aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp7029
1 files changed, 7029 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp b/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
new file mode 100644
index 000000000000..bf6bb8c295ef
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp
@@ -0,0 +1,7029 @@
+//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the Base ARM implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMBaseInstrInfo.h"
+#include "ARMBaseRegisterInfo.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMFeatures.h"
+#include "ARMHazardRecognizer.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMSubtarget.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "MCTargetDesc/ARMBaseInfo.h"
+#include "MVETailPredUtils.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/DFAPacketizer.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachinePipeliner.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/MachineScheduler.h"
+#include "llvm/CodeGen/MultiHazardRecognizer.h"
+#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSchedule.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/TargetParser/Triple.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <new>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-instrinfo"
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "ARMGenInstrInfo.inc"
+
+static cl::opt<bool>
+EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
+ cl::desc("Enable ARM 2-addr to 3-addr conv"));
+
+/// ARM_MLxEntry - Record information about MLA / MLS instructions.
+struct ARM_MLxEntry {
+ uint16_t MLxOpc; // MLA / MLS opcode
+ uint16_t MulOpc; // Expanded multiplication opcode
+ uint16_t AddSubOpc; // Expanded add / sub opcode
+ bool NegAcc; // True if the acc is negated before the add / sub.
+ bool HasLane; // True if instruction has an extra "lane" operand.
+};
+
+static const ARM_MLxEntry ARM_MLxTable[] = {
+ // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
+ // fp scalar ops
+ { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
+ { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
+ { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
+ { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
+ { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
+ { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
+ { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
+ { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
+
+ // fp SIMD ops
+ { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
+ { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
+ { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
+ { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
+ { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
+ { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
+ { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
+ { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
+};
+
+ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
+ : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
+ Subtarget(STI) {
+ for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) {
+ if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
+ llvm_unreachable("Duplicated entries?");
+ MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
+ MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
+ }
+}
+
+// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
+// currently defaults to no prepass hazard recognizer.
+ScheduleHazardRecognizer *
+ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
+ const ScheduleDAG *DAG) const {
+ if (usePreRAHazardRecognizer()) {
+ const InstrItineraryData *II =
+ static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
+ return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
+ }
+ return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
+}
+
+// Called during:
+// - pre-RA scheduling
+// - post-RA scheduling when FeatureUseMISched is set
+ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
+ const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
+ MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
+
+ // We would like to restrict this hazard recognizer to only
+ // post-RA scheduling; we can tell that we're post-RA because we don't
+ // track VRegLiveness.
+ // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
+ // banks banked on bit 2. Assume that TCMs are in use.
+ if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
+ MHR->AddHazardRecognizer(
+ std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true));
+
+ // Not inserting ARMHazardRecognizerFPMLx because that would change
+ // legacy behavior
+
+ auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
+ MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
+ return MHR;
+}
+
+// Called during post-RA scheduling when FeatureUseMISched is not set
+ScheduleHazardRecognizer *ARMBaseInstrInfo::
+CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const {
+ MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
+
+ if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
+ MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
+
+ auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
+ if (BHR)
+ MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
+ return MHR;
+}
+
+MachineInstr *
+ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
+ LiveIntervals *LIS) const {
+ // FIXME: Thumb2 support.
+
+ if (!EnableARM3Addr)
+ return nullptr;
+
+ MachineFunction &MF = *MI.getParent()->getParent();
+ uint64_t TSFlags = MI.getDesc().TSFlags;
+ bool isPre = false;
+ switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
+ default: return nullptr;
+ case ARMII::IndexModePre:
+ isPre = true;
+ break;
+ case ARMII::IndexModePost:
+ break;
+ }
+
+ // Try splitting an indexed load/store to an un-indexed one plus an add/sub
+ // operation.
+ unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
+ if (MemOpc == 0)
+ return nullptr;
+
+ MachineInstr *UpdateMI = nullptr;
+ MachineInstr *MemMI = nullptr;
+ unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
+ const MCInstrDesc &MCID = MI.getDesc();
+ unsigned NumOps = MCID.getNumOperands();
+ bool isLoad = !MI.mayStore();
+ const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
+ const MachineOperand &Base = MI.getOperand(2);
+ const MachineOperand &Offset = MI.getOperand(NumOps - 3);
+ Register WBReg = WB.getReg();
+ Register BaseReg = Base.getReg();
+ Register OffReg = Offset.getReg();
+ unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
+ ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
+ switch (AddrMode) {
+ default: llvm_unreachable("Unknown indexed op!");
+ case ARMII::AddrMode2: {
+ bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
+ unsigned Amt = ARM_AM::getAM2Offset(OffImm);
+ if (OffReg == 0) {
+ if (ARM_AM::getSOImmVal(Amt) == -1)
+ // Can't encode it in a so_imm operand. This transformation will
+ // add more than 1 instruction. Abandon!
+ return nullptr;
+ UpdateMI = BuildMI(MF, MI.getDebugLoc(),
+ get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+ .addReg(BaseReg)
+ .addImm(Amt)
+ .add(predOps(Pred))
+ .add(condCodeOp());
+ } else if (Amt != 0) {
+ ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
+ unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
+ UpdateMI = BuildMI(MF, MI.getDebugLoc(),
+ get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
+ .addReg(BaseReg)
+ .addReg(OffReg)
+ .addReg(0)
+ .addImm(SOOpc)
+ .add(predOps(Pred))
+ .add(condCodeOp());
+ } else
+ UpdateMI = BuildMI(MF, MI.getDebugLoc(),
+ get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+ .addReg(BaseReg)
+ .addReg(OffReg)
+ .add(predOps(Pred))
+ .add(condCodeOp());
+ break;
+ }
+ case ARMII::AddrMode3 : {
+ bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
+ unsigned Amt = ARM_AM::getAM3Offset(OffImm);
+ if (OffReg == 0)
+ // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
+ UpdateMI = BuildMI(MF, MI.getDebugLoc(),
+ get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
+ .addReg(BaseReg)
+ .addImm(Amt)
+ .add(predOps(Pred))
+ .add(condCodeOp());
+ else
+ UpdateMI = BuildMI(MF, MI.getDebugLoc(),
+ get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
+ .addReg(BaseReg)
+ .addReg(OffReg)
+ .add(predOps(Pred))
+ .add(condCodeOp());
+ break;
+ }
+ }
+
+ std::vector<MachineInstr*> NewMIs;
+ if (isPre) {
+ if (isLoad)
+ MemMI =
+ BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
+ .addReg(WBReg)
+ .addImm(0)
+ .addImm(Pred);
+ else
+ MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
+ .addReg(MI.getOperand(1).getReg())
+ .addReg(WBReg)
+ .addReg(0)
+ .addImm(0)
+ .addImm(Pred);
+ NewMIs.push_back(MemMI);
+ NewMIs.push_back(UpdateMI);
+ } else {
+ if (isLoad)
+ MemMI =
+ BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
+ .addReg(BaseReg)
+ .addImm(0)
+ .addImm(Pred);
+ else
+ MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
+ .addReg(MI.getOperand(1).getReg())
+ .addReg(BaseReg)
+ .addReg(0)
+ .addImm(0)
+ .addImm(Pred);
+ if (WB.isDead())
+ UpdateMI->getOperand(0).setIsDead();
+ NewMIs.push_back(UpdateMI);
+ NewMIs.push_back(MemMI);
+ }
+
+ // Transfer LiveVariables states, kill / dead info.
+ if (LV) {
+ for (const MachineOperand &MO : MI.operands()) {
+ if (MO.isReg() && MO.getReg().isVirtual()) {
+ Register Reg = MO.getReg();
+
+ LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
+ if (MO.isDef()) {
+ MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
+ if (MO.isDead())
+ LV->addVirtualRegisterDead(Reg, *NewMI);
+ }
+ if (MO.isUse() && MO.isKill()) {
+ for (unsigned j = 0; j < 2; ++j) {
+ // Look at the two new MI's in reverse order.
+ MachineInstr *NewMI = NewMIs[j];
+ if (!NewMI->readsRegister(Reg, /*TRI=*/nullptr))
+ continue;
+ LV->addVirtualRegisterKilled(Reg, *NewMI);
+ if (VI.removeKill(MI))
+ VI.Kills.push_back(NewMI);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ MachineBasicBlock &MBB = *MI.getParent();
+ MBB.insert(MI, NewMIs[1]);
+ MBB.insert(MI, NewMIs[0]);
+ return NewMIs[0];
+}
+
+// Branch analysis.
+// Cond vector output format:
+// 0 elements indicates an unconditional branch
+// 2 elements indicates a conditional branch; the elements are
+// the condition to check and the CPSR.
+// 3 elements indicates a hardware loop end; the elements
+// are the opcode, the operand value to test, and a dummy
+// operand used to pad out to 3 operands.
+bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ TBB = nullptr;
+ FBB = nullptr;
+
+ MachineBasicBlock::instr_iterator I = MBB.instr_end();
+ if (I == MBB.instr_begin())
+ return false; // Empty blocks are easy.
+ --I;
+
+ // Walk backwards from the end of the basic block until the branch is
+ // analyzed or we give up.
+ while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
+ // Flag to be raised on unanalyzeable instructions. This is useful in cases
+ // where we want to clean up on the end of the basic block before we bail
+ // out.
+ bool CantAnalyze = false;
+
+ // Skip over DEBUG values, predicated nonterminators and speculation
+ // barrier terminators.
+ while (I->isDebugInstr() || !I->isTerminator() ||
+ isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
+ I->getOpcode() == ARM::t2DoLoopStartTP){
+ if (I == MBB.instr_begin())
+ return false;
+ --I;
+ }
+
+ if (isIndirectBranchOpcode(I->getOpcode()) ||
+ isJumpTableBranchOpcode(I->getOpcode())) {
+ // Indirect branches and jump tables can't be analyzed, but we still want
+ // to clean up any instructions at the tail of the basic block.
+ CantAnalyze = true;
+ } else if (isUncondBranchOpcode(I->getOpcode())) {
+ TBB = I->getOperand(0).getMBB();
+ } else if (isCondBranchOpcode(I->getOpcode())) {
+ // Bail out if we encounter multiple conditional branches.
+ if (!Cond.empty())
+ return true;
+
+ assert(!FBB && "FBB should have been null.");
+ FBB = TBB;
+ TBB = I->getOperand(0).getMBB();
+ Cond.push_back(I->getOperand(1));
+ Cond.push_back(I->getOperand(2));
+ } else if (I->isReturn()) {
+ // Returns can't be analyzed, but we should run cleanup.
+ CantAnalyze = true;
+ } else if (I->getOpcode() == ARM::t2LoopEnd &&
+ MBB.getParent()
+ ->getSubtarget<ARMSubtarget>()
+ .enableMachinePipeliner()) {
+ if (!Cond.empty())
+ return true;
+ FBB = TBB;
+ TBB = I->getOperand(1).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(I->getOpcode()));
+ Cond.push_back(I->getOperand(0));
+ Cond.push_back(MachineOperand::CreateImm(0));
+ } else {
+ // We encountered other unrecognized terminator. Bail out immediately.
+ return true;
+ }
+
+ // Cleanup code - to be run for unpredicated unconditional branches and
+ // returns.
+ if (!isPredicated(*I) &&
+ (isUncondBranchOpcode(I->getOpcode()) ||
+ isIndirectBranchOpcode(I->getOpcode()) ||
+ isJumpTableBranchOpcode(I->getOpcode()) ||
+ I->isReturn())) {
+ // Forget any previous condition branch information - it no longer applies.
+ Cond.clear();
+ FBB = nullptr;
+
+ // If we can modify the function, delete everything below this
+ // unconditional branch.
+ if (AllowModify) {
+ MachineBasicBlock::iterator DI = std::next(I);
+ while (DI != MBB.instr_end()) {
+ MachineInstr &InstToDelete = *DI;
+ ++DI;
+ // Speculation barriers must not be deleted.
+ if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode()))
+ continue;
+ InstToDelete.eraseFromParent();
+ }
+ }
+ }
+
+ if (CantAnalyze) {
+ // We may not be able to analyze the block, but we could still have
+ // an unconditional branch as the last instruction in the block, which
+ // just branches to layout successor. If this is the case, then just
+ // remove it if we're allowed to make modifications.
+ if (AllowModify && !isPredicated(MBB.back()) &&
+ isUncondBranchOpcode(MBB.back().getOpcode()) &&
+ TBB && MBB.isLayoutSuccessor(TBB))
+ removeBranch(MBB);
+ return true;
+ }
+
+ if (I == MBB.instr_begin())
+ return false;
+
+ --I;
+ }
+
+ // We made it past the terminators without bailing out - we must have
+ // analyzed this branch successfully.
+ return false;
+}
+
+unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
+ int *BytesRemoved) const {
+ assert(!BytesRemoved && "code size not handled");
+
+ MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
+ if (I == MBB.end())
+ return 0;
+
+ if (!isUncondBranchOpcode(I->getOpcode()) &&
+ !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ ArrayRef<MachineOperand> Cond,
+ const DebugLoc &DL,
+ int *BytesAdded) const {
+ assert(!BytesAdded && "code size not handled");
+ ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
+ int BOpc = !AFI->isThumbFunction()
+ ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
+ int BccOpc = !AFI->isThumbFunction()
+ ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
+ bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
+
+ // Shouldn't be a fall through.
+ assert(TBB && "insertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) &&
+ "ARM branch conditions have two or three components!");
+
+ // For conditional branches, we use addOperand to preserve CPSR flags.
+
+ if (!FBB) {
+ if (Cond.empty()) { // Unconditional branch?
+ if (isThumb)
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
+ else
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
+ } else if (Cond.size() == 2) {
+ BuildMI(&MBB, DL, get(BccOpc))
+ .addMBB(TBB)
+ .addImm(Cond[0].getImm())
+ .add(Cond[1]);
+ } else
+ BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
+ return 1;
+ }
+
+ // Two-way conditional branch.
+ if (Cond.size() == 2)
+ BuildMI(&MBB, DL, get(BccOpc))
+ .addMBB(TBB)
+ .addImm(Cond[0].getImm())
+ .add(Cond[1]);
+ else if (Cond.size() == 3)
+ BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
+ if (isThumb)
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
+ else
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
+ return 2;
+}
+
+bool ARMBaseInstrInfo::
+reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ if (Cond.size() == 2) {
+ ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
+ Cond[0].setImm(ARMCC::getOppositeCondition(CC));
+ return false;
+ }
+ return true;
+}
+
+bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
+ if (MI.isBundle()) {
+ MachineBasicBlock::const_instr_iterator I = MI.getIterator();
+ MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ int PIdx = I->findFirstPredOperandIdx();
+ if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
+ return true;
+ }
+ return false;
+ }
+
+ int PIdx = MI.findFirstPredOperandIdx();
+ return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
+}
+
+std::string ARMBaseInstrInfo::createMIROperandComment(
+ const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
+ const TargetRegisterInfo *TRI) const {
+
+ // First, let's see if there is a generic comment for this operand
+ std::string GenericComment =
+ TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
+ if (!GenericComment.empty())
+ return GenericComment;
+
+ // If not, check if we have an immediate operand.
+ if (!Op.isImm())
+ return std::string();
+
+ // And print its corresponding condition code if the immediate is a
+ // predicate.
+ int FirstPredOp = MI.findFirstPredOperandIdx();
+ if (FirstPredOp != (int) OpIdx)
+ return std::string();
+
+ std::string CC = "CC::";
+ CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
+ return CC;
+}
+
+bool ARMBaseInstrInfo::PredicateInstruction(
+ MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
+ unsigned Opc = MI.getOpcode();
+ if (isUncondBranchOpcode(Opc)) {
+ MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
+ MachineInstrBuilder(*MI.getParent()->getParent(), MI)
+ .addImm(Pred[0].getImm())
+ .addReg(Pred[1].getReg());
+ return true;
+ }
+
+ int PIdx = MI.findFirstPredOperandIdx();
+ if (PIdx != -1) {
+ MachineOperand &PMO = MI.getOperand(PIdx);
+ PMO.setImm(Pred[0].getImm());
+ MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
+
+ // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
+ // IT block. This affects how they are printed.
+ const MCInstrDesc &MCID = MI.getDesc();
+ if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
+ assert(MCID.operands()[1].isOptionalDef() &&
+ "CPSR def isn't expected operand");
+ assert((MI.getOperand(1).isDead() ||
+ MI.getOperand(1).getReg() != ARM::CPSR) &&
+ "if conversion tried to stop defining used CPSR");
+ MI.getOperand(1).setReg(ARM::NoRegister);
+ }
+
+ return true;
+ }
+ return false;
+}
+
+bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
+ ArrayRef<MachineOperand> Pred2) const {
+ if (Pred1.size() > 2 || Pred2.size() > 2)
+ return false;
+
+ ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
+ ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
+ if (CC1 == CC2)
+ return true;
+
+ switch (CC1) {
+ default:
+ return false;
+ case ARMCC::AL:
+ return true;
+ case ARMCC::HS:
+ return CC2 == ARMCC::HI;
+ case ARMCC::LS:
+ return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
+ case ARMCC::GE:
+ return CC2 == ARMCC::GT;
+ case ARMCC::LE:
+ return CC2 == ARMCC::LT;
+ }
+}
+
+bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
+ std::vector<MachineOperand> &Pred,
+ bool SkipDead) const {
+ bool Found = false;
+ for (const MachineOperand &MO : MI.operands()) {
+ bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
+ bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
+ if (ClobbersCPSR || IsCPSR) {
+
+ // Filter out T1 instructions that have a dead CPSR,
+ // allowing IT blocks to be generated containing T1 instructions
+ const MCInstrDesc &MCID = MI.getDesc();
+ if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
+ SkipDead)
+ continue;
+
+ Pred.push_back(MO);
+ Found = true;
+ }
+ }
+
+ return Found;
+}
+
+bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
+ for (const auto &MO : MI.operands())
+ if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
+ return true;
+ return false;
+}
+
+static bool isEligibleForITBlock(const MachineInstr *MI) {
+ switch (MI->getOpcode()) {
+ default: return true;
+ case ARM::tADC: // ADC (register) T1
+ case ARM::tADDi3: // ADD (immediate) T1
+ case ARM::tADDi8: // ADD (immediate) T2
+ case ARM::tADDrr: // ADD (register) T1
+ case ARM::tAND: // AND (register) T1
+ case ARM::tASRri: // ASR (immediate) T1
+ case ARM::tASRrr: // ASR (register) T1
+ case ARM::tBIC: // BIC (register) T1
+ case ARM::tEOR: // EOR (register) T1
+ case ARM::tLSLri: // LSL (immediate) T1
+ case ARM::tLSLrr: // LSL (register) T1
+ case ARM::tLSRri: // LSR (immediate) T1
+ case ARM::tLSRrr: // LSR (register) T1
+ case ARM::tMUL: // MUL T1
+ case ARM::tMVN: // MVN (register) T1
+ case ARM::tORR: // ORR (register) T1
+ case ARM::tROR: // ROR (register) T1
+ case ARM::tRSB: // RSB (immediate) T1
+ case ARM::tSBC: // SBC (register) T1
+ case ARM::tSUBi3: // SUB (immediate) T1
+ case ARM::tSUBi8: // SUB (immediate) T2
+ case ARM::tSUBrr: // SUB (register) T1
+ return !ARMBaseInstrInfo::isCPSRDefined(*MI);
+ }
+}
+
+/// isPredicable - Return true if the specified instruction can be predicated.
+/// By default, this returns true for every instruction with a
+/// PredicateOperand.
+bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
+ if (!MI.isPredicable())
+ return false;
+
+ if (MI.isBundle())
+ return false;
+
+ if (!isEligibleForITBlock(&MI))
+ return false;
+
+ const MachineFunction *MF = MI.getParent()->getParent();
+ const ARMFunctionInfo *AFI =
+ MF->getInfo<ARMFunctionInfo>();
+
+ // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
+ // In their ARM encoding, they can't be encoded in a conditional form.
+ if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
+ return false;
+
+ // Make indirect control flow changes unpredicable when SLS mitigation is
+ // enabled.
+ const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
+ if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
+ return false;
+ if (ST.hardenSlsBlr() && isIndirectCall(MI))
+ return false;
+
+ if (AFI->isThumb2Function()) {
+ if (getSubtarget().restrictIT())
+ return isV8EligibleForIT(&MI);
+ }
+
+ return true;
+}
+
+namespace llvm {
+
+template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
+ for (const MachineOperand &MO : MI->operands()) {
+ if (!MO.isReg() || MO.isUndef() || MO.isUse())
+ continue;
+ if (MO.getReg() != ARM::CPSR)
+ continue;
+ if (!MO.isDead())
+ return false;
+ }
+ // all definitions of CPSR are dead
+ return true;
+}
+
+} // end namespace llvm
+
+/// GetInstSize - Return the size of the specified MachineInstr.
+///
+unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
+ const MachineBasicBlock &MBB = *MI.getParent();
+ const MachineFunction *MF = MBB.getParent();
+ const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
+
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ switch (MI.getOpcode()) {
+ default:
+ // Return the size specified in .td file. If there's none, return 0, as we
+ // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2
+ // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in
+ // contrast to AArch64 instructions which have a default size of 4 bytes for
+ // example.
+ return MCID.getSize();
+ case TargetOpcode::BUNDLE:
+ return getInstBundleLength(MI);
+ case ARM::CONSTPOOL_ENTRY:
+ case ARM::JUMPTABLE_INSTS:
+ case ARM::JUMPTABLE_ADDRS:
+ case ARM::JUMPTABLE_TBB:
+ case ARM::JUMPTABLE_TBH:
+ // If this machine instr is a constant pool entry, its size is recorded as
+ // operand #2.
+ return MI.getOperand(2).getImm();
+ case ARM::SPACE:
+ return MI.getOperand(1).getImm();
+ case ARM::INLINEASM:
+ case ARM::INLINEASM_BR: {
+ // If this machine instr is an inline asm, measure it.
+ unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
+ if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
+ Size = alignTo(Size, 4);
+ return Size;
+ }
+ }
+}
+
+unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
+ unsigned Size = 0;
+ MachineBasicBlock::const_instr_iterator I = MI.getIterator();
+ MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ assert(!I->isBundle() && "No nested bundle!");
+ Size += getInstSizeInBytes(*I);
+ }
+ return Size;
+}
+
+void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned DestReg, bool KillSrc,
+ const ARMSubtarget &Subtarget) const {
+ unsigned Opc = Subtarget.isThumb()
+ ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
+ : ARM::MRS;
+
+ MachineInstrBuilder MIB =
+ BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
+
+ // There is only 1 A/R class MRS instruction, and it always refers to
+ // APSR. However, there are lots of other possibilities on M-class cores.
+ if (Subtarget.isMClass())
+ MIB.addImm(0x800);
+
+ MIB.add(predOps(ARMCC::AL))
+ .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
+}
+
+void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ unsigned SrcReg, bool KillSrc,
+ const ARMSubtarget &Subtarget) const {
+ unsigned Opc = Subtarget.isThumb()
+ ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
+ : ARM::MSR;
+
+ MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
+
+ if (Subtarget.isMClass())
+ MIB.addImm(0x800);
+ else
+ MIB.addImm(8);
+
+ MIB.addReg(SrcReg, getKillRegState(KillSrc))
+ .add(predOps(ARMCC::AL))
+ .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
+}
+
+void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
+ MIB.addImm(ARMVCC::None);
+ MIB.addReg(0);
+ MIB.addReg(0); // tp_reg
+}
+
+void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
+ Register DestReg) {
+ addUnpredicatedMveVpredNOp(MIB);
+ MIB.addReg(DestReg, RegState::Undef);
+}
+
+void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
+ MIB.addImm(Cond);
+ MIB.addReg(ARM::VPR, RegState::Implicit);
+ MIB.addReg(0); // tp_reg
+}
+
+void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
+ unsigned Cond, unsigned Inactive) {
+ addPredicatedMveVpredNOp(MIB, Cond);
+ MIB.addReg(Inactive);
+}
+
+void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ const DebugLoc &DL, MCRegister DestReg,
+ MCRegister SrcReg, bool KillSrc) const {
+ bool GPRDest = ARM::GPRRegClass.contains(DestReg);
+ bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
+
+ if (GPRDest && GPRSrc) {
+ BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ return;
+ }
+
+ bool SPRDest = ARM::SPRRegClass.contains(DestReg);
+ bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
+
+ unsigned Opc = 0;
+ if (SPRDest && SPRSrc)
+ Opc = ARM::VMOVS;
+ else if (GPRDest && SPRSrc)
+ Opc = ARM::VMOVRS;
+ else if (SPRDest && GPRSrc)
+ Opc = ARM::VMOVSR;
+ else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
+ Opc = ARM::VMOVD;
+ else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
+ Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy;
+
+ if (Opc) {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+ if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
+ MIB.addReg(SrcReg, getKillRegState(KillSrc));
+ if (Opc == ARM::MVE_VORR)
+ addUnpredicatedMveVpredROp(MIB, DestReg);
+ else if (Opc != ARM::MQPRCopy)
+ MIB.add(predOps(ARMCC::AL));
+ return;
+ }
+
+ // Handle register classes that require multiple instructions.
+ unsigned BeginIdx = 0;
+ unsigned SubRegs = 0;
+ int Spacing = 1;
+
+ // Use VORRq when possible.
+ if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
+ Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
+ BeginIdx = ARM::qsub_0;
+ SubRegs = 2;
+ } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
+ Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
+ BeginIdx = ARM::qsub_0;
+ SubRegs = 4;
+ // Fall back to VMOVD.
+ } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 2;
+ } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 3;
+ } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 4;
+ } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
+ Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
+ BeginIdx = ARM::gsub_0;
+ SubRegs = 2;
+ } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 2;
+ Spacing = 2;
+ } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 3;
+ Spacing = 2;
+ } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
+ Opc = ARM::VMOVD;
+ BeginIdx = ARM::dsub_0;
+ SubRegs = 4;
+ Spacing = 2;
+ } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
+ !Subtarget.hasFP64()) {
+ Opc = ARM::VMOVS;
+ BeginIdx = ARM::ssub_0;
+ SubRegs = 2;
+ } else if (SrcReg == ARM::CPSR) {
+ copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
+ return;
+ } else if (DestReg == ARM::CPSR) {
+ copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
+ return;
+ } else if (DestReg == ARM::VPR) {
+ assert(ARM::GPRRegClass.contains(SrcReg));
+ BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .add(predOps(ARMCC::AL));
+ return;
+ } else if (SrcReg == ARM::VPR) {
+ assert(ARM::GPRRegClass.contains(DestReg));
+ BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .add(predOps(ARMCC::AL));
+ return;
+ } else if (DestReg == ARM::FPSCR_NZCV) {
+ assert(ARM::GPRRegClass.contains(SrcReg));
+ BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .add(predOps(ARMCC::AL));
+ return;
+ } else if (SrcReg == ARM::FPSCR_NZCV) {
+ assert(ARM::GPRRegClass.contains(DestReg));
+ BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .add(predOps(ARMCC::AL));
+ return;
+ }
+
+ assert(Opc && "Impossible reg-to-reg copy");
+
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ MachineInstrBuilder Mov;
+
+ // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
+ if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
+ BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
+ Spacing = -Spacing;
+ }
+#ifndef NDEBUG
+ SmallSet<unsigned, 4> DstRegs;
+#endif
+ for (unsigned i = 0; i != SubRegs; ++i) {
+ Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
+ Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
+ assert(Dst && Src && "Bad sub-register");
+#ifndef NDEBUG
+ assert(!DstRegs.count(Src) && "destructive vector copy");
+ DstRegs.insert(Dst);
+#endif
+ Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
+ // VORR (NEON or MVE) takes two source operands.
+ if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
+ Mov.addReg(Src);
+ }
+ // MVE VORR takes predicate operands in place of an ordinary condition.
+ if (Opc == ARM::MVE_VORR)
+ addUnpredicatedMveVpredROp(Mov, Dst);
+ else
+ Mov = Mov.add(predOps(ARMCC::AL));
+ // MOVr can set CC.
+ if (Opc == ARM::MOVr)
+ Mov = Mov.add(condCodeOp());
+ }
+ // Add implicit super-register defs and kills to the last instruction.
+ Mov->addRegisterDefined(DestReg, TRI);
+ if (KillSrc)
+ Mov->addRegisterKilled(SrcReg, TRI);
+}
+
+std::optional<DestSourcePair>
+ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
+ // VMOVRRD is also a copy instruction but it requires
+ // special way of handling. It is more complex copy version
+ // and since that we are not considering it. For recognition
+ // of such instruction isExtractSubregLike MI interface fuction
+ // could be used.
+ // VORRq is considered as a move only if two inputs are
+ // the same register.
+ if (!MI.isMoveReg() ||
+ (MI.getOpcode() == ARM::VORRq &&
+ MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
+ return std::nullopt;
+ return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
+}
+
+std::optional<ParamLoadedValue>
+ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
+ Register Reg) const {
+ if (auto DstSrcPair = isCopyInstrImpl(MI)) {
+ Register DstReg = DstSrcPair->Destination->getReg();
+
+ // TODO: We don't handle cases where the forwarding reg is narrower/wider
+ // than the copy registers. Consider for example:
+ //
+ // s16 = VMOVS s0
+ // s17 = VMOVS s1
+ // call @callee(d0)
+ //
+ // We'd like to describe the call site value of d0 as d8, but this requires
+ // gathering and merging the descriptions for the two VMOVS instructions.
+ //
+ // We also don't handle the reverse situation, where the forwarding reg is
+ // narrower than the copy destination:
+ //
+ // d8 = VMOVD d0
+ // call @callee(s1)
+ //
+ // We need to produce a fragment description (the call site value of s1 is
+ // /not/ just d8).
+ if (DstReg != Reg)
+ return std::nullopt;
+ }
+ return TargetInstrInfo::describeLoadedValue(MI, Reg);
+}
+
+const MachineInstrBuilder &
+ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
+ unsigned SubIdx, unsigned State,
+ const TargetRegisterInfo *TRI) const {
+ if (!SubIdx)
+ return MIB.addReg(Reg, State);
+
+ if (Register::isPhysicalRegister(Reg))
+ return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
+ return MIB.addReg(Reg, State, SubIdx);
+}
+
+void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ Register SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ Register VReg) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ Align Alignment = MFI.getObjectAlign(FI);
+
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
+ MFI.getObjectSize(FI), Alignment);
+
+ switch (TRI->getSpillSize(*RC)) {
+ case 2:
+ if (ARM::HPRRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 4:
+ if (ARM::GPRRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 8:
+ if (ARM::DPRRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
+ if (Subtarget.hasV5TEOps()) {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
+ AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
+ AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
+ MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else {
+ // Fallback to STM instruction, which has existed since the dawn of
+ // time.
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
+ AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 16:
+ if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
+ // Use aligned spills if the stack can be realigned.
+ if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
+ .addFrameIndex(FI)
+ .addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else {
+ BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ }
+ } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
+ Subtarget.hasMVEIntegerOps()) {
+ auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
+ MIB.addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO);
+ addUnpredicatedMveVpredNOp(MIB);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 24:
+ if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
+ // Use aligned spills if the stack can be realigned.
+ if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
+ Subtarget.hasNEON()) {
+ BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
+ .addFrameIndex(FI)
+ .addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
+ get(ARM::VSTMDIA))
+ .addFrameIndex(FI)
+ .add(predOps(ARMCC::AL))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 32:
+ if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
+ ARM::MQQPRRegClass.hasSubClassEq(RC) ||
+ ARM::DQuadRegClass.hasSubClassEq(RC)) {
+ if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
+ Subtarget.hasNEON()) {
+ // FIXME: It's possible to only store part of the QQ register if the
+ // spilled def has a sub-register index.
+ BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
+ .addFrameIndex(FI)
+ .addImm(16)
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else if (Subtarget.hasMVEIntegerOps()) {
+ BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO);
+ } else {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
+ get(ARM::VSTMDIA))
+ .addFrameIndex(FI)
+ .add(predOps(ARMCC::AL))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 64:
+ if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
+ Subtarget.hasMVEIntegerOps()) {
+ BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO);
+ } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
+ .addFrameIndex(FI)
+ .add(predOps(ARMCC::AL))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
+ MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
+ AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ default:
+ llvm_unreachable("Unknown reg class!");
+ }
+}
+
+Register ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
+ int &FrameIndex) const {
+ switch (MI.getOpcode()) {
+ default: break;
+ case ARM::STRrs:
+ case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
+ if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
+ MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
+ MI.getOperand(3).getImm() == 0) {
+ FrameIndex = MI.getOperand(1).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ break;
+ case ARM::STRi12:
+ case ARM::t2STRi12:
+ case ARM::tSTRspi:
+ case ARM::VSTRD:
+ case ARM::VSTRS:
+ case ARM::VSTR_P0_off:
+ case ARM::MVE_VSTRWU32:
+ if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
+ MI.getOperand(2).getImm() == 0) {
+ FrameIndex = MI.getOperand(1).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ break;
+ case ARM::VST1q64:
+ case ARM::VST1d64TPseudo:
+ case ARM::VST1d64QPseudo:
+ if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
+ FrameIndex = MI.getOperand(0).getIndex();
+ return MI.getOperand(2).getReg();
+ }
+ break;
+ case ARM::VSTMQIA:
+ if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI.getOperand(1).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ break;
+ case ARM::MQQPRStore:
+ case ARM::MQQQQPRStore:
+ if (MI.getOperand(1).isFI()) {
+ FrameIndex = MI.getOperand(1).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+Register ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
+ int &FrameIndex) const {
+ SmallVector<const MachineMemOperand *, 1> Accesses;
+ if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
+ Accesses.size() == 1) {
+ FrameIndex =
+ cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
+ ->getFrameIndex();
+ return true;
+ }
+ return false;
+}
+
+void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ Register DestReg, int FI,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI,
+ Register VReg) const {
+ DebugLoc DL;
+ if (I != MBB.end()) DL = I->getDebugLoc();
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ const Align Alignment = MFI.getObjectAlign(FI);
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FI), Alignment);
+
+ switch (TRI->getSpillSize(*RC)) {
+ case 2:
+ if (ARM::HPRRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 4:
+ if (ARM::GPRRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 8:
+ if (ARM::DPRRegClass.hasSubClassEq(RC)) {
+ BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
+ .addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB;
+
+ if (Subtarget.hasV5TEOps()) {
+ MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
+ AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
+ AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
+ MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else {
+ // Fallback to LDM instruction, which has existed since the dawn of
+ // time.
+ MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
+ }
+
+ if (DestReg.isPhysical())
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 16:
+ if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
+ if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
+ BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
+ .addFrameIndex(FI)
+ .addImm(16)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else {
+ BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
+ .addFrameIndex(FI)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ }
+ } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
+ Subtarget.hasMVEIntegerOps()) {
+ auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
+ MIB.addFrameIndex(FI)
+ .addImm(0)
+ .addMemOperand(MMO);
+ addUnpredicatedMveVpredNOp(MIB);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 24:
+ if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
+ if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
+ Subtarget.hasNEON()) {
+ BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
+ .addFrameIndex(FI)
+ .addImm(16)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ if (DestReg.isPhysical())
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 32:
+ if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
+ ARM::MQQPRRegClass.hasSubClassEq(RC) ||
+ ARM::DQuadRegClass.hasSubClassEq(RC)) {
+ if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
+ Subtarget.hasNEON()) {
+ BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
+ .addFrameIndex(FI)
+ .addImm(16)
+ .addMemOperand(MMO)
+ .add(predOps(ARMCC::AL));
+ } else if (Subtarget.hasMVEIntegerOps()) {
+ BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
+ .addFrameIndex(FI)
+ .addMemOperand(MMO);
+ } else {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI)
+ .add(predOps(ARMCC::AL))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
+ if (DestReg.isPhysical())
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ }
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ case 64:
+ if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
+ Subtarget.hasMVEIntegerOps()) {
+ BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
+ .addFrameIndex(FI)
+ .addMemOperand(MMO);
+ } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
+ MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
+ .addFrameIndex(FI)
+ .add(predOps(ARMCC::AL))
+ .addMemOperand(MMO);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
+ MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
+ if (DestReg.isPhysical())
+ MIB.addReg(DestReg, RegState::ImplicitDefine);
+ } else
+ llvm_unreachable("Unknown reg class!");
+ break;
+ default:
+ llvm_unreachable("Unknown regclass!");
+ }
+}
+
+Register ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
+ int &FrameIndex) const {
+ switch (MI.getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
+ if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
+ MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
+ MI.getOperand(3).getImm() == 0) {
+ FrameIndex = MI.getOperand(1).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ break;
+ case ARM::LDRi12:
+ case ARM::t2LDRi12:
+ case ARM::tLDRspi:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ case ARM::VLDR_P0_off:
+ case ARM::MVE_VLDRWU32:
+ if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
+ MI.getOperand(2).getImm() == 0) {
+ FrameIndex = MI.getOperand(1).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ break;
+ case ARM::VLD1q64:
+ case ARM::VLD1d8TPseudo:
+ case ARM::VLD1d16TPseudo:
+ case ARM::VLD1d32TPseudo:
+ case ARM::VLD1d64TPseudo:
+ case ARM::VLD1d8QPseudo:
+ case ARM::VLD1d16QPseudo:
+ case ARM::VLD1d32QPseudo:
+ case ARM::VLD1d64QPseudo:
+ if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI.getOperand(1).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ break;
+ case ARM::VLDMQIA:
+ if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
+ FrameIndex = MI.getOperand(1).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ break;
+ case ARM::MQQPRLoad:
+ case ARM::MQQQQPRLoad:
+ if (MI.getOperand(1).isFI()) {
+ FrameIndex = MI.getOperand(1).getIndex();
+ return MI.getOperand(0).getReg();
+ }
+ break;
+ }
+
+ return 0;
+}
+
+Register ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
+ int &FrameIndex) const {
+ SmallVector<const MachineMemOperand *, 1> Accesses;
+ if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
+ Accesses.size() == 1) {
+ FrameIndex =
+ cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
+ ->getFrameIndex();
+ return true;
+ }
+ return false;
+}
+
+/// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
+/// depending on whether the result is used.
+void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
+ bool isThumb1 = Subtarget.isThumb1Only();
+ bool isThumb2 = Subtarget.isThumb2();
+ const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
+
+ DebugLoc dl = MI->getDebugLoc();
+ MachineBasicBlock *BB = MI->getParent();
+
+ MachineInstrBuilder LDM, STM;
+ if (isThumb1 || !MI->getOperand(1).isDead()) {
+ MachineOperand LDWb(MI->getOperand(1));
+ LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
+ : isThumb1 ? ARM::tLDMIA_UPD
+ : ARM::LDMIA_UPD))
+ .add(LDWb);
+ } else {
+ LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
+ }
+
+ if (isThumb1 || !MI->getOperand(0).isDead()) {
+ MachineOperand STWb(MI->getOperand(0));
+ STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
+ : isThumb1 ? ARM::tSTMIA_UPD
+ : ARM::STMIA_UPD))
+ .add(STWb);
+ } else {
+ STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
+ }
+
+ MachineOperand LDBase(MI->getOperand(3));
+ LDM.add(LDBase).add(predOps(ARMCC::AL));
+
+ MachineOperand STBase(MI->getOperand(2));
+ STM.add(STBase).add(predOps(ARMCC::AL));
+
+ // Sort the scratch registers into ascending order.
+ const TargetRegisterInfo &TRI = getRegisterInfo();
+ SmallVector<unsigned, 6> ScratchRegs;
+ for (MachineOperand &MO : llvm::drop_begin(MI->operands(), 5))
+ ScratchRegs.push_back(MO.getReg());
+ llvm::sort(ScratchRegs,
+ [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
+ return TRI.getEncodingValue(Reg1) <
+ TRI.getEncodingValue(Reg2);
+ });
+
+ for (const auto &Reg : ScratchRegs) {
+ LDM.addReg(Reg, RegState::Define);
+ STM.addReg(Reg, RegState::Kill);
+ }
+
+ BB->erase(MI);
+}
+
+bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
+ if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
+ expandLoadStackGuard(MI);
+ MI.getParent()->erase(MI);
+ return true;
+ }
+
+ if (MI.getOpcode() == ARM::MEMCPY) {
+ expandMEMCPY(MI);
+ return true;
+ }
+
+ // This hook gets to expand COPY instructions before they become
+ // copyPhysReg() calls. Look for VMOVS instructions that can legally be
+ // widened to VMOVD. We prefer the VMOVD when possible because it may be
+ // changed into a VORR that can go down the NEON pipeline.
+ if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
+ return false;
+
+ // Look for a copy between even S-registers. That is where we keep floats
+ // when using NEON v2f32 instructions for f32 arithmetic.
+ Register DstRegS = MI.getOperand(0).getReg();
+ Register SrcRegS = MI.getOperand(1).getReg();
+ if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
+ return false;
+
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ if (!DstRegD || !SrcRegD)
+ return false;
+
+ // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
+ // legal if the COPY already defines the full DstRegD, and it isn't a
+ // sub-register insertion.
+ if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
+ return false;
+
+ // A dead copy shouldn't show up here, but reject it just in case.
+ if (MI.getOperand(0).isDead())
+ return false;
+
+ // All clear, widen the COPY.
+ LLVM_DEBUG(dbgs() << "widening: " << MI);
+ MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
+
+ // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
+ // or some other super-register.
+ int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD, /*TRI=*/nullptr);
+ if (ImpDefIdx != -1)
+ MI.removeOperand(ImpDefIdx);
+
+ // Change the opcode and operands.
+ MI.setDesc(get(ARM::VMOVD));
+ MI.getOperand(0).setReg(DstRegD);
+ MI.getOperand(1).setReg(SrcRegD);
+ MIB.add(predOps(ARMCC::AL));
+
+ // We are now reading SrcRegD instead of SrcRegS. This may upset the
+ // register scavenger and machine verifier, so we need to indicate that we
+ // are reading an undefined value from SrcRegD, but a proper value from
+ // SrcRegS.
+ MI.getOperand(1).setIsUndef();
+ MIB.addReg(SrcRegS, RegState::Implicit);
+
+ // SrcRegD may actually contain an unrelated value in the ssub_1
+ // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
+ if (MI.getOperand(1).isKill()) {
+ MI.getOperand(1).setIsKill(false);
+ MI.addRegisterKilled(SrcRegS, TRI, true);
+ }
+
+ LLVM_DEBUG(dbgs() << "replaced by: " << MI);
+ return true;
+}
+
+/// Create a copy of a const pool value. Update CPI to the new index and return
+/// the label UID.
+static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
+ MachineConstantPool *MCP = MF.getConstantPool();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
+ assert(MCPE.isMachineConstantPoolEntry() &&
+ "Expecting a machine constantpool entry!");
+ ARMConstantPoolValue *ACPV =
+ static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
+
+ unsigned PCLabelId = AFI->createPICLabelUId();
+ ARMConstantPoolValue *NewCPV = nullptr;
+
+ // FIXME: The below assumes PIC relocation model and that the function
+ // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
+ // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
+ // instructions, so that's probably OK, but is PIC always correct when
+ // we get here?
+ if (ACPV->isGlobalValue())
+ NewCPV = ARMConstantPoolConstant::Create(
+ cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
+ 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
+ else if (ACPV->isExtSymbol())
+ NewCPV = ARMConstantPoolSymbol::
+ Create(MF.getFunction().getContext(),
+ cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
+ else if (ACPV->isBlockAddress())
+ NewCPV = ARMConstantPoolConstant::
+ Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
+ ARMCP::CPBlockAddress, 4);
+ else if (ACPV->isLSDA())
+ NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
+ ARMCP::CPLSDA, 4);
+ else if (ACPV->isMachineBasicBlock())
+ NewCPV = ARMConstantPoolMBB::
+ Create(MF.getFunction().getContext(),
+ cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
+ else
+ llvm_unreachable("Unexpected ARM constantpool value type!!");
+ CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
+ return PCLabelId;
+}
+
+void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ Register DestReg, unsigned SubIdx,
+ const MachineInstr &Orig,
+ const TargetRegisterInfo &TRI) const {
+ unsigned Opcode = Orig.getOpcode();
+ switch (Opcode) {
+ default: {
+ MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
+ MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
+ MBB.insert(I, MI);
+ break;
+ }
+ case ARM::tLDRpci_pic:
+ case ARM::t2LDRpci_pic: {
+ MachineFunction &MF = *MBB.getParent();
+ unsigned CPI = Orig.getOperand(1).getIndex();
+ unsigned PCLabelId = duplicateCPV(MF, CPI);
+ BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
+ .addConstantPoolIndex(CPI)
+ .addImm(PCLabelId)
+ .cloneMemRefs(Orig);
+ break;
+ }
+ }
+}
+
+MachineInstr &
+ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator InsertBefore,
+ const MachineInstr &Orig) const {
+ MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
+ MachineBasicBlock::instr_iterator I = Cloned.getIterator();
+ for (;;) {
+ switch (I->getOpcode()) {
+ case ARM::tLDRpci_pic:
+ case ARM::t2LDRpci_pic: {
+ MachineFunction &MF = *MBB.getParent();
+ unsigned CPI = I->getOperand(1).getIndex();
+ unsigned PCLabelId = duplicateCPV(MF, CPI);
+ I->getOperand(1).setIndex(CPI);
+ I->getOperand(2).setImm(PCLabelId);
+ break;
+ }
+ }
+ if (!I->isBundledWithSucc())
+ break;
+ ++I;
+ }
+ return Cloned;
+}
+
+bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
+ const MachineInstr &MI1,
+ const MachineRegisterInfo *MRI) const {
+ unsigned Opcode = MI0.getOpcode();
+ if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic ||
+ Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic ||
+ Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
+ Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
+ Opcode == ARM::t2MOV_ga_pcrel) {
+ if (MI1.getOpcode() != Opcode)
+ return false;
+ if (MI0.getNumOperands() != MI1.getNumOperands())
+ return false;
+
+ const MachineOperand &MO0 = MI0.getOperand(1);
+ const MachineOperand &MO1 = MI1.getOperand(1);
+ if (MO0.getOffset() != MO1.getOffset())
+ return false;
+
+ if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
+ Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
+ Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
+ Opcode == ARM::t2MOV_ga_pcrel)
+ // Ignore the PC labels.
+ return MO0.getGlobal() == MO1.getGlobal();
+
+ const MachineFunction *MF = MI0.getParent()->getParent();
+ const MachineConstantPool *MCP = MF->getConstantPool();
+ int CPI0 = MO0.getIndex();
+ int CPI1 = MO1.getIndex();
+ const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
+ const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
+ bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
+ bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
+ if (isARMCP0 && isARMCP1) {
+ ARMConstantPoolValue *ACPV0 =
+ static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
+ ARMConstantPoolValue *ACPV1 =
+ static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
+ return ACPV0->hasSameValue(ACPV1);
+ } else if (!isARMCP0 && !isARMCP1) {
+ return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
+ }
+ return false;
+ } else if (Opcode == ARM::PICLDR) {
+ if (MI1.getOpcode() != Opcode)
+ return false;
+ if (MI0.getNumOperands() != MI1.getNumOperands())
+ return false;
+
+ Register Addr0 = MI0.getOperand(1).getReg();
+ Register Addr1 = MI1.getOperand(1).getReg();
+ if (Addr0 != Addr1) {
+ if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual())
+ return false;
+
+ // This assumes SSA form.
+ MachineInstr *Def0 = MRI->getVRegDef(Addr0);
+ MachineInstr *Def1 = MRI->getVRegDef(Addr1);
+ // Check if the loaded value, e.g. a constantpool of a global address, are
+ // the same.
+ if (!produceSameValue(*Def0, *Def1, MRI))
+ return false;
+ }
+
+ for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
+ // %12 = PICLDR %11, 0, 14, %noreg
+ const MachineOperand &MO0 = MI0.getOperand(i);
+ const MachineOperand &MO1 = MI1.getOperand(i);
+ if (!MO0.isIdenticalTo(MO1))
+ return false;
+ }
+ return true;
+ }
+
+ return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
+}
+
+/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
+/// determine if two loads are loading from the same base address. It should
+/// only return true if the base pointers are the same and the only differences
+/// between the two addresses is the offset. It also returns the offsets by
+/// reference.
+///
+/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
+/// is permanently disabled.
+bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
+ int64_t &Offset1,
+ int64_t &Offset2) const {
+ // Don't worry about Thumb: just ARM and Thumb2.
+ if (Subtarget.isThumb1Only()) return false;
+
+ if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
+ return false;
+
+ auto IsLoadOpcode = [&](unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ return false;
+ case ARM::LDRi12:
+ case ARM::LDRBi12:
+ case ARM::LDRD:
+ case ARM::LDRH:
+ case ARM::LDRSB:
+ case ARM::LDRSH:
+ case ARM::VLDRD:
+ case ARM::VLDRS:
+ case ARM::t2LDRi8:
+ case ARM::t2LDRBi8:
+ case ARM::t2LDRDi8:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRi12:
+ case ARM::t2LDRBi12:
+ case ARM::t2LDRSHi12:
+ return true;
+ }
+ };
+
+ if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
+ !IsLoadOpcode(Load2->getMachineOpcode()))
+ return false;
+
+ // Check if base addresses and chain operands match.
+ if (Load1->getOperand(0) != Load2->getOperand(0) ||
+ Load1->getOperand(4) != Load2->getOperand(4))
+ return false;
+
+ // Index should be Reg0.
+ if (Load1->getOperand(3) != Load2->getOperand(3))
+ return false;
+
+ // Determine the offsets.
+ if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
+ isa<ConstantSDNode>(Load2->getOperand(1))) {
+ Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
+ Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
+ return true;
+ }
+
+ return false;
+}
+
+/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
+/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
+/// be scheduled togther. On some targets if two loads are loading from
+/// addresses in the same cache line, it's better if they are scheduled
+/// together. This function takes two integers that represent the load offsets
+/// from the common base address. It returns true if it decides it's desirable
+/// to schedule the two loads together. "NumLoads" is the number of loads that
+/// have already been scheduled after Load1.
+///
+/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
+/// is permanently disabled.
+bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
+ int64_t Offset1, int64_t Offset2,
+ unsigned NumLoads) const {
+ // Don't worry about Thumb: just ARM and Thumb2.
+ if (Subtarget.isThumb1Only()) return false;
+
+ assert(Offset2 > Offset1);
+
+ if ((Offset2 - Offset1) / 8 > 64)
+ return false;
+
+ // Check if the machine opcodes are different. If they are different
+ // then we consider them to not be of the same base address,
+ // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
+ // In this case, they are considered to be the same because they are different
+ // encoding forms of the same basic instruction.
+ if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
+ !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
+ Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
+ (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
+ Load2->getMachineOpcode() == ARM::t2LDRBi8)))
+ return false; // FIXME: overly conservative?
+
+ // Four loads in a row should be sufficient.
+ if (NumLoads >= 3)
+ return false;
+
+ return true;
+}
+
+bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
+ const MachineBasicBlock *MBB,
+ const MachineFunction &MF) const {
+ // Debug info is never a scheduling boundary. It's necessary to be explicit
+ // due to the special treatment of IT instructions below, otherwise a
+ // dbg_value followed by an IT will result in the IT instruction being
+ // considered a scheduling hazard, which is wrong. It should be the actual
+ // instruction preceding the dbg_value instruction(s), just like it is
+ // when debug info is not present.
+ if (MI.isDebugInstr())
+ return false;
+
+ // Terminators and labels can't be scheduled around.
+ if (MI.isTerminator() || MI.isPosition())
+ return true;
+
+ // INLINEASM_BR can jump to another block
+ if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
+ return true;
+
+ if (isSEHInstruction(MI))
+ return true;
+
+ // Treat the start of the IT block as a scheduling boundary, but schedule
+ // t2IT along with all instructions following it.
+ // FIXME: This is a big hammer. But the alternative is to add all potential
+ // true and anti dependencies to IT block instructions as implicit operands
+ // to the t2IT instruction. The added compile time and complexity does not
+ // seem worth it.
+ MachineBasicBlock::const_iterator I = MI;
+ // Make sure to skip any debug instructions
+ while (++I != MBB->end() && I->isDebugInstr())
+ ;
+ if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
+ return true;
+
+ // Don't attempt to schedule around any instruction that defines
+ // a stack-oriented pointer, as it's unlikely to be profitable. This
+ // saves compile time, because it doesn't require every single
+ // stack slot reference to depend on the instruction that does the
+ // modification.
