diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp | 2436 |
1 files changed, 2436 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp b/contrib/llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp new file mode 100644 index 000000000000..96d7074e6ef3 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/ARM/ARMAsmPrinter.cpp @@ -0,0 +1,2436 @@ +//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains a printer that converts from our internal representation +// of machine-dependent LLVM code to GAS-format ARM assembly language. +// +//===----------------------------------------------------------------------===// + +#include "ARMAsmPrinter.h" +#include "ARM.h" +#include "ARMConstantPoolValue.h" +#include "ARMMachineFunctionInfo.h" +#include "ARMTargetMachine.h" +#include "ARMTargetObjectFile.h" +#include "MCTargetDesc/ARMAddressingModes.h" +#include "MCTargetDesc/ARMInstPrinter.h" +#include "MCTargetDesc/ARMMCExpr.h" +#include "TargetInfo/ARMTargetInfo.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/BinaryFormat/COFF.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfoImpls.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Mangler.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCAssembler.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCELFStreamer.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCInstBuilder.h" +#include "llvm/MC/MCObjectStreamer.h" +#include "llvm/MC/MCStreamer.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/MC/TargetRegistry.h" +#include "llvm/Support/ARMBuildAttributes.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +using namespace llvm; + +#define DEBUG_TYPE "asm-printer" + +ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, + std::unique_ptr<MCStreamer> Streamer) + : AsmPrinter(TM, std::move(Streamer)), Subtarget(nullptr), AFI(nullptr), + MCP(nullptr), InConstantPool(false), OptimizationGoals(-1) {} + +void ARMAsmPrinter::emitFunctionBodyEnd() { + // Make sure to terminate any constant pools that were at the end + // of the function. + if (!InConstantPool) + return; + InConstantPool = false; + OutStreamer->emitDataRegion(MCDR_DataRegionEnd); +} + +void ARMAsmPrinter::emitFunctionEntryLabel() { + if (AFI->isThumbFunction()) { + OutStreamer->emitAssemblerFlag(MCAF_Code16); + OutStreamer->emitThumbFunc(CurrentFnSym); + } else { + OutStreamer->emitAssemblerFlag(MCAF_Code32); + } + + // Emit symbol for CMSE non-secure entry point + if (AFI->isCmseNSEntryFunction()) { + MCSymbol *S = + OutContext.getOrCreateSymbol("__acle_se_" + CurrentFnSym->getName()); + emitLinkage(&MF->getFunction(), S); + OutStreamer->emitSymbolAttribute(S, MCSA_ELF_TypeFunction); + OutStreamer->emitLabel(S); + } + AsmPrinter::emitFunctionEntryLabel(); +} + +void ARMAsmPrinter::emitXXStructor(const DataLayout &DL, const Constant *CV) { + uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); + assert(Size && "C++ constructor pointer had zero size!"); + + const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); + assert(GV && "C++ constructor pointer was not a GlobalValue!"); + + const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, + ARMII::MO_NO_FLAG), + (Subtarget->isTargetELF() + ? MCSymbolRefExpr::VK_ARM_TARGET1 + : MCSymbolRefExpr::VK_None), + OutContext); + + OutStreamer->emitValue(E, Size); +} + +void ARMAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { + if (PromotedGlobals.count(GV)) + // The global was promoted into a constant pool. It should not be emitted. + return; + AsmPrinter::emitGlobalVariable(GV); +} + +/// runOnMachineFunction - This uses the emitInstruction() +/// method to print assembly for each instruction. +/// +bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { + AFI = MF.getInfo<ARMFunctionInfo>(); + MCP = MF.getConstantPool(); + Subtarget = &MF.getSubtarget<ARMSubtarget>(); + + SetupMachineFunction(MF); + const Function &F = MF.getFunction(); + const TargetMachine& TM = MF.getTarget(); + + // Collect all globals that had their storage promoted to a constant pool. + // Functions are emitted before variables, so this accumulates promoted + // globals from all functions in PromotedGlobals. + for (const auto *GV : AFI->getGlobalsPromotedToConstantPool()) + PromotedGlobals.insert(GV); + + // Calculate this function's optimization goal. + unsigned OptimizationGoal; + if (F.hasOptNone()) + // For best debugging illusion, speed and small size sacrificed + OptimizationGoal = 6; + else if (F.hasMinSize()) + // Aggressively for small size, speed and debug illusion sacrificed + OptimizationGoal = 4; + else if (F.hasOptSize()) + // For small size, but speed and debugging illusion preserved + OptimizationGoal = 3; + else if (TM.getOptLevel() == CodeGenOptLevel::Aggressive) + // Aggressively for speed, small size and debug illusion sacrificed + OptimizationGoal = 2; + else if (TM.getOptLevel() > CodeGenOptLevel::None) + // For speed, but small size and good debug illusion preserved + OptimizationGoal = 1; + else // TM.getOptLevel() == CodeGenOptLevel::None + // For good debugging, but speed and small size preserved + OptimizationGoal = 5; + + // Combine a new optimization goal with existing ones. + if (OptimizationGoals == -1) // uninitialized goals + OptimizationGoals = OptimizationGoal; + else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals + OptimizationGoals = 0; + + if (Subtarget->isTargetCOFF()) { + bool Local = F.hasLocalLinkage(); + COFF::SymbolStorageClass Scl = + Local ? COFF::IMAGE_SYM_CLASS_STATIC : COFF::IMAGE_SYM_CLASS_EXTERNAL; + int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; + + OutStreamer->beginCOFFSymbolDef(CurrentFnSym); + OutStreamer->emitCOFFSymbolStorageClass(Scl); + OutStreamer->emitCOFFSymbolType(Type); + OutStreamer->endCOFFSymbolDef(); + } + + // Emit the rest of the function body. + emitFunctionBody(); + + // Emit the XRay table for this function. + emitXRayTable(); + + // If we need V4T thumb mode Register Indirect Jump pads, emit them. + // These are created per function, rather than per TU, since it's + // relatively easy to exceed the thumb branch range within a TU. + if (! ThumbIndirectPads.empty()) { + OutStreamer->emitAssemblerFlag(MCAF_Code16); + emitAlignment(Align(2)); + for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { + OutStreamer->emitLabel(TIP.second); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) + .addReg(TIP.first) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + } + ThumbIndirectPads.clear(); + } + + // We didn't modify anything. + return false; +} + +void ARMAsmPrinter::PrintSymbolOperand(const MachineOperand &MO, + raw_ostream &O) { + assert(MO.isGlobal() && "caller should check MO.isGlobal"); + unsigned TF = MO.getTargetFlags(); + if (TF & ARMII::MO_LO16) + O << ":lower16:"; + else if (TF & ARMII::MO_HI16) + O << ":upper16:"; + else if (TF & ARMII::MO_LO_0_7) + O << ":lower0_7:"; + else if (TF & ARMII::MO_LO_8_15) + O << ":lower8_15:"; + else if (TF & ARMII::MO_HI_0_7) + O << ":upper0_7:"; + else if (TF & ARMII::MO_HI_8_15) + O << ":upper8_15:"; + + GetARMGVSymbol(MO.getGlobal(), TF)->print(O, MAI); + printOffset(MO.getOffset(), O); +} + +void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, + raw_ostream &O) { + const MachineOperand &MO = MI->getOperand(OpNum); + + switch (MO.getType()) { + default: llvm_unreachable("<unknown operand type>"); + case MachineOperand::MO_Register: { + Register Reg = MO.getReg(); + assert(Reg.isPhysical()); + assert(!MO.getSubReg() && "Subregs should be eliminated!"); + if(ARM::GPRPairRegClass.contains(Reg)) { + const MachineFunction &MF = *MI->getParent()->getParent(); + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + Reg = TRI->getSubReg(Reg, ARM::gsub_0); + } + O << ARMInstPrinter::getRegisterName(Reg); + break; + } + case MachineOperand::MO_Immediate: { + O << '#'; + unsigned TF = MO.getTargetFlags(); + if (TF == ARMII::MO_LO16) + O << ":lower16:"; + else if (TF == ARMII::MO_HI16) + O << ":upper16:"; + else if (TF == ARMII::MO_LO_0_7) + O << ":lower0_7:"; + else if (TF == ARMII::MO_LO_8_15) + O << ":lower8_15:"; + else if (TF == ARMII::MO_HI_0_7) + O << ":upper0_7:"; + else if (TF == ARMII::MO_HI_8_15) + O << ":upper8_15:"; + O << MO.getImm(); + break; + } + case MachineOperand::MO_MachineBasicBlock: + MO.getMBB()->getSymbol()->print(O, MAI); + return; + case MachineOperand::MO_GlobalAddress: { + PrintSymbolOperand(MO, O); + break; + } + case MachineOperand::MO_ConstantPoolIndex: + if (Subtarget->genExecuteOnly()) + llvm_unreachable("execute-only should not generate constant pools"); + GetCPISymbol(MO.getIndex())->print(O, MAI); + break; + } +} + +MCSymbol *ARMAsmPrinter::GetCPISymbol(unsigned CPID) const { + // The AsmPrinter::GetCPISymbol superclass method tries to use CPID as + // indexes in MachineConstantPool, which isn't in sync with indexes used here. + const DataLayout &DL = getDataLayout(); + return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + + "CPI" + Twine(getFunctionNumber()) + "_" + + Twine(CPID)); +} + +//===--------------------------------------------------------------------===// + +MCSymbol *ARMAsmPrinter:: +GetARMJTIPICJumpTableLabel(unsigned uid) const { + const DataLayout &DL = getDataLayout(); + SmallString<60> Name; + raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" + << getFunctionNumber() << '_' << uid; + return OutContext.getOrCreateSymbol(Name); +} + +bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, + const char *ExtraCode, raw_ostream &O) { + // Does this asm operand have a single letter operand modifier? + if (ExtraCode && ExtraCode[0]) { + if (ExtraCode[1] != 0) return true; // Unknown modifier. + + switch (ExtraCode[0]) { + default: + // See if this is a generic print operand + return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O); + case 'P': // Print a VFP double precision register. + case 'q': // Print a NEON quad precision register. + printOperand(MI, OpNum, O); + return false; + case 'y': // Print a VFP single precision register as indexed double. + if (MI->getOperand(OpNum).isReg()) { + MCRegister Reg = MI->getOperand(OpNum).getReg().asMCReg(); + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + // Find the 'd' register that has this 's' register as a sub-register, + // and determine the lane number. + for (MCPhysReg SR : TRI->superregs(Reg)) { + if (!ARM::DPRRegClass.contains(SR)) + continue; + bool Lane0 = TRI->getSubReg(SR, ARM::ssub_0) == Reg; + O << ARMInstPrinter::getRegisterName(SR) << (Lane0 ? "[0]" : "[1]"); + return false; + } + } + return true; + case 'B': // Bitwise inverse of integer or symbol without a preceding #. + if (!MI->getOperand(OpNum).isImm()) + return true; + O << ~(MI->getOperand(OpNum).getImm()); + return false; + case 'L': // The low 16 bits of an immediate constant. + if (!MI->getOperand(OpNum).isImm()) + return true; + O << (MI->getOperand(OpNum).getImm() & 0xffff); + return false; + case 'M': { // A register range suitable for LDM/STM. + if (!MI->getOperand(OpNum).isReg()) + return true; + const MachineOperand &MO = MI->getOperand(OpNum); + Register RegBegin = MO.getReg(); + // This takes advantage of the 2 operand-ness of ldm/stm and that we've + // already got the operands in registers that are operands to the + // inline asm statement. + O << "{"; + if (ARM::GPRPairRegClass.contains(RegBegin)) { + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + Register Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); + O << ARMInstPrinter::getRegisterName(Reg0) << ", "; + RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); + } + O << ARMInstPrinter::getRegisterName(RegBegin); + + // FIXME: The register allocator not only may not have given us the + // registers in sequence, but may not be in ascending registers. This + // will require changes in the register allocator that'll need to be + // propagated down here if the operands change. + unsigned RegOps = OpNum + 1; + while (MI->getOperand(RegOps).isReg()) { + O << ", " + << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); + RegOps++; + } + + O << "}"; + + return false; + } + case 'R': // The most significant register of a pair. + case 'Q': { // The least significant register of a pair. + if (OpNum == 0) + return true; + const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); + if (!FlagsOP.isImm()) + return true; + InlineAsm::Flag F(FlagsOP.getImm()); + + // This operand may not be the one that actually provides the register. If + // it's tied to a previous one then we should refer instead to that one + // for registers and their classes. + unsigned TiedIdx; + if (F.isUseOperandTiedToDef(TiedIdx)) { + for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { + unsigned OpFlags = MI->getOperand(OpNum).getImm(); + const InlineAsm::Flag F(OpFlags); + OpNum += F.getNumOperandRegisters() + 1; + } + F = InlineAsm::Flag(MI->getOperand(OpNum).getImm()); + + // Later code expects OpNum to be pointing at the register rather than + // the flags. + OpNum += 1; + } + + const unsigned NumVals = F.getNumOperandRegisters(); + unsigned RC; + bool FirstHalf; + const ARMBaseTargetMachine &ATM = + static_cast<const ARMBaseTargetMachine &>(TM); + + // 'Q' should correspond to the low order register and 'R' to the high + // order register. Whether this corresponds to the upper or lower half + // depends on the endianess mode. + if (ExtraCode[0] == 'Q') + FirstHalf = ATM.isLittleEndian(); + else + // ExtraCode[0] == 'R'. + FirstHalf = !ATM.isLittleEndian(); + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + if (F.hasRegClassConstraint(RC) && + ARM::GPRPairRegClass.hasSubClassEq(TRI->getRegClass(RC))) { + if (NumVals != 1) + return true; + const MachineOperand &MO = MI->getOperand(OpNum); + if (!MO.isReg()) + return true; + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + Register Reg = + TRI->getSubReg(MO.getReg(), FirstHalf ? ARM::gsub_0 : ARM::gsub_1); + O << ARMInstPrinter::getRegisterName(Reg); + return false; + } + if (NumVals != 2) + return true; + unsigned RegOp = FirstHalf ? OpNum : OpNum + 1; + if (RegOp >= MI->getNumOperands()) + return true; + const MachineOperand &MO = MI->getOperand(RegOp); + if (!MO.isReg()) + return true; + Register Reg = MO.getReg(); + O << ARMInstPrinter::getRegisterName(Reg); + return false; + } + + case 'e': // The low doubleword register of a NEON quad register. + case 'f': { // The high doubleword register of a NEON quad register. + if (!MI->getOperand(OpNum).isReg()) + return true; + Register Reg = MI->getOperand(OpNum).getReg(); + if (!ARM::QPRRegClass.contains(Reg)) + return true; + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + Register SubReg = + TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? ARM::dsub_0 : ARM::dsub_1); + O << ARMInstPrinter::getRegisterName(SubReg); + return false; + } + + // This modifier is not yet supported. + case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. + return true; + case 'H': { // The highest-numbered register of a pair. + const MachineOperand &MO = MI->getOperand(OpNum); + if (!MO.isReg()) + return true; + const MachineFunction &MF = *MI->getParent()->getParent(); + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + Register Reg = MO.getReg(); + if(!ARM::GPRPairRegClass.contains(Reg)) + return false; + Reg = TRI->getSubReg(Reg, ARM::gsub_1); + O << ARMInstPrinter::getRegisterName(Reg); + return false; + } + } + } + + printOperand(MI, OpNum, O); + return false; +} + +bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, + unsigned OpNum, const char *ExtraCode, + raw_ostream &O) { + // Does this asm operand have a single letter operand modifier? + if (ExtraCode && ExtraCode[0]) { + if (ExtraCode[1] != 0) return true; // Unknown modifier. + + switch (ExtraCode[0]) { + case 'A': // A memory operand for a VLD1/VST1 instruction. + default: return true; // Unknown modifier. + case 'm': // The base register of a memory operand. + if (!MI->getOperand(OpNum).isReg()) + return true; + O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); + return false; + } + } + + const MachineOperand &MO = MI->getOperand(OpNum); + assert(MO.isReg() && "unexpected inline asm memory operand"); + O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; + return false; +} + +static bool isThumb(const MCSubtargetInfo& STI) { + return STI.hasFeature(ARM::ModeThumb); +} + +void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, + const MCSubtargetInfo *EndInfo) const { + // If either end mode is unknown (EndInfo == NULL) or different than + // the start mode, then restore the start mode. + const bool WasThumb = isThumb(StartInfo); + if (!EndInfo || WasThumb != isThumb(*EndInfo)) { + OutStreamer->emitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); + } +} + +void ARMAsmPrinter::emitStartOfAsmFile(Module &M) { + const Triple &TT = TM.getTargetTriple(); + // Use unified assembler syntax. + OutStreamer->emitAssemblerFlag(MCAF_SyntaxUnified); + + // Emit ARM Build Attributes + if (TT.isOSBinFormatELF()) + emitAttributes(); + + // Use the triple's architecture and subarchitecture to determine + // if we're thumb for the purposes of the top level code16 assembler + // flag. + if (!M.getModuleInlineAsm().empty() && TT.isThumb()) + OutStreamer->emitAssemblerFlag(MCAF_Code16); +} + +static void +emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, + MachineModuleInfoImpl::StubValueTy &MCSym) { + // L_foo$stub: + OutStreamer.emitLabel(StubLabel); + // .indirect_symbol _foo + OutStreamer.emitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); + + if (MCSym.getInt()) + // External to current translation unit. + OutStreamer.emitIntValue(0, 4/*size*/); + else + // Internal to current translation unit. + // + // When we place the LSDA into the TEXT section, the type info + // pointers need to be indirect and pc-rel. We accomplish this by + // using NLPs; however, sometimes the types are local to the file. + // We need to fill in the value for the NLP in those cases. + OutStreamer.emitValue( + MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), + 4 /*size*/); +} + + +void ARMAsmPrinter::emitEndOfAsmFile(Module &M) { + const Triple &TT = TM.getTargetTriple(); + if (TT.isOSBinFormatMachO()) { + // All darwin targets use mach-o. + const TargetLoweringObjectFileMachO &TLOFMacho = + static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); + MachineModuleInfoMachO &MMIMacho = + MMI->getObjFileInfo<MachineModuleInfoMachO>(); + + // Output non-lazy-pointers for external and common global variables. + MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); + + if (!Stubs.empty()) { + // Switch with ".non_lazy_symbol_pointer" directive. + OutStreamer->switchSection(TLOFMacho.getNonLazySymbolPointerSection()); + emitAlignment(Align(4)); + + for (auto &Stub : Stubs) + emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); + + Stubs.clear(); + OutStreamer->addBlankLine(); + } + + Stubs = MMIMacho.GetThreadLocalGVStubList(); + if (!Stubs.empty()) { + // Switch with ".non_lazy_symbol_pointer" directive. + OutStreamer->switchSection(TLOFMacho.getThreadLocalPointerSection()); + emitAlignment(Align(4)); + + for (auto &Stub : Stubs) + emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); + + Stubs.clear(); + OutStreamer->addBlankLine(); + } + + // Funny Darwin hack: This flag tells the linker that no global symbols + // contain code that falls through to other global symbols (e.g. the obvious + // implementation of multiple entry points). If this doesn't occur, the + // linker can safely perform