32> &DeadInsts);
+
+ /// Transform a load and a deinterleave intrinsic into target specific
+ /// instructions.
+ bool lowerDeinterleaveIntrinsic(IntrinsicInst *II,
+ SmallVector<Instruction *, 32> &DeadInsts);
+
+ /// Transform an interleave intrinsic and a store into target specific
+ /// instructions.
+ bool lowerInterleaveIntrinsic(IntrinsicInst *II,
+ SmallVector<Instruction *, 32> &DeadInsts);
+
+ /// Returns true if the uses of an interleaved load by the
+ /// extractelement instructions in \p Extracts can be replaced by uses of the
+ /// shufflevector instructions in \p Shuffles instead. If so, the necessary
+ /// replacements are also performed.
+ bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
+ ArrayRef<ShuffleVectorInst *> Shuffles);
+
+ /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
+ /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
+ /// interleaving load. Any newly created shuffles that operate on \p LI will
+ /// be added to \p Shuffles. Returns true, if any changes to the IR have been
+ /// made.
+ bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles,
+ SmallVectorImpl<ShuffleVectorInst *> &Shuffles,
+ LoadInst *LI);
+};
+
+class InterleavedAccess : public FunctionPass {
+ InterleavedAccessImpl Impl;
+
+public:
+ static char ID;
+
+ InterleavedAccess() : FunctionPass(ID) {
+ initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override { return "Interleaved Access Pass"; }
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.setPreservesCFG();
+ }
+};
+
+} // end anonymous namespace.
+
+PreservedAnalyses InterleavedAccessPass::run(Function &F,
+ FunctionAnalysisManager &FAM) {
+ auto *DT = &FAM.getResult<DominatorTreeAnalysis>(F);
+ auto *TLI = TM->getSubtargetImpl(F)->getTargetLowering();
+ InterleavedAccessImpl Impl(DT, TLI);
+ bool Changed = Impl.runOnFunction(F);
+
+ if (!Changed)
+ return PreservedAnalyses::all();
+
+ PreservedAnalyses PA;
+ PA.preserveSet<CFGAnalyses>();
+ return PA;
+}
+
+char InterleavedAccess::ID = 0;
+
+bool InterleavedAccess::runOnFunction(Function &F) {
+ auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
+ if (!TPC || !LowerInterleavedAccesses)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
+
+ Impl.DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto &TM = TPC->getTM<TargetMachine>();
+ Impl.TLI = TM.getSubtargetImpl(F)->getTargetLowering();
+ Impl.MaxFactor = Impl.TLI->getMaxSupportedInterleaveFactor();
+
+ return Impl.runOnFunction(F);
+}
+
+INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
+ "Lower interleaved memory accesses to target specific intrinsics", false,
+ false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
+ "Lower interleaved memory accesses to target specific intrinsics", false,
+ false)
+
+FunctionPass *llvm::createInterleavedAccessPass() {
+ return new InterleavedAccess();
+}
+
+/// Check if the mask is a DE-interleave mask for an interleaved load.
+///
+/// E.g. DE-interleave masks (Factor = 2) could be:
+/// <0, 2, 4, 6> (mask of index 0 to extract even elements)
+/// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
+static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
+ unsigned &Index, unsigned MaxFactor,
+ unsigned NumLoadElements) {
+ if (Mask.size() < 2)
+ return false;
+
+ // Check potential Factors.
+ for (Factor = 2; Factor <= MaxFactor; Factor++) {
+ // Make sure we don't produce a load wider than the input load.
+ if (Mask.size() * Factor > NumLoadElements)
+ return false;
+ if (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, Factor, Index))
+ return true;
+ }
+
+ return false;
+}
+
+/// Check if the mask can be used in an interleaved store.
+//
+/// It checks for a more general pattern than the RE-interleave mask.
