diff options
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp | 7029 |
1 files changed, 7029 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp b/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp new file mode 100644 index 000000000000..bf6bb8c295ef --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp @@ -0,0 +1,7029 @@ +//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains the Base ARM implementation of the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#include "ARMBaseInstrInfo.h" +#include "ARMBaseRegisterInfo.h" +#include "ARMConstantPoolValue.h" +#include "ARMFeatures.h" +#include "ARMHazardRecognizer.h" +#include "ARMMachineFunctionInfo.h" +#include "ARMSubtarget.h" +#include "MCTargetDesc/ARMAddressingModes.h" +#include "MCTargetDesc/ARMBaseInfo.h" +#include "MVETailPredUtils.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/DFAPacketizer.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachinePipeliner.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/MachineScheduler.h" +#include "llvm/CodeGen/MultiHazardRecognizer.h" +#include "llvm/CodeGen/ScoreboardHazardRecognizer.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSchedule.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Module.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/TargetParser/Triple.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <new> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "arm-instrinfo" + +#define GET_INSTRINFO_CTOR_DTOR +#include "ARMGenInstrInfo.inc" + +static cl::opt<bool> +EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden, + cl::desc("Enable ARM 2-addr to 3-addr conv")); + +/// ARM_MLxEntry - Record information about MLA / MLS instructions. +struct ARM_MLxEntry { + uint16_t MLxOpc; // MLA / MLS opcode + uint16_t MulOpc; // Expanded multiplication opcode + uint16_t AddSubOpc; // Expanded add / sub opcode + bool NegAcc; // True if the acc is negated before the add / sub. + bool HasLane; // True if instruction has an extra "lane" operand. +}; + +static const ARM_MLxEntry ARM_MLxTable[] = { + // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane + // fp scalar ops + { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false }, + { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false }, + { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false }, + { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false }, + { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false }, + { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false }, + { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false }, + { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false }, + + // fp SIMD ops + { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false }, + { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false }, + { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false }, + { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false }, + { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true }, + { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true }, + { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true }, + { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true }, +}; + +ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI) + : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP), + Subtarget(STI) { + for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) { + if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second) + llvm_unreachable("Duplicated entries?"); + MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc); + MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc); + } +} + +// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl +// currently defaults to no prepass hazard recognizer. +ScheduleHazardRecognizer * +ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI, + const ScheduleDAG *DAG) const { + if (usePreRAHazardRecognizer()) { + const InstrItineraryData *II = + static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData(); + return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched"); + } + return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG); +} + +// Called during: +// - pre-RA scheduling +// - post-RA scheduling when FeatureUseMISched is set +ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer( + const InstrItineraryData *II, const ScheduleDAGMI *DAG) const { + MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); + + // We would like to restrict this hazard recognizer to only + // post-RA scheduling; we can tell that we're post-RA because we don't + // track VRegLiveness. + // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM + // banks banked on bit 2. Assume that TCMs are in use. + if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness()) + MHR->AddHazardRecognizer( + std::make_unique<ARMBankConflictHazardRecognizer>(DAG, 0x4, true)); + + // Not inserting ARMHazardRecognizerFPMLx because that would change + // legacy behavior + + auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG); + MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); + return MHR; +} + +// Called during post-RA scheduling when FeatureUseMISched is not set +ScheduleHazardRecognizer *ARMBaseInstrInfo:: +CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, + const ScheduleDAG *DAG) const { + MultiHazardRecognizer *MHR = new MultiHazardRecognizer(); + + if (Subtarget.isThumb2() || Subtarget.hasVFP2Base()) + MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>()); + + auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG); + if (BHR) + MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR)); + return MHR; +} + +MachineInstr * +ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, + LiveIntervals *LIS) const { + // FIXME: Thumb2 support. + + if (!EnableARM3Addr) + return nullptr; + + MachineFunction &MF = *MI.getParent()->getParent(); + uint64_t TSFlags = MI.getDesc().TSFlags; + bool isPre = false; + switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) { + default: return nullptr; + case ARMII::IndexModePre: + isPre = true; + break; + case ARMII::IndexModePost: + break; + } + + // Try splitting an indexed load/store to an un-indexed one plus an add/sub + // operation. + unsigned MemOpc = getUnindexedOpcode(MI.getOpcode()); + if (MemOpc == 0) + return nullptr; + + MachineInstr *UpdateMI = nullptr; + MachineInstr *MemMI = nullptr; + unsigned AddrMode = (TSFlags & ARMII::AddrModeMask); + const MCInstrDesc &MCID = MI.getDesc(); + unsigned NumOps = MCID.getNumOperands(); + bool isLoad = !MI.mayStore(); + const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0); + const MachineOperand &Base = MI.getOperand(2); + const MachineOperand &Offset = MI.getOperand(NumOps - 3); + Register WBReg = WB.getReg(); + Register BaseReg = Base.getReg(); + Register OffReg = Offset.getReg(); + unsigned OffImm = MI.getOperand(NumOps - 2).getImm(); + ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm(); + switch (AddrMode) { + default: llvm_unreachable("Unknown indexed op!"); + case ARMII::AddrMode2: { + bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub; + unsigned Amt = ARM_AM::getAM2Offset(OffImm); + if (OffReg == 0) { + if (ARM_AM::getSOImmVal(Amt) == -1) + // Can't encode it in a so_imm operand. This transformation will + // add more than 1 instruction. Abandon! + return nullptr; + UpdateMI = BuildMI(MF, MI.getDebugLoc(), + get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) + .addReg(BaseReg) + .addImm(Amt) + .add(predOps(Pred)) + .add(condCodeOp()); + } else if (Amt != 0) { + ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm); + unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt); + UpdateMI = BuildMI(MF, MI.getDebugLoc(), + get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg) + .addReg(BaseReg) + .addReg(OffReg) + .addReg(0) + .addImm(SOOpc) + .add(predOps(Pred)) + .add(condCodeOp()); + } else + UpdateMI = BuildMI(MF, MI.getDebugLoc(), + get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) + .addReg(BaseReg) + .addReg(OffReg) + .add(predOps(Pred)) + .add(condCodeOp()); + break; + } + case ARMII::AddrMode3 : { + bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub; + unsigned Amt = ARM_AM::getAM3Offset(OffImm); + if (OffReg == 0) + // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand. + UpdateMI = BuildMI(MF, MI.getDebugLoc(), + get(isSub ? ARM::SUBri : ARM::ADDri), WBReg) + .addReg(BaseReg) + .addImm(Amt) + .add(predOps(Pred)) + .add(condCodeOp()); + else + UpdateMI = BuildMI(MF, MI.getDebugLoc(), + get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg) + .addReg(BaseReg) + .addReg(OffReg) + .add(predOps(Pred)) + .add(condCodeOp()); + break; + } + } + + std::vector<MachineInstr*> NewMIs; + if (isPre) { + if (isLoad) + MemMI = + BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) + .addReg(WBReg) + .addImm(0) + .addImm(Pred); + else + MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) + .addReg(MI.getOperand(1).getReg()) + .addReg(WBReg) + .addReg(0) + .addImm(0) + .addImm(Pred); + NewMIs.push_back(MemMI); + NewMIs.push_back(UpdateMI); + } else { + if (isLoad) + MemMI = + BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg()) + .addReg(BaseReg) + .addImm(0) + .addImm(Pred); + else + MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc)) + .addReg(MI.getOperand(1).getReg()) + .addReg(BaseReg) + .addReg(0) + .addImm(0) + .addImm(Pred); + if (WB.isDead()) + UpdateMI->getOperand(0).setIsDead(); + NewMIs.push_back(UpdateMI); + NewMIs.push_back(MemMI); + } + + // Transfer LiveVariables states, kill / dead info. + if (LV) { + for (const MachineOperand &MO : MI.operands()) { + if (MO.isReg() && MO.getReg().isVirtual()) { + Register Reg = MO.getReg(); + + LiveVariables::VarInfo &VI = LV->getVarInfo(Reg); + if (MO.isDef()) { + MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI; + if (MO.isDead()) + LV->addVirtualRegisterDead(Reg, *NewMI); + } + if (MO.isUse() && MO.isKill()) { + for (unsigned j = 0; j < 2; ++j) { + // Look at the two new MI's in reverse order. + MachineInstr *NewMI = NewMIs[j]; + if (!NewMI->readsRegister(Reg, /*TRI=*/nullptr)) + continue; + LV->addVirtualRegisterKilled(Reg, *NewMI); + if (VI.removeKill(MI)) + VI.Kills.push_back(NewMI); + break; + } + } + } + } + } + + MachineBasicBlock &MBB = *MI.getParent(); + MBB.insert(MI, NewMIs[1]); + MBB.insert(MI, NewMIs[0]); + return NewMIs[0]; +} + +// Branch analysis. +// Cond vector output format: +// 0 elements indicates an unconditional branch +// 2 elements indicates a conditional branch; the elements are +// the condition to check and the CPSR. +// 3 elements indicates a hardware loop end; the elements +// are the opcode, the operand value to test, and a dummy +// operand used to pad out to 3 operands. +bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB, + MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + bool AllowModify) const { + TBB = nullptr; + FBB = nullptr; + + MachineBasicBlock::instr_iterator I = MBB.instr_end(); + if (I == MBB.instr_begin()) + return false; // Empty blocks are easy. + --I; + + // Walk backwards from the end of the basic block until the branch is + // analyzed or we give up. + while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) { + // Flag to be raised on unanalyzeable instructions. This is useful in cases + // where we want to clean up on the end of the basic block before we bail + // out. + bool CantAnalyze = false; + + // Skip over DEBUG values, predicated nonterminators and speculation + // barrier terminators. + while (I->isDebugInstr() || !I->isTerminator() || + isSpeculationBarrierEndBBOpcode(I->getOpcode()) || + I->getOpcode() == ARM::t2DoLoopStartTP){ + if (I == MBB.instr_begin()) + return false; + --I; + } + + if (isIndirectBranchOpcode(I->getOpcode()) || + isJumpTableBranchOpcode(I->getOpcode())) { + // Indirect branches and jump tables can't be analyzed, but we still want + // to clean up any instructions at the tail of the basic block. + CantAnalyze = true; + } else if (isUncondBranchOpcode(I->getOpcode())) { + TBB = I->getOperand(0).getMBB(); + } else if (isCondBranchOpcode(I->getOpcode())) { + // Bail out if we encounter multiple conditional branches. + if (!Cond.empty()) + return true; + + assert(!FBB && "FBB should have been null."); + FBB = TBB; + TBB = I->getOperand(0).getMBB(); + Cond.push_back(I->getOperand(1)); + Cond.push_back(I->getOperand(2)); + } else if (I->isReturn()) { + // Returns can't be analyzed, but we should run cleanup. + CantAnalyze = true; + } else if (I->getOpcode() == ARM::t2LoopEnd && + MBB.getParent() + ->getSubtarget<ARMSubtarget>() + .enableMachinePipeliner()) { + if (!Cond.empty()) + return true; + FBB = TBB; + TBB = I->getOperand(1).getMBB(); + Cond.push_back(MachineOperand::CreateImm(I->getOpcode())); + Cond.push_back(I->getOperand(0)); + Cond.push_back(MachineOperand::CreateImm(0)); + } else { + // We encountered other unrecognized terminator. Bail out immediately. + return true; + } + + // Cleanup code - to be run for unpredicated unconditional branches and + // returns. + if (!isPredicated(*I) && + (isUncondBranchOpcode(I->getOpcode()) || + isIndirectBranchOpcode(I->getOpcode()) || + isJumpTableBranchOpcode(I->getOpcode()) || + I->isReturn())) { + // Forget any previous condition branch information - it no longer applies. + Cond.clear(); + FBB = nullptr; + + // If we can modify the function, delete everything below this + // unconditional branch. + if (AllowModify) { + MachineBasicBlock::iterator DI = std::next(I); + while (DI != MBB.instr_end()) { + MachineInstr &InstToDelete = *DI; + ++DI; + // Speculation barriers must not be deleted. + if (isSpeculationBarrierEndBBOpcode(InstToDelete.getOpcode())) + continue; + InstToDelete.eraseFromParent(); + } + } + } + + if (CantAnalyze) { + // We may not be able to analyze the block, but we could still have + // an unconditional branch as the last instruction in the block, which + // just branches to layout successor. If this is the case, then just + // remove it if we're allowed to make modifications. + if (AllowModify && !isPredicated(MBB.back()) && + isUncondBranchOpcode(MBB.back().getOpcode()) && + TBB && MBB.isLayoutSuccessor(TBB)) + removeBranch(MBB); + return true; + } + + if (I == MBB.instr_begin()) + return false; + + --I; + } + + // We made it past the terminators without bailing out - we must have + // analyzed this branch successfully. + return false; +} + +unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB, + int *BytesRemoved) const { + assert(!BytesRemoved && "code size not handled"); + + MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr(); + if (I == MBB.end()) + return 0; + + if (!isUncondBranchOpcode(I->getOpcode()) && + !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) + return 0; + + // Remove the branch. + I->eraseFromParent(); + + I = MBB.end(); + + if (I == MBB.begin()) return 1; + --I; + if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd) + return 1; + + // Remove the branch. + I->eraseFromParent(); + return 2; +} + +unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB, + MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + ArrayRef<MachineOperand> Cond, + const DebugLoc &DL, + int *BytesAdded) const { + assert(!BytesAdded && "code size not handled"); + ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>(); + int BOpc = !AFI->isThumbFunction() + ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB); + int BccOpc = !AFI->isThumbFunction() + ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc); + bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function(); + + // Shouldn't be a fall through. + assert(TBB && "insertBranch must not be told to insert a fallthrough"); + assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) && + "ARM branch conditions have two or three components!"); + + // For conditional branches, we use addOperand to preserve CPSR flags. + + if (!FBB) { + if (Cond.empty()) { // Unconditional branch? + if (isThumb) + BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL)); + else + BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); + } else if (Cond.size() == 2) { + BuildMI(&MBB, DL, get(BccOpc)) + .addMBB(TBB) + .addImm(Cond[0].getImm()) + .add(Cond[1]); + } else + BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); + return 1; + } + + // Two-way conditional branch. + if (Cond.size() == 2) + BuildMI(&MBB, DL, get(BccOpc)) + .addMBB(TBB) + .addImm(Cond[0].getImm()) + .add(Cond[1]); + else if (Cond.size() == 3) + BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB); + if (isThumb) + BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL)); + else + BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); + return 2; +} + +bool ARMBaseInstrInfo:: +reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { + if (Cond.size() == 2) { + ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm(); + Cond[0].setImm(ARMCC::getOppositeCondition(CC)); + return false; + } + return true; +} + +bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const { + if (MI.isBundle()) { + MachineBasicBlock::const_instr_iterator I = MI.getIterator(); + MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); + while (++I != E && I->isInsideBundle()) { + int PIdx = I->findFirstPredOperandIdx(); + if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL) + return true; + } + return false; + } + + int PIdx = MI.findFirstPredOperandIdx(); + return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL; +} + +std::string ARMBaseInstrInfo::createMIROperandComment( + const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx, + const TargetRegisterInfo *TRI) const { + + // First, let's see if there is a generic comment for this operand + std::string GenericComment = + TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI); + if (!GenericComment.empty()) + return GenericComment; + + // If not, check if we have an immediate operand. + if (!Op.isImm()) + return std::string(); + + // And print its corresponding condition code if the immediate is a + // predicate. + int FirstPredOp = MI.findFirstPredOperandIdx(); + if (FirstPredOp != (int) OpIdx) + return std::string(); + + std::string CC = "CC::"; + CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm()); + return CC; +} + +bool ARMBaseInstrInfo::PredicateInstruction( + MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { + unsigned Opc = MI.getOpcode(); + if (isUncondBranchOpcode(Opc)) { + MI.setDesc(get(getMatchingCondBranchOpcode(Opc))); + MachineInstrBuilder(*MI.getParent()->getParent(), MI) + .addImm(Pred[0].getImm()) + .addReg(Pred[1].getReg()); + return true; + } + + int PIdx = MI.findFirstPredOperandIdx(); + if (PIdx != -1) { + MachineOperand &PMO = MI.getOperand(PIdx); + PMO.setImm(Pred[0].getImm()); + MI.getOperand(PIdx+1).setReg(Pred[1].getReg()); + + // Thumb 1 arithmetic instructions do not set CPSR when executed inside an + // IT block. This affects how they are printed. + const MCInstrDesc &MCID = MI.getDesc(); + if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) { + assert(MCID.operands()[1].isOptionalDef() && + "CPSR def isn't expected operand"); + assert((MI.getOperand(1).isDead() || + MI.getOperand(1).getReg() != ARM::CPSR) && + "if conversion tried to stop defining used CPSR"); + MI.getOperand(1).setReg(ARM::NoRegister); + } + + return true; + } + return false; +} + +bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1, + ArrayRef<MachineOperand> Pred2) const { + if (Pred1.size() > 2 || Pred2.size() > 2) + return false; + + ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm(); + ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm(); + if (CC1 == CC2) + return true; + + switch (CC1) { + default: + return false; + case ARMCC::AL: + return true; + case ARMCC::HS: + return CC2 == ARMCC::HI; + case ARMCC::LS: + return CC2 == ARMCC::LO || CC2 == ARMCC::EQ; + case ARMCC::GE: + return CC2 == ARMCC::GT; + case ARMCC::LE: + return CC2 == ARMCC::LT; + } +} + +bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI, + std::vector<MachineOperand> &Pred, + bool SkipDead) const { + bool Found = false; + for (const MachineOperand &MO : MI.operands()) { + bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR); + bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR; + if (ClobbersCPSR || IsCPSR) { + + // Filter out T1 instructions that have a dead CPSR, + // allowing IT blocks to be generated containing T1 instructions + const MCInstrDesc &MCID = MI.getDesc(); + if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() && + SkipDead) + continue; + + Pred.push_back(MO); + Found = true; + } + } + + return Found; +} + +bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) { + for (const auto &MO : MI.operands()) + if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead()) + return true; + return false; +} + +static bool isEligibleForITBlock(const MachineInstr *MI) { + switch (MI->getOpcode()) { + default: return true; + case ARM::tADC: // ADC (register) T1 + case ARM::tADDi3: // ADD (immediate) T1 + case ARM::tADDi8: // ADD (immediate) T2 + case ARM::tADDrr: // ADD (register) T1 + case ARM::tAND: // AND (register) T1 + case ARM::tASRri: // ASR (immediate) T1 + case ARM::tASRrr: // ASR (register) T1 + case ARM::tBIC: // BIC (register) T1 + case ARM::tEOR: // EOR (register) T1 + case ARM::tLSLri: // LSL (immediate) T1 + case ARM::tLSLrr: // LSL (register) T1 + case ARM::tLSRri: // LSR (immediate) T1 + case ARM::tLSRrr: // LSR (register) T1 + case ARM::tMUL: // MUL T1 + case ARM::tMVN: // MVN (register) T1 + case ARM::tORR: // ORR (register) T1 + case ARM::tROR: // ROR (register) T1 + case ARM::tRSB: // RSB (immediate) T1 + case ARM::tSBC: // SBC (register) T1 + case ARM::tSUBi3: // SUB (immediate) T1 + case ARM::tSUBi8: // SUB (immediate) T2 + case ARM::tSUBrr: // SUB (register) T1 + return !ARMBaseInstrInfo::isCPSRDefined(*MI); + } +} + +/// isPredicable - Return true if the specified instruction can be predicated. +/// By default, this returns true for every instruction with a +/// PredicateOperand. +bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const { + if (!MI.isPredicable()) + return false; + + if (MI.isBundle()) + return false; + + if (!isEligibleForITBlock(&MI)) + return false; + + const MachineFunction *MF = MI.getParent()->getParent(); + const ARMFunctionInfo *AFI = + MF->getInfo<ARMFunctionInfo>(); + + // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM. + // In their ARM encoding, they can't be encoded in a conditional form. + if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) + return false; + + // Make indirect control flow changes unpredicable when SLS mitigation is + // enabled. + const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>(); + if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI)) + return false; + if (ST.hardenSlsBlr() && isIndirectCall(MI)) + return false; + + if (AFI->isThumb2Function()) { + if (getSubtarget().restrictIT()) + return isV8EligibleForIT(&MI); + } + + return true; +} + +namespace llvm { + +template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) { + for (const MachineOperand &MO : MI->operands()) { + if (!MO.isReg() || MO.isUndef() || MO.isUse()) + continue; + if (MO.getReg() != ARM::CPSR) + continue; + if (!MO.isDead()) + return false; + } + // all definitions of CPSR are dead + return true; +} + +} // end namespace llvm + +/// GetInstSize - Return the size of the specified MachineInstr. +/// +unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { + const MachineBasicBlock &MBB = *MI.getParent(); + const MachineFunction *MF = MBB.getParent(); + const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo(); + + const MCInstrDesc &MCID = MI.getDesc(); + + switch (MI.getOpcode()) { + default: + // Return the size specified in .td file. If there's none, return 0, as we + // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2 + // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in + // contrast to AArch64 instructions which have a default size of 4 bytes for + // example. + return MCID.getSize(); + case TargetOpcode::BUNDLE: + return getInstBundleLength(MI); + case ARM::CONSTPOOL_ENTRY: + case ARM::JUMPTABLE_INSTS: + case ARM::JUMPTABLE_ADDRS: + case ARM::JUMPTABLE_TBB: + case ARM::JUMPTABLE_TBH: + // If this machine instr is a constant pool entry, its size is recorded as + // operand #2. + return MI.getOperand(2).getImm(); + case ARM::SPACE: + return MI.getOperand(1).getImm(); + case ARM::INLINEASM: + case ARM::INLINEASM_BR: { + // If this machine instr is an inline asm, measure it. + unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI); + if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction()) + Size = alignTo(Size, 4); + return Size; + } + } +} + +unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const { + unsigned Size = 0; + MachineBasicBlock::const_instr_iterator I = MI.getIterator(); + MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); + while (++I != E && I->isInsideBundle()) { + assert(!I->isBundle() && "No nested bundle!"); + Size += getInstSizeInBytes(*I); + } + return Size; +} + +void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + unsigned DestReg, bool KillSrc, + const ARMSubtarget &Subtarget) const { + unsigned Opc = Subtarget.isThumb() + ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR) + : ARM::MRS; + + MachineInstrBuilder MIB = + BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg); + + // There is only 1 A/R class MRS instruction, and it always refers to + // APSR. However, there are lots of other possibilities on M-class cores. + if (Subtarget.isMClass()) + MIB.addImm(0x800); + + MIB.add(predOps(ARMCC::AL)) + .