diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp | 1539 |
1 files changed, 1539 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp new file mode 100644 index 000000000000..3e1d1283dd48 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp @@ -0,0 +1,1539 @@ +//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file +/// This file implements the lowering of LLVM calls to machine code calls for +/// GlobalISel. +/// +//===----------------------------------------------------------------------===// + +#include "AMDGPUCallLowering.h" +#include "AMDGPU.h" +#include "AMDGPULegalizerInfo.h" +#include "AMDGPUTargetMachine.h" +#include "SIMachineFunctionInfo.h" +#include "SIRegisterInfo.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/FunctionLoweringInfo.h" +#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/IR/IntrinsicsAMDGPU.h" + +#define DEBUG_TYPE "amdgpu-call-lowering" + +using namespace llvm; + +namespace { + +/// Wrapper around extendRegister to ensure we extend to a full 32-bit register. +static Register extendRegisterMin32(CallLowering::ValueHandler &Handler, + Register ValVReg, const CCValAssign &VA) { + if (VA.getLocVT().getSizeInBits() < 32) { + // 16-bit types are reported as legal for 32-bit registers. We need to + // extend and do a 32-bit copy to avoid the verifier complaining about it. + return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0); + } + + return Handler.extendRegister(ValVReg, VA); +} + +struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler { + AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI, + MachineInstrBuilder MIB) + : OutgoingValueHandler(B, MRI), MIB(MIB) {} + + MachineInstrBuilder MIB; + + Register getStackAddress(uint64_t Size, int64_t Offset, + MachinePointerInfo &MPO, + ISD::ArgFlagsTy Flags) override { + llvm_unreachable("not implemented"); + } + + void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, + const MachinePointerInfo &MPO, + const CCValAssign &VA) override { + llvm_unreachable("not implemented"); + } + + void assignValueToReg(Register ValVReg, Register PhysReg, + const CCValAssign &VA) override { + Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); + + // If this is a scalar return, insert a readfirstlane just in case the value + // ends up in a VGPR. + // FIXME: Assert this is a shader return. + const SIRegisterInfo *TRI + = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo()); + if (TRI->isSGPRReg(MRI, PhysReg)) { + LLT Ty = MRI.getType(ExtReg); + LLT S32 = LLT::scalar(32); + if (Ty != S32) { + // FIXME: We should probably support readfirstlane intrinsics with all + // legal 32-bit types. + assert(Ty.getSizeInBits() == 32); + if (Ty.isPointer()) + ExtReg = MIRBuilder.buildPtrToInt(S32, ExtReg).getReg(0); + else + ExtReg = MIRBuilder.buildBitcast(S32, ExtReg).getReg(0); + } + + auto ToSGPR = MIRBuilder + .buildIntrinsic(Intrinsic::amdgcn_readfirstlane, + {MRI.getType(ExtReg)}) + .addReg(ExtReg); + ExtReg = ToSGPR.getReg(0); + } + + MIRBuilder.buildCopy(PhysReg, ExtReg); + MIB.addUse(PhysReg, RegState::Implicit); + } +}; + +struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler { + uint64_t StackUsed = 0; + + AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) + : IncomingValueHandler(B, MRI) {} + + Register getStackAddress(uint64_t Size, int64_t Offset, + MachinePointerInfo &MPO, + ISD::ArgFlagsTy Flags) override { + auto &MFI = MIRBuilder.getMF().getFrameInfo(); + + // Byval is assumed to be writable memory, but other stack passed arguments + // are not. + const bool IsImmutable = !Flags.isByVal(); + int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable); + MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI); + auto AddrReg = MIRBuilder.buildFrameIndex( + LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI); + StackUsed = std::max(StackUsed, Size + Offset); + return AddrReg.getReg(0); + } + + void assignValueToReg(Register ValVReg, Register PhysReg, + const CCValAssign &VA) override { + markPhysRegUsed(PhysReg); + + if (VA.getLocVT().getSizeInBits() < 32) { + // 16-bit types are reported as legal for 32-bit registers. We need to do + // a 32-bit copy, and truncate to avoid the verifier complaining about it. + auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg); + + // If we have signext/zeroext, it applies to the whole 32-bit register + // before truncation. + auto Extended = + buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT())); + MIRBuilder.buildTrunc(ValVReg, Extended); + return; + } + + IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA); + } + + void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, + const MachinePointerInfo &MPO, + const CCValAssign &VA) override { + MachineFunction &MF = MIRBuilder.getMF(); + + auto MMO = MF.getMachineMemOperand( + MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy, + inferAlignFromPtrInfo(MF, MPO)); + MIRBuilder.buildLoad(ValVReg, Addr, *MMO); + } + + /// How the physical register gets marked varies between formal + /// parameters (it's a basic-block live-in), and a call instruction + /// (it's an implicit-def of the BL). + virtual void markPhysRegUsed(unsigned PhysReg) = 0; +}; + +struct FormalArgHandler : public AMDGPUIncomingArgHandler { + FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI) + : AMDGPUIncomingArgHandler(B, MRI) {} + + void markPhysRegUsed(unsigned PhysReg) override { + MIRBuilder.getMBB().addLiveIn(PhysReg); + } +}; + +struct CallReturnHandler : public AMDGPUIncomingArgHandler { + CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, + MachineInstrBuilder MIB) + : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {} + + void markPhysRegUsed(unsigned PhysReg) override { + MIB.addDef(PhysReg, RegState::Implicit); + } + + MachineInstrBuilder MIB; +}; + +struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler { + /// For tail calls, the byte offset of the call's argument area from the + /// callee's. Unused elsewhere. + int FPDiff; + + // Cache the SP register vreg if we need it more than once in this call site. + Register SPReg; + + bool IsTailCall; + + AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder, + MachineRegisterInfo &MRI, MachineInstrBuilder MIB, + bool IsTailCall = false, int FPDiff = 0) + : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff), + IsTailCall(IsTailCall) {} + + Register getStackAddress(uint64_t Size, int64_t Offset, + MachinePointerInfo &MPO, + ISD::ArgFlagsTy Flags) override { + MachineFunction &MF = MIRBuilder.getMF(); + const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32); + const LLT S32 = LLT::scalar(32); + + if (IsTailCall) { + Offset += FPDiff; + int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true); + auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI); + MPO = MachinePointerInfo::getFixedStack(MF, FI); + return FIReg.getReg(0); + } + + const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + + if (!SPReg) { + const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>(); + if (ST.enableFlatScratch()) { + // The stack is accessed unswizzled, so we can use a regular copy. + SPReg = MIRBuilder.buildCopy(PtrTy, + MFI->getStackPtrOffsetReg()).getReg(0); + } else { + // The address we produce here, without knowing the use context, is going + // to be interpreted as a vector address, so we need to convert to a + // swizzled address. + SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy}, + {MFI->getStackPtrOffsetReg()}).getReg(0); + } + } + + auto OffsetReg = MIRBuilder.buildConstant(S32, Offset); + + auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg); + MPO = MachinePointerInfo::getStack(MF, Offset); + return AddrReg.getReg(0); + } + + void assignValueToReg(Register ValVReg, Register PhysReg, + const CCValAssign &VA) override { + MIB.addUse(PhysReg, RegState::Implicit); + Register ExtReg = extendRegisterMin32(*this, ValVReg, VA); + MIRBuilder.buildCopy(PhysReg, ExtReg); + } + + void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy, + const MachinePointerInfo &MPO, + const CCValAssign &VA) override { + MachineFunction &MF = MIRBuilder.getMF(); + uint64_t LocMemOffset = VA.getLocMemOffset(); + const auto &ST = MF.getSubtarget<GCNSubtarget>(); + + auto MMO = MF.getMachineMemOperand( + MPO, MachineMemOperand::MOStore, MemTy, + commonAlignment(ST.getStackAlignment(), LocMemOffset)); + MIRBuilder.buildStore(ValVReg, Addr, *MMO); + } + + void assignValueToAddress(const CallLowering::ArgInfo &Arg, + unsigned ValRegIndex, Register Addr, LLT MemTy, + const MachinePointerInfo &MPO, + const CCValAssign &VA) override { + Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt + ? extendRegister(Arg.Regs[ValRegIndex], VA) + : Arg.Regs[ValRegIndex]; + assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA); + } +}; +} // anonymous namespace + +AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI) + : CallLowering(&TLI) { +} + +// FIXME: Compatibility shim +static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) { + switch (MIOpc) { + case TargetOpcode::G_SEXT: + return ISD::SIGN_EXTEND; + case TargetOpcode::G_ZEXT: + return ISD::ZERO_EXTEND; + case TargetOpcode::G_ANYEXT: + return ISD::ANY_EXTEND; + default: + llvm_unreachable("not an extend opcode"); + } +} + +bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF, + CallingConv::ID CallConv, + SmallVectorImpl<BaseArgInfo> &Outs, + bool IsVarArg) const { + // For shaders. Vector types should be explicitly handled by CC. + if (AMDGPU::isEntryFunctionCC(CallConv)) + return true; + + SmallVector<CCValAssign, 16> ArgLocs; + const SITargetLowering &TLI = *getTLI<SITargetLowering>(); + CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, + MF.getFunction().getContext()); + + return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg)); +} + +/// Lower the return value for the already existing \p Ret. This assumes that +/// \p B's insertion point is correct. +bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B, + const Value *Val, ArrayRef<Register> VRegs, + MachineInstrBuilder &Ret) const { + if (!Val) + return true; + + auto &MF = B.getMF(); + const auto &F = MF.getFunction(); + const DataLayout &DL = MF.getDataLayout(); + MachineRegisterInfo *MRI = B.getMRI(); + LLVMContext &Ctx = F.getContext(); + + CallingConv::ID CC = F.getCallingConv(); + const SITargetLowering &TLI = *getTLI<SITargetLowering>(); + + SmallVector<EVT, 8> SplitEVTs; + ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs); + assert(VRegs.size() == SplitEVTs.size() && + "For each split Type there should be exactly one VReg."); + + SmallVector<ArgInfo, 8> SplitRetInfos; + + for (unsigned i = 0; i < SplitEVTs.size(); ++i) { + EVT VT = SplitEVTs[i]; + Register Reg = VRegs[i]; + ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0); + setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); + + if (VT.isScalarInteger()) { + unsigned ExtendOp = TargetOpcode::G_ANYEXT; + if (RetInfo.Flags[0].isSExt()) { + assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); + ExtendOp = TargetOpcode::G_SEXT; + } else if (RetInfo.Flags[0].isZExt()) { + assert(RetInfo.Regs.size() == 1 && "expect only simple return values"); + ExtendOp = TargetOpcode::G_ZEXT; + } + + EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT, + extOpcodeToISDExtOpcode(ExtendOp)); + if (ExtVT != VT) { + RetInfo.Ty = ExtVT.getTypeForEVT(Ctx); + LLT ExtTy = getLLTForType(*RetInfo.Ty, DL); + Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0); + } + } + + if (Reg != RetInfo.Regs[0]) { + RetInfo.Regs[0] = Reg; + // Reset the arg flags after modifying Reg. + setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F); + } + + splitToValueTypes(RetInfo, SplitRetInfos, DL, CC); + } + + CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg()); + + OutgoingValueAssigner Assigner(AssignFn); + AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret); + return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B, + CC, F.isVarArg()); +} + +bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val, + ArrayRef<Register> VRegs, + FunctionLoweringInfo &FLI) const { + + MachineFunction &MF = B.getMF(); + SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + MFI->setIfReturnsVoid(!Val); + + assert(!Val == VRegs.empty() && "Return value without a vreg"); + + CallingConv::ID CC = B.getMF().getFunction().getCallingConv(); + const bool IsShader = AMDGPU::isShader(CC); + const bool IsWaveEnd = + (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC); + if (IsWaveEnd) { + B.buildInstr(AMDGPU::S_ENDPGM) + .addImm(0); + return true; + } + + unsigned ReturnOpc = + IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN; + auto Ret = B.buildInstrNoInsert(ReturnOpc); + + if (!FLI.CanLowerReturn) + insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister); + else if (!lowerReturnVal(B, Val, VRegs, Ret)) + return false; + + // TODO: Handle CalleeSavedRegsViaCopy. + + B.insertInstr(Ret); + return true; +} + +void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B, + uint64_t Offset) const { + MachineFunction &MF = B.getMF(); + const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + Register KernArgSegmentPtr = + MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR); + Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr); + + auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset); + + B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg); +} + +void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg, + uint64_t Offset, + Align Alignment) const { + MachineFunction &MF = B.getMF(); + const Function &F = MF.getFunction(); + const DataLayout &DL = F.getDataLayout(); + MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS); + + LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); + + SmallVector<ArgInfo, 32> SplitArgs; + SmallVector<uint64_t> FieldOffsets; + splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets); + + unsigned Idx = 0; + for (ArgInfo &SplitArg : SplitArgs) { + Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy); + lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]); + + LLT ArgTy = getLLTForType(*SplitArg.Ty, DL); + if (SplitArg.Flags[0].isPointer()) { + // Compensate for losing pointeriness in splitValueTypes. + LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(), + ArgTy.getScalarSizeInBits()); + ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy) + : PtrTy; + } + + MachineMemOperand *MMO = MF.getMachineMemOperand( + PtrInfo, + MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | + MachineMemOperand::MOInvariant, + ArgTy, commonAlignment(Alignment, FieldOffsets[Idx])); + + assert(SplitArg.Regs.size() == 1); + + B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO); + ++Idx; + } +} + +// Allocate special inputs passed in user SGPRs. +static void allocateHSAUserSGPRs(CCState &CCInfo, + MachineIRBuilder &B, + MachineFunction &MF, + const SIRegisterInfo &TRI, + SIMachineFunctionInfo &Info) { + // FIXME: How should these inputs interact with inreg / custom SGPR inputs? + const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo(); + if (UserSGPRInfo.hasPrivateSegmentBuffer()) { + Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI); + MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass); + CCInfo.AllocateReg(PrivateSegmentBufferReg); + } + + if (UserSGPRInfo.hasDispatchPtr()) { + Register DispatchPtrReg = Info.addDispatchPtr(TRI); + MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(DispatchPtrReg); + } + + const Module *M = MF.getFunction().getParent(); + if (UserSGPRInfo.hasQueuePtr() && + AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) { + Register QueuePtrReg = Info.addQueuePtr(TRI); + MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(QueuePtrReg); + } + + if (UserSGPRInfo.hasKernargSegmentPtr()) { + MachineRegisterInfo &MRI = MF.getRegInfo(); + Register InputPtrReg = Info.addKernargSegmentPtr(TRI); + const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); + Register VReg = MRI.createGenericVirtualRegister(P4); + MRI.addLiveIn(InputPtrReg, VReg); + B.getMBB().addLiveIn(InputPtrReg); + B.buildCopy(VReg, InputPtrReg); + CCInfo.AllocateReg(InputPtrReg); + } + + if (UserSGPRInfo.hasDispatchID()) { + Register DispatchIDReg = Info.addDispatchID(TRI); + MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(DispatchIDReg); + } + + if (UserSGPRInfo.hasFlatScratchInit()) { + Register FlatScratchInitReg = Info.addFlatScratchInit(TRI); + MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(FlatScratchInitReg); + } + + // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read + // these from the dispatch pointer. +} + +bool AMDGPUCallLowering::lowerFormalArgumentsKernel( + MachineIRBuilder &B, const Function &F, + ArrayRef<ArrayRef<Register>> VRegs) const { + MachineFunction &MF = B.getMF(); + const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + const SIRegisterInfo *TRI = Subtarget->getRegisterInfo(); + const SITargetLowering &TLI = *getTLI<SITargetLowering>(); + const DataLayout &DL = F.getDataLayout(); + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext()); + + allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info); + + unsigned i = 0; + const Align KernArgBaseAlign(16); + const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(); + uint64_t ExplicitArgOffset = 0; + + // TODO: Align down to dword alignment and extract bits for extending loads. + for (auto &Arg : F.args()) { + const bool IsByRef = Arg.hasByRefAttr(); + Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); + unsigned AllocSize = DL.getTypeAllocSize(ArgTy); + if (AllocSize == 0) + continue; + + MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt; + Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy); + + uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset; + ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize; + + if (Arg.use_empty()) { + ++i; + continue; + } + + Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset); + + if (IsByRef) { + unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace(); + + assert(VRegs[i].size() == 1 && + "expected only one register for byval pointers"); + if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) { + lowerParameterPtr(VRegs[i][0], B, ArgOffset); + } else { + const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64); + Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy); + lowerParameterPtr(PtrReg, B, ArgOffset); + + B.buildAddrSpaceCast(VRegs[i][0], PtrReg); + } + } else { + ArgInfo OrigArg(VRegs[i], Arg, i); + const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex; + setArgFlags(OrigArg, OrigArgIdx, DL, F); + lowerParameter(B, OrigArg, ArgOffset, Alignment); + } + + ++i; + } + + TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info); + TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false); + return true; +} + +bool AMDGPUCallLowering::lowerFormalArguments( + MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs, + FunctionLoweringInfo &FLI) const { + CallingConv::ID CC = F.getCallingConv(); + + // The infrastructure for normal calling convention lowering is essentially + // useless for kernels. We want to avoid any kind of legalization or argument + // splitting. + if (CC == CallingConv::AMDGPU_KERNEL) + return lowerFormalArgumentsKernel(B, F, VRegs); + + const bool IsGraphics = AMDGPU::isGraphics(CC); + const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC); + + MachineFunction &MF = B.getMF(); + MachineBasicBlock &MBB = B.getMBB(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); + const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>(); + const SIRegisterInfo *TRI = Subtarget.getRegisterInfo(); + const DataLayout &DL = F.getDataLayout(); + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext()); + const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo(); + + if (UserSGPRInfo.hasImplicitBufferPtr()) { + Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI); + MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(ImplicitBufferPtrReg); + } + + // FIXME: This probably isn't defined for mesa + if (UserSGPRInfo.hasFlatScratchInit() && !Subtarget.isAmdPalOS()) { + Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI); + MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass); + CCInfo.AllocateReg(FlatScratchInitReg); + } + + SmallVector<ArgInfo, 32> SplitArgs; + unsigned Idx = 0; + unsigned PSInputNum = 0; + + // Insert the hidden sret parameter if the return value won't fit in the + // return registers. + if (!FLI.CanLowerReturn) + insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL); + + for (auto &Arg : F.args()) { + if (DL.getTypeStoreSize(Arg.getType()) == 0) + continue; + + const bool InReg = Arg.hasAttribute(Attribute::InReg); + + if (Arg.hasAttribute(Attribute::SwiftSelf) || + Arg.hasAttribute(Attribute::SwiftError) || + Arg.hasAttribute(Attribute::Nest)) + return false; + + if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) { + const bool ArgUsed = !Arg.use_empty(); + bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum); + + if (!SkipArg) { + Info->markPSInputAllocated(PSInputNum); + if (ArgUsed) + Info->markPSInputEnabled(PSInputNum); + } + + ++PSInputNum; + + if (SkipArg) { + for (Register R : VRegs[Idx]) + B.buildUndef(R); + + ++Idx; + continue; + } + } + + ArgInfo OrigArg(VRegs[Idx], Arg, Idx); + const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex; + setArgFlags(OrigArg, OrigArgIdx, DL, F); + + splitToValueTypes(OrigArg, SplitArgs, DL, CC); + ++Idx; + } + + // At least one interpolation mode must be enabled or else the GPU will + // hang. + // + // Check PSInputAddr instead of PSInputEnable. The idea is that if the user + // set PSInputAddr, the user wants to enable some bits after the compilation + // based on run-time states. Since we can't know what the final PSInputEna + // will look like, so we shouldn't do anything here and the user should take + // responsibility for the correct programming. + // + // Otherwise, the following restrictions apply: + // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled. + // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be + // enabled too. + if (CC == CallingConv::AMDGPU_PS) { + if ((Info->getPSInputAddr() & 0x7F) == 0 || + ((Info->getPSInputAddr() & 0xF) == 0 && + Info->isPSInputAllocated(11))) { + CCInfo.AllocateReg(AMDGPU::VGPR0); + CCInfo.AllocateReg(AMDGPU::VGPR1); + Info->markPSInputAllocated(0); + Info->markPSInputEnabled(0); + } + + if (Subtarget.isAmdPalOS()) { + // For isAmdPalOS, the user does not enable some bits after compilation + // based on run-time states; the register values being generated here are + // the final ones set in hardware. Therefore we need to apply the + // workaround to PSInputAddr and PSInputEnable together. (The case where + // a bit is set in PSInputAddr but not PSInputEnable is where the frontend + // set up an input arg for a particular interpolation mode, but nothing + // uses that input arg. Really we should have an earlier pass that removes + // such an arg.) + unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable(); + if ((PsInputBits & 0x7F) == 0 || + ((PsInputBits & 0xF) == 0 && + (PsInputBits >> 11 & 1))) + Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr())); + } + } + + const SITargetLowering &TLI = *getTLI<SITargetLowering>(); + CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg()); + + if (!MBB.empty()) + B.setInstr(*MBB.begin()); + + if (!IsEntryFunc && !IsGraphics) { + // For the fixed ABI, pass workitem IDs in the last argument register. + TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info); + + if (!Subtarget.enableFlatScratch()) + CCInfo.AllocateReg(Info->getScratchRSrcReg()); + TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info); + } + + IncomingValueAssigner Assigner(AssignFn); + if (!determineAssignments(Assigner, SplitArgs, CCInfo)) + return false; + + FormalArgHandler Handler(B, MRI); + if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B)) + return false; + + uint64_t StackSize = Assigner.StackSize; + + // Start adding system SGPRs. + if (IsEntryFunc) + TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics); + + // When we tail call, we need to check if the callee's arguments will fit on + // the caller's stack. So, whenever we lower formal arguments, we should keep + // track of this information, since we might lower a tail call in this + // function later. + Info->setBytesInStackArgArea(StackSize); + + // Move back to the end of the basic block. + B.setMBB(MBB); + + return true; +} + +bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder, + CCState &CCInfo, + SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs, + CallLoweringInfo &Info) const { + MachineFunction &MF = MIRBuilder.getMF(); + + // If there's no call site, this doesn't correspond to a call from the IR and + // doesn't need implicit inputs. + if (!Info.CB) + return true; + + const AMDGPUFunctionArgInfo *CalleeArgInfo + = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo; + + const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo(); + + + // TODO: Unify with private memory register handling. This is complicated by + // the fact that at least in kernels, the input argument is not necessarily + // in the same location as the input. + AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = { + AMDGPUFunctionArgInfo::DISPATCH_PTR, + AMDGPUFunctionArgInfo::QUEUE_PTR, + AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR, + AMDGPUFunctionArgInfo::DISPATCH_ID, + AMDGPUFunctionArgInfo::WORKGROUP_ID_X, + AMDGPUFunctionArgInfo::WORKGROUP_ID_Y, + AMDGPUFunctionArgInfo::WORKGROUP_ID_Z, + AMDGPUFunctionArgInfo::LDS_KERNEL_ID, + }; + + static constexpr StringLiteral ImplicitAttrNames[] = { + "amdgpu-no-dispatch-ptr", + "amdgpu-no-queue-ptr", + "amdgpu-no-implicitarg-ptr", + "amdgpu-no-dispatch-id", + "amdgpu-no-workgroup-id-x", + "amdgpu-no-workgroup-id-y", + "amdgpu-no-workgroup-id-z", + "amdgpu-no-lds-kernel-id", + }; + + MachineRegisterInfo &MRI = MF.getRegInfo(); + + const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); + const AMDGPULegalizerInfo *LI + = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo()); + + unsigned I = 0; + for (auto InputID : InputRegs) { + const ArgDescriptor *OutgoingArg; + const TargetRegisterClass *ArgRC; + LLT ArgTy; + + // If the callee does not use the attribute value, skip copying the value. + if (Info.CB->hasFnAttr(ImplicitAttrNames[I++])) + continue; + + std::tie(OutgoingArg, ArgRC, ArgTy) = + CalleeArgInfo->getPreloadedValue(InputID); + if (!OutgoingArg) + continue; + + const ArgDescriptor *IncomingArg; + const TargetRegisterClass *IncomingArgRC; + std::tie(IncomingArg, IncomingArgRC, ArgTy) = + CallerArgInfo.getPreloadedValue(InputID); + assert(IncomingArgRC == ArgRC); + + Register InputReg = MRI.createGenericVirtualRegister(ArgTy); + + if (IncomingArg) { + LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy); + } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) { + LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder); + } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) { + std::optional<uint32_t> Id = + AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction()); + if (Id) { + MIRBuilder.buildConstant(InputReg, *Id); + } else { + MIRBuilder.buildUndef(InputReg); + } + } else { + // We may have proven the input wasn't needed, although the ABI is + // requiring it. We just need to allocate the register appropriately. + MIRBuilder.buildUndef(InputReg); + } + + if (OutgoingArg->isRegister()) { + ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); + if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) + report_fatal_error("failed to allocate implicit input argument"); + } else { + LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); + return false; + } + } + + // Pack workitem IDs into a single register or pass it as is if already + // packed. + const ArgDescriptor *OutgoingArg; + const TargetRegisterClass *ArgRC; + LLT ArgTy; + + std::tie(OutgoingArg, ArgRC, ArgTy) = + CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); + if (!OutgoingArg) + std::tie(OutgoingArg, ArgRC, ArgTy) = + CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); + if (!OutgoingArg) + std::tie(OutgoingArg, ArgRC, ArgTy) = + CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); + if (!OutgoingArg) + return false; + + auto WorkitemIDX = + CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X); + auto WorkitemIDY = + CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y); + auto WorkitemIDZ = + CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z); + + const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX); + const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY); + const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ); + const LLT S32 = LLT::scalar(32); + + const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x"); + const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y"); + const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z"); + + // If incoming ids are not packed we need to pack them. + // FIXME: Should consider known workgroup size to eliminate known 0 cases. + Register InputReg; + if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX && + NeedWorkItemIDX) { + if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) { + InputReg = MRI.createGenericVirtualRegister(S32); + LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX, + std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX)); + } else { + InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0); + } + } + + if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY && + NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) { + Register Y = MRI.createGenericVirtualRegister(S32); + LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY), + std::get<2>(WorkitemIDY)); + + Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0); + InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y; + } + + if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ && + NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) { + Register Z = MRI.createGenericVirtualRegister(S32); + LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ), + std::get<2>(WorkitemIDZ)); + + Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0); + InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z; + } + + if (!InputReg && + (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) { + InputReg = MRI.createGenericVirtualRegister(S32); + if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) { + // We're in a situation where the outgoing function requires the workitem + // ID, but the calling function does not have it (e.g a graphics function + // calling a C calling convention function). This is illegal, but we need + // to produce something. + MIRBuilder.buildUndef(InputReg); + } else { + // Workitem ids are already packed, any of present incoming arguments will + // carry all required fields. + ArgDescriptor IncomingArg = ArgDescriptor::createArg( + IncomingArgX ? *IncomingArgX : + IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u); + LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg, + &AMDGPU::VGPR_32RegClass, S32); + } + } + + if (OutgoingArg->isRegister()) { + if (InputReg) + ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg); + + if (!CCInfo.AllocateReg(OutgoingArg->getRegister())) + report_fatal_error("failed to allocate implicit input argument"); + } else { + LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n"); + return false; + } + + return true; +} + +/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for +/// CC. +static std::pair<CCAssignFn *, CCAssignFn *> +getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) { + return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)}; +} + +static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect, + bool IsTailCall, bool isWave32, + CallingConv::ID CC) { + // For calls to amdgpu_cs_chain functions, the address is known to be uniform. + assert((AMDGPU::isChainCC(CC) || !IsIndirect || !IsTailCall) && + "Indirect calls can't be tail calls, " + "because the address can be divergent"); + if (!IsTailCall) + return AMDGPU::G_SI_CALL; + + if (AMDGPU::isChainCC(CC)) + return isWave32 ? AMDGPU::SI_CS_CHAIN_TC_W32 : AMDGPU::SI_CS_CHAIN_TC_W64; + + return CC == CallingConv::AMDGPU_Gfx ? AMDGPU::SI_TCRETURN_GFX : + AMDGPU::SI_TCRETURN; +} + +// Add operands to call instruction to track the callee. +static bool addCallTargetOperands(MachineInstrBuilder &CallInst, + MachineIRBuilder &MIRBuilder, + AMDGPUCallLowering::CallLoweringInfo &Info) { + if (Info.Callee.isReg()) { + CallInst.addReg(Info.Callee.getReg()); + CallInst.addImm(0); + } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) { + // The call lowering lightly assumed we can directly encode a call target in + // the instruction, which is not the case. Materialize the address here. + const GlobalValue *GV = Info.Callee.getGlobal(); + auto Ptr = MIRBuilder.buildGlobalValue( + LLT::pointer(GV->getAddressSpace(), 64), GV); + CallInst.addReg(Ptr.getReg(0)); + CallInst.add(Info.Callee); + } else + return false; + + return true; +} + +bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay( + CallLoweringInfo &Info, MachineFunction &MF, + SmallVectorImpl<ArgInfo> &InArgs) const { + const Function &CallerF = MF.getFunction(); + CallingConv::ID CalleeCC = Info.CallConv; + CallingConv::ID CallerCC = CallerF.getCallingConv(); + + // If the calling conventions match, then everything must be the same. + if (CalleeCC == CallerCC) + return true; + + const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); + + // Make sure that the caller and callee preserve all of the same registers. + auto TRI = ST.getRegisterInfo(); + + const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); + const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); + if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) + return false; + + // Check if the caller and callee will handle arguments in the same way. + const SITargetLowering &TLI = *getTLI<SITargetLowering>(); + CCAssignFn *CalleeAssignFnFixed; + CCAssignFn *CalleeAssignFnVarArg; + std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) = + getAssignFnsForCC(CalleeCC, TLI); + + CCAssignFn *CallerAssignFnFixed; + CCAssignFn *CallerAssignFnVarArg; + std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) = + getAssignFnsForCC(CallerCC, TLI); + + // FIXME: We are not accounting for potential differences in implicitly passed + // inputs, but only the fixed ABI is supported now anyway. + IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed, + CalleeAssignFnVarArg); + IncomingValueAssigner CallerAssigner(CallerAssignFnFixed, + CallerAssignFnVarArg); + return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner); +} + +bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable( + CallLoweringInfo &Info, MachineFunction &MF, + SmallVectorImpl<ArgInfo> &OutArgs) const { + // If there are no outgoing arguments, then we are done. + if (OutArgs.empty()) + return true; + + const Function &CallerF = MF.getFunction(); + CallingConv::ID CalleeCC = Info.CallConv; + CallingConv::ID CallerCC = CallerF.getCallingConv(); + const SITargetLowering &TLI = *getTLI<SITargetLowering>(); + + CCAssignFn *AssignFnFixed; + CCAssignFn *AssignFnVarArg; + std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); + + // We have outgoing arguments. Make sure that we can tail call with them. + SmallVector<CCValAssign, 16> OutLocs; + CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext()); + OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); + + if (!determineAssignments(Assigner, OutArgs, OutInfo)) { + LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n"); + return false; + } + + // Make sure that they can fit on the caller's stack. + const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); + if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) { + LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n"); + return false; + } + + // Verify that the parameters in callee-saved registers match. + const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); + const SIRegisterInfo *TRI = ST.getRegisterInfo(); + const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC); + MachineRegisterInfo &MRI = MF.getRegInfo(); + return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs); +} + +/// Return true if the calling convention is one that we can guarantee TCO for. +static bool canGuaranteeTCO(CallingConv::ID CC) { + return CC == CallingConv::Fast; +} + +/// Return true if we might ever do TCO for calls with this calling convention. +static bool mayTailCallThisCC(CallingConv::ID CC) { + switch (CC) { + case CallingConv::C: + case CallingConv::AMDGPU_Gfx: + return true; + default: + return canGuaranteeTCO(CC); + } +} + +bool AMDGPUCallLowering::isEligibleForTailCallOptimization( + MachineIRBuilder &B, CallLoweringInfo &Info, + SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const { + // Must pass all target-independent checks in order to tail call optimize. + if (!Info.IsTailCall) + return false; + + // Indirect calls can't be tail calls, because the address can be divergent. + // TODO Check divergence info if the call really is divergent. + if (Info.Callee.isReg()) + return false; + + MachineFunction &MF = B.getMF(); + const Function &CallerF = MF.getFunction(); + CallingConv::ID CalleeCC = Info.CallConv; + CallingConv::ID CallerCC = CallerF.getCallingConv(); + + const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo(); + const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); + // Kernels aren't callable, and don't have a live in return address so it + // doesn't make sense to do a tail call with entry functions. + if (!CallerPreserved) + return false; + + if (!mayTailCallThisCC(CalleeCC)) { + LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n"); + return false; + } + + if (any_of(CallerF.args(), [](const Argument &A) { + return A.hasByValAttr() || A.hasSwiftErrorAttr(); + })) { + LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval " + "or swifterror arguments\n"); + return false; + } + + // If we have -tailcallopt, then we're done. + if (MF.getTarget().Options.GuaranteedTailCallOpt) + return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv(); + + // Verify that the incoming and outgoing arguments from the callee are + // safe to tail call. + if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) { + LLVM_DEBUG( + dbgs() + << "... Caller and callee have incompatible calling conventions.\n"); + return false; + } + + if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs)) + return false; + + LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n"); + return true; +} + +// Insert outgoing implicit arguments for a call, by inserting copies to the +// implicit argument registers and adding the necessary implicit uses to the +// call instruction. +void AMDGPUCallLowering::handleImplicitCallArguments( + MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst, + const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo, + CallingConv::ID CalleeCC, + ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const { + if (!ST.enableFlatScratch()) { + // Insert copies for the SRD. In the HSA case, this should be an identity + // copy. + auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32), + FuncInfo.getScratchRSrcReg()); + + auto CalleeRSrcReg = AMDGPU::isChainCC(CalleeCC) + ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51 + : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3; + + MIRBuilder.buildCopy(CalleeRSrcReg, ScratchRSrcReg); + CallInst.addReg(CalleeRSrcReg, RegState::Implicit); + } + + for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) { + MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second); + CallInst.addReg(ArgReg.first, RegState::Implicit); + } +} + +bool