+/// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
+/// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
+/// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
+/// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
+///
+/// The particular case of an RE-interleave mask is:
+/// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
+/// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
+static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor,
+ unsigned MaxFactor) {
+ unsigned NumElts = SVI->getShuffleMask().size();
+ if (NumElts < 4)
+ return false;
+
+ // Check potential Factors.
+ for (Factor = 2; Factor <= MaxFactor; Factor++) {
+ if (SVI->isInterleave(Factor))
+ return true;
+ }
+
+ return false;
+}
+
+bool InterleavedAccessImpl::lowerInterleavedLoad(
+ LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
+ if (!LI->isSimple() || isa<ScalableVectorType>(LI->getType()))
+ return false;
+
+ // Check if all users of this load are shufflevectors. If we encounter any
+ // users that are extractelement instructions or binary operators, we save
+ // them to later check if they can be modified to extract from one of the
+ // shufflevectors instead of the load.
+
+ SmallVector<ShuffleVectorInst *, 4> Shuffles;
+ SmallVector<ExtractElementInst *, 4> Extracts;
+ // BinOpShuffles need to be handled a single time in case both operands of the
+ // binop are the same load.
+ SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles;
+
+ for (auto *User : LI->users()) {
+ auto *Extract = dyn_cast<ExtractElementInst>(User);
+ if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
+ Extracts.push_back(Extract);
+ continue;
+ }
+ if (auto *BI = dyn_cast<BinaryOperator>(User)) {
+ if (!BI->user_empty() && all_of(BI->users(), [](auto *U) {
+ auto *SVI = dyn_cast<ShuffleVectorInst>(U);
+ return SVI && isa<UndefValue>(SVI->getOperand(1));
+ })) {
+ for (auto *SVI : BI->users())
+ BinOpShuffles.insert(cast<ShuffleVectorInst>(SVI));
+ continue;
+ }
+ }
+ auto *SVI = dyn_cast<ShuffleVectorInst>(User);
+ if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
+ return false;
+
+ Shuffles.push_back(SVI);
+ }
+
+ if (Shuffles.empty() && BinOpShuffles.empty())
+ return false;
+
+ unsigned Factor, Index;
+
+ unsigned NumLoadElements =
+ cast<FixedVectorType>(LI->getType())->getNumElements();
+ auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0];
+ // Check if the first shufflevector is DE-interleave shuffle.
+ if (!isDeInterleaveMask(FirstSVI->getShuffleMask(), Factor, Index, MaxFactor,
+ NumLoadElements))
+ return false;
+
+ // Holds the corresponding index for each DE-interleave shuffle.
+ SmallVector<unsigned, 4> Indices;
+
+ Type *VecTy = FirstSVI->getType();
+
+ // Check if other shufflevectors are also DE-interleaved of the same type
+ // and factor as the first shufflevector.
+ for (auto *Shuffle : Shuffles) {
+ if (Shuffle->getType() != VecTy)
+ return false;
+ if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor(
+ Shuffle->getShuffleMask(), Factor, Index))
+ return false;
+
+ assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
+ Indices.push_back(Index);
+ }
+ for (auto *Shuffle : BinOpShuffles) {
+ if (Shuffle->getType() != VecTy)
+ return false;
+ if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor(
+ Shuffle->getShuffleMask(), Factor, Index))
+ return false;
+
+ assert(Shuffle->getShuffleMask().size() <= NumLoadElements);
+
+ if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(0) == LI)
+ Indices.push_back(Index);
+ if (cast<Instruction>(Shuffle->getOperand(0))->getOperand(1) == LI)
+ Indices.push_back(Index);
+ }
+
+ // Try and modify users of the load that are extractelement instructions to
+ // use the shufflevector instructions instead of the load.
+ if (!tryReplaceExtracts(Extracts, Shuffles))
+ return false;
+
+ bool BinOpShuffleChanged =
+ replaceBinOpShuffles(BinOpShuffles.getArrayRef(), Shuffles, LI);
+
+ LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
+
+ // Try to create target specific intrinsics to replace the load and shuffles.