dead code stripping. Since LLVM never + // generates code that does this, it is always safe to set. + OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols); + } + + // The last attribute to be emitted is ABI_optimization_goals + MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); + ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); + + if (OptimizationGoals > 0 && + (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || + Subtarget->isTargetMuslAEABI())) + ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); + OptimizationGoals = -1; + + ATS.finishAttributeSection(); +} + +//===----------------------------------------------------------------------===// +// Helper routines for emitStartOfAsmFile() and emitEndOfAsmFile() +// FIXME: +// The following seem like one-off assembler flags, but they actually need +// to appear in the .ARM.attributes section in ELF. +// Instead of subclassing the MCELFStreamer, we do the work here. + + // Returns true if all functions have the same function attribute value. + // It also returns true when the module has no functions. +static bool checkFunctionsAttributeConsistency(const Module &M, StringRef Attr, + StringRef Value) { + return !any_of(M, [&](const Function &F) { + return F.getFnAttribute(Attr).getValueAsString() != Value; + }); +} +// Returns true if all functions have the same denormal mode. +// It also returns true when the module has no functions. +static bool checkDenormalAttributeConsistency(const Module &M, + StringRef Attr, + DenormalMode Value) { + return !any_of(M, [&](const Function &F) { + StringRef AttrVal = F.getFnAttribute(Attr).getValueAsString(); + return parseDenormalFPAttribute(AttrVal) != Value; + }); +} + +void ARMAsmPrinter::emitAttributes() { + MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); + ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); + + ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); + + ATS.switchVendor("aeabi"); + + // Compute ARM ELF Attributes based on the default subtarget that + // we'd have constructed. The existing ARM behavior isn't LTO clean + // anyhow. + // FIXME: For ifunc related functions we could iterate over and look + // for a feature string that doesn't match the default one. + const Triple &TT = TM.getTargetTriple(); + StringRef CPU = TM.getTargetCPU(); + StringRef FS = TM.getTargetFeatureString(); + std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); + if (!FS.empty()) { + if (!ArchFS.empty()) + ArchFS = (Twine(ArchFS) + "," + FS).str(); + else + ArchFS = std::string(FS); + } + const ARMBaseTargetMachine &ATM = + static_cast<const ARMBaseTargetMachine &>(TM); + const ARMSubtarget STI(TT, std::string(CPU), ArchFS, ATM, + ATM.isLittleEndian()); + + // Emit build attributes for the available hardware. + ATS.emitTargetAttributes(STI); + + // RW data addressing. + if (isPositionIndependent()) { + ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, + ARMBuildAttrs::AddressRWPCRel); + } else if (STI.isRWPI()) { + // RWPI specific attributes. + ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, + ARMBuildAttrs::AddressRWSBRel); + } + + // RO data addressing. + if (isPositionIndependent() || STI.isROPI()) { + ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, + ARMBuildAttrs::AddressROPCRel); + } + + // GOT use. + if (isPositionIndependent()) { + ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, + ARMBuildAttrs::AddressGOT); + } else { + ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, + ARMBuildAttrs::AddressDirect); + } + + // Set FP Denormals. + if (checkDenormalAttributeConsistency(*MMI->getModule(), "denormal-fp-math", + DenormalMode::getPreserveSign())) + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, + ARMBuildAttrs::PreserveFPSign); + else if (checkDenormalAttributeConsistency(*MMI->getModule(), + "denormal-fp-math", + DenormalMode::getPositiveZero())) + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, + ARMBuildAttrs::PositiveZero); + else if (!TM.Options.UnsafeFPMath) + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, + ARMBuildAttrs::IEEEDenormals); + else { + if (!STI.hasVFP2Base()) { + // When the target doesn't have an FPU (by design or + // intention), the assumptions made on the software support + // mirror that of the equivalent hardware support *if it + // existed*. For v7 and better we indicate that denormals are + // flushed preserving sign, and for V6 we indicate that + // denormals are flushed to positive zero. + if (STI.hasV7Ops()) + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, + ARMBuildAttrs::PreserveFPSign); + } else if (STI.hasVFP3Base()) { + // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, + // the sign bit of the zero matches the sign bit of the input or + // result that is being flushed to zero. + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, + ARMBuildAttrs::PreserveFPSign); + } + // For VFPv2 implementations it is implementation defined as + // to whether denormals are flushed to positive zero or to + // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically + // LLVM has chosen to flush this to positive zero (most likely for + // GCC compatibility), so that's the chosen value here (the + // absence of its emission implies zero). + } + + // Set FP exceptions and rounding + if (checkFunctionsAttributeConsistency(*MMI->getModule(), + "no-trapping-math", "true") || + TM.Options.NoTrappingFPMath) + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, + ARMBuildAttrs::Not_Allowed); + else if (!TM.Options.UnsafeFPMath) { + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); + + // If the user has permitted this code to choose the IEEE 754 + // rounding at run-time, emit the rounding attribute. + if (TM.Options.HonorSignDependentRoundingFPMathOption) + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); + } + + // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the + // equivalent of GCC's -ffinite-math-only flag. + if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, + ARMBuildAttrs::Allowed); + else + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, + ARMBuildAttrs::AllowIEEE754); + + // FIXME: add more flags to ARMBuildAttributes.h + // 8-bytes alignment stuff. + ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); + ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); + + // Hard float. Use both S and D registers and conform to AAPCS-VFP. + if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) + ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); + + // FIXME: To support emitting this build attribute as GCC does, the + // -mfp16-format option and associated plumbing must be + // supported. For now the __fp16 type is exposed by default, so this + // attribute should be emitted with value 1. + ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, + ARMBuildAttrs::FP16FormatIEEE); + + if (const Module *SourceModule = MMI->getModule()) { + // ABI_PCS_wchar_t to indicate wchar_t width + // FIXME: There is no way to emit value 0 (wchar_t prohibited). + if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( + SourceModule->getModuleFlag("wchar_size"))) { + int WCharWidth = WCharWidthValue->getZExtValue(); + assert((WCharWidth == 2 || WCharWidth == 4) && + "wchar_t width must be 2 or 4 bytes"); + ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); + } + + // ABI_enum_size to indicate enum width + // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 + // (all enums contain a value needing 32 bits to encode). + if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( + SourceModule->getModuleFlag("min_enum_size"))) { + int EnumWidth = EnumWidthValue->getZExtValue(); + assert((EnumWidth == 1 || EnumWidth == 4) && + "Minimum enum width must be 1 or 4 bytes"); + int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; + ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); + } + + auto *PACValue = mdconst::extract_or_null<ConstantInt>( + SourceModule->getModuleFlag("sign-return-address")); + if (PACValue && PACValue->isOne()) { + // If "+pacbti" is used as an architecture extension, + // Tag_PAC_extension is emitted in + // ARMTargetStreamer::emitTargetAttributes(). + if (!STI.hasPACBTI()) { + ATS.emitAttribute(ARMBuildAttrs::PAC_extension, + ARMBuildAttrs::AllowPACInNOPSpace); + } + ATS.emitAttribute(ARMBuildAttrs::PACRET_use, ARMBuildAttrs::PACRETUsed); + } + + auto *BTIValue = mdconst::extract_or_null<ConstantInt>( + SourceModule->getModuleFlag("branch-target-enforcement")); + if (BTIValue && BTIValue->isOne()) { + // If "+pacbti" is used as an architecture extension, + // Tag_BTI_extension is emitted in + // ARMTargetStreamer::emitTargetAttributes(). + if (!STI.hasPACBTI()) { + ATS.emitAttribute(ARMBuildAttrs::BTI_extension, + ARMBuildAttrs::AllowBTIInNOPSpace); + } + ATS.emitAttribute(ARMBuildAttrs::BTI_use, ARMBuildAttrs::BTIUsed); + } + } + + // We currently do not support using R9 as the TLS pointer. + if (STI.isRWPI()) + ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, + ARMBuildAttrs::R9IsSB); + else if (STI.isR9Reserved()) + ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, + ARMBuildAttrs::R9Reserved); + else + ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, + ARMBuildAttrs::R9IsGPR); +} + +//===----------------------------------------------------------------------===// + +static MCSymbol *getBFLabel(StringRef Prefix, unsigned FunctionNumber, + unsigned LabelId, MCContext &Ctx) { + + MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) + + "BF" + Twine(FunctionNumber) + "_" + Twine(LabelId)); + return Label; +} + +static MCSymbol *getPICLabel(StringRef Prefix, unsigned FunctionNumber, + unsigned LabelId, MCContext &Ctx) { + + MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) + + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); + return Label; +} + +static MCSymbolRefExpr::VariantKind +getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { + switch (Modifier) { + case ARMCP::no_modifier: + return MCSymbolRefExpr::VK_None; + case ARMCP::TLSGD: + return MCSymbolRefExpr::VK_TLSGD; + case ARMCP::TPOFF: + return MCSymbolRefExpr::VK_TPOFF; + case ARMCP::GOTTPOFF: + return MCSymbolRefExpr::VK_GOTTPOFF; + case ARMCP::SBREL: + return MCSymbolRefExpr::VK_ARM_SBREL; + case ARMCP::GOT_PREL: + return MCSymbolRefExpr::VK_ARM_GOT_PREL; + case ARMCP::SECREL: + return MCSymbolRefExpr::VK_SECREL; + } + llvm_unreachable("Invalid ARMCPModifier!"); +} + +MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, + unsigned char TargetFlags) { + if (Subtarget->isTargetMachO()) { + bool IsIndirect = + (TargetFlags & ARMII::MO_NONLAZY) && Subtarget->isGVIndirectSymbol(GV); + + if (!IsIndirect) + return getSymbol(GV); + + // FIXME: Remove this when Darwin transition to @GOT like syntax. + MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); + MachineModuleInfoMachO &MMIMachO = + MMI->getObjFileInfo<MachineModuleInfoMachO>(); + MachineModuleInfoImpl::StubValueTy &StubSym = + GV->isThreadLocal() ? MMIMachO.getThreadLocalGVStubEntry(MCSym) + : MMIMachO.getGVStubEntry(MCSym); + + if (!StubSym.getPointer()) + StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), + !GV->hasInternalLinkage()); + return MCSym; + } else if (Subtarget->isTargetCOFF()) { + assert(Subtarget->isTargetWindows() && + "Windows is the only supported COFF target"); + + bool IsIndirect = + (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB)); + if (!IsIndirect) + return getSymbol(GV); + + SmallString<128> Name; + if (TargetFlags & ARMII::MO_DLLIMPORT) + Name = "__imp_"; + else if (TargetFlags & ARMII::MO_COFFSTUB) + Name = ".refptr."; + getNameWithPrefix(Name, GV); + + MCSymbol *MCSym = OutContext.getOrCreateSymbol(Name); + + if (TargetFlags & ARMII::MO_COFFSTUB) { + MachineModuleInfoCOFF &MMICOFF = + MMI->getObjFileInfo<MachineModuleInfoCOFF>(); + MachineModuleInfoImpl::StubValueTy &StubSym = + MMICOFF.getGVStubEntry(MCSym); + + if (!StubSym.getPointer()) + StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), true); + } + + return MCSym; + } else if (Subtarget->isTargetELF()) { + return getSymbolPreferLocal(*GV); + } + llvm_unreachable("unexpected target"); +} + +void ARMAsmPrinter::emitMachineConstantPoolValue( + MachineConstantPoolValue *MCPV) { + const DataLayout &DL = getDataLayout(); + int Size = DL.getTypeAllocSize(MCPV->getType()); + + ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); + + if (ACPV->isPromotedGlobal()) { + // This constant pool entry is actually a global whose storage has been + // promoted into the constant pool. This global may be referenced still + // by debug information, and due to the way AsmPrinter is set up, the debug + // info is immutable by the time we decide to promote globals to constant + // pools. Because of this, we need to ensure we emit a symbol for the global + // with private linkage (the default) so debug info can refer to it. + // + // However, if this global is promoted into several functions we must ensure + // we don't try and emit duplicate symbols! + auto *ACPC = cast<ARMConstantPoolConstant>(ACPV); + for (const auto *GV : ACPC->promotedGlobals()) { + if (!EmittedPromotedGlobalLabels.count(GV)) { + MCSymbol *GVSym = getSymbol(GV); + OutStreamer->emitLabel(GVSym); + EmittedPromotedGlobalLabels.insert(GV); + } + } + return emitGlobalConstant(DL, ACPC->getPromotedGlobalInit()); + } + + MCSymbol *MCSym; + if (ACPV->isLSDA()) { + MCSym = getMBBExceptionSym(MF->front()); + } else if (ACPV->isBlockAddress()) { + const BlockAddress *BA = + cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); + MCSym = GetBlockAddressSymbol(BA); + } else if (ACPV->isGlobalValue()) { + const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); + + // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so + // flag the global as MO_NONLAZY. + unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; + MCSym = GetARMGVSymbol(GV, TF); + } else if (ACPV->isMachineBasicBlock()) { + const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); + MCSym = MBB->getSymbol(); + } else { + assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); + auto Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); + MCSym = GetExternalSymbolSymbol(Sym); + } + + // Create an MCSymbol for the reference. + const MCExpr *Expr = + MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), + OutContext); + + if (ACPV->getPCAdjustment()) { + MCSymbol *PCLabel = + getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), + ACPV->getLabelId(), OutContext); + const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); + PCRelExpr = + MCBinaryExpr::createAdd(PCRelExpr, + MCConstantExpr::create(ACPV->getPCAdjustment(), + OutContext), + OutContext); + if (ACPV->mustAddCurrentAddress()) { + // We want "(<expr> - .)", but MC doesn't have a concept of the '.' + // label, so just emit a local label end reference that instead. + MCSymbol *DotSym = OutContext.createTempSymbol(); + OutStreamer->emitLabel(DotSym); + const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); + PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); + } + Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); + } + OutStreamer->emitValue(Expr, Size); +} + +void ARMAsmPrinter::emitJumpTableAddrs(const MachineInstr *MI) { + const MachineOperand &MO1 = MI->getOperand(1); + unsigned JTI = MO1.getIndex(); + + // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for + // ARM mode tables. + emitAlignment(Align(4)); + + // Emit a label for the jump table. + MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); + OutStreamer->emitLabel(JTISymbol); + + // Mark the jump table as data-in-code. + OutStreamer->emitDataRegion(MCDR_DataRegionJT32); + + // Emit each entry of the table. + const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); + const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); + const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; + + for (MachineBasicBlock *MBB : JTBBs) { + // Construct an MCExpr for the entry. We want a value of the form: + // (BasicBlockAddr - TableBeginAddr) + // + // For example, a table with entries jumping to basic blocks BB0 and BB1 + // would look like: + // LJTI_0_0: + // .word (LBB0 - LJTI_0_0) + // .word (LBB1 - LJTI_0_0) + const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); + + if (isPositionIndependent() || Subtarget->isROPI()) + Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, + OutContext), + OutContext); + // If we're generating a table of Thumb addresses in static relocation + // model, we need to add one to keep interworking correctly. + else if (AFI->isThumbFunction()) + Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), + OutContext); + OutStreamer->emitValue(Expr, 4); + } + // Mark the end of jump table data-in-code region. + OutStreamer->emitDataRegion(MCDR_DataRegionEnd); +} + +void ARMAsmPrinter::emitJumpTableInsts(const MachineInstr *MI) { + const MachineOperand &MO1 = MI->getOperand(1); + unsigned JTI = MO1.getIndex(); + + // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for + // ARM mode tables. + emitAlignment(Align(4)); + + // Emit a label for the jump table. + MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); + OutStreamer->emitLabel(JTISymbol); + + // Emit each entry of the table. + const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); + const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); + const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; + + for (MachineBasicBlock *MBB : JTBBs) { + const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), + OutContext); + // If this isn't a TBB or TBH, the entries are direct branch instructions. + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) + .addExpr(MBBSymbolExpr) + .addImm(ARMCC::AL) + .addReg(0)); + } +} + +void ARMAsmPrinter::emitJumpTableTBInst(const MachineInstr *MI, + unsigned OffsetWidth) { + assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); + const MachineOperand &MO1 = MI->getOperand(1); + unsigned JTI = MO1.getIndex(); + + if (Subtarget->isThumb1Only()) + emitAlignment(Align(4)); + + MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); + OutStreamer->emitLabel(JTISymbol); + + // Emit each entry of the table. + const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); + const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); + const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; + + // Mark the jump table as data-in-code. + OutStreamer->emitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 + : MCDR_DataRegionJT16); + + for (auto *MBB : JTBBs) { + const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), + OutContext); + // Otherwise it's an offset from the dispatch instruction. Construct an + // MCExpr for the entry. We want a value of the form: + // (BasicBlockAddr - TBBInstAddr + 4) / 2 + // + // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 + // would look like: + // LJTI_0_0: + // .byte (LBB0 - (LCPI0_0 + 4)) / 2 + // .byte (LBB1 - (LCPI0_0 + 4)) / 2 + // where LCPI0_0 is a label defined just before the TBB instruction using + // this table. + MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); + const MCExpr *Expr = MCBinaryExpr::createAdd( + MCSymbolRefExpr::create(TBInstPC, OutContext), + MCConstantExpr::create(4, OutContext), OutContext); + Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); + Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), + OutContext); + OutStreamer->emitValue(Expr, OffsetWidth); + } + // Mark the end of jump table data-in-code region. 