+ // Calls don't actually change the stack pointer, even if they have imp-defs.
+ // No ARM calling conventions change the stack pointer. (X86 calling
+ // conventions sometimes do).
+ if (!MI.isCall() && MI.definesRegister(ARM::SP, /*TRI=*/nullptr))
+ return true;
+
+ return false;
+}
+
+bool ARMBaseInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles, unsigned ExtraPredCycles,
+ BranchProbability Probability) const {
+ if (!NumCycles)
+ return false;
+
+ // If we are optimizing for size, see if the branch in the predecessor can be
+ // lowered to cbn?z by the constant island lowering pass, and return false if
+ // so. This results in a shorter instruction sequence.
+ if (MBB.getParent()->getFunction().hasOptSize()) {
+ MachineBasicBlock *Pred = *MBB.pred_begin();
+ if (!Pred->empty()) {
+ MachineInstr *LastMI = &*Pred->rbegin();
+ if (LastMI->getOpcode() == ARM::t2Bcc) {
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
+ if (CmpMI)
+ return false;
+ }
+ }
+ }
+ return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
+ MBB, 0, 0, Probability);
+}
+
+bool ARMBaseInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &TBB,
+ unsigned TCycles, unsigned TExtra,
+ MachineBasicBlock &FBB,
+ unsigned FCycles, unsigned FExtra,
+ BranchProbability Probability) const {
+ if (!TCycles)
+ return false;
+
+ // In thumb code we often end up trading one branch for a IT block, and
+ // if we are cloning the instruction can increase code size. Prevent
+ // blocks with multiple predecesors from being ifcvted to prevent this
+ // cloning.
+ if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
+ if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
+ return false;
+ }
+
+ // Attempt to estimate the relative costs of predication versus branching.
+ // Here we scale up each component of UnpredCost to avoid precision issue when
+ // scaling TCycles/FCycles by Probability.
+ const unsigned ScalingUpFactor = 1024;
+
+ unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
+ unsigned UnpredCost;
+ if (!Subtarget.hasBranchPredictor()) {
+ // When we don't have a branch predictor it's always cheaper to not take a
+ // branch than take it, so we have to take that into account.
+ unsigned NotTakenBranchCost = 1;
+ unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
+ unsigned TUnpredCycles, FUnpredCycles;
+ if (!FCycles) {
+ // Triangle: TBB is the fallthrough
+ TUnpredCycles = TCycles + NotTakenBranchCost;
+ FUnpredCycles = TakenBranchCost;
+ } else {
+ // Diamond: TBB is the block that is branched to, FBB is the fallthrough
+ TUnpredCycles = TCycles + TakenBranchCost;
+ FUnpredCycles = FCycles + NotTakenBranchCost;
+ // The branch at the end of FBB will disappear when it's predicated, so
+ // discount it from PredCost.
+ PredCost -= 1 * ScalingUpFactor;
+ }
+ // The total cost is the cost of each path scaled by their probabilites
+ unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
+ unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
+ UnpredCost = TUnpredCost + FUnpredCost;
+ // When predicating assume that the first IT can be folded away but later
+ // ones cost one cycle each
+ if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
+ PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
+ }
+ } else {
+ unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
+ unsigned FUnpredCost =
+ Probability.getCompl().scale(FCycles * ScalingUpFactor);
+ UnpredCost = TUnpredCost + FUnpredCost;
+ UnpredCost += 1 * ScalingUpFactor; // The branch itself
+ UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
+ }
+
+ return PredCost <= UnpredCost;
+}
+
+unsigned
+ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
+ unsigned NumInsts) const {
+ // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
+ // ARM has a condition code field in every predicable instruction, using it
+ // doesn't change code size.
+ if (!Subtarget.isThumb2())
+ return 0;
+
+ // It's possible that the size of the IT is restricted to a single block.
+ unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
+ return divideCeil(NumInsts, MaxInsts) * 2;
+}
+
+unsigned
+ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
+ // If this branch is likely to be folded into the comparison to form a
+ // CB(N)Z, then removing it won't reduce code size at all, because that will
+ // just replace the CB(N)Z with a CMP.
+ if (MI.getOpcode() == ARM::t2Bcc &&
+ findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
+ return 0;
+
+ unsigned Size = getInstSizeInBytes(MI);
+
+ // For Thumb2, all branches are 32-bit instructions during the if conversion
+ // pass, but may be replaced with 16-bit instructions during size reduction.
+ // Since the branches considered by if conversion tend to be forward branches
+ // over small basic blocks, they are very likely to be in range for the
+ // narrow instructions, so we assume the final code size will be half what it
+ // currently is.
+ if (Subtarget.isThumb2())
+ Size /= 2;
+
+ return Size;
+}
+
+bool
+ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
+ MachineBasicBlock &FMBB) const {
+ // Reduce false anti-dependencies to let the target's out-of-order execution
+ // engine do its thing.
+ return Subtarget.isProfitableToUnpredicate();
+}
+
+/// getInstrPredicate - If instruction is predicated, returns its predicate
+/// condition, otherwise returns AL. It also returns the condition code
+/// register by reference.
+ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
+ Register &PredReg) {
+ int PIdx = MI.findFirstPredOperandIdx();
+ if (PIdx == -1) {
+ PredReg = 0;
+ return ARMCC::AL;
+ }
+
+ PredReg = MI.getOperand(PIdx+1).getReg();
+ return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
+}
+
+unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
+ if (Opc == ARM::B)
+ return ARM::Bcc;
+ if (Opc == ARM::tB)
+ return ARM::tBcc;
+ if (Opc == ARM::t2B)
+ return ARM::t2Bcc;
+
+ llvm_unreachable("Unknown unconditional branch opcode!");
+}
+
+MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
+ bool NewMI,
+ unsigned OpIdx1,
+ unsigned OpIdx2) const {
+ switch (MI.getOpcode()) {
+ case ARM::MOVCCr:
+ case ARM::t2MOVCCr: {
+ // MOVCC can be commuted by inverting the condition.
+ Register PredReg;
+ ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
+ // MOVCC AL can't be inverted. Shouldn't happen.
+ if (CC == ARMCC::AL || PredReg != ARM::CPSR)
+ return nullptr;
+ MachineInstr *CommutedMI =
+ TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
+ if (!CommutedMI)
+ return nullptr;
+ // After swapping the MOVCC operands, also invert the condition.
+ CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
+ .setImm(ARMCC::getOppositeCondition(CC));
+ return CommutedMI;
+ }
+ }
+ return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
+}
+
+/// Identify instructions that can be folded into a MOVCC instruction, and
+/// return the defining instruction.
+MachineInstr *
+ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
+ const TargetInstrInfo *TII) const {
+ if (!Reg.isVirtual())
+ return nullptr;
+ if (!MRI.hasOneNonDBGUse(Reg))
+ return nullptr;
+ MachineInstr *MI = MRI.getVRegDef(Reg);
+ if (!MI)
+ return nullptr;
+ // Check if MI can be predicated and folded into the MOVCC.
+ if (!isPredicable(*MI))
+ return nullptr;
+ // Check if MI has any non-dead defs or physreg uses. This also detects
+ // predicated instructions which will be reading CPSR.
+ for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) {
+ // Reject frame index operands, PEI can't handle the predicated pseudos.
+ if (MO.isFI() || MO.isCPI() || MO.isJTI())
+ return nullptr;
+ if (!MO.isReg())
+ continue;
+ // MI can't have any tied operands, that would conflict with predication.
+ if (MO.isTied())
+ return nullptr;
+ if (MO.getReg().isPhysical())
+ return nullptr;
+ if (MO.isDef() && !MO.isDead())
+ return nullptr;
+ }
+ bool DontMoveAcrossStores = true;
+ if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
+ return nullptr;
+ return MI;
+}
+
+bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
+ SmallVectorImpl<MachineOperand> &Cond,
+ unsigned &TrueOp, unsigned &FalseOp,
+ bool &Optimizable) const {
+ assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
+ "Unknown select instruction");
+ // MOVCC operands:
+ // 0: Def.
+ // 1: True use.
+ // 2: False use.
+ // 3: Condition code.
+ // 4: CPSR use.
+ TrueOp = 1;
+ FalseOp = 2;
+ Cond.push_back(MI.getOperand(3));
+ Cond.push_back(MI.getOperand(4));
+ // We can always fold a def.
+ Optimizable = true;
+ return false;
+}
+
+MachineInstr *
+ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
+ SmallPtrSetImpl<MachineInstr *> &SeenMIs,
+ bool PreferFalse) const {
+ assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
+ "Unknown select instruction");
+ MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
+ MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
+ bool Invert = !DefMI;
+ if (!DefMI)
+ DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
+ if (!DefMI)
+ return nullptr;
+
+ // Find new register class to use.
+ MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
+ MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2);
+ Register DestReg = MI.getOperand(0).getReg();
+ const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg());
+ const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg());
+ if (!MRI.constrainRegClass(DestReg, FalseClass))
+ return nullptr;
+ if (!MRI.constrainRegClass(DestReg, TrueClass))
+ return nullptr;
+
+ // Create a new predicated version of DefMI.
+ // Rfalse is the first use.
+ MachineInstrBuilder NewMI =
+ BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);
+
+ // Copy all the DefMI operands, excluding its (null) predicate.
+ const MCInstrDesc &DefDesc = DefMI->getDesc();
+ for (unsigned i = 1, e = DefDesc.getNumOperands();
+ i != e && !DefDesc.operands()[i].isPredicate(); ++i)
+ NewMI.add(DefMI->getOperand(i));
+
+ unsigned CondCode = MI.getOperand(3).getImm();
+ if (Invert)
+ NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
+ else
+ NewMI.addImm(CondCode);
+ NewMI.add(MI.getOperand(4));
+
+ // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
+ if (NewMI->hasOptionalDef())
+ NewMI.add(condCodeOp());
+
+ // The output register value when the predicate is false is an implicit
+ // register operand tied to the first def.
+ // The tie makes the register allocator ensure the FalseReg is allocated the
+ // same register as operand 0.
+ FalseReg.setImplicit();
+ NewMI.add(FalseReg);
+ NewMI->tieOperands(0, NewMI->getNumOperands() - 1);
+
+ // Update SeenMIs set: register newly created MI and erase removed DefMI.
+ SeenMIs.insert(NewMI);
+ SeenMIs.erase(DefMI);
+
+ // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
+ // DefMI would be invalid when tranferred inside the loop. Checking for a
+ // loop is expensive, but at least remove kill flags if they are in different
+ // BBs.
+ if (DefMI->getParent() != MI.getParent())
+ NewMI->clearKillInfo();
+
+ // The caller will erase MI, but not DefMI.
+ DefMI->eraseFromParent();
+ return NewMI;
+}
+
+/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
+/// instruction is encoded with an 'S' bit is determined by the optional CPSR
+/// def operand.
+///
+/// This will go away once we can teach tblgen how to set the optional CPSR def
+/// operand itself.
+struct AddSubFlagsOpcodePair {
+ uint16_t PseudoOpc;
+ uint16_t MachineOpc;
+};
+
+static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
+ {ARM::ADDSri, ARM::ADDri},
+ {ARM::ADDSrr, ARM::ADDrr},
+ {ARM::ADDSrsi, ARM::ADDrsi},
+ {ARM::ADDSrsr, ARM::ADDrsr},
+
+ {ARM::SUBSri, ARM::SUBri},
+ {ARM::SUBSrr, ARM::SUBrr},
+ {ARM::SUBSrsi, ARM::SUBrsi},
+ {ARM::SUBSrsr, ARM::SUBrsr},
+
+ {ARM::RSBSri, ARM::RSBri},
+ {ARM::RSBSrsi, ARM::RSBrsi},
+ {ARM::RSBSrsr, ARM::RSBrsr},
+
+ {ARM::tADDSi3, ARM::tADDi3},
+ {ARM::tADDSi8, ARM::tADDi8},
+ {ARM::tADDSrr, ARM::tADDrr},
+ {ARM::tADCS, ARM::tADC},
+
+ {ARM::tSUBSi3, ARM::tSUBi3},
+ {ARM::tSUBSi8, ARM::tSUBi8},
+ {ARM::tSUBSrr, ARM::tSUBrr},
+ {ARM::tSBCS, ARM::tSBC},
+ {ARM::tRSBS, ARM::tRSB},
+ {ARM::tLSLSri, ARM::tLSLri},
+
+ {ARM::t2ADDSri, ARM::t2ADDri},
+ {ARM::t2ADDSrr, ARM::t2ADDrr},
+ {ARM::t2ADDSrs, ARM::t2ADDrs},
+
+ {ARM::t2SUBSri, ARM::t2SUBri},
+ {ARM::t2SUBSrr, ARM::t2SUBrr},
+ {ARM::t2SUBSrs, ARM::t2SUBrs},
+
+ {ARM::t2RSBSri, ARM::t2RSBri},
+ {ARM::t2RSBSrs, ARM::t2RSBrs},
+};
+
+unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
+ for (const auto &Entry : AddSubFlagsOpcodeMap)
+ if (OldOpc == Entry.PseudoOpc)
+ return Entry.MachineOpc;
+ return 0;
+}
+
+void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator &MBBI,
+ const DebugLoc &dl, Register DestReg,
+ Register BaseReg, int NumBytes,
+ ARMCC::CondCodes Pred, Register PredReg,
+ const ARMBaseInstrInfo &TII,
+ unsigned MIFlags) {
+ if (NumBytes == 0 && DestReg != BaseReg) {
+ BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
+ .addReg(BaseReg, RegState::Kill)
+ .add(predOps(Pred, PredReg))
+ .add(condCodeOp())
+ .setMIFlags(MIFlags);
+ return;
+ }
+
+ bool isSub = NumBytes < 0;
+ if (isSub) NumBytes = -NumBytes;
+
+ while (NumBytes) {
+ unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
+ unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(0xFF, RotAmt);
+ assert(ThisVal && "Didn't extract field correctly");
+
+ // We will handle these bits from offset, clear them.
+ NumBytes &= ~ThisVal;
+
+ assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
+
+ // Build the new ADD / SUB.
+ unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
+ BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
+ .addReg(BaseReg, RegState::Kill)
+ .addImm(ThisVal)
+ .add(predOps(Pred, PredReg))
+ .add(condCodeOp())
+ .setMIFlags(MIFlags);
+ BaseReg = DestReg;
+ }
+}
+
+bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
+ MachineFunction &MF, MachineInstr *MI,
+ unsigned NumBytes) {
+ // This optimisation potentially adds lots of load and store
+ // micro-operations, it's only really a great benefit to code-size.
+ if (!Subtarget.hasMinSize())
+ return false;
+
+ // If only one register is pushed/popped, LLVM can use an LDR/STR
+ // instead. We can't modify those so make sure we're dealing with an
+ // instruction we understand.
+ bool IsPop = isPopOpcode(MI->getOpcode());
+ bool IsPush = isPushOpcode(MI->getOpcode());
+ if (!IsPush && !IsPop)
+ return false;
+
+ bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
+ MI->getOpcode() == ARM::VLDMDIA_UPD;
+ bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
+ MI->getOpcode() == ARM::tPOP ||
+ MI->getOpcode() == ARM::tPOP_RET;
+
+ assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
+ MI->getOperand(1).getReg() == ARM::SP)) &&
+ "trying to fold sp update into non-sp-updating push/pop");
+
+ // The VFP push & pop act on D-registers, so we can only fold an adjustment
+ // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
+ // if this is violated.
+ if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
+ return false;
+
+ // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
+ // pred) so the list starts at 4. Thumb1 starts after the predicate.
+ int RegListIdx = IsT1PushPop ? 2 : 4;
+
+ // Calculate the space we'll need in terms of registers.
+ unsigned RegsNeeded;
+ const TargetRegisterClass *RegClass;
+ if (IsVFPPushPop) {
+ RegsNeeded = NumBytes / 8;
+ RegClass = &ARM::DPRRegClass;
+ } else {
+ RegsNeeded = NumBytes / 4;
+ RegClass = &ARM::GPRRegClass;
+ }
+
+ // We're going to have to strip all list operands off before
+ // re-adding them since the order matters, so save the existing ones
+ // for later.
+ SmallVector<MachineOperand, 4> RegList;
+
+ // We're also going to need the first register transferred by this
+ // instruction, which won't necessarily be the first register in the list.
+ unsigned FirstRegEnc = -1;
+
+ const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
+ for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
+ MachineOperand &MO = MI->getOperand(i);
+ RegList.push_back(MO);
+
+ if (MO.isReg() && !MO.isImplicit() &&
+ TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
+ FirstRegEnc = TRI->getEncodingValue(MO.getReg());
+ }
+
+ const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);
+
+ // Now try to find enough space in the reglist to allocate NumBytes.
+ for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
+ --CurRegEnc) {
+ unsigned CurReg = RegClass->getRegister(CurRegEnc);
+ if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
+ continue;
+ if (!IsPop) {
+ // Pushing any register is completely harmless, mark the register involved
+ // as undef since we don't care about its value and must not restore it
+ // during stack unwinding.
+ RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
+ false, false, true));
+ --RegsNeeded;
+ continue;
+ }
+
+ // However, we can only pop an extra register if it's not live. For
+ // registers live within the function we might clobber a return value
+ // register; the other way a register can be live here is if it's
+ // callee-saved.
+ if (isCalleeSavedRegister(CurReg, CSRegs) ||
+ MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
+ MachineBasicBlock::LQR_Dead) {
+ // VFP pops don't allow holes in the register list, so any skip is fatal
+ // for our transformation. GPR pops do, so we should just keep looking.
+ if (IsVFPPushPop)
+ return false;
+ else
+ continue;
+ }
+
+ // Mark the unimportant registers as <def,dead> in the POP.
+ RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
+ true));
+ --RegsNeeded;
+ }
+
+ if (RegsNeeded > 0)
+ return false;
+
+ // Finally we know we can profitably perform the optimisation so go
+ // ahead: strip all existing registers off and add them back again
+ // in the right order.
+ for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
+ MI->removeOperand(i);
+
+ // Add the complete list back in.
+ MachineInstrBuilder MIB(MF, &*MI);
+ for (const MachineOperand &MO : llvm::reverse(RegList))
+ MIB.add(MO);
+
+ return true;
+}
+
+bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
+ Register FrameReg, int &Offset,
+ const ARMBaseInstrInfo &TII) {
+ unsigned Opcode = MI.getOpcode();
+ const MCInstrDesc &Desc = MI.getDesc();
+ unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
+ bool isSub = false;
+
+ // Memory operands in inline assembly always use AddrMode2.
+ if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
+ AddrMode = ARMII::AddrMode2;
+
+ if (Opcode == ARM::ADDri) {
+ Offset += MI.getOperand(FrameRegIdx+1).getImm();
+ if (Offset == 0) {
+ // Turn it into a move.
+ MI.setDesc(TII.get(ARM::MOVr));
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.removeOperand(FrameRegIdx+1);
+ Offset = 0;
+ return true;
+ } else if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ MI.setDesc(TII.get(ARM::SUBri));
+ }
+
+ // Common case: small offset, fits into instruction.
+ if (ARM_AM::getSOImmVal(Offset) != -1) {
+ // Replace the FrameIndex with sp / fp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, pull as much of the immedidate into this ADDri/SUBri
+ // as possible.
+ unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
+ unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(0xFF, RotAmt);
+
+ // We will handle these bits from offset, clear them.
+ Offset &= ~ThisImmVal;
+
+ // Get the properly encoded SOImmVal field.
+ assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
+ "Bit extraction didn't work?");
+ MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
+ } else {
+ unsigned ImmIdx = 0;
+ int InstrOffs = 0;
+ unsigned NumBits = 0;
+ unsigned Scale = 1;
+ switch (AddrMode) {
+ case ARMII::AddrMode_i12:
+ ImmIdx = FrameRegIdx + 1;
+ InstrOffs = MI.getOperand(ImmIdx).getImm();
+ NumBits = 12;
+ break;
+ case ARMII::AddrMode2:
+ ImmIdx = FrameRegIdx+2;
+ InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 12;
+ break;
+ case ARMII::AddrMode3:
+ ImmIdx = FrameRegIdx+2;
+ InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ break;
+ case ARMII::AddrMode4:
+ case ARMII::AddrMode6:
+ // Can't fold any offset even if it's zero.
+ return false;
+ case ARMII::AddrMode5:
+ ImmIdx = FrameRegIdx+1;
+ InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ Scale = 4;
+ break;
+ case ARMII::AddrMode5FP16:
+ ImmIdx = FrameRegIdx+1;
+ InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
+ if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
+ InstrOffs *= -1;
+ NumBits = 8;
+ Scale = 2;
+ break;
+ case ARMII::AddrModeT2_i7:
+ case ARMII::AddrModeT2_i7s2:
+ case ARMII::AddrModeT2_i7s4:
+ ImmIdx = FrameRegIdx+1;
+ InstrOffs = MI.getOperand(ImmIdx).getImm();
+ NumBits = 7;
+ Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
+ AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
+ break;
+ default:
+ llvm_unreachable("Unsupported addressing mode!");
+ }
+
+ Offset += InstrOffs * Scale;
+ assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
+ if (Offset < 0) {
+ Offset = -Offset;
+ isSub = true;
+ }
+
+ // Attempt to fold address comp. if opcode has offset bits
+ if (NumBits > 0) {
+ // Common case: small offset, fits into instruction.
+ MachineOperand &ImmOp = MI.getOperand(ImmIdx);
+ int ImmedOffset = Offset / Scale;
+ unsigned Mask = (1 << NumBits) - 1;
+ if ((unsigned)Offset <= Mask * Scale) {
+ // Replace the FrameIndex with sp
+ MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
+ // FIXME: When addrmode2 goes away, this will simplify (like the
+ // T2 version), as the LDR.i12 versions don't need the encoding
+ // tricks for the offset value.
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode_i12)
+ ImmedOffset = -ImmedOffset;
+ else
+ ImmedOffset |= 1 << NumBits;
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset = 0;
+ return true;
+ }
+
+ // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
+ ImmedOffset = ImmedOffset & Mask;
+ if (isSub) {
+ if (AddrMode == ARMII::AddrMode_i12)
+ ImmedOffset = -ImmedOffset;
+ else
+ ImmedOffset |= 1 << NumBits;
+ }
+ ImmOp.ChangeToImmediate(ImmedOffset);
+ Offset &= ~(Mask*Scale);
+ }
+ }
+
+ Offset = (isSub) ? -Offset : Offset;
+ return Offset == 0;
+}
+
+/// analyzeCompare - For a comparison instruction, return the source registers
+/// in SrcReg and SrcReg2 if having two register operands, and the value it
+/// compares against in CmpValue. Return true if the comparison instruction
+/// can be analyzed.
+bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
+ Register &SrcReg2, int64_t &CmpMask,
+ int64_t &CmpValue) const {
+ switch (MI.getOpcode()) {
+ default: break;
+ case ARM::CMPri:
+ case ARM::t2CMPri:
+ case ARM::tCMPi8:
+ SrcReg = MI.getOperand(0).getReg();
+ SrcReg2 = 0;
+ CmpMask = ~0;
+ CmpValue = MI.getOperand(1).getImm();
+ return true;
+ case ARM::CMPrr:
+ case ARM::t2CMPrr:
+ case ARM::tCMPr:
+ SrcReg = MI.getOperand(0).getReg();
+ SrcReg2 = MI.getOperand(1).getReg();
+ CmpMask = ~0;
+ CmpValue = 0;
+ return true;
+ case ARM::TSTri:
+ case ARM::t2TSTri:
+ SrcReg = MI.getOperand(0).getReg();
+ SrcReg2 = 0;
+ CmpMask = MI.getOperand(1).getImm();
+ CmpValue = 0;
+ return true;
+ }
+
+ return false;
+}
+
+/// isSuitableForMask - Identify a suitable 'and' instruction that
+/// operates on the given source register and applies the same mask
+/// as a 'tst' instruction. Provide a limited look-through for copies.
+/// When successful, MI will hold the found instruction.
+static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
+ int CmpMask, bool CommonUse) {
+ switch (MI->getOpcode()) {
+ case ARM::ANDri:
+ case ARM::t2ANDri:
+ if (CmpMask != MI->getOperand(2).getImm())
+ return false;
+ if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
+ return true;
+ break;
+ }
+
+ return false;
+}
+
+/// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
+/// the condition code if we modify the instructions such that flags are
+/// set by ADD(a,b,X).
+inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
+ switch (CC) {
+ default: return ARMCC::AL;
+ case ARMCC::HS: return ARMCC::LO;
+ case ARMCC::LO: return ARMCC::HS;
+ case ARMCC::VS: return ARMCC::VS;
+ case ARMCC::VC: return ARMCC::VC;
+ }
+}
+
+/// isRedundantFlagInstr - check whether the first instruction, whose only
+/// purpose is to update flags, can be made redundant.
+/// CMPrr can be made redundant by SUBrr if the operands are the same.
+/// CMPri can be made redundant by SUBri if the operands are the same.
+/// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
+/// This function can be extended later on.
+inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
+ Register SrcReg, Register SrcReg2,
+ int64_t ImmValue,
+ const MachineInstr *OI,
+ bool &IsThumb1) {
+ if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
+ (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
+ ((OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getReg() == SrcReg2) ||
+ (OI->getOperand(1).getReg() == SrcReg2 &&
+ OI->getOperand(2).getReg() == SrcReg))) {
+ IsThumb1 = false;
+ return true;
+ }
+
+ if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
+ ((OI->getOperand(2).getReg() == SrcReg &&
+ OI->getOperand(3).getReg() == SrcReg2) ||
+ (OI->getOperand(2).getReg() == SrcReg2 &&
+ OI->getOperand(3).getReg() == SrcReg))) {
+ IsThumb1 = true;
+ return true;
+ }
+
+ if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
+ (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
+ OI->getOperand(1).getReg() == SrcReg &&
+ OI->getOperand(2).getImm() == ImmValue) {
+ IsThumb1 = false;
+ return true;
+ }
+
+ if (CmpI->getOpcode() == ARM::tCMPi8 &&
+ (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
+ OI->getOperand(2).getReg() == SrcReg &&
+ OI->getOperand(3).getImm() == ImmValue) {
+ IsThumb1 = true;
+ return true;
+ }
+
+ if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
+ (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
+ OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
+ OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
+ OI->getOperand(0).getReg() == SrcReg &&
+ OI->getOperand(1).getReg() == SrcReg2) {
+ IsThumb1 = false;
+ return true;
+ }
+
+ if (CmpI->getOpcode() == ARM::tCMPr &&
+ (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
+ OI->getOpcode() == ARM::tADDrr) &&
+ OI->getOperand(0).getReg() == SrcReg &&
+ OI->getOperand(2).getReg() == SrcReg2) {
+ IsThumb1 = true;
+ return true;
+ }
+
+ return false;
+}
+
+static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case ARM::tLSLri:
+ case ARM::tLSRri:
+ case ARM::tLSLrr:
+ case ARM::tLSRrr:
+ case ARM::tSUBrr:
+ case ARM::tADDrr:
+ case ARM::tADDi3:
+ case ARM::tADDi8:
+ case ARM::tSUBi3:
+ case ARM::tSUBi8:
+ case ARM::tMUL:
+ case ARM::tADC:
+ case ARM::tSBC:
+ case ARM::tRSB:
+ case ARM::tAND:
+ case ARM::tORR:
+ case ARM::tEOR:
+ case ARM::tBIC:
+ case ARM::tMVN:
+ case ARM::tASRri:
+ case ARM::tASRrr:
+ case ARM::tROR:
+ IsThumb1 = true;
+ [[fallthrough]];
+ case ARM::RSBrr:
+ case ARM::RSBri:
+ case ARM::RSCrr:
+ case ARM::RSCri:
+ case ARM::ADDrr:
+ case ARM::ADDri:
+ case ARM::ADCrr:
+ case ARM::ADCri:
+ case ARM::SUBrr:
+ case ARM::SUBri:
+ case ARM::SBCrr:
+ case ARM::SBCri:
+ case ARM::t2RSBri:
+ case ARM::t2ADDrr:
+ case ARM::t2ADDri:
+ case ARM::t2ADCrr:
+ case ARM::t2ADCri:
+ case ARM::t2SUBrr:
+ case ARM::t2SUBri:
+ case ARM::t2SBCrr:
+ case ARM::t2SBCri:
+ case ARM::ANDrr:
+ case ARM::ANDri:
+ case ARM::ANDrsr:
+ case ARM::ANDrsi:
+ case ARM::t2ANDrr:
+ case ARM::t2ANDri:
+ case ARM::t2ANDrs:
+ case ARM::ORRrr:
+ case ARM::ORRri:
+ case ARM::ORRrsr:
+ case ARM::ORRrsi:
+ case ARM::t2ORRrr:
+ case ARM::t2ORRri:
+ case ARM::t2ORRrs:
+ case ARM::EORrr:
+ case ARM::EORri:
+ case ARM::EORrsr:
+ case ARM::EORrsi:
+ case ARM::t2EORrr:
+ case ARM::t2EORri:
+ case ARM::t2EORrs:
+ case ARM::BICri:
+ case ARM::BICrr:
+ case ARM::BICrsi:
+ case ARM::BICrsr:
+ case ARM::t2BICri:
+ case ARM::t2BICrr:
+ case ARM::t2BICrs:
+ case ARM::t2LSRri:
+ case ARM::t2LSRrr:
+ case ARM::t2LSLri:
+ case ARM::t2LSLrr:
+ case ARM::MOVsr:
+ case ARM::MOVsi:
+ return true;
+ }
+}
+
+/// optimizeCompareInstr - Convert the instruction supplying the argument to the
+/// comparison into one that sets the zero bit in the flags register;
+/// Remove a redundant Compare instruction if an earlier instruction can set the
+/// flags in the same way as Compare.
+/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
+/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
+/// condition code of instructions which use the flags.
+bool ARMBaseInstrInfo::optimizeCompareInstr(
+ MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
+ int64_t CmpValue, const MachineRegisterInfo *MRI) const {
+ // Get the unique definition of SrcReg.
+ MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
+ if (!MI) return false;
+
+ // Masked compares sometimes use the same register as the corresponding 'and'.
+ if (CmpMask != ~0) {
+ if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
+ MI = nullptr;
+ for (MachineRegisterInfo::use_instr_iterator
+ UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
+ UI != UE; ++UI) {
+ if (UI->getParent() != CmpInstr.getParent())
+ continue;
+ MachineInstr *PotentialAND = &*UI;
+ if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
+ isPredicated(*PotentialAND))
+ continue;
+ MI = PotentialAND;
+ break;
+ }
+ if (!MI) return false;
+ }
+ }
+
+ // Get ready to iterate backward from CmpInstr.
+ MachineBasicBlock::iterator I = CmpInstr, E = MI,
+ B = CmpInstr.getParent()->begin();
+
+ // Early exit if CmpInstr is at the beginning of the BB.
+ if (I == B) return false;
+
+ // There are two possible candidates which can be changed to set CPSR:
+ // One is MI, the other is a SUB or ADD instruction.
+ // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
+ // ADDr[ri](r1, r2, X).
+ // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
+ MachineInstr *SubAdd = nullptr;
+ if (SrcReg2 != 0)
+ // MI is not a candidate for CMPrr.
+ MI = nullptr;
+ else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
+ // Conservatively refuse to convert an instruction which isn't in the same
+ // BB as the comparison.
+ // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
+ // Thus we cannot return here.
+ if (CmpInstr.getOpcode() == ARM::CMPri ||
+ CmpInstr.getOpcode() == ARM::t2CMPri ||
+ CmpInstr.getOpcode() == ARM::tCMPi8)
+ MI = nullptr;
+ else
+ return false;
+ }
+
+ bool IsThumb1 = false;
+ if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
+ return false;
+
+ // We also want to do this peephole for cases like this: if (a*b == 0),
+ // and optimise away the CMP instruction from the generated code sequence:
+ // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
+ // resulting from the select instruction, but these MOVS instructions for
+ // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
+ // However, if we only have MOVS instructions in between the CMP and the
+ // other instruction (the MULS in this example), then the CPSR is dead so we
+ // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
+ // reordering and then continue the analysis hoping we can eliminate the
+ // CMP. This peephole works on the vregs, so is still in SSA form. As a
+ // consequence, the movs won't redefine/kill the MUL operands which would
+ // make this reordering illegal.
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ if (MI && IsThumb1) {
+ --I;
+ if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
+ bool CanReorder = true;
+ for (; I != E; --I) {
+ if (I->getOpcode() != ARM::tMOVi8) {
+ CanReorder = false;
+ break;
+ }
+ }
+ if (CanReorder) {
+ MI = MI->removeFromParent();
+ E = CmpInstr;
+ CmpInstr.getParent()->insert(E, MI);
+ }
+ }
+ I = CmpInstr;
+ E = MI;
+ }
+
+ // Check that CPSR isn't set between the comparison instruction and the one we
+ // want to change. At the same time, search for SubAdd.
+ bool SubAddIsThumb1 = false;
+ do {
+ const MachineInstr &Instr = *--I;
+
+ // Check whether CmpInstr can be made redundant by the current instruction.
+ if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
+ SubAddIsThumb1)) {
+ SubAdd = &*I;
+ break;
+ }
+
+ // Allow E (which was initially MI) to be SubAdd but do not search before E.
+ if (I == E)
+ break;
+
+ if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
+ Instr.readsRegister(ARM::CPSR, TRI))
+ // This instruction modifies or uses CPSR after the one we want to
+ // change. We can't do this transformation.
+ return false;
+
+ if (I == B) {
+ // In some cases, we scan the use-list of an instruction for an AND;
+ // that AND is in the same BB, but may not be scheduled before the
+ // corresponding TST. In that case, bail out.
+ //
+ // FIXME: We could try to reschedule the AND.
+ return false;
+ }
+ } while (true);
+
+ // Return false if no candidates exist.
+ if (!MI && !SubAdd)
+ return false;
+
+ // If we found a SubAdd, use it as it will be closer to the CMP
+ if (SubAdd) {
+ MI = SubAdd;
+ IsThumb1 = SubAddIsThumb1;
+ }
+
+ // We can't use a predicated instruction - it doesn't always write the flags.
+ if (isPredicated(*MI))
+ return false;
+
+ // Scan forward for the use of CPSR
+ // When checking against MI: if it's a conditional code that requires
+ // checking of the V bit or C bit, then this is not safe to do.
+ // It is safe to remove CmpInstr if CPSR is redefined or killed.
+ // If we are done with the basic block, we need to check whether CPSR is
+ // live-out.
+ SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
+ OperandsToUpdate;
+ bool isSafe = false;
+ I = CmpInstr;
+ E = CmpInstr.getParent()->end();
+ while (!isSafe && ++I != E) {
+ const MachineInstr &Instr = *I;
+ for (unsigned IO = 0, EO = Instr.getNumOperands();
+ !isSafe && IO != EO; ++IO) {
+ const MachineOperand &MO = Instr.getOperand(IO);
+ if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
+ isSafe = true;
+ break;
+ }
+ if (!MO.isReg() || MO.getReg() != ARM::CPSR)
+ continue;
+ if (MO.isDef()) {
+ isSafe = true;
+ break;
+ }
+ // Condition code is after the operand before CPSR except for VSELs.
+ ARMCC::CondCodes CC;
+ bool IsInstrVSel = true;
+ switch (Instr.getOpcode()) {
+ default:
+ IsInstrVSel = false;
+ CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
+ break;
+ case ARM::VSELEQD:
+ case ARM::VSELEQS:
+ case ARM::VSELEQH:
+ CC = ARMCC::EQ;
+ break;
+ case ARM::VSELGTD:
+ case ARM::VSELGTS:
+ case ARM::VSELGTH:
+ CC = ARMCC::GT;
+ break;
+ case ARM::VSELGED:
+ case ARM::VSELGES:
+ case ARM::VSELGEH:
+ CC = ARMCC::GE;
+ break;
+ case ARM::VSELVSD:
+ case ARM::VSELVSS:
+ case ARM::VSELVSH:
+ CC = ARMCC::VS;
+ break;
+ }
+
+ if (SubAdd) {
+ // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
+ // on CMP needs to be updated to be based on SUB.
+ // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
+ // needs to be modified.
+ // Push the condition code operands to OperandsToUpdate.
+ // If it is safe to remove CmpInstr, the condition code of these
+ // operands will be modified.
+ unsigned Opc = SubAdd->getOpcode();
+ bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
+ Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
+ Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
+ Opc == ARM::tSUBi8;
+ unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
+ if (!IsSub ||
+ (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
+ SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
+ // VSel doesn't support condition code update.
+ if (IsInstrVSel)
+ return false;
+ // Ensure we can swap the condition.
+ ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
+ if (NewCC == ARMCC::AL)
+ return false;
+ OperandsToUpdate.push_back(
+ std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
+ }
+ } else {
+ // No SubAdd, so this is x = <op> y, z; cmp x, 0.
+ switch (CC) {
+ case ARMCC::EQ: // Z
+ case ARMCC::NE: // Z
+ case ARMCC::MI: // N
+ case ARMCC::PL: // N
+ case ARMCC::AL: // none
+ // CPSR can be used multiple times, we should continue.
+ break;
+ case ARMCC::HS: // C
+ case ARMCC::LO: // C
+ case ARMCC::VS: // V
+ case ARMCC::VC: // V
+ case ARMCC::HI: // C Z
+ case ARMCC::LS: // C Z
+ case ARMCC::GE: // N V
+ case ARMCC::LT: // N V
+ case ARMCC::GT: // Z N V
+ case ARMCC::LE: // Z N V
+ // The instruction uses the V bit or C bit which is not safe.
+ return false;
+ }
+ }
+ }
+ }
+
+ // If CPSR is not killed nor re-defined, we should check whether it is
+ // live-out. If it is live-out, do not optimize.
+ if (!isSafe) {
+ MachineBasicBlock *MBB = CmpInstr.getParent();
+ for (MachineBasicBlock *Succ : MBB->successors())
+ if (Succ->isLiveIn(ARM::CPSR))
+ return false;
+ }
+
+ // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
+ // set CPSR so this is represented as an explicit output)
+ if (!IsThumb1) {
+ unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1;
+ MI->getOperand(CPSRRegNum).setReg(ARM::CPSR);
+ MI->getOperand(CPSRRegNum).setIsDef(true);
+ }
+ assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
+ CmpInstr.eraseFromParent();
+
+ // Modify the condition code of operands in OperandsToUpdate.
+ // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
+ // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
+ for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
+ OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
+
+ MI->clearRegisterDeads(ARM::CPSR);
+
+ return true;
+}
+
+bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
+ // Do not sink MI if it might be used to optimize a redundant compare.
+ // We heuristically only look at the instruction immediately following MI to
+ // avoid potentially searching the entire basic block.
+ if (isPredicated(MI))
+ return true;
+ MachineBasicBlock::const_iterator Next = &MI;
+ ++Next;
+ Register SrcReg, SrcReg2;
+ int64_t CmpMask, CmpValue;
+ bool IsThumb1;
+ if (Next != MI.getParent()->end() &&
+ analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
+ isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
+ return false;
+ return true;
+}
+
+bool ARMBaseInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
+ Register Reg,
+ MachineRegisterInfo *MRI) const {
+ // Fold large immediates into add, sub, or, xor.
+ unsigned DefOpc = DefMI.getOpcode();
+ if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm &&
+ DefOpc != ARM::tMOVi32imm)
+ return false;
+ if (!DefMI.getOperand(1).isImm())
+ // Could be t2MOVi32imm @xx
+ return false;
+
+ if (!MRI->hasOneNonDBGUse(Reg))
+ return false;
+
+ const MCInstrDesc &DefMCID = DefMI.getDesc();
+ if (DefMCID.hasOptionalDef()) {
+ unsigned NumOps = DefMCID.getNumOperands();
+ const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
+ if (MO.getReg() == ARM::CPSR && !MO.isDead())
+ // If DefMI defines CPSR and it is not dead, it's obviously not safe
+ // to delete DefMI.
+ return false;
+ }
+
+ const MCInstrDesc &UseMCID = UseMI.getDesc();
+ if (UseMCID.hasOptionalDef()) {
+ unsigned NumOps = UseMCID.getNumOperands();
+ if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
+ // If the instruction sets the flag, do not attempt this optimization
+ // since it may change the semantics of the code.
+ return false;
+ }
+
+ unsigned UseOpc = UseMI.getOpcode();
+ unsigned NewUseOpc = 0;
+ uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
+ uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
+ bool Commute = false;
+ switch (UseOpc) {
+ default: return false;
+ case ARM::SUBrr:
+ case ARM::ADDrr:
+ case ARM::ORRrr:
+ case ARM::EORrr:
+ case ARM::t2SUBrr:
+ case ARM::t2ADDrr:
+ case ARM::t2ORRrr:
+ case ARM::t2EORrr: {
+ Commute = UseMI.getOperand(2).getReg() != Reg;
+ switch (UseOpc) {
+ default: break;
+ case ARM::ADDrr:
+ case ARM::SUBrr:
+ if (UseOpc == ARM::SUBrr && Commute)
+ return false;
+
+ // ADD/SUB are special because they're essentially the same operation, so
+ // we can handle a larger range of immediates.
+ if (ARM_AM::isSOImmTwoPartVal(ImmVal))
+ NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
+ else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
+ ImmVal = -ImmVal;
+ NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
+ } else
+ return false;
+ SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
+ SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
+ break;
+ case ARM::ORRrr:
+ case ARM::EORrr:
+ if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
+ return false;
+ SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
+ SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
+ switch (UseOpc) {
+ default: break;
+ case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
+ case ARM::EORrr: NewUseOpc = ARM::EORri; break;
+ }
+ break;
+ case ARM::t2ADDrr:
+ case ARM::t2SUBrr: {
+ if (UseOpc == ARM::t2SUBrr && Commute)
+ return false;
+
+ // ADD/SUB are special because they're essentially the same operation, so
+ // we can handle a larger range of immediates.
+ const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
+ const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
+ const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
+ if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
+ NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
+ else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
+ ImmVal = -ImmVal;
+ NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
+ } else
+ return false;
+ SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
+ SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
+ break;
+ }
+ case ARM::t2ORRrr:
+ case ARM::t2EORrr:
+ if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
+ return false;
+ SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
+ SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
+ switch (UseOpc) {
+ default: break;
+ case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
+ case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
+ }
+ break;
+ }
+ }
+ }
+
+ unsigned OpIdx = Commute ? 2 : 1;
+ Register Reg1 = UseMI.getOperand(OpIdx).getReg();
+ bool isKill = UseMI.getOperand(OpIdx).isKill();
+ const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
+ Register NewReg = MRI->createVirtualRegister(TRC);
+ BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
+ NewReg)
+ .addReg(Reg1, getKillRegState(isKill))
+ .addImm(SOImmValV1)
+ .add(predOps(ARMCC::AL))
+ .add(condCodeOp());
+ UseMI.setDesc(get(NewUseOpc));
+ UseMI.getOperand(1).setReg(NewReg);
+ UseMI.getOperand(1).setIsKill();
+ UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
+ DefMI.eraseFromParent();
+ // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
+ // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
+ // Then the below code will not be needed, as the input/output register
+ // classes will be rgpr or gprSP.
+ // For now, we fix the UseMI operand explicitly here:
+ switch(NewUseOpc){
+ case ARM::t2ADDspImm:
+ case ARM::t2SUBspImm:
+ case ARM::t2ADDri:
+ case ARM::t2SUBri:
+ MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC);
+ }
+ return true;
+}
+
+static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
+ const MachineInstr &MI) {
+ switch (MI.getOpcode()) {
+ default: {
+ const MCInstrDesc &Desc = MI.getDesc();
+ int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
+ assert(UOps >= 0 && "bad # UOps");
+ return UOps;
+ }
+
+ case ARM::LDRrs:
+ case ARM::LDRBrs:
+ case ARM::STRrs:
+ case ARM::STRBrs: {
+ unsigned ShOpVal = MI.getOperand(3).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 1;
+ return 2;
+ }
+
+ case ARM::LDRH:
+ case ARM::STRH: {
+ if (!MI.getOperand(2).getReg())
+ return 1;
+
+ unsigned ShOpVal = MI.getOperand(3).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 1;
+ return 2;
+ }
+
+ case ARM::LDRSB:
+ case ARM::LDRSH:
+ return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;
+
+ case ARM::LDRSB_POST:
+ case ARM::LDRSH_POST: {
+ Register Rt = MI.getOperand(0).getReg();
+ Register Rm = MI.getOperand(3).getReg();
+ return (Rt == Rm) ? 4 : 3;
+ }
+
+ case ARM::LDR_PRE_REG:
+ case ARM::LDRB_PRE_REG: {
+ Register Rt = MI.getOperand(0).getReg();
+ Register Rm = MI.getOperand(3).getReg();
+ if (Rt == Rm)
+ return 3;
+ unsigned ShOpVal = MI.getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 2;
+ return 3;
+ }
+
+ case ARM::STR_PRE_REG:
+ case ARM::STRB_PRE_REG: {
+ unsigned ShOpVal = MI.getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 2;
+ return 3;
+ }
+
+ case ARM::LDRH_PRE:
+ case ARM::STRH_PRE: {
+ Register Rt = MI.getOperand(0).getReg();
+ Register Rm = MI.getOperand(3).getReg();
+ if (!Rm)
+ return 2;
+ if (Rt == Rm)
+ return 3;
+ return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
+ }
+
+ case ARM::LDR_POST_REG:
+ case ARM::LDRB_POST_REG:
+ case ARM::LDRH_POST: {
+ Register Rt = MI.getOperand(0).getReg();
+ Register Rm = MI.getOperand(3).getReg();
+ return (Rt == Rm) ? 3 : 2;
+ }
+
+ case ARM::LDR_PRE_IMM:
+ case ARM::LDRB_PRE_IMM:
+ case ARM::LDR_POST_IMM:
+ case ARM::LDRB_POST_IMM:
+ case ARM::STRB_POST_IMM:
+ case ARM::STRB_POST_REG:
+ case ARM::STRB_PRE_IMM:
+ case ARM::STRH_POST:
+ case ARM::STR_POST_IMM:
+ case ARM::STR_POST_REG:
+ case ARM::STR_PRE_IMM:
+ return 2;
+
+ case ARM::LDRSB_PRE:
+ case ARM::LDRSH_PRE: {
+ Register Rm = MI.getOperand(3).getReg();
+ if (Rm == 0)
+ return 3;
+ Register Rt = MI.getOperand(0).getReg();
+ if (Rt == Rm)
+ return 4;
+ unsigned ShOpVal = MI.getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ return 3;
+ return 4;
+ }
+
+ case ARM::LDRD: {
+ Register Rt = MI.getOperand(0).getReg();
+ Register Rn = MI.getOperand(2).getReg();
+ Register Rm = MI.getOperand(3).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
+ : 3;
+ return (Rt == Rn) ? 3 : 2;
+ }
+
+ case ARM::STRD: {
+ Register Rm = MI.getOperand(3).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
+ : 3;
+ return 2;
+ }
+
+ case ARM::LDRD_POST:
+ case ARM::t2LDRD_POST:
+ return 3;
+
+ case ARM::STRD_POST:
+ case ARM::t2STRD_POST:
+ return 4;
+
+ case ARM::LDRD_PRE: {
+ Register Rt = MI.getOperand(0).getReg();
+ Register Rn = MI.getOperand(3).getReg();
+ Register Rm = MI.getOperand(4).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
+ : 4;
+ return (Rt == Rn) ? 4 : 3;
+ }
+
+ case ARM::t2LDRD_PRE: {
+ Register Rt = MI.getOperand(0).getReg();
+ Register Rn = MI.getOperand(3).getReg();
+ return (Rt == Rn) ? 4 : 3;
+ }
+
+ case ARM::STRD_PRE: {
+ Register Rm = MI.getOperand(4).getReg();
+ if (Rm)
+ return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
+ : 4;
+ return 3;
+ }
+
+ case ARM::t2STRD_PRE:
+ return 3;
+
+ case ARM::t2LDR_POST:
+ case ARM::t2LDRB_POST:
+ case ARM::t2LDRB_PRE:
+ case ARM::t2LDRSBi12:
+ case ARM::t2LDRSBi8:
+ case ARM::t2LDRSBpci:
+ case ARM::t2LDRSBs:
+ case ARM::t2LDRH_POST:
+ case ARM::t2LDRH_PRE:
+ case ARM::t2LDRSBT:
+ case ARM::t2LDRSB_POST:
+ case ARM::t2LDRSB_PRE:
+ case ARM::t2LDRSH_POST:
+ case ARM::t2LDRSH_PRE:
+ case ARM::t2LDRSHi12:
+ case ARM::t2LDRSHi8:
+ case ARM::t2LDRSHpci:
+ case ARM::t2LDRSHs:
+ return 2;
+
+ case ARM::t2LDRDi8: {
+ Register Rt = MI.getOperand(0).getReg();
+ Register Rn = MI.getOperand(2).getReg();
+ return (Rt == Rn) ? 3 : 2;
+ }
+
+ case ARM::t2STRB_POST:
+ case ARM::t2STRB_PRE:
+ case ARM::t2STRBs:
+ case ARM::t2STRDi8:
+ case ARM::t2STRH_POST:
+ case ARM::t2STRH_PRE:
+ case ARM::t2STRHs:
+ case ARM::t2STR_POST:
+ case ARM::t2STR_PRE:
+ case ARM::t2STRs:
+ return 2;
+ }
+}
+
+// Return the number of 32-bit words loaded by LDM or stored by STM. If this
+// can't be easily determined return 0 (missing MachineMemOperand).
+//
+// FIXME: The current MachineInstr design does not support relying on machine
+// mem operands to determine the width of a memory access. Instead, we expect
+// the target to provide this information based on the instruction opcode and
+// operands. However, using MachineMemOperand is the best solution now for
+// two reasons:
+//
+// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
+// operands. This is much more dangerous than using the MachineMemOperand
+// sizes because CodeGen passes can insert/remove optional machine operands. In
+// fact, it's totally incorrect for preRA passes and appears to be wrong for
+// postRA passes as well.
+//
+// 2) getNumLDMAddresses is only used by the scheduling machine model and any
+// machine model that calls this should handle the unknown (zero size) case.
+//
+// Long term, we should require a target hook that verifies MachineMemOperand
+// sizes during MC lowering. That target hook should be local to MC lowering
+// because we can't ensure that it is aware of other MI forms. Doing this will
+// ensure that MachineMemOperands are correctly propagated through all passes.
+unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
+ unsigned Size = 0;
+ for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
+ E = MI.memoperands_end();
+ I != E; ++I) {
+ Size += (*I)->getSize().getValue();
+ }
+ // FIXME: The scheduler currently can't handle values larger than 16. But
+ // the values can actually go up to 32 for floating-point load/store
+ // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
+ // operations isn't right; we could end up with "extra" memory operands for
+ // various reasons, like tail merge merging two memory operations.
+ return std::min(Size / 4, 16U);
+}
+
+static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
+ unsigned NumRegs) {
+ unsigned UOps = 1 + NumRegs; // 1 for address computation.
+ switch (Opc) {
+ default:
+ break;
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tLDMIA_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD:
+ ++UOps; // One for base register writeback.
+ break;
+ case ARM::LDMIA_RET:
+ case ARM::tPOP_RET:
+ case ARM::t2LDMIA_RET:
+ UOps += 2; // One for base reg wb, one for write to pc.
+ break;
+ }
+ return UOps;
+}
+
+unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
+ const MachineInstr &MI) const {
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ const MCInstrDesc &Desc = MI.getDesc();
+ unsigned Class = Desc.getSchedClass();
+ int ItinUOps = ItinData->getNumMicroOps(Class);
+ if (ItinUOps >= 0) {
+ if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
+ return getNumMicroOpsSwiftLdSt(ItinData, MI);
+
+ return ItinUOps;
+ }
+
+ unsigned Opc = MI.getOpcode();
+ switch (Opc) {
+ default:
+ llvm_unreachable("Unexpected multi-uops instruction!");
+ case ARM::VLDMQIA:
+ case ARM::VSTMQIA:
+ return 2;
+
+ // The number of uOps for load / store multiple are determined by the number
+ // registers.
+ //
+ // On Cortex-A8, each pair of register loads / stores can be scheduled on the
+ // same cycle. The scheduling for the first load / store must be done
+ // separately by assuming the address is not 64-bit aligned.