+ if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) {
+ // If Extracts is not empty, tryReplaceExtracts made changes earlier.
+ return !Extracts.empty() || BinOpShuffleChanged;
+ }
+
+ append_range(DeadInsts, Shuffles);
+
+ DeadInsts.push_back(LI);
+ return true;
+}
+
+bool InterleavedAccessImpl::replaceBinOpShuffles(
+ ArrayRef<ShuffleVectorInst *> BinOpShuffles,
+ SmallVectorImpl<ShuffleVectorInst *> &Shuffles, LoadInst *LI) {
+ for (auto *SVI : BinOpShuffles) {
+ BinaryOperator *BI = cast<BinaryOperator>(SVI->getOperand(0));
+ Type *BIOp0Ty = BI->getOperand(0)->getType();
+ ArrayRef<int> Mask = SVI->getShuffleMask();
+ assert(all_of(Mask, [&](int Idx) {
+ return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements();
+ }));
+
+ BasicBlock::iterator insertPos = SVI->getIterator();
+ auto *NewSVI1 =
+ new ShuffleVectorInst(BI->getOperand(0), PoisonValue::get(BIOp0Ty),
+ Mask, SVI->getName(), insertPos);
+ auto *NewSVI2 = new ShuffleVectorInst(
+ BI->getOperand(1), PoisonValue::get(BI->getOperand(1)->getType()), Mask,
+ SVI->getName(), insertPos);
+ BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags(
+ BI->getOpcode(), NewSVI1, NewSVI2, BI, BI->getName(), insertPos);
+ SVI->replaceAllUsesWith(NewBI);
+ LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI
+ << "\n With : " << *NewSVI1 << "\n And : "
+ << *NewSVI2 << "\n And : " << *NewBI << "\n");
+ RecursivelyDeleteTriviallyDeadInstructions(SVI);
+ if (NewSVI1->getOperand(0) == LI)
+ Shuffles.push_back(NewSVI1);
+ if (NewSVI2->getOperand(0) == LI)
+ Shuffles.push_back(NewSVI2);
+ }
+
+ return !BinOpShuffles.empty();
+}
+
+bool InterleavedAccessImpl::tryReplaceExtracts(
+ ArrayRef<ExtractElementInst *> Extracts,
+ ArrayRef<ShuffleVectorInst *> Shuffles) {
+ // If there aren't any extractelement instructions to modify, there's nothing
+ // to do.
+ if (Extracts.empty())
+ return true;
+
+ // Maps extractelement instructions to vector-index pairs. The extractlement
+ // instructions will be modified to use the new vector and index operands.
+ DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
+
+ for (auto *Extract : Extracts) {
+ // The vector index that is extracted.
+ auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
+ auto Index = IndexOperand->getSExtValue();
+
+ // Look for a suitable shufflevector instruction. The goal is to modify the
+ // extractelement instruction (which uses an interleaved load) to use one
+ // of the shufflevector instructions instead of the load.
+ for (auto *Shuffle : Shuffles) {
+ // If the shufflevector instruction doesn't dominate the extract, we
+ // can't create a use of it.
+ if (!DT->dominates(Shuffle, Extract))
+ continue;
+
+ // Inspect the indices of the shufflevector instruction. If the shuffle
+ // selects the same index that is extracted, we can modify the
+ // extractelement instruction.
+ SmallVector<int, 4> Indices;
+ Shuffle->getShuffleMask(Indices);
+ for (unsigned I = 0; I < Indices.size(); ++I)
+ if (Indices[I] == Index) {
+ assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
+ "Vector operations do not match");
+ ReplacementMap[Extract] = std::make_pair(Shuffle, I);
+ break;
+ }
+
+ // If we found a suitable shufflevector instruction, stop looking.
