aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp1539
1 files changed, 1539 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp
new file mode 100644
index 000000000000..3e1d1283dd48
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp
@@ -0,0 +1,1539 @@
+//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file implements the lowering of LLVM calls to machine code calls for
+/// GlobalISel.
+///
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUCallLowering.h"
+#include "AMDGPU.h"
+#include "AMDGPULegalizerInfo.h"
+#include "AMDGPUTargetMachine.h"
+#include "SIMachineFunctionInfo.h"
+#include "SIRegisterInfo.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/IR/IntrinsicsAMDGPU.h"
+
+#define DEBUG_TYPE "amdgpu-call-lowering"
+
+using namespace llvm;
+
+namespace {
+
+/// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
+static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
+ Register ValVReg, const CCValAssign &VA) {
+ if (VA.getLocVT().getSizeInBits() < 32) {
+ // 16-bit types are reported as legal for 32-bit registers. We need to
+ // extend and do a 32-bit copy to avoid the verifier complaining about it.
+ return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
+ }
+
+ return Handler.extendRegister(ValVReg, VA);
+}
+
+struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
+ AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
+ MachineInstrBuilder MIB)
+ : OutgoingValueHandler(B, MRI), MIB(MIB) {}
+
+ MachineInstrBuilder MIB;
+
+ Register getStackAddress(uint64_t Size, int64_t Offset,
+ MachinePointerInfo &MPO,
+ ISD::ArgFlagsTy Flags) override {
+ llvm_unreachable("not implemented");
+ }
+
+ void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
+ const MachinePointerInfo &MPO,
+ const CCValAssign &VA) override {
+ llvm_unreachable("not implemented");
+ }
+
+ void assignValueToReg(Register ValVReg, Register PhysReg,
+ const CCValAssign &VA) override {
+ Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
+
+ // If this is a scalar return, insert a readfirstlane just in case the value
+ // ends up in a VGPR.
+ // FIXME: Assert this is a shader return.
+ const SIRegisterInfo *TRI
+ = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
+ if (TRI->isSGPRReg(MRI, PhysReg)) {
+ LLT Ty = MRI.getType(ExtReg);
+ LLT S32 = LLT::scalar(32);
+ if (Ty != S32) {
+ // FIXME: We should probably support readfirstlane intrinsics with all
+ // legal 32-bit types.
+ assert(Ty.getSizeInBits() == 32);
+ if (Ty.isPointer())
+ ExtReg = MIRBuilder.buildPtrToInt(S32, ExtReg).getReg(0);
+ else
+ ExtReg = MIRBuilder.buildBitcast(S32, ExtReg).getReg(0);
+ }
+
+ auto ToSGPR = MIRBuilder
+ .buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
+ {MRI.getType(ExtReg)})
+ .addReg(ExtReg);
+ ExtReg = ToSGPR.getReg(0);
+ }
+
+ MIRBuilder.buildCopy(PhysReg, ExtReg);
+ MIB.addUse(PhysReg, RegState::Implicit);
+ }
+};
+
+struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
+ uint64_t StackUsed = 0;
+
+ AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
+ : IncomingValueHandler(B, MRI) {}
+
+ Register getStackAddress(uint64_t Size, int64_t Offset,
+ MachinePointerInfo &MPO,
+ ISD::ArgFlagsTy Flags) override {
+ auto &MFI = MIRBuilder.getMF().getFrameInfo();
+
+ // Byval is assumed to be writable memory, but other stack passed arguments
+ // are not.
+ const bool IsImmutable = !Flags.isByVal();
+ int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
+ MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
+ auto AddrReg = MIRBuilder.buildFrameIndex(
+ LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
+ StackUsed = std::max(StackUsed, Size + Offset);
+ return AddrReg.getReg(0);
+ }
+
+ void assignValueToReg(Register ValVReg, Register PhysReg,
+ const CCValAssign &VA) override {
+ markPhysRegUsed(PhysReg);
+
+ if (VA.getLocVT().getSizeInBits() < 32) {
+ // 16-bit types are reported as legal for 32-bit registers. We need to do
+ // a 32-bit copy, and truncate to avoid the verifier complaining about it.
+ auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
+
+ // If we have signext/zeroext, it applies to the whole 32-bit register
+ // before truncation.
+ auto Extended =
+ buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
+ MIRBuilder.buildTrunc(ValVReg, Extended);
+ return;
+ }
+
+ IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
+ }
+
+ void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
+ const MachinePointerInfo &MPO,
+ const CCValAssign &VA) override {
+ MachineFunction &MF = MIRBuilder.getMF();
+
+ auto MMO = MF.getMachineMemOperand(
+ MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
+ inferAlignFromPtrInfo(MF, MPO));
+ MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
+ }
+
+ /// How the physical register gets marked varies between formal
+ /// parameters (it's a basic-block live-in), and a call instruction
+ /// (it's an implicit-def of the BL).
+ virtual void markPhysRegUsed(unsigned PhysReg) = 0;
+};
+
+struct FormalArgHandler : public AMDGPUIncomingArgHandler {
+ FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
+ : AMDGPUIncomingArgHandler(B, MRI) {}
+
+ void markPhysRegUsed(unsigned PhysReg) override {
+ MIRBuilder.getMBB().addLiveIn(PhysReg);
+ }
+};
+
+struct CallReturnHandler : public AMDGPUIncomingArgHandler {
+ CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
+ MachineInstrBuilder MIB)
+ : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
+
+ void markPhysRegUsed(unsigned PhysReg) override {
+ MIB.addDef(PhysReg, RegState::Implicit);
+ }
+
+ MachineInstrBuilder MIB;
+};
+
+struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
+ /// For tail calls, the byte offset of the call's argument area from the
+ /// callee's. Unused elsewhere.
+ int FPDiff;
+
+ // Cache the SP register vreg if we need it more than once in this call site.