+ //
+ // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
+ // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
+ // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
+ case ARM::VLDMDIA:
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ case ARM::VSTMDIA:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD: {
+ unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
+ return (NumRegs / 2) + (NumRegs % 2) + 1;
+ }
+
+ case ARM::LDMIA_RET:
+ case ARM::LDMIA:
+ case ARM::LDMDA:
+ case ARM::LDMDB:
+ case ARM::LDMIB:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::STMIA:
+ case ARM::STMDA:
+ case ARM::STMDB:
+ case ARM::STMIB:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tLDMIA:
+ case ARM::tLDMIA_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::tPOP_RET:
+ case ARM::tPOP:
+ case ARM::tPUSH:
+ case ARM::t2LDMIA_RET:
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD: {
+ unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
+ switch (Subtarget.getLdStMultipleTiming()) {
+ case ARMSubtarget::SingleIssuePlusExtras:
+ return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
+ case ARMSubtarget::SingleIssue:
+ // Assume the worst.
+ return NumRegs;
+ case ARMSubtarget::DoubleIssue: {
+ if (NumRegs < 4)
+ return 2;
+ // 4 registers would be issued: 2, 2.
+ // 5 registers would be issued: 2, 2, 1.
+ unsigned UOps = (NumRegs / 2);
+ if (NumRegs % 2)
+ ++UOps;
+ return UOps;
+ }
+ case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
+ unsigned UOps = (NumRegs / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
+ (*MI.memoperands_begin())->getAlign() < Align(8))
+ ++UOps;
+ return UOps;
+ }
+ }
+ }
+ }
+ llvm_unreachable("Didn't find the number of microops");
+}
+
+std::optional<unsigned>
+ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID, unsigned DefClass,
+ unsigned DefIdx, unsigned DefAlign) const {
+ int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ // Def is the address writeback.
+ return ItinData->getOperandCycle(DefClass, DefIdx);
+
+ unsigned DefCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ // (regno / 2) + (regno % 2) + 1
+ DefCycle = RegNo / 2 + 1;
+ if (RegNo % 2)
+ ++DefCycle;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ DefCycle = RegNo;
+ bool isSLoad = false;
+
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ isSLoad = true;
+ break;
+ }
+
+ // If there are odd number of 'S' registers or if it's not 64-bit aligned,
+ // then it takes an extra cycle.
+ if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
+ ++DefCycle;
+ } else {
+ // Assume the worst.
+ DefCycle = RegNo + 2;
+ }
+
+ return DefCycle;
+}
+
+std::optional<unsigned>
+ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &DefMCID, unsigned DefClass,
+ unsigned DefIdx, unsigned DefAlign) const {
+ int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ // Def is the address writeback.
+ return ItinData->getOperandCycle(DefClass, DefIdx);
+
+ unsigned DefCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ // 4 registers would be issued: 1, 2, 1.
+ // 5 registers would be issued: 1, 2, 2.
+ DefCycle = RegNo / 2;
+ if (DefCycle < 1)
+ DefCycle = 1;
+ // Result latency is issue cycle + 2: E2.
+ DefCycle += 2;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ DefCycle = (RegNo / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((RegNo % 2) || DefAlign < 8)
+ ++DefCycle;
+ // Result latency is AGU cycles + 2.
+ DefCycle += 2;
+ } else {
+ // Assume the worst.
+ DefCycle = RegNo + 2;
+ }
+
+ return DefCycle;
+}
+
+std::optional<unsigned>
+ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &UseMCID, unsigned UseClass,
+ unsigned UseIdx, unsigned UseAlign) const {
+ int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ return ItinData->getOperandCycle(UseClass, UseIdx);
+
+ unsigned UseCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ // (regno / 2) + (regno % 2) + 1
+ UseCycle = RegNo / 2 + 1;
+ if (RegNo % 2)
+ ++UseCycle;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ UseCycle = RegNo;
+ bool isSStore = false;
+
+ switch (UseMCID.getOpcode()) {
+ default: break;
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ isSStore = true;
+ break;
+ }
+
+ // If there are odd number of 'S' registers or if it's not 64-bit aligned,
+ // then it takes an extra cycle.
+ if ((isSStore && (RegNo % 2)) || UseAlign < 8)
+ ++UseCycle;
+ } else {
+ // Assume the worst.
+ UseCycle = RegNo + 2;
+ }
+
+ return UseCycle;
+}
+
+std::optional<unsigned>
+ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
+ const MCInstrDesc &UseMCID, unsigned UseClass,
+ unsigned UseIdx, unsigned UseAlign) const {
+ int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
+ if (RegNo <= 0)
+ return ItinData->getOperandCycle(UseClass, UseIdx);
+
+ unsigned UseCycle;
+ if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
+ UseCycle = RegNo / 2;
+ if (UseCycle < 2)
+ UseCycle = 2;
+ // Read in E3.
+ UseCycle += 2;
+ } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
+ UseCycle = (RegNo / 2);
+ // If there are odd number of registers or if it's not 64-bit aligned,
+ // then it takes an extra AGU (Address Generation Unit) cycle.
+ if ((RegNo % 2) || UseAlign < 8)
+ ++UseCycle;
+ } else {
+ // Assume the worst.
+ UseCycle = 1;
+ }
+ return UseCycle;
+}
+
+std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
+ const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID,
+ unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID,
+ unsigned UseIdx, unsigned UseAlign) const {
+ unsigned DefClass = DefMCID.getSchedClass();
+ unsigned UseClass = UseMCID.getSchedClass();
+
+ if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
+ return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
+
+ // This may be a def / use of a variable_ops instruction, the operand
+ // latency might be determinable dynamically. Let the target try to
+ // figure it out.
+ std::optional<unsigned> DefCycle;
+ bool LdmBypass = false;
+ switch (DefMCID.getOpcode()) {
+ default:
+ DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
+ break;
+
+ case ARM::VLDMDIA:
+ case ARM::VLDMDIA_UPD:
+ case ARM::VLDMDDB_UPD:
+ case ARM::VLDMSIA:
+ case ARM::VLDMSIA_UPD:
+ case ARM::VLDMSDB_UPD:
+ DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
+ break;
+
+ case ARM::LDMIA_RET:
+ case ARM::LDMIA:
+ case ARM::LDMDA:
+ case ARM::LDMDB:
+ case ARM::LDMIB:
+ case ARM::LDMIA_UPD:
+ case ARM::LDMDA_UPD:
+ case ARM::LDMDB_UPD:
+ case ARM::LDMIB_UPD:
+ case ARM::tLDMIA:
+ case ARM::tLDMIA_UPD:
+ case ARM::tPUSH:
+ case ARM::t2LDMIA_RET:
+ case ARM::t2LDMIA:
+ case ARM::t2LDMDB:
+ case ARM::t2LDMIA_UPD:
+ case ARM::t2LDMDB_UPD:
+ LdmBypass = true;
+ DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
+ break;
+ }
+
+ if (!DefCycle)
+ // We can't seem to determine the result latency of the def, assume it's 2.
+ DefCycle = 2;
+
+ std::optional<unsigned> UseCycle;
+ switch (UseMCID.getOpcode()) {
+ default:
+ UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
+ break;
+
+ case ARM::VSTMDIA:
+ case ARM::VSTMDIA_UPD:
+ case ARM::VSTMDDB_UPD:
+ case ARM::VSTMSIA:
+ case ARM::VSTMSIA_UPD:
+ case ARM::VSTMSDB_UPD:
+ UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
+ break;
+
+ case ARM::STMIA:
+ case ARM::STMDA:
+ case ARM::STMDB:
+ case ARM::STMIB:
+ case ARM::STMIA_UPD:
+ case ARM::STMDA_UPD:
+ case ARM::STMDB_UPD:
+ case ARM::STMIB_UPD:
+ case ARM::tSTMIA_UPD:
+ case ARM::tPOP_RET:
+ case ARM::tPOP:
+ case ARM::t2STMIA:
+ case ARM::t2STMDB:
+ case ARM::t2STMIA_UPD:
+ case ARM::t2STMDB_UPD:
+ UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
+ break;
+ }
+
+ if (!UseCycle)
+ // Assume it's read in the first stage.
+ UseCycle = 1;
+
+ if (UseCycle > *DefCycle + 1)
+ return std::nullopt;
+
+ UseCycle = *DefCycle - *UseCycle + 1;
+ if (UseCycle > 0u) {
+ if (LdmBypass) {
+ // It's a variable_ops instruction so we can't use DefIdx here. Just use
+ // first def operand.
+ if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
+ UseClass, UseIdx))
+ UseCycle = *UseCycle - 1;
+ } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
+ UseClass, UseIdx)) {
+ UseCycle = *UseCycle - 1;
+ }
+ }
+
+ return UseCycle;
+}
+
+static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
+ const MachineInstr *MI, unsigned Reg,
+ unsigned &DefIdx, unsigned &Dist) {
+ Dist = 0;
+
+ MachineBasicBlock::const_iterator I = MI; ++I;
+ MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
+ assert(II->isInsideBundle() && "Empty bundle?");
+
+ int Idx = -1;
+ while (II->isInsideBundle()) {
+ Idx = II->findRegisterDefOperandIdx(Reg, TRI, false, true);
+ if (Idx != -1)
+ break;
+ --II;
+ ++Dist;
+ }
+
+ assert(Idx != -1 && "Cannot find bundled definition!");
+ DefIdx = Idx;
+ return &*II;
+}
+
+static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
+ const MachineInstr &MI, unsigned Reg,
+ unsigned &UseIdx, unsigned &Dist) {
+ Dist = 0;
+
+ MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
+ assert(II->isInsideBundle() && "Empty bundle?");
+ MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
+
+ // FIXME: This doesn't properly handle multiple uses.
+ int Idx = -1;
+ while (II != E && II->isInsideBundle()) {
+ Idx = II->findRegisterUseOperandIdx(Reg, TRI, false);
+ if (Idx != -1)
+ break;
+ if (II->getOpcode() != ARM::t2IT)
+ ++Dist;
+ ++II;
+ }
+
+ if (Idx == -1) {
+ Dist = 0;
+ return nullptr;
+ }
+
+ UseIdx = Idx;
+ return &*II;
+}
+
+/// Return the number of cycles to add to (or subtract from) the static
+/// itinerary based on the def opcode and alignment. The caller will ensure that
+/// adjusted latency is at least one cycle.
+static int adjustDefLatency(const ARMSubtarget &Subtarget,
+ const MachineInstr &DefMI,
+ const MCInstrDesc &DefMCID, unsigned DefAlign) {
+ int Adjust = 0;
+ if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
+ // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
+ // variants are one cycle cheaper.
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal = DefMI.getOperand(3).getImm();
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ --Adjust;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt = DefMI.getOperand(3).getImm();
+ if (ShAmt == 0 || ShAmt == 2)
+ --Adjust;
+ break;
+ }
+ }
+ } else if (Subtarget.isSwift()) {
+ // FIXME: Properly handle all of the latency adjustments for address
+ // writeback.
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal = DefMI.getOperand(3).getImm();
+ bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (!isSub &&
+ (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
+ Adjust -= 2;
+ else if (!isSub &&
+ ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
+ --Adjust;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt = DefMI.getOperand(3).getImm();
+ if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
+ Adjust -= 2;
+ break;
+ }
+ }
+ }
+
+ if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::VLD1q8:
+ case ARM::VLD1q16:
+ case ARM::VLD1q32:
+ case ARM::VLD1q64:
+ case ARM::VLD1q8wb_fixed:
+ case ARM::VLD1q16wb_fixed:
+ case ARM::VLD1q32wb_fixed:
+ case ARM::VLD1q64wb_fixed:
+ case ARM::VLD1q8wb_register:
+ case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_register:
+ case ARM::VLD2d8:
+ case ARM::VLD2d16:
+ case ARM::VLD2d32:
+ case ARM::VLD2q8:
+ case ARM::VLD2q16:
+ case ARM::VLD2q32:
+ case ARM::VLD2d8wb_fixed:
+ case ARM::VLD2d16wb_fixed:
+ case ARM::VLD2d32wb_fixed:
+ case ARM::VLD2q8wb_fixed:
+ case ARM::VLD2q16wb_fixed:
+ case ARM::VLD2q32wb_fixed:
+ case ARM::VLD2d8wb_register:
+ case ARM::VLD2d16wb_register:
+ case ARM::VLD2d32wb_register:
+ case ARM::VLD2q8wb_register:
+ case ARM::VLD2q16wb_register:
+ case ARM::VLD2q32wb_register:
+ case ARM::VLD3d8:
+ case ARM::VLD3d16:
+ case ARM::VLD3d32:
+ case ARM::VLD1d64T:
+ case ARM::VLD3d8_UPD:
+ case ARM::VLD3d16_UPD:
+ case ARM::VLD3d32_UPD:
+ case ARM::VLD1d64Twb_fixed:
+ case ARM::VLD1d64Twb_register:
+ case ARM::VLD3q8_UPD:
+ case ARM::VLD3q16_UPD:
+ case ARM::VLD3q32_UPD:
+ case ARM::VLD4d8:
+ case ARM::VLD4d16:
+ case ARM::VLD4d32:
+ case ARM::VLD1d64Q:
+ case ARM::VLD4d8_UPD:
+ case ARM::VLD4d16_UPD:
+ case ARM::VLD4d32_UPD:
+ case ARM::VLD1d64Qwb_fixed:
+ case ARM::VLD1d64Qwb_register:
+ case ARM::VLD4q8_UPD:
+ case ARM::VLD4q16_UPD:
+ case ARM::VLD4q32_UPD:
+ case ARM::VLD1DUPq8:
+ case ARM::VLD1DUPq16:
+ case ARM::VLD1DUPq32:
+ case ARM::VLD1DUPq8wb_fixed:
+ case ARM::VLD1DUPq16wb_fixed:
+ case ARM::VLD1DUPq32wb_fixed:
+ case ARM::VLD1DUPq8wb_register:
+ case ARM::VLD1DUPq16wb_register:
+ case ARM::VLD1DUPq32wb_register:
+ case ARM::VLD2DUPd8:
+ case ARM::VLD2DUPd16:
+ case ARM::VLD2DUPd32:
+ case ARM::VLD2DUPd8wb_fixed:
+ case ARM::VLD2DUPd16wb_fixed:
+ case ARM::VLD2DUPd32wb_fixed:
+ case ARM::VLD2DUPd8wb_register:
+ case ARM::VLD2DUPd16wb_register:
+ case ARM::VLD2DUPd32wb_register:
+ case ARM::VLD4DUPd8:
+ case ARM::VLD4DUPd16:
+ case ARM::VLD4DUPd32:
+ case ARM::VLD4DUPd8_UPD:
+ case ARM::VLD4DUPd16_UPD:
+ case ARM::VLD4DUPd32_UPD:
+ case ARM::VLD1LNd8:
+ case ARM::VLD1LNd16:
+ case ARM::VLD1LNd32:
+ case ARM::VLD1LNd8_UPD:
+ case ARM::VLD1LNd16_UPD:
+ case ARM::VLD1LNd32_UPD:
+ case ARM::VLD2LNd8:
+ case ARM::VLD2LNd16:
+ case ARM::VLD2LNd32:
+ case ARM::VLD2LNq16:
+ case ARM::VLD2LNq32:
+ case ARM::VLD2LNd8_UPD:
+ case ARM::VLD2LNd16_UPD:
+ case ARM::VLD2LNd32_UPD:
+ case ARM::VLD2LNq16_UPD:
+ case ARM::VLD2LNq32_UPD:
+ case ARM::VLD4LNd8:
+ case ARM::VLD4LNd16:
+ case ARM::VLD4LNd32:
+ case ARM::VLD4LNq16:
+ case ARM::VLD4LNq32:
+ case ARM::VLD4LNd8_UPD:
+ case ARM::VLD4LNd16_UPD:
+ case ARM::VLD4LNd32_UPD:
+ case ARM::VLD4LNq16_UPD:
+ case ARM::VLD4LNq32_UPD:
+ // If the address is not 64-bit aligned, the latencies of these
+ // instructions increases by one.
+ ++Adjust;
+ break;
+ }
+ }
+ return Adjust;
+}
+
+std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
+ const InstrItineraryData *ItinData, const MachineInstr &DefMI,
+ unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
+ // No operand latency. The caller may fall back to getInstrLatency.
+ if (!ItinData || ItinData->isEmpty())
+ return std::nullopt;
+
+ const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
+ Register Reg = DefMO.getReg();
+
+ const MachineInstr *ResolvedDefMI = &DefMI;
+ unsigned DefAdj = 0;
+ if (DefMI.isBundle())
+ ResolvedDefMI =
+ getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
+ if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
+ ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
+ return 1;
+ }
+
+ const MachineInstr *ResolvedUseMI = &UseMI;
+ unsigned UseAdj = 0;
+ if (UseMI.isBundle()) {
+ ResolvedUseMI =
+ getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
+ if (!ResolvedUseMI)
+ return std::nullopt;
+ }
+
+ return getOperandLatencyImpl(
+ ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
+ Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
+}
+
+std::optional<unsigned> ARMBaseInstrInfo::getOperandLatencyImpl(
+ const InstrItineraryData *ItinData, const MachineInstr &DefMI,
+ unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
+ const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
+ unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
+ if (Reg == ARM::CPSR) {
+ if (DefMI.getOpcode() == ARM::FMSTAT) {
+ // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
+ return Subtarget.isLikeA9() ? 1 : 20;
+ }
+
+ // CPSR set and branch can be paired in the same cycle.
+ if (UseMI.isBranch())
+ return 0;
+
+ // Otherwise it takes the instruction latency (generally one).
+ unsigned Latency = getInstrLatency(ItinData, DefMI);
+
+ // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
+ // its uses. Instructions which are otherwise scheduled between them may
+ // incur a code size penalty (not able to use the CPSR setting 16-bit
+ // instructions).
+ if (Latency > 0 && Subtarget.isThumb2()) {
+ const MachineFunction *MF = DefMI.getParent()->getParent();
+ // FIXME: Use Function::hasOptSize().
+ if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
+ --Latency;
+ }
+ return Latency;
+ }
+
+ if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
+ return std::nullopt;
+
+ unsigned DefAlign = DefMI.hasOneMemOperand()
+ ? (*DefMI.memoperands_begin())->getAlign().value()
+ : 0;
+ unsigned UseAlign = UseMI.hasOneMemOperand()
+ ? (*UseMI.memoperands_begin())->getAlign().value()
+ : 0;
+
+ // Get the itinerary's latency if possible, and handle variable_ops.
+ std::optional<unsigned> Latency = getOperandLatency(
+ ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
+ // Unable to find operand latency. The caller may resort to getInstrLatency.
+ if (!Latency)
+ return std::nullopt;
+
+ // Adjust for IT block position.
+ int Adj = DefAdj + UseAdj;
+
+ // Adjust for dynamic def-side opcode variants not captured by the itinerary.
+ Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
+ if (Adj >= 0 || (int)*Latency > -Adj) {
+ return *Latency + Adj;
+ }
+ // Return the itinerary latency, which may be zero but not less than zero.
+ return Latency;
+}
+
+std::optional<unsigned>
+ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
+ SDNode *DefNode, unsigned DefIdx,
+ SDNode *UseNode, unsigned UseIdx) const {
+ if (!DefNode->isMachineOpcode())
+ return 1;
+
+ const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
+
+ if (isZeroCost(DefMCID.Opcode))
+ return 0;
+
+ if (!ItinData || ItinData->isEmpty())
+ return DefMCID.mayLoad() ? 3 : 1;
+
+ if (!UseNode->isMachineOpcode()) {
+ std::optional<unsigned> Latency =
+ ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
+ int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
+ int Threshold = 1 + Adj;
+ return !Latency || Latency <= (unsigned)Threshold ? 1 : *Latency - Adj;
+ }
+
+ const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
+ auto *DefMN = cast<MachineSDNode>(DefNode);
+ unsigned DefAlign = !DefMN->memoperands_empty()
+ ? (*DefMN->memoperands_begin())->getAlign().value()
+ : 0;
+ auto *UseMN = cast<MachineSDNode>(UseNode);
+ unsigned UseAlign = !UseMN->memoperands_empty()
+ ? (*UseMN->memoperands_begin())->getAlign().value()
+ : 0;
+ std::optional<unsigned> Latency = getOperandLatency(
+ ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
+ if (!Latency)
+ return std::nullopt;
+
+ if (Latency > 1U &&
+ (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
+ Subtarget.isCortexA7())) {
+ // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
+ // variants are one cycle cheaper.
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal = DefNode->getConstantOperandVal(2);
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ Latency = *Latency - 1;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs: {
+ // Thumb2 mode: lsl only.
+ unsigned ShAmt = DefNode->getConstantOperandVal(2);
+ if (ShAmt == 0 || ShAmt == 2)
+ Latency = *Latency - 1;
+ break;
+ }
+ }
+ } else if (DefIdx == 0 && Latency > 2U && Subtarget.isSwift()) {
+ // FIXME: Properly handle all of the latency adjustments for address
+ // writeback.
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::LDRrs:
+ case ARM::LDRBrs: {
+ unsigned ShOpVal = DefNode->getConstantOperandVal(2);
+ unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
+ if (ShImm == 0 ||
+ ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
+ ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
+ Latency = *Latency - 2;
+ else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
+ Latency = *Latency - 1;
+ break;
+ }
+ case ARM::t2LDRs:
+ case ARM::t2LDRBs:
+ case ARM::t2LDRHs:
+ case ARM::t2LDRSHs:
+ // Thumb2 mode: lsl 0-3 only.
+ Latency = *Latency - 2;
+ break;
+ }
+ }
+
+ if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
+ switch (DefMCID.getOpcode()) {
+ default: break;
+ case ARM::VLD1q8:
+ case ARM::VLD1q16:
+ case ARM::VLD1q32:
+ case ARM::VLD1q64:
+ case ARM::VLD1q8wb_register:
+ case ARM::VLD1q16wb_register:
+ case ARM::VLD1q32wb_register:
+ case ARM::VLD1q64wb_register:
+ case ARM::VLD1q8wb_fixed:
+ case ARM::VLD1q16wb_fixed:
+ case ARM::VLD1q32wb_fixed:
+ case ARM::VLD1q64wb_fixed:
+ case ARM::VLD2d8:
+ case ARM::VLD2d16:
+ case ARM::VLD2d32:
+ case ARM::VLD2q8Pseudo:
+ case ARM::VLD2q16Pseudo:
+ case ARM::VLD2q32Pseudo:
+ case ARM::VLD2d8wb_fixed:
+ case ARM::VLD2d16wb_fixed:
+ case ARM::VLD2d32wb_fixed:
+ case ARM::VLD2q8PseudoWB_fixed:
+ case ARM::VLD2q16PseudoWB_fixed:
+ case ARM::VLD2q32PseudoWB_fixed:
+ case ARM::VLD2d8wb_register:
+ case ARM::VLD2d16wb_register:
+ case ARM::VLD2d32wb_register:
+ case ARM::VLD2q8PseudoWB_register:
+ case ARM::VLD2q16PseudoWB_register:
+ case ARM::VLD2q32PseudoWB_register:
+ case ARM::VLD3d8Pseudo:
+ case ARM::VLD3d16Pseudo:
+ case ARM::VLD3d32Pseudo:
+ case ARM::VLD1d8TPseudo:
+ case ARM::VLD1d16TPseudo:
+ case ARM::VLD1d32TPseudo:
+ case ARM::VLD1d64TPseudo:
+ case ARM::VLD1d64TPseudoWB_fixed:
+ case ARM::VLD1d64TPseudoWB_register:
+ case ARM::VLD3d8Pseudo_UPD:
+ case ARM::VLD3d16Pseudo_UPD:
+ case ARM::VLD3d32Pseudo_UPD:
+ case ARM::VLD3q8Pseudo_UPD:
+ case ARM::VLD3q16Pseudo_UPD:
+ case ARM::VLD3q32Pseudo_UPD:
+ case ARM::VLD3q8oddPseudo:
+ case ARM::VLD3q16oddPseudo:
+ case ARM::VLD3q32oddPseudo:
+ case ARM::VLD3q8oddPseudo_UPD:
+ case ARM::VLD3q16oddPseudo_UPD:
+ case ARM::VLD3q32oddPseudo_UPD:
+ case ARM::VLD4d8Pseudo:
+ case ARM::VLD4d16Pseudo:
+ case ARM::VLD4d32Pseudo:
+ case ARM::VLD1d8QPseudo:
+ case ARM::VLD1d16QPseudo:
+ case ARM::VLD1d32QPseudo:
+ case ARM::VLD1d64QPseudo:
+ case ARM::VLD1d64QPseudoWB_fixed:
+ case ARM::VLD1d64QPseudoWB_register:
+ case ARM::VLD1q8HighQPseudo:
+ case ARM::VLD1q8LowQPseudo_UPD:
+ case ARM::VLD1q8HighTPseudo:
+ case ARM::VLD1q8LowTPseudo_UPD:
+ case ARM::VLD1q16HighQPseudo:
+ case ARM::VLD1q16LowQPseudo_UPD:
+ case ARM::VLD1q16HighTPseudo:
+ case ARM::VLD1q16LowTPseudo_UPD:
+ case ARM::VLD1q32HighQPseudo:
+ case ARM::VLD1q32LowQPseudo_UPD:
+ case ARM::VLD1q32HighTPseudo:
+ case ARM::VLD1q32LowTPseudo_UPD:
+ case ARM::VLD1q64HighQPseudo:
+ case ARM::VLD1q64LowQPseudo_UPD:
+ case ARM::VLD1q64HighTPseudo:
+ case ARM::VLD1q64LowTPseudo_UPD:
+ case ARM::VLD4d8Pseudo_UPD:
+ case ARM::VLD4d16Pseudo_UPD:
+ case ARM::VLD4d32Pseudo_UPD:
+ case ARM::VLD4q8Pseudo_UPD:
+ case ARM::VLD4q16Pseudo_UPD:
+ case ARM::VLD4q32Pseudo_UPD:
+ case ARM::VLD4q8oddPseudo:
+ case ARM::VLD4q16oddPseudo:
+ case ARM::VLD4q32oddPseudo:
+ case ARM::VLD4q8oddPseudo_UPD:
+ case ARM::VLD4q16oddPseudo_UPD:
+ case ARM::VLD4q32oddPseudo_UPD:
+ case ARM::VLD1DUPq8:
+ case ARM::VLD1DUPq16:
+ case ARM::VLD1DUPq32:
+ case ARM::VLD1DUPq8wb_fixed:
+ case ARM::VLD1DUPq16wb_fixed:
+ case ARM::VLD1DUPq32wb_fixed:
+ case ARM::VLD1DUPq8wb_register:
+ case ARM::VLD1DUPq16wb_register:
+ case ARM::VLD1DUPq32wb_register:
+ case ARM::VLD2DUPd8:
+ case ARM::VLD2DUPd16:
+ case ARM::VLD2DUPd32:
+ case ARM::VLD2DUPd8wb_fixed:
+ case ARM::VLD2DUPd16wb_fixed:
+ case ARM::VLD2DUPd32wb_fixed:
+ case ARM::VLD2DUPd8wb_register:
+ case ARM::VLD2DUPd16wb_register:
+ case ARM::VLD2DUPd32wb_register:
+ case ARM::VLD2DUPq8EvenPseudo:
+ case ARM::VLD2DUPq8OddPseudo:
+ case ARM::VLD2DUPq16EvenPseudo:
+ case ARM::VLD2DUPq16OddPseudo:
+ case ARM::VLD2DUPq32EvenPseudo:
+ case ARM::VLD2DUPq32OddPseudo:
+ case ARM::VLD3DUPq8EvenPseudo:
+ case ARM::VLD3DUPq8OddPseudo:
+ case ARM::VLD3DUPq16EvenPseudo:
+ case ARM::VLD3DUPq16OddPseudo:
+ case ARM::VLD3DUPq32EvenPseudo:
+ case ARM::VLD3DUPq32OddPseudo:
+ case ARM::VLD4DUPd8Pseudo:
+ case ARM::VLD4DUPd16Pseudo:
+ case ARM::VLD4DUPd32Pseudo:
+ case ARM::VLD4DUPd8Pseudo_UPD:
+ case ARM::VLD4DUPd16Pseudo_UPD:
+ case ARM::VLD4DUPd32Pseudo_UPD:
+ case ARM::VLD4DUPq8EvenPseudo:
+ case ARM::VLD4DUPq8OddPseudo:
+ case ARM::VLD4DUPq16EvenPseudo:
+ case ARM::VLD4DUPq16OddPseudo:
+ case ARM::VLD4DUPq32EvenPseudo:
+ case ARM::VLD4DUPq32OddPseudo:
+ case ARM::VLD1LNq8Pseudo:
+ case ARM::VLD1LNq16Pseudo:
+ case ARM::VLD1LNq32Pseudo:
+ case ARM::VLD1LNq8Pseudo_UPD:
+ case ARM::VLD1LNq16Pseudo_UPD:
+ case ARM::VLD1LNq32Pseudo_UPD:
+ case ARM::VLD2LNd8Pseudo:
+ case ARM::VLD2LNd16Pseudo:
+ case ARM::VLD2LNd32Pseudo:
+ case ARM::VLD2LNq16Pseudo:
+ case ARM::VLD2LNq32Pseudo:
+ case ARM::VLD2LNd8Pseudo_UPD:
+ case ARM::VLD2LNd16Pseudo_UPD:
+ case ARM::VLD2LNd32Pseudo_UPD:
+ case ARM::VLD2LNq16Pseudo_UPD:
+ case ARM::VLD2LNq32Pseudo_UPD:
+ case ARM::VLD4LNd8Pseudo:
+ case ARM::VLD4LNd16Pseudo:
+ case ARM::VLD4LNd32Pseudo:
+ case ARM::VLD4LNq16Pseudo:
+ case ARM::VLD4LNq32Pseudo:
+ case ARM::VLD4LNd8Pseudo_UPD:
+ case ARM::VLD4LNd16Pseudo_UPD:
+ case ARM::VLD4LNd32Pseudo_UPD:
+ case ARM::VLD4LNq16Pseudo_UPD:
+ case ARM::VLD4LNq32Pseudo_UPD:
+ // If the address is not 64-bit aligned, the latencies of these
+ // instructions increases by one.
