aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp575
1 files changed, 575 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp b/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp
new file mode 100644
index 000000000000..a594ecb71fc9
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AArch64/AArch64PromoteConstant.cpp
@@ -0,0 +1,575 @@
+//==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the AArch64PromoteConstant pass which promotes constants
+// to global variables when this is likely to be more efficient. Currently only
+// types related to constant vector (i.e., constant vector, array of constant
+// vectors, constant structure with a constant vector field, etc.) are promoted
+// to global variables. Constant vectors are likely to be lowered in target
+// constant pool during instruction selection already; therefore, the access
+// will remain the same (memory load), but the structure types are not split
+// into different constant pool accesses for each field. A bonus side effect is
+// that created globals may be merged by the global merge pass.
+//
+// FIXME: This pass may be useful for other targets too.
+//===----------------------------------------------------------------------===//
+
+#include "AArch64.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "aarch64-promote-const"
+
+// Stress testing mode - disable heuristics.
+static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
+ cl::desc("Promote all vector constants"));
+
+STATISTIC(NumPromoted, "Number of promoted constants");
+STATISTIC(NumPromotedUses, "Number of promoted constants uses");
+
+//===----------------------------------------------------------------------===//
+// AArch64PromoteConstant
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// Promotes interesting constant into global variables.
+/// The motivating example is:
+/// static const uint16_t TableA[32] = {
+/// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
+/// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
+/// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
+/// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
+/// };
+///
+/// uint8x16x4_t LoadStatic(void) {
+/// uint8x16x4_t ret;
+/// ret.val[0] = vld1q_u16(TableA + 0);
+/// ret.val[1] = vld1q_u16(TableA + 8);
+/// ret.val[2] = vld1q_u16(TableA + 16);
+/// ret.val[3] = vld1q_u16(TableA + 24);
+/// return ret;
+/// }
+///
+/// The constants in this example are folded into the uses. Thus, 4 different
+/// constants are created.
+///
+/// As their type is vector the cheapest way to create them is to load them
+/// for the memory.
+///
+/// Therefore the final assembly final has 4 different loads. With this pass
+/// enabled, only one load is issued for the constants.
+class AArch64PromoteConstant : public ModulePass {
+public:
+ struct PromotedConstant {
+ bool ShouldConvert = false;
+ GlobalVariable *GV = nullptr;
+ };
+ using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>;
+
+ struct UpdateRecord {
+ Constant *C;
+ Instruction *User;
+ unsigned Op;
+
+ UpdateRecord(Constant *C, Instruction *User, unsigned Op)
+ : C(C), User(User), Op(Op) {}
+ };
+
+ static char ID;
+
+ AArch64PromoteConstant() : ModulePass(ID) {
+ initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override { return "AArch64 Promote Constant"; }
+
+ /// Iterate over the functions and promote the interesting constants into
+ /// global variables with module scope.
+ bool runOnModule(Module &M) override {
+ LLVM_DEBUG(dbgs() << getPassName() << '\n');
+ if (skipModule(M))
+ return false;
+ bool Changed = false;
+ PromotionCacheTy PromotionCache;
+ for (auto &MF : M) {
+ Changed |= runOnFunction(MF, PromotionCache);
+ }
+ return Changed;
+ }
+
+private:
+ /// Look for interesting constants used within the given function.
+ /// Promote them into global variables, load these global variables within
+ /// the related function, so that the number of inserted load is minimal.
+ bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache);
+
+ // This transformation requires dominator info
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ }
+
+ /// Type to store a list of Uses.
+ using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>;
+ /// Map an insertion point to all the uses it dominates.
+ using InsertionPoints = DenseMap<Instruction *, Uses>;
+
+ /// Find the closest point that dominates the given Use.
+ Instruction *findInsertionPoint(Instruction &User, unsigned OpNo);
+
+ /// Check if the given insertion point is dominated by an existing
+ /// insertion point.