+ Register SPReg;
+
+ bool IsTailCall;
+
+ AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
+ MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
+ bool IsTailCall = false, int FPDiff = 0)
+ : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
+ IsTailCall(IsTailCall) {}
+
+ Register getStackAddress(uint64_t Size, int64_t Offset,
+ MachinePointerInfo &MPO,
+ ISD::ArgFlagsTy Flags) override {
+ MachineFunction &MF = MIRBuilder.getMF();
+ const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
+ const LLT S32 = LLT::scalar(32);
+
+ if (IsTailCall) {
+ Offset += FPDiff;
+ int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
+ auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
+ MPO = MachinePointerInfo::getFixedStack(MF, FI);
+ return FIReg.getReg(0);
+ }
+
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+
+ if (!SPReg) {
+ const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>();
+ if (ST.enableFlatScratch()) {
+ // The stack is accessed unswizzled, so we can use a regular copy.
+ SPReg = MIRBuilder.buildCopy(PtrTy,
+ MFI->getStackPtrOffsetReg()).getReg(0);
+ } else {
+ // The address we produce here, without knowing the use context, is going
+ // to be interpreted as a vector address, so we need to convert to a
+ // swizzled address.
+ SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy},
+ {MFI->getStackPtrOffsetReg()}).getReg(0);
+ }
+ }
+
+ auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
+
+ auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
+ MPO = MachinePointerInfo::getStack(MF, Offset);
+ return AddrReg.getReg(0);
+ }
+
+ void assignValueToReg(Register ValVReg, Register PhysReg,
+ const CCValAssign &VA) override {
+ MIB.addUse(PhysReg, RegState::Implicit);
+ Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
+ MIRBuilder.buildCopy(PhysReg, ExtReg);
+ }
+
+ void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
+ const MachinePointerInfo &MPO,
+ const CCValAssign &VA) override {
+ MachineFunction &MF = MIRBuilder.getMF();
+ uint64_t LocMemOffset = VA.getLocMemOffset();
+ const auto &ST = MF.getSubtarget<GCNSubtarget>();
+
+ auto MMO = MF.getMachineMemOperand(
+ MPO, MachineMemOperand::MOStore, MemTy,
+ commonAlignment(ST.getStackAlignment(), LocMemOffset));
+ MIRBuilder.buildStore(ValVReg, Addr, *MMO);
+ }
+
+ void assignValueToAddress(const CallLowering::ArgInfo &Arg,
+ unsigned ValRegIndex, Register Addr, LLT MemTy,
+ const MachinePointerInfo &MPO,
+ const CCValAssign &VA) override {
+ Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
+ ? extendRegister(Arg.Regs[ValRegIndex], VA)
+ : Arg.Regs[ValRegIndex];
+ assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
+ }
+};
+} // anonymous namespace
+
+AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
+ : CallLowering(&TLI) {
+}
+
+// FIXME: Compatibility shim
+static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
+ switch (MIOpc) {
+ case TargetOpcode::G_SEXT:
+ return ISD::SIGN_EXTEND;
+ case TargetOpcode::G_ZEXT:
+ return ISD::ZERO_EXTEND;
+ case TargetOpcode::G_ANYEXT:
+ return ISD::ANY_EXTEND;
+ default:
+ llvm_unreachable("not an extend opcode");
+ }
+}
+
+bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
+ CallingConv::ID CallConv,
+ SmallVectorImpl<BaseArgInfo> &Outs,
+ bool IsVarArg) const {
+ // For shaders. Vector types should be explicitly handled by CC.
+ if (AMDGPU::isEntryFunctionCC(CallConv))
+ return true;
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+ CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
+ MF.getFunction().getContext());
+
+ return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
+}
+
+/// Lower the return value for the already existing \p Ret. This assumes that
+/// \p B's insertion point is correct.
+bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
+ const Value *Val, ArrayRef<Register> VRegs,
+ MachineInstrBuilder &Ret) const {
+ if (!Val)
+ return true;
+
+ auto &MF = B.getMF();
+ const auto &F = MF.getFunction();
+ const DataLayout &DL = MF.getDataLayout();
+ MachineRegisterInfo *MRI = B.getMRI();
+ LLVMContext &Ctx = F.getContext();
+
+ CallingConv::ID CC = F.getCallingConv();
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+
+ SmallVector<EVT, 8> SplitEVTs;
+ ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
+ assert(VRegs.size() == SplitEVTs.size() &&
+ "For each split Type there should be exactly one VReg.");
+
+ SmallVector<ArgInfo, 8> SplitRetInfos;
+
+ for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
+ EVT VT = SplitEVTs[i];
+ Register Reg = VRegs[i];
+ ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
+ setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
+
+ if (VT.isScalarInteger()) {
+ unsigned ExtendOp = TargetOpcode::G_ANYEXT;
+ if (RetInfo.Flags[0].isSExt()) {
+ assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
+ ExtendOp = TargetOpcode::G_SEXT;
+ } else if (RetInfo.Flags[0].isZExt()) {
+ assert(RetInfo.Regs.size() == 1 && "expect only simple return values");
+ ExtendOp = TargetOpcode::G_ZEXT;
+ }
+
+ EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
+ extOpcodeToISDExtOpcode(ExtendOp));
+ if (ExtVT != VT) {
+ RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
+ LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
+ Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
+ }
+ }
+
+ if (Reg != RetInfo.Regs[0]) {
+ RetInfo.Regs[0] = Reg;
+ // Reset the arg flags after modifying Reg.
+ setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
+ }
+
+ splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
+ }
+
+ CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
+
+ OutgoingValueAssigner Assigner(AssignFn);
+ AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
+ return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
+ CC, F.isVarArg());
+}
+
+bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
+ ArrayRef<Register> VRegs,
+ FunctionLoweringInfo &FLI) const {
+
+ MachineFunction &MF = B.getMF();
+ SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ MFI->setIfReturnsVoid(!Val);
+
+ assert(!Val == VRegs.empty() && "Return value without a vreg");
+
+ CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
+ const bool IsShader = AMDGPU::isShader(CC);
+ const bool IsWaveEnd =
+ (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
+ if (IsWaveEnd) {
+ B.buildInstr(AMDGPU::S_ENDPGM)
+ .addImm(0);
+ return true;
+ }
+
+ unsigned ReturnOpc =
+ IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN;
+ auto Ret = B.buildInstrNoInsert(ReturnOpc);
+
+ if (!FLI.CanLowerReturn)
+ insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
+ else if (!lowerReturnVal(B, Val, VRegs, Ret))
+ return false;
+
+ // TODO: Handle CalleeSavedRegsViaCopy.