32-bit offsets use + // actual branch instructions here, so we don't mark those as a data-region + // at all. + OutStreamer->emitDataRegion(MCDR_DataRegionEnd); + + // Make sure the next instruction is 2-byte aligned. + emitAlignment(Align(2)); +} + +std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, + codeview::JumpTableEntrySize> +ARMAsmPrinter::getCodeViewJumpTableInfo(int JTI, + const MachineInstr *BranchInstr, + const MCSymbol *BranchLabel) const { + codeview::JumpTableEntrySize EntrySize; + const MCSymbol *BaseLabel; + uint64_t BaseOffset = 0; + switch (BranchInstr->getOpcode()) { + case ARM::BR_JTadd: + case ARM::BR_JTr: + case ARM::tBR_JTr: + // Word relative to the jump table address. + EntrySize = codeview::JumpTableEntrySize::UInt32; + BaseLabel = GetARMJTIPICJumpTableLabel(JTI); + break; + case ARM::tTBH_JT: + case ARM::t2TBH_JT: + // half-word shifted left, relative to *after* the branch instruction. + EntrySize = codeview::JumpTableEntrySize::UInt16ShiftLeft; + BranchLabel = GetCPISymbol(BranchInstr->getOperand(3).getImm()); + BaseLabel = BranchLabel; + BaseOffset = 4; + break; + case ARM::tTBB_JT: + case ARM::t2TBB_JT: + // byte shifted left, relative to *after* the branch instruction. + EntrySize = codeview::JumpTableEntrySize::UInt8ShiftLeft; + BranchLabel = GetCPISymbol(BranchInstr->getOperand(3).getImm()); + BaseLabel = BranchLabel; + BaseOffset = 4; + break; + case ARM::t2BR_JT: + // Direct jump. + BaseLabel = nullptr; + EntrySize = codeview::JumpTableEntrySize::Pointer; + break; + default: + llvm_unreachable("Unknown jump table instruction"); + } + + return std::make_tuple(BaseLabel, BaseOffset, BranchLabel, EntrySize); +} + +void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { + assert(MI->getFlag(MachineInstr::FrameSetup) && + "Only instruction which are involved into frame setup code are allowed"); + + MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); + ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); + const MachineFunction &MF = *MI->getParent()->getParent(); + const TargetRegisterInfo *TargetRegInfo = + MF.getSubtarget().getRegisterInfo(); + const MachineRegisterInfo &MachineRegInfo = MF.getRegInfo(); + + Register FramePtr = TargetRegInfo->getFrameRegister(MF); + unsigned Opc = MI->getOpcode(); + unsigned SrcReg, DstReg; + + switch (Opc) { + case ARM::tPUSH: + // special case: tPUSH does not have src/dst regs. + SrcReg = DstReg = ARM::SP; + break; + case ARM::tLDRpci: + case ARM::t2MOVi16: + case ARM::t2MOVTi16: + case ARM::tMOVi8: + case ARM::tADDi8: + case ARM::tLSLri: + // special cases: + // 1) for Thumb1 code we sometimes materialize the constant via constpool + // load. + // 2) for Thumb1 execute only code we materialize the constant via the + // following pattern: + // movs r3, #:upper8_15:<const> + // lsls r3, #8 + // adds r3, #:upper0_7:<const> + // lsls r3, #8 + // adds r3, #:lower8_15:<const> + // lsls r3, #8 + // adds r3, #:lower0_7:<const> + // So we need to special-case MOVS, ADDS and LSLS, and keep track of + // where we are in the sequence with the simplest of state machines. + // 3) for Thumb2 execute only code we materialize the constant via + // immediate constants in 2 separate instructions (MOVW/MOVT). + SrcReg = ~0U; + DstReg = MI->getOperand(0).getReg(); + break; + default: + SrcReg = MI->getOperand(1).getReg(); + DstReg = MI->getOperand(0).getReg(); + break; + } + + // Try to figure out the unwinding opcode out of src / dst regs. + if (MI->mayStore()) { + // Register saves. + assert(DstReg == ARM::SP && + "Only stack pointer as a destination reg is supported"); + + SmallVector<unsigned, 4> RegList; + // Skip src & dst reg, and pred ops. + unsigned StartOp = 2 + 2; + // Use all the operands. + unsigned NumOffset = 0; + // Amount of SP adjustment folded into a push, before the + // registers are stored (pad at higher addresses). + unsigned PadBefore = 0; + // Amount of SP adjustment folded into a push, after the + // registers are stored (pad at lower addresses). + unsigned PadAfter = 0; + + switch (Opc) { + default: + MI->print(errs()); + llvm_unreachable("Unsupported opcode for unwinding information"); + case ARM::tPUSH: + // Special case here: no src & dst reg, but two extra imp ops. + StartOp = 2; NumOffset = 2; + [[fallthrough]]; + case ARM::STMDB_UPD: + case ARM::t2STMDB_UPD: + case ARM::VSTMDDB_UPD: + assert(SrcReg == ARM::SP && + "Only stack pointer as a source reg is supported"); + for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; + i != NumOps; ++i) { + const MachineOperand &MO = MI->getOperand(i); + // Actually, there should never be any impdef stuff here. Skip it + // temporary to workaround PR11902. + if (MO.isImplicit()) + continue; + // Registers, pushed as a part of folding an SP update into the + // push instruction are marked as undef and should not be + // restored when unwinding, because the function can modify the + // corresponding stack slots. + if (MO.isUndef()) { + assert(RegList.empty() && + "Pad registers must come before restored ones"); + unsigned Width = + TargetRegInfo->getRegSizeInBits(MO.getReg(), MachineRegInfo) / 8; + PadAfter += Width; + continue; + } + // Check for registers that are remapped (for a Thumb1 prologue that + // saves high registers). + Register Reg = MO.getReg(); + if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(Reg)) + Reg = RemappedReg; + RegList.push_back(Reg); + } + break; + case ARM::STR_PRE_IMM: + case ARM::STR_PRE_REG: + case ARM::t2STR_PRE: + assert(MI->getOperand(2).getReg() == ARM::SP && + "Only stack pointer as a source reg is supported"); + if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) + SrcReg = RemappedReg; + + RegList.push_back(SrcReg); + break; + case ARM::t2STRD_PRE: + assert(MI->getOperand(3).getReg() == ARM::SP && + "Only stack pointer as a source reg is supported"); + SrcReg = MI->getOperand(1).getReg(); + if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) + SrcReg = RemappedReg; + RegList.push_back(SrcReg); + SrcReg = MI->getOperand(2).getReg(); + if (unsigned RemappedReg = AFI->EHPrologueRemappedRegs.lookup(SrcReg)) + SrcReg = RemappedReg; + RegList.push_back(SrcReg); + PadBefore = -MI->getOperand(4).getImm() - 8; + break; + } + if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { + if (PadBefore) + ATS.emitPad(PadBefore); + ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); + // Account for the SP adjustment, folded into the push. + if (PadAfter) + ATS.emitPad(PadAfter); + } + } else { + // Changes of stack / frame pointer. + if (SrcReg == ARM::SP) { + int64_t Offset = 0; + switch (Opc) { + default: + MI->print(errs()); + llvm_unreachable("Unsupported opcode for unwinding information"); + case ARM::MOVr: + case ARM::tMOVr: + Offset = 0; + break; + case ARM::ADDri: + case ARM::t2ADDri: + case ARM::t2ADDri12: + case ARM::t2ADDspImm: + case ARM::t2ADDspImm12: + Offset = -MI->getOperand(2).getImm(); + break; + case ARM::SUBri: + case ARM::t2SUBri: + case ARM::t2SUBri12: + case ARM::t2SUBspImm: + case ARM::t2SUBspImm12: + Offset = MI->getOperand(2).getImm(); + break; + case ARM::tSUBspi: + Offset = MI->getOperand(2).getImm()*4; + break; + case ARM::tADDspi: + case ARM::tADDrSPi: + Offset = -MI->getOperand(2).getImm()*4; + break; + case ARM::tADDhirr: + Offset = + -AFI->EHPrologueOffsetInRegs.lookup(MI->getOperand(2).getReg()); + break; + } + + if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { + if (DstReg == FramePtr && FramePtr != ARM::SP) + // Set-up of the frame pointer. Positive values correspond to "add" + // instruction. + ATS.emitSetFP(FramePtr, ARM::SP, -Offset); + else if (DstReg == ARM::SP) { + // Change of SP by an offset. Positive values correspond to "sub" + // instruction. + ATS.emitPad(Offset); + } else { + // Move of SP to a register. Positive values correspond to an "add" + // instruction. + ATS.emitMovSP(DstReg, -Offset); + } + } + } else if (DstReg == ARM::SP) { + MI->print(errs()); + llvm_unreachable("Unsupported opcode for unwinding information"); + } else { + int64_t Offset = 0; + switch (Opc) { + case ARM::tMOVr: + // If a Thumb1 function spills r8-r11, we copy the values to low + // registers before pushing them. Record the copy so we can emit the + // correct ".save" later. + AFI->EHPrologueRemappedRegs[DstReg] = SrcReg; + break; + case ARM::tLDRpci: { + // Grab the constpool index and check, whether it corresponds to + // original or cloned constpool entry. + unsigned CPI = MI->getOperand(1).getIndex(); + const MachineConstantPool *MCP = MF.getConstantPool(); + if (CPI >= MCP->getConstants().size()) + CPI = AFI->getOriginalCPIdx(CPI); + assert(CPI != -1U && "Invalid constpool index"); + + // Derive the actual offset. + const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; + assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); + Offset = cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); + AFI->EHPrologueOffsetInRegs[DstReg] = Offset; + break; + } + case ARM::t2MOVi16: + Offset = MI->getOperand(1).getImm(); + AFI->EHPrologueOffsetInRegs[DstReg] = Offset; + break; + case ARM::t2MOVTi16: + Offset = MI->getOperand(2).getImm(); + AFI->EHPrologueOffsetInRegs[DstReg] |= (Offset << 16); + break; + case ARM::tMOVi8: + Offset = MI->getOperand(2).getImm(); + AFI->EHPrologueOffsetInRegs[DstReg] = Offset; + break; + case ARM::tLSLri: + assert(MI->getOperand(3).getImm() == 8 && + "The shift amount is not equal to 8"); + assert(MI->getOperand(2).getReg() == MI->getOperand(0).getReg() && + "The source register is not equal to the destination register"); + AFI->EHPrologueOffsetInRegs[DstReg] <<= 8; + break; + case ARM::tADDi8: + assert(MI->getOperand(2).getReg() == MI->getOperand(0).getReg() && + "The source register is not equal