+ /// If true, the given use is added to the list of dominated uses for
+ /// the related existing point.
+ /// \param NewPt the insertion point to be checked
+ /// \param User the user of the constant
+ /// \param OpNo the operand number of the use
+ /// \param InsertPts existing insertion points
+ /// \pre NewPt and all instruction in InsertPts belong to the same function
+ /// \return true if one of the insertion point in InsertPts dominates NewPt,
+ /// false otherwise
+ bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo,
+ InsertionPoints &InsertPts);
+
+ /// Check if the given insertion point can be merged with an existing
+ /// insertion point in a common dominator.
+ /// If true, the given use is added to the list of the created insertion
+ /// point.
+ /// \param NewPt the insertion point to be checked
+ /// \param User the user of the constant
+ /// \param OpNo the operand number of the use
+ /// \param InsertPts existing insertion points
+ /// \pre NewPt and all instruction in InsertPts belong to the same function
+ /// \pre isDominated returns false for the exact same parameters.
+ /// \return true if it exists an insertion point in InsertPts that could
+ /// have been merged with NewPt in a common dominator,
+ /// false otherwise
+ bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo,
+ InsertionPoints &InsertPts);
+
+ /// Compute the minimal insertion points to dominates all the interesting
+ /// uses of value.
+ /// Insertion points are group per function and each insertion point
+ /// contains a list of all the uses it dominates within the related function
+ /// \param User the user of the constant
+ /// \param OpNo the operand number of the constant
+ /// \param[out] InsertPts output storage of the analysis
+ void computeInsertionPoint(Instruction *User, unsigned OpNo,
+ InsertionPoints &InsertPts);
+
+ /// Insert a definition of a new global variable at each point contained in
+ /// InsPtsPerFunc and update the related uses (also contained in
+ /// InsPtsPerFunc).
+ void insertDefinitions(Function &F, GlobalVariable &GV,
+ InsertionPoints &InsertPts);
+
+ /// Do the constant promotion indicated by the Updates records, keeping track
+ /// of globals in PromotionCache.
+ void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates,
+ PromotionCacheTy &PromotionCache);
+
+ /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
+ /// Append Use to this list and delete the entry of IPI in InsertPts.
+ static void appendAndTransferDominatedUses(Instruction *NewPt,
+ Instruction *User, unsigned OpNo,
+ InsertionPoints::iterator &IPI,
+ InsertionPoints &InsertPts) {
+ // Record the dominated use.
+ IPI->second.emplace_back(User, OpNo);
+ // Transfer the dominated uses of IPI to NewPt
+ // Inserting into the DenseMap may invalidate existing iterator.
+ // Keep a copy of the key to find the iterator to erase. Keep a copy of the
+ // value so that we don't have to dereference IPI->second.
+ Instruction *OldInstr = IPI->first;
+ Uses OldUses = std::move(IPI->second);
+ InsertPts[NewPt] = std::move(OldUses);
+ // Erase IPI.
+ InsertPts.erase(OldInstr);
+ }
+};
+
+} // end anonymous namespace
+
+char AArch64PromoteConstant::ID = 0;
+
+INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
+ "AArch64 Promote Constant Pass", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
+ "AArch64 Promote Constant Pass", false, false)
+
+ModulePass *llvm::createAArch64PromoteConstantPass() {
+ return new AArch64PromoteConstant();
+}
+
+/// Check if the given type uses a vector type.
+static bool isConstantUsingVectorTy(const Type *CstTy) {
+ if (CstTy->isVectorTy())
+ return true;
+ if (CstTy->isStructTy()) {
+ for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
+ EltIdx < EndEltIdx; ++EltIdx)
+ if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
+ return true;
+ } else if (CstTy->isArrayTy())
+ return isConstantUsingVectorTy(CstTy->getArrayElementType());
+ return false;
+}
+
+/// Check if the given use (Instruction + OpIdx) of Cst should be converted into
+/// a load of a global variable initialized with Cst.