+
+ B.insertInstr(Ret);
+ return true;
+}
+
+void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
+ uint64_t Offset) const {
+ MachineFunction &MF = B.getMF();
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ Register KernArgSegmentPtr =
+ MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
+ Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
+
+ auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
+
+ B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
+}
+
+void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
+ uint64_t Offset,
+ Align Alignment) const {
+ MachineFunction &MF = B.getMF();
+ const Function &F = MF.getFunction();
+ const DataLayout &DL = F.getDataLayout();
+ MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
+
+ LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
+
+ SmallVector<ArgInfo, 32> SplitArgs;
+ SmallVector<uint64_t> FieldOffsets;
+ splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);
+
+ unsigned Idx = 0;
+ for (ArgInfo &SplitArg : SplitArgs) {
+ Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
+ lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);
+
+ LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
+ if (SplitArg.Flags[0].isPointer()) {
+ // Compensate for losing pointeriness in splitValueTypes.
+ LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
+ ArgTy.getScalarSizeInBits());
+ ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
+ : PtrTy;
+ }
+
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ PtrInfo,
+ MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant,
+ ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));
+
+ assert(SplitArg.Regs.size() == 1);
+
+ B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
+ ++Idx;
+ }
+}
+
+// Allocate special inputs passed in user SGPRs.
+static void allocateHSAUserSGPRs(CCState &CCInfo,
+ MachineIRBuilder &B,
+ MachineFunction &MF,
+ const SIRegisterInfo &TRI,
+ SIMachineFunctionInfo &Info) {
+ // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
+ const GCNUserSGPRUsageInfo &UserSGPRInfo = Info.getUserSGPRInfo();
+ if (UserSGPRInfo.hasPrivateSegmentBuffer()) {
+ Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
+ MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
+ CCInfo.AllocateReg(PrivateSegmentBufferReg);
+ }
+
+ if (UserSGPRInfo.hasDispatchPtr()) {
+ Register DispatchPtrReg = Info.addDispatchPtr(TRI);
+ MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(DispatchPtrReg);
+ }
+
+ const Module *M = MF.getFunction().getParent();
+ if (UserSGPRInfo.hasQueuePtr() &&
+ AMDGPU::getAMDHSACodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) {
+ Register QueuePtrReg = Info.addQueuePtr(TRI);
+ MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(QueuePtrReg);
+ }
+
+ if (UserSGPRInfo.hasKernargSegmentPtr()) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
+ const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
+ Register VReg = MRI.createGenericVirtualRegister(P4);
+ MRI.addLiveIn(InputPtrReg, VReg);
+ B.getMBB().addLiveIn(InputPtrReg);
+ B.buildCopy(VReg, InputPtrReg);
+ CCInfo.AllocateReg(InputPtrReg);
+ }
+
+ if (UserSGPRInfo.hasDispatchID()) {
+ Register DispatchIDReg = Info.addDispatchID(TRI);
+ MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(DispatchIDReg);
+ }
+
+ if (UserSGPRInfo.hasFlatScratchInit()) {
+ Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
+ MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(FlatScratchInitReg);
+ }
+
+ // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
+ // these from the dispatch pointer.
+}
+
+bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
+ MachineIRBuilder &B, const Function &F,
+ ArrayRef<ArrayRef<Register>> VRegs) const {
+ MachineFunction &MF = B.getMF();
+ const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+ const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+ const DataLayout &DL = F.getDataLayout();
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
+
+ allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
+
+ unsigned i = 0;
+ const Align KernArgBaseAlign(16);
+ const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset();
+ uint64_t ExplicitArgOffset = 0;
+
+ // TODO: Align down to dword alignment and extract bits for extending loads.
+ for (auto &Arg : F.args()) {
+ const bool IsByRef = Arg.hasByRefAttr();
+ Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
+ unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
+ if (AllocSize == 0)
+ continue;
+
+ MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt;
+ Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy);
+
+ uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
+ ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
+
+ if (Arg.use_empty()) {
+ ++i;
+ continue;
+ }
+
+ Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
+
+ if (IsByRef) {
+ unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
+
+ assert(VRegs[i].size() == 1 &&
+ "expected only one register for byval pointers");
+ if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
+ lowerParameterPtr(VRegs[i][0], B, ArgOffset);
+ } else {
+ const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
+ Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
+ lowerParameterPtr(PtrReg, B, ArgOffset);
+
+ B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
+ }
+ } else {
+ ArgInfo OrigArg(VRegs[i], Arg, i);
+ const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
+ setArgFlags(OrigArg, OrigArgIdx, DL, F);
+ lowerParameter(B, OrigArg, ArgOffset, Alignment);
+ }
+
+ ++i;
+ }
+
+ TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
+ TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
+ return true;
+}
+
+bool AMDGPUCallLowering::lowerFormalArguments(
+ MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
+ FunctionLoweringInfo &FLI) const {
+ CallingConv::ID CC = F.getCallingConv();
+
+ // The infrastructure for normal calling convention lowering is essentially
+ // useless for kernels. We want to avoid any kind of legalization or argument
+ // splitting.
+ if (CC == CallingConv::AMDGPU_KERNEL)
+ return lowerFormalArgumentsKernel(B, F, VRegs);
+
+ const bool IsGraphics = AMDGPU::isGraphics(CC);
+ const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
+
+ MachineFunction &MF = B.getMF();
+ MachineBasicBlock &MBB = B.getMBB();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
+ const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
+ const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
+ const DataLayout &DL = F.getDataLayout();
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
+ const GCNUserSGPRUsageInfo &UserSGPRInfo = Info->getUserSGPRInfo();
+
+ if (UserSGPRInfo.hasImplicitBufferPtr()) {
+ Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
+ MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(ImplicitBufferPtrReg);
+ }
+
+ // FIXME: This probably isn't defined for mesa
+ if (UserSGPRInfo.hasFlatScratchInit() && !Subtarget.isAmdPalOS()) {
+ Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
+ MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
+ CCInfo.AllocateReg(FlatScratchInitReg);
+ }
+
+ SmallVector<ArgInfo, 32> SplitArgs;
+ unsigned Idx = 0;
+ unsigned PSInputNum = 0;
+
+ // Insert the hidden sret parameter if the return value won't fit in the
+ // return registers.