to the destination register"); + Offset = MI->getOperand(3).getImm(); + AFI->EHPrologueOffsetInRegs[DstReg] += Offset; + break; + case ARM::t2PAC: + case ARM::t2PACBTI: + AFI->EHPrologueRemappedRegs[ARM::R12] = ARM::RA_AUTH_CODE; + break; + default: + MI->print(errs()); + llvm_unreachable("Unsupported opcode for unwinding information"); + } + } + } +} + +// Simple pseudo-instructions have their lowering (with expansion to real +// instructions) auto-generated. +#include "ARMGenMCPseudoLowering.inc" + +void ARMAsmPrinter::emitInstruction(const MachineInstr *MI) { + // TODOD FIXME: Enable feature predicate checks once all the test pass. + // ARM_MC::verifyInstructionPredicates(MI->getOpcode(), + // getSubtargetInfo().getFeatureBits()); + + const DataLayout &DL = getDataLayout(); + MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); + ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); + + // If we just ended a constant pool, mark it as such. + if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { + OutStreamer->emitDataRegion(MCDR_DataRegionEnd); + InConstantPool = false; + } + + // Emit unwinding stuff for frame-related instructions + if (Subtarget->isTargetEHABICompatible() && + MI->getFlag(MachineInstr::FrameSetup)) + EmitUnwindingInstruction(MI); + + // Do any auto-generated pseudo lowerings. + if (emitPseudoExpansionLowering(*OutStreamer, MI)) + return; + + assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && + "Pseudo flag setting opcode should be expanded early"); + + // Check for manual lowerings. + unsigned Opc = MI->getOpcode(); + switch (Opc) { + case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); + case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); + case ARM::LEApcrel: + case ARM::tLEApcrel: + case ARM::t2LEApcrel: { + // FIXME: Need to also handle globals and externals + MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); + EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == + ARM::t2LEApcrel ? ARM::t2ADR + : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR + : ARM::ADR)) + .addReg(MI->getOperand(0).getReg()) + .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) + // Add predicate operands. + .addImm(MI->getOperand(2).getImm()) + .addReg(MI->getOperand(3).getReg())); + return; + } + case ARM::LEApcrelJT: + case ARM::tLEApcrelJT: + case ARM::t2LEApcrelJT: { + MCSymbol *JTIPICSymbol = + GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); + EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == + ARM::t2LEApcrelJT ? ARM::t2ADR + : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR + : ARM::ADR)) + .addReg(MI->getOperand(0).getReg()) + .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) + // Add predicate operands. + .addImm(MI->getOperand(2).getImm()) + .addReg(MI->getOperand(3).getReg())); + return; + } + // Darwin call instructions are just normal call instructions with different + // clobber semantics (they clobber R9). + case ARM::BX_CALL: { + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) + .addReg(ARM::LR) + .addReg(ARM::PC) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0) + // Add 's' bit operand (always reg0 for this) + .addReg(0)); + + assert(Subtarget->hasV4TOps()); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) + .addReg(MI->getOperand(0).getReg())); + return; + } + case ARM::tBX_CALL: { + if (Subtarget->hasV5TOps()) + llvm_unreachable("Expected BLX to be selected for v5t+"); + + // On ARM v4t, when doing a call from thumb mode, we need to ensure + // that the saved lr has its LSB set correctly (the arch doesn't + // have blx). + // So here we generate a bl to a small jump pad that does bx rN. + // The jump pads are emitted after the function body. + + Register TReg = MI->getOperand(0).getReg(); + MCSymbol *TRegSym = nullptr; + for (std::pair<unsigned, MCSymbol *> &TIP : ThumbIndirectPads) { + if (TIP.first == TReg) { + TRegSym = TIP.second; + break; + } + } + + if (!TRegSym) { + TRegSym = OutContext.createTempSymbol(); + ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); + } + + // Create a link-saving branch to the Reg Indirect Jump Pad. + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) + // Predicate comes first here. + .addImm(ARMCC::AL).addReg(0) + .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); + return; + } + case ARM::BMOVPCRX_CALL: { + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) + .addReg(ARM::LR) + .addReg(ARM::PC) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0) + // Add 's' bit operand (always reg0 for this) + .addReg(0)); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) + .addReg(ARM::PC) + .addReg(MI->getOperand(0).getReg()) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0) + // Add 's' bit operand (always reg0 for this) + .addReg(0)); + return; + } + case ARM::BMOVPCB_CALL: { + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) + .addReg(ARM::LR) + .addReg(ARM::PC) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0) + // Add 's' bit operand (always reg0 for this) + .addReg(0)); + + const MachineOperand &Op = MI->getOperand(0); + const GlobalValue *GV = Op.getGlobal(); + const unsigned TF = Op.getTargetFlags(); + MCSymbol *GVSym = GetARMGVSymbol(GV, TF); + const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) + .addExpr(GVSymExpr) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + return; + } + case ARM::MOVi16_ga_pcrel: + case ARM::t2MOVi16_ga_pcrel: { + MCInst TmpInst; + TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); + TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); + + unsigned TF = MI->getOperand(1).getTargetFlags(); + const GlobalValue *GV = MI->getOperand(1).getGlobal(); + MCSymbol *GVSym = GetARMGVSymbol(GV, TF); + const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); + + MCSymbol *LabelSym = + getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), + MI->getOperand(2).getImm(), OutContext); + const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); + unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; + const MCExpr *PCRelExpr = + ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, + MCBinaryExpr::createAdd(LabelSymExpr, + MCConstantExpr::create(PCAdj, OutContext), + OutContext), OutContext), OutContext); + TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); + + // Add predicate operands. + TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); + TmpInst.addOperand(MCOperand::createReg(0)); + // Add 's' bit operand (always reg0 for this) + TmpInst.addOperand(MCOperand::createReg(0)); + EmitToStreamer(*OutStreamer, TmpInst); + return; + } + case ARM::MOVTi16_ga_pcrel: + case ARM::t2MOVTi16_ga_pcrel: { + MCInst TmpInst; + TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel + ? ARM::MOVTi16 : ARM::t2MOVTi16); + TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); + TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); + + unsigned TF = MI->getOperand(2).getTargetFlags(); + const GlobalValue *GV = MI->getOperand(2).getGlobal(); + MCSymbol *GVSym = GetARMGVSymbol(GV, TF); + const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); + + MCSymbol *LabelSym = + getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), + MI->getOperand(3).getImm(), OutContext); + const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); + unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; + const MCExpr *PCRelExpr = + ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, + MCBinaryExpr::createAdd(LabelSymExpr, + MCConstantExpr::create(PCAdj, OutContext), + OutContext), OutContext), OutContext); + TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); + // Add predicate operands. + TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); + TmpInst.addOperand(MCOperand::createReg(0)); + // Add 's' bit operand (always reg0 for this) + TmpInst.addOperand(MCOperand::createReg(0)); + EmitToStreamer(*OutStreamer, TmpInst); + return; + } + case ARM::t2BFi: + case ARM::t2BFic: + case ARM::t2BFLi: + case ARM::t2BFr: + case ARM::t2BFLr: { + // This is a Branch Future instruction. + + const MCExpr *BranchLabel = MCSymbolRefExpr::create( + getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), + MI->getOperand(0).getIndex(), OutContext), + OutContext); + + auto MCInst = MCInstBuilder(Opc).addExpr(BranchLabel); + if (MI->getOperand(1).isReg()) { + // For BFr/BFLr + MCInst.addReg(MI->getOperand(1).getReg()); + } else { + // For BFi/BFLi/BFic + const MCExpr *BranchTarget; + if (MI->getOperand(1).isMBB()) + BranchTarget = MCSymbolRefExpr::create( + MI->getOperand(1).getMBB()->getSymbol(), OutContext); + else if (MI->getOperand(1).isGlobal()) { + const GlobalValue *GV = MI->getOperand(1).getGlobal(); + BranchTarget = MCSymbolRefExpr::create( + GetARMGVSymbol(GV, MI->getOperand(1).getTargetFlags()), OutContext); + } else if (MI->getOperand(1).isSymbol()) { + BranchTarget = MCSymbolRefExpr::create( + GetExternalSymbolSymbol(MI->getOperand(1).getSymbolName()), + OutContext); + } else + llvm_unreachable("Unhandled operand kind in Branch Future instruction"); + + MCInst.addExpr(BranchTarget); + } + + if (Opc == ARM::t2BFic) { + const MCExpr *ElseLabel = MCSymbolRefExpr::create( + getBFLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), + MI->getOperand(2).getIndex(), OutContext), + OutContext); + MCInst.addExpr(ElseLabel); + MCInst.addImm(MI->getOperand(3).getImm()); + } else { + MCInst.addImm(MI->getOperand(2).getImm()) + .addReg(MI->getOperand(3).getReg()); + } + + EmitToStreamer(*OutStreamer, MCInst); + return; + } + case ARM::t2BF_LabelPseudo: { + // This is a pseudo op for a label used by a branch future instruction + + // Emit the label. + OutStreamer->emitLabel(getBFLabel(DL.getPrivateGlobalPrefix(), + getFunctionNumber(), + MI->getOperand(0).getIndex(), OutContext)); + return; + } + case