+ if (ReplacementMap.count(Extract))
+ break;
+ }
+
+ // If we did not find a suitable shufflevector instruction, the
+ // extractelement instruction cannot be modified, so we must give up.
+ if (!ReplacementMap.count(Extract))
+ return false;
+ }
+
+ // Finally, perform the replacements.
+ IRBuilder<> Builder(Extracts[0]->getContext());
+ for (auto &Replacement : ReplacementMap) {
+ auto *Extract = Replacement.first;
+ auto *Vector = Replacement.second.first;
+ auto Index = Replacement.second.second;
+ Builder.SetInsertPoint(Extract);
+ Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
+ Extract->eraseFromParent();
+ }
+
+ return true;
+}
+
+bool InterleavedAccessImpl::lowerInterleavedStore(
+ StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
+ if (!SI->isSimple())
+ return false;
+
+ auto *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
+ if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(SVI->getType()))
+ return false;
+
+ // Check if the shufflevector is RE-interleave shuffle.
+ unsigned Factor;
+ if (!isReInterleaveMask(SVI, Factor, MaxFactor))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
+
+ // Try to create target specific intrinsics to replace the store and shuffle.
+ if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
+ return false;
+
+ // Already have a new target specific interleaved store. Erase the old store.
+ DeadInsts.push_back(SI);
+ DeadInsts.push_back(SVI);
+ return true;
+}
+
+bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic(
+ IntrinsicInst *DI, SmallVector<Instruction *, 32> &DeadInsts) {
+ LoadInst *LI = dyn_cast<LoadInst>(DI->getOperand(0));
+
+ if (!LI || !LI->hasOneUse() || !LI->isSimple())
+ return false;
+
+ LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI << "\n");
+
+ // Try and match this with target specific intrinsics.
+ if (!TLI->lowerDeinterleaveIntrinsicToLoad(DI, LI))
+ return false;
+
+ // We now have a target-specific load, so delete the old one.
+ DeadInsts.push_back(DI);
+ DeadInsts.push_back(LI);
+ return true;
+}
+
+bool InterleavedAccessImpl::lowerInterleaveIntrinsic(
+ IntrinsicInst *II, SmallVector<Instruction *, 32> &DeadInsts) {
+ if (!II->hasOneUse())
+ return false;
+
+ StoreInst *SI = dyn_cast<StoreInst>(*(II->users().begin()));
+
+ if (!SI || !SI->isSimple())
+ return false;
+
+ LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II << "\n");
+
+ // Try and match this with target specific intrinsics.
+ if (!TLI->lowerInterleaveIntrinsicToStore(II, SI))
+ return false;
+
+ // We now have a target-specific store, so delete the old one.
+ DeadInsts.push_back(SI);
+ DeadInsts.push_back(II);
+ return true;
+}
+
+bool InterleavedAccessImpl::runOnFunction(Function &F) {
+ // Holds dead instructions that will be erased later.
+ SmallVector<Instruction *, 32> DeadInsts;
+ bool Changed = false;
+
+ for (auto &I : instructions(F)) {
+ if (auto *LI = dyn_cast<LoadInst>(&I))
+ Changed |= lowerInterleavedLoad(LI, DeadInsts);
+
+ if (auto *SI = dyn_cast<StoreInst>(&I))
+ Changed |= lowerInterleavedStore(SI, DeadInsts);
+
+ if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
+ // At present, we only have intrinsics to represent (de)interleaving
+ // with a factor of 2.
+ if (II->getIntrinsicID() == Intrinsic::vector_deinterleave2)
+ Changed |= lowerDeinterleaveIntrinsic(II, DeadInsts);
+ if (II->getIntrinsicID() == Intrinsic::vector_interleave2)
+ Changed |= lowerInterleaveIntrinsic(II, DeadInsts);
+ }
+ }
+
+ for (auto *I : DeadInsts)
+ I->eraseFromParent();
+
+ return Changed;
+}