+/// A use should be converted if it is legal to do so.
+/// For instance, it is not legal to turn the mask operand of a shuffle vector
+/// into a load of a global variable.
+static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
+ unsigned OpIdx) {
+ // shufflevector instruction expects a const for the mask argument, i.e., the
+ // third argument. Do not promote this use in that case.
+ if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
+ return false;
+
+ // extractvalue instruction expects a const idx.
+ if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
+ return false;
+
+ // extractvalue instruction expects a const idx.
+ if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
+ return false;
+
+ if (isa<const AllocaInst>(Instr) && OpIdx > 0)
+ return false;
+
+ // Alignment argument must be constant.
+ if (isa<const LoadInst>(Instr) && OpIdx > 0)
+ return false;
+
+ // Alignment argument must be constant.
+ if (isa<const StoreInst>(Instr) && OpIdx > 1)
+ return false;
+
+ // Index must be constant.
+ if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
+ return false;
+
+ // Personality function and filters must be constant.
+ // Give up on that instruction.
+ if (isa<const LandingPadInst>(Instr))
+ return false;
+
+ // Switch instruction expects constants to compare to.
+ if (isa<const SwitchInst>(Instr))
+ return false;
+
+ // Expected address must be a constant.
+ if (isa<const IndirectBrInst>(Instr))
+ return false;
+
+ // Do not mess with intrinsics.
+ if (isa<const IntrinsicInst>(Instr))
+ return false;
+
+ // Do not mess with inline asm.
+ const CallInst *CI = dyn_cast<const CallInst>(Instr);
+ return !(CI && isa<const InlineAsm>(CI->getCalledValue()));
+}
+
+/// Check if the given Cst should be converted into
+/// a load of a global variable initialized with Cst.
+/// A constant should be converted if it is likely that the materialization of
+/// the constant will be tricky. Thus, we give up on zero or undef values.
+///
+/// \todo Currently, accept only vector related types.
+/// Also we give up on all simple vector type to keep the existing
+/// behavior. Otherwise, we should push here all the check of the lowering of
+/// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
+/// constant via global merge and the fact that the same constant is stored
+/// only once with this method (versus, as many function that uses the constant
+/// for the regular approach, even for float).
+/// Again, the simplest solution would be to promote every
+/// constant and rematerialize them when they are actually cheap to create.
+static bool shouldConvertImpl(const Constant *Cst) {
+ if (isa<const UndefValue>(Cst))
+ return false;
+
+ // FIXME: In some cases, it may be interesting to promote in memory
+ // a zero initialized constant.
+ // E.g., when the type of Cst require more instructions than the
+ // adrp/add/load sequence or when this sequence can be shared by several
+ // instances of Cst.
+ // Ideally, we could promote this into a global and rematerialize the constant
+ // when it was a bad idea.
+ if (Cst->isZeroValue())
+ return false;
+
+ if (Stress)
+ return true;
+
+ // FIXME: see function \todo
+ if (Cst->getType()->isVectorTy())
+ return false;
+ return isConstantUsingVectorTy(Cst->getType());
+}
+
+static bool
+shouldConvert(Constant &C,
+ AArch64PromoteConstant::PromotionCacheTy &PromotionCache) {
+ auto Converted = PromotionCache.insert(
+ std::make_pair(&C, AArch64PromoteConstant::PromotedConstant()));
+ if (Converted.second)
+ Converted.first->second.ShouldConvert = shouldConvertImpl(&C);
+ return Converted.first->second.ShouldConvert;
+}
+
+Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User,
+ unsigned OpNo) {
+ // If this user is a phi, the insertion point is in the related
+ // incoming basic block.
+ if (PHINode *PhiInst = dyn_cast<PHINode>(&User))
+ return PhiInst->getIncomingBlock(OpNo)->getTerminator();
+
+ return &User;
+}
+
+bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User,
+ unsigned OpNo,
+ InsertionPoints &InsertPts) {
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
+ *NewPt->getParent()->getParent()).getDomTree();
+
+ // Traverse all the existing insertion points and check if one is dominating
+ // NewPt. If it is, remember that.