+ Latency = *Latency + 1;
+ break;
+ }
+
+ return Latency;
+}
+
+unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
+ if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
+ MI.isImplicitDef())
+ return 0;
+
+ if (MI.isBundle())
+ return 0;
+
+ const MCInstrDesc &MCID = MI.getDesc();
+
+ if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
+ !Subtarget.cheapPredicableCPSRDef())) {
+ // When predicated, CPSR is an additional source operand for CPSR updating
+ // instructions, this apparently increases their latencies.
+ return 1;
+ }
+ return 0;
+}
+
+unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr &MI,
+ unsigned *PredCost) const {
+ if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
+ MI.isImplicitDef())
+ return 1;
+
+ // An instruction scheduler typically runs on unbundled instructions, however
+ // other passes may query the latency of a bundled instruction.
+ if (MI.isBundle()) {
+ unsigned Latency = 0;
+ MachineBasicBlock::const_instr_iterator I = MI.getIterator();
+ MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
+ while (++I != E && I->isInsideBundle()) {
+ if (I->getOpcode() != ARM::t2IT)
+ Latency += getInstrLatency(ItinData, *I, PredCost);
+ }
+ return Latency;
+ }
+
+ const MCInstrDesc &MCID = MI.getDesc();
+ if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
+ !Subtarget.cheapPredicableCPSRDef()))) {
+ // When predicated, CPSR is an additional source operand for CPSR updating
+ // instructions, this apparently increases their latencies.
+ *PredCost = 1;
+ }
+ // Be sure to call getStageLatency for an empty itinerary in case it has a
+ // valid MinLatency property.
+ if (!ItinData)
+ return MI.mayLoad() ? 3 : 1;
+
+ unsigned Class = MCID.getSchedClass();
+
+ // For instructions with variable uops, use uops as latency.
+ if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
+ return getNumMicroOps(ItinData, MI);
+
+ // For the common case, fall back on the itinerary's latency.
+ unsigned Latency = ItinData->getStageLatency(Class);
+
+ // Adjust for dynamic def-side opcode variants not captured by the itinerary.
+ unsigned DefAlign =
+ MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
+ int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
+ if (Adj >= 0 || (int)Latency > -Adj) {
+ return Latency + Adj;
+ }
+ return Latency;
+}
+
+unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ SDNode *Node) const {
+ if (!Node->isMachineOpcode())
+ return 1;
+
+ if (!ItinData || ItinData->isEmpty())
+ return 1;
+
+ unsigned Opcode = Node->getMachineOpcode();
+ switch (Opcode) {
+ default:
+ return ItinData->getStageLatency(get(Opcode).getSchedClass());
+ case ARM::VLDMQIA:
+ case ARM::VSTMQIA:
+ return 2;
+ }
+}
+
+bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
+ const MachineRegisterInfo *MRI,
+ const MachineInstr &DefMI,
+ unsigned DefIdx,
+ const MachineInstr &UseMI,
+ unsigned UseIdx) const {
+ unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
+ unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
+ if (Subtarget.nonpipelinedVFP() &&
+ (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
+ return true;
+
+ // Hoist VFP / NEON instructions with 4 or higher latency.
+ unsigned Latency =
+ SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
+ if (Latency <= 3)
+ return false;
+ return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
+ UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
+}
+
+bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
+ const MachineInstr &DefMI,
+ unsigned DefIdx) const {
+ const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
+ if (!ItinData || ItinData->isEmpty())
+ return false;
+
+ unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
+ if (DDomain == ARMII::DomainGeneral) {
+ unsigned DefClass = DefMI.getDesc().getSchedClass();
+ std::optional<unsigned> DefCycle =
+ ItinData->getOperandCycle(DefClass, DefIdx);
+ return DefCycle && DefCycle <= 2U;
+ }
+ return false;
+}
+
+bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
+ StringRef &ErrInfo) const {
+ if (convertAddSubFlagsOpcode(MI.getOpcode())) {
+ ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
+ return false;
+ }
+ if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
+ // Make sure we don't generate a lo-lo mov that isn't supported.
+ if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
+ !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
+ ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
+ return false;
+ }
+ }
+ if (MI.getOpcode() == ARM::tPUSH ||
+ MI.getOpcode() == ARM::tPOP ||
+ MI.getOpcode() == ARM::tPOP_RET) {
+ for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) {
+ if (MO.isImplicit() || !MO.isReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (Reg < ARM::R0 || Reg > ARM::R7) {
+ if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
+ !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
+ ErrInfo = "Unsupported register in Thumb1 push/pop";
+ return false;
+ }
+ }
+ }
+ }
+ if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
+ assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
+ if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) ||
+ MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) {
+ ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
+ return false;
+ }
+ }
+
+ // Check the address model by taking the first Imm operand and checking it is
+ // legal for that addressing mode.
+ ARMII::AddrMode AddrMode =
+ (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask);
+ switch (AddrMode) {
+ default:
+ break;
+ case ARMII::AddrModeT2_i7:
+ case ARMII::AddrModeT2_i7s2:
+ case ARMII::AddrModeT2_i7s4:
+ case ARMII::AddrModeT2_i8:
+ case ARMII::AddrModeT2_i8pos:
+ case ARMII::AddrModeT2_i8neg:
+ case ARMII::AddrModeT2_i8s4:
+ case ARMII::AddrModeT2_i12: {
+ uint32_t Imm = 0;
+ for (auto Op : MI.operands()) {
+ if (Op.isImm()) {
+ Imm = Op.getImm();
+ break;
+ }
+ }
+ if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) {
+ ErrInfo = "Incorrect AddrMode Imm for instruction";
+ return false;
+ }
+ break;
+ }
+ }
+ return true;
+}
+
+void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
+ unsigned LoadImmOpc,
+ unsigned LoadOpc) const {
+ assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
+ "ROPI/RWPI not currently supported with stack guard");
+
+ MachineBasicBlock &MBB = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ Register Reg = MI->getOperand(0).getReg();
+ MachineInstrBuilder MIB;
+ unsigned int Offset = 0;
+
+ if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) {
+ assert(!Subtarget.isReadTPSoft() &&
+ "TLS stack protector requires hardware TLS register");
+
+ BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
+ .addImm(15)
+ .addImm(0)
+ .addImm(13)
+ .addImm(0)
+ .addImm(3)
+ .add(predOps(ARMCC::AL));
+
+ Module &M = *MBB.getParent()->getFunction().getParent();
+ Offset = M.getStackProtectorGuardOffset();
+ if (Offset & ~0xfffU) {
+ // The offset won't fit in the LDR's 12-bit immediate field, so emit an
+ // extra ADD to cover the delta. This gives us a guaranteed 8 additional
+ // bits, resulting in a range of 0 to +1 MiB for the guard offset.
+ unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri;
+ BuildMI(MBB, MI, DL, get(AddOpc), Reg)
+ .addReg(Reg, RegState::Kill)
+ .addImm(Offset & ~0xfffU)
+ .add(predOps(ARMCC::AL))
+ .addReg(0);
+ Offset &= 0xfffU;
+ }
+ } else {
+ const GlobalValue *GV =
+ cast<GlobalValue>((*MI->memoperands_begin())->getValue());
+ bool IsIndirect = Subtarget.isGVIndirectSymbol(GV);
+
+ unsigned TargetFlags = ARMII::MO_NO_FLAG;
+ if (Subtarget.isTargetMachO()) {
+ TargetFlags |= ARMII::MO_NONLAZY;
+ } else if (Subtarget.isTargetCOFF()) {
+ if (GV->hasDLLImportStorageClass())
+ TargetFlags |= ARMII::MO_DLLIMPORT;
+ else if (IsIndirect)
+ TargetFlags |= ARMII::MO_COFFSTUB;
+ } else if (IsIndirect) {
+ TargetFlags |= ARMII::MO_GOT;
+ }
+
+ if (LoadImmOpc == ARM::tMOVi32imm) { // Thumb-1 execute-only
+ Register CPSRSaveReg = ARM::R12; // Use R12 as scratch register
+ auto APSREncoding =
+ ARMSysReg::lookupMClassSysRegByName("apsr_nzcvq")->Encoding;
+ BuildMI(MBB, MI, DL, get(ARM::t2MRS_M), CPSRSaveReg)
+ .addImm(APSREncoding)
+ .add(predOps(ARMCC::AL));
+ BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
+ .addGlobalAddress(GV, 0, TargetFlags);
+ BuildMI(MBB, MI, DL, get(ARM::t2MSR_M))
+ .addImm(APSREncoding)
+ .addReg(CPSRSaveReg, RegState::Kill)
+ .add(predOps(ARMCC::AL));
+ } else {
+ BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
+ .addGlobalAddress(GV, 0, TargetFlags);
+ }
+
+ if (IsIndirect) {
+ MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
+ MIB.addReg(Reg, RegState::Kill).addImm(0);
+ auto Flags = MachineMemOperand::MOLoad |
+ MachineMemOperand::MODereferenceable |
+ MachineMemOperand::MOInvariant;
+ MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
+ MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
+ MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
+ }
+ }
+
+ MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
+ MIB.addReg(Reg, RegState::Kill)
+ .addImm(Offset)
+ .cloneMemRefs(*MI)
+ .add(predOps(ARMCC::AL));
+}
+
+bool
+ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
+ unsigned &AddSubOpc,
+ bool &NegAcc, bool &HasLane) const {
+ DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
+ if (I == MLxEntryMap.end())
+ return false;
+
+ const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
+ MulOpc = Entry.MulOpc;
+ AddSubOpc = Entry.AddSubOpc;
+ NegAcc = Entry.NegAcc;
+ HasLane = Entry.HasLane;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// Execution domains.
+//===----------------------------------------------------------------------===//
+//
+// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
+// and some can go down both. The vmov instructions go down the VFP pipeline,
+// but they can be changed to vorr equivalents that are executed by the NEON
+// pipeline.
+//
+// We use the following execution domain numbering:
+//
+enum ARMExeDomain {
+ ExeGeneric = 0,
+ ExeVFP = 1,
+ ExeNEON = 2
+};
+
+//
+// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
+//
+std::pair<uint16_t, uint16_t>
+ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
+ // If we don't have access to NEON instructions then we won't be able
+ // to swizzle anything to the NEON domain. Check to make sure.
+ if (Subtarget.hasNEON()) {
+ // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
+ // if they are not predicated.
+ if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
+ return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
+
+ // CortexA9 is particularly picky about mixing the two and wants these
+ // converted.
+ if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
+ (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
+ MI.getOpcode() == ARM::VMOVS))
+ return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
+ }
+ // No other instructions can be swizzled, so just determine their domain.
+ unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
+
+ if (Domain & ARMII::DomainNEON)
+ return std::make_pair(ExeNEON, 0);
+
+ // Certain instructions can go either way on Cortex-A8.
+ // Treat them as NEON instructions.
+ if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
+ return std::make_pair(ExeNEON, 0);
+
+ if (Domain & ARMII::DomainVFP)
+ return std::make_pair(ExeVFP, 0);
+
+ return std::make_pair(ExeGeneric, 0);
+}
+
+static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
+ unsigned SReg, unsigned &Lane) {
+ unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
+ Lane = 0;
+
+ if (DReg != ARM::NoRegister)
+ return DReg;
+
+ Lane = 1;
+ DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
+
+ assert(DReg && "S-register with no D super-register?");
+ return DReg;
+}
+
+/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
+/// set ImplicitSReg to a register number that must be marked as implicit-use or
+/// zero if no register needs to be defined as implicit-use.
+///
+/// If the function cannot determine if an SPR should be marked implicit use or
+/// not, it returns false.
+///
+/// This function handles cases where an instruction is being modified from taking
+/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
+/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
+/// lane of the DPR).
+///
+/// If the other SPR is defined, an implicit-use of it should be added. Else,
+/// (including the case where the DPR itself is defined), it should not.
+///
+static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
+ MachineInstr &MI, unsigned DReg,
+ unsigned Lane, unsigned &ImplicitSReg) {
+ // If the DPR is defined or used already, the other SPR lane will be chained
+ // correctly, so there is nothing to be done.
+ if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
+ ImplicitSReg = 0;
+ return true;
+ }
+
+ // Otherwise we need to go searching to see if the SPR is set explicitly.
+ ImplicitSReg = TRI->getSubReg(DReg,
+ (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
+ MachineBasicBlock::LivenessQueryResult LQR =
+ MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);
+
+ if (LQR == MachineBasicBlock::LQR_Live)
+ return true;
+ else if (LQR == MachineBasicBlock::LQR_Unknown)
+ return false;
+
+ // If the register is known not to be live, there is no need to add an
+ // implicit-use.
+ ImplicitSReg = 0;
+ return true;
+}
+
+void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
+ unsigned Domain) const {
+ unsigned DstReg, SrcReg, DReg;
+ unsigned Lane;
+ MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+ switch (MI.getOpcode()) {
+ default:
+ llvm_unreachable("cannot handle opcode!");
+ break;
+ case ARM::VMOVD:
+ if (Domain != ExeNEON)
+ break;
+
+ // Zap the predicate operands.
+ assert(!isPredicated(MI) && "Cannot predicate a VORRd");
+
+ // Make sure we've got NEON instructions.
+ assert(Subtarget.hasNEON() && "VORRd requires NEON");
+
+ // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(1).getReg();
+
+ for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
+ MI.removeOperand(i - 1);
+
+ // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
+ MI.setDesc(get(ARM::VORRd));
+ MIB.addReg(DstReg, RegState::Define)
+ .addReg(SrcReg)
+ .addReg(SrcReg)
+ .add(predOps(ARMCC::AL));
+ break;
+ case ARM::VMOVRS:
+ if (Domain != ExeNEON)
+ break;
+ assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
+
+ // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(1).getReg();
+
+ for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
+ MI.removeOperand(i - 1);
+
+ DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);
+
+ // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
+ // Note that DSrc has been widened and the other lane may be undef, which
+ // contaminates the entire register.
+ MI.setDesc(get(ARM::VGETLNi32));
+ MIB.addReg(DstReg, RegState::Define)
+ .addReg(DReg, RegState::Undef)
+ .addImm(Lane)
+ .add(predOps(ARMCC::AL));
+
+ // The old source should be an implicit use, otherwise we might think it
+ // was dead before here.
+ MIB.addReg(SrcReg, RegState::Implicit);
+ break;
+ case ARM::VMOVSR: {
+ if (Domain != ExeNEON)
+ break;
+ assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
+
+ // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(1).getReg();
+
+ DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);
+
+ unsigned ImplicitSReg;
+ if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
+ break;
+
+ for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
+ MI.removeOperand(i - 1);
+
+ // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
+ // Again DDst may be undefined at the beginning of this instruction.
+ MI.setDesc(get(ARM::VSETLNi32));
+ MIB.addReg(DReg, RegState::Define)
+ .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
+ .addReg(SrcReg)
+ .addImm(Lane)
+ .add(predOps(ARMCC::AL));
+
+ // The narrower destination must be marked as set to keep previous chains
+ // in place.
+ MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
+ if (ImplicitSReg != 0)
+ MIB.addReg(ImplicitSReg, RegState::Implicit);
+ break;
+ }
+ case ARM::VMOVS: {
+ if (Domain != ExeNEON)
+ break;
+
+ // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
+ DstReg = MI.getOperand(0).getReg();
+ SrcReg = MI.getOperand(1).getReg();
+
+ unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
+ DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
+ DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);
+
+ unsigned ImplicitSReg;
+ if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
+ break;
+
+ for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
+ MI.removeOperand(i - 1);
+
+ if (DSrc == DDst) {
+ // Destination can be:
+ // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
+ MI.setDesc(get(ARM::VDUPLN32d));
+ MIB.addReg(DDst, RegState::Define)
+ .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
+ .addImm(SrcLane)
+ .add(predOps(ARMCC::AL));
+
+ // Neither the source or the destination are naturally represented any
+ // more, so add them in manually.
+ MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
+ MIB.addReg(SrcReg, RegState::Implicit);
+ if (ImplicitSReg != 0)
+ MIB.addReg(ImplicitSReg, RegState::Implicit);
+ break;
+ }
+
+ // In general there's no single instruction that can perform an S <-> S
+ // move in NEON space, but a pair of VEXT instructions *can* do the
+ // job. It turns out that the VEXTs needed will only use DSrc once, with
+ // the position based purely on the combination of lane-0 and lane-1
+ // involved. For example
+ // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
+ // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
+ // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
+ // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
+ //
+ // Pattern of the MachineInstrs is:
+ // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
+ MachineInstrBuilder NewMIB;
+ NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
+ DDst);
+
+ // On the first instruction, both DSrc and DDst may be undef if present.
+ // Specifically when the original instruction didn't have them as an
+ // <imp-use>.
+ unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
+ bool CurUndef = !MI.readsRegister(CurReg, TRI);
+ NewMIB.addReg(CurReg, getUndefRegState(CurUndef));
+
+ CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
+ CurUndef = !MI.readsRegister(CurReg, TRI);
+ NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
+ .addImm(1)
+ .add(predOps(ARMCC::AL));
+
+ if (SrcLane == DstLane)
+ NewMIB.addReg(SrcReg, RegState::Implicit);
+
+ MI.setDesc(get(ARM::VEXTd32));
+ MIB.addReg(DDst, RegState::Define);
+
+ // On the second instruction, DDst has definitely been defined above, so
+ // it is not undef. DSrc, if present, can be undef as above.
+ CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
+ CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
+ MIB.addReg(CurReg, getUndefRegState(CurUndef));
+
+ CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
+ CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
+ MIB.addReg(CurReg, getUndefRegState(CurUndef))
+ .addImm(1)
+ .add(predOps(ARMCC::AL));
+
+ if (SrcLane != DstLane)
+ MIB.addReg(SrcReg, RegState::Implicit);
+
+ // As before, the original destination is no longer represented, add it
+ // implicitly.
+ MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
+ if (ImplicitSReg != 0)
+ MIB.addReg(ImplicitSReg, RegState::Implicit);
+ break;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Partial register updates
+//===----------------------------------------------------------------------===//
+//
+// Swift renames NEON registers with 64-bit granularity. That means any
+// instruction writing an S-reg implicitly reads the containing D-reg. The
+// problem is mostly avoided by translating f32 operations to v2f32 operations
+// on D-registers, but f32 loads are still a problem.
+//
+// These instructions can load an f32 into a NEON register:
+//
+// VLDRS - Only writes S, partial D update.
+// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
+// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
+//
+// FCONSTD can be used as a dependency-breaking instruction.
+unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
+ const MachineInstr &MI, unsigned OpNum,
+ const TargetRegisterInfo *TRI) const {
+ auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
+ if (!PartialUpdateClearance)
+ return 0;
+
+ assert(TRI && "Need TRI instance");
+
+ const MachineOperand &MO = MI.getOperand(OpNum);
+ if (MO.readsReg())
+ return 0;
+ Register Reg = MO.getReg();
+ int UseOp = -1;
+
+ switch (MI.getOpcode()) {
+ // Normal instructions writing only an S-register.
+ case ARM::VLDRS:
+ case ARM::FCONSTS:
+ case ARM::VMOVSR:
+ case ARM::VMOVv8i8:
+ case ARM::VMOVv4i16:
+ case ARM::VMOVv2i32:
+ case ARM::VMOVv2f32:
+ case ARM::VMOVv1i64:
+ UseOp = MI.findRegisterUseOperandIdx(Reg, TRI, false);
+ break;
+
+ // Explicitly reads the dependency.
+ case ARM::VLD1LNd32:
+ UseOp = 3;
+ break;
+ default:
+ return 0;
+ }
+
+ // If this instruction actually reads a value from Reg, there is no unwanted
+ // dependency.
+ if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
+ return 0;
+
+ // We must be able to clobber the whole D-reg.
+ if (Reg.isVirtual()) {
+ // Virtual register must be a def undef foo:ssub_0 operand.
+ if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
+ return 0;
+ } else if (ARM::SPRRegClass.contains(Reg)) {
+ // Physical register: MI must define the full D-reg.
+ unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
+ &ARM::DPRRegClass);
+ if (!DReg || !MI.definesRegister(DReg, TRI))
+ return 0;
+ }
+
+ // MI has an unwanted D-register dependency.
+ // Avoid defs in the previous N instructrions.
+ return PartialUpdateClearance;
+}
+
+// Break a partial register dependency after getPartialRegUpdateClearance
+// returned non-zero.
+void ARMBaseInstrInfo::breakPartialRegDependency(
+ MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
+ assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
+ assert(TRI && "Need TRI instance");
+
+ const MachineOperand &MO = MI.getOperand(OpNum);
+ Register Reg = MO.getReg();
+ assert(Reg.isPhysical() && "Can't break virtual register dependencies.");
+ unsigned DReg = Reg;
+
+ // If MI defines an S-reg, find the corresponding D super-register.
+ if (ARM::SPRRegClass.contains(Reg)) {
+ DReg = ARM::D0 + (Reg - ARM::S0) / 2;
+ assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
+ }
+
+ assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
+ assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
+
+ // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
+ // the full D-register by loading the same value to both lanes. The
+ // instruction is micro-coded with 2 uops, so don't do this until we can
+ // properly schedule micro-coded instructions. The dispatcher stalls cause
+ // too big regressions.
+
+ // Insert the dependency-breaking FCONSTD before MI.
+ // 96 is the encoding of 0.5, but the actual value doesn't matter here.
+ BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
+ .addImm(96)
+ .add(predOps(ARMCC::AL));
+ MI.addRegisterKilled(DReg, TRI, true);
+}
+
+bool ARMBaseInstrInfo::hasNOP() const {
+ return Subtarget.hasFeature(ARM::HasV6KOps);
+}
+
+bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
+ if (MI->getNumOperands() < 4)
+ return true;
+ unsigned ShOpVal = MI->getOperand(3).getImm();
+ unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
+ // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
+ if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
+ ((ShImm == 1 || ShImm == 2) &&
+ ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
+ return true;
+
+ return false;
+}
+
+bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
+ assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
+ assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
+
+ switch (MI.getOpcode()) {
+ case ARM::VMOVDRR:
+ // dX = VMOVDRR rY, rZ
+ // is the same as:
+ // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
+ // Populate the InputRegs accordingly.