ARM::tPICADD: { + // This is a pseudo op for a label + instruction sequence, which looks like: + // LPC0: + // add r0, pc + // This adds the address of LPC0 to r0. + + // Emit the label. + OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), + getFunctionNumber(), + MI->getOperand(2).getImm(), OutContext)); + + // Form and emit the add. + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) + .addReg(MI->getOperand(0).getReg()) + .addReg(MI->getOperand(0).getReg()) + .addReg(ARM::PC) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + return; + } + case ARM::PICADD: { + // This is a pseudo op for a label + instruction sequence, which looks like: + // LPC0: + // add r0, pc, r0 + // This adds the address of LPC0 to r0. + + // Emit the label. + OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), + getFunctionNumber(), + MI->getOperand(2).getImm(), OutContext)); + + // Form and emit the add. + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) + .addReg(MI->getOperand(0).getReg()) + .addReg(ARM::PC) + .addReg(MI->getOperand(1).getReg()) + // Add predicate operands. + .addImm(MI->getOperand(3).getImm()) + .addReg(MI->getOperand(4).getReg()) + // Add 's' bit operand (always reg0 for this) + .addReg(0)); + return; + } + case ARM::PICSTR: + case ARM::PICSTRB: + case ARM::PICSTRH: + case ARM::PICLDR: + case ARM::PICLDRB: + case ARM::PICLDRH: + case ARM::PICLDRSB: + case ARM::PICLDRSH: { + // This is a pseudo op for a label + instruction sequence, which looks like: + // LPC0: + // OP r0, [pc, r0] + // The LCP0 label is referenced by a constant pool entry in order to get + // a PC-relative address at the ldr instruction. + + // Emit the label. + OutStreamer->emitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), + getFunctionNumber(), + MI->getOperand(2).getImm(), OutContext)); + + // Form and emit the load + unsigned Opcode; + switch (MI->getOpcode()) { + default: + llvm_unreachable("Unexpected opcode!"); + case ARM::PICSTR: Opcode = ARM::STRrs; break; + case ARM::PICSTRB: Opcode = ARM::STRBrs; break; + case ARM::PICSTRH: Opcode = ARM::STRH; break; + case ARM::PICLDR: Opcode = ARM::LDRrs; break; + case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; + case ARM::PICLDRH: Opcode = ARM::LDRH; break; + case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; + case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; + } + EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) + .addReg(MI->getOperand(0).getReg()) + .addReg(ARM::PC) + .addReg(MI->getOperand(1).getReg()) + .addImm(0) + // Add predicate operands. + .addImm(MI->getOperand(3).getImm()) + .addReg(MI->getOperand(4).getReg())); + + return; + } + case ARM::CONSTPOOL_ENTRY: { + if (Subtarget->genExecuteOnly()) + llvm_unreachable("execute-only should not generate constant pools"); + + /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool + /// in the function. The first operand is the ID# for this instruction, the + /// second is the index into the MachineConstantPool that this is, the third + /// is the size in bytes of this constant pool entry. + /// The required alignment is specified on the basic block holding this MI. + unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); + unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); + + // If this is the first entry of the pool, mark it. + if (!InConstantPool) { + OutStreamer->emitDataRegion(MCDR_DataRegion); + InConstantPool = true; + } + + OutStreamer->emitLabel(GetCPISymbol(LabelId)); + + const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; + if (MCPE.isMachineConstantPoolEntry()) + emitMachineConstantPoolValue(MCPE.Val.MachineCPVal); + else + emitGlobalConstant(DL, MCPE.Val.ConstVal); + return; + } + case ARM::JUMPTABLE_ADDRS: + emitJumpTableAddrs(MI); + return; + case ARM::JUMPTABLE_INSTS: + emitJumpTableInsts(MI); + return; + case ARM::JUMPTABLE_TBB: + case ARM::JUMPTABLE_TBH: + emitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); + return; + case ARM::t2BR_JT: { + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) + .addReg(ARM::PC) + .addReg(MI->getOperand(0).getReg()) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + return; + } + case ARM::t2TBB_JT: + case ARM::t2TBH_JT: { + unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; + // Lower and emit the PC label, then the instruction itself. + OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); + EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) + .addReg(MI->getOperand(0).getReg()) + .addReg(MI->getOperand(1).getReg()) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + return; + } + case ARM::tTBB_JT: + case ARM::tTBH_JT: { + + bool Is8Bit = MI->getOpcode() == ARM::tTBB_JT; + Register Base = MI->getOperand(0).getReg(); + Register Idx = MI->getOperand(1).getReg(); + assert(MI->getOperand(1).isKill() && "We need the index register as scratch!"); + + // Multiply up idx if necessary. + if (!Is8Bit) + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) + .addReg(Idx) + .addReg(ARM::CPSR) + .addReg(Idx) + .addImm(1) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + + if (Base == ARM::PC) { + // TBB [base, idx] = + // ADDS idx, idx, base + // LDRB idx, [idx, #4] ; or LDRH if TBH + // LSLS idx, #1 + // ADDS pc, pc, idx + + // When using PC as the base, it's important that there is no padding + // between the last ADDS and the start of the jump table. The jump table + // is 4-byte aligned, so we ensure we're 4 byte aligned here too. + // + // FIXME: Ideally we could vary the LDRB index based on the padding + // between the sequence and jump table, however that relies on MCExprs + // for load indexes which are currently not supported. + OutStreamer->emitCodeAlignment(Align(4), &getSubtargetInfo()); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) + .addReg(Idx) + .addReg(Idx) + .addReg(Base) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + + unsigned Opc = Is8Bit ? ARM::tLDRBi : ARM::tLDRHi; + EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) + .addReg(Idx) + .addReg(Idx) + .addImm(Is8Bit ? 4 : 2) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + } else { + // TBB [base, idx] = + // LDRB idx, [base, idx] ; or LDRH if TBH + // LSLS idx, #1 + // ADDS pc, pc, idx + + unsigned Opc = Is8Bit ? ARM::tLDRBr : ARM::tLDRHr; + EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) + .addReg(Idx) + .addReg(Base) + .addReg(Idx) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + } + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLSLri) + .addReg(Idx) + .addReg(ARM::CPSR) + .addReg(Idx) + .addImm(1) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + + OutStreamer->emitLabel(GetCPISymbol(MI->getOperand(3).getImm())); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) + .addReg(ARM::PC) + .addReg(ARM::PC) + .addReg(Idx) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0)); + return; + } + case ARM::tBR_JTr: + case ARM::BR_JTr: { + // mov pc, target + MCInst TmpInst; + unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? + ARM::MOVr : ARM::tMOVr; + TmpInst.setOpcode(Opc); + TmpInst.addOperand(MCOperand::createReg(ARM::PC)); + TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); + // Add predicate operands. + TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); + TmpInst.addOperand(MCOperand::createReg(0)); + // Add 's' bit operand (always reg0 for this) + if (Opc == ARM::MOVr) + TmpInst.addOperand(MCOperand::createReg(0)); + EmitToStreamer(*OutStreamer, TmpInst); + return; + } + case ARM::BR_JTm_i12: { + // ldr pc, target + MCInst TmpInst; + TmpInst.setOpcode(ARM::LDRi12); + TmpInst.addOperand(MCOperand::createReg(ARM::PC)); + TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); + TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); + // Add predicate operands. + TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); + TmpInst.addOperand(MCOperand::createReg(0)); + EmitToStreamer(*OutStreamer, TmpInst); + return; + } + case ARM::BR_JTm_rs: { + // ldr pc, target + MCInst TmpInst; + TmpInst.setOpcode(ARM::LDRrs); + TmpInst.addOperand(MCOperand::createReg(ARM::PC)); + TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); + TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); + TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); + // Add predicate operands. + TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); + TmpInst.addOperand(MCOperand::createReg(0)); + EmitToStreamer(*OutStreamer, TmpInst); + return; + } + case ARM::BR_JTadd: { + // add pc, target, idx + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) + .addReg(ARM::PC) + .addReg(MI->getOperand(0).getReg()) + .addReg(MI->getOperand(1).getReg()) + // Add predicate operands. + .addImm(ARMCC::AL) + .addReg(0) + // Add 's' bit operand (always reg0 for this) + .addReg(0)); + return; + } + case ARM::SPACE: + OutStreamer->emitZeros(MI->getOperand(1).getImm()); + return; + case ARM::TRAP: { + // Non-Darwin binutils don't yet support the "trap" mnemonic. + // FIXME: Remove this special case when they do. + if (!Subtarget->isTargetMachO()) { + uint32_t Val = 0xe7ffdefeUL; + OutStreamer->AddComment("trap"); + ATS.emitInst(Val); + return; + } + break; + } + case ARM::TRAPNaCl: { + uint32_t Val = 0xe7fedef0UL; + OutStreamer->AddComment("trap"); + ATS.emitInst(Val); + return; + } + case ARM::tTRAP: { + // Non-Darwin binutils don't yet support the "trap" mnemonic. + // FIXME: Remove this special case when they do. + if (!Subtarget->isTargetMachO()) { + uint16_t Val = 0xdefe; + OutStreamer->AddComment("trap"); + ATS.emitInst(Val, 'n'); + return; + } + break; + } + case ARM::t2Int_eh_sjlj_setjmp: + case ARM::t2Int_eh_sjlj_setjmp_nofp: + case ARM::tInt_eh_sjlj_setjmp: { + // Two incoming args: GPR:$src, GPR:$val + // mov $val, pc + // adds $val, #7 + // str $val, [$src, #4] + // movs r0, #0 + // b LSJLJEH + // movs r0, #1 + // LSJLJEH: + Register SrcReg = MI->getOperand(0).getReg(); + Register ValReg = MI->getOperand(1).getReg(); + MCSymbol *Label = OutContext.createTempSymbol("SJLJEH"); + OutStreamer->AddComment("eh_setjmp begin"); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) + .addReg(ValReg) + .addReg(ARM::PC) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) + .addReg(ValReg) + // 's' bit operand + .addReg(ARM::CPSR) + .addReg(ValReg) + .addImm(7) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) + .addReg(ValReg) + .addReg(SrcReg) + // The offset immediate is #4. The operand value is scaled by 4 for the + // tSTR instruction. + .addImm(1) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) + .addReg(ARM::R0) + .addReg(ARM::CPSR) + .addImm(0) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) + .addExpr(SymbolExpr) + .addImm(ARMCC::AL) + .addReg(0)); + + OutStreamer->AddComment("eh_setjmp end"); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) + .addReg(ARM::R0) + .addReg(ARM::CPSR) + .addImm(1) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + OutStreamer->emitLabel(Label); + return; + } + + case ARM::Int_eh_sjlj_setjmp_nofp: + case ARM::Int_eh_sjlj_setjmp: { + // Two incoming args: GPR:$src, GPR:$val + // add $val, pc, #8 + // str $val, [$src, #+4] + // mov r0, #0 + // add pc, pc, #0 + // mov r0, #1 + Register SrcReg = MI->getOperand(0).getReg(); + Register ValReg = MI->getOperand(1).getReg(); + + OutStreamer->AddComment("eh_setjmp begin"); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) + .addReg(ValReg) + .addReg(ARM::PC) + .addImm(8) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0) + // 's' bit operand (always reg0 for this). + .addReg(0)); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) + .addReg(ValReg) + .addReg(SrcReg) + .addImm(4) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) + .addReg(ARM::R0) + .addImm(0) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0) + // 's' bit operand (always reg0 for this). + .addReg(0)); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) + .addReg(ARM::PC) + .addReg(ARM::PC) + .addImm(0) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0) + // 's' bit operand (always reg0 for this). + .addReg(0)); + + OutStreamer->AddComment("eh_setjmp end"); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) + .addReg(ARM::R0) + .addImm(1) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0) + // 's' bit operand (always reg0 for this). + .addReg(0)); + return; + } + case ARM::Int_eh_sjlj_longjmp: { + // ldr sp, [$src, #8] + // ldr $scratch, [$src, #4] + // ldr r7, [$src] + // bx $scratch + Register SrcReg = MI->getOperand(0).getReg(); + Register ScratchReg = MI->getOperand(1).getReg(); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) + .addReg(ARM::SP) + .addReg(SrcReg) + .addImm(8) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) + .addReg(ScratchReg) + .addReg(SrcReg) + .addImm(4) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + const MachineFunction &MF = *MI->getParent()->getParent(); + const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); + + if (STI.isTargetDarwin() || STI.isTargetWindows()) { + // These platforms always use the same frame register + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) + .addReg(STI.getFramePointerReg()) + .addReg(SrcReg) + .addImm(0) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + } else { + // If the calling code might use either R7 or R11 as + // frame pointer register, restore it into both. + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) + .addReg(ARM::R7) + .addReg(SrcReg) + .addImm(0) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) + .addReg(ARM::R11) + .addReg(SrcReg) + .addImm(0) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + } + + assert(Subtarget->hasV4TOps()); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) + .addReg(ScratchReg) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + return; + } + case ARM::tInt_eh_sjlj_longjmp: { + // ldr $scratch, [$src, #8] + // mov sp, $scratch + // ldr $scratch, [$src, #4] + // ldr r7, [$src] + // bx $scratch + Register SrcReg = MI->getOperand(0).getReg(); + Register ScratchReg = MI->getOperand(1).getReg(); + + const MachineFunction &MF = *MI->getParent()->getParent(); + const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>(); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) + .addReg(ScratchReg) + .addReg(SrcReg) + // The offset immediate is #8. The operand value is scaled by 4 for the + // tLDR instruction. + .addImm(2) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) + .addReg(ARM::SP) + .addReg(ScratchReg) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) + .addReg(ScratchReg) + .addReg(SrcReg) + .addImm(1) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + + if (STI.isTargetDarwin() || STI.isTargetWindows()) { + // These platforms always use the same frame register + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) + .addReg(STI.getFramePointerReg()) + .addReg(SrcReg) + .addImm(0) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + } else { + // If the calling code might use either R7 or R11 as + // frame pointer register, restore it into both. + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) + .addReg(ARM::R7) + .addReg(SrcReg) + .addImm(0) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) + .addReg(ARM::R11) + .addReg(SrcReg) + .addImm(0) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + } + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) + .addReg(ScratchReg) + // Predicate. + .addImm(ARMCC::AL) + .addReg(0)); + return; + } + case ARM::tInt_WIN_eh_sjlj_longjmp: { + // ldr.w r11, [$src, #0] + // ldr.w sp, [$src, #8] + // ldr.w pc, [$src, #4] + + Register SrcReg = MI->getOperand(0).getReg(); + + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) + .addReg(ARM::R11) + .addReg(SrcReg) + .addImm(0) + // Predicate + .addImm(ARMCC::AL) + .addReg(0)); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) + .addReg(ARM::SP) + .addReg(SrcReg) + .addImm(8) + // Predicate + .addImm(ARMCC::AL) + .addReg(0)); + EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2LDRi12) + .addReg(ARM::PC) + .addReg(SrcReg) + .addImm(4) + // Predicate + .addImm(ARMCC::AL) + .addReg(0)); + return; + } + case ARM::PATCHABLE_FUNCTION_ENTER: + LowerPATCHABLE_FUNCTION_ENTER(*MI); + return; + case ARM::PATCHABLE_FUNCTION_EXIT: + LowerPATCHABLE_FUNCTION_EXIT(*MI); + return; + case ARM::PATCHABLE_TAIL_CALL: + LowerPATCHABLE_TAIL_CALL(*MI); + return; + case ARM::SpeculationBarrierISBDSBEndBB: { + // Print DSB SYS + ISB + MCInst TmpInstDSB; + TmpInstDSB.setOpcode(ARM::DSB); + TmpInstDSB.addOperand(MCOperand::createImm(0xf)); + EmitToStreamer(*OutStreamer, TmpInstDSB); + MCInst TmpInstISB; + TmpInstISB.setOpcode(ARM::ISB); + TmpInstISB.addOperand(MCOperand::createImm(0xf)); + EmitToStreamer(*OutStreamer, TmpInstISB); + return; + } + case ARM::t2SpeculationBarrierISBDSBEndBB: { + // Print DSB SYS + ISB + MCInst TmpInstDSB; + TmpInstDSB.setOpcode(ARM::t2DSB); + TmpInstDSB.addOperand(MCOperand::createImm(0xf)); + TmpInstDSB.addOperand(MCOperand::createImm(ARMCC::AL)); + TmpInstDSB.addOperand(MCOperand::createReg(0)); + EmitToStreamer(*OutStreamer, TmpInstDSB); + MCInst TmpInstISB; + TmpInstISB.setOpcode(ARM::t2ISB); + TmpInstISB.addOperand(MCOperand::createImm(0xf)); + TmpInstISB.addOperand(MCOperand::createImm(ARMCC::AL)); + TmpInstISB.addOperand(MCOperand::createReg(0)); + EmitToStreamer(*OutStreamer, TmpInstISB); + return; + } + case ARM::SpeculationBarrierSBEndBB: { + // Print SB + MCInst TmpInstSB; + TmpInstSB.setOpcode(ARM::SB); + EmitToStreamer(*OutStreamer, TmpInstSB); + return; + } + case ARM::t2SpeculationBarrierSBEndBB: { + // Print SB + MCInst TmpInstSB; + TmpInstSB.setOpcode(ARM::t2SB); + EmitToStreamer(*OutStreamer, TmpInstSB); + return; + } + + case ARM::SEH_StackAlloc: + ATS.emitARMWinCFIAllocStack(MI->getOperand(0).getImm(), + MI->getOperand(1).getImm()); + return; + + case ARM::SEH_SaveRegs: + case ARM::SEH_SaveRegs_Ret: + ATS.emitARMWinCFISaveRegMask(MI->getOperand(0).getImm(), + MI->getOperand(1).getImm()); + return; + + case ARM::SEH_SaveSP: + ATS.emitARMWinCFISaveSP(MI->getOperand(0).getImm()); + return; + + case ARM::SEH_SaveFRegs: + ATS.emitARMWinCFISaveFRegs(MI->getOperand(0).getImm(), + MI->getOperand(1).getImm()); + return; + + case ARM::SEH_SaveLR: + ATS.emitARMWinCFISaveLR(MI->getOperand(0).getImm()); + return; + + case ARM::SEH_Nop: + case ARM::SEH_Nop_Ret: + ATS.emitARMWinCFINop(MI->getOperand(0).getImm()); + return; + + case ARM::SEH_PrologEnd: + ATS.emitARMWinCFIPrologEnd(/*Fragment=*/false); + return; + + case ARM::SEH_EpilogStart: + ATS.emitARMWinCFIEpilogStart(ARMCC::AL); + return; + + case ARM::SEH_EpilogEnd: + ATS.emitARMWinCFIEpilogEnd(); + return; + + case ARM::PseudoARMInitUndefMQPR: + case ARM::PseudoARMInitUndefSPR: + case ARM::PseudoARMInitUndefDPR_VFP2: + case ARM::PseudoARMInitUndefGPR: + return; + } + + MCInst TmpInst; + LowerARMMachineInstrToMCInst(MI, TmpInst, *this); + + EmitToStreamer(*OutStreamer, TmpInst); +} + +//===----------------------------------------------------------------------===// +// Target Registry Stuff +//===----------------------------------------------------------------------===// + +// Force static initialization. +extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMAsmPrinter() { + RegisterAsmPrinter<ARMAsmPrinter> X(getTheARMLETarget()); + RegisterAsmPrinter<ARMAsmPrinter> Y(getTheARMBETarget()); + RegisterAsmPrinter<ARMAsmPrinter> A(getTheThumbLETarget()); + RegisterAsmPrinter<ARMAsmPrinter> B(getTheThumbBETarget()); +} |