+ if (!FLI.CanLowerReturn)
+ insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
+
+ for (auto &Arg : F.args()) {
+ if (DL.getTypeStoreSize(Arg.getType()) == 0)
+ continue;
+
+ const bool InReg = Arg.hasAttribute(Attribute::InReg);
+
+ if (Arg.hasAttribute(Attribute::SwiftSelf) ||
+ Arg.hasAttribute(Attribute::SwiftError) ||
+ Arg.hasAttribute(Attribute::Nest))
+ return false;
+
+ if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
+ const bool ArgUsed = !Arg.use_empty();
+ bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
+
+ if (!SkipArg) {
+ Info->markPSInputAllocated(PSInputNum);
+ if (ArgUsed)
+ Info->markPSInputEnabled(PSInputNum);
+ }
+
+ ++PSInputNum;
+
+ if (SkipArg) {
+ for (Register R : VRegs[Idx])
+ B.buildUndef(R);
+
+ ++Idx;
+ continue;
+ }
+ }
+
+ ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
+ const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
+ setArgFlags(OrigArg, OrigArgIdx, DL, F);
+
+ splitToValueTypes(OrigArg, SplitArgs, DL, CC);
+ ++Idx;
+ }
+
+ // At least one interpolation mode must be enabled or else the GPU will
+ // hang.
+ //
+ // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
+ // set PSInputAddr, the user wants to enable some bits after the compilation
+ // based on run-time states. Since we can't know what the final PSInputEna
+ // will look like, so we shouldn't do anything here and the user should take
+ // responsibility for the correct programming.
+ //
+ // Otherwise, the following restrictions apply:
+ // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
+ // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
+ // enabled too.
+ if (CC == CallingConv::AMDGPU_PS) {
+ if ((Info->getPSInputAddr() & 0x7F) == 0 ||
+ ((Info->getPSInputAddr() & 0xF) == 0 &&
+ Info->isPSInputAllocated(11))) {
+ CCInfo.AllocateReg(AMDGPU::VGPR0);
+ CCInfo.AllocateReg(AMDGPU::VGPR1);
+ Info->markPSInputAllocated(0);
+ Info->markPSInputEnabled(0);
+ }
+
+ if (Subtarget.isAmdPalOS()) {
+ // For isAmdPalOS, the user does not enable some bits after compilation
+ // based on run-time states; the register values being generated here are
+ // the final ones set in hardware. Therefore we need to apply the
+ // workaround to PSInputAddr and PSInputEnable together. (The case where
+ // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
+ // set up an input arg for a particular interpolation mode, but nothing
+ // uses that input arg. Really we should have an earlier pass that removes
+ // such an arg.)
+ unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
+ if ((PsInputBits & 0x7F) == 0 ||
+ ((PsInputBits & 0xF) == 0 &&
+ (PsInputBits >> 11 & 1)))
+ Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
+ }
+ }
+
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+ CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
+
+ if (!MBB.empty())
+ B.setInstr(*MBB.begin());
+
+ if (!IsEntryFunc && !IsGraphics) {
+ // For the fixed ABI, pass workitem IDs in the last argument register.
+ TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
+
+ if (!Subtarget.enableFlatScratch())
+ CCInfo.AllocateReg(Info->getScratchRSrcReg());
+ TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
+ }
+
+ IncomingValueAssigner Assigner(AssignFn);
+ if (!determineAssignments(Assigner, SplitArgs, CCInfo))
+ return false;
+
+ FormalArgHandler Handler(B, MRI);
+ if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
+ return false;
+
+ uint64_t StackSize = Assigner.StackSize;
+
+ // Start adding system SGPRs.
+ if (IsEntryFunc)
+ TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
+
+ // When we tail call, we need to check if the callee's arguments will fit on
+ // the caller's stack. So, whenever we lower formal arguments, we should keep
+ // track of this information, since we might lower a tail call in this
+ // function later.
+ Info->setBytesInStackArgArea(StackSize);
+
+ // Move back to the end of the basic block.
+ B.setMBB(MBB);
+
+ return true;
+}
+
+bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
+ CCState &CCInfo,
+ SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
+ CallLoweringInfo &Info) const {
+ MachineFunction &MF = MIRBuilder.getMF();
+
+ // If there's no call site, this doesn't correspond to a call from the IR and
+ // doesn't need implicit inputs.
+ if (!Info.CB)
+ return true;
+
+ const AMDGPUFunctionArgInfo *CalleeArgInfo
+ = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
+
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+ const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
+
+
+ // TODO: Unify with private memory register handling. This is complicated by
+ // the fact that at least in kernels, the input argument is not necessarily
+ // in the same location as the input.
+ AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
+ AMDGPUFunctionArgInfo::DISPATCH_PTR,
+ AMDGPUFunctionArgInfo::QUEUE_PTR,
+ AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
+ AMDGPUFunctionArgInfo::DISPATCH_ID,
+ AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
+ AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
+ AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
+ AMDGPUFunctionArgInfo::LDS_KERNEL_ID,
+ };
+
+ static constexpr StringLiteral ImplicitAttrNames[] = {
+ "amdgpu-no-dispatch-ptr",
+ "amdgpu-no-queue-ptr",
+ "amdgpu-no-implicitarg-ptr",
+ "amdgpu-no-dispatch-id",
+ "amdgpu-no-workgroup-id-x",
+ "amdgpu-no-workgroup-id-y",
+ "amdgpu-no-workgroup-id-z",
+ "amdgpu-no-lds-kernel-id",
+ };
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
+ const AMDGPULegalizerInfo *LI
+ = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
+
+ unsigned I = 0;
+ for (auto InputID : InputRegs) {
+ const ArgDescriptor *OutgoingArg;
+ const TargetRegisterClass *ArgRC;
+ LLT ArgTy;
+
+ // If the callee does not use the attribute value, skip copying the value.