+ // rY
+ const MachineOperand *MOReg = &MI.getOperand(1);
+ if (!MOReg->isUndef())
+ InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
+ MOReg->getSubReg(), ARM::ssub_0));
+ // rZ
+ MOReg = &MI.getOperand(2);
+ if (!MOReg->isUndef())
+ InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
+ MOReg->getSubReg(), ARM::ssub_1));
+ return true;
+ }
+ llvm_unreachable("Target dependent opcode missing");
+}
+
+bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
+ const MachineInstr &MI, unsigned DefIdx,
+ RegSubRegPairAndIdx &InputReg) const {
+ assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
+ assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
+
+ switch (MI.getOpcode()) {
+ case ARM::VMOVRRD:
+ // rX, rY = VMOVRRD dZ
+ // is the same as:
+ // rX = EXTRACT_SUBREG dZ, ssub_0
+ // rY = EXTRACT_SUBREG dZ, ssub_1
+ const MachineOperand &MOReg = MI.getOperand(2);
+ if (MOReg.isUndef())
+ return false;
+ InputReg.Reg = MOReg.getReg();
+ InputReg.SubReg = MOReg.getSubReg();
+ InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
+ return true;
+ }
+ llvm_unreachable("Target dependent opcode missing");
+}
+
+bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
+ const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
+ RegSubRegPairAndIdx &InsertedReg) const {
+ assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
+ assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
+
+ switch (MI.getOpcode()) {
+ case ARM::VSETLNi32:
+ case ARM::MVE_VMOV_to_lane_32:
+ // dX = VSETLNi32 dY, rZ, imm
+ // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
+ const MachineOperand &MOBaseReg = MI.getOperand(1);
+ const MachineOperand &MOInsertedReg = MI.getOperand(2);
+ if (MOInsertedReg.isUndef())
+ return false;
+ const MachineOperand &MOIndex = MI.getOperand(3);
+ BaseReg.Reg = MOBaseReg.getReg();
+ BaseReg.SubReg = MOBaseReg.getSubReg();
+
+ InsertedReg.Reg = MOInsertedReg.getReg();
+ InsertedReg.SubReg = MOInsertedReg.getSubReg();
+ InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
+ return true;
+ }
+ llvm_unreachable("Target dependent opcode missing");
+}
+
+std::pair<unsigned, unsigned>
+ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
+ const unsigned Mask = ARMII::MO_OPTION_MASK;
+ return std::make_pair(TF & Mask, TF & ~Mask);
+}
+
+ArrayRef<std::pair<unsigned, const char *>>
+ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
+ using namespace ARMII;
+
+ static const std::pair<unsigned, const char *> TargetFlags[] = {
+ {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"},
+ {MO_LO_0_7, "arm-lo-0-7"}, {MO_HI_0_7, "arm-hi-0-7"},
+ {MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"},
+ };
+ return ArrayRef(TargetFlags);
+}
+
+ArrayRef<std::pair<unsigned, const char *>>
+ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
+ using namespace ARMII;
+
+ static const std::pair<unsigned, const char *> TargetFlags[] = {
+ {MO_COFFSTUB, "arm-coffstub"},
+ {MO_GOT, "arm-got"},
+ {MO_SBREL, "arm-sbrel"},
+ {MO_DLLIMPORT, "arm-dllimport"},
+ {MO_SECREL, "arm-secrel"},
+ {MO_NONLAZY, "arm-nonlazy"}};
+ return ArrayRef(TargetFlags);
+}
+
+std::optional<RegImmPair>
+ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const {
+ int Sign = 1;
+ unsigned Opcode = MI.getOpcode();
+ int64_t Offset = 0;
+
+ // TODO: Handle cases where Reg is a super- or sub-register of the
+ // destination register.
+ const MachineOperand &Op0 = MI.getOperand(0);
+ if (!Op0.isReg() || Reg != Op0.getReg())
+ return std::nullopt;
+
+ // We describe SUBri or ADDri instructions.
+ if (Opcode == ARM::SUBri)
+ Sign = -1;
+ else if (Opcode != ARM::ADDri)
+ return std::nullopt;
+
+ // TODO: Third operand can be global address (usually some string). Since
+ // strings can be relocated we cannot calculate their offsets for
+ // now.
+ if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
+ return std::nullopt;
+
+ Offset = MI.getOperand(2).getImm() * Sign;
+ return RegImmPair{MI.getOperand(1).getReg(), Offset};
+}
+
+bool llvm::registerDefinedBetween(unsigned Reg,
+ MachineBasicBlock::iterator From,
+ MachineBasicBlock::iterator To,
+ const TargetRegisterInfo *TRI) {
+ for (auto I = From; I != To; ++I)
+ if (I->modifiesRegister(Reg, TRI))
+ return true;
+ return false;
+}
+
+MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
+ const TargetRegisterInfo *TRI) {
+ // Search backwards to the instruction that defines CSPR. This may or not
+ // be a CMP, we check that after this loop. If we find another instruction
+ // that reads cpsr, we return nullptr.
+ MachineBasicBlock::iterator CmpMI = Br;
+ while (CmpMI != Br->getParent()->begin()) {
+ --CmpMI;
+ if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
+ break;
+ if (CmpMI->readsRegister(ARM::CPSR, TRI))
+ break;
+ }
+
+ // Check that this inst is a CMP r[0-7], #0 and that the register
+ // is not redefined between the cmp and the br.
+ if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
+ return nullptr;
+ Register Reg = CmpMI->getOperand(0).getReg();
+ Register PredReg;
+ ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
+ if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
+ return nullptr;
+ if (!isARMLowRegister(Reg))
+ return nullptr;
+ if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
+ return nullptr;
+
+ return &*CmpMI;
+}
+
+unsigned llvm::ConstantMaterializationCost(unsigned Val,
+ const ARMSubtarget *Subtarget,
+ bool ForCodesize) {
+ if (Subtarget->isThumb()) {
+ if (Val <= 255) // MOV
+ return ForCodesize ? 2 : 1;
+ if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV
+ ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
+ ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
+ return ForCodesize ? 4 : 1;
+ if (Val <= 510) // MOV + ADDi8
+ return ForCodesize ? 4 : 2;
+ if (~Val <= 255) // MOV + MVN
+ return ForCodesize ? 4 : 2;
+ if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
+ return ForCodesize ? 4 : 2;
+ } else {
+ if (ARM_AM::getSOImmVal(Val) != -1) // MOV
+ return ForCodesize ? 4 : 1;
+ if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
+ return ForCodesize ? 4 : 1;
+ if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
+ return ForCodesize ? 4 : 1;
+ if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
+ return ForCodesize ? 8 : 2;
+ if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs
+ return ForCodesize ? 8 : 2;
+ }
+ if (Subtarget->useMovt()) // MOVW + MOVT
+ return ForCodesize ? 8 : 2;
+ return ForCodesize ? 8 : 3; // Literal pool load
+}
+
+bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
+ const ARMSubtarget *Subtarget,
+ bool ForCodesize) {
+ // Check with ForCodesize
+ unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
+ unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
+ if (Cost1 < Cost2)
+ return true;
+ if (Cost1 > Cost2)
+ return false;
+
+ // If they are equal, try with !ForCodesize
+ return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
+ ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
+}
+
+/// Constants defining how certain sequences should be outlined.
+/// This encompasses how an outlined function should be called, and what kind of
+/// frame should be emitted for that outlined function.
+///
+/// \p MachineOutlinerTailCall implies that the function is being created from
+/// a sequence of instructions ending in a return.
+///
+/// That is,
+///
+/// I1 OUTLINED_FUNCTION:
+/// I2 --> B OUTLINED_FUNCTION I1
+/// BX LR I2
+/// BX LR
+///
+/// +-------------------------+--------+-----+
+/// | | Thumb2 | ARM |
+/// +-------------------------+--------+-----+
+/// | Call overhead in Bytes | 4 | 4 |
+/// | Frame overhead in Bytes | 0 | 0 |
+/// | Stack fixup required | No | No |
+/// +-------------------------+--------+-----+
+///
+/// \p MachineOutlinerThunk implies that the function is being created from
+/// a sequence of instructions ending in a call. The outlined function is
+/// called with a BL instruction, and the outlined function tail-calls the
+/// original call destination.
+///
+/// That is,
+///
+/// I1 OUTLINED_FUNCTION:
+/// I2 --> BL OUTLINED_FUNCTION I1
+/// BL f I2
+/// B f
+///
+/// +-------------------------+--------+-----+
+/// | | Thumb2 | ARM |
+/// +-------------------------+--------+-----+
+/// | Call overhead in Bytes | 4 | 4 |
+/// | Frame overhead in Bytes | 0 | 0 |
+/// | Stack fixup required | No | No |
+/// +-------------------------+--------+-----+
+///
+/// \p MachineOutlinerNoLRSave implies that the function should be called using
+/// a BL instruction, but doesn't require LR to be saved and restored. This
+/// happens when LR is known to be dead.
+///
+/// That is,
+///
+/// I1 OUTLINED_FUNCTION:
+/// I2 --> BL OUTLINED_FUNCTION I1
+/// I3 I2
+/// I3
+/// BX LR
+///
+/// +-------------------------+--------+-----+
+/// | | Thumb2 | ARM |
+/// +-------------------------+--------+-----+
+/// | Call overhead in Bytes | 4 | 4 |
+/// | Frame overhead in Bytes | 2 | 4 |
+/// | Stack fixup required | No | No |
+/// +-------------------------+--------+-----+
+///
+/// \p MachineOutlinerRegSave implies that the function should be called with a
+/// save and restore of LR to an available register. This allows us to avoid
+/// stack fixups. Note that this outlining variant is compatible with the
+/// NoLRSave case.
+///
+/// That is,
+///
+/// I1 Save LR OUTLINED_FUNCTION:
+/// I2 --> BL OUTLINED_FUNCTION I1
+/// I3 Restore LR I2
+/// I3
+/// BX LR
+///
+/// +-------------------------+--------+-----+
+/// | | Thumb2 | ARM |
+/// +-------------------------+--------+-----+
+/// | Call overhead in Bytes | 8 | 12 |
+/// | Frame overhead in Bytes | 2 | 4 |
+/// | Stack fixup required | No | No |
+/// +-------------------------+--------+-----+
+///
+/// \p MachineOutlinerDefault implies that the function should be called with
+/// a save and restore of LR to the stack.
+///
+/// That is,
+///
+/// I1 Save LR OUTLINED_FUNCTION:
+/// I2 --> BL OUTLINED_FUNCTION I1
+/// I3 Restore LR I2
+/// I3
+/// BX LR
+///
+/// +-------------------------+--------+-----+
+/// | | Thumb2 | ARM |
+/// +-------------------------+--------+-----+
+/// | Call overhead in Bytes | 8 | 12 |
+/// | Frame overhead in Bytes | 2 | 4 |
+/// | Stack fixup required | Yes | Yes |
+/// +-------------------------+--------+-----+
+
+enum MachineOutlinerClass {
+ MachineOutlinerTailCall,
+ MachineOutlinerThunk,
+ MachineOutlinerNoLRSave,
+ MachineOutlinerRegSave,
+ MachineOutlinerDefault
+};
+
+enum MachineOutlinerMBBFlags {
+ LRUnavailableSomewhere = 0x2,
+ HasCalls = 0x4,
+ UnsafeRegsDead = 0x8
+};
+
+struct OutlinerCosts {
+ int CallTailCall;
+ int FrameTailCall;
+ int CallThunk;
+ int FrameThunk;
+ int CallNoLRSave;
+ int FrameNoLRSave;
+ int CallRegSave;
+ int FrameRegSave;
+ int CallDefault;
+ int FrameDefault;
+ int SaveRestoreLROnStack;
+
+ OutlinerCosts(const ARMSubtarget &target)
+ : CallTailCall(target.isThumb() ? 4 : 4),
+ FrameTailCall(target.isThumb() ? 0 : 0),
+ CallThunk(target.isThumb() ? 4 : 4),
+ FrameThunk(target.isThumb() ? 0 : 0),
+ CallNoLRSave(target.isThumb() ? 4 : 4),
+ FrameNoLRSave(target.isThumb() ? 2 : 4),
+ CallRegSave(target.isThumb() ? 8 : 12),
+ FrameRegSave(target.isThumb() ? 2 : 4),
+ CallDefault(target.isThumb() ? 8 : 12),
+ FrameDefault(target.isThumb() ? 2 : 4),
+ SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
+};
+
+Register
+ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const {
+ MachineFunction *MF = C.getMF();
+ const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
+ const ARMBaseRegisterInfo *ARI =
+ static_cast<const ARMBaseRegisterInfo *>(&TRI);
+
+ BitVector regsReserved = ARI->getReservedRegs(*MF);
+ // Check if there is an available register across the sequence that we can
+ // use.
+ for (Register Reg : ARM::rGPRRegClass) {
+ if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
+ Reg != ARM::LR && // LR is not reserved, but don't use it.
+ Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
+ C.isAvailableAcrossAndOutOfSeq(Reg, TRI) &&
+ C.isAvailableInsideSeq(Reg, TRI))
+ return Reg;
+ }
+ return Register();
+}
+
+// Compute liveness of LR at the point after the interval [I, E), which
+// denotes a *backward* iteration through instructions. Used only for return
+// basic blocks, which do not end with a tail call.
+static bool isLRAvailable(const TargetRegisterInfo &TRI,
+ MachineBasicBlock::reverse_iterator I,
+ MachineBasicBlock::reverse_iterator E) {
+ // At the end of the function LR dead.
+ bool Live = false;
+ for (; I != E; ++I) {
+ const MachineInstr &MI = *I;
+
+ // Check defs of LR.
+ if (MI.modifiesRegister(ARM::LR, &TRI))
+ Live = false;
+
+ // Check uses of LR.
+ unsigned Opcode = MI.getOpcode();
+ if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
+ Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
+ Opcode == ARM::tBXNS_RET) {
+ // These instructions use LR, but it's not an (explicit or implicit)
+ // operand.
+ Live = true;
+ continue;
+ }
+ if (MI.readsRegister(ARM::LR, &TRI))
+ Live = true;
+ }
+ return !Live;
+}
+
+std::optional<outliner::OutlinedFunction>
+ARMBaseInstrInfo::getOutliningCandidateInfo(
+ std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
+ unsigned SequenceSize = 0;
+ for (auto &MI : RepeatedSequenceLocs[0])
+ SequenceSize += getInstSizeInBytes(MI);
+
+ // Properties about candidate MBBs that hold for all of them.
+ unsigned FlagsSetInAll = 0xF;
+
+ // Compute liveness information for each candidate, and set FlagsSetInAll.
+ const TargetRegisterInfo &TRI = getRegisterInfo();
+ for (outliner::Candidate &C : RepeatedSequenceLocs)
+ FlagsSetInAll &= C.Flags;
+
+ // According to the ARM Procedure Call Standard, the following are
+ // undefined on entry/exit from a function call:
+ //
+ // * Register R12(IP),
+ // * Condition codes (and thus the CPSR register)
+ //
+ // Since we control the instructions which are part of the outlined regions
+ // we don't need to be fully compliant with the AAPCS, but we have to
+ // guarantee that if a veneer is inserted at link time the code is still
+ // correct. Because of this, we can't outline any sequence of instructions
+ // where one of these registers is live into/across it. Thus, we need to
+ // delete those candidates.
+ auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
+ // If the unsafe registers in this block are all dead, then we don't need
+ // to compute liveness here.
+ if (C.Flags & UnsafeRegsDead)
+ return false;
+ return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI);
+ };
+
+ // Are there any candidates where those registers are live?
+ if (!(FlagsSetInAll & UnsafeRegsDead)) {
+ // Erase every candidate that violates the restrictions above. (It could be
+ // true that we have viable candidates, so it's not worth bailing out in
+ // the case that, say, 1 out of 20 candidates violate the restructions.)
+ llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall);
+
+ // If the sequence doesn't have enough candidates left, then we're done.
+ if (RepeatedSequenceLocs.size() < 2)
+ return std::nullopt;
+ }
+
+ // We expect the majority of the outlining candidates to be in consensus with
+ // regard to return address sign and authentication, and branch target
+ // enforcement, in other words, partitioning according to all the four
+ // possible combinations of PAC-RET and BTI is going to yield one big subset
+ // and three small (likely empty) subsets. That allows us to cull incompatible
+ // candidates separately for PAC-RET and BTI.
+
+ // Partition the candidates in two sets: one with BTI enabled and one with BTI
+ // disabled. Remove the candidates from the smaller set. If they are the same
+ // number prefer the non-BTI ones for outlining, since they have less
+ // overhead.
+ auto NoBTI =
+ llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
+ const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
+ return AFI.branchTargetEnforcement();
+ });
+ if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) >
+ std::distance(NoBTI, RepeatedSequenceLocs.end()))
+ RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end());
+ else
+ RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI);
+
+ if (RepeatedSequenceLocs.size() < 2)
+ return std::nullopt;
+
+ // Likewise, partition the candidates according to PAC-RET enablement.
+ auto NoPAC =
+ llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) {
+ const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
+ // If the function happens to not spill the LR, do not disqualify it
+ // from the outlining.
+ return AFI.shouldSignReturnAddress(true);
+ });
+ if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) >
+ std::distance(NoPAC, RepeatedSequenceLocs.end()))
+ RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end());
+ else
+ RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC);
+
+ if (RepeatedSequenceLocs.size() < 2)
+ return std::nullopt;
+
+ // At this point, we have only "safe" candidates to outline. Figure out
+ // frame + call instruction information.
+
+ unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back().getOpcode();
+
+ // Helper lambda which sets call information for every candidate.
+ auto SetCandidateCallInfo =
+ [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
+ for (outliner::Candidate &C : RepeatedSequenceLocs)
+ C.setCallInfo(CallID, NumBytesForCall);
+ };
+
+ OutlinerCosts Costs(Subtarget);
+
+ const auto &SomeMFI =
+ *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>();
+ // Adjust costs to account for the BTI instructions.
+ if (SomeMFI.branchTargetEnforcement()) {
+ Costs.FrameDefault += 4;
+ Costs.FrameNoLRSave += 4;
+ Costs.FrameRegSave += 4;
+ Costs.FrameTailCall += 4;
+ Costs.FrameThunk += 4;
+ }
+
+ // Adjust costs to account for sign and authentication instructions.
+ if (SomeMFI.shouldSignReturnAddress(true)) {
+ Costs.CallDefault += 8; // +PAC instr, +AUT instr
+ Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr
+ }
+
+ unsigned FrameID = MachineOutlinerDefault;
+ unsigned NumBytesToCreateFrame = Costs.FrameDefault;
+
+ // If the last instruction in any candidate is a terminator, then we should
+ // tail call all of the candidates.
+ if (RepeatedSequenceLocs[0].back().isTerminator()) {
+ FrameID = MachineOutlinerTailCall;
+ NumBytesToCreateFrame = Costs.FrameTailCall;
+ SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
+ } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
+ LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
+ LastInstrOpcode == ARM::tBLXr ||
+ LastInstrOpcode == ARM::tBLXr_noip ||
+ LastInstrOpcode == ARM::tBLXi) {
+ FrameID = MachineOutlinerThunk;
+ NumBytesToCreateFrame = Costs.FrameThunk;
+ SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
+ } else {
+ // We need to decide how to emit calls + frames. We can always emit the same
+ // frame if we don't need to save to the stack. If we have to save to the
+ // stack, then we need a different frame.
+ unsigned NumBytesNoStackCalls = 0;
+ std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
+
+ for (outliner::Candidate &C : RepeatedSequenceLocs) {
+ // LR liveness is overestimated in return blocks, unless they end with a
+ // tail call.
+ const auto Last = C.getMBB()->rbegin();
+ const bool LRIsAvailable =
+ C.getMBB()->isReturnBlock() && !Last->isCall()
+ ? isLRAvailable(TRI, Last,
+ (MachineBasicBlock::reverse_iterator)C.begin())
+ : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI);
+ if (LRIsAvailable) {
+ FrameID = MachineOutlinerNoLRSave;
+ NumBytesNoStackCalls += Costs.CallNoLRSave;
+ C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
+ CandidatesWithoutStackFixups.push_back(C);
+ }
+
+ // Is an unused register available? If so, we won't modify the stack, so
+ // we can outline with the same frame type as those that don't save LR.
+ else if (findRegisterToSaveLRTo(C)) {
+ FrameID = MachineOutlinerRegSave;
+ NumBytesNoStackCalls += Costs.CallRegSave;
+ C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
+ CandidatesWithoutStackFixups.push_back(C);
+ }
+
+ // Is SP used in the sequence at all? If not, we don't have to modify
+ // the stack, so we are guaranteed to get the same frame.
+ else if (C.isAvailableInsideSeq(ARM::SP, TRI)) {
+ NumBytesNoStackCalls += Costs.CallDefault;
+ C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault);
+ CandidatesWithoutStackFixups.push_back(C);
+ }
+
+ // If we outline this, we need to modify the stack. Pretend we don't
+ // outline this by saving all of its bytes.
+ else
+ NumBytesNoStackCalls += SequenceSize;
+ }
+
+ // If there are no places where we have to save LR, then note that we don't
+ // have to update the stack. Otherwise, give every candidate the default
+ // call type
+ if (NumBytesNoStackCalls <=
+ RepeatedSequenceLocs.size() * Costs.CallDefault) {
+ RepeatedSequenceLocs = CandidatesWithoutStackFixups;
+ FrameID = MachineOutlinerNoLRSave;
+ if (RepeatedSequenceLocs.size() < 2)
+ return std::nullopt;
+ } else
+ SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
+ }
+
+ // Does every candidate's MBB contain a call? If so, then we might have a
+ // call in the range.
+ if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
+ // check if the range contains a call. These require a save + restore of
+ // the link register.
+ outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
+ if (std::any_of(FirstCand.begin(), std::prev(FirstCand.end()),
+ [](const MachineInstr &MI) { return MI.isCall(); }))
+ NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
+
+ // Handle the last instruction separately. If it is tail call, then the
+ // last instruction is a call, we don't want to save + restore in this
+ // case. However, it could be possible that the last instruction is a
+ // call without it being valid to tail call this sequence. We should
+ // consider this as well.
+ else if (FrameID != MachineOutlinerThunk &&
+ FrameID != MachineOutlinerTailCall && FirstCand.back().isCall())
+ NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
+ }
+
+ return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
+ NumBytesToCreateFrame, FrameID);
+}
+
+bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
+ int64_t Fixup,
+ bool Updt) const {
+ int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP, /*TRI=*/nullptr);
+ unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
+ if (SPIdx < 0)
+ // No SP operand
+ return true;
+ else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
+ // If SP is not the base register we can't do much
+ return false;
+
+ // Stack might be involved but addressing mode doesn't handle any offset.
+ // Rq: AddrModeT1_[1|2|4] don't operate on SP
+ if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions
+ AddrMode == ARMII::AddrMode4 || // Load/Store Multiple
+ AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple
+ AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register
+ AddrMode == ARMII::AddrModeT2_pc || // PCrel access
+ AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST
+ AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE
+ AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE
+ AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR
+ AddrMode == ARMII::AddrModeNone ||
+ AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions
+ AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm
+ return false;
+
+ unsigned NumOps = MI->getDesc().getNumOperands();
+ unsigned ImmIdx = NumOps - 3;
+
+ const MachineOperand &Offset = MI->getOperand(ImmIdx);
+ assert(Offset.isImm() && "Is not an immediate");
+ int64_t OffVal = Offset.getImm();
+
+ if (OffVal < 0)
+ // Don't override data if the are below SP.
+ return false;
+
+ unsigned NumBits = 0;
+ unsigned Scale = 1;
+
+ switch (AddrMode) {
+ case ARMII::AddrMode3:
+ if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub)
+ return false;
+ OffVal = ARM_AM::getAM3Offset(OffVal);
+ NumBits = 8;
+ break;
+ case ARMII::AddrMode5:
+ if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub)
+ return false;
+ OffVal = ARM_AM::getAM5Offset(OffVal);
+ NumBits = 8;
+ Scale = 4;
+ break;
+ case ARMII::AddrMode5FP16:
+ if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub)
+ return false;
+ OffVal = ARM_AM::getAM5FP16Offset(OffVal);
+ NumBits = 8;
+ Scale = 2;
+ break;
+ case ARMII::AddrModeT2_i8pos:
+ NumBits = 8;
+ break;
+ case ARMII::AddrModeT2_i8s4:
+ // FIXME: Values are already scaled in this addressing mode.
+ assert((Fixup & 3) == 0 && "Can't encode this offset!");
+ NumBits = 10;
+ break;
+ case ARMII::AddrModeT2_ldrex:
+ NumBits = 8;
+ Scale = 4;
+ break;
+ case ARMII::AddrModeT2_i12:
+ case ARMII::AddrMode_i12:
+ NumBits = 12;
+ break;
+ case ARMII::AddrModeT1_s: // SP-relative LD/ST
+ NumBits = 8;
+ Scale = 4;
+ break;
+ default:
+ llvm_unreachable("Unsupported addressing mode!");
+ }
+ // Make sure the offset is encodable for instructions that scale the
+ // immediate.
+ assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
+ "Can't encode this offset!");
+ OffVal += Fixup / Scale;
+
+ unsigned Mask = (1 << NumBits) - 1;
+
+ if (OffVal <= Mask) {
+ if (Updt)
+ MI->getOperand(ImmIdx).setImm(OffVal);
+ return true;
+ }
+
+ return false;
+}
+
+void ARMBaseInstrInfo::mergeOutliningCandidateAttributes(
+ Function &F, std::vector<outliner::Candidate> &Candidates) const {
+ outliner::Candidate &C = Candidates.front();
+ // branch-target-enforcement is guaranteed to be consistent between all
+ // candidates, so we only need to look at one.
+ const Function &CFn = C.getMF()->getFunction();
+ if (CFn.hasFnAttribute("branch-target-enforcement"))
+ F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement"));
+
+ ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates);
+}
+
+bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
+ MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
+ const Function &F = MF.getFunction();
+
+ // Can F be deduplicated by the linker? If it can, don't outline from it.
+ if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
+ return false;
+
+ // Don't outline from functions with section markings; the program could
+ // expect that all the code is in the named section.
+ // FIXME: Allow outlining from multiple functions with the same section
+ // marking.
+ if (F.hasSection())
+ return false;
+
+ // FIXME: Thumb1 outlining is not handled
+ if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
+ return false;
+
+ // It's safe to outline from MF.