+ for (auto &IPI : InsertPts) {
+ if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
+ // When IPI.first is a terminator instruction, DT may think that
+ // the result is defined on the edge.
+ // Here we are testing the insertion point, not the definition.
+ (IPI.first->getParent() != NewPt->getParent() &&
+ DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
+ // No need to insert this point. Just record the dominated use.
+ LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n");
+ LLVM_DEBUG(IPI.first->print(dbgs()));
+ LLVM_DEBUG(dbgs() << '\n');
+ IPI.second.emplace_back(User, OpNo);
+ return true;
+ }
+ }
+ return false;
+}
+
+bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User,
+ unsigned OpNo,
+ InsertionPoints &InsertPts) {
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
+ *NewPt->getParent()->getParent()).getDomTree();
+ BasicBlock *NewBB = NewPt->getParent();
+
+ // Traverse all the existing insertion point and check if one is dominated by
+ // NewPt and thus useless or can be combined with NewPt into a common
+ // dominator.
+ for (InsertionPoints::iterator IPI = InsertPts.begin(),
+ EndIPI = InsertPts.end();
+ IPI != EndIPI; ++IPI) {
+ BasicBlock *CurBB = IPI->first->getParent();
+ if (NewBB == CurBB) {
+ // Instructions are in the same block.
+ // By construction, NewPt is dominating the other.
+ // Indeed, isDominated returned false with the exact same arguments.
+ LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
+ LLVM_DEBUG(IPI->first->print(dbgs()));
+ LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n");
+ appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
+ return true;
+ }
+
+ // Look for a common dominator
+ BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
+ // If none exists, we cannot merge these two points.
+ if (!CommonDominator)
+ continue;
+
+ if (CommonDominator != NewBB) {
+ // By construction, the CommonDominator cannot be CurBB.
+ assert(CommonDominator != CurBB &&
+ "Instruction has not been rejected during isDominated check!");
+ // Take the last instruction of the CommonDominator as insertion point
+ NewPt = CommonDominator->getTerminator();
+ }
+ // else, CommonDominator is the block of NewBB, hence NewBB is the last
+ // possible insertion point in that block.
+ LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
+ LLVM_DEBUG(IPI->first->print(dbgs()));
+ LLVM_DEBUG(dbgs() << '\n');
+ LLVM_DEBUG(NewPt->print(dbgs()));
+ LLVM_DEBUG(dbgs() << '\n');
+ appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
+ return true;
+ }
+ return false;
+}
+
+void AArch64PromoteConstant::computeInsertionPoint(
+ Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) {
+ LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n");
+ LLVM_DEBUG(User->print(dbgs()));
+ LLVM_DEBUG(dbgs() << '\n');
+
+ Instruction *InsertionPoint = findInsertionPoint(*User, OpNo);
+
+ LLVM_DEBUG(dbgs() << "Considered insertion point:\n");
+ LLVM_DEBUG(InsertionPoint->print(dbgs()));
+ LLVM_DEBUG(dbgs() << '\n');
+
+ if (isDominated(InsertionPoint, User, OpNo, InsertPts))
+ return;
+ // This insertion point is useful, check if we can merge some insertion
+ // point in a common dominator or if NewPt dominates an existing one.