+ if (Info.CB->hasFnAttr(ImplicitAttrNames[I++]))
+ continue;
+
+ std::tie(OutgoingArg, ArgRC, ArgTy) =
+ CalleeArgInfo->getPreloadedValue(InputID);
+ if (!OutgoingArg)
+ continue;
+
+ const ArgDescriptor *IncomingArg;
+ const TargetRegisterClass *IncomingArgRC;
+ std::tie(IncomingArg, IncomingArgRC, ArgTy) =
+ CallerArgInfo.getPreloadedValue(InputID);
+ assert(IncomingArgRC == ArgRC);
+
+ Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
+
+ if (IncomingArg) {
+ LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
+ } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
+ LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
+ } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
+ std::optional<uint32_t> Id =
+ AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction());
+ if (Id) {
+ MIRBuilder.buildConstant(InputReg, *Id);
+ } else {
+ MIRBuilder.buildUndef(InputReg);
+ }
+ } else {
+ // We may have proven the input wasn't needed, although the ABI is
+ // requiring it. We just need to allocate the register appropriately.
+ MIRBuilder.buildUndef(InputReg);
+ }
+
+ if (OutgoingArg->isRegister()) {
+ ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
+ if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
+ report_fatal_error("failed to allocate implicit input argument");
+ } else {
+ LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
+ return false;
+ }
+ }
+
+ // Pack workitem IDs into a single register or pass it as is if already
+ // packed.
+ const ArgDescriptor *OutgoingArg;
+ const TargetRegisterClass *ArgRC;
+ LLT ArgTy;
+
+ std::tie(OutgoingArg, ArgRC, ArgTy) =
+ CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
+ if (!OutgoingArg)
+ std::tie(OutgoingArg, ArgRC, ArgTy) =
+ CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
+ if (!OutgoingArg)
+ std::tie(OutgoingArg, ArgRC, ArgTy) =
+ CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
+ if (!OutgoingArg)
+ return false;
+
+ auto WorkitemIDX =
+ CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
+ auto WorkitemIDY =
+ CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
+ auto WorkitemIDZ =
+ CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
+
+ const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
+ const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
+ const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
+ const LLT S32 = LLT::scalar(32);
+
+ const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x");
+ const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y");
+ const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z");
+
+ // If incoming ids are not packed we need to pack them.
+ // FIXME: Should consider known workgroup size to eliminate known 0 cases.
+ Register InputReg;
+ if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
+ NeedWorkItemIDX) {
+ if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) {
+ InputReg = MRI.createGenericVirtualRegister(S32);
+ LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
+ std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
+ } else {
+ InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0);
+ }
+ }
+
+ if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
+ NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) {
+ Register Y = MRI.createGenericVirtualRegister(S32);
+ LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
+ std::get<2>(WorkitemIDY));
+
+ Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
+ InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
+ }
+
+ if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
+ NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) {
+ Register Z = MRI.createGenericVirtualRegister(S32);
+ LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
+ std::get<2>(WorkitemIDZ));
+
+ Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
+ InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
+ }
+
+ if (!InputReg &&
+ (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
+ InputReg = MRI.createGenericVirtualRegister(S32);
+ if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
+ // We're in a situation where the outgoing function requires the workitem
+ // ID, but the calling function does not have it (e.g a graphics function
+ // calling a C calling convention function). This is illegal, but we need
+ // to produce something.
+ MIRBuilder.buildUndef(InputReg);
+ } else {
+ // Workitem ids are already packed, any of present incoming arguments will
+ // carry all required fields.
+ ArgDescriptor IncomingArg = ArgDescriptor::createArg(
+ IncomingArgX ? *IncomingArgX :
+ IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
+ LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
+ &AMDGPU::VGPR_32RegClass, S32);
+ }
+ }
+
+ if (OutgoingArg->isRegister()) {
+ if (InputReg)
+ ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
+
+ if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
+ report_fatal_error("failed to allocate implicit input argument");
+ } else {
+ LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n");
+ return false;
+ }
+
+ return true;
+}
+
+/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
+/// CC.
+static std::pair<CCAssignFn *, CCAssignFn *>
+getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
+ return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
+}
+
+static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
+ bool IsTailCall, bool isWave32,
+ CallingConv::ID CC) {
+ // For calls to amdgpu_cs_chain functions, the address is known to be uniform.
+ assert((AMDGPU::isChainCC(CC) || !IsIndirect || !IsTailCall) &&
+ "Indirect calls can't be tail calls, "
+ "because the address can be divergent");
+ if (!IsTailCall)
+ return AMDGPU::G_SI_CALL;
+
+ if (AMDGPU::isChainCC(CC))
+ return isWave32 ? AMDGPU::SI_CS_CHAIN_TC_W32 : AMDGPU::SI_CS_CHAIN_TC_W64;
+
+ return CC == CallingConv::AMDGPU_Gfx ? AMDGPU::SI_TCRETURN_GFX :
+ AMDGPU::SI_TCRETURN;
+}
+
+// Add operands to call instruction to track the callee.
+static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
+ MachineIRBuilder &MIRBuilder,
+ AMDGPUCallLowering::CallLoweringInfo &Info) {
+ if (Info.Callee.isReg()) {
+ CallInst.addReg(Info.Callee.getReg());
+ CallInst.addImm(0);
+ } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
+ // The call lowering lightly assumed we can directly encode a call target in
+ // the instruction, which is not the case. Materialize the address here.
+ const GlobalValue *GV = Info.Callee.getGlobal();
+ auto Ptr = MIRBuilder.buildGlobalValue(
+ LLT::pointer(GV->getAddressSpace(), 64), GV);
+ CallInst.addReg(Ptr.getReg(0));
+ CallInst.add(Info.Callee);
+ } else
+ return false;
+
+ return true;
+}
+
+bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
+ CallLoweringInfo &Info, MachineFunction &MF,
+ SmallVectorImpl<ArgInfo> &InArgs) const {
+ const Function &CallerF = MF.getFunction();
+ CallingConv::ID CalleeCC = Info.CallConv;
+ CallingConv::ID CallerCC = CallerF.getCallingConv();
+
+ // If the calling conventions match, then everything must be the same.