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc)); +} + +void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + unsigned SrcReg, bool KillSrc, + const ARMSubtarget &Subtarget) const { + unsigned Opc = Subtarget.isThumb() + ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR) + : ARM::MSR; + + MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc)); + + if (Subtarget.isMClass()) + MIB.addImm(0x800); + else + MIB.addImm(8); + + MIB.addReg(SrcReg, getKillRegState(KillSrc)) + .add(predOps(ARMCC::AL)) + .addReg(ARM::CPSR, RegState::Implicit | RegState::Define); +} + +void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) { + MIB.addImm(ARMVCC::None); + MIB.addReg(0); + MIB.addReg(0); // tp_reg +} + +void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB, + Register DestReg) { + addUnpredicatedMveVpredNOp(MIB); + MIB.addReg(DestReg, RegState::Undef); +} + +void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) { + MIB.addImm(Cond); + MIB.addReg(ARM::VPR, RegState::Implicit); + MIB.addReg(0); // tp_reg +} + +void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB, + unsigned Cond, unsigned Inactive) { + addPredicatedMveVpredNOp(MIB, Cond); + MIB.addReg(Inactive); +} + +void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + const DebugLoc &DL, MCRegister DestReg, + MCRegister SrcReg, bool KillSrc) const { + bool GPRDest = ARM::GPRRegClass.contains(DestReg); + bool GPRSrc = ARM::GPRRegClass.contains(SrcReg); + + if (GPRDest && GPRSrc) { + BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg) + .addReg(SrcReg, getKillRegState(KillSrc)) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + return; + } + + bool SPRDest = ARM::SPRRegClass.contains(DestReg); + bool SPRSrc = ARM::SPRRegClass.contains(SrcReg); + + unsigned Opc = 0; + if (SPRDest && SPRSrc) + Opc = ARM::VMOVS; + else if (GPRDest && SPRSrc) + Opc = ARM::VMOVRS; + else if (SPRDest && GPRSrc) + Opc = ARM::VMOVSR; + else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64()) + Opc = ARM::VMOVD; + else if (ARM::QPRRegClass.contains(DestReg, SrcReg)) + Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy; + + if (Opc) { + MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg); + MIB.addReg(SrcReg, getKillRegState(KillSrc)); + if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) + MIB.addReg(SrcReg, getKillRegState(KillSrc)); + if (Opc == ARM::MVE_VORR) + addUnpredicatedMveVpredROp(MIB, DestReg); + else if (Opc != ARM::MQPRCopy) + MIB.add(predOps(ARMCC::AL)); + return; + } + + // Handle register classes that require multiple instructions. + unsigned BeginIdx = 0; + unsigned SubRegs = 0; + int Spacing = 1; + + // Use VORRq when possible. + if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) { + Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; + BeginIdx = ARM::qsub_0; + SubRegs = 2; + } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) { + Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR; + BeginIdx = ARM::qsub_0; + SubRegs = 4; + // Fall back to VMOVD. + } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) { + Opc = ARM::VMOVD; + BeginIdx = ARM::dsub_0; + SubRegs = 2; + } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) { + Opc = ARM::VMOVD; + BeginIdx = ARM::dsub_0; + SubRegs = 3; + } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) { + Opc = ARM::VMOVD; + BeginIdx = ARM::dsub_0; + SubRegs = 4; + } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) { + Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr; + BeginIdx = ARM::gsub_0; + SubRegs = 2; + } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) { + Opc = ARM::VMOVD; + BeginIdx = ARM::dsub_0; + SubRegs = 2; + Spacing = 2; + } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) { + Opc = ARM::VMOVD; + BeginIdx = ARM::dsub_0; + SubRegs = 3; + Spacing = 2; + } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) { + Opc = ARM::VMOVD; + BeginIdx = ARM::dsub_0; + SubRegs = 4; + Spacing = 2; + } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && + !Subtarget.hasFP64()) { + Opc = ARM::VMOVS; + BeginIdx = ARM::ssub_0; + SubRegs = 2; + } else if (SrcReg == ARM::CPSR) { + copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget); + return; + } else if (DestReg == ARM::CPSR) { + copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget); + return; + } else if (DestReg == ARM::VPR) { + assert(ARM::GPRRegClass.contains(SrcReg)); + BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg) + .addReg(SrcReg, getKillRegState(KillSrc)) + .add(predOps(ARMCC::AL)); + return; + } else if (SrcReg == ARM::VPR) { + assert(ARM::GPRRegClass.contains(DestReg)); + BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg) + .addReg(SrcReg, getKillRegState(KillSrc)) + .add(predOps(ARMCC::AL)); + return; + } else if (DestReg == ARM::FPSCR_NZCV) { + assert(ARM::GPRRegClass.contains(SrcReg)); + BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg) + .addReg(SrcReg, getKillRegState(KillSrc)) + .add(predOps(ARMCC::AL)); + return; + } else if (SrcReg == ARM::FPSCR_NZCV) { + assert(ARM::GPRRegClass.contains(DestReg)); + BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg) + .addReg(SrcReg, getKillRegState(KillSrc)) + .add(predOps(ARMCC::AL)); + return; + } + + assert(Opc && "Impossible reg-to-reg copy"); + + const TargetRegisterInfo *TRI = &getRegisterInfo(); + MachineInstrBuilder Mov; + + // Copy register tuples backward when the first Dest reg overlaps with SrcReg. + if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) { + BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing); + Spacing = -Spacing; + } +#ifndef NDEBUG + SmallSet<unsigned, 4> DstRegs; +#endif + for (unsigned i = 0; i != SubRegs; ++i) { + Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing); + Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing); + assert(Dst && Src && "Bad sub-register"); +#ifndef NDEBUG + assert(!DstRegs.count(Src) && "destructive vector copy"); + DstRegs.insert(Dst); +#endif + Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src); + // VORR (NEON or MVE) takes two source operands. + if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) { + Mov.addReg(Src); + } + // MVE VORR takes predicate operands in place of an ordinary condition. + if (Opc == ARM::MVE_VORR) + addUnpredicatedMveVpredROp(Mov, Dst); + else + Mov = Mov.add(predOps(ARMCC::AL)); + // MOVr can set CC. + if (Opc == ARM::MOVr) + Mov = Mov.add(condCodeOp()); + } + // Add implicit super-register defs and kills to the last instruction. + Mov->addRegisterDefined(DestReg, TRI); + if (KillSrc) + Mov->addRegisterKilled(SrcReg, TRI); +} + +std::optional<DestSourcePair> +ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { + // VMOVRRD is also a copy instruction but it requires + // special way of handling. It is more complex copy version + // and since that we are not considering it. For recognition + // of such instruction isExtractSubregLike MI interface fuction + // could be used. + // VORRq is considered as a move only if two inputs are + // the same register. + if (!MI.isMoveReg() || + (MI.getOpcode() == ARM::VORRq && + MI.getOperand(1).getReg() != MI.getOperand(2).getReg())) + return std::nullopt; + return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; +} + +std::optional<ParamLoadedValue> +ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI, + Register Reg) const { + if (auto DstSrcPair = isCopyInstrImpl(MI)) { + Register DstReg = DstSrcPair->Destination->getReg(); + + // TODO: We don't handle cases where the forwarding reg is narrower/wider + // than the copy registers. Consider for example: + // + // s16 = VMOVS s0 + // s17 = VMOVS s1 + // call @callee(d0) + // + // We'd like to describe the call site value of d0 as d8, but this requires + // gathering and merging the descriptions for the two VMOVS instructions. + // + // We also don't handle the reverse situation, where the forwarding reg is + // narrower than the copy destination: + // + // d8 = VMOVD d0 + // call @callee(s1) + // + // We need to produce a fragment description (the call site value of s1 is + // /not/ just d8). + if (DstReg != Reg) + return std::nullopt; + } + return TargetInstrInfo::describeLoadedValue(MI, Reg); +} + +const MachineInstrBuilder & +ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg, + unsigned SubIdx, unsigned State, + const TargetRegisterInfo *TRI) const { + if (!SubIdx) + return MIB.addReg(Reg, State); + + if (Register::isPhysicalRegister(Reg)) + return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State); + return MIB.addReg(Reg, State, SubIdx); +} + +void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + Register SrcReg, bool isKill, int FI, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI, + Register VReg) const { + MachineFunction &MF = *MBB.getParent(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + Align Alignment = MFI.getObjectAlign(FI); + + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore, + MFI.getObjectSize(FI), Alignment); + + switch (TRI->getSpillSize(*RC)) { + case 2: + if (ARM::HPRRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH)) + .addReg(SrcReg, getKillRegState(isKill)) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else + llvm_unreachable("Unknown reg class!"); + break; + case 4: + if (ARM::GPRRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12)) + .addReg(SrcReg, getKillRegState(isKill)) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS)) + .addReg(SrcReg, getKillRegState(isKill)) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off)) + .addReg(SrcReg, getKillRegState(isKill)) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else + llvm_unreachable("Unknown reg class!"); + break; + case 8: + if (ARM::DPRRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD)) + .addReg(SrcReg, getKillRegState(isKill)) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { + if (Subtarget.hasV5TEOps()) { + MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD)); + AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); + AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); + MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else { + // Fallback to STM instruction, which has existed since the dawn of + // time. + MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA)) + .addFrameIndex(FI) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI); + AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI); + } + } else + llvm_unreachable("Unknown reg class!"); + break; + case 16: + if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { + // Use aligned spills if the stack can be realigned. + if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { + BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64)) + .addFrameIndex(FI) + .addImm(16) + .addReg(SrcReg, getKillRegState(isKill)) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else { + BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA)) + .addReg(SrcReg, getKillRegState(isKill)) + .addFrameIndex(FI) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } + } else if (ARM::QPRRegClass.hasSubClassEq(RC) && + Subtarget.hasMVEIntegerOps()) { + auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32)); + MIB.addReg(SrcReg, getKillRegState(isKill)) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO); + addUnpredicatedMveVpredNOp(MIB); + } else + llvm_unreachable("Unknown reg class!"); + break; + case 24: + if (ARM::DTripleRegClass.hasSubClassEq(RC)) { + // Use aligned spills if the stack can be realigned. + if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && + Subtarget.hasNEON()) { + BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo)) + .addFrameIndex(FI) + .addImm(16) + .addReg(SrcReg, getKillRegState(isKill)) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else { + MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), + get(ARM::VSTMDIA)) + .addFrameIndex(FI) + .add(predOps(ARMCC::AL)) + .addMemOperand(MMO); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); + AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); + } + } else + llvm_unreachable("Unknown reg class!"); + break; + case 32: + if (ARM::QQPRRegClass.hasSubClassEq(RC) || + ARM::MQQPRRegClass.hasSubClassEq(RC) || + ARM::DQuadRegClass.hasSubClassEq(RC)) { + if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && + Subtarget.hasNEON()) { + // FIXME: It's possible to only store part of the QQ register if the + // spilled def has a sub-register index. + BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo)) + .addFrameIndex(FI) + .addImm(16) + .addReg(SrcReg, getKillRegState(isKill)) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else if (Subtarget.hasMVEIntegerOps()) { + BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore)) + .addReg(SrcReg, getKillRegState(isKill)) + .addFrameIndex(FI) + .addMemOperand(MMO); + } else { + MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), + get(ARM::VSTMDIA)) + .addFrameIndex(FI) + .add(predOps(ARMCC::AL)) + .addMemOperand(MMO); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); + AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); + } + } else + llvm_unreachable("Unknown reg class!"); + break; + case 64: + if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && + Subtarget.hasMVEIntegerOps()) { + BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore)) + .addReg(SrcReg, getKillRegState(isKill)) + .addFrameIndex(FI) + .addMemOperand(MMO); + } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { + MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA)) + .addFrameIndex(FI) + .add(predOps(ARMCC::AL)) + .addMemOperand(MMO); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI); + MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI); + AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI); + } else + llvm_unreachable("Unknown reg class!"); + break; + default: + llvm_unreachable("Unknown reg class!"); + } +} + +Register ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI, + int &FrameIndex) const { + switch (MI.getOpcode()) { + default: break; + case ARM::STRrs: + case ARM::t2STRs: // FIXME: don't use t2STRs to access frame. + if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && + MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && + MI.getOperand(3).getImm() == 0) { + FrameIndex = MI.getOperand(1).getIndex(); + return MI.getOperand(0).getReg(); + } + break; + case ARM::STRi12: + case ARM::t2STRi12: + case ARM::tSTRspi: + case ARM::VSTRD: + case ARM::VSTRS: + case ARM::VSTR_P0_off: + case ARM::MVE_VSTRWU32: + if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && + MI.getOperand(2).getImm() == 0) { + FrameIndex = MI.getOperand(1).getIndex(); + return MI.getOperand(0).getReg(); + } + break; + case ARM::VST1q64: + case ARM::VST1d64TPseudo: + case ARM::VST1d64QPseudo: + if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) { + FrameIndex = MI.getOperand(0).getIndex(); + return MI.getOperand(2).getReg(); + } + break; + case ARM::VSTMQIA: + if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { + FrameIndex = MI.getOperand(1).getIndex(); + return MI.getOperand(0).getReg(); + } + break; + case ARM::MQQPRStore: + case ARM::MQQQQPRStore: + if (MI.getOperand(1).isFI()) { + FrameIndex = MI.getOperand(1).getIndex(); + return MI.getOperand(0).getReg(); + } + break; + } + + return 0; +} + +Register ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, + int &FrameIndex) const { + SmallVector<const MachineMemOperand *, 1> Accesses; + if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) && + Accesses.size() == 1) { + FrameIndex = + cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) + ->getFrameIndex(); + return true; + } + return false; +} + +void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + Register DestReg, int FI, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI, + Register VReg) const { + DebugLoc DL; + if (I != MBB.end()) DL = I->getDebugLoc(); + MachineFunction &MF = *MBB.getParent(); + MachineFrameInfo &MFI = MF.getFrameInfo(); + const Align Alignment = MFI.getObjectAlign(FI); + MachineMemOperand *MMO = MF.getMachineMemOperand( + MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad, + MFI.getObjectSize(FI), Alignment); + + switch (TRI->getSpillSize(*RC)) { + case 2: + if (ARM::HPRRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else + llvm_unreachable("Unknown reg class!"); + break; + case 4: + if (ARM::GPRRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else if (ARM::SPRRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else + llvm_unreachable("Unknown reg class!"); + break; + case 8: + if (ARM::DPRRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg) + .addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) { + MachineInstrBuilder MIB; + + if (Subtarget.hasV5TEOps()) { + MIB = BuildMI(MBB, I, DL, get(ARM::LDRD)); + AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); + AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); + MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else { + // Fallback to LDM instruction, which has existed since the dawn of + // time. + MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA)) + .addFrameIndex(FI) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI); + } + + if (DestReg.isPhysical()) + MIB.addReg(DestReg, RegState::ImplicitDefine); + } else + llvm_unreachable("Unknown reg class!"); + break; + case 16: + if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) { + if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) { + BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg) + .addFrameIndex(FI) + .addImm(16) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else { + BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg) + .addFrameIndex(FI) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } + } else if (ARM::QPRRegClass.hasSubClassEq(RC) && + Subtarget.hasMVEIntegerOps()) { + auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg); + MIB.addFrameIndex(FI) + .addImm(0) + .addMemOperand(MMO); + addUnpredicatedMveVpredNOp(MIB); + } else + llvm_unreachable("Unknown reg class!"); + break; + case 24: + if (ARM::DTripleRegClass.hasSubClassEq(RC)) { + if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && + Subtarget.hasNEON()) { + BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg) + .addFrameIndex(FI) + .addImm(16) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else { + MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) + .addFrameIndex(FI) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); + if (DestReg.isPhysical()) + MIB.addReg(DestReg, RegState::ImplicitDefine); + } + } else + llvm_unreachable("Unknown reg class!"); + break; + case 32: + if (ARM::QQPRRegClass.hasSubClassEq(RC) || + ARM::MQQPRRegClass.hasSubClassEq(RC) || + ARM::DQuadRegClass.hasSubClassEq(RC)) { + if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) && + Subtarget.hasNEON()) { + BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg) + .addFrameIndex(FI) + .addImm(16) + .addMemOperand(MMO) + .add(predOps(ARMCC::AL)); + } else if (Subtarget.hasMVEIntegerOps()) { + BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg) + .addFrameIndex(FI) + .addMemOperand(MMO); + } else { + MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) + .addFrameIndex(FI) + .add(predOps(ARMCC::AL)) + .addMemOperand(MMO); + MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); + if (DestReg.isPhysical()) + MIB.addReg(DestReg, RegState::ImplicitDefine); + } + } else + llvm_unreachable("Unknown reg class!"); + break; + case 64: + if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) && + Subtarget.hasMVEIntegerOps()) { + BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg) + .addFrameIndex(FI) + .addMemOperand(MMO); + } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) { + MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA)) + .addFrameIndex(FI) + .add(predOps(ARMCC::AL)) + .addMemOperand(MMO); + MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI); + MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI); + if (DestReg.isPhysical()) + MIB.addReg(DestReg, RegState::ImplicitDefine); + } else + llvm_unreachable("Unknown reg class!"); + break; + default: + llvm_unreachable("Unknown regclass!"); + } +} + +Register ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, + int &FrameIndex) const { + switch (MI.getOpcode()) { + default: break; + case ARM::LDRrs: + case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame. + if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() && + MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 && + MI.getOperand(3).getImm() == 0) { + FrameIndex = MI.getOperand(1).getIndex(); + return MI.getOperand(0).getReg(); + } + break; + case ARM::LDRi12: + case ARM::t2LDRi12: + case ARM::tLDRspi: + case ARM::VLDRD: + case ARM::VLDRS: + case ARM::VLDR_P0_off: + case ARM::MVE_VLDRWU32: + if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() && + MI.getOperand(2).getImm() == 0) { + FrameIndex = MI.getOperand(1).getIndex(); + return MI.getOperand(0).getReg(); + } + break; + case ARM::VLD1q64: + case ARM::VLD1d8TPseudo: + case ARM::VLD1d16TPseudo: + case ARM::VLD1d32TPseudo: + case ARM::VLD1d64TPseudo: + case ARM::VLD1d8QPseudo: + case ARM::VLD1d16QPseudo: + case ARM::VLD1d32QPseudo: + case ARM::VLD1d64QPseudo: + if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { + FrameIndex = MI.getOperand(1).getIndex(); + return MI.getOperand(0).getReg(); + } + break; + case ARM::VLDMQIA: + if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) { + FrameIndex = MI.getOperand(1).getIndex(); + return MI.getOperand(0).getReg(); + } + break; + case ARM::MQQPRLoad: + case ARM::MQQQQPRLoad: + if (MI.getOperand(1).isFI()) { + FrameIndex = MI.getOperand(1).getIndex(); + return MI.getOperand(0).getReg(); + } + break; + } + + return 0; +} + +Register ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, + int &FrameIndex) const { + SmallVector<const MachineMemOperand *, 1> Accesses; + if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) && + Accesses.size() == 1) { + FrameIndex = + cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue()) + ->getFrameIndex(); + return true; + } + return false; +} + +/// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD +/// depending on whether the result is used. +void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const { + bool isThumb1 = Subtarget.isThumb1Only(); + bool isThumb2 = Subtarget.isThumb2(); + const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo(); + + DebugLoc dl = MI->getDebugLoc(); + MachineBasicBlock *BB = MI->getParent(); + + MachineInstrBuilder LDM, STM; + if (isThumb1 || !MI->getOperand(1).isDead()) { + MachineOperand LDWb(MI->getOperand(1)); + LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD + : isThumb1 ? ARM::tLDMIA_UPD + : ARM::LDMIA_UPD)) + .add(LDWb); + } else { + LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA)); + } + + if (isThumb1 || !MI->getOperand(0).isDead()) { + MachineOperand STWb(MI->getOperand(0)); + STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD + : isThumb1 ? ARM::tSTMIA_UPD + : ARM::STMIA_UPD)) + .add(STWb); + } else { + STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA)); + } + + MachineOperand LDBase(MI->getOperand(3)); + LDM.add(LDBase).add(predOps(ARMCC::AL)); + + MachineOperand STBase(MI->getOperand(2)); + STM.add(STBase).add(predOps(ARMCC::AL)); + + // Sort the scratch registers into ascending order. + const TargetRegisterInfo &TRI = getRegisterInfo(); + SmallVector<unsigned, 6> ScratchRegs; + for (MachineOperand &MO : llvm::drop_begin(MI->operands(), 5)) + ScratchRegs.push_back(MO.getReg()); + llvm::sort(ScratchRegs, + [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool { + return TRI.getEncodingValue(Reg1) < + TRI.getEncodingValue(Reg2); + }); + + for (const auto &Reg : ScratchRegs) { + LDM.addReg(Reg, RegState::Define); + STM.addReg(Reg, RegState::Kill); + } + + BB->erase(MI); +} + +bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { + if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) { + expandLoadStackGuard(MI); + MI.getParent()->erase(MI); + return true; + } + + if (MI.getOpcode() == ARM::MEMCPY) { + expandMEMCPY(MI); + return true; + } + + // This hook gets to expand COPY instructions before they become + // copyPhysReg() calls. Look for VMOVS instructions that can legally be + // widened to VMOVD. We prefer the VMOVD when possible because it may be + // changed into a VORR that can go down the NEON pipeline. + if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64()) + return false; + + // Look for a copy between even S-registers. That is where we keep floats + // when using NEON v2f32 instructions for f32 arithmetic. + Register DstRegS = MI.getOperand(0).getReg(); + Register SrcRegS = MI.getOperand(1).getReg(); + if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS)) + return false; + + const TargetRegisterInfo *TRI = &getRegisterInfo(); + unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0, + &ARM::DPRRegClass); + unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0, + &ARM::DPRRegClass); + if (!DstRegD || !SrcRegD) + return false; + + // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only + // legal if the COPY already defines the full DstRegD, and it isn't a + // sub-register insertion. + if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI)) + return false; + + // A dead copy shouldn't show up here, but reject it just in case. + if (MI.getOperand(0).isDead()) + return false; + + // All clear, widen the COPY. + LLVM_DEBUG(dbgs() << "widening: " << MI); + MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); + + // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg + // or some other super-register. + int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD, /*TRI=*/nullptr); + if (ImpDefIdx != -1) + MI.removeOperand(ImpDefIdx); + + // Change the opcode and operands. + MI.setDesc(get(ARM::VMOVD)); + MI.getOperand(0).setReg(DstRegD); + MI.getOperand(1).setReg(SrcRegD); + MIB.add(predOps(ARMCC::AL)); + + // We are now reading SrcRegD instead of SrcRegS. This may upset the + // register scavenger and machine verifier, so we need to indicate that we + // are reading an undefined value from SrcRegD, but a proper value from + // SrcRegS. + MI.getOperand(1).setIsUndef(); + MIB.addReg(SrcRegS, RegState::Implicit); + + // SrcRegD may actually contain an unrelated value in the ssub_1 + // sub-register. Don't kill it. Only kill the ssub_0 sub-register. + if (MI.getOperand(1).isKill()) { + MI.getOperand(1).setIsKill(false); + MI.addRegisterKilled(SrcRegS, TRI, true); + } + + LLVM_DEBUG(dbgs() << "replaced by: " << MI); + return true; +} + +/// Create a copy of a const pool value. Update CPI to the new index and return +/// the label UID. +static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) { + MachineConstantPool *MCP = MF.getConstantPool(); + ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); + + const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI]; + assert(MCPE.isMachineConstantPoolEntry() && + "Expecting a machine constantpool entry!"); + ARMConstantPoolValue *ACPV = + static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal); + + unsigned PCLabelId = AFI->createPICLabelUId(); + ARMConstantPoolValue *NewCPV = nullptr; + + // FIXME: The below assumes PIC relocation model and that the function + // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and + // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR + // instructions, so that's probably OK, but is PIC always correct when + // we get here? + if (ACPV->isGlobalValue()) + NewCPV = ARMConstantPoolConstant::Create( + cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue, + 4, ACPV->getModifier(), ACPV->mustAddCurrentAddress()); + else if (ACPV->isExtSymbol()) + NewCPV = ARMConstantPoolSymbol:: + Create(MF.getFunction().getContext(), + cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4); + else if (ACPV->isBlockAddress()) + NewCPV = ARMConstantPoolConstant:: + Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId, + ARMCP::CPBlockAddress, 4); + else if (ACPV->isLSDA()) + NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId, + ARMCP::CPLSDA, 4); + else if (ACPV->isMachineBasicBlock()) + NewCPV = ARMConstantPoolMBB:: + Create(MF.getFunction().getContext(), + cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4); + else + llvm_unreachable("Unexpected ARM constantpool value type!!"); + CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign()); + return PCLabelId; +} + +void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, + Register DestReg, unsigned SubIdx, + const MachineInstr &Orig, + const TargetRegisterInfo &TRI) const { + unsigned Opcode = Orig.getOpcode(); + switch (Opcode) { + default: { + MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); + MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); + MBB.insert(I, MI); + break; + } + case ARM::tLDRpci_pic: + case ARM::t2LDRpci_pic: { + MachineFunction &MF = *MBB.getParent(); + unsigned CPI = Orig.getOperand(1).getIndex(); + unsigned PCLabelId = duplicateCPV(MF, CPI); + BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg) + .addConstantPoolIndex(CPI) + .addImm(PCLabelId) + .cloneMemRefs(Orig); + break; + } + } +} + +MachineInstr & +ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB, + MachineBasicBlock::iterator InsertBefore, + const MachineInstr &Orig) const { + MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig); + MachineBasicBlock::instr_iterator I = Cloned.getIterator(); + for (;;) { + switch (I->getOpcode()) { + case ARM::tLDRpci_pic: + case ARM::t2LDRpci_pic: { + MachineFunction &MF = *MBB.getParent(); + unsigned CPI = I->getOperand(1).getIndex(); + unsigned PCLabelId = duplicateCPV(MF, CPI); + I->getOperand(1).setIndex(CPI); + I->getOperand(2).setImm(PCLabelId); + break; + } + } + if (!I->isBundledWithSucc()) + break; + ++I; + } + return Cloned; +} + +bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0, + const MachineInstr &MI1, + const MachineRegisterInfo *MRI) const { + unsigned Opcode = MI0.getOpcode(); + if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic || + Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic || + Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || + Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || + Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || + Opcode == ARM::t2MOV_ga_pcrel) { + if (MI1.getOpcode() != Opcode) + return false; + if (MI0.getNumOperands() != MI1.getNumOperands()) + return false; + + const MachineOperand &MO0 = MI0.getOperand(1); + const MachineOperand &MO1 = MI1.getOperand(1); + if (MO0.getOffset() != MO1.getOffset()) + return false; + + if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr || + Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel || + Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr || + Opcode == ARM::t2MOV_ga_pcrel) + // Ignore the PC labels. + return MO0.getGlobal() == MO1.getGlobal(); + + const MachineFunction *MF = MI0.getParent()->getParent(); + const MachineConstantPool *MCP = MF->getConstantPool(); + int CPI0 = MO0.getIndex(); + int CPI1 = MO1.getIndex(); + const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0]; + const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1]; + bool isARMCP0 = MCPE0.isMachineConstantPoolEntry(); + bool isARMCP1 = MCPE1.isMachineConstantPoolEntry(); + if (isARMCP0 && isARMCP1) { + ARMConstantPoolValue *ACPV0 = + static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal); + ARMConstantPoolValue *ACPV1 = + static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal); + return ACPV0->hasSameValue(ACPV1); + } else if (!isARMCP0 && !isARMCP1) { + return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal; + } + return false; + } else if (Opcode == ARM::PICLDR) { + if (MI1.getOpcode() != Opcode) + return false; + if (MI0.getNumOperands() != MI1.getNumOperands()) + return false; + + Register Addr0 = MI0.getOperand(1).getReg(); + Register Addr1 = MI1.getOperand(1).getReg(); + if (Addr0 != Addr1) { + if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual()) + return false; + + // This assumes SSA form. + MachineInstr *Def0 = MRI->getVRegDef(Addr0); + MachineInstr *Def1 = MRI->getVRegDef(Addr1); + // Check if the loaded value, e.g. a constantpool of a global address, are + // the same. + if (!produceSameValue(*Def0, *Def1, MRI)) + return false; + } + + for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) { + // %12 = PICLDR %11, 0, 14, %noreg + const MachineOperand &MO0 = MI0.getOperand(i); + const MachineOperand &MO1 = MI1.getOperand(i); + if (!MO0.isIdenticalTo(MO1)) + return false; + } + return true; + } + + return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs); +} + +/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to +/// determine if two loads are loading from the same base address. It should +/// only return true if the base pointers are the same and the only differences +/// between the two addresses is the offset. It also returns the offsets by +/// reference. +/// +/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched +/// is permanently disabled. +bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, + int64_t &Offset1, + int64_t &Offset2) const { + // Don't worry about Thumb: just ARM and Thumb2. + if (Subtarget.isThumb1Only()) return false; + + if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) + return false; + + auto IsLoadOpcode = [&](unsigned Opcode) { + switch (Opcode) { + default: + return false; + case ARM::LDRi12: + case ARM::LDRBi12: + case ARM::LDRD: + case ARM::LDRH: + case ARM::LDRSB: + case ARM::LDRSH: + case ARM::VLDRD: + case ARM::VLDRS: + case ARM::t2LDRi8: + case ARM::t2LDRBi8: + case ARM::t2LDRDi8: + case ARM::t2LDRSHi8: + case ARM::t2LDRi12: + case ARM::t2LDRBi12: + case ARM::t2LDRSHi12: + return true; + } + }; + + if (!IsLoadOpcode(Load1->getMachineOpcode()) || + !IsLoadOpcode(Load2->getMachineOpcode())) + return false; + + // Check if base addresses and chain operands match. + if (Load1->getOperand(0) != Load2->getOperand(0) || + Load1->getOperand(4) != Load2->getOperand(4)) + return false; + + // Index should be Reg0. + if (Load1->getOperand(3) != Load2->getOperand(3)) + return false; + + // Determine the offsets. + if (isa<ConstantSDNode>(Load1->getOperand(1)) && + isa<ConstantSDNode>(Load2->getOperand(1))) { + Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue(); + Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue(); + return true; + } + + return false; +} + +/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to +/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should +/// be scheduled togther. On some targets if two loads are loading from +/// addresses in the same cache line, it's better if they are scheduled +/// together. This function takes two integers that represent the load offsets +/// from the common base address. It returns true if it decides it's desirable +/// to schedule the two loads together. "NumLoads" is the number of loads that +/// have already been scheduled after Load1. +/// +/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched +/// is permanently disabled. +bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, + int64_t Offset1, int64_t Offset2, + unsigned NumLoads) const { + // Don't worry about Thumb: just ARM and Thumb2. + if (Subtarget.isThumb1Only()) return false; + + assert(Offset2 > Offset1); + + if ((Offset2 - Offset1) / 8 > 64) + return false; + + // Check if the machine opcodes are different. If they are different + // then we consider them to not be of the same base address, + // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12. + // In this case, they are considered to be the same because they are different + // encoding forms of the same basic instruction. + if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) && + !((Load1->getMachineOpcode() == ARM::t2LDRBi8 && + Load2->getMachineOpcode() == ARM::t2LDRBi12) || + (Load1->getMachineOpcode() == ARM::t2LDRBi12 && + Load2->getMachineOpcode() == ARM::t2LDRBi8))) + return false; // FIXME: overly conservative? + + // Four loads in a row should be sufficient. + if (NumLoads >= 3) + return false; + + return true; +} + +bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI, + const MachineBasicBlock *MBB, + const MachineFunction &MF) const { + // Debug info is never a scheduling boundary. It's necessary to be explicit + // due to the special treatment of IT instructions below, otherwise a + // dbg_value followed by an IT will result in the IT instruction being + // considered a scheduling hazard, which is wrong. It should be the actual + // instruction preceding the dbg_value instruction(s), just like it is + // when debug info is not present. + if (MI.isDebugInstr()) + return false; + + // Terminators and labels can't be scheduled around. + if (MI.isTerminator() || MI.isPosition()) + return true; + + // INLINEASM_BR can jump to another block + if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) + return true; + + if (isSEHInstruction(MI)) + return true; + + // Treat the start of the IT block as a scheduling boundary, but schedule + // t2IT along with all instructions following it. + // FIXME: This is a big hammer. But the alternative is to add all potential + // true and anti dependencies to IT block instructions as implicit operands + // to the t2IT instruction. The added compile time and complexity does not + // seem worth it. + MachineBasicBlock::const_iterator I = MI; + // Make sure to skip any debug instructions + while (++I != MBB->end() && I->isDebugInstr()) + ; + if (I != MBB->end() && I->getOpcode() == ARM::t2IT) + return true; + + // Don't attempt to schedule around any instruction that defines + // a stack-oriented pointer, as it's unlikely to be profitable. This + // saves compile time, because it doesn't require every single + // stack slot reference to depend on the instruction that does the + // modification. + // Calls don't actually change the stack pointer, even if they have imp-defs. + // No ARM calling conventions change the stack pointer. (X86 calling + // conventions sometimes do). + if (!MI.isCall() && MI.definesRegister(ARM::SP, /*TRI=*/nullptr)) + return true; + + return false; +} + +bool ARMBaseInstrInfo:: +isProfitableToIfCvt(MachineBasicBlock &MBB, + unsigned NumCycles, unsigned ExtraPredCycles, + BranchProbability Probability) const { + if (!NumCycles) + return false; + + // If we are optimizing for size, see if the branch in the predecessor can be + // lowered to cbn?z by the constant island lowering pass, and return false if + // so. This results in a shorter instruction sequence. + if (MBB.getParent()->getFunction().hasOptSize()) { + MachineBasicBlock *Pred = *MBB.pred_begin(); + if (!Pred->empty()) { + MachineInstr *LastMI = &*Pred->rbegin(); + if (LastMI->getOpcode() == ARM::t2Bcc) { + const TargetRegisterInfo *TRI = &getRegisterInfo(); + MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI); + if (CmpMI) + return false; + } + } + } + return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles, + MBB, 0, 0, Probability); +} + +bool ARMBaseInstrInfo:: +isProfitableToIfCvt(MachineBasicBlock &TBB, + unsigned TCycles, unsigned TExtra, + MachineBasicBlock &FBB, + unsigned FCycles, unsigned FExtra, + BranchProbability Probability) const { + if (!TCycles) + return false; + + // In thumb code we often end up trading one branch for a IT block, and + // if we are cloning the instruction can increase code size. Prevent + // blocks with multiple predecesors from being ifcvted to prevent this + // cloning. + if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) { + if (TBB.pred_size() != 1 || FBB.pred_size() != 1) + return false; + } + + // Attempt to estimate the relative costs of predication versus branching. + // Here we scale up each component of UnpredCost to avoid precision issue when + // scaling TCycles/FCycles by Probability. + const unsigned ScalingUpFactor = 1024; + + unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor; + unsigned UnpredCost; + if (!Subtarget.hasBranchPredictor()) { + // When we don't have a branch predictor it's always cheaper to not take a + // branch than take it, so we have to take that into account. + unsigned NotTakenBranchCost = 1; + unsigned TakenBranchCost = Subtarget.getMispredictionPenalty(); + unsigned TUnpredCycles, FUnpredCycles; + if (!FCycles) { + // Triangle: TBB is the fallthrough + TUnpredCycles = TCycles + NotTakenBranchCost; + FUnpredCycles = TakenBranchCost; + } else { + // Diamond: TBB is the block that is branched to, FBB is the fallthrough + TUnpredCycles = TCycles + TakenBranchCost; + FUnpredCycles = FCycles + NotTakenBranchCost; + // The branch at the end of FBB will disappear when it's predicated, so + // discount it from PredCost. + PredCost -= 1 * ScalingUpFactor; + } + // The total cost is the cost of each path scaled by their probabilites + unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor); + unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor); + UnpredCost = TUnpredCost + FUnpredCost; + // When predicating assume that the first IT can be folded away but later + // ones cost one cycle each + if (Subtarget.isThumb2() && TCycles + FCycles > 4) { + PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor; + } + } else { + unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor); + unsigned FUnpredCost = + Probability.getCompl().scale(FCycles * ScalingUpFactor); + UnpredCost = TUnpredCost + FUnpredCost; + UnpredCost += 1 * ScalingUpFactor; // The branch itself + UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10; + } + + return PredCost <= UnpredCost; +} + +unsigned +ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF, + unsigned NumInsts) const { + // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions. + // ARM has a condition code field in every predicable instruction, using it + // doesn't change code size. + if (!Subtarget.isThumb2()) + return 0; + + // It's possible that the size of the IT is restricted to a single block. + unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4; + return divideCeil(NumInsts, MaxInsts) * 2; +} + +unsigned +ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const { + // If this branch is likely to be folded into the comparison to form a + // CB(N)Z, then removing it won't reduce code size at all, because that will + // just replace the CB(N)Z with a CMP. + if (MI.getOpcode() == ARM::t2Bcc && + findCMPToFoldIntoCBZ(&MI, &getRegisterInfo())) + return 0; + + unsigned Size = getInstSizeInBytes(MI); + + // For Thumb2, all branches are 32-bit instructions during the if conversion + // pass, but may be replaced with 16-bit instructions during size reduction. + // Since the branches considered by if conversion tend to be forward branches + // over small basic blocks, they are very likely to be in range for the + // narrow instructions, so we assume the final code size will be half what it + // currently is. + if (Subtarget.isThumb2()) + Size /= 2; + + return Size; +} + +bool +ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB, + MachineBasicBlock &FMBB) const { + // Reduce false anti-dependencies to let the target's out-of-order execution + // engine do its thing. + return Subtarget.isProfitableToUnpredicate(); +} + +/// getInstrPredicate - If instruction is predicated, returns its predicate +/// condition, otherwise returns AL. It also returns the condition code +/// register by reference. +ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI, + Register &PredReg) { + int PIdx = MI.findFirstPredOperandIdx(); + if (PIdx == -1) { + PredReg = 0; + return ARMCC::AL; + } + + PredReg = MI.getOperand(PIdx+1).getReg(); + return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm(); +} + +unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) { + if (Opc == ARM::B) + return ARM::Bcc; + if (Opc == ARM::tB) + return ARM::tBcc; + if (Opc == ARM::t2B) + return ARM::t2Bcc; + + llvm_unreachable("Unknown unconditional branch opcode!"); +} + +MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI, + bool NewMI, + unsigned OpIdx1, + unsigned OpIdx2) const { + switch (MI.getOpcode()) { + case ARM::MOVCCr: + case ARM::t2MOVCCr: { + // MOVCC can be commuted by inverting the condition. + Register PredReg; + ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg); + // MOVCC AL can't be inverted. Shouldn't happen. + if (CC == ARMCC::AL || PredReg != ARM::CPSR) + return nullptr; + MachineInstr *CommutedMI = + TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); + if (!CommutedMI) + return nullptr; + // After swapping the MOVCC operands, also invert the condition. + CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx()) + .setImm(ARMCC::getOppositeCondition(CC)); + return CommutedMI; + } + } + return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); +} + +/// Identify instructions that can be folded into a MOVCC instruction, and +/// return the defining instruction. +MachineInstr * +ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI, + const TargetInstrInfo *TII) const { + if (!Reg.isVirtual()) + return nullptr; + if (!MRI.hasOneNonDBGUse(Reg)) + return nullptr; + MachineInstr *MI = MRI.getVRegDef(Reg); + if (!MI) + return nullptr; + // Check if MI can be predicated and folded into the MOVCC. + if (!isPredicable(*MI)) + return nullptr; + // Check if MI has any non-dead defs or physreg uses. This also detects + // predicated instructions which will be reading CPSR. + for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 1)) { + // Reject frame index operands, PEI can't handle the predicated pseudos. + if (MO.isFI() || MO.isCPI() || MO.isJTI()) + return nullptr; + if (!MO.isReg()) + continue; + // MI can't have any tied operands, that would conflict with predication. + if (MO.isTied()) + return nullptr; + if (MO.getReg().isPhysical()) + return nullptr; + if (MO.isDef() && !MO.isDead()) + return nullptr; + } + bool DontMoveAcrossStores = true; + if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores)) + return nullptr; + return MI; +} + +bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI, + SmallVectorImpl<MachineOperand> &Cond, + unsigned &TrueOp, unsigned &FalseOp, + bool &Optimizable) const { + assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && + "Unknown select instruction"); + // MOVCC operands: + // 0: Def. + // 1: True use. + // 2: False use. + // 3: Condition code. + // 4: CPSR use. + TrueOp = 1; + FalseOp = 2; + Cond.push_back(MI.getOperand(3)); + Cond.push_back(MI.getOperand(4)); + // We can always fold a def. + Optimizable = true; + return false; +} + +MachineInstr * +ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI, + SmallPtrSetImpl<MachineInstr *> &SeenMIs, + bool PreferFalse) const { + assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) && + "Unknown select instruction"); + MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); + MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this); + bool Invert = !DefMI; + if (!DefMI) + DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this); + if (!DefMI) + return nullptr; + + // Find new register class to use. + MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1); + MachineOperand TrueReg = MI.getOperand(Invert ? 1 : 2); + Register DestReg = MI.getOperand(0).getReg(); + const TargetRegisterClass *FalseClass = MRI.getRegClass(FalseReg.getReg()); + const TargetRegisterClass *TrueClass = MRI.getRegClass(TrueReg.getReg()); + if (!MRI.constrainRegClass(DestReg, FalseClass)) + return nullptr; + if (!MRI.constrainRegClass(DestReg, TrueClass)) + return nullptr; + + // Create a new predicated version of DefMI. + // Rfalse is the first use. + MachineInstrBuilder NewMI = + BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg); + + // Copy all the DefMI operands, excluding its (null) predicate. + const MCInstrDesc &DefDesc = DefMI->getDesc(); + for (unsigned i = 1, e = DefDesc.getNumOperands(); + i != e && !DefDesc.operands()[i].isPredicate(); ++i) + NewMI.add(DefMI->getOperand(i)); + + unsigned CondCode = MI.getOperand(3).getImm(); + if (Invert) + NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode))); + else + NewMI.addImm(CondCode); + NewMI.add(MI.getOperand(4)); + + // DefMI is not the -S version that sets CPSR, so add an optional %noreg. + if (NewMI->hasOptionalDef()) + NewMI.add(condCodeOp()); + + // The output register value when the predicate is false is an implicit + // register operand tied to the first def. + // The tie makes the register allocator ensure the FalseReg is allocated the + // same register as operand 0. + FalseReg.setImplicit(); + NewMI.add(FalseReg); + NewMI->tieOperands(0, NewMI->getNumOperands() - 1); + + // Update SeenMIs set: register newly created MI and erase removed DefMI. + SeenMIs.insert(NewMI); + SeenMIs.erase(DefMI); + + // If MI is inside a loop, and DefMI is outside the loop, then kill flags on + // DefMI would be invalid when tranferred inside the loop. Checking for a + // loop is expensive, but at least remove kill flags if they are in different + // BBs. + if (DefMI->getParent() != MI.getParent()) + NewMI->clearKillInfo(); + + // The caller will erase MI, but not DefMI. + DefMI->eraseFromParent(); + return NewMI; +} + +/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the +/// instruction is encoded with an 'S' bit is determined by the optional CPSR +/// def operand. +/// +/// This will go away once we can teach tblgen how to set the optional CPSR def +/// operand itself. +struct AddSubFlagsOpcodePair { + uint16_t PseudoOpc; + uint16_t MachineOpc; +}; + +static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = { + {ARM::ADDSri, ARM::ADDri}, + {ARM::ADDSrr, ARM::ADDrr}, + {ARM::ADDSrsi, ARM::ADDrsi}, + {ARM::ADDSrsr, ARM::ADDrsr}, + + {ARM::SUBSri, ARM::SUBri}, + {ARM::SUBSrr, ARM::SUBrr}, + {ARM::SUBSrsi, ARM::SUBrsi}, + {ARM::SUBSrsr, ARM::SUBrsr}, + + {ARM::RSBSri, ARM::RSBri}, + {ARM::RSBSrsi, ARM::RSBrsi}, + {ARM::RSBSrsr, ARM::RSBrsr}, + + {ARM::tADDSi3, ARM::tADDi3}, + {ARM::tADDSi8, ARM::tADDi8}, + {ARM::tADDSrr, ARM::tADDrr}, + {ARM::tADCS, ARM::tADC}, + + {ARM::tSUBSi3, ARM::tSUBi3}, + {ARM::tSUBSi8, ARM::tSUBi8}, + {ARM::tSUBSrr, ARM::tSUBrr}, + {ARM::tSBCS, ARM::tSBC}, + {ARM::tRSBS, ARM::tRSB}, + {ARM::tLSLSri, ARM::tLSLri}, + + {ARM::t2ADDSri, ARM::t2ADDri}, + {ARM::t2ADDSrr, ARM::t2ADDrr}, + {ARM::t2ADDSrs, ARM::t2ADDrs}, + + {ARM::t2SUBSri, ARM::t2SUBri}, + {ARM::t2SUBSrr, ARM::t2SUBrr}, + {ARM::t2SUBSrs, ARM::t2SUBrs}, + + {ARM::t2RSBSri, ARM::t2RSBri}, + {ARM::t2RSBSrs, ARM::t2RSBrs}, +}; + +unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) { + for (const auto &Entry : AddSubFlagsOpcodeMap) + if (OldOpc == Entry.PseudoOpc) + return Entry.MachineOpc; + return 0; +} + +void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB, + MachineBasicBlock::iterator &MBBI, + const DebugLoc &dl, Register DestReg, + Register BaseReg, int NumBytes, + ARMCC::CondCodes Pred, Register PredReg, + const ARMBaseInstrInfo &TII, + unsigned MIFlags) { + if (NumBytes == 0 && DestReg != BaseReg) { + BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg) + .addReg(BaseReg, RegState::Kill) + .add(predOps(Pred, PredReg)) + .add(condCodeOp()) + .setMIFlags(MIFlags); + return; + } + + bool isSub = NumBytes < 0; + if (isSub) NumBytes = -NumBytes; + + while (NumBytes) { + unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes); + unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(0xFF, RotAmt); + assert(ThisVal && "Didn't extract field correctly"); + + // We will handle these bits from offset, clear them. + NumBytes &= ~ThisVal; + + assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?"); + + // Build the new ADD / SUB. + unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri; + BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg) + .addReg(BaseReg, RegState::Kill) + .addImm(ThisVal) + .add(predOps(Pred, PredReg)) + .add(condCodeOp()) + .setMIFlags(MIFlags); + BaseReg = DestReg; + } +} + +bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget, + MachineFunction &MF, MachineInstr *MI, + unsigned NumBytes) { + // This optimisation potentially adds lots of load and store + // micro-operations, it's only really a great benefit to code-size. + if (!Subtarget.hasMinSize()) + return false; + + // If only one register is pushed/popped, LLVM can use an LDR/STR + // instead. We can't modify those so make sure we're dealing with an + // instruction we understand. + bool IsPop = isPopOpcode(MI->getOpcode()); + bool IsPush = isPushOpcode(MI->getOpcode()); + if (!IsPush && !IsPop) + return false; + + bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD || + MI->getOpcode() == ARM::VLDMDIA_UPD; + bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH || + MI->getOpcode() == ARM::tPOP || + MI->getOpcode() == ARM::tPOP_RET; + + assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP && + MI->getOperand(1).getReg() == ARM::SP)) && + "trying to fold sp update into non-sp-updating push/pop"); + + // The VFP push & pop act on D-registers, so we can only fold an adjustment + // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try + // if this is violated. + if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0) + return false; + + // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+ + // pred) so the list starts at 4. Thumb1 starts after the predicate. + int RegListIdx = IsT1PushPop ? 2 : 4; + + // Calculate the space we'll need in terms of registers. + unsigned RegsNeeded; + const TargetRegisterClass *RegClass; + if (IsVFPPushPop) { + RegsNeeded = NumBytes / 8; + RegClass = &ARM::DPRRegClass; + } else { + RegsNeeded = NumBytes / 4; + RegClass = &ARM::GPRRegClass; + } + + // We're going to have to strip all list operands off before + // re-adding them since the order matters, so save the existing ones + // for later. + SmallVector<MachineOperand, 4> RegList; + + // We're also going to need the first register transferred by this + // instruction, which won't necessarily be the first register in the list. + unsigned FirstRegEnc = -1; + + const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo(); + for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) { + MachineOperand &MO = MI->getOperand(i); + RegList.push_back(MO); + + if (MO.isReg() && !MO.isImplicit() && + TRI->getEncodingValue(MO.getReg()) < FirstRegEnc) + FirstRegEnc = TRI->getEncodingValue(MO.getReg()); + } + + const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF); + + // Now try to find enough space in the reglist to allocate NumBytes. + for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded; + --CurRegEnc) { + unsigned CurReg = RegClass->getRegister(CurRegEnc); + if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7)) + continue; + if (!IsPop) { + // Pushing any register is completely harmless, mark the register involved + // as undef since we don't care about its value and must not restore it + // during stack unwinding. + RegList.push_back(MachineOperand::CreateReg(CurReg, false, false, + false, false, true)); + --RegsNeeded; + continue; + } + + // However, we can only pop an extra register if it's not live. For + // registers live within the function we might clobber a return value + // register; the other way a register can be live here is if it's + // callee-saved. + if (isCalleeSavedRegister(CurReg, CSRegs) || + MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) != + MachineBasicBlock::LQR_Dead) { + // VFP pops don't allow holes in the register list, so any skip is fatal + // for our transformation. GPR pops do, so we should just keep looking. + if (IsVFPPushPop) + return false; + else + continue; + } + + // Mark the unimportant registers as <def,dead> in the POP. + RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false, + true)); + --RegsNeeded; + } + + if (RegsNeeded > 0) + return false; + + // Finally we know we can profitably perform the optimisation so go + // ahead: strip all existing registers off and add them back again + // in the right order. + for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) + MI->removeOperand(i); + + // Add the complete list back in. + MachineInstrBuilder MIB(MF, &*MI); + for (const MachineOperand &MO : llvm::reverse(RegList)) + MIB.add(MO); + + return true; +} + +bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx, + Register FrameReg, int &Offset, + const ARMBaseInstrInfo &TII) { + unsigned Opcode = MI.getOpcode(); + const MCInstrDesc &Desc = MI.getDesc(); + unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask); + bool isSub = false; + + // Memory operands in inline assembly always use AddrMode2. + if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR) + AddrMode = ARMII::AddrMode2; + + if (Opcode == ARM::ADDri) { + Offset += MI.getOperand(FrameRegIdx+1).getImm(); + if (Offset == 0) { + // Turn it into a move. + MI.setDesc(TII.get(ARM::MOVr)); + MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); + MI.removeOperand(FrameRegIdx+1); + Offset = 0; + return true; + } else if (Offset < 0) { + Offset = -Offset; + isSub = true; + MI.setDesc(TII.get(ARM::SUBri)); + } + + // Common case: small offset, fits into instruction. + if (ARM_AM::getSOImmVal(Offset) != -1) { + // Replace the FrameIndex with sp / fp + MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); + MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset); + Offset = 0; + return true; + } + + // Otherwise, pull as much of the immedidate into this ADDri/SUBri + // as possible. + unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset); + unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(0xFF, RotAmt); + + // We will handle these bits from offset, clear them. + Offset &= ~ThisImmVal; + + // Get the properly encoded SOImmVal field. + assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 && + "Bit extraction didn't work?"); + MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal); + } else { + unsigned ImmIdx = 0; + int InstrOffs = 0; + unsigned NumBits = 0; + unsigned Scale = 1; + switch (AddrMode) { + case ARMII::AddrMode_i12: + ImmIdx = FrameRegIdx + 1; + InstrOffs = MI.getOperand(ImmIdx).getImm(); + NumBits = 12; + break; + case ARMII::AddrMode2: + ImmIdx = FrameRegIdx+2; + InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm()); + if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) + InstrOffs *= -1; + NumBits = 12; + break; + case ARMII::AddrMode3: + ImmIdx = FrameRegIdx+2; + InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm()); + if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) + InstrOffs *= -1; + NumBits = 8; + break; + case ARMII::AddrMode4: + case ARMII::AddrMode6: + // Can't fold any offset even if it's zero. + return false; + case ARMII::AddrMode5: + ImmIdx = FrameRegIdx+1; + InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); + if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) + InstrOffs *= -1; + NumBits = 8; + Scale = 4; + break; + case ARMII::AddrMode5FP16: + ImmIdx = FrameRegIdx+1; + InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm()); + if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub) + InstrOffs *= -1; + NumBits = 8; + Scale = 2; + break; + case ARMII::AddrModeT2_i7: + case ARMII::AddrModeT2_i7s2: + case ARMII::AddrModeT2_i7s4: + ImmIdx = FrameRegIdx+1; + InstrOffs = MI.getOperand(ImmIdx).getImm(); + NumBits = 7; + Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 : + AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1); + break; + default: + llvm_unreachable("Unsupported addressing mode!"); + } + + Offset += InstrOffs * Scale; + assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!"); + if (Offset < 0) { + Offset = -Offset; + isSub = true; + } + + // Attempt to fold address comp. if opcode has offset bits + if (NumBits > 0) { + // Common case: small offset, fits into instruction. + MachineOperand &ImmOp = MI.getOperand(ImmIdx); + int ImmedOffset = Offset / Scale; + unsigned Mask = (1 << NumBits) - 1; + if ((unsigned)Offset <= Mask * Scale) { + // Replace the FrameIndex with sp + MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false); + // FIXME: When addrmode2 goes away, this will simplify (like the + // T2 version), as the LDR.i12 versions don't need the encoding + // tricks for the offset value. + if (isSub) { + if (AddrMode == ARMII::AddrMode_i12) + ImmedOffset = -ImmedOffset; + else + ImmedOffset |= 1 << NumBits; + } + ImmOp.ChangeToImmediate(ImmedOffset); + Offset = 0; + return true; + } + + // Otherwise, it didn't fit. Pull in what we can to simplify the immed. + ImmedOffset = ImmedOffset & Mask; + if (isSub) { + if (AddrMode == ARMII::AddrMode_i12) + ImmedOffset = -ImmedOffset; + else + ImmedOffset |= 1 << NumBits; + } + ImmOp.ChangeToImmediate(ImmedOffset); + Offset &= ~(Mask*Scale); + } + } + + Offset = (isSub) ? -Offset : Offset; + return Offset == 0; +} + +/// analyzeCompare - For a comparison instruction, return the source registers +/// in SrcReg and SrcReg2 if having two register operands, and the value it +/// compares against in CmpValue. Return true if the comparison instruction +/// can be analyzed. +bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, + Register &SrcReg2, int64_t &CmpMask, + int64_t &CmpValue) const { + switch (MI.getOpcode()) { + default: break; + case ARM::CMPri: + case ARM::t2CMPri: + case ARM::tCMPi8: + SrcReg = MI.getOperand(0).getReg(); + SrcReg2 = 0; + CmpMask = ~0; + CmpValue = MI.getOperand(1).getImm(); + return true; + case ARM::CMPrr: + case ARM::t2CMPrr: + case ARM::tCMPr: + SrcReg = MI.getOperand(0).getReg(); + SrcReg2 = MI.getOperand(1).getReg(); + CmpMask = ~0; + CmpValue = 0; + return true; + case ARM::TSTri: + case ARM::t2TSTri: + SrcReg = MI.getOperand(0).getReg(); + SrcReg2 = 0; + CmpMask = MI.getOperand(1).getImm(); + CmpValue = 0; + return true; + } + + return false; +} + +/// isSuitableForMask - Identify a suitable 'and' instruction that +/// operates on the given source register and applies the same mask +/// as a 'tst' instruction. Provide a limited look-through for copies. +/// When successful, MI will hold the found instruction. +static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg, + int CmpMask, bool CommonUse) { + switch (MI->getOpcode()) { + case ARM::ANDri: + case ARM::t2ANDri: + if (CmpMask != MI->getOperand(2).getImm()) + return false; + if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg()) + return true; + break; + } + + return false; +} + +/// getCmpToAddCondition - assume the flags are set by CMP(a,b), return +/// the condition code if we modify the instructions such that flags are +/// set by ADD(a,b,X). +inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) { + switch (CC) { + default: return ARMCC::AL; + case ARMCC::HS: return ARMCC::LO; + case ARMCC::LO: return ARMCC::HS; + case ARMCC::VS: return ARMCC::VS; + case ARMCC::VC: return ARMCC::VC; + } +} + +/// isRedundantFlagInstr - check whether the first instruction, whose only +/// purpose is to update flags, can be made redundant. +/// CMPrr can be made redundant by SUBrr if the operands are the same. +/// CMPri can be made redundant by SUBri if the operands are the same. +/// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X). +/// This function can be extended later on. +inline static bool isRedundantFlagInstr(const MachineInstr *CmpI, + Register SrcReg, Register SrcReg2, + int64_t ImmValue, + const MachineInstr *OI, + bool &IsThumb1) { + if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && + (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) && + ((OI->getOperand(1).getReg() == SrcReg && + OI->getOperand(2).getReg() == SrcReg2) || + (OI->getOperand(1).getReg() == SrcReg2 && + OI->getOperand(2).getReg() == SrcReg))) { + IsThumb1 = false; + return true; + } + + if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr && + ((OI->getOperand(2).getReg() == SrcReg && + OI->getOperand(3).getReg() == SrcReg2) || + (OI->getOperand(2).getReg() == SrcReg2 && + OI->getOperand(3).getReg() == SrcReg))) { + IsThumb1 = true; + return true; + } + + if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) && + (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) && + OI->getOperand(1).getReg() == SrcReg && + OI->getOperand(2).getImm() == ImmValue) { + IsThumb1 = false; + return true; + } + + if (CmpI->getOpcode() == ARM::tCMPi8 && + (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) && + OI->getOperand(2).getReg() == SrcReg && + OI->getOperand(3).getImm() == ImmValue) { + IsThumb1 = true; + return true; + } + + if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) && + (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr || + OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) && + OI->getOperand(0).isReg() && OI->getOperand(1).isReg() && + OI->getOperand(0).getReg() == SrcReg && + OI->getOperand(1).getReg() == SrcReg2) { + IsThumb1 = false; + return true; + } + + if (CmpI->getOpcode() == ARM::tCMPr && + (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 || + OI->getOpcode() == ARM::tADDrr) && + OI->getOperand(0).getReg() == SrcReg && + OI->getOperand(2).getReg() == SrcReg2) { + IsThumb1 = true; + return true; + } + + return false; +} + +static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) { + switch (MI->getOpcode()) { + default: return false; + case ARM::tLSLri: + case ARM::tLSRri: + case ARM::tLSLrr: + case ARM::tLSRrr: + case ARM::tSUBrr: + case ARM::tADDrr: + case ARM::tADDi3: + case ARM::tADDi8: + case ARM::tSUBi3: + case ARM::tSUBi8: + case ARM::tMUL: + case ARM::tADC: + case ARM::tSBC: + case ARM::tRSB: + case ARM::tAND: + case ARM::tORR: + case ARM::tEOR: + case ARM::tBIC: + case ARM::tMVN: + case ARM::tASRri: + case ARM::tASRrr: + case ARM::tROR: + IsThumb1 = true; + [[fallthrough]]; + case ARM::RSBrr: + case ARM::RSBri: + case ARM::RSCrr: + case ARM::RSCri: + case ARM::ADDrr: + case ARM::ADDri: + case ARM::ADCrr: + case ARM::ADCri: + case ARM::SUBrr: + case ARM::SUBri: + case ARM::SBCrr: + case ARM::SBCri: + case ARM::t2RSBri: + case ARM::t2ADDrr: + case ARM::t2ADDri: + case ARM::t2ADCrr: + case ARM::t2ADCri: + case ARM::t2SUBrr: + case ARM::t2SUBri: + case ARM::t2SBCrr: + case ARM::t2SBCri: + case ARM::ANDrr: + case ARM::ANDri: + case ARM::ANDrsr: + case ARM::ANDrsi: + case ARM::t2ANDrr: + case ARM::t2ANDri: + case ARM::t2ANDrs: + case ARM::ORRrr: + case ARM::ORRri: + case ARM::ORRrsr: + case ARM::ORRrsi: + case ARM::t2ORRrr: + case ARM::t2ORRri: + case ARM::t2ORRrs: + case ARM::EORrr: + case ARM::EORri: + case ARM::EORrsr: + case ARM::EORrsi: + case ARM::t2EORrr: + case ARM::t2EORri: + case ARM::t2EORrs: + case ARM::BICri: + case ARM::BICrr: + case ARM::BICrsi: + case ARM::BICrsr: + case ARM::t2BICri: + case ARM::t2BICrr: + case ARM::t2BICrs: + case ARM::t2LSRri: + case ARM::t2LSRrr: + case ARM::t2LSLri: + case ARM::t2LSLrr: + case ARM::MOVsr: + case ARM::MOVsi: + return true; + } +} + +/// optimizeCompareInstr - Convert the instruction supplying the argument to the +/// comparison into one that sets the zero bit in the flags register; +/// Remove a redundant Compare instruction if an earlier instruction can set the +/// flags in the same way as Compare. +/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two +/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the +/// condition code of instructions which use the flags. +bool ARMBaseInstrInfo::optimizeCompareInstr( + MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, + int64_t CmpValue, const MachineRegisterInfo *MRI) const { + // Get the unique definition of SrcReg. + MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg); + if (!MI) return false; + + // Masked compares sometimes use the same register as the corresponding 'and'. + if (CmpMask != ~0) { + if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) { + MI = nullptr; + for (MachineRegisterInfo::use_instr_iterator + UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end(); + UI != UE; ++UI) { + if (UI->getParent() != CmpInstr.getParent()) + continue; + MachineInstr *PotentialAND = &*UI; + if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) || + isPredicated(*PotentialAND)) + continue; + MI = PotentialAND; + break; + } + if (!MI) return false; + } + } + + // Get ready to iterate backward from CmpInstr. + MachineBasicBlock::iterator I = CmpInstr, E = MI, + B = CmpInstr.getParent()->begin(); + + // Early exit if CmpInstr is at the beginning of the BB. + if (I == B) return false; + + // There are two possible candidates which can be changed to set CPSR: + // One is MI, the other is a SUB or ADD instruction. + // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or + // ADDr[ri](r1, r2, X). + // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue). + MachineInstr *SubAdd = nullptr; + if (SrcReg2 != 0) + // MI is not a candidate for CMPrr. + MI = nullptr; + else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) { + // Conservatively refuse to convert an instruction which isn't in the same + // BB as the comparison. + // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate. + // Thus we cannot return here. + if (CmpInstr.getOpcode() == ARM::CMPri || + CmpInstr.getOpcode() == ARM::t2CMPri || + CmpInstr.getOpcode() == ARM::tCMPi8) + MI = nullptr; + else + return false; + } + + bool IsThumb1 = false; + if (MI && !isOptimizeCompareCandidate(MI, IsThumb1)) + return false; + + // We also want to do this peephole for cases like this: if (a*b == 0), + // and optimise away the CMP instruction from the generated code sequence: + // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values + // resulting from the select instruction, but these MOVS instructions for + // Thumb1 (V6M) are flag setting and are thus preventing this optimisation. + // However, if we only have MOVS instructions in between the CMP and the + // other instruction (the MULS in this example), then the CPSR is dead so we + // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this + // reordering and then continue the analysis hoping we can eliminate the + // CMP. This peephole works on the vregs, so is still in SSA form. As a + // consequence, the movs won't redefine/kill the MUL operands which would + // make this reordering illegal. + const TargetRegisterInfo *TRI = &getRegisterInfo(); + if (MI && IsThumb1) { + --I; + if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) { + bool CanReorder = true; + for (; I != E; --I) { + if (I->getOpcode() != ARM::tMOVi8) { + CanReorder = false; + break; + } + } + if (CanReorder) { + MI = MI->removeFromParent(); + E = CmpInstr; + CmpInstr.getParent()->insert(E, MI); + } + } + I = CmpInstr; + E = MI; + } + + // Check that CPSR isn't set between the comparison instruction and the one we + // want to change. At the same time, search for SubAdd. + bool SubAddIsThumb1 = false; + do { + const MachineInstr &Instr = *--I; + + // Check whether CmpInstr can be made redundant by the current instruction. + if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr, + SubAddIsThumb1)) { + SubAdd = &*I; + break; + } + + // Allow E (which was initially MI) to be SubAdd but do not search before E. + if (I == E) + break; + + if (Instr.modifiesRegister(ARM::CPSR, TRI) || + Instr.readsRegister(ARM::CPSR, TRI)) + // This instruction modifies or uses CPSR after the one we want to + // change. We can't do this transformation. + return false; + + if (I == B) { + // In some cases, we scan the use-list of an instruction for an AND; + // that AND is in the same BB, but may not be scheduled before the + // corresponding TST. In that case, bail out. + // + // FIXME: We could try to reschedule the AND. + return false; + } + } while (true); + + // Return false if no candidates exist. + if (!MI && !SubAdd) + return false; + + // If we found a SubAdd, use it as it will be closer to the CMP + if (SubAdd) { + MI = SubAdd; + IsThumb1 = SubAddIsThumb1; + } + + // We can't use a predicated instruction - it doesn't always write the flags. + if (isPredicated(*MI)) + return false; + + // Scan forward for the use of CPSR + // When checking against MI: if it's a conditional code that requires + // checking of the V bit or C bit, then this is not safe to do. + // It is safe to remove CmpInstr if CPSR is redefined or killed. + // If we are done with the basic block, we need to check whether CPSR is + // live-out. + SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4> + OperandsToUpdate; + bool isSafe = false; + I = CmpInstr; + E = CmpInstr.getParent()->end(); + while (!isSafe && ++I != E) { + const MachineInstr &Instr = *I; + for (unsigned IO = 0, EO = Instr.getNumOperands(); + !isSafe && IO != EO; ++IO) { + const MachineOperand &MO = Instr.getOperand(IO); + if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) { + isSafe = true; + break; + } + if (!MO.isReg() || MO.getReg() != ARM::CPSR) + continue; + if (MO.isDef()) { + isSafe = true; + break; + } + // Condition code is after the operand before CPSR except for VSELs. + ARMCC::CondCodes CC; + bool IsInstrVSel = true; + switch (Instr.getOpcode()) { + default: + IsInstrVSel = false; + CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm(); + break; + case ARM::VSELEQD: + case ARM::VSELEQS: + case ARM::VSELEQH: + CC = ARMCC::EQ; + break; + case ARM::VSELGTD: + case ARM::VSELGTS: + case ARM::VSELGTH: + CC = ARMCC::GT; + break; + case ARM::VSELGED: + case ARM::VSELGES: + case ARM::VSELGEH: + CC = ARMCC::GE; + break; + case ARM::VSELVSD: + case ARM::VSELVSS: + case ARM::VSELVSH: + CC = ARMCC::VS; + break; + } + + if (SubAdd) { + // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based + // on CMP needs to be updated to be based on SUB. + // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also + // needs to be modified. + // Push the condition code operands to OperandsToUpdate. + // If it is safe to remove CmpInstr, the condition code of these + // operands will be modified. + unsigned Opc = SubAdd->getOpcode(); + bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr || + Opc == ARM::SUBri || Opc == ARM::t2SUBri || + Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 || + Opc == ARM::tSUBi8; + unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2; + if (!IsSub || + (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 && + SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) { + // VSel doesn't support condition code update. + if (IsInstrVSel) + return false; + // Ensure we can swap the condition. + ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC)); + if (NewCC == ARMCC::AL) + return false; + OperandsToUpdate.push_back( + std::make_pair(&((*I).getOperand(IO - 1)), NewCC)); + } + } else { + // No SubAdd, so this is x = <op> y, z; cmp x, 0. + switch (CC) { + case ARMCC::EQ: // Z + case ARMCC::NE: // Z + case ARMCC::MI: // N + case ARMCC::PL: // N + case ARMCC::AL: // none + // CPSR can be used multiple times, we should continue. + break; + case ARMCC::HS: // C + case ARMCC::LO: // C + case ARMCC::VS: // V + case ARMCC::VC: // V + case ARMCC::HI: // C Z + case ARMCC::LS: // C Z + case ARMCC::GE: // N V + case ARMCC::LT: // N V + case ARMCC::GT: // Z N V + case ARMCC::LE: // Z N V + // The instruction uses the V bit or C bit which is not safe. + return false; + } + } + } + } + + // If CPSR is not killed nor re-defined, we should check whether it is + // live-out. If it is live-out, do not optimize. + if (!isSafe) { + MachineBasicBlock *MBB = CmpInstr.getParent(); + for (MachineBasicBlock *Succ : MBB->successors()) + if (Succ->isLiveIn(ARM::CPSR)) + return false; + } + + // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always + // set CPSR so this is represented as an explicit output) + if (!IsThumb1) { + unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1; + MI->getOperand(CPSRRegNum).setReg(ARM::CPSR); + MI->getOperand(CPSRRegNum).setIsDef(true); + } + assert(!isPredicated(*MI) && "Can't use flags from predicated instruction"); + CmpInstr.eraseFromParent(); + + // Modify the condition code of operands in OperandsToUpdate. + // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to + // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. + for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++) + OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second); + + MI->clearRegisterDeads(ARM::CPSR); + + return true; +} + +bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const { + // Do not sink MI if it might be used to optimize a redundant compare. + // We heuristically only look at the instruction immediately following MI to + // avoid potentially searching the entire basic block. + if (isPredicated(MI)) + return true; + MachineBasicBlock::const_iterator Next = &MI; + ++Next; + Register SrcReg, SrcReg2; + int64_t CmpMask, CmpValue; + bool IsThumb1; + if (Next != MI.getParent()->end() && + analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) && + isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1)) + return false; + return true; +} + +bool ARMBaseInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, + Register Reg, + MachineRegisterInfo *MRI) const { + // Fold large immediates into add, sub, or, xor. + unsigned DefOpc = DefMI.getOpcode(); + if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm && + DefOpc != ARM::tMOVi32imm) + return false; + if (!DefMI.getOperand(1).isImm()) + // Could be t2MOVi32imm @xx + return false; + + if (!MRI->hasOneNonDBGUse(Reg)) + return false; + + const MCInstrDesc &DefMCID = DefMI.getDesc(); + if (DefMCID.hasOptionalDef()) { + unsigned NumOps = DefMCID.getNumOperands(); + const MachineOperand &MO = DefMI.getOperand(NumOps - 1); + if (MO.getReg() == ARM::CPSR && !MO.isDead()) + // If DefMI defines CPSR and it is not dead, it's obviously not safe + // to delete DefMI. + return false; + } + + const MCInstrDesc &UseMCID = UseMI.getDesc(); + if (UseMCID.hasOptionalDef()) { + unsigned NumOps = UseMCID.getNumOperands(); + if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR) + // If the instruction sets the flag, do not attempt this optimization + // since it may change the semantics of the code. + return false; + } + + unsigned UseOpc = UseMI.getOpcode(); + unsigned NewUseOpc = 0; + uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm(); + uint32_t SOImmValV1 = 0, SOImmValV2 = 0; + bool Commute = false; + switch (UseOpc) { + default: return false; + case ARM::SUBrr: + case ARM::ADDrr: + case ARM::ORRrr: + case ARM::EORrr: + case ARM::t2SUBrr: + case ARM::t2ADDrr: + case ARM::t2ORRrr: + case ARM::t2EORrr: { + Commute = UseMI.getOperand(2).getReg() != Reg; + switch (UseOpc) { + default: break; + case ARM::ADDrr: + case ARM::SUBrr: + if (UseOpc == ARM::SUBrr && Commute) + return false; + + // ADD/SUB are special because they're essentially the same operation, so + // we can handle a larger range of immediates. + if (ARM_AM::isSOImmTwoPartVal(ImmVal)) + NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri; + else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) { + ImmVal = -ImmVal; + NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri; + } else + return false; + SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); + SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); + break; + case ARM::ORRrr: + case ARM::EORrr: + if (!ARM_AM::isSOImmTwoPartVal(ImmVal)) + return false; + SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal); + SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal); + switch (UseOpc) { + default: break; + case ARM::ORRrr: NewUseOpc = ARM::ORRri; break; + case ARM::EORrr: NewUseOpc = ARM::EORri; break; + } + break; + case ARM::t2ADDrr: + case ARM::t2SUBrr: { + if (UseOpc == ARM::t2SUBrr && Commute) + return false; + + // ADD/SUB are special because they're essentially the same operation, so + // we can handle a larger range of immediates. + const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP; + const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri; + const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri; + if (ARM_AM::isT2SOImmTwoPartVal(ImmVal)) + NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB; + else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) { + ImmVal = -ImmVal; + NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD; + } else + return false; + SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); + SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); + break; + } + case ARM::t2ORRrr: + case ARM::t2EORrr: + if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal)) + return false; + SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal); + SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal); + switch (UseOpc) { + default: break; + case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break; + case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break; + } + break; + } + } + } + + unsigned OpIdx = Commute ? 2 : 1; + Register Reg1 = UseMI.getOperand(OpIdx).getReg(); + bool isKill = UseMI.getOperand(OpIdx).isKill(); + const TargetRegisterClass *TRC = MRI->getRegClass(Reg); + Register NewReg = MRI->createVirtualRegister(TRC); + BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc), + NewReg) + .addReg(Reg1, getKillRegState(isKill)) + .addImm(SOImmValV1) + .add(predOps(ARMCC::AL)) + .add(condCodeOp()); + UseMI.setDesc(get(NewUseOpc)); + UseMI.getOperand(1).setReg(NewReg); + UseMI.getOperand(1).setIsKill(); + UseMI.getOperand(2).ChangeToImmediate(SOImmValV2); + DefMI.eraseFromParent(); + // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP. + // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm]. + // Then the below code will not be needed, as the input/output register + // classes will be rgpr or gprSP. + // For now, we fix the UseMI operand explicitly here: + switch(NewUseOpc){ + case ARM::t2ADDspImm: + case ARM::t2SUBspImm: + case ARM::t2ADDri: + case ARM::t2SUBri: + MRI->constrainRegClass(UseMI.getOperand(0).getReg(), TRC); + } + return true; +} + +static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData, + const MachineInstr &MI) { + switch (MI.getOpcode()) { + default: { + const MCInstrDesc &Desc = MI.getDesc(); + int UOps = ItinData->getNumMicroOps(Desc.getSchedClass()); + assert(UOps >= 0 && "bad # UOps"); + return UOps; + } + + case ARM::LDRrs: + case ARM::LDRBrs: + case ARM::STRrs: + case ARM::STRBrs: { + unsigned ShOpVal = MI.getOperand(3).getImm(); + bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; + unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); + if (!isSub && + (ShImm == 0 || + ((ShImm == 1 || ShImm == 2 || ShImm == 3) && + ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) + return 1; + return 2; + } + + case ARM::LDRH: + case ARM::STRH: { + if (!MI.getOperand(2).getReg()) + return 1; + + unsigned ShOpVal = MI.getOperand(3).getImm(); + bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; + unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); + if (!isSub && + (ShImm == 0 || + ((ShImm == 1 || ShImm == 2 || ShImm == 3) && + ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) + return 1; + return 2; + } + + case ARM::LDRSB: + case ARM::LDRSH: + return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2; + + case ARM::LDRSB_POST: + case ARM::LDRSH_POST: { + Register Rt = MI.getOperand(0).getReg(); + Register Rm = MI.getOperand(3).getReg(); + return (Rt == Rm) ? 4 : 3; + } + + case ARM::LDR_PRE_REG: + case ARM::LDRB_PRE_REG: { + Register Rt = MI.getOperand(0).getReg(); + Register Rm = MI.getOperand(3).getReg(); + if (Rt == Rm) + return 3; + unsigned ShOpVal = MI.getOperand(4).getImm(); + bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; + unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); + if (!isSub && + (ShImm == 0 || + ((ShImm == 1 || ShImm == 2 || ShImm == 3) && + ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) + return 2; + return 3; + } + + case ARM::STR_PRE_REG: + case ARM::STRB_PRE_REG: { + unsigned ShOpVal = MI.getOperand(4).getImm(); + bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; + unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); + if (!isSub && + (ShImm == 0 || + ((ShImm == 1 || ShImm == 2 || ShImm == 3) && + ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) + return 2; + return 3; + } + + case ARM::LDRH_PRE: + case ARM::STRH_PRE: { + Register Rt = MI.getOperand(0).getReg(); + Register Rm = MI.getOperand(3).getReg(); + if (!Rm) + return 2; + if (Rt == Rm) + return 3; + return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2; + } + + case ARM::LDR_POST_REG: + case ARM::LDRB_POST_REG: + case ARM::LDRH_POST: { + Register Rt = MI.getOperand(0).getReg(); + Register Rm = MI.getOperand(3).getReg(); + return (Rt == Rm) ? 3 : 2; + } + + case ARM::LDR_PRE_IMM: + case ARM::LDRB_PRE_IMM: + case ARM::LDR_POST_IMM: + case ARM::LDRB_POST_IMM: + case ARM::STRB_POST_IMM: + case ARM::STRB_POST_REG: + case ARM::STRB_PRE_IMM: + case ARM::STRH_POST: + case ARM::STR_POST_IMM: + case ARM::STR_POST_REG: + case ARM::STR_PRE_IMM: + return 2; + + case ARM::LDRSB_PRE: + case ARM::LDRSH_PRE: { + Register Rm = MI.getOperand(3).getReg(); + if (Rm == 0) + return 3; + Register Rt = MI.getOperand(0).getReg(); + if (Rt == Rm) + return 4; + unsigned ShOpVal = MI.getOperand(4).getImm(); + bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; + unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); + if (!isSub && + (ShImm == 0 || + ((ShImm == 1 || ShImm == 2 || ShImm == 3) && + ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) + return 3; + return 4; + } + + case ARM::LDRD: { + Register Rt = MI.getOperand(0).getReg(); + Register Rn = MI.getOperand(2).getReg(); + Register Rm = MI.getOperand(3).getReg(); + if (Rm) + return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 + : 3; + return (Rt == Rn) ? 