+ if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts))
+ return;
+
+ LLVM_DEBUG(dbgs() << "Keep considered insertion point\n");
+
+ // It is definitely useful by its own
+ InsertPts[InsertionPoint].emplace_back(User, OpNo);
+}
+
+static void ensurePromotedGV(Function &F, Constant &C,
+ AArch64PromoteConstant::PromotedConstant &PC) {
+ assert(PC.ShouldConvert &&
+ "Expected that we should convert this to a global");
+ if (PC.GV)
+ return;
+ PC.GV = new GlobalVariable(
+ *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr,
+ "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
+ PC.GV->setInitializer(&C);
+ LLVM_DEBUG(dbgs() << "Global replacement: ");
+ LLVM_DEBUG(PC.GV->print(dbgs()));
+ LLVM_DEBUG(dbgs() << '\n');
+ ++NumPromoted;
+}
+
+void AArch64PromoteConstant::insertDefinitions(Function &F,
+ GlobalVariable &PromotedGV,
+ InsertionPoints &InsertPts) {
+#ifndef NDEBUG
+ // Do more checking for debug purposes.
+ DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
+#endif
+ assert(!InsertPts.empty() && "Empty uses does not need a definition");
+
+ for (const auto &IPI : InsertPts) {
+ // Create the load of the global variable.
+ IRBuilder<> Builder(IPI.first);
+ LoadInst *LoadedCst =
+ Builder.CreateLoad(PromotedGV.getValueType(), &PromotedGV);
+ LLVM_DEBUG(dbgs() << "**********\n");
+ LLVM_DEBUG(dbgs() << "New def: ");
+ LLVM_DEBUG(LoadedCst->print(dbgs()));
+ LLVM_DEBUG(dbgs() << '\n');
+
+ // Update the dominated uses.
+ for (auto Use : IPI.second) {
+#ifndef NDEBUG
+ assert(DT.dominates(LoadedCst,
+ findInsertionPoint(*Use.first, Use.second)) &&
+ "Inserted definition does not dominate all its uses!");
+#endif
+ LLVM_DEBUG({
+ dbgs() << "Use to update " << Use.second << ":";
+ Use.first->print(dbgs());
+ dbgs() << '\n';
+ });
+ Use.first->setOperand(Use.second, LoadedCst);
+ ++NumPromotedUses;
+ }
+ }
+}
+
+void AArch64PromoteConstant::promoteConstants(
+ Function &F, SmallVectorImpl<UpdateRecord> &Updates,
+ PromotionCacheTy &PromotionCache) {
+ // Promote the constants.
+ for (auto U = Updates.begin(), E = Updates.end(); U != E;) {
+ LLVM_DEBUG(dbgs() << "** Compute insertion points **\n");
+ auto First = U;
+ Constant *C = First->C;
+ InsertionPoints InsertPts;
+ do {
+ computeInsertionPoint(U->User, U->Op, InsertPts);
+ } while (++U != E && U->C == C);
+
+ auto &Promotion = PromotionCache[C];
+ ensurePromotedGV(F, *C, Promotion);
+ insertDefinitions(F, *Promotion.GV, InsertPts);
+ }
+}
+
+bool AArch64PromoteConstant::runOnFunction(Function &F,
+ PromotionCacheTy &PromotionCache) {
+ // Look for instructions using constant vector. Promote that constant to a
+ // global variable. Create as few loads of this variable as possible and
+ // update the uses accordingly.
+ SmallVector<UpdateRecord, 64> Updates;
+ for (Instruction &I : instructions(&F)) {
+ // Traverse the operand, looking for constant vectors. Replace them by a
+ // load of a global variable of constant vector type.
+ for (Use &U : I.operands()) {
+ Constant *Cst = dyn_cast<Constant>(U);
+ // There is no point in promoting global values as they are already
+ // global. Do not promote constant expressions either, as they may
+ // require some code expansion.
+ if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst))
+ continue;
+
+ // Check if this constant is worth promoting.
+ if (!shouldConvert(*Cst, PromotionCache))
+ continue;
+
+ // Check if this use should be promoted.
+ unsigned OpNo = &U - I.op_begin();
+ if (!shouldConvertUse(Cst, &I, OpNo))
+ continue;
+
+ Updates.emplace_back(Cst, &I, OpNo);
+ }
+ }
+
+ if (Updates.empty())
+ return false;
+
+ promoteConstants(F, Updates, PromotionCache);
+ return true;
+}