+ if (CalleeCC == CallerCC)
+ return true;
+
+ const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
+
+ // Make sure that the caller and callee preserve all of the same registers.
+ auto TRI = ST.getRegisterInfo();
+
+ const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
+ const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
+ if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
+ return false;
+
+ // Check if the caller and callee will handle arguments in the same way.
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+ CCAssignFn *CalleeAssignFnFixed;
+ CCAssignFn *CalleeAssignFnVarArg;
+ std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
+ getAssignFnsForCC(CalleeCC, TLI);
+
+ CCAssignFn *CallerAssignFnFixed;
+ CCAssignFn *CallerAssignFnVarArg;
+ std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
+ getAssignFnsForCC(CallerCC, TLI);
+
+ // FIXME: We are not accounting for potential differences in implicitly passed
+ // inputs, but only the fixed ABI is supported now anyway.
+ IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
+ CalleeAssignFnVarArg);
+ IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
+ CallerAssignFnVarArg);
+ return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
+}
+
+bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
+ CallLoweringInfo &Info, MachineFunction &MF,
+ SmallVectorImpl<ArgInfo> &OutArgs) const {
+ // If there are no outgoing arguments, then we are done.
+ if (OutArgs.empty())
+ return true;
+
+ const Function &CallerF = MF.getFunction();
+ CallingConv::ID CalleeCC = Info.CallConv;
+ CallingConv::ID CallerCC = CallerF.getCallingConv();
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+
+ CCAssignFn *AssignFnFixed;
+ CCAssignFn *AssignFnVarArg;
+ std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
+
+ // We have outgoing arguments. Make sure that we can tail call with them.
+ SmallVector<CCValAssign, 16> OutLocs;
+ CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
+ OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
+
+ if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
+ LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n");
+ return false;
+ }
+
+ // Make sure that they can fit on the caller's stack.
+ const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
+ if (OutInfo.getStackSize() > FuncInfo->getBytesInStackArgArea()) {
+ LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n");
+ return false;
+ }
+
+ // Verify that the parameters in callee-saved registers match.
+ const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
+ const SIRegisterInfo *TRI = ST.getRegisterInfo();
+ const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
+}
+
+/// Return true if the calling convention is one that we can guarantee TCO for.
+static bool canGuaranteeTCO(CallingConv::ID CC) {
+ return CC == CallingConv::Fast;
+}
+
+/// Return true if we might ever do TCO for calls with this calling convention.
+static bool mayTailCallThisCC(CallingConv::ID CC) {
+ switch (CC) {
+ case CallingConv::C:
+ case CallingConv::AMDGPU_Gfx:
+ return true;
+ default:
+ return canGuaranteeTCO(CC);
+ }
+}
+
+bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
+ MachineIRBuilder &B, CallLoweringInfo &Info,
+ SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
+ // Must pass all target-independent checks in order to tail call optimize.
+ if (!Info.IsTailCall)
+ return false;
+
+ // Indirect calls can't be tail calls, because the address can be divergent.
+ // TODO Check divergence info if the call really is divergent.
+ if (Info.Callee.isReg())
+ return false;
+
+ MachineFunction &MF = B.getMF();
+ const Function &CallerF = MF.getFunction();
+ CallingConv::ID CalleeCC = Info.CallConv;
+ CallingConv::ID CallerCC = CallerF.getCallingConv();
+
+ const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
+ const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
+ // Kernels aren't callable, and don't have a live in return address so it
+ // doesn't make sense to do a tail call with entry functions.
+ if (!CallerPreserved)
+ return false;
+
+ if (!mayTailCallThisCC(CalleeCC)) {
+ LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n");
+ return false;
+ }
+
+ if (any_of(CallerF.args(), [](const Argument &A) {
+ return A.hasByValAttr() || A.hasSwiftErrorAttr();
+ })) {
+ LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "
+ "or swifterror arguments\n");
+ return false;
+ }
+
+ // If we have -tailcallopt, then we're done.
+ if (MF.getTarget().Options.GuaranteedTailCallOpt)
+ return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
+
+ // Verify that the incoming and outgoing arguments from the callee are
+ // safe to tail call.
+ if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
+ LLVM_DEBUG(
+ dbgs()
+ << "... Caller and callee have incompatible calling conventions.\n");
+ return false;
+ }
+
+ if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n");
+ return true;
+}
+
+// Insert outgoing implicit arguments for a call, by inserting copies to the
+// implicit argument registers and adding the necessary implicit uses to the
+// call instruction.
+void AMDGPUCallLowering::handleImplicitCallArguments(
+ MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
+ const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
+ CallingConv::ID CalleeCC,
+ ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
+ if (!ST.enableFlatScratch()) {
+ // Insert copies for the SRD. In the HSA case, this should be an identity
+ // copy.
+ auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
+ FuncInfo.getScratchRSrcReg());
+
+ auto CalleeRSrcReg = AMDGPU::isChainCC(CalleeCC)
+ ? AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51
+ : AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
+
+ MIRBuilder.buildCopy(CalleeRSrcReg, ScratchRSrcReg);
+ CallInst.addReg(CalleeRSrcReg, RegState::Implicit);
+ }
+
+ for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
+ MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
+ CallInst.addReg(ArgReg.first, RegState::Implicit);
+ }
+}
+
+bool AMDGPUCallLowering::lowerTailCall(
+ MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
+ SmallVectorImpl<ArgInfo> &OutArgs) const {
+ MachineFunction &MF = MIRBuilder.getMF();
+ const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
+ SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
+ const Function &F = MF.getFunction();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+
+ // True when we're tail calling, but without -tailcallopt.
+ bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
+
+ // Find out which ABI gets to decide where things go.
+ CallingConv::ID CalleeCC = Info.CallConv;
+ CCAssignFn *AssignFnFixed;
+ CCAssignFn *AssignFnVarArg;
+ std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
+
+ MachineInstrBuilder CallSeqStart;
+ if (!IsSibCall)
+ CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
+
+ unsigned Opc =
+ getCallOpcode(MF, Info.Callee.isReg(), true, ST.isWave32(), CalleeCC);
+ auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
+ if (!addCallTargetOperands(MIB, MIRBuilder, Info))
+ return false;
+
+ // Byte offset for the tail call. When we are sibcalling, this will always
+ // be 0.