3 : 2; + } + + case ARM::STRD: { + Register Rm = MI.getOperand(3).getReg(); + if (Rm) + return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4 + : 3; + return 2; + } + + case ARM::LDRD_POST: + case ARM::t2LDRD_POST: + return 3; + + case ARM::STRD_POST: + case ARM::t2STRD_POST: + return 4; + + case ARM::LDRD_PRE: { + Register Rt = MI.getOperand(0).getReg(); + Register Rn = MI.getOperand(3).getReg(); + Register Rm = MI.getOperand(4).getReg(); + if (Rm) + return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 + : 4; + return (Rt == Rn) ? 4 : 3; + } + + case ARM::t2LDRD_PRE: { + Register Rt = MI.getOperand(0).getReg(); + Register Rn = MI.getOperand(3).getReg(); + return (Rt == Rn) ? 4 : 3; + } + + case ARM::STRD_PRE: { + Register Rm = MI.getOperand(4).getReg(); + if (Rm) + return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5 + : 4; + return 3; + } + + case ARM::t2STRD_PRE: + return 3; + + case ARM::t2LDR_POST: + case ARM::t2LDRB_POST: + case ARM::t2LDRB_PRE: + case ARM::t2LDRSBi12: + case ARM::t2LDRSBi8: + case ARM::t2LDRSBpci: + case ARM::t2LDRSBs: + case ARM::t2LDRH_POST: + case ARM::t2LDRH_PRE: + case ARM::t2LDRSBT: + case ARM::t2LDRSB_POST: + case ARM::t2LDRSB_PRE: + case ARM::t2LDRSH_POST: + case ARM::t2LDRSH_PRE: + case ARM::t2LDRSHi12: + case ARM::t2LDRSHi8: + case ARM::t2LDRSHpci: + case ARM::t2LDRSHs: + return 2; + + case ARM::t2LDRDi8: { + Register Rt = MI.getOperand(0).getReg(); + Register Rn = MI.getOperand(2).getReg(); + return (Rt == Rn) ? 3 : 2; + } + + case ARM::t2STRB_POST: + case ARM::t2STRB_PRE: + case ARM::t2STRBs: + case ARM::t2STRDi8: + case ARM::t2STRH_POST: + case ARM::t2STRH_PRE: + case ARM::t2STRHs: + case ARM::t2STR_POST: + case ARM::t2STR_PRE: + case ARM::t2STRs: + return 2; + } +} + +// Return the number of 32-bit words loaded by LDM or stored by STM. If this +// can't be easily determined return 0 (missing MachineMemOperand). +// +// FIXME: The current MachineInstr design does not support relying on machine +// mem operands to determine the width of a memory access. Instead, we expect +// the target to provide this information based on the instruction opcode and +// operands. However, using MachineMemOperand is the best solution now for +// two reasons: +// +// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI +// operands. This is much more dangerous than using the MachineMemOperand +// sizes because CodeGen passes can insert/remove optional machine operands. In +// fact, it's totally incorrect for preRA passes and appears to be wrong for +// postRA passes as well. +// +// 2) getNumLDMAddresses is only used by the scheduling machine model and any +// machine model that calls this should handle the unknown (zero size) case. +// +// Long term, we should require a target hook that verifies MachineMemOperand +// sizes during MC lowering. That target hook should be local to MC lowering +// because we can't ensure that it is aware of other MI forms. Doing this will +// ensure that MachineMemOperands are correctly propagated through all passes. +unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const { + unsigned Size = 0; + for (MachineInstr::mmo_iterator I = MI.memoperands_begin(), + E = MI.memoperands_end(); + I != E; ++I) { + Size += (*I)->getSize().getValue(); + } + // FIXME: The scheduler currently can't handle values larger than 16. But + // the values can actually go up to 32 for floating-point load/store + // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory + // operations isn't right; we could end up with "extra" memory operands for + // various reasons, like tail merge merging two memory operations. + return std::min(Size / 4, 16U); +} + +static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc, + unsigned NumRegs) { + unsigned UOps = 1 + NumRegs; // 1 for address computation. + switch (Opc) { + default: + break; + case ARM::VLDMDIA_UPD: + case ARM::VLDMDDB_UPD: + case ARM::VLDMSIA_UPD: + case ARM::VLDMSDB_UPD: + case ARM::VSTMDIA_UPD: + case ARM::VSTMDDB_UPD: + case ARM::VSTMSIA_UPD: + case ARM::VSTMSDB_UPD: + case ARM::LDMIA_UPD: + case ARM::LDMDA_UPD: + case ARM::LDMDB_UPD: + case ARM::LDMIB_UPD: + case ARM::STMIA_UPD: + case ARM::STMDA_UPD: + case ARM::STMDB_UPD: + case ARM::STMIB_UPD: + case ARM::tLDMIA_UPD: + case ARM::tSTMIA_UPD: + case ARM::t2LDMIA_UPD: + case ARM::t2LDMDB_UPD: + case ARM::t2STMIA_UPD: + case ARM::t2STMDB_UPD: + ++UOps; // One for base register writeback. + break; + case ARM::LDMIA_RET: + case ARM::tPOP_RET: + case ARM::t2LDMIA_RET: + UOps += 2; // One for base reg wb, one for write to pc. + break; + } + return UOps; +} + +unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData, + const MachineInstr &MI) const { + if (!ItinData || ItinData->isEmpty()) + return 1; + + const MCInstrDesc &Desc = MI.getDesc(); + unsigned Class = Desc.getSchedClass(); + int ItinUOps = ItinData->getNumMicroOps(Class); + if (ItinUOps >= 0) { + if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore())) + return getNumMicroOpsSwiftLdSt(ItinData, MI); + + return ItinUOps; + } + + unsigned Opc = MI.getOpcode(); + switch (Opc) { + default: + llvm_unreachable("Unexpected multi-uops instruction!"); + case ARM::VLDMQIA: + case ARM::VSTMQIA: + return 2; + + // The number of uOps for load / store multiple are determined by the number + // registers. + // + // On Cortex-A8, each pair of register loads / stores can be scheduled on the + // same cycle. The scheduling for the first load / store must be done + // separately by assuming the address is not 64-bit aligned. + // + // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address + // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON + // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1. + case ARM::VLDMDIA: + case ARM::VLDMDIA_UPD: + case ARM::VLDMDDB_UPD: + case ARM::VLDMSIA: + case ARM::VLDMSIA_UPD: + case ARM::VLDMSDB_UPD: + case ARM::VSTMDIA: + case ARM::VSTMDIA_UPD: + case ARM::VSTMDDB_UPD: + case ARM::VSTMSIA: + case ARM::VSTMSIA_UPD: + case ARM::VSTMSDB_UPD: { + unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands(); + return (NumRegs / 2) + (NumRegs % 2) + 1; + } + + case ARM::LDMIA_RET: + case ARM::LDMIA: + case ARM::LDMDA: + case ARM::LDMDB: + case ARM::LDMIB: + case ARM::LDMIA_UPD: + case ARM::LDMDA_UPD: + case ARM::LDMDB_UPD: + case ARM::LDMIB_UPD: + case ARM::STMIA: + case ARM::STMDA: + case ARM::STMDB: + case ARM::STMIB: + case ARM::STMIA_UPD: + case ARM::STMDA_UPD: + case ARM::STMDB_UPD: + case ARM::STMIB_UPD: + case ARM::tLDMIA: + case ARM::tLDMIA_UPD: + case ARM::tSTMIA_UPD: + case ARM::tPOP_RET: + case ARM::tPOP: + case ARM::tPUSH: + case ARM::t2LDMIA_RET: + case ARM::t2LDMIA: + case ARM::t2LDMDB: + case ARM::t2LDMIA_UPD: + case ARM::t2LDMDB_UPD: + case ARM::t2STMIA: + case ARM::t2STMDB: + case ARM::t2STMIA_UPD: + case ARM::t2STMDB_UPD: { + unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1; + switch (Subtarget.getLdStMultipleTiming()) { + case ARMSubtarget::SingleIssuePlusExtras: + return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs); + case ARMSubtarget::SingleIssue: + // Assume the worst. + return NumRegs; + case ARMSubtarget::DoubleIssue: { + if (NumRegs < 4) + return 2; + // 4 registers would be issued: 2, 2. + // 5 registers would be issued: 2, 2, 1. + unsigned UOps = (NumRegs / 2); + if (NumRegs % 2) + ++UOps; + return UOps; + } + case ARMSubtarget::DoubleIssueCheckUnalignedAccess: { + unsigned UOps = (NumRegs / 2); + // If there are odd number of registers or if it's not 64-bit aligned, + // then it takes an extra AGU (Address Generation Unit) cycle. + if ((NumRegs % 2) || !MI.hasOneMemOperand() || + (*MI.memoperands_begin())->getAlign() < Align(8)) + ++UOps; + return UOps; + } + } + } + } + llvm_unreachable("Didn't find the number of microops"); +} + +std::optional<unsigned> +ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData, + const MCInstrDesc &DefMCID, unsigned DefClass, + unsigned DefIdx, unsigned DefAlign) const { + int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; + if (RegNo <= 0) + // Def is the address writeback. + return ItinData->getOperandCycle(DefClass, DefIdx); + + unsigned DefCycle; + if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { + // (regno / 2) + (regno % 2) + 1 + DefCycle = RegNo / 2 + 1; + if (RegNo % 2) + ++DefCycle; + } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { + DefCycle = RegNo; + bool isSLoad = false; + + switch (DefMCID.getOpcode()) { + default: break; + case ARM::VLDMSIA: + case ARM::VLDMSIA_UPD: + case ARM::VLDMSDB_UPD: + isSLoad = true; + break; + } + + // If there are odd number of 'S' registers or if it's not 64-bit aligned, + // then it takes an extra cycle. + if ((isSLoad && (RegNo % 2)) || DefAlign < 8) + ++DefCycle; + } else { + // Assume the worst. + DefCycle = RegNo + 2; + } + + return DefCycle; +} + +std::optional<unsigned> +ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData, + const MCInstrDesc &DefMCID, unsigned DefClass, + unsigned DefIdx, unsigned DefAlign) const { + int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1; + if (RegNo <= 0) + // Def is the address writeback. + return ItinData->getOperandCycle(DefClass, DefIdx); + + unsigned DefCycle; + if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { + // 4 registers would be issued: 1, 2, 1. + // 5 registers would be issued: 1, 2, 2. + DefCycle = RegNo / 2; + if (DefCycle < 1) + DefCycle = 1; + // Result latency is issue cycle + 2: E2. + DefCycle += 2; + } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { + DefCycle = (RegNo / 2); + // If there are odd number of registers or if it's not 64-bit aligned, + // then it takes an extra AGU (Address Generation Unit) cycle. + if ((RegNo % 2) || DefAlign < 8) + ++DefCycle; + // Result latency is AGU cycles + 2. + DefCycle += 2; + } else { + // Assume the worst. + DefCycle = RegNo + 2; + } + + return DefCycle; +} + +std::optional<unsigned> +ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData, + const MCInstrDesc &UseMCID, unsigned UseClass, + unsigned UseIdx, unsigned UseAlign) const { + int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; + if (RegNo <= 0) + return ItinData->getOperandCycle(UseClass, UseIdx); + + unsigned UseCycle; + if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { + // (regno / 2) + (regno % 2) + 1 + UseCycle = RegNo / 2 + 1; + if (RegNo % 2) + ++UseCycle; + } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { + UseCycle = RegNo; + bool isSStore = false; + + switch (UseMCID.getOpcode()) { + default: break; + case ARM::VSTMSIA: + case ARM::VSTMSIA_UPD: + case ARM::VSTMSDB_UPD: + isSStore = true; + break; + } + + // If there are odd number of 'S' registers or if it's not 64-bit aligned, + // then it takes an extra cycle. + if ((isSStore && (RegNo % 2)) || UseAlign < 8) + ++UseCycle; + } else { + // Assume the worst. + UseCycle = RegNo + 2; + } + + return UseCycle; +} + +std::optional<unsigned> +ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData, + const MCInstrDesc &UseMCID, unsigned UseClass, + unsigned UseIdx, unsigned UseAlign) const { + int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1; + if (RegNo <= 0) + return ItinData->getOperandCycle(UseClass, UseIdx); + + unsigned UseCycle; + if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) { + UseCycle = RegNo / 2; + if (UseCycle < 2) + UseCycle = 2; + // Read in E3. + UseCycle += 2; + } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) { + UseCycle = (RegNo / 2); + // If there are odd number of registers or if it's not 64-bit aligned, + // then it takes an extra AGU (Address Generation Unit) cycle. + if ((RegNo % 2) || UseAlign < 8) + ++UseCycle; + } else { + // Assume the worst. + UseCycle = 1; + } + return UseCycle; +} + +std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency( + const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID, + unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID, + unsigned UseIdx, unsigned UseAlign) const { + unsigned DefClass = DefMCID.getSchedClass(); + unsigned UseClass = UseMCID.getSchedClass(); + + if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands()) + return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx); + + // This may be a def / use of a variable_ops instruction, the operand + // latency might be determinable dynamically. Let the target try to + // figure it out. + std::optional<unsigned> DefCycle; + bool LdmBypass = false; + switch (DefMCID.getOpcode()) { + default: + DefCycle = ItinData->getOperandCycle(DefClass, DefIdx); + break; + + case ARM::VLDMDIA: + case ARM::VLDMDIA_UPD: + case ARM::VLDMDDB_UPD: + case ARM::VLDMSIA: + case ARM::VLDMSIA_UPD: + case ARM::VLDMSDB_UPD: + DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); + break; + + case ARM::LDMIA_RET: + case ARM::LDMIA: + case ARM::LDMDA: + case ARM::LDMDB: + case ARM::LDMIB: + case ARM::LDMIA_UPD: + case ARM::LDMDA_UPD: + case ARM::LDMDB_UPD: + case ARM::LDMIB_UPD: + case ARM::tLDMIA: + case ARM::tLDMIA_UPD: + case ARM::tPUSH: + case ARM::t2LDMIA_RET: + case ARM::t2LDMIA: + case ARM::t2LDMDB: + case ARM::t2LDMIA_UPD: + case ARM::t2LDMDB_UPD: + LdmBypass = true; + DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign); + break; + } + + if (!DefCycle) + // We can't seem to determine the result latency of the def, assume it's 2. + DefCycle = 2; + + std::optional<unsigned> UseCycle; + switch (UseMCID.getOpcode()) { + default: + UseCycle = ItinData->getOperandCycle(UseClass, UseIdx); + break; + + case ARM::VSTMDIA: + case ARM::VSTMDIA_UPD: + case ARM::VSTMDDB_UPD: + case ARM::VSTMSIA: + case ARM::VSTMSIA_UPD: + case ARM::VSTMSDB_UPD: + UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); + break; + + case ARM::STMIA: + case ARM::STMDA: + case ARM::STMDB: + case ARM::STMIB: + case ARM::STMIA_UPD: + case ARM::STMDA_UPD: + case ARM::STMDB_UPD: + case ARM::STMIB_UPD: + case ARM::tSTMIA_UPD: + case ARM::tPOP_RET: + case ARM::tPOP: + case ARM::t2STMIA: + case ARM::t2STMDB: + case ARM::t2STMIA_UPD: + case ARM::t2STMDB_UPD: + UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign); + break; + } + + if (!UseCycle) + // Assume it's read in the first stage. + UseCycle = 1; + + if (UseCycle > *DefCycle + 1) + return std::nullopt; + + UseCycle = *DefCycle - *UseCycle + 1; + if (UseCycle > 0u) { + if (LdmBypass) { + // It's a variable_ops instruction so we can't use DefIdx here. Just use + // first def operand. + if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1, + UseClass, UseIdx)) + UseCycle = *UseCycle - 1; + } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx, + UseClass, UseIdx)) { + UseCycle = *UseCycle - 1; + } + } + + return UseCycle; +} + +static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI, + const MachineInstr *MI, unsigned Reg, + unsigned &DefIdx, unsigned &Dist) { + Dist = 0; + + MachineBasicBlock::const_iterator I = MI; ++I; + MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator()); + assert(II->isInsideBundle() && "Empty bundle?"); + + int Idx = -1; + while (II->isInsideBundle()) { + Idx = II->findRegisterDefOperandIdx(Reg, TRI, false, true); + if (Idx != -1) + break; + --II; + ++Dist; + } + + assert(Idx != -1 && "Cannot find bundled definition!"); + DefIdx = Idx; + return &*II; +} + +static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI, + const MachineInstr &MI, unsigned Reg, + unsigned &UseIdx, unsigned &Dist) { + Dist = 0; + + MachineBasicBlock::const_instr_iterator II = ++MI.getIterator(); + assert(II->isInsideBundle() && "Empty bundle?"); + MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); + + // FIXME: This doesn't properly handle multiple uses. + int Idx = -1; + while (II != E && II->isInsideBundle()) { + Idx = II->findRegisterUseOperandIdx(Reg, TRI, false); + if (Idx != -1) + break; + if (II->getOpcode() != ARM::t2IT) + ++Dist; + ++II; + } + + if (Idx == -1) { + Dist = 0; + return nullptr; + } + + UseIdx = Idx; + return &*II; +} + +/// Return the number of cycles to add to (or subtract from) the static +/// itinerary based on the def opcode and alignment. The caller will ensure that +/// adjusted latency is at least one cycle. +static int adjustDefLatency(const ARMSubtarget &Subtarget, + const MachineInstr &DefMI, + const MCInstrDesc &DefMCID, unsigned DefAlign) { + int Adjust = 0; + if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) { + // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] + // variants are one cycle cheaper. + switch (DefMCID.getOpcode()) { + default: break; + case ARM::LDRrs: + case ARM::LDRBrs: { + unsigned ShOpVal = DefMI.getOperand(3).getImm(); + unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); + if (ShImm == 0 || + (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) + --Adjust; + break; + } + case ARM::t2LDRs: + case ARM::t2LDRBs: + case ARM::t2LDRHs: + case ARM::t2LDRSHs: { + // Thumb2 mode: lsl only. + unsigned ShAmt = DefMI.getOperand(3).getImm(); + if (ShAmt == 0 || ShAmt == 2) + --Adjust; + break; + } + } + } else if (Subtarget.isSwift()) { + // FIXME: Properly handle all of the latency adjustments for address + // writeback. + switch (DefMCID.getOpcode()) { + default: break; + case ARM::LDRrs: + case ARM::LDRBrs: { + unsigned ShOpVal = DefMI.getOperand(3).getImm(); + bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub; + unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); + if (!isSub && + (ShImm == 0 || + ((ShImm == 1 || ShImm == 2 || ShImm == 3) && + ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))) + Adjust -= 2; + else if (!isSub && + ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) + --Adjust; + break; + } + case ARM::t2LDRs: + case ARM::t2LDRBs: + case ARM::t2LDRHs: + case ARM::t2LDRSHs: { + // Thumb2 mode: lsl only. + unsigned ShAmt = DefMI.getOperand(3).getImm(); + if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3) + Adjust -= 2; + break; + } + } + } + + if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) { + switch (DefMCID.getOpcode()) { + default: break; + case ARM::VLD1q8: + case ARM::VLD1q16: + case ARM::VLD1q32: + case ARM::VLD1q64: + case ARM::VLD1q8wb_fixed: + case ARM::VLD1q16wb_fixed: + case ARM::VLD1q32wb_fixed: + case ARM::VLD1q64wb_fixed: + case ARM::VLD1q8wb_register: + case ARM::VLD1q16wb_register: + case ARM::VLD1q32wb_register: + case ARM::VLD1q64wb_register: + case ARM::VLD2d8: + case ARM::VLD2d16: + case ARM::VLD2d32: + case ARM::VLD2q8: + case ARM::VLD2q16: + case ARM::VLD2q32: + case ARM::VLD2d8wb_fixed: + case ARM::VLD2d16wb_fixed: + case ARM::VLD2d32wb_fixed: + case ARM::VLD2q8wb_fixed: + case ARM::VLD2q16wb_fixed: + case ARM::VLD2q32wb_fixed: + case ARM::VLD2d8wb_register: + case ARM::VLD2d16wb_register: + case ARM::VLD2d32wb_register: + case ARM::VLD2q8wb_register: + case ARM::VLD2q16wb_register: + case ARM::VLD2q32wb_register: + case ARM::VLD3d8: + case ARM::VLD3d16: + case ARM::VLD3d32: + case ARM::VLD1d64T: + case ARM::VLD3d8_UPD: + case ARM::VLD3d16_UPD: + case ARM::VLD3d32_UPD: + case ARM::VLD1d64Twb_fixed: + case ARM::VLD1d64Twb_register: + case ARM::VLD3q8_UPD: + case ARM::VLD3q16_UPD: + case ARM::VLD3q32_UPD: + case ARM::VLD4d8: + case ARM::VLD4d16: + case ARM::VLD4d32: + case ARM::VLD1d64Q: + case ARM::VLD4d8_UPD: + case ARM::VLD4d16_UPD: + case ARM::VLD4d32_UPD: + case ARM::VLD1d64Qwb_fixed: + case ARM::VLD1d64Qwb_register: + case ARM::VLD4q8_UPD: + case ARM::VLD4q16_UPD: + case ARM::VLD4q32_UPD: + case ARM::VLD1DUPq8: + case ARM::VLD1DUPq16: + case ARM::VLD1DUPq32: + case ARM::VLD1DUPq8wb_fixed: + case ARM::VLD1DUPq16wb_fixed: + case ARM::VLD1DUPq32wb_fixed: + case ARM::VLD1DUPq8wb_register: + case ARM::VLD1DUPq16wb_register: + case ARM::VLD1DUPq32wb_register: + case ARM::VLD2DUPd8: + case ARM::VLD2DUPd16: + case ARM::VLD2DUPd32: + case ARM::VLD2DUPd8wb_fixed: + case ARM::VLD2DUPd16wb_fixed: + case ARM::VLD2DUPd32wb_fixed: + case ARM::VLD2DUPd8wb_register: + case ARM::VLD2DUPd16wb_register: + case ARM::VLD2DUPd32wb_register: + case ARM::VLD4DUPd8: + case ARM::VLD4DUPd16: + case ARM::VLD4DUPd32: + case ARM::VLD4DUPd8_UPD: + case ARM::VLD4DUPd16_UPD: + case ARM::VLD4DUPd32_UPD: + case ARM::VLD1LNd8: + case ARM::VLD1LNd16: + case ARM::VLD1LNd32: + case ARM::VLD1LNd8_UPD: + case ARM::VLD1LNd16_UPD: + case ARM::VLD1LNd32_UPD: + case ARM::VLD2LNd8: + case ARM::VLD2LNd16: + case ARM::VLD2LNd32: + case ARM::VLD2LNq16: + case ARM::VLD2LNq32: + case ARM::VLD2LNd8_UPD: + case ARM::VLD2LNd16_UPD: + case ARM::VLD2LNd32_UPD: + case ARM::VLD2LNq16_UPD: + case ARM::VLD2LNq32_UPD: + case ARM::VLD4LNd8: + case ARM::VLD4LNd16: + case ARM::VLD4LNd32: + case ARM::VLD4LNq16: + case ARM::VLD4LNq32: + case ARM::VLD4LNd8_UPD: + case ARM::VLD4LNd16_UPD: + case ARM::VLD4LNd32_UPD: + case ARM::VLD4LNq16_UPD: + case ARM::VLD4LNq32_UPD: + // If the address is not 64-bit aligned, the latencies of these + // instructions increases by one. + ++Adjust; + break; + } + } + return Adjust; +} + +std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency( + const InstrItineraryData *ItinData, const MachineInstr &DefMI, + unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { + // No operand latency. The caller may fall back to getInstrLatency. + if (!ItinData || ItinData->isEmpty()) + return std::nullopt; + + const MachineOperand &DefMO = DefMI.getOperand(DefIdx); + Register Reg = DefMO.getReg(); + + const MachineInstr *ResolvedDefMI = &DefMI; + unsigned DefAdj = 0; + if (DefMI.isBundle()) + ResolvedDefMI = + getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj); + if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() || + ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) { + return 1; + } + + const MachineInstr *ResolvedUseMI = &UseMI; + unsigned UseAdj = 0; + if (UseMI.isBundle()) { + ResolvedUseMI = + getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj); + if (!ResolvedUseMI) + return std::nullopt; + } + + return getOperandLatencyImpl( + ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO, + Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj); +} + +std::optional<unsigned> ARMBaseInstrInfo::getOperandLatencyImpl( + const InstrItineraryData *ItinData, const MachineInstr &DefMI, + unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj, + const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI, + unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const { + if (Reg == ARM::CPSR) { + if (DefMI.getOpcode() == ARM::FMSTAT) { + // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?) + return Subtarget.isLikeA9() ? 1 : 20; + } + + // CPSR set and branch can be paired in the same cycle. + if (UseMI.isBranch()) + return 0; + + // Otherwise it takes the instruction latency (generally one). + unsigned Latency = getInstrLatency(ItinData, DefMI); + + // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to + // its uses. Instructions which are otherwise scheduled between them may + // incur a code size penalty (not able to use the CPSR setting 16-bit + // instructions). + if (Latency > 0 && Subtarget.isThumb2()) { + const MachineFunction *MF = DefMI.getParent()->getParent(); + // FIXME: Use Function::hasOptSize(). + if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize)) + --Latency; + } + return Latency; + } + + if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit()) + return std::nullopt; + + unsigned DefAlign = DefMI.hasOneMemOperand() + ? (*DefMI.memoperands_begin())->getAlign().value() + : 0; + unsigned UseAlign = UseMI.hasOneMemOperand() + ? (*UseMI.memoperands_begin())->getAlign().value() + : 0; + + // Get the itinerary's latency if possible, and handle variable_ops. + std::optional<unsigned> Latency = getOperandLatency( + ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign); + // Unable to find operand latency. The caller may resort to getInstrLatency. + if (!Latency) + return std::nullopt; + + // Adjust for IT block position. + int Adj = DefAdj + UseAdj; + + // Adjust for dynamic def-side opcode variants not captured by the itinerary. + Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign); + if (Adj >= 0 || (int)*Latency > -Adj) { + return *Latency + Adj; + } + // Return the itinerary latency, which may be zero but not less than zero. + return Latency; +} + +std::optional<unsigned> +ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData, + SDNode *DefNode, unsigned DefIdx, + SDNode *UseNode, unsigned UseIdx) const { + if (!DefNode->isMachineOpcode()) + return 1; + + const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode()); + + if (isZeroCost(DefMCID.Opcode)) + return 0; + + if (!ItinData || ItinData->isEmpty()) + return DefMCID.mayLoad() ? 3 : 1; + + if (!UseNode->isMachineOpcode()) { + std::optional<unsigned> Latency = + ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx); + int Adj = Subtarget.getPreISelOperandLatencyAdjustment(); + int Threshold = 1 + Adj; + return !Latency || Latency <= (unsigned)Threshold ? 