AMDGPUCallLowering::lowerTailCall( + MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info, + SmallVectorImpl<ArgInfo> &OutArgs) const { + MachineFunction &MF = MIRBuilder.getMF(); + const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); + SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>(); + const Function &F = MF.getFunction(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + const SITargetLowering &TLI = *getTLI<SITargetLowering>(); + + // True when we're tail calling, but without -tailcallopt. + bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt; + + // Find out which ABI gets to decide where things go. + CallingConv::ID CalleeCC = Info.CallConv; + CCAssignFn *AssignFnFixed; + CCAssignFn *AssignFnVarArg; + std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI); + + MachineInstrBuilder CallSeqStart; + if (!IsSibCall) + CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP); + + unsigned Opc = + getCallOpcode(MF, Info.Callee.isReg(), true, ST.isWave32(), CalleeCC); + auto MIB = MIRBuilder.buildInstrNoInsert(Opc); + if (!addCallTargetOperands(MIB, MIRBuilder, Info)) + return false; + + // Byte offset for the tail call. When we are sibcalling, this will always + // be 0. + MIB.addImm(0); + + // If this is a chain call, we need to pass in the EXEC mask. + const SIRegisterInfo *TRI = ST.getRegisterInfo(); + if (AMDGPU::isChainCC(Info.CallConv)) { + ArgInfo ExecArg = Info.OrigArgs[1]; + assert(ExecArg.Regs.size() == 1 && "Too many regs for EXEC"); + + if (!ExecArg.Ty->isIntegerTy(ST.getWavefrontSize())) + return false; + + if (auto CI = dyn_cast<ConstantInt>(ExecArg.OrigValue)) { + MIB.addImm(CI->getSExtValue()); + } else { + MIB.addReg(ExecArg.Regs[0]); + unsigned Idx = MIB->getNumOperands() - 1; + MIB->getOperand(Idx).setReg(constrainOperandRegClass( + MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, + MIB->getDesc(), MIB->getOperand(Idx), Idx)); + } + } + + // Tell the call which registers are clobbered. + const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC); + MIB.addRegMask(Mask); + + // FPDiff is the byte offset of the call's argument area from the callee's. + // Stores to callee stack arguments will be placed in FixedStackSlots offset + // by this amount for a tail call. In a sibling call it must be 0 because the + // caller will deallocate the entire stack and the callee still expects its + // arguments to begin at SP+0. + int FPDiff = 0; + + // This will be 0 for sibcalls, potentially nonzero for tail calls produced + // by -tailcallopt. For sibcalls, the memory operands for the call are + // already available in the caller's incoming argument space. + unsigned NumBytes = 0; + if (!IsSibCall) { + // We aren't sibcalling, so we need to compute FPDiff. We need to do this + // before handling assignments, because FPDiff must be known for memory + // arguments. + unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); + SmallVector<CCValAssign, 16> OutLocs; + CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext()); + + // FIXME: Not accounting for callee implicit inputs + OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg); + if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo)) + return false; + + // The callee will pop the argument stack as a tail call. Thus, we must + // keep it 16-byte aligned. + NumBytes = alignTo(OutInfo.getStackSize(), ST.getStackAlignment()); + + // FPDiff will be negative if this tail call requires more space than we + // would automatically have in our incoming argument space. Positive if we + // actually shrink the stack. + FPDiff = NumReusableBytes - NumBytes; + + // The stack pointer must be 16-byte aligned at all times it's used for a + // memory operation, which in practice means at *all* times and in + // particular across call boundaries. Therefore our own arguments started at + // a 16-byte aligned SP and the delta applied for the tail call should + // satisfy the same constraint. + assert(isAligned(ST.getStackAlignment(), FPDiff) && + "unaligned stack on tail call"); + } + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); + + // We could pass MIB and directly add the implicit uses to the call + // now. However, as an aesthetic choice, place implicit argument operands + // after the ordinary user argument registers. + SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; + + if (Info.CallConv != CallingConv::AMDGPU_Gfx && + !AMDGPU::isChainCC(Info.CallConv)) { + // With a fixed ABI, allocate fixed registers before user arguments. + if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) + return false; + } + + OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); + + if (!determineAssignments(Assigner, OutArgs, CCInfo)) + return false; + + // Do the actual argument marshalling. + AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff); + if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) + return false; + + if (Info.ConvergenceCtrlToken) { + MIB.addUse(Info.ConvergenceCtrlToken, RegState::Implicit); + } + handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, CalleeCC, + ImplicitArgRegs); + + // If we have -tailcallopt, we need to adjust the stack. We'll do the call + // sequence start and end here. + if (!IsSibCall) { + MIB->getOperand(1).setImm(FPDiff); + CallSeqStart.addImm(NumBytes).addImm(0); + // End the call sequence *before* emitting the call. Normally, we would + // tidy the frame up after the call. However, here, we've laid out the + // parameters so that when SP is reset, they will be in the correct + // location. + MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0); + } + + // Now we can add the actual call instruction to the correct basic block. + MIRBuilder.insertInstr(MIB); + + // If Callee is a reg, since it is used by a target specific + // instruction, it must have a register class matching the + // constraint of that instruction. + + // FIXME: We should define regbankselectable call instructions to handle + // divergent call targets. + if (MIB->getOperand(0).isReg()) { + MIB->getOperand(0).setReg(constrainOperandRegClass( + MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB, + MIB->getDesc(), MIB->getOperand(0), 0)); + } + + MF.getFrameInfo().setHasTailCall(); + Info.LoweredTailCall = true; + return true; +} + +/// Lower a call to the @llvm.amdgcn.cs.chain intrinsic. +bool AMDGPUCallLowering::lowerChainCall(MachineIRBuilder &MIRBuilder, + CallLoweringInfo &Info) const { + ArgInfo Callee = Info.OrigArgs[0]; + ArgInfo SGPRArgs = Info.OrigArgs[2]; + ArgInfo VGPRArgs = Info.OrigArgs[3]; + ArgInfo Flags = Info.OrigArgs[4]; + + assert(cast<ConstantInt>(Flags.OrigValue)->isZero() && + "Non-zero flags aren't supported yet."); + assert(Info.OrigArgs.size() == 5 && "Additional args aren't supported yet."); + + MachineFunction &MF = MIRBuilder.getMF(); + const Function &F = MF.getFunction(); + const DataLayout &DL = F.getDataLayout(); + + // The function to jump to is actually the first argument, so we'll change the + // Callee and other info to match that before using our existing helper. + const Value *CalleeV = Callee.OrigValue->stripPointerCasts(); + if (const Function *F = dyn_cast<Function>(CalleeV)) { + Info.Callee = MachineOperand::CreateGA(F, 0); + Info.CallConv = F->getCallingConv(); + } else { + assert(Callee.Regs.size() == 1 && "Too many regs for the callee"); + Info.Callee = MachineOperand::CreateReg(Callee.Regs[0], false); + Info.CallConv = CallingConv::AMDGPU_CS_Chain; // amdgpu_cs_chain_preserve + // behaves the same here. + } + + // The function that we're calling cannot be vararg (only the intrinsic is). + Info.IsVarArg = false; + + assert(std::all_of(SGPRArgs.Flags.begin(), SGPRArgs.Flags.end(), + [](ISD::ArgFlagsTy F) { return F.isInReg(); }) && + "SGPR arguments should be marked inreg"); + assert(std::none_of(VGPRArgs.Flags.begin(), VGPRArgs.Flags.end(), + [](ISD::ArgFlagsTy F) { return F.isInReg(); }) && + "VGPR arguments should not be marked inreg"); + + SmallVector<ArgInfo, 8> OutArgs; + splitToValueTypes(SGPRArgs, OutArgs, DL, Info.CallConv); + splitToValueTypes(VGPRArgs, OutArgs, DL, Info.CallConv); + + Info.IsMustTailCall = true; + return lowerTailCall(MIRBuilder, Info, OutArgs); +} + +bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder, + CallLoweringInfo &Info) const { + if (Function *F = Info.CB->getCalledFunction()) + if (F->isIntrinsic()) { + assert(F->getIntrinsicID() == Intrinsic::amdgcn_cs_chain && + "Unexpected intrinsic"); + return lowerChainCall(MIRBuilder, Info); + } + + if (Info.IsVarArg) { + LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n"); + return false; + } + + MachineFunction &MF = MIRBuilder.getMF(); + const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); + const SIRegisterInfo *TRI = ST.getRegisterInfo(); + + const Function &F = MF.getFunction(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + const SITargetLowering &TLI = *getTLI<SITargetLowering>(); + const DataLayout &DL = F.getDataLayout(); + + SmallVector<ArgInfo, 8> OutArgs; + for (auto &OrigArg : Info.OrigArgs) + splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv); + + SmallVector<ArgInfo, 8> InArgs; + if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) + splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv); + + // If we can lower as a tail call, do that instead. + bool CanTailCallOpt = + isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs); + + // We must emit a tail call if we have musttail. + if (Info.IsMustTailCall && !CanTailCallOpt) { + LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n"); + return false; + } + + Info.IsTailCall = CanTailCallOpt; + if (CanTailCallOpt) + return lowerTailCall(MIRBuilder, Info, OutArgs); + + // Find out which ABI gets to decide where things go. + CCAssignFn *AssignFnFixed; + CCAssignFn *AssignFnVarArg; + std::tie(AssignFnFixed, AssignFnVarArg) = + getAssignFnsForCC(Info.CallConv, TLI); + + MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP) + .addImm(0) + .addImm(0); + + // Create a temporarily-floating call instruction so we can add the implicit + // uses of arg registers. + unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false, ST.isWave32(), + Info.CallConv); + + auto MIB = MIRBuilder.buildInstrNoInsert(Opc); + MIB.addDef(TRI->getReturnAddressReg(MF)); + + if (!Info.IsConvergent) + MIB.setMIFlag(MachineInstr::NoConvergent); + + if (!addCallTargetOperands(MIB, MIRBuilder, Info)) + return false; + + // Tell the call which registers are clobbered. + const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv); + MIB.addRegMask(Mask); + + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext()); + + // We could pass MIB and directly add the implicit uses to the call + // now. However, as an aesthetic choice, place implicit argument operands + // after the ordinary user argument registers. + SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs; + + if (Info.CallConv != CallingConv::AMDGPU_Gfx) { + // With a fixed ABI, allocate fixed registers before user arguments. + if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info)) + return false; + } + + // Do the actual argument marshalling. + SmallVector<Register, 8> PhysRegs; + + OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg); + if (!determineAssignments(Assigner, OutArgs, CCInfo)) + return false; + + AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false); + if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder)) + return false; + + const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); + + if (Info.ConvergenceCtrlToken) { + MIB.addUse(Info.ConvergenceCtrlToken, RegState::Implicit); + } + handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, Info.CallConv, + ImplicitArgRegs); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getStackSize(); + + // If Callee is a reg, since it is used by a target specific + // instruction, it must have a register class matching the + // constraint of that instruction. + + // FIXME: We should define regbankselectable call instructions to handle + // divergent call targets. + if (MIB->getOperand(1).isReg()) { + MIB->getOperand(1).setReg(constrainOperandRegClass( + MF, *TRI, MRI, *ST.getInstrInfo(), + *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1), + 1)); + } + + // Now we can add the actual call instruction to the correct position. + MIRBuilder.insertInstr(MIB); + + // Finally we can copy the returned value back into its virtual-register. In + // symmetry with the arguments, the physical register must be an + // implicit-define of the call instruction. + if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) { + CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv, + Info.IsVarArg); + IncomingValueAssigner Assigner(RetAssignFn); + CallReturnHandler Handler(MIRBuilder, MRI, MIB); + if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder, + Info.CallConv, Info.IsVarArg)) + return false; + } + + uint64_t CalleePopBytes = NumBytes; + + MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN) + .addImm(0) + .addImm(CalleePopBytes); + + if (!Info.CanLowerReturn) { + insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs, + Info.DemoteRegister, Info.DemoteStackIndex); + } + + return true; +} |