+ return true;
+}
+
+bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
+ unsigned &Flags) const {
+ // Check if LR is available through all of the MBB. If it's not, then set
+ // a flag.
+ assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
+ "Suitable Machine Function for outlining must track liveness");
+
+ LiveRegUnits LRU(getRegisterInfo());
+
+ for (MachineInstr &MI : llvm::reverse(MBB))
+ LRU.accumulate(MI);
+
+ // Check if each of the unsafe registers are available...
+ bool R12AvailableInBlock = LRU.available(ARM::R12);
+ bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
+
+ // If all of these are dead (and not live out), we know we don't have to check
+ // them later.
+ if (R12AvailableInBlock && CPSRAvailableInBlock)
+ Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
+
+ // Now, add the live outs to the set.
+ LRU.addLiveOuts(MBB);
+
+ // If any of these registers is available in the MBB, but also a live out of
+ // the block, then we know outlining is unsafe.
+ if (R12AvailableInBlock && !LRU.available(ARM::R12))
+ return false;
+ if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
+ return false;
+
+ // Check if there's a call inside this MachineBasicBlock. If there is, then
+ // set a flag.
+ if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
+ Flags |= MachineOutlinerMBBFlags::HasCalls;
+
+ // LR liveness is overestimated in return blocks.
+
+ bool LRIsAvailable =
+ MBB.isReturnBlock() && !MBB.back().isCall()
+ ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
+ : LRU.available(ARM::LR);
+ if (!LRIsAvailable)
+ Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
+
+ return true;
+}
+
+outliner::InstrType
+ARMBaseInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT,
+ unsigned Flags) const {
+ MachineInstr &MI = *MIT;
+ const TargetRegisterInfo *TRI = &getRegisterInfo();
+
+ // PIC instructions contain labels, outlining them would break offset
+ // computing. unsigned Opc = MI.getOpcode();
+ unsigned Opc = MI.getOpcode();
+ if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
+ Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
+ Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
+ Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
+ Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
+ Opc == ARM::t2MOV_ga_pcrel)
+ return outliner::InstrType::Illegal;
+
+ // Be conservative with ARMv8.1 MVE instructions.
+ if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
+ Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
+ Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
+ Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
+ Opc == ARM::t2LoopEndDec)
+ return outliner::InstrType::Illegal;
+
+ const MCInstrDesc &MCID = MI.getDesc();
+ uint64_t MIFlags = MCID.TSFlags;
+ if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
+ return outliner::InstrType::Illegal;
+
+ // Is this a terminator for a basic block?
+ if (MI.isTerminator())
+ // TargetInstrInfo::getOutliningType has already filtered out anything
+ // that would break this, so we can allow it here.
+ return outliner::InstrType::Legal;
+
+ // Don't outline if link register or program counter value are used.
+ if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
+ return outliner::InstrType::Illegal;
+
+ if (MI.isCall()) {
+ // Get the function associated with the call. Look at each operand and find
+ // the one that represents the calle and get its name.
+ const Function *Callee = nullptr;
+ for (const MachineOperand &MOP : MI.operands()) {
+ if (MOP.isGlobal()) {
+ Callee = dyn_cast<Function>(MOP.getGlobal());
+ break;
+ }
+ }
+
+ // Dont't outline calls to "mcount" like functions, in particular Linux
+ // kernel function tracing relies on it.
+ if (Callee &&
+ (Callee->getName() == "\01__gnu_mcount_nc" ||
+ Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
+ return outliner::InstrType::Illegal;
+
+ // If we don't know anything about the callee, assume it depends on the
+ // stack layout of the caller. In that case, it's only legal to outline
+ // as a tail-call. Explicitly list the call instructions we know about so
+ // we don't get unexpected results with call pseudo-instructions.
+ auto UnknownCallOutlineType = outliner::InstrType::Illegal;
+ if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
+ Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
+ Opc == ARM::tBLXi)
+ UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
+
+ if (!Callee)
+ return UnknownCallOutlineType;
+
+ // We have a function we have information about. Check if it's something we
+ // can safely outline.
+ MachineFunction *MF = MI.getParent()->getParent();
+ MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee);
+
+ // We don't know what's going on with the callee at all. Don't touch it.
+ if (!CalleeMF)
+ return UnknownCallOutlineType;
+
+ // Check if we know anything about the callee saves on the function. If we
+ // don't, then don't touch it, since that implies that we haven't computed
+ // anything about its stack frame yet.
+ MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
+ if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
+ MFI.getNumObjects() > 0)
+ return UnknownCallOutlineType;
+
+ // At this point, we can say that CalleeMF ought to not pass anything on the
+ // stack. Therefore, we can outline it.
+ return outliner::InstrType::Legal;
+ }
+
+ // Since calls are handled, don't touch LR or PC
+ if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
+ return outliner::InstrType::Illegal;
+
+ // Does this use the stack?
+ if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
+ // True if there is no chance that any outlined candidate from this range
+ // could require stack fixups. That is, both
+ // * LR is available in the range (No save/restore around call)
+ // * The range doesn't include calls (No save/restore in outlined frame)
+ // are true.
+ // These conditions also ensure correctness of the return address
+ // authentication - we insert sign and authentication instructions only if
+ // we save/restore LR on stack, but then this condition ensures that the
+ // outlined range does not modify the SP, therefore the SP value used for
+ // signing is the same as the one used for authentication.
+ // FIXME: This is very restrictive; the flags check the whole block,
+ // not just the bit we will try to outline.
+ bool MightNeedStackFixUp =
+ (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
+ MachineOutlinerMBBFlags::HasCalls));
+
+ if (!MightNeedStackFixUp)
+ return outliner::InstrType::Legal;
+
+ // Any modification of SP will break our code to save/restore LR.
+ // FIXME: We could handle some instructions which add a constant offset to
+ // SP, with a bit more work.
+ if (MI.modifiesRegister(ARM::SP, TRI))
+ return outliner::InstrType::Illegal;
+
+ // At this point, we have a stack instruction that we might need to fix up.
+ // up. We'll handle it if it's a load or store.
+ if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(),
+ false))
+ return outliner::InstrType::Legal;
+
+ // We can't fix it up, so don't outline it.
+ return outliner::InstrType::Illegal;
+ }
+
+ // Be conservative with IT blocks.
+ if (MI.readsRegister(ARM::ITSTATE, TRI) ||
+ MI.modifiesRegister(ARM::ITSTATE, TRI))
+ return outliner::InstrType::Illegal;
+
+ // Don't outline CFI instructions.
+ if (MI.isCFIInstruction())
+ return outliner::InstrType::Illegal;
+
+ return outliner::InstrType::Legal;
+}
+
+void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
+ for (MachineInstr &MI : MBB) {
+ checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true);
+ }
+}
+
+void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator It, bool CFI,
+ bool Auth) const {
+ int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8));
+ unsigned MIFlags = CFI ? MachineInstr::FrameSetup : 0;
+ assert(Align >= 8 && Align <= 256);
+ if (Auth) {
+ assert(Subtarget.isThumb2());
+ // Compute PAC in R12. Outlining ensures R12 is dead across the outlined
+ // sequence.
+ BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)).setMIFlags(MIFlags);
+ BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP)
+ .addReg(ARM::R12, RegState::Kill)
+ .addReg(ARM::LR, RegState::Kill)
+ .addReg(ARM::SP)
+ .addImm(-Align)
+ .add(predOps(ARMCC::AL))
+ .setMIFlags(MIFlags);
+ } else {
+ unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
+ BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
+ .addReg(ARM::LR, RegState::Kill)
+ .addReg(ARM::SP)
+ .addImm(-Align)
+ .add(predOps(ARMCC::AL))
+ .setMIFlags(MIFlags);
+ }
+
+ if (!CFI)
+ return;
+
+ MachineFunction &MF = *MBB.getParent();
+
+ // Add a CFI, saying CFA is offset by Align bytes from SP.
+ int64_t StackPosEntry =
+ MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align));
+ BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
+ .addCFIIndex(StackPosEntry)
+ .setMIFlags(MachineInstr::FrameSetup);
+
+ // Add a CFI saying that the LR that we want to find is now higher than
+ // before.
+ int LROffset = Auth ? Align - 4 : Align;
+ const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
+ unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
+ int64_t LRPosEntry = MF.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset));
+ BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
+ .addCFIIndex(LRPosEntry)
+ .setMIFlags(MachineInstr::FrameSetup);
+ if (Auth) {
+ // Add a CFI for the location of the return adddress PAC.
+ unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
+ int64_t RACPosEntry = MF.addFrameInst(
+ MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align));
+ BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
+ .addCFIIndex(RACPosEntry)
+ .setMIFlags(MachineInstr::FrameSetup);
+ }
+}
+
+void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator It,
+ Register Reg) const {
+ MachineFunction &MF = *MBB.getParent();
+ const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
+ unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
+ unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
+
+ int64_t LRPosEntry = MF.addFrameInst(
+ MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg));
+ BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
+ .addCFIIndex(LRPosEntry)
+ .setMIFlags(MachineInstr::FrameSetup);
+}
+
+void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator It,
+ bool CFI, bool Auth) const {
+ int Align = Subtarget.getStackAlignment().value();
+ unsigned MIFlags = CFI ? MachineInstr::FrameDestroy : 0;
+ if (Auth) {
+ assert(Subtarget.isThumb2());
+ // Restore return address PAC and LR.
+ BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST))
+ .addReg(ARM::R12, RegState::Define)
+ .addReg(ARM::LR, RegState::Define)
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP)
+ .addImm(Align)
+ .add(predOps(ARMCC::AL))
+ .setMIFlags(MIFlags);
+ // LR authentication is after the CFI instructions, below.
+ } else {
+ unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
+ MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
+ .addReg(ARM::SP, RegState::Define)
+ .addReg(ARM::SP);
+ if (!Subtarget.isThumb())
+ MIB.addReg(0);
+ MIB.addImm(Subtarget.getStackAlignment().value())
+ .add(predOps(ARMCC::AL))
+ .setMIFlags(MIFlags);
+ }
+
+ if (CFI) {
+ // Now stack has moved back up...
+ MachineFunction &MF = *MBB.getParent();
+ const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
+ unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
+ int64_t StackPosEntry =
+ MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
+ BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
+ .addCFIIndex(StackPosEntry)
+ .setMIFlags(MachineInstr::FrameDestroy);
+
+ // ... and we have restored LR.
+ int64_t LRPosEntry =
+ MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
+ BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
+ .addCFIIndex(LRPosEntry)
+ .setMIFlags(MachineInstr::FrameDestroy);
+
+ if (Auth) {
+ unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
+ int64_t Entry =
+ MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC));
+ BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
+ .addCFIIndex(Entry)
+ .setMIFlags(MachineInstr::FrameDestroy);
+ }
+ }
+
+ if (Auth)
+ BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT));
+}
+
+void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
+ MachineFunction &MF = *MBB.getParent();
+ const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
+ unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
+
+ int64_t LRPosEntry =
+ MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR));
+ BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
+ .addCFIIndex(LRPosEntry)
+ .setMIFlags(MachineInstr::FrameDestroy);
+}
+
+void ARMBaseInstrInfo::buildOutlinedFrame(
+ MachineBasicBlock &MBB, MachineFunction &MF,
+ const outliner::OutlinedFunction &OF) const {
+ // For thunk outlining, rewrite the last instruction from a call to a
+ // tail-call.
+ if (OF.FrameConstructionID == MachineOutlinerThunk) {
+ MachineInstr *Call = &*--MBB.instr_end();
+ bool isThumb = Subtarget.isThumb();
+ unsigned FuncOp = isThumb ? 2 : 0;
+ unsigned Opc = Call->getOperand(FuncOp).isReg()
+ ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
+ : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
+ : ARM::tTAILJMPdND
+ : ARM::TAILJMPd;
+ MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
+ .add(Call->getOperand(FuncOp));
+ if (isThumb && !Call->getOperand(FuncOp).isReg())
+ MIB.add(predOps(ARMCC::AL));
+ Call->eraseFromParent();
+ }
+
+ // Is there a call in the outlined range?
+ auto IsNonTailCall = [](MachineInstr &MI) {
+ return MI.isCall() && !MI.isReturn();
+ };
+ if (llvm::any_of(MBB.instrs(), IsNonTailCall)) {
+ MachineBasicBlock::iterator It = MBB.begin();
+ MachineBasicBlock::iterator Et = MBB.end();
+
+ if (OF.FrameConstructionID == MachineOutlinerTailCall ||
+ OF.FrameConstructionID == MachineOutlinerThunk)
+ Et = std::prev(MBB.end());
+
+ // We have to save and restore LR, we need to add it to the liveins if it
+ // is not already part of the set. This is suffient since outlined
+ // functions only have one block.
+ if (!MBB.isLiveIn(ARM::LR))
+ MBB.addLiveIn(ARM::LR);
+
+ // Insert a save before the outlined region
+ bool Auth = OF.Candidates.front()
+ .getMF()
+ ->getInfo<ARMFunctionInfo>()
+ ->shouldSignReturnAddress(true);
+ saveLROnStack(MBB, It, true, Auth);
+
+ // Fix up the instructions in the range, since we're going to modify the
+ // stack.
+ assert(OF.FrameConstructionID != MachineOutlinerDefault &&
+ "Can only fix up stack references once");
+ fixupPostOutline(MBB);
+
+ // Insert a restore before the terminator for the function. Restore LR.
+ restoreLRFromStack(MBB, Et, true, Auth);
+ }
+
+ // If this is a tail call outlined function, then there's already a return.
+ if (OF.FrameConstructionID == MachineOutlinerTailCall ||
+ OF.FrameConstructionID == MachineOutlinerThunk)
+ return;
+
+ // Here we have to insert the return ourselves. Get the correct opcode from
+ // current feature set.
+ BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
+ .add(predOps(ARMCC::AL));
+
+ // Did we have to modify the stack by saving the link register?
+ if (OF.FrameConstructionID != MachineOutlinerDefault &&
+ OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
+ return;
+
+ // We modified the stack.
+ // Walk over the basic block and fix up all the stack accesses.
+ fixupPostOutline(MBB);
+}
+
+MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
+ Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
+ MachineFunction &MF, outliner::Candidate &C) const {
+ MachineInstrBuilder MIB;
+ MachineBasicBlock::iterator CallPt;
+ unsigned Opc;
+ bool isThumb = Subtarget.isThumb();
+
+ // Are we tail calling?
+ if (C.CallConstructionID == MachineOutlinerTailCall) {
+ // If yes, then we can just branch to the label.
+ Opc = isThumb
+ ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
+ : ARM::TAILJMPd;
+ MIB = BuildMI(MF, DebugLoc(), get(Opc))
+ .addGlobalAddress(M.getNamedValue(MF.getName()));
+ if (isThumb)
+ MIB.add(predOps(ARMCC::AL));
+ It = MBB.insert(It, MIB);
+ return It;
+ }
+
+ // Create the call instruction.
+ Opc = isThumb ? ARM::tBL : ARM::BL;
+ MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
+ if (isThumb)
+ CallMIB.add(predOps(ARMCC::AL));
+ CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));
+
+ if (C.CallConstructionID == MachineOutlinerNoLRSave ||
+ C.CallConstructionID == MachineOutlinerThunk) {
+ // No, so just insert the call.
+ It = MBB.insert(It, CallMIB);
+ return It;
+ }
+
+ const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
+ // Can we save to a register?
+ if (C.CallConstructionID == MachineOutlinerRegSave) {
+ Register Reg = findRegisterToSaveLRTo(C);
+ assert(Reg != 0 && "No callee-saved register available?");
+
+ // Save and restore LR from that register.
+ copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
+ if (!AFI.isLRSpilled())
+ emitCFIForLRSaveToReg(MBB, It, Reg);
+ CallPt = MBB.insert(It, CallMIB);
+ copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
+ if (!AFI.isLRSpilled())
+ emitCFIForLRRestoreFromReg(MBB, It);
+ It--;
+ return CallPt;
+ }
+ // We have the default case. Save and restore from SP.
+ if (!MBB.isLiveIn(ARM::LR))
+ MBB.addLiveIn(ARM::LR);
+ bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true);
+ saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth);
+ CallPt = MBB.insert(It, CallMIB);
+ restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth);
+ It--;
+ return CallPt;
+}
+
+bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
+ MachineFunction &MF) const {
+ return Subtarget.isMClass() && MF.getFunction().hasMinSize();
+}
+
+bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(
+ const MachineInstr &MI) const {
+ // Try hard to rematerialize any VCTPs because if we spill P0, it will block
+ // the tail predication conversion. This means that the element count
+ // register has to be live for longer, but that has to be better than
+ // spill/restore and VPT predication.
+ return (isVCTP(&MI) && !isPredicated(MI)) ||
+ TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
+}
+
+unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
+ return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
+ : ARM::BLX;
+}
+
+unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
+ return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
+ : ARM::tBLXr;
+}
+
+unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
+ return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
+ : ARM::BLX_pred;
+}
+
+namespace {
+class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
+ MachineInstr *EndLoop, *LoopCount;
+ MachineFunction *MF;
+ const TargetInstrInfo *TII;
+
+ // Bitset[0 .. MAX_STAGES-1] ... iterations needed
+ // [LAST_IS_USE] : last reference to register in schedule is a use
+ // [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live
+ static int constexpr MAX_STAGES = 30;
+ static int constexpr LAST_IS_USE = MAX_STAGES;
+ static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1;
+ typedef std::bitset<MAX_STAGES + 2> IterNeed;
+ typedef std::map<unsigned, IterNeed> IterNeeds;
+
+ void bumpCrossIterationPressure(RegPressureTracker &RPT,
+ const IterNeeds &CIN);
+ bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS);
+
+ // Meanings of the various stuff with loop types:
+ // t2Bcc:
+ // EndLoop = branch at end of original BB that will become a kernel
+ // LoopCount = CC setter live into branch
+ // t2LoopEnd:
+ // EndLoop = branch at end of original BB
+ // LoopCount = t2LoopDec
+public:
+ ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount)
+ : EndLoop(EndLoop), LoopCount(LoopCount),
+ MF(EndLoop->getParent()->getParent()),
+ TII(MF->getSubtarget().getInstrInfo()) {}
+
+ bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
+ // Only ignore the terminator.
+ return MI == EndLoop || MI == LoopCount;
+ }
+
+ bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override {
+ if (tooMuchRegisterPressure(SSD, SMS))
+ return false;
+
+ return true;
+ }
+
+ std::optional<bool> createTripCountGreaterCondition(
+ int TC, MachineBasicBlock &MBB,
+ SmallVectorImpl<MachineOperand> &Cond) override {
+
+ if (isCondBranchOpcode(EndLoop->getOpcode())) {
+ Cond.push_back(EndLoop->getOperand(1));
+ Cond.push_back(EndLoop->getOperand(2));
+ if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) {
+ TII->reverseBranchCondition(Cond);
+ }
+ return {};
+ } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) {
+ // General case just lets the unrolled t2LoopDec do the subtraction and
+ // therefore just needs to check if zero has been reached.
+ MachineInstr *LoopDec = nullptr;
+ for (auto &I : MBB.instrs())
+ if (I.getOpcode() == ARM::t2LoopDec)
+ LoopDec = &I;
+ assert(LoopDec && "Unable to find copied LoopDec");
+ // Check if we're done with the loop.
+ BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri))
+ .addReg(LoopDec->getOperand(0).getReg())
+ .addImm(0)
+ .addImm(ARMCC::AL)
+ .addReg(ARM::NoRegister);
+ Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ));
+ Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false));
+ return {};
+ } else
+ llvm_unreachable("Unknown EndLoop");
+ }
+
+ void setPreheader(MachineBasicBlock *NewPreheader) override {}
+
+ void adjustTripCount(int TripCountAdjust) override {}
+
+ void disposed() override {}
+};
+
+void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT,
+ const IterNeeds &CIN) {
+ // Increase pressure by the amounts in CrossIterationNeeds
+ for (const auto &N : CIN) {
+ int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
+ for (int I = 0; I < Cnt; ++I)
+ RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(),
+ LaneBitmask::getAll());
+ }
+ // Decrease pressure by the amounts in CrossIterationNeeds
+ for (const auto &N : CIN) {
+ int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
+ for (int I = 0; I < Cnt; ++I)
+ RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(),
+ LaneBitmask::getNone());
+ }
+}
+
+bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD,
+ SMSchedule &SMS) {
+ IterNeeds CrossIterationNeeds;
+
+ // Determine which values will be loop-carried after the schedule is
+ // applied
+
+ for (auto &SU : SSD.SUnits) {
+ const MachineInstr *MI = SU.getInstr();
+ int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU));
+ for (auto &S : SU.Succs)
+ if (MI->isPHI() && S.getKind() == SDep::Anti) {
+ Register Reg = S.getReg();
+ if (Reg.isVirtual())
+ CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed()))
+ .first->second.set(0);
+ } else if (S.isAssignedRegDep()) {
+ int OStg = SMS.stageScheduled(S.getSUnit());
+ if (OStg >= 0 && OStg != Stg) {
+ Register Reg = S.getReg();
+ if (Reg.isVirtual())
+ CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed()))
+ .first->second |= ((1 << (OStg - Stg)) - 1);
+ }
+ }
+ }
+
+ // Determine more-or-less what the proposed schedule (reversed) is going to
+ // be; it might not be quite the same because the within-cycle ordering
+ // created by SMSchedule depends upon changes to help with address offsets and
+ // the like.
+ std::vector<SUnit *> ProposedSchedule;
+ for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle)
+ for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd;
+ ++Stage) {
+ std::deque<SUnit *> Instrs =
+ SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval());
+ std::sort(Instrs.begin(), Instrs.end(),
+ [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; });
+ for (SUnit *SU : Instrs)
+ ProposedSchedule.push_back(SU);
+ }
+
+ // Learn whether the last use/def of each cross-iteration register is a use or
+ // def. If it is a def, RegisterPressure will implicitly increase max pressure
+ // and we do not have to add the pressure.
+ for (auto *SU : ProposedSchedule)
+ for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid();
+ ++OperI) {
+ auto MO = *OperI;
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ Register Reg = MO.getReg();
+ auto CIter = CrossIterationNeeds.find(Reg.id());
+ if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] ||
+ CIter->second[SEEN_AS_LIVE])
+ continue;
+ if (MO.isDef() && !MO.isDead())
+ CIter->second.set(SEEN_AS_LIVE);
+ else if (MO.isUse())
+ CIter->second.set(LAST_IS_USE);
+ }
+ for (auto &CI : CrossIterationNeeds)
+ CI.second.reset(LAST_IS_USE);
+
+ RegionPressure RecRegPressure;
+ RegPressureTracker RPTracker(RecRegPressure);
+ RegisterClassInfo RegClassInfo;
+ RegClassInfo.runOnMachineFunction(*MF);
+ RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(),
+ EndLoop->getParent()->end(), false, false);
+ const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
+
+ bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
+
+ for (auto *SU : ProposedSchedule) {
+ MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
+ RPTracker.setPos(std::next(CurInstI));
+ RPTracker.recede();
+
+ // Track what cross-iteration registers would be seen as live
+ for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) {
+ auto MO = *OperI;
+ if (!MO.isReg() || !MO.getReg())
+ continue;
+ Register Reg = MO.getReg();
+ if (MO.isDef() && !MO.isDead()) {
+ auto CIter = CrossIterationNeeds.find(Reg.id());
+ if (CIter != CrossIterationNeeds.end()) {
+ CIter->second.reset(0);
+ CIter->second.reset(SEEN_AS_LIVE);
+ }
+ }
+ }
+ for (auto &S : SU->Preds) {
+ auto Stg = SMS.stageScheduled(SU);
+ if (S.isAssignedRegDep()) {
+ Register Reg = S.getReg();
+ auto CIter = CrossIterationNeeds.find(Reg.id());
+ if (CIter != CrossIterationNeeds.end()) {
+ auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit()));
+ assert(Stg2 <= Stg && "Data dependence upon earlier stage");
+ if (Stg - Stg2 < MAX_STAGES)
+ CIter->second.set(Stg - Stg2);
+ CIter->second.set(SEEN_AS_LIVE);
+ }
+ }
+ }
+
+ bumpCrossIterationPressure(RPTracker, CrossIterationNeeds);
+ }
+
+ auto &P = RPTracker.getPressure().MaxSetPressure;
+ for (unsigned I = 0, E = P.size(); I < E; ++I)
+ if (P[I] > TRI->getRegPressureSetLimit(*MF, I)) {
+ return true;
+ }
+ return false;
+}
+
+} // namespace
+
+std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
+ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
+ MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
+ MachineBasicBlock *Preheader = *LoopBB->pred_begin();
+ if (Preheader == LoopBB)
+ Preheader = *std::next(LoopBB->pred_begin());
+
+ if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) {
+ // If the branch is a Bcc, then the CPSR should be set somewhere within the
+ // block. We need to determine the reaching definition of CPSR so that
+ // it can be marked as non-pipelineable, allowing the pipeliner to force
+ // it into stage 0 or give up if it cannot or will not do so.
+ MachineInstr *CCSetter = nullptr;
+ for (auto &L : LoopBB->instrs()) {
+ if (L.isCall())
+ return nullptr;
+ if (isCPSRDefined(L))
+ CCSetter = &L;
+ }
+ if (CCSetter)
+ return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter);
+ else
+ return nullptr; // Unable to find the CC setter, so unable to guarantee
+ // that pipeline will work
+ }
+
+ // Recognize:
+ // preheader:
+ // %1 = t2DoopLoopStart %0
+ // loop:
+ // %2 = phi %1, <not loop>, %..., %loop
+ // %3 = t2LoopDec %2, <imm>
+ // t2LoopEnd %3, %loop
+
+ if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) {
+ for (auto &L : LoopBB->instrs())
+ if (L.isCall())
+ return nullptr;
+ else if (isVCTP(&L))
+ return nullptr;
+ Register LoopDecResult = I->getOperand(0).getReg();
+ MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
+ MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult);
+ if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec)
+ return nullptr;
+ MachineInstr *LoopStart = nullptr;
+ for (auto &J : Preheader->instrs())
+ if (J.getOpcode() == ARM::t2DoLoopStart)
+ LoopStart = &J;
+ if (!LoopStart)
+ return nullptr;
+ return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec);
+ }
+ return nullptr;
+}