1 : *Latency - Adj; + } + + const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode()); + auto *DefMN = cast<MachineSDNode>(DefNode); + unsigned DefAlign = !DefMN->memoperands_empty() + ? (*DefMN->memoperands_begin())->getAlign().value() + : 0; + auto *UseMN = cast<MachineSDNode>(UseNode); + unsigned UseAlign = !UseMN->memoperands_empty() + ? (*UseMN->memoperands_begin())->getAlign().value() + : 0; + std::optional<unsigned> Latency = getOperandLatency( + ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign); + if (!Latency) + return std::nullopt; + + if (Latency > 1U && + (Subtarget.isCortexA8() || Subtarget.isLikeA9() || + Subtarget.isCortexA7())) { + // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2] + // variants are one cycle cheaper. + switch (DefMCID.getOpcode()) { + default: break; + case ARM::LDRrs: + case ARM::LDRBrs: { + unsigned ShOpVal = DefNode->getConstantOperandVal(2); + unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); + if (ShImm == 0 || + (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) + Latency = *Latency - 1; + break; + } + case ARM::t2LDRs: + case ARM::t2LDRBs: + case ARM::t2LDRHs: + case ARM::t2LDRSHs: { + // Thumb2 mode: lsl only. + unsigned ShAmt = DefNode->getConstantOperandVal(2); + if (ShAmt == 0 || ShAmt == 2) + Latency = *Latency - 1; + break; + } + } + } else if (DefIdx == 0 && Latency > 2U && Subtarget.isSwift()) { + // FIXME: Properly handle all of the latency adjustments for address + // writeback. + switch (DefMCID.getOpcode()) { + default: break; + case ARM::LDRrs: + case ARM::LDRBrs: { + unsigned ShOpVal = DefNode->getConstantOperandVal(2); + unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal); + if (ShImm == 0 || + ((ShImm == 1 || ShImm == 2 || ShImm == 3) && + ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)) + Latency = *Latency - 2; + else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr) + Latency = *Latency - 1; + break; + } + case ARM::t2LDRs: + case ARM::t2LDRBs: + case ARM::t2LDRHs: + case ARM::t2LDRSHs: + // Thumb2 mode: lsl 0-3 only. + Latency = *Latency - 2; + break; + } + } + + if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) + switch (DefMCID.getOpcode()) { + default: break; + case ARM::VLD1q8: + case ARM::VLD1q16: + case ARM::VLD1q32: + case ARM::VLD1q64: + case ARM::VLD1q8wb_register: + case ARM::VLD1q16wb_register: + case ARM::VLD1q32wb_register: + case ARM::VLD1q64wb_register: + case ARM::VLD1q8wb_fixed: + case ARM::VLD1q16wb_fixed: + case ARM::VLD1q32wb_fixed: + case ARM::VLD1q64wb_fixed: + case ARM::VLD2d8: + case ARM::VLD2d16: + case ARM::VLD2d32: + case ARM::VLD2q8Pseudo: + case ARM::VLD2q16Pseudo: + case ARM::VLD2q32Pseudo: + case ARM::VLD2d8wb_fixed: + case ARM::VLD2d16wb_fixed: + case ARM::VLD2d32wb_fixed: + case ARM::VLD2q8PseudoWB_fixed: + case ARM::VLD2q16PseudoWB_fixed: + case ARM::VLD2q32PseudoWB_fixed: + case ARM::VLD2d8wb_register: + case ARM::VLD2d16wb_register: + case ARM::VLD2d32wb_register: + case ARM::VLD2q8PseudoWB_register: + case ARM::VLD2q16PseudoWB_register: + case ARM::VLD2q32PseudoWB_register: + case ARM::VLD3d8Pseudo: + case ARM::VLD3d16Pseudo: + case ARM::VLD3d32Pseudo: + case ARM::VLD1d8TPseudo: + case ARM::VLD1d16TPseudo: + case ARM::VLD1d32TPseudo: + case ARM::VLD1d64TPseudo: + case ARM::VLD1d64TPseudoWB_fixed: + case ARM::VLD1d64TPseudoWB_register: + case ARM::VLD3d8Pseudo_UPD: + case ARM::VLD3d16Pseudo_UPD: + case ARM::VLD3d32Pseudo_UPD: + case ARM::VLD3q8Pseudo_UPD: + case ARM::VLD3q16Pseudo_UPD: + case ARM::VLD3q32Pseudo_UPD: + case ARM::VLD3q8oddPseudo: + case ARM::VLD3q16oddPseudo: + case ARM::VLD3q32oddPseudo: + case ARM::VLD3q8oddPseudo_UPD: + case ARM::VLD3q16oddPseudo_UPD: + case ARM::VLD3q32oddPseudo_UPD: + case ARM::VLD4d8Pseudo: + case ARM::VLD4d16Pseudo: + case ARM::VLD4d32Pseudo: + case ARM::VLD1d8QPseudo: + case ARM::VLD1d16QPseudo: + case ARM::VLD1d32QPseudo: + case ARM::VLD1d64QPseudo: + case ARM::VLD1d64QPseudoWB_fixed: + case ARM::VLD1d64QPseudoWB_register: + case ARM::VLD1q8HighQPseudo: + case ARM::VLD1q8LowQPseudo_UPD: + case ARM::VLD1q8HighTPseudo: + case ARM::VLD1q8LowTPseudo_UPD: + case ARM::VLD1q16HighQPseudo: + case ARM::VLD1q16LowQPseudo_UPD: + case ARM::VLD1q16HighTPseudo: + case ARM::VLD1q16LowTPseudo_UPD: + case ARM::VLD1q32HighQPseudo: + case ARM::VLD1q32LowQPseudo_UPD: + case ARM::VLD1q32HighTPseudo: + case ARM::VLD1q32LowTPseudo_UPD: + case ARM::VLD1q64HighQPseudo: + case ARM::VLD1q64LowQPseudo_UPD: + case ARM::VLD1q64HighTPseudo: + case ARM::VLD1q64LowTPseudo_UPD: + case ARM::VLD4d8Pseudo_UPD: + case ARM::VLD4d16Pseudo_UPD: + case ARM::VLD4d32Pseudo_UPD: + case ARM::VLD4q8Pseudo_UPD: + case ARM::VLD4q16Pseudo_UPD: + case ARM::VLD4q32Pseudo_UPD: + case ARM::VLD4q8oddPseudo: + case ARM::VLD4q16oddPseudo: + case ARM::VLD4q32oddPseudo: + case ARM::VLD4q8oddPseudo_UPD: + case ARM::VLD4q16oddPseudo_UPD: + case ARM::VLD4q32oddPseudo_UPD: + case ARM::VLD1DUPq8: + case ARM::VLD1DUPq16: + case ARM::VLD1DUPq32: + case ARM::VLD1DUPq8wb_fixed: + case ARM::VLD1DUPq16wb_fixed: + case ARM::VLD1DUPq32wb_fixed: + case ARM::VLD1DUPq8wb_register: + case ARM::VLD1DUPq16wb_register: + case ARM::VLD1DUPq32wb_register: + case ARM::VLD2DUPd8: + case ARM::VLD2DUPd16: + case ARM::VLD2DUPd32: + case ARM::VLD2DUPd8wb_fixed: + case ARM::VLD2DUPd16wb_fixed: + case ARM::VLD2DUPd32wb_fixed: + case ARM::VLD2DUPd8wb_register: + case ARM::VLD2DUPd16wb_register: + case ARM::VLD2DUPd32wb_register: + case ARM::VLD2DUPq8EvenPseudo: + case ARM::VLD2DUPq8OddPseudo: + case ARM::VLD2DUPq16EvenPseudo: + case ARM::VLD2DUPq16OddPseudo: + case ARM::VLD2DUPq32EvenPseudo: + case ARM::VLD2DUPq32OddPseudo: + case ARM::VLD3DUPq8EvenPseudo: + case ARM::VLD3DUPq8OddPseudo: + case ARM::VLD3DUPq16EvenPseudo: + case ARM::VLD3DUPq16OddPseudo: + case ARM::VLD3DUPq32EvenPseudo: + case ARM::VLD3DUPq32OddPseudo: + case ARM::VLD4DUPd8Pseudo: + case ARM::VLD4DUPd16Pseudo: + case ARM::VLD4DUPd32Pseudo: + case ARM::VLD4DUPd8Pseudo_UPD: + case ARM::VLD4DUPd16Pseudo_UPD: + case ARM::VLD4DUPd32Pseudo_UPD: + case ARM::VLD4DUPq8EvenPseudo: + case ARM::VLD4DUPq8OddPseudo: + case ARM::VLD4DUPq16EvenPseudo: + case ARM::VLD4DUPq16OddPseudo: + case ARM::VLD4DUPq32EvenPseudo: + case ARM::VLD4DUPq32OddPseudo: + case ARM::VLD1LNq8Pseudo: + case ARM::VLD1LNq16Pseudo: + case ARM::VLD1LNq32Pseudo: + case ARM::VLD1LNq8Pseudo_UPD: + case ARM::VLD1LNq16Pseudo_UPD: + case ARM::VLD1LNq32Pseudo_UPD: + case ARM::VLD2LNd8Pseudo: + case ARM::VLD2LNd16Pseudo: + case ARM::VLD2LNd32Pseudo: + case ARM::VLD2LNq16Pseudo: + case ARM::VLD2LNq32Pseudo: + case ARM::VLD2LNd8Pseudo_UPD: + case ARM::VLD2LNd16Pseudo_UPD: + case ARM::VLD2LNd32Pseudo_UPD: + case ARM::VLD2LNq16Pseudo_UPD: + case ARM::VLD2LNq32Pseudo_UPD: + case ARM::VLD4LNd8Pseudo: + case ARM::VLD4LNd16Pseudo: + case ARM::VLD4LNd32Pseudo: + case ARM::VLD4LNq16Pseudo: + case ARM::VLD4LNq32Pseudo: + case ARM::VLD4LNd8Pseudo_UPD: + case ARM::VLD4LNd16Pseudo_UPD: + case ARM::VLD4LNd32Pseudo_UPD: + case ARM::VLD4LNq16Pseudo_UPD: + case ARM::VLD4LNq32Pseudo_UPD: + // If the address is not 64-bit aligned, the latencies of these + // instructions increases by one. + Latency = *Latency + 1; + break; + } + + return Latency; +} + +unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const { + if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || + MI.isImplicitDef()) + return 0; + + if (MI.isBundle()) + return 0; + + const MCInstrDesc &MCID = MI.getDesc(); + + if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && + !Subtarget.cheapPredicableCPSRDef())) { + // When predicated, CPSR is an additional source operand for CPSR updating + // instructions, this apparently increases their latencies. + return 1; + } + return 0; +} + +unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, + const MachineInstr &MI, + unsigned *PredCost) const { + if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() || + MI.isImplicitDef()) + return 1; + + // An instruction scheduler typically runs on unbundled instructions, however + // other passes may query the latency of a bundled instruction. + if (MI.isBundle()) { + unsigned Latency = 0; + MachineBasicBlock::const_instr_iterator I = MI.getIterator(); + MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end(); + while (++I != E && I->isInsideBundle()) { + if (I->getOpcode() != ARM::t2IT) + Latency += getInstrLatency(ItinData, *I, PredCost); + } + return Latency; + } + + const MCInstrDesc &MCID = MI.getDesc(); + if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) && + !Subtarget.cheapPredicableCPSRDef()))) { + // When predicated, CPSR is an additional source operand for CPSR updating + // instructions, this apparently increases their latencies. + *PredCost = 1; + } + // Be sure to call getStageLatency for an empty itinerary in case it has a + // valid MinLatency property. + if (!ItinData) + return MI.mayLoad() ? 3 : 1; + + unsigned Class = MCID.getSchedClass(); + + // For instructions with variable uops, use uops as latency. + if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0) + return getNumMicroOps(ItinData, MI); + + // For the common case, fall back on the itinerary's latency. + unsigned Latency = ItinData->getStageLatency(Class); + + // Adjust for dynamic def-side opcode variants not captured by the itinerary. + unsigned DefAlign = + MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0; + int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign); + if (Adj >= 0 || (int)Latency > -Adj) { + return Latency + Adj; + } + return Latency; +} + +unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData, + SDNode *Node) const { + if (!Node->isMachineOpcode()) + return 1; + + if (!ItinData || ItinData->isEmpty()) + return 1; + + unsigned Opcode = Node->getMachineOpcode(); + switch (Opcode) { + default: + return ItinData->getStageLatency(get(Opcode).getSchedClass()); + case ARM::VLDMQIA: + case ARM::VSTMQIA: + return 2; + } +} + +bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, + const MachineRegisterInfo *MRI, + const MachineInstr &DefMI, + unsigned DefIdx, + const MachineInstr &UseMI, + unsigned UseIdx) const { + unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; + unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask; + if (Subtarget.nonpipelinedVFP() && + (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP)) + return true; + + // Hoist VFP / NEON instructions with 4 or higher latency. + unsigned Latency = + SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx); + if (Latency <= 3) + return false; + return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON || + UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON; +} + +bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel, + const MachineInstr &DefMI, + unsigned DefIdx) const { + const InstrItineraryData *ItinData = SchedModel.getInstrItineraries(); + if (!ItinData || ItinData->isEmpty()) + return false; + + unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask; + if (DDomain == ARMII::DomainGeneral) { + unsigned DefClass = DefMI.getDesc().getSchedClass(); + std::optional<unsigned> DefCycle = + ItinData->getOperandCycle(DefClass, DefIdx); + return DefCycle && DefCycle <= 2U; + } + return false; +} + +bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI, + StringRef &ErrInfo) const { + if (convertAddSubFlagsOpcode(MI.getOpcode())) { + ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG"; + return false; + } + if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) { + // Make sure we don't generate a lo-lo mov that isn't supported. + if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) && + !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) { + ErrInfo = "Non-flag-setting Thumb1 mov is v6-only"; + return false; + } + } + if (MI.getOpcode() == ARM::tPUSH || + MI.getOpcode() == ARM::tPOP || + MI.getOpcode() == ARM::tPOP_RET) { + for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) { + if (MO.isImplicit() || !MO.isReg()) + continue; + Register Reg = MO.getReg(); + if (Reg < ARM::R0 || Reg > ARM::R7) { + if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) && + !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) { + ErrInfo = "Unsupported register in Thumb1 push/pop"; + return false; + } + } + } + } + if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) { + assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm()); + if ((MI.getOperand(4).getImm() != 2 && MI.getOperand(4).getImm() != 3) || + MI.getOperand(4).getImm() != MI.getOperand(5).getImm() + 2) { + ErrInfo = "Incorrect array index for MVE_VMOV_q_rr"; + return false; + } + } + + // Check the address model by taking the first Imm operand and checking it is + // legal for that addressing mode. + ARMII::AddrMode AddrMode = + (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask); + switch (AddrMode) { + default: + break; + case ARMII::AddrModeT2_i7: + case ARMII::AddrModeT2_i7s2: + case ARMII::AddrModeT2_i7s4: + case ARMII::AddrModeT2_i8: + case ARMII::AddrModeT2_i8pos: + case ARMII::AddrModeT2_i8neg: + case ARMII::AddrModeT2_i8s4: + case ARMII::AddrModeT2_i12: { + uint32_t Imm = 0; + for (auto Op : MI.operands()) { + if (Op.isImm()) { + Imm = Op.getImm(); + break; + } + } + if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) { + ErrInfo = "Incorrect AddrMode Imm for instruction"; + return false; + } + break; + } + } + return true; +} + +void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI, + unsigned LoadImmOpc, + unsigned LoadOpc) const { + assert(!Subtarget.isROPI() && !Subtarget.isRWPI() && + "ROPI/RWPI not currently supported with stack guard"); + + MachineBasicBlock &MBB = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + Register Reg = MI->getOperand(0).getReg(); + MachineInstrBuilder MIB; + unsigned int Offset = 0; + + if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) { + assert(!Subtarget.isReadTPSoft() && + "TLS stack protector requires hardware TLS register"); + + BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) + .addImm(15) + .addImm(0) + .addImm(13) + .addImm(0) + .addImm(3) + .add(predOps(ARMCC::AL)); + + Module &M = *MBB.getParent()->getFunction().getParent(); + Offset = M.getStackProtectorGuardOffset(); + if (Offset & ~0xfffU) { + // The offset won't fit in the LDR's 12-bit immediate field, so emit an + // extra ADD to cover the delta. This gives us a guaranteed 8 additional + // bits, resulting in a range of 0 to +1 MiB for the guard offset. + unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri; + BuildMI(MBB, MI, DL, get(AddOpc), Reg) + .addReg(Reg, RegState::Kill) + .addImm(Offset & ~0xfffU) + .add(predOps(ARMCC::AL)) + .addReg(0); + Offset &= 0xfffU; + } + } else { + const GlobalValue *GV = + cast<GlobalValue>((*MI->memoperands_begin())->getValue()); + bool IsIndirect = Subtarget.isGVIndirectSymbol(GV); + + unsigned TargetFlags = ARMII::MO_NO_FLAG; + if (Subtarget.isTargetMachO()) { + TargetFlags |= ARMII::MO_NONLAZY; + } else if (Subtarget.isTargetCOFF()) { + if (GV->hasDLLImportStorageClass()) + TargetFlags |= ARMII::MO_DLLIMPORT; + else if (IsIndirect) + TargetFlags |= ARMII::MO_COFFSTUB; + } else if (IsIndirect) { + TargetFlags |= ARMII::MO_GOT; + } + + if (LoadImmOpc == ARM::tMOVi32imm) { // Thumb-1 execute-only + Register CPSRSaveReg = ARM::R12; // Use R12 as scratch register + auto APSREncoding = + ARMSysReg::lookupMClassSysRegByName("apsr_nzcvq")->Encoding; + BuildMI(MBB, MI, DL, get(ARM::t2MRS_M), CPSRSaveReg) + .addImm(APSREncoding) + .add(predOps(ARMCC::AL)); + BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) + .addGlobalAddress(GV, 0, TargetFlags); + BuildMI(MBB, MI, DL, get(ARM::t2MSR_M)) + .addImm(APSREncoding) + .addReg(CPSRSaveReg, RegState::Kill) + .add(predOps(ARMCC::AL)); + } else { + BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg) + .addGlobalAddress(GV, 0, TargetFlags); + } + + if (IsIndirect) { + MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); + MIB.addReg(Reg, RegState::Kill).addImm(0); + auto Flags = MachineMemOperand::MOLoad | + MachineMemOperand::MODereferenceable | + MachineMemOperand::MOInvariant; + MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( + MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4)); + MIB.addMemOperand(MMO).add(predOps(ARMCC::AL)); + } + } + + MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg); + MIB.addReg(Reg, RegState::Kill) + .addImm(Offset) + .cloneMemRefs(*MI) + .add(predOps(ARMCC::AL)); +} + +bool +ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc, + unsigned &AddSubOpc, + bool &NegAcc, bool &HasLane) const { + DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode); + if (I == MLxEntryMap.end()) + return false; + + const ARM_MLxEntry &Entry = ARM_MLxTable[I->second]; + MulOpc = Entry.MulOpc; + AddSubOpc = Entry.AddSubOpc; + NegAcc = Entry.NegAcc; + HasLane = Entry.HasLane; + return true; +} + +//===----------------------------------------------------------------------===// +// Execution domains. +//===----------------------------------------------------------------------===// +// +// Some instructions go down the NEON pipeline, some go down the VFP pipeline, +// and some can go down both. The vmov instructions go down the VFP pipeline, +// but they can be changed to vorr equivalents that are executed by the NEON +// pipeline. +// +// We use the following execution domain numbering: +// +enum ARMExeDomain { + ExeGeneric = 0, + ExeVFP = 1, + ExeNEON = 2 +}; + +// +// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h +// +std::pair<uint16_t, uint16_t> +ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const { + // If we don't have access to NEON instructions then we won't be able + // to swizzle anything to the NEON domain. Check to make sure. + if (Subtarget.hasNEON()) { + // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON + // if they are not predicated. + if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI)) + return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); + + // CortexA9 is particularly picky about mixing the two and wants these + // converted. + if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) && + (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR || + MI.getOpcode() == ARM::VMOVS)) + return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON)); + } + // No other instructions can be swizzled, so just determine their domain. + unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask; + + if (Domain & ARMII::DomainNEON) + return std::make_pair(ExeNEON, 0); + + // Certain instructions can go either way on Cortex-A8. + // Treat them as NEON instructions. + if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8()) + return std::make_pair(ExeNEON, 0); + + if (Domain & ARMII::DomainVFP) + return std::make_pair(ExeVFP, 0); + + return std::make_pair(ExeGeneric, 0); +} + +static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI, + unsigned SReg, unsigned &Lane) { + unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass); + Lane = 0; + + if (DReg != ARM::NoRegister) + return DReg; + + Lane = 1; + DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass); + + assert(DReg && "S-register with no D super-register?"); + return DReg; +} + +/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane, +/// set ImplicitSReg to a register number that must be marked as implicit-use or +/// zero if no register needs to be defined as implicit-use. +/// +/// If the function cannot determine if an SPR should be marked implicit use or +/// not, it returns false. +/// +/// This function handles cases where an instruction is being modified from taking +/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict +/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other +/// lane of the DPR). +/// +/// If the other SPR is defined, an implicit-use of it should be added. Else, +/// (including the case where the DPR itself is defined), it should not. +/// +static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI, + MachineInstr &MI, unsigned DReg, + unsigned Lane, unsigned &ImplicitSReg) { + // If the DPR is defined or used already, the other SPR lane will be chained + // correctly, so there is nothing to be done. + if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) { + ImplicitSReg = 0; + return true; + } + + // Otherwise we need to go searching to see if the SPR is set explicitly. + ImplicitSReg = TRI->getSubReg(DReg, + (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1); + MachineBasicBlock::LivenessQueryResult LQR = + MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI); + + if (LQR == MachineBasicBlock::LQR_Live) + return true; + else if (LQR == MachineBasicBlock::LQR_Unknown) + return false; + + // If the register is known not to be live, there is no need to add an + // implicit-use. + ImplicitSReg = 0; + return true; +} + +void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI, + unsigned Domain) const { + unsigned DstReg, SrcReg, DReg; + unsigned Lane; + MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); + const TargetRegisterInfo *TRI = &getRegisterInfo(); + switch (MI.getOpcode()) { + default: + llvm_unreachable("cannot handle opcode!"); + break; + case ARM::VMOVD: + if (Domain != ExeNEON) + break; + + // Zap the predicate operands. + assert(!isPredicated(MI) && "Cannot predicate a VORRd"); + + // Make sure we've got NEON instructions. + assert(Subtarget.hasNEON() && "VORRd requires NEON"); + + // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits) + DstReg = MI.getOperand(0).getReg(); + SrcReg = MI.getOperand(1).getReg(); + + for (unsigned i = MI.getDesc().getNumOperands(); i; --i) + MI.removeOperand(i - 1); + + // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits) + MI.setDesc(get(ARM::VORRd)); + MIB.addReg(DstReg, RegState::Define) + .addReg(SrcReg) + .addReg(SrcReg) + .add(predOps(ARMCC::AL)); + break; + case ARM::VMOVRS: + if (Domain != ExeNEON) + break; + assert(!isPredicated(MI) && "Cannot predicate a VGETLN"); + + // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits) + DstReg = MI.getOperand(0).getReg(); + SrcReg = MI.getOperand(1).getReg(); + + for (unsigned i = MI.getDesc().getNumOperands(); i; --i) + MI.removeOperand(i - 1); + + DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane); + + // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps) + // Note that DSrc has been widened and the other lane may be undef, which + // contaminates the entire register. + MI.setDesc(get(ARM::VGETLNi32)); + MIB.addReg(DstReg, RegState::Define) + .addReg(DReg, RegState::Undef) + .addImm(Lane) + .add(predOps(ARMCC::AL)); + + // The old source should be an implicit use, otherwise we might think it + // was dead before here. + MIB.addReg(SrcReg, RegState::Implicit); + break; + case ARM::VMOVSR: { + if (Domain != ExeNEON) + break; + assert(!isPredicated(MI) && "Cannot predicate a VSETLN"); + + // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits) + DstReg = MI.getOperand(0).getReg(); + SrcReg = MI.getOperand(1).getReg(); + + DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane); + + unsigned ImplicitSReg; + if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg)) + break; + + for (unsigned i = MI.getDesc().getNumOperands(); i; --i) + MI.removeOperand(i - 1); + + // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps) + // Again DDst may be undefined at the beginning of this instruction. + MI.setDesc(get(ARM::VSETLNi32)); + MIB.addReg(DReg, RegState::Define) + .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI))) + .addReg(SrcReg) + .addImm(Lane) + .add(predOps(ARMCC::AL)); + + // The narrower destination must be marked as set to keep previous chains + // in place. + MIB.addReg(DstReg, RegState::Define | RegState::Implicit); + if (ImplicitSReg != 0) + MIB.addReg(ImplicitSReg, RegState::Implicit); + break; + } + case ARM::VMOVS: { + if (Domain != ExeNEON) + break; + + // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits) + DstReg = MI.getOperand(0).getReg(); + SrcReg = MI.getOperand(1).getReg(); + + unsigned DstLane = 0, SrcLane = 0, DDst, DSrc; + DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane); + DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane); + + unsigned ImplicitSReg; + if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg)) + break; + + for (unsigned i = MI.getDesc().getNumOperands(); i; --i) + MI.removeOperand(i - 1); + + if (DSrc == DDst) { + // Destination can be: + // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits) + MI.setDesc(get(ARM::VDUPLN32d)); + MIB.addReg(DDst, RegState::Define) + .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI))) + .addImm(SrcLane) + .add(predOps(ARMCC::AL)); + + // Neither the source or the destination are naturally represented any + // more, so add them in manually. + MIB.addReg(DstReg, RegState::Implicit | RegState::Define); + MIB.addReg(SrcReg, RegState::Implicit); + if (ImplicitSReg != 0) + MIB.addReg(ImplicitSReg, RegState::Implicit); + break; + } + + // In general there's no single instruction that can perform an S <-> S + // move in NEON space, but a pair of VEXT instructions *can* do the + // job. It turns out that the VEXTs needed will only use DSrc once, with + // the position based purely on the combination of lane-0 and lane-1 + // involved. For example + // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1 + // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1 + // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1 + // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1 + // + // Pattern of the MachineInstrs is: + // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits) + MachineInstrBuilder NewMIB; + NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32), + DDst); + + // On the first instruction, both DSrc and DDst may be undef if present. + // Specifically when the original instruction didn't have them as an + // <imp-use>. + unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst; + bool CurUndef = !MI.readsRegister(CurReg, TRI); + NewMIB.addReg(CurReg, getUndefRegState(CurUndef)); + + CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst; + CurUndef = !MI.readsRegister(CurReg, TRI); + NewMIB.addReg(CurReg, getUndefRegState(CurUndef)) + .addImm(1) + .add(predOps(ARMCC::AL)); + + if (SrcLane == DstLane) + NewMIB.addReg(SrcReg, RegState::Implicit); + + MI.setDesc(get(ARM::VEXTd32)); + MIB.addReg(DDst, RegState::Define); + + // On the second instruction, DDst has definitely been defined above, so + // it is not undef. DSrc, if present, can be undef as above. + CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst; + CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); + MIB.addReg(CurReg, getUndefRegState(CurUndef)); + + CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst; + CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI); + MIB.addReg(CurReg, getUndefRegState(CurUndef)) + .addImm(1) + .add(predOps(ARMCC::AL)); + + if (SrcLane != DstLane) + MIB.addReg(SrcReg, RegState::Implicit); + + // As before, the original destination is no longer represented, add it + // implicitly. + MIB.addReg(DstReg, RegState::Define | RegState::Implicit); + if (ImplicitSReg != 0) + MIB.addReg(ImplicitSReg, RegState::Implicit); + break; + } + } +} + +//===----------------------------------------------------------------------===// +// Partial register updates +//===----------------------------------------------------------------------===// +// +// Swift renames NEON registers with 64-bit granularity. That means any +// instruction writing an S-reg implicitly reads the containing D-reg. The +// problem is mostly avoided by translating f32 operations to v2f32 operations +// on D-registers, but f32 loads are still a problem. +// +// These instructions can load an f32 into a NEON register: +// +// VLDRS - Only writes S, partial D update. +// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops. +// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops. +// +// FCONSTD can be used as a dependency-breaking instruction. +unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance( + const MachineInstr &MI, unsigned OpNum, + const TargetRegisterInfo *TRI) const { + auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance(); + if (!PartialUpdateClearance) + return 0; + + assert(TRI && "Need TRI instance"); + + const MachineOperand &MO = MI.getOperand(OpNum); + if (MO.readsReg()) + return 0; + Register Reg = MO.getReg(); + int UseOp = -1; + + switch (MI.getOpcode()) { + // Normal instructions writing only an S-register. + case ARM::VLDRS: + case ARM::FCONSTS: + case ARM::VMOVSR: + case ARM::VMOVv8i8: + case ARM::VMOVv4i16: + case ARM::VMOVv2i32: + case ARM::VMOVv2f32: + case ARM::VMOVv1i64: + UseOp = MI.findRegisterUseOperandIdx(Reg, TRI, false); + break; + + // Explicitly reads the dependency. + case ARM::VLD1LNd32: + UseOp = 3; + break; + default: + return 0; + } + + // If this instruction actually reads a value from Reg, there is no unwanted + // dependency. + if (UseOp != -1 && MI.getOperand(UseOp).readsReg()) + return 0; + + // We must be able to clobber the whole D-reg. + if (Reg.isVirtual()) { + // Virtual register must be a def undef foo:ssub_0 operand. + if (!MO.getSubReg() || MI.readsVirtualRegister(Reg)) + return 0; + } else if (ARM::SPRRegClass.contains(Reg)) { + // Physical register: MI must define the full D-reg. + unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0, + &ARM::DPRRegClass); + if (!DReg || !MI.definesRegister(DReg, TRI)) + return 0; + } + + // MI has an unwanted D-register dependency. + // Avoid defs in the previous N instructrions. + return PartialUpdateClearance; +} + +// Break a partial register dependency after getPartialRegUpdateClearance +// returned non-zero. +void ARMBaseInstrInfo::breakPartialRegDependency( + MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { + assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def"); + assert(TRI && "Need TRI instance"); + + const MachineOperand &MO = MI.getOperand(OpNum); + Register Reg = MO.getReg(); + assert(Reg.isPhysical() && "Can't break virtual register dependencies."); + unsigned DReg = Reg; + + // If MI defines an S-reg, find the corresponding D super-register. + if (ARM::SPRRegClass.contains(Reg)) { + DReg = ARM::D0 + (Reg - ARM::S0) / 2; + assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken"); + } + + assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps"); + assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg"); + + // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines + // the full D-register by loading the same value to both lanes. The + // instruction is micro-coded with 2 uops, so don't do this until we can + // properly schedule micro-coded instructions. The dispatcher stalls cause + // too big regressions. + + // Insert the dependency-breaking FCONSTD before MI. + // 96 is the encoding of 0.5, but the actual value doesn't matter here. + BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg) + .addImm(96) + .add(predOps(ARMCC::AL)); + MI.addRegisterKilled(DReg, TRI, true); +} + +bool ARMBaseInstrInfo::hasNOP() const { + return Subtarget.hasFeature(ARM::HasV6KOps); +} + +bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const { + if (MI->getNumOperands() < 