+ MIB.addImm(0);
+
+ // If this is a chain call, we need to pass in the EXEC mask.
+ const SIRegisterInfo *TRI = ST.getRegisterInfo();
+ if (AMDGPU::isChainCC(Info.CallConv)) {
+ ArgInfo ExecArg = Info.OrigArgs[1];
+ assert(ExecArg.Regs.size() == 1 && "Too many regs for EXEC");
+
+ if (!ExecArg.Ty->isIntegerTy(ST.getWavefrontSize()))
+ return false;
+
+ if (auto CI = dyn_cast<ConstantInt>(ExecArg.OrigValue)) {
+ MIB.addImm(CI->getSExtValue());
+ } else {
+ MIB.addReg(ExecArg.Regs[0]);
+ unsigned Idx = MIB->getNumOperands() - 1;
+ MIB->getOperand(Idx).setReg(constrainOperandRegClass(
+ MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
+ MIB->getDesc(), MIB->getOperand(Idx), Idx));
+ }
+ }
+
+ // Tell the call which registers are clobbered.
+ const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
+ MIB.addRegMask(Mask);
+
+ // FPDiff is the byte offset of the call's argument area from the callee's.
+ // Stores to callee stack arguments will be placed in FixedStackSlots offset
+ // by this amount for a tail call. In a sibling call it must be 0 because the
+ // caller will deallocate the entire stack and the callee still expects its
+ // arguments to begin at SP+0.
+ int FPDiff = 0;
+
+ // This will be 0 for sibcalls, potentially nonzero for tail calls produced
+ // by -tailcallopt. For sibcalls, the memory operands for the call are
+ // already available in the caller's incoming argument space.
+ unsigned NumBytes = 0;
+ if (!IsSibCall) {
+ // We aren't sibcalling, so we need to compute FPDiff. We need to do this
+ // before handling assignments, because FPDiff must be known for memory
+ // arguments.
+ unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
+ SmallVector<CCValAssign, 16> OutLocs;
+ CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
+
+ // FIXME: Not accounting for callee implicit inputs
+ OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
+ if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
+ return false;
+
+ // The callee will pop the argument stack as a tail call. Thus, we must
+ // keep it 16-byte aligned.
+ NumBytes = alignTo(OutInfo.getStackSize(), ST.getStackAlignment());
+
+ // FPDiff will be negative if this tail call requires more space than we
+ // would automatically have in our incoming argument space. Positive if we
+ // actually shrink the stack.
+ FPDiff = NumReusableBytes - NumBytes;
+
+ // The stack pointer must be 16-byte aligned at all times it's used for a
+ // memory operation, which in practice means at *all* times and in
+ // particular across call boundaries. Therefore our own arguments started at
+ // a 16-byte aligned SP and the delta applied for the tail call should
+ // satisfy the same constraint.
+ assert(isAligned(ST.getStackAlignment(), FPDiff) &&
+ "unaligned stack on tail call");
+ }
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
+
+ // We could pass MIB and directly add the implicit uses to the call
+ // now. However, as an aesthetic choice, place implicit argument operands
+ // after the ordinary user argument registers.
+ SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
+
+ if (Info.CallConv != CallingConv::AMDGPU_Gfx &&
+ !AMDGPU::isChainCC(Info.CallConv)) {
+ // With a fixed ABI, allocate fixed registers before user arguments.
+ if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
+ return false;
+ }
+
+ OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
+
+ if (!determineAssignments(Assigner, OutArgs, CCInfo))
+ return false;
+
+ // Do the actual argument marshalling.
+ AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
+ if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
+ return false;
+
+ if (Info.ConvergenceCtrlToken) {
+ MIB.addUse(Info.ConvergenceCtrlToken, RegState::Implicit);
+ }
+ handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, CalleeCC,
+ ImplicitArgRegs);
+
+ // If we have -tailcallopt, we need to adjust the stack. We'll do the call
+ // sequence start and end here.
+ if (!IsSibCall) {
+ MIB->getOperand(1).setImm(FPDiff);
+ CallSeqStart.addImm(NumBytes).addImm(0);
+ // End the call sequence *before* emitting the call. Normally, we would
+ // tidy the frame up after the call. However, here, we've laid out the
+ // parameters so that when SP is reset, they will be in the correct
+ // location.
+ MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
+ }
+
+ // Now we can add the actual call instruction to the correct basic block.
+ MIRBuilder.insertInstr(MIB);
+
+ // If Callee is a reg, since it is used by a target specific
+ // instruction, it must have a register class matching the
+ // constraint of that instruction.
+
+ // FIXME: We should define regbankselectable call instructions to handle
+ // divergent call targets.
+ if (MIB->getOperand(0).isReg()) {
+ MIB->getOperand(0).setReg(constrainOperandRegClass(
+ MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
+ MIB->getDesc(), MIB->getOperand(0), 0));
+ }
+
+ MF.getFrameInfo().setHasTailCall();
+ Info.LoweredTailCall = true;
+ return true;
+}
+
+/// Lower a call to the @llvm.amdgcn.cs.chain intrinsic.
+bool AMDGPUCallLowering::lowerChainCall(MachineIRBuilder &MIRBuilder,
+ CallLoweringInfo &Info) const {
+ ArgInfo Callee = Info.OrigArgs[0];
+ ArgInfo SGPRArgs = Info.OrigArgs[2];
+ ArgInfo VGPRArgs = Info.OrigArgs[3];
+ ArgInfo Flags = Info.OrigArgs[4];
+
+ assert(cast<ConstantInt>(Flags.OrigValue)->isZero() &&
+ "Non-zero flags aren't supported yet.");
+ assert(Info.OrigArgs.size() == 5 && "Additional args aren't supported yet.");
+
+ MachineFunction &MF = MIRBuilder.getMF();
+ const Function &F = MF.getFunction();
+ const DataLayout &DL = F.getDataLayout();
+
+ // The function to jump to is actually the first argument, so we'll change the
+ // Callee and other info to match that before using our existing helper.