4) + return true; + unsigned ShOpVal = MI->getOperand(3).getImm(); + unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal); + // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1. + if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) || + ((ShImm == 1 || ShImm == 2) && + ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl)) + return true; + + return false; +} + +bool ARMBaseInstrInfo::getRegSequenceLikeInputs( + const MachineInstr &MI, unsigned DefIdx, + SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const { + assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); + assert(MI.isRegSequenceLike() && "Invalid kind of instruction"); + + switch (MI.getOpcode()) { + case ARM::VMOVDRR: + // dX = VMOVDRR rY, rZ + // is the same as: + // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1 + // Populate the InputRegs accordingly. + // rY + const MachineOperand *MOReg = &MI.getOperand(1); + if (!MOReg->isUndef()) + InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), + MOReg->getSubReg(), ARM::ssub_0)); + // rZ + MOReg = &MI.getOperand(2); + if (!MOReg->isUndef()) + InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(), + MOReg->getSubReg(), ARM::ssub_1)); + return true; + } + llvm_unreachable("Target dependent opcode missing"); +} + +bool ARMBaseInstrInfo::getExtractSubregLikeInputs( + const MachineInstr &MI, unsigned DefIdx, + RegSubRegPairAndIdx &InputReg) const { + assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); + assert(MI.isExtractSubregLike() && "Invalid kind of instruction"); + + switch (MI.getOpcode()) { + case ARM::VMOVRRD: + // rX, rY = VMOVRRD dZ + // is the same as: + // rX = EXTRACT_SUBREG dZ, ssub_0 + // rY = EXTRACT_SUBREG dZ, ssub_1 + const MachineOperand &MOReg = MI.getOperand(2); + if (MOReg.isUndef()) + return false; + InputReg.Reg = MOReg.getReg(); + InputReg.SubReg = MOReg.getSubReg(); + InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1; + return true; + } + llvm_unreachable("Target dependent opcode missing"); +} + +bool ARMBaseInstrInfo::getInsertSubregLikeInputs( + const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg, + RegSubRegPairAndIdx &InsertedReg) const { + assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index"); + assert(MI.isInsertSubregLike() && "Invalid kind of instruction"); + + switch (MI.getOpcode()) { + case ARM::VSETLNi32: + case ARM::MVE_VMOV_to_lane_32: + // dX = VSETLNi32 dY, rZ, imm + // qX = MVE_VMOV_to_lane_32 qY, rZ, imm + const MachineOperand &MOBaseReg = MI.getOperand(1); + const MachineOperand &MOInsertedReg = MI.getOperand(2); + if (MOInsertedReg.isUndef()) + return false; + const MachineOperand &MOIndex = MI.getOperand(3); + BaseReg.Reg = MOBaseReg.getReg(); + BaseReg.SubReg = MOBaseReg.getSubReg(); + + InsertedReg.Reg = MOInsertedReg.getReg(); + InsertedReg.SubReg = MOInsertedReg.getSubReg(); + InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm(); + return true; + } + llvm_unreachable("Target dependent opcode missing"); +} + +std::pair<unsigned, unsigned> +ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { + const unsigned Mask = ARMII::MO_OPTION_MASK; + return std::make_pair(TF & Mask, TF & ~Mask); +} + +ArrayRef<std::pair<unsigned, const char *>> +ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const { + using namespace ARMII; + + static const std::pair<unsigned, const char *> TargetFlags[] = { + {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}, + {MO_LO_0_7, "arm-lo-0-7"}, {MO_HI_0_7, "arm-hi-0-7"}, + {MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"}, + }; + return ArrayRef(TargetFlags); +} + +ArrayRef<std::pair<unsigned, const char *>> +ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const { + using namespace ARMII; + + static const std::pair<unsigned, const char *> TargetFlags[] = { + {MO_COFFSTUB, "arm-coffstub"}, + {MO_GOT, "arm-got"}, + {MO_SBREL, "arm-sbrel"}, + {MO_DLLIMPORT, "arm-dllimport"}, + {MO_SECREL, "arm-secrel"}, + {MO_NONLAZY, "arm-nonlazy"}}; + return ArrayRef(TargetFlags); +} + +std::optional<RegImmPair> +ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const { + int Sign = 1; + unsigned Opcode = MI.getOpcode(); + int64_t Offset = 0; + + // TODO: Handle cases where Reg is a super- or sub-register of the + // destination register. + const MachineOperand &Op0 = MI.getOperand(0); + if (!Op0.isReg() || Reg != Op0.getReg()) + return std::nullopt; + + // We describe SUBri or ADDri instructions. + if (Opcode == ARM::SUBri) + Sign = -1; + else if (Opcode != ARM::ADDri) + return std::nullopt; + + // TODO: Third operand can be global address (usually some string). Since + // strings can be relocated we cannot calculate their offsets for + // now. + if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm()) + return std::nullopt; + + Offset = MI.getOperand(2).getImm() * Sign; + return RegImmPair{MI.getOperand(1).getReg(), Offset}; +} + +bool llvm::registerDefinedBetween(unsigned Reg, + MachineBasicBlock::iterator From, + MachineBasicBlock::iterator To, + const TargetRegisterInfo *TRI) { + for (auto I = From; I != To; ++I) + if (I->modifiesRegister(Reg, TRI)) + return true; + return false; +} + +MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br, + const TargetRegisterInfo *TRI) { + // Search backwards to the instruction that defines CSPR. This may or not + // be a CMP, we check that after this loop. If we find another instruction + // that reads cpsr, we return nullptr. + MachineBasicBlock::iterator CmpMI = Br; + while (CmpMI != Br->getParent()->begin()) { + --CmpMI; + if (CmpMI->modifiesRegister(ARM::CPSR, TRI)) + break; + if (CmpMI->readsRegister(ARM::CPSR, TRI)) + break; + } + + // Check that this inst is a CMP r[0-7], #0 and that the register + // is not redefined between the cmp and the br. + if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri) + return nullptr; + Register Reg = CmpMI->getOperand(0).getReg(); + Register PredReg; + ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg); + if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0) + return nullptr; + if (!isARMLowRegister(Reg)) + return nullptr; + if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI)) + return nullptr; + + return &*CmpMI; +} + +unsigned llvm::ConstantMaterializationCost(unsigned Val, + const ARMSubtarget *Subtarget, + bool ForCodesize) { + if (Subtarget->isThumb()) { + if (Val <= 255) // MOV + return ForCodesize ? 2 : 1; + if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV + ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW + ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN + return ForCodesize ? 4 : 1; + if (Val <= 510) // MOV + ADDi8 + return ForCodesize ? 4 : 2; + if (~Val <= 255) // MOV + MVN + return ForCodesize ? 4 : 2; + if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL + return ForCodesize ? 4 : 2; + } else { + if (ARM_AM::getSOImmVal(Val) != -1) // MOV + return ForCodesize ? 4 : 1; + if (ARM_AM::getSOImmVal(~Val) != -1) // MVN + return ForCodesize ? 4 : 1; + if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW + return ForCodesize ? 4 : 1; + if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs + return ForCodesize ? 8 : 2; + if (ARM_AM::isSOImmTwoPartValNeg(Val)) // two instrs + return ForCodesize ? 8 : 2; + } + if (Subtarget->useMovt()) // MOVW + MOVT + return ForCodesize ? 8 : 2; + return ForCodesize ? 8 : 3; // Literal pool load +} + +bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2, + const ARMSubtarget *Subtarget, + bool ForCodesize) { + // Check with ForCodesize + unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize); + unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize); + if (Cost1 < Cost2) + return true; + if (Cost1 > Cost2) + return false; + + // If they are equal, try with !ForCodesize + return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) < + ConstantMaterializationCost(Val2, Subtarget, !ForCodesize); +} + +/// Constants defining how certain sequences should be outlined. +/// This encompasses how an outlined function should be called, and what kind of +/// frame should be emitted for that outlined function. +/// +/// \p MachineOutlinerTailCall implies that the function is being created from +/// a sequence of instructions ending in a return. +/// +/// That is, +/// +/// I1 OUTLINED_FUNCTION: +/// I2 --> B OUTLINED_FUNCTION I1 +/// BX LR I2 +/// BX LR +/// +/// +-------------------------+--------+-----+ +/// | | Thumb2 | ARM | +/// +-------------------------+--------+-----+ +/// | Call overhead in Bytes | 4 | 4 | +/// | Frame overhead in Bytes | 0 | 0 | +/// | Stack fixup required | No | No | +/// +-------------------------+--------+-----+ +/// +/// \p MachineOutlinerThunk implies that the function is being created from +/// a sequence of instructions ending in a call. The outlined function is +/// called with a BL instruction, and the outlined function tail-calls the +/// original call destination. +/// +/// That is, +/// +/// I1 OUTLINED_FUNCTION: +/// I2 --> BL OUTLINED_FUNCTION I1 +/// BL f I2 +/// B f +/// +/// +-------------------------+--------+-----+ +/// | | Thumb2 | ARM | +/// +-------------------------+--------+-----+ +/// | Call overhead in Bytes | 4 | 4 | +/// | Frame overhead in Bytes | 0 | 0 | +/// | Stack fixup required | No | No | +/// +-------------------------+--------+-----+ +/// +/// \p MachineOutlinerNoLRSave implies that the function should be called using +/// a BL instruction, but doesn't require LR to be saved and restored. This +/// happens when LR is known to be dead. +/// +/// That is, +/// +/// I1 OUTLINED_FUNCTION: +/// I2 --> BL OUTLINED_FUNCTION I1 +/// I3 I2 +/// I3 +/// BX LR +/// +/// +-------------------------+--------+-----+ +/// | | Thumb2 | ARM | +/// +-------------------------+--------+-----+ +/// | Call overhead in Bytes | 4 | 4 | +/// | Frame overhead in Bytes | 2 | 4 | +/// | Stack fixup required | No | No | +/// +-------------------------+--------+-----+ +/// +/// \p MachineOutlinerRegSave implies that the function should be called with a +/// save and restore of LR to an available register. This allows us to avoid +/// stack fixups. Note that this outlining variant is compatible with the +/// NoLRSave case. +/// +/// That is, +/// +/// I1 Save LR OUTLINED_FUNCTION: +/// I2 --> BL OUTLINED_FUNCTION I1 +/// I3 Restore LR I2 +/// I3 +/// BX LR +/// +/// +-------------------------+--------+-----+ +/// | | Thumb2 | ARM | +/// +-------------------------+--------+-----+ +/// | Call overhead in Bytes | 8 | 12 | +/// | Frame overhead in Bytes | 2 | 4 | +/// | Stack fixup required | No | No | +/// +-------------------------+--------+-----+ +/// +/// \p MachineOutlinerDefault implies that the function should be called with +/// a save and restore of LR to the stack. +/// +/// That is, +/// +/// I1 Save LR OUTLINED_FUNCTION: +/// I2 --> BL OUTLINED_FUNCTION I1 +/// I3 Restore LR I2 +/// I3 +/// BX LR +/// +/// +-------------------------+--------+-----+ +/// | | Thumb2 | ARM | +/// +-------------------------+--------+-----+ +/// | Call overhead in Bytes | 8 | 12 | +/// | Frame overhead in Bytes | 2 | 4 | +/// | Stack fixup required | Yes | Yes | +/// +-------------------------+--------+-----+ + +enum MachineOutlinerClass { + MachineOutlinerTailCall, + MachineOutlinerThunk, + MachineOutlinerNoLRSave, + MachineOutlinerRegSave, + MachineOutlinerDefault +}; + +enum MachineOutlinerMBBFlags { + LRUnavailableSomewhere = 0x2, + HasCalls = 0x4, + UnsafeRegsDead = 0x8 +}; + +struct OutlinerCosts { + int CallTailCall; + int FrameTailCall; + int CallThunk; + int FrameThunk; + int CallNoLRSave; + int FrameNoLRSave; + int CallRegSave; + int FrameRegSave; + int CallDefault; + int FrameDefault; + int SaveRestoreLROnStack; + + OutlinerCosts(const ARMSubtarget &target) + : CallTailCall(target.isThumb() ? 4 : 4), + FrameTailCall(target.isThumb() ? 0 : 0), + CallThunk(target.isThumb() ? 4 : 4), + FrameThunk(target.isThumb() ? 0 : 0), + CallNoLRSave(target.isThumb() ? 4 : 4), + FrameNoLRSave(target.isThumb() ? 2 : 4), + CallRegSave(target.isThumb() ? 8 : 12), + FrameRegSave(target.isThumb() ? 2 : 4), + CallDefault(target.isThumb() ? 8 : 12), + FrameDefault(target.isThumb() ? 2 : 4), + SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {} +}; + +Register +ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const { + MachineFunction *MF = C.getMF(); + const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo(); + const ARMBaseRegisterInfo *ARI = + static_cast<const ARMBaseRegisterInfo *>(&TRI); + + BitVector regsReserved = ARI->getReservedRegs(*MF); + // Check if there is an available register across the sequence that we can + // use. + for (Register Reg : ARM::rGPRRegClass) { + if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) && + Reg != ARM::LR && // LR is not reserved, but don't use it. + Reg != ARM::R12 && // R12 is not guaranteed to be preserved. + C.isAvailableAcrossAndOutOfSeq(Reg, TRI) && + C.isAvailableInsideSeq(Reg, TRI)) + return Reg; + } + return Register(); +} + +// Compute liveness of LR at the point after the interval [I, E), which +// denotes a *backward* iteration through instructions. Used only for return +// basic blocks, which do not end with a tail call. +static bool isLRAvailable(const TargetRegisterInfo &TRI, + MachineBasicBlock::reverse_iterator I, + MachineBasicBlock::reverse_iterator E) { + // At the end of the function LR dead. + bool Live = false; + for (; I != E; ++I) { + const MachineInstr &MI = *I; + + // Check defs of LR. + if (MI.modifiesRegister(ARM::LR, &TRI)) + Live = false; + + // Check uses of LR. + unsigned Opcode = MI.getOpcode(); + if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR || + Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET || + Opcode == ARM::tBXNS_RET) { + // These instructions use LR, but it's not an (explicit or implicit) + // operand. + Live = true; + continue; + } + if (MI.readsRegister(ARM::LR, &TRI)) + Live = true; + } + return !Live; +} + +std::optional<outliner::OutlinedFunction> +ARMBaseInstrInfo::getOutliningCandidateInfo( + std::vector<outliner::Candidate> &RepeatedSequenceLocs) const { + unsigned SequenceSize = 0; + for (auto &MI : RepeatedSequenceLocs[0]) + SequenceSize += getInstSizeInBytes(MI); + + // Properties about candidate MBBs that hold for all of them. + unsigned FlagsSetInAll = 0xF; + + // Compute liveness information for each candidate, and set FlagsSetInAll. + const TargetRegisterInfo &TRI = getRegisterInfo(); + for (outliner::Candidate &C : RepeatedSequenceLocs) + FlagsSetInAll &= C.Flags; + + // According to the ARM Procedure Call Standard, the following are + // undefined on entry/exit from a function call: + // + // * Register R12(IP), + // * Condition codes (and thus the CPSR register) + // + // Since we control the instructions which are part of the outlined regions + // we don't need to be fully compliant with the AAPCS, but we have to + // guarantee that if a veneer is inserted at link time the code is still + // correct. Because of this, we can't outline any sequence of instructions + // where one of these registers is live into/across it. Thus, we need to + // delete those candidates. + auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) { + // If the unsafe registers in this block are all dead, then we don't need + // to compute liveness here. + if (C.Flags & UnsafeRegsDead) + return false; + return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI); + }; + + // Are there any candidates where those registers are live? + if (!(FlagsSetInAll & UnsafeRegsDead)) { + // Erase every candidate that violates the restrictions above. (It could be + // true that we have viable candidates, so it's not worth bailing out in + // the case that, say, 1 out of 20 candidates violate the restructions.) + llvm::erase_if(RepeatedSequenceLocs, CantGuaranteeValueAcrossCall); + + // If the sequence doesn't have enough candidates left, then we're done. + if (RepeatedSequenceLocs.size() < 2) + return std::nullopt; + } + + // We expect the majority of the outlining candidates to be in consensus with + // regard to return address sign and authentication, and branch target + // enforcement, in other words, partitioning according to all the four + // possible combinations of PAC-RET and BTI is going to yield one big subset + // and three small (likely empty) subsets. That allows us to cull incompatible + // candidates separately for PAC-RET and BTI. + + // Partition the candidates in two sets: one with BTI enabled and one with BTI + // disabled. Remove the candidates from the smaller set. If they are the same + // number prefer the non-BTI ones for outlining, since they have less + // overhead. + auto NoBTI = + llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { + const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); + return AFI.branchTargetEnforcement(); + }); + if (std::distance(RepeatedSequenceLocs.begin(), NoBTI) > + std::distance(NoBTI, RepeatedSequenceLocs.end())) + RepeatedSequenceLocs.erase(NoBTI, RepeatedSequenceLocs.end()); + else + RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoBTI); + + if (RepeatedSequenceLocs.size() < 2) + return std::nullopt; + + // Likewise, partition the candidates according to PAC-RET enablement. + auto NoPAC = + llvm::partition(RepeatedSequenceLocs, [](const outliner::Candidate &C) { + const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); + // If the function happens to not spill the LR, do not disqualify it + // from the outlining. + return AFI.shouldSignReturnAddress(true); + }); + if (std::distance(RepeatedSequenceLocs.begin(), NoPAC) > + std::distance(NoPAC, RepeatedSequenceLocs.end())) + RepeatedSequenceLocs.erase(NoPAC, RepeatedSequenceLocs.end()); + else + RepeatedSequenceLocs.erase(RepeatedSequenceLocs.begin(), NoPAC); + + if (RepeatedSequenceLocs.size() < 2) + return std::nullopt; + + // At this point, we have only "safe" candidates to outline. Figure out + // frame + call instruction information. + + unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back().getOpcode(); + + // Helper lambda which sets call information for every candidate. + auto SetCandidateCallInfo = + [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) { + for (outliner::Candidate &C : RepeatedSequenceLocs) + C.setCallInfo(CallID, NumBytesForCall); + }; + + OutlinerCosts Costs(Subtarget); + + const auto &SomeMFI = + *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>(); + // Adjust costs to account for the BTI instructions. + if (SomeMFI.branchTargetEnforcement()) { + Costs.FrameDefault += 4; + Costs.FrameNoLRSave += 4; + Costs.FrameRegSave += 4; + Costs.FrameTailCall += 4; + Costs.FrameThunk += 4; + } + + // Adjust costs to account for sign and authentication instructions. + if (SomeMFI.shouldSignReturnAddress(true)) { + Costs.CallDefault += 8; // +PAC instr, +AUT instr + Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr + } + + unsigned FrameID = MachineOutlinerDefault; + unsigned NumBytesToCreateFrame = Costs.FrameDefault; + + // If the last instruction in any candidate is a terminator, then we should + // tail call all of the candidates. + if (RepeatedSequenceLocs[0].back().isTerminator()) { + FrameID = MachineOutlinerTailCall; + NumBytesToCreateFrame = Costs.FrameTailCall; + SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall); + } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX || + LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL || + LastInstrOpcode == ARM::tBLXr || + LastInstrOpcode == ARM::tBLXr_noip || + LastInstrOpcode == ARM::tBLXi) { + FrameID = MachineOutlinerThunk; + NumBytesToCreateFrame = Costs.FrameThunk; + SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk); + } else { + // We need to decide how to emit calls + frames. We can always emit the same + // frame if we don't need to save to the stack. If we have to save to the + // stack, then we need a different frame. + unsigned NumBytesNoStackCalls = 0; + std::vector<outliner::Candidate> CandidatesWithoutStackFixups; + + for (outliner::Candidate &C : RepeatedSequenceLocs) { + // LR liveness is overestimated in return blocks, unless they end with a + // tail call. + const auto Last = C.getMBB()->rbegin(); + const bool LRIsAvailable = + C.getMBB()->isReturnBlock() && !Last->isCall() + ? isLRAvailable(TRI, Last, + (MachineBasicBlock::reverse_iterator)C.begin()) + : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI); + if (LRIsAvailable) { + FrameID = MachineOutlinerNoLRSave; + NumBytesNoStackCalls += Costs.CallNoLRSave; + C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave); + CandidatesWithoutStackFixups.push_back(C); + } + + // Is an unused register available? If so, we won't modify the stack, so + // we can outline with the same frame type as those that don't save LR. + else if (findRegisterToSaveLRTo(C)) { + FrameID = MachineOutlinerRegSave; + NumBytesNoStackCalls += Costs.CallRegSave; + C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave); + CandidatesWithoutStackFixups.push_back(C); + } + + // Is SP used in the sequence at all? If not, we don't have to modify + // the stack, so we are guaranteed to get the same frame. + else if (C.isAvailableInsideSeq(ARM::SP, TRI)) { + NumBytesNoStackCalls += Costs.CallDefault; + C.setCallInfo(MachineOutlinerDefault, Costs.CallDefault); + CandidatesWithoutStackFixups.push_back(C); + } + + // If we outline this, we need to modify the stack. Pretend we don't + // outline this by saving all of its bytes. + else + NumBytesNoStackCalls += SequenceSize; + } + + // If there are no places where we have to save LR, then note that we don't + // have to update the stack. Otherwise, give every candidate the default + // call type + if (NumBytesNoStackCalls <= + RepeatedSequenceLocs.size() * Costs.CallDefault) { + RepeatedSequenceLocs = CandidatesWithoutStackFixups; + FrameID = MachineOutlinerNoLRSave; + if (RepeatedSequenceLocs.size() < 2) + return std::nullopt; + } else + SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault); + } + + // Does every candidate's MBB contain a call? If so, then we might have a + // call in the range. + if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) { + // check if the range contains a call. These require a save + restore of + // the link register. + outliner::Candidate &FirstCand = RepeatedSequenceLocs[0]; + if (std::any_of(FirstCand.begin(), std::prev(FirstCand.end()), + [](const MachineInstr &MI) { return MI.isCall(); })) + NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; + + // Handle the last instruction separately. If it is tail call, then the + // last instruction is a call, we don't want to save + restore in this + // case. However, it could be possible that the last instruction is a + // call without it being valid to tail call this sequence. We should + // consider this as well. + else if (FrameID != MachineOutlinerThunk && + FrameID != MachineOutlinerTailCall && FirstCand.back().isCall()) + NumBytesToCreateFrame += Costs.SaveRestoreLROnStack; + } + + return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, + NumBytesToCreateFrame, FrameID); +} + +bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI, + int64_t Fixup, + bool Updt) const { + int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP, /*TRI=*/nullptr); + unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask); + if (SPIdx < 0) + // No SP operand + return true; + else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2)) + // If SP is not the base register we can't do much + return false; + + // Stack might be involved but addressing mode doesn't handle any offset. + // Rq: AddrModeT1_[1|2|4] don't operate on SP + if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions + AddrMode == ARMII::AddrMode4 || // Load/Store Multiple + AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple + AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register + AddrMode == ARMII::AddrModeT2_pc || // PCrel access + AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST + AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE + AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE + AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR + AddrMode == ARMII::AddrModeNone || + AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions + AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm + return false; + + unsigned NumOps = MI->getDesc().getNumOperands(); + unsigned ImmIdx = NumOps - 3; + + const MachineOperand &Offset = MI->getOperand(ImmIdx); + assert(Offset.isImm() && "Is not an immediate"); + int64_t OffVal = Offset.getImm(); + + if (OffVal < 0) + // Don't override data if the are below SP. + return false; + + unsigned NumBits = 0; + unsigned Scale = 1; + + switch (AddrMode) { + case ARMII::AddrMode3: + if (ARM_AM::getAM3Op(OffVal) == ARM_AM::sub) + return false; + OffVal = ARM_AM::getAM3Offset(OffVal); + NumBits = 8; + break; + case ARMII::AddrMode5: + if (ARM_AM::getAM5Op(OffVal) == ARM_AM::sub) + return false; + OffVal = ARM_AM::getAM5Offset(OffVal); + NumBits = 8; + Scale = 4; + break; + case ARMII::AddrMode5FP16: + if (ARM_AM::getAM5FP16Op(OffVal) == ARM_AM::sub) + return false; + OffVal = ARM_AM::getAM5FP16Offset(OffVal); + NumBits = 8; + Scale = 2; + break; + case ARMII::AddrModeT2_i8pos: + NumBits = 8; + break; + case ARMII::AddrModeT2_i8s4: + // FIXME: Values are already scaled in this addressing mode. + assert((Fixup & 3) == 0 && "Can't encode this offset!"); + NumBits = 10; + break; + case ARMII::AddrModeT2_ldrex: + NumBits = 8; + Scale = 4; + break; + case ARMII::AddrModeT2_i12: + case ARMII::AddrMode_i12: + NumBits = 12; + break; + case ARMII::AddrModeT1_s: // SP-relative LD/ST + NumBits = 8; + Scale = 4; + break; + default: + llvm_unreachable("Unsupported addressing mode!"); + } + // Make sure the offset is encodable for instructions that scale the + // immediate. + assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 && + "Can't encode this offset!"); + OffVal += Fixup / Scale; + + unsigned Mask = (1 << NumBits) - 1; + + if (OffVal <= Mask) { + if (Updt) + MI->getOperand(ImmIdx).setImm(OffVal); + return true; + } + + return false; +} + +void ARMBaseInstrInfo::mergeOutliningCandidateAttributes( + Function &F, std::vector<outliner::Candidate> &Candidates) const { + outliner::Candidate &C = Candidates.front(); + // branch-target-enforcement is guaranteed to be consistent between all + // candidates, so we only need to look at one. + const Function &CFn = C.getMF()->getFunction(); + if (CFn.hasFnAttribute("branch-target-enforcement")) + F.addFnAttr(CFn.getFnAttribute("branch-target-enforcement")); + + ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates); +} + +bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom( + MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { + const Function &F = MF.getFunction(); + + // Can F be deduplicated by the linker? If it can, don't outline from it. + if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) + return false; + + // Don't outline from functions with section markings; the program could + // expect that all the code is in the named section. + // FIXME: Allow outlining from multiple functions with the same section + // marking. + if (F.hasSection()) + return false; + + // FIXME: Thumb1 outlining is not handled + if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction()) + return false; + + // It's safe to outline from MF. + return true; +} + +bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB, + unsigned &Flags) const { + // Check if LR is available through all of the MBB. If it's not, then set + // a flag. + assert(MBB.getParent()->getRegInfo().tracksLiveness() && + "Suitable Machine Function for outlining must track liveness"); + + LiveRegUnits LRU(getRegisterInfo()); + + for (MachineInstr &MI : llvm::reverse(MBB)) + LRU.accumulate(MI); + + // Check if each of the unsafe registers are available... + bool R12AvailableInBlock = LRU.available(ARM::R12); + bool CPSRAvailableInBlock = LRU.available(ARM::CPSR); + + // If all of these are dead (and not live out), we know we don't have to check + // them later. + if (R12AvailableInBlock && CPSRAvailableInBlock) + Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead; + + // Now, add the live outs to the set. + LRU.addLiveOuts(MBB); + + // If any of these registers is available in the MBB, but also a live out of + // the block, then we know outlining is unsafe. + if (R12AvailableInBlock && !LRU.available(ARM::R12)) + return false; + if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR)) + return false; + + // Check if there's a call inside this MachineBasicBlock. If there is, then + // set a flag. + if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); })) + Flags |= MachineOutlinerMBBFlags::HasCalls; + + // LR liveness is overestimated in return blocks. + + bool LRIsAvailable = + MBB.isReturnBlock() && !MBB.back().isCall() + ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend()) + : LRU.available(ARM::LR); + if (!LRIsAvailable) + Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere; + + return true; +} + +outliner::InstrType +ARMBaseInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, + unsigned Flags) const { + MachineInstr &MI = *MIT; + const TargetRegisterInfo *TRI = &getRegisterInfo(); + + // PIC instructions contain labels, outlining them would break offset + // computing. unsigned Opc = MI.getOpcode(); + unsigned Opc = MI.getOpcode(); + if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR || + Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR || + Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB || + Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic || + Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel || + Opc == ARM::t2MOV_ga_pcrel) + return outliner::InstrType::Illegal; + + // Be conservative with ARMv8.1 MVE instructions. + if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart || + Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart || + Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP || + Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd || + Opc == ARM::t2LoopEndDec) + return outliner::InstrType::Illegal; + + const MCInstrDesc &MCID = MI.getDesc(); + uint64_t MIFlags = MCID.TSFlags; + if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE) + return outliner::InstrType::Illegal; + + // Is this a terminator for a basic block? + if (MI.isTerminator()) + // TargetInstrInfo::getOutliningType has already filtered out anything + // that would break this, so we can allow it here. + return outliner::InstrType::Legal; + + // Don't outline if link register or program counter value are used. + if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI)) + return outliner::InstrType::Illegal; + + if (MI.isCall()) { + // Get the function associated with the call. Look at each operand and find + // the one that represents the calle and get its name. + const Function *Callee = nullptr; + for (const MachineOperand &MOP : MI.operands()) { + if (MOP.isGlobal()) { + Callee = dyn_cast<Function>(MOP.getGlobal()); + break; + } + } + + // Dont't outline calls to "mcount" like functions, in particular Linux + // kernel function tracing relies on it. + if (Callee && + (Callee->getName() == "\01__gnu_mcount_nc" || + Callee->getName() == "\01mcount" || Callee->getName() == "__mcount")) + return outliner::InstrType::Illegal; + + // If we don't know anything about the callee, assume it depends on the + // stack layout of the caller. In that case, it's only legal to outline + // as a tail-call. Explicitly list the call instructions we know about so + // we don't get unexpected results with call pseudo-instructions. + auto UnknownCallOutlineType = outliner::InstrType::Illegal; + if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX || + Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip || + Opc == ARM::tBLXi) + UnknownCallOutlineType = outliner::InstrType::LegalTerminator; + + if (!Callee) + return UnknownCallOutlineType; + + // We have a function we have information about. Check if it's something we + // can safely outline. + MachineFunction *MF = MI.getParent()->getParent(); + MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(*Callee); + + // We don't know what's going on with the callee at all. Don't touch it. + if (!CalleeMF) + return UnknownCallOutlineType; + + // Check if we know anything about the callee saves on the function. If we + // don't, then don't touch it, since that implies that we haven't computed + // anything about its stack frame yet. + MachineFrameInfo &MFI = CalleeMF->getFrameInfo(); + if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 || + MFI.getNumObjects() > 0) + return UnknownCallOutlineType; + + // At this point, we can say that CalleeMF ought to not pass anything on the + // stack. Therefore, we can outline it. + return outliner::InstrType::Legal; + } + + // Since calls are handled, don't touch LR or PC + if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI)) + return outliner::InstrType::Illegal; + + // Does this use the stack? + if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) { + // True if there is no chance that any outlined candidate from this range + // could require stack fixups. That is, both + // * LR is available in the range (No save/restore around call) + // * The range doesn't include calls (No save/restore in outlined frame) + // are true. + // These conditions also ensure correctness of the return address + // authentication - we insert sign and authentication instructions only if + // we save/restore LR on stack, but then this condition ensures that the + // outlined range does not modify the SP, therefore the SP value used for + // signing is the same as the one used for authentication. + // FIXME: This is very restrictive; the flags check the whole block, + // not just the bit we will try to outline. + bool MightNeedStackFixUp = + (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere | + MachineOutlinerMBBFlags::HasCalls)); + + if (!MightNeedStackFixUp) + return outliner::InstrType::Legal; + + // Any modification of SP will break our code to save/restore LR. + // FIXME: We could handle some instructions which add a constant offset to + // SP, with a bit more work. + if (MI.modifiesRegister(ARM::SP, TRI)) + return outliner::InstrType::Illegal; + + // At this point, we have a stack instruction that we might need to fix up. + // up. We'll handle it if it's a load or store. + if (checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), + false)) + return outliner::InstrType::Legal; + + // We can't fix it up, so don't outline it. + return outliner::InstrType::Illegal; + } + + // Be conservative with IT blocks. + if (MI.readsRegister(ARM::ITSTATE, TRI) || + MI.modifiesRegister(ARM::ITSTATE, TRI)) + return outliner::InstrType::Illegal; + + // Don't outline CFI instructions. + if (MI.isCFIInstruction()) + return outliner::InstrType::Illegal; + + return outliner::InstrType::Legal; +} + +void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const { + for (MachineInstr &MI : MBB) { + checkAndUpdateStackOffset(&MI, Subtarget.getStackAlignment().value(), true); + } +} + +void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB, + MachineBasicBlock::iterator It, bool CFI, + bool Auth) const { + int Align = std::max(Subtarget.getStackAlignment().value(), uint64_t(8)); + unsigned MIFlags = CFI ? MachineInstr::FrameSetup : 0; + assert(Align >= 8 && Align <= 256); + if (Auth) { + assert(Subtarget.isThumb2()); + // Compute PAC in R12. Outlining ensures R12 is dead across the outlined + // sequence. + BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)).setMIFlags(MIFlags); + BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP) + .addReg(ARM::R12, RegState::Kill) + .addReg(ARM::LR, RegState::Kill) + .addReg(ARM::SP) + .addImm(-Align) + .add(predOps(ARMCC::AL)) + .setMIFlags(MIFlags); + } else { + unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM; + BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP) + .addReg(ARM::LR, RegState::Kill) + .addReg(ARM::SP) + .addImm(-Align) + .add(predOps(ARMCC::AL)) + .setMIFlags(MIFlags); + } + + if (!CFI) + return; + + MachineFunction &MF = *MBB.getParent(); + + // Add a CFI, saying CFA is offset by Align bytes from SP. + int64_t StackPosEntry = + MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, Align)); + BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) + .addCFIIndex(StackPosEntry) + .setMIFlags(MachineInstr::FrameSetup); + + // Add a CFI saying that the LR that we want to find is now higher than + // before. + int LROffset = Auth ? Align - 4 : Align; + const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); + unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); + int64_t LRPosEntry = MF.addFrameInst( + MCCFIInstruction::createOffset(nullptr, DwarfLR, -LROffset)); + BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) + .addCFIIndex(LRPosEntry) + .setMIFlags(MachineInstr::FrameSetup); + if (Auth) { + // Add a CFI for the location of the return adddress PAC. + unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); + int64_t RACPosEntry = MF.addFrameInst( + MCCFIInstruction::createOffset(nullptr, DwarfRAC, -Align)); + BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) + .addCFIIndex(RACPosEntry) + .setMIFlags(MachineInstr::FrameSetup); + } +} + +void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator It, + Register Reg) const { + MachineFunction &MF = *MBB.getParent(); + const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); + unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); + unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true); + + int64_t LRPosEntry = MF.addFrameInst( + MCCFIInstruction::createRegister(nullptr, DwarfLR, DwarfReg)); + BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) + .addCFIIndex(LRPosEntry) + .setMIFlags(MachineInstr::FrameSetup); +} + +void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB, + MachineBasicBlock::iterator It, + bool CFI, bool Auth) const { + int Align = Subtarget.getStackAlignment().value(); + unsigned MIFlags = CFI ? MachineInstr::FrameDestroy : 0; + if (Auth) { + assert(Subtarget.isThumb2()); + // Restore return address PAC and LR. + BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST)) + .addReg(ARM::R12, RegState::Define) + .addReg(ARM::LR, RegState::Define) + .addReg(ARM::SP, RegState::Define) + .addReg(ARM::SP) + .addImm(Align) + .add(predOps(ARMCC::AL)) + .setMIFlags(MIFlags); + // LR authentication is after the CFI instructions, below. + } else { + unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM; + MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR) + .addReg(ARM::SP, RegState::Define) + .addReg(ARM::SP); + if (!Subtarget.isThumb()) + MIB.addReg(0); + MIB.addImm(Subtarget.getStackAlignment().value()) + .add(predOps(ARMCC::AL)) + .setMIFlags(MIFlags); + } + + if (CFI) { + // Now stack has moved back up... + MachineFunction &MF = *MBB.getParent(); + const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); + unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); + int64_t StackPosEntry = + MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0)); + BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) + .addCFIIndex(StackPosEntry) + .setMIFlags(MachineInstr::FrameDestroy); + + // ... and we have restored LR. + int64_t LRPosEntry = + MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); + BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) + .addCFIIndex(LRPosEntry) + .setMIFlags(MachineInstr::FrameDestroy); + + if (Auth) { + unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true); + int64_t Entry = + MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, DwarfRAC)); + BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) + .addCFIIndex(Entry) + .setMIFlags(MachineInstr::FrameDestroy); + } + } + + if (Auth) + BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT)); +} + +void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg( + MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const { + MachineFunction &MF = *MBB.getParent(); + const MCRegisterInfo *MRI = Subtarget.getRegisterInfo(); + unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true); + + int64_t LRPosEntry = + MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, DwarfLR)); + BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION)) + .addCFIIndex(LRPosEntry) + .setMIFlags(MachineInstr::FrameDestroy); +} + +void ARMBaseInstrInfo::buildOutlinedFrame( + MachineBasicBlock &MBB, MachineFunction &MF, + const outliner::OutlinedFunction &OF) const { + // For thunk outlining, rewrite the last instruction from a call to a + // tail-call. + if (OF.FrameConstructionID == MachineOutlinerThunk) { + MachineInstr *Call = &*--MBB.instr_end(); + bool isThumb = Subtarget.isThumb(); + unsigned FuncOp = isThumb ? 2 : 0; + unsigned Opc = Call->getOperand(FuncOp).isReg() + ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr + : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd + : ARM::tTAILJMPdND + : ARM::TAILJMPd; + MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc)) + .add(Call->getOperand(FuncOp)); + if (isThumb && !Call->getOperand(FuncOp).isReg()) + MIB.add(predOps(ARMCC::AL)); + Call->eraseFromParent(); + } + + // Is there a call in the outlined range? + auto IsNonTailCall = [](MachineInstr &MI) { + return MI.isCall() && !MI.isReturn(); + }; + if (llvm::any_of(MBB.instrs(), IsNonTailCall)) { + MachineBasicBlock::iterator It = MBB.begin(); + MachineBasicBlock::iterator Et = MBB.end(); + + if (OF.FrameConstructionID == MachineOutlinerTailCall || + OF.FrameConstructionID == MachineOutlinerThunk) + Et = std::prev(MBB.end()); + + // We have to save and restore LR, we need to add it to the liveins if it + // is not already part of the set. This is suffient since outlined + // functions only have one block. + if (!MBB.isLiveIn(ARM::LR)) + MBB.addLiveIn(ARM::LR); + + // Insert a save before the outlined region + bool Auth = OF.Candidates.front() + .getMF() + ->getInfo<ARMFunctionInfo>() + ->shouldSignReturnAddress(true); + saveLROnStack(MBB, It, true, Auth); + + // Fix up the instructions in the range, since we're going to modify the + // stack. + assert(OF.FrameConstructionID != MachineOutlinerDefault && + "Can only fix up stack references once"); + fixupPostOutline(MBB); + + // Insert a restore before the terminator for the function. Restore LR. + restoreLRFromStack(MBB, Et, true, Auth); + } + + // If this is a tail call outlined function, then there's already a return. + if (OF.FrameConstructionID == MachineOutlinerTailCall || + OF.FrameConstructionID == MachineOutlinerThunk) + return; + + // Here we have to insert the return ourselves. Get the correct opcode from + // current feature set. + BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode())) + .add(predOps(ARMCC::AL)); + + // Did we have to modify the stack by saving the link register? + if (OF.FrameConstructionID != MachineOutlinerDefault && + OF.Candidates[0].CallConstructionID != MachineOutlinerDefault) + return; + + // We modified the stack. + // Walk over the basic block and fix up all the stack accesses. + fixupPostOutline(MBB); +} + +MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall( + Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, + MachineFunction &MF, outliner::Candidate &C) const { + MachineInstrBuilder MIB; + MachineBasicBlock::iterator CallPt; + unsigned Opc; + bool isThumb = Subtarget.isThumb(); + + // Are we tail calling? + if (C.CallConstructionID == MachineOutlinerTailCall) { + // If yes, then we can just branch to the label. + Opc = isThumb + ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND + : ARM::TAILJMPd; + MIB = BuildMI(MF, DebugLoc(), get(Opc)) + .addGlobalAddress(M.getNamedValue(MF.getName())); + if (isThumb) + MIB.add(predOps(ARMCC::AL)); + It = MBB.insert(It, MIB); + return It; + } + + // Create the call instruction. + Opc = isThumb ? ARM::tBL : ARM::BL; + MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc)); + if (isThumb) + CallMIB.add(predOps(ARMCC::AL)); + CallMIB.addGlobalAddress(M.getNamedValue(MF.getName())); + + if (C.CallConstructionID == MachineOutlinerNoLRSave || + C.CallConstructionID == MachineOutlinerThunk) { + // No, so just insert the call. + It = MBB.insert(It, CallMIB); + return It; + } + + const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>(); + // Can we save to a register? + if (C.CallConstructionID == MachineOutlinerRegSave) { + Register Reg = findRegisterToSaveLRTo(C); + assert(Reg != 0 && "No callee-saved register available?"); + + // Save and restore LR from that register. + copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true); + if (!AFI.isLRSpilled()) + emitCFIForLRSaveToReg(MBB, It, Reg); + CallPt = MBB.insert(It, CallMIB); + copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true); + if (!AFI.isLRSpilled()) + emitCFIForLRRestoreFromReg(MBB, It); + It--; + return CallPt; + } + // We have the default case. Save and restore from SP. + if (!MBB.isLiveIn(ARM::LR)) + MBB.addLiveIn(ARM::LR); + bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(true); + saveLROnStack(MBB, It, !AFI.isLRSpilled(), Auth); + CallPt = MBB.insert(It, CallMIB); + restoreLRFromStack(MBB, It, !AFI.isLRSpilled(), Auth); + It--; + return CallPt; +} + +bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault( + MachineFunction &MF) const { + return Subtarget.isMClass() && MF.getFunction().hasMinSize(); +} + +bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable( + const MachineInstr &MI) const { + // Try hard to rematerialize any VCTPs because if we spill P0, it will block + // the tail predication conversion. This means that the element count + // register has to be live for longer, but that has to be better than + // spill/restore and VPT predication. + return (isVCTP(&MI) && !isPredicated(MI)) || + TargetInstrInfo::isReallyTriviallyReMaterializable(MI); +} + +unsigned llvm::getBLXOpcode(const MachineFunction &MF) { + return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip + : ARM::BLX; +} + +unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) { + return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip + : ARM::tBLXr; +} + +unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) { + return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip + : ARM::BLX_pred; +} + +namespace { +class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo { + MachineInstr *EndLoop, *LoopCount; + MachineFunction *MF; + const TargetInstrInfo *TII; + + // Bitset[0 .. MAX_STAGES-1] ... iterations needed + // [LAST_IS_USE] : last reference to register in schedule is a use + // [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live + static int constexpr MAX_STAGES = 30; + static int constexpr LAST_IS_USE = MAX_STAGES; + static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1; + typedef std::bitset<MAX_STAGES + 2> IterNeed; + typedef std::map<unsigned, IterNeed> IterNeeds; + + void bumpCrossIterationPressure(RegPressureTracker &RPT, + const IterNeeds &CIN); + bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS); + + // Meanings of the various stuff with loop types: + // t2Bcc: + // EndLoop = branch at end of original BB that will become a kernel + // LoopCount = CC setter live into branch + // t2LoopEnd: + // EndLoop = branch at end of original BB + // LoopCount = t2LoopDec +public: + ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount) + : EndLoop(EndLoop), LoopCount(LoopCount), + MF(EndLoop->getParent()->getParent()), + TII(MF->getSubtarget().getInstrInfo()) {} + + bool shouldIgnoreForPipelining(const MachineInstr *MI) const override { + // Only ignore the terminator. + return MI == EndLoop || MI == LoopCount; + } + + bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override { + if (tooMuchRegisterPressure(SSD, SMS)) + return false; + + return true; + } + + std::optional<bool> createTripCountGreaterCondition( + int TC, MachineBasicBlock &MBB, + SmallVectorImpl<MachineOperand> &Cond) override { + + if (isCondBranchOpcode(EndLoop->getOpcode())) { + Cond.push_back(EndLoop->getOperand(1)); + Cond.push_back(EndLoop->getOperand(2)); + if (EndLoop->getOperand(0).getMBB() == EndLoop->getParent()) { + TII->reverseBranchCondition(Cond); + } + return {}; + } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) { + // General case just lets the unrolled t2LoopDec do the subtraction and + // therefore just needs to check if zero has been reached. + MachineInstr *LoopDec = nullptr; + for (auto &I : MBB.instrs()) + if (I.getOpcode() == ARM::t2LoopDec) + LoopDec = &I; + assert(LoopDec && "Unable to find copied LoopDec"); + // Check if we're done with the loop. + BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri)) + .addReg(LoopDec->getOperand(0).getReg()) + .addImm(0) + .addImm(ARMCC::AL) + .addReg(ARM::NoRegister); + Cond.push_back(MachineOperand::CreateImm(ARMCC::EQ)); + Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false)); + return {}; + } else + llvm_unreachable("Unknown EndLoop"); + } + + void setPreheader(MachineBasicBlock *NewPreheader) override {} + + void adjustTripCount(int TripCountAdjust) override {} + + void disposed() override {} +}; + +void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT, + const IterNeeds &CIN) { + // Increase pressure by the amounts in CrossIterationNeeds + for (const auto &N : CIN) { + int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; + for (int I = 0; I < Cnt; ++I) + RPT.increaseRegPressure(Register(N.first), LaneBitmask::getNone(), + LaneBitmask::getAll()); + } + // Decrease pressure by the amounts in CrossIterationNeeds + for (const auto &N : CIN) { + int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2; + for (int I = 0; I < Cnt; ++I) + RPT.decreaseRegPressure(Register(N.first), LaneBitmask::getAll(), + LaneBitmask::getNone()); + } +} + +bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD, + SMSchedule &SMS) { + IterNeeds CrossIterationNeeds; + + // Determine which values will be loop-carried after the schedule is + // applied + + for (auto &SU : SSD.SUnits) { + const MachineInstr *MI = SU.getInstr(); + int Stg = SMS.stageScheduled(const_cast<SUnit *>(&SU)); + for (auto &S : SU.Succs) + if (MI->isPHI() && S.getKind() == SDep::Anti) { + Register Reg = S.getReg(); + if (Reg.isVirtual()) + CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed())) + .first->second.set(0); + } else if (S.isAssignedRegDep()) { + int OStg = SMS.stageScheduled(S.getSUnit()); + if (OStg >= 0 && OStg != Stg) { + Register Reg = S.getReg(); + if (Reg.isVirtual()) + CrossIterationNeeds.insert(std::make_pair(Reg.id(), IterNeed())) + .first->second |= ((1 << (OStg - Stg)) - 1); + } + } + } + + // Determine more-or-less what the proposed schedule (reversed) is going to + // be; it might not be quite the same because the within-cycle ordering + // created by SMSchedule depends upon changes to help with address offsets and + // the like. + std::vector<SUnit *> ProposedSchedule; + for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle) + for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd; + ++Stage) { + std::deque<SUnit *> Instrs = + SMS.getInstructions(Cycle + Stage * SMS.getInitiationInterval()); + std::sort(Instrs.begin(), Instrs.end(), + [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; }); + for (SUnit *SU : Instrs) + ProposedSchedule.push_back(SU); + } + + // Learn whether the last use/def of each cross-iteration register is a use or + // def. If it is a def, RegisterPressure will implicitly increase max pressure + // and we do not have to add the pressure. + for (auto *SU : ProposedSchedule) + for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid(); + ++OperI) { + auto MO = *OperI; + if (!MO.isReg() || !MO.getReg()) + continue; + Register Reg = MO.getReg(); + auto CIter = CrossIterationNeeds.find(Reg.id()); + if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] || + CIter->second[SEEN_AS_LIVE]) + continue; + if (MO.isDef() && !MO.isDead()) + CIter->second.set(SEEN_AS_LIVE); + else if (MO.isUse()) + CIter->second.set(LAST_IS_USE); + } + for (auto &CI : CrossIterationNeeds) + CI.second.reset(LAST_IS_USE); + + RegionPressure RecRegPressure; + RegPressureTracker RPTracker(RecRegPressure); + RegisterClassInfo RegClassInfo; + RegClassInfo.runOnMachineFunction(*MF); + RPTracker.init(MF, &RegClassInfo, nullptr, EndLoop->getParent(), + EndLoop->getParent()->end(), false, false); + const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); + + bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); + + for (auto *SU : ProposedSchedule) { + MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); + RPTracker.setPos(std::next(CurInstI)); + RPTracker.recede(); + + // Track what cross-iteration registers would be seen as live + for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) { + auto MO = *OperI; + if (!MO.isReg() || !MO.getReg()) + continue; + Register Reg = MO.getReg(); + if (MO.isDef() && !MO.isDead()) { + auto CIter = CrossIterationNeeds.find(Reg.id()); + if (CIter != CrossIterationNeeds.end()) { + CIter->second.reset(0); + CIter->second.reset(SEEN_AS_LIVE); + } + } + } + for (auto &S : SU->Preds) { + auto Stg = SMS.stageScheduled(SU); + if (S.isAssignedRegDep()) { + Register Reg = S.getReg(); + auto CIter = CrossIterationNeeds.find(Reg.id()); + if (CIter != CrossIterationNeeds.end()) { + auto Stg2 = SMS.stageScheduled(const_cast<SUnit *>(S.getSUnit())); + assert(Stg2 <= Stg && "Data dependence upon earlier stage"); + if (Stg - Stg2 < MAX_STAGES) + CIter->second.set(Stg - Stg2); + CIter->second.set(SEEN_AS_LIVE); + } + } + } + + bumpCrossIterationPressure(RPTracker, CrossIterationNeeds); + } + + auto &P = RPTracker.getPressure().MaxSetPressure; + for (unsigned I = 0, E = P.size(); I < E; ++I) + if (P[I] > TRI->getRegPressureSetLimit(*MF, I)) { + return true; + } + return false; +} + +} // namespace + +std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo> +ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const { + MachineBasicBlock::iterator I = LoopBB->getFirstTerminator(); + MachineBasicBlock *Preheader = *LoopBB->pred_begin(); + if (Preheader == LoopBB) + Preheader = *std::next(LoopBB->pred_begin()); + + if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) { + // If the branch is a Bcc, then the CPSR should be set somewhere within the + // block. We need to determine the reaching definition of CPSR so that + // it can be marked as non-pipelineable, allowing the pipeliner to force + // it into stage 0 or give up if it cannot or will not do so. + MachineInstr *CCSetter = nullptr; + for (auto &L : LoopBB->instrs()) { + if (L.isCall()) + return nullptr; + if (isCPSRDefined(L)) + CCSetter = &L; + } + if (CCSetter) + return std::make_unique<ARMPipelinerLoopInfo>(&*I, CCSetter); + else + return nullptr; // Unable to find the CC setter, so unable to guarantee + // that pipeline will work + } + + // Recognize: + // preheader: + // %1 = t2DoopLoopStart %0 + // loop: + // %2 = phi %1, <not loop>, %..., %loop + // %3 = t2LoopDec %2, <imm> + // t2LoopEnd %3, %loop + + if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) { + for (auto &L : LoopBB->instrs()) + if (L.isCall()) + return nullptr; + else if (isVCTP(&L)) + return nullptr; + Register LoopDecResult = I->getOperand(0).getReg(); + MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo(); + MachineInstr *LoopDec = MRI.getUniqueVRegDef(LoopDecResult); + if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec) + return nullptr; + MachineInstr *LoopStart = nullptr; + for (auto &J : Preheader->instrs()) + if (J.getOpcode() == ARM::t2DoLoopStart) + LoopStart = &J; + if (!LoopStart) + return nullptr; + return std::make_unique<ARMPipelinerLoopInfo>(&*I, LoopDec); + } + return nullptr; +} |