+ const Value *CalleeV = Callee.OrigValue->stripPointerCasts();
+ if (const Function *F = dyn_cast<Function>(CalleeV)) {
+ Info.Callee = MachineOperand::CreateGA(F, 0);
+ Info.CallConv = F->getCallingConv();
+ } else {
+ assert(Callee.Regs.size() == 1 && "Too many regs for the callee");
+ Info.Callee = MachineOperand::CreateReg(Callee.Regs[0], false);
+ Info.CallConv = CallingConv::AMDGPU_CS_Chain; // amdgpu_cs_chain_preserve
+ // behaves the same here.
+ }
+
+ // The function that we're calling cannot be vararg (only the intrinsic is).
+ Info.IsVarArg = false;
+
+ assert(std::all_of(SGPRArgs.Flags.begin(), SGPRArgs.Flags.end(),
+ [](ISD::ArgFlagsTy F) { return F.isInReg(); }) &&
+ "SGPR arguments should be marked inreg");
+ assert(std::none_of(VGPRArgs.Flags.begin(), VGPRArgs.Flags.end(),
+ [](ISD::ArgFlagsTy F) { return F.isInReg(); }) &&
+ "VGPR arguments should not be marked inreg");
+
+ SmallVector<ArgInfo, 8> OutArgs;
+ splitToValueTypes(SGPRArgs, OutArgs, DL, Info.CallConv);
+ splitToValueTypes(VGPRArgs, OutArgs, DL, Info.CallConv);
+
+ Info.IsMustTailCall = true;
+ return lowerTailCall(MIRBuilder, Info, OutArgs);
+}
+
+bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
+ CallLoweringInfo &Info) const {
+ if (Function *F = Info.CB->getCalledFunction())
+ if (F->isIntrinsic()) {
+ assert(F->getIntrinsicID() == Intrinsic::amdgcn_cs_chain &&
+ "Unexpected intrinsic");
+ return lowerChainCall(MIRBuilder, Info);
+ }
+
+ if (Info.IsVarArg) {
+ LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n");
+ return false;
+ }
+
+ MachineFunction &MF = MIRBuilder.getMF();
+ const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
+ const SIRegisterInfo *TRI = ST.getRegisterInfo();
+
+ const Function &F = MF.getFunction();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const SITargetLowering &TLI = *getTLI<SITargetLowering>();
+ const DataLayout &DL = F.getDataLayout();
+
+ SmallVector<ArgInfo, 8> OutArgs;
+ for (auto &OrigArg : Info.OrigArgs)
+ splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
+
+ SmallVector<ArgInfo, 8> InArgs;
+ if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
+ splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
+
+ // If we can lower as a tail call, do that instead.
+ bool CanTailCallOpt =
+ isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
+
+ // We must emit a tail call if we have musttail.
+ if (Info.IsMustTailCall && !CanTailCallOpt) {
+ LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n");
+ return false;
+ }
+
+ Info.IsTailCall = CanTailCallOpt;
+ if (CanTailCallOpt)
+ return lowerTailCall(MIRBuilder, Info, OutArgs);
+
+ // Find out which ABI gets to decide where things go.
+ CCAssignFn *AssignFnFixed;
+ CCAssignFn *AssignFnVarArg;
+ std::tie(AssignFnFixed, AssignFnVarArg) =
+ getAssignFnsForCC(Info.CallConv, TLI);
+
+ MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
+ .addImm(0)
+ .addImm(0);
+
+ // Create a temporarily-floating call instruction so we can add the implicit
+ // uses of arg registers.
+ unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false, ST.isWave32(),
+ Info.CallConv);
+
+ auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
+ MIB.addDef(TRI->getReturnAddressReg(MF));
+
+ if (!Info.IsConvergent)
+ MIB.setMIFlag(MachineInstr::NoConvergent);
+
+ if (!addCallTargetOperands(MIB, MIRBuilder, Info))
+ return false;
+
+ // Tell the call which registers are clobbered.
+ const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
+ MIB.addRegMask(Mask);
+
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
+
+ // We could pass MIB and directly add the implicit uses to the call
+ // now. However, as an aesthetic choice, place implicit argument operands
+ // after the ordinary user argument registers.
+ SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
+
+ if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
+ // With a fixed ABI, allocate fixed registers before user arguments.
+ if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
+ return false;
+ }
+
+ // Do the actual argument marshalling.
+ SmallVector<Register, 8> PhysRegs;
+
+ OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
+ if (!determineAssignments(Assigner, OutArgs, CCInfo))
+ return false;
+
+ AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
+ if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
+ return false;
+
+ const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
+
+ if (Info.ConvergenceCtrlToken) {
+ MIB.addUse(Info.ConvergenceCtrlToken, RegState::Implicit);
+ }
+ handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, Info.CallConv,
+ ImplicitArgRegs);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getStackSize();
+
+ // If Callee is a reg, since it is used by a target specific
+ // instruction, it must have a register class matching the
+ // constraint of that instruction.
+
+ // FIXME: We should define regbankselectable call instructions to handle
+ // divergent call targets.
+ if (MIB->getOperand(1).isReg()) {
+ MIB->getOperand(1).setReg(constrainOperandRegClass(
+ MF, *TRI, MRI, *ST.getInstrInfo(),
+ *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
+ 1));
+ }
+
+ // Now we can add the actual call instruction to the correct position.
+ MIRBuilder.insertInstr(MIB);
+
+ // Finally we can copy the returned value back into its virtual-register. In
+ // symmetry with the arguments, the physical register must be an
+ // implicit-define of the call instruction.
+ if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
+ CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
+ Info.IsVarArg);
+ IncomingValueAssigner Assigner(RetAssignFn);
+ CallReturnHandler Handler(MIRBuilder, MRI, MIB);
+ if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
+ Info.CallConv, Info.IsVarArg))
+ return false;
+ }
+
+ uint64_t CalleePopBytes = NumBytes;
+
+ MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
+ .addImm(0)
+ .addImm(CalleePopBytes);
+
+ if (!Info.CanLowerReturn) {
+ insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
+ Info.DemoteRegister, Info.DemoteStackIndex);
+